

LangChain
Crash Course

Greg Lim
Copyright © 2023 Greg Lim

All rights reserved.

COPYRIGHT © 2023 BY GREG LIM

ALL RIGHTS RESERVED.
NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM

OR BY ANY ELECTRONIC OR MECHANICAL MEANS

INCLUDING INFORMATION STORAGE AND RETRIEVAL

SYSTEMS, WITHOUT PERMISSION IN WRITING FROM THE

AUTHOR. THE ONLY EXCEPTION IS BY A REVIEWER, WHO

MAY QUOTE SHORT EXCERPTS IN A REVIEW.

FIRST EDITION: SEPTEMBER 2023

Table of Contents
PREFACE

CHAPTER 1: INTRODUCTION

CHAPTER 2: WHAT IS LANGCHAIN

CHAPTER 3: HOW DOES LANGCHAIN WORK

Chapter 4: Installation, Setup and our First LangChain App
CHAPTER 5: CONNECTING TO OPENAI LLM
CHAPTER 6: PROMPT TEMPLATES

CHAPTER 7: SIMPLE CHAINS

CHAPTER 8: SEQUENTIAL CHAINS

CHAPTER 9: AGENTS

CHAPTER 10: CHAT WITH A DOCUMENT

CHAPTER 11: ADDING MEMORY (CHAT HISTORY)
CHAPTER 12: OUTPUTTING THE CHAT HISTORY

CHAPTER 13: UPLOADING CUSTOM DOCUMENTS

CHAPTER 14: LOADING DIFFERENT FILE TYPES

CHAPTER 15: CHAT WITH YOUTUBE

ABOUT THE AUTHOR

PREFACE

About this book
In this book, we take you on a fun, hands-on and pragmatic journey to
learning LangChain. You'll start building your first LangChain app within
minutes. Every chapter is written in a bite-sized manner and straight to the
point as I don’t want to waste your time (and most certainly mine) on the
content you don't need.

In the course of this book, we will cover:
- Chapter 1: Introduction
- Chapter 2: What is LangChain
- Chapter 3: How Does LangChain Work
- Chapter 4: Installation, Setup and Our First LangChain App
- Chapter 5: Connecting to OpenAI LLM
- Chapter 6: Prompt Templates
- Chapter 7: Simple Chains
- Chapter 8: Sequential Chains
- Chapter 9: Agents
- Chapter 10: Chat with a Document
- Chapter 11: Adding Memory (Chat History)
- Chapter 12: Outputting the Chat History
- Chapter 13: Uploading Custom Documents
- Chapter 14: Loading Different File Types
- Chapter 15: Chat with YouTube

The goal of this book is to teach you LangChain in a manageable way
without overwhelming you. We focus only on the essentials and cover the
material in a hands-on practice manner for you to code along.

Working Through This Book
This book is purposely broken down into short chapters where the
development process of each chapter will center on different essential
topics. The book takes a practical hands on approach to learning through
practice. You learn best when you code along with the examples in the

book.

Requirements
You should have basic programming knowledge.

Getting Book Updates
To receive updated versions of the book, subscribe to our mailing list by
sending a mail to support@i-ducate.com. I try to update my books to use
the latest version of software, libraries and will update the codes/content in
this book. So, do subscribe to my list to receive updated copies!

Code Examples
You can obtain the source code of the completed project by contacting
support@i-ducate.com

Online Course
If you are a more visual learner & learn better from absorbing this book's
content through an online course, you can access the book's online course
by contacting support@i-ducate.com and providing a proof of purchase.
The course content is the same as this book. So, if learning through books is
your preferred way of learning, skip this. But if you prefer to learn from
videos (and you want to hear my voice), contact me.

mailto:support@i-ducate.com

CHAPTER 1: INTRODUCTION

In recent times, you would probably have heard of many AI applications,
one of them being chatpdf.com.

On this website, you can upload your own PDF. After uploading, you can
have a conversation by asking questions about your PDF, and the site will
provide you with the answers.

So, for example, if I upload the US Constitution to this website and it
processes it, I can ask questions like, "What is the purpose of the
Constitution of the United States?" or "How is the House of Representatives
composed and elected?"

I might also pose my own questions, such as, "What is the minimum age to
be a senator?"

The website responds that the minimum age to be a senator is 30 years old:

If I click a feature to "scroll to page three", it will show the part of the text
from which the answer was derived.

Now, if you want to develop an application like this, how should you go
about it? Many developers choose to use a technology called "LangChain".
In this course, we will introduce LangChain and demonstrate how to
integrate it with large language models, like OpenAI GPT, to develop these
amazing apps.

CHAPTER 2: WHAT IS LANGCHAIN

What is LangChain?

If you refer to the LangChain documentation
(https://python.langchain.com/), it states that LangChain is a framework for
developing applications powered by language models.

This means we can utilize language models like OpenAI's GPT-4 in
conjunction with external data to develop AI applications.

The LangChain framework is available both as a Python and a JavaScript
package. In this course, we'll be focusing on Python.

Now, if we inquire about the limitations of ChatGPT, what do we find?

Firstly, we know that its training data only extends up to September 2021.
As a result, it might not be cognizant of events or information post that
date. Additionally, it cannot access real-time information or updates from
the Internet.

Privacy is another concern. ChatGPT does not have access to personal data
concerning individuals, companies, or even your own business documents.

This is where LangChain comes into play. It enables linking of the language
models to various external data sources, whether it's personal documents,
real-time updates from the Internet, or other pertinent data. For instance, it
can integrate information from sources like Wikipedia and Google.

This attribute is referred to as being "data aware":

With LangChain, we can seamlessly connect a robust language model, such
as GPT-4, to our preferred data sources.

But LangChain's prowess isn't confined to just being data aware.

It is also "agent aware" or as mentioned here, "Agentic". LangChain can
allow a language model to interact with its environment by executing
actions, like web search, sending an email, performing mathematical
operations, or even executing Python code, LangChain's agents can
determine the appropriate action to execute. We will look at these in the
course of this book.

CHAPTER 3: HOW DOES LANGCHAIN

WORK
How does LangChain work?

Let's consider our initial example where we upload the US Constitution
PDF and pose questions to it. In this scenario, LangChain compiles the data
from the PDF and organizes it.

Although we've mentioned a PDF, the data source could be diverse: a text
file, a Microsoft Word document, a YouTube transcript, a website, and
more. LangChain collates this data, subsequently dividing it into
manageable chunks. Once segmented, these chunks are saved in a vector
store:

For illustration, let's say our PDF contains the text displayed on the left,
termed the text corpus. LangChain will segment this text into smaller
chunks.

(source: medium.com/thirdai-blog/understanding-the-fundamental-limitations-of-vector-based-
retrieval-for-building-llm-powered-48bb7b5a57b3)

For instance, one chunk might read "GPT is a great conversational
tool … ", followed by "if you ask ChatGPT about general knowledge … ".
These are distinct sections of the chunked text.

Our large language model (LLM) will then transform this chunked text into
embeddings.

(source: medium.com/thirdai-blog/understanding-the-fundamental-limitations-of-vector-based-
retrieval-for-building-llm-powered-48bb7b5a57b3)

Embeddings are simply numerical representations of the data. The text
chunk is rendered into a numerical vector, which is then stored in a vector
store/database.

You might question the necessity of this conversion. Data is multifaceted,
encompassing text, images, audio, and video. To assign meaningful
interpretations to such diverse content forms, they must be translated into
numerical vectors.

This translation from chunks to embeddings employs various machine
learning algorithms. These algorithms categorize the data, and the resultant
classifications are saved in the vector database.

Querying the Vector Store and Generating a Completion with a
LLM

When a user poses a question, this inquiry is also converted into an
embedding, a numerical vector representation. This vector is juxtaposed

with existing vectors in the database to perform a similarity search. The
database identifies vectors most akin to the query and retrieves the chunks
from which these vectors originated.

(source: https://www.freecodecamp.org/news/langchain-how-to-create-custom-knowledge-chatbots/)

After extracting the pertinent chunks that generated those vectors. we
generate a completion with our LLM and subsequently produce a response
(steps 4 and 5).

(source: https://www.freecodecamp.org/news/langchain-how-to-create-custom-knowledge-chatbots/)

In all, this turns your document into a mini Google search engine, enabling
query-based searches.

https://www.freecodecamp.org/news/langchain-how-to-create-custom-knowledge-chatbots/

Create Automated AI Workflows

Overall, LangChain can be harnessed to craft automated apps or workflows.

For instance, one could design a YouTube script generator or a medium
article script generator (we ’ ll build one in the next chapter). LangChain
can also be employed as a web research tool, capable of summarizing
voluminous texts such as documents, articles, research papers, and even
books. Moreover, LangChain can be utilized to fashion question-answering
systems. By inputting our documents, PDFs, or books, we can solicit
answers to our queries.

Envision a scenario where one is perusing legal documents, typically
necessitating a lawyer's expertise. Now, one can input a legal document or
even a medical research paper into a LangChain app and pose questions to
derive insights.

Chapter 4: Installation, Setup and our
First LangChain App
We will now use LangChain and Streamlit to build our first app.

Medium.com is a platform where one can find stories, thoughts, articles,
and expertise from writers on any subject. If your writing trends on
Medium, you have the potential to amass a significant readership.

However, crafting Medium articles can be challenging. Not only does one
need a captivating title, but the article's content must also be compelling.

Imagine if we had an app to assist in creating Medium articles. With the app
we're developing, the goal is to design a Medium article generator that first
crafts a title for us, and then, based on that title, produces an article.

The app we'll be building is a Medium article generator where you can
input your topic of interest. For example, if I input "passive income" as my
topic of interest and hit "enter", the app will generate a Medium title for me.

Following the title generation, the app will also create the article content
itself.

Once completed, the app produces a title like "10 Strategies For Generating
Passive Income on a Limited Budget".

It also provides a subtitle, an introduction, and sections detailing various
passive income streams. This output can be directly posted or edited on
Medium.

Getting Started

To begin, on your computer, designate a folder to house all your
LangChain-related projects. In my case, I've named it "langchain" where I
store all my AI-related apps. In ‘ langchain ’ , I then create a directory

named "mediumarticlegenerator" and navigate to it.

For this course, I'll be using VSCode as my Integrated Development
Environment (IDE). You're welcome to use any IDE of your choice, be it
PyCharm or another. In VSCode, open the "mediumarticlegenerator" folder.

Now, create a new file named "apikey.py" and another file called "app.py".
In "apikey.py", define a variable named "apikey", which will store our
OpenAI key.

To retrieve this key, visit platform.openai.com and sign in. Under the
"personal" section, you can view your API keys.

Create a new secret key:

Remember, always protect your API key. Sharing it or exposing it publicly
could lead to unwanted charges on OpenAI.

Once you've generated your API key, return to your app and paste it in.

We'll begin by utilizing OpenAI's GPT as our LLM, and later, we'll explore
other models like Hugging Face.

In "app.py", we'll first import necessary modules and set up our API key for
OpenAI access. Add in the below codes into app.py:
import os
from apikey import apikey
os.environ["OPENAI_API_KEY"] = apikey

Then, we'll install several dependencies, Streamlit (for our user interface),
LangChain and OpenAI. In the Terminal, run:
pip install streamlit langchain openai

We wil explain more on the dependencies later in the book.

After setting up the dependencies, we'll design the front end of our app
using Streamlit. Add in the below codes in bold into app.py:
import os
from apikey import apikey

import streamlit as st
from langchain.llms import OpenAI

os.environ ["OPENAI_API_KEY"] = apikey

st.title('Medium Article Generator')
topic = st.text_input('Input your topic of interest')

This creates a title and a text input field where users can specify the topic
they want an article about. We'll run our app by running in the Terminal:
streamlit run app.py

It will show in the browser.

Currently, if users input a topic, no article will be generated since we
haven't yet integrated it with OpenAI. We'll address this in the next chapter.

CHAPTER 5: CONNECTING TO OPENAI
LLM
Let's proceed with connecting to OpenAI. Add in the codes in bold:
import os
from apikey import apikey

import streamlit as st
from langchain.llms import OpenAI

os.environ ["OPENAI_API_KEY"] = apikey

st.title('Medium Article Generator')
topic = st.text_input('Input your topic of interest')

llm = OpenAI(temperature=0.9)

Code Explanation

To establish a connection with OpenAI, we first instantiate an OpenAI
instance. Within this constructor, we specify the temperature, which I'll set
to 0.9.

You might wonder, what is this temperature parameter?

The temperature value influences the creativity of our model. A higher
temperature setting results in more creativity, while a lower setting leads to
more factual and objective outputs. A more factual response also tends to
reduce potential inaccuracies or hallucinations from the model. The
appropriate temperature setting depends on the application. For our current
endeavor, which aims to generate creative article titles, a higher temperature
is preferred. However, for tasks requiring factual accuracy, such as
summarizing a legal document, a lower temperature might be more suitable.

With our temperature set, let's progress with our app.

Ensuring User has Entered a Topic

Before proceeding, we should ensure the user has entered a topic. Add in

the codes:
…
…
llm = OpenAI(temperature=0.9)

if topic:
response = llm(topic)
st.write(response)

If a topic is provided, it will be processed by the llm and the response will
be displayed in the user interface.

After saving these changes, remember to rerun the Streamlit app due to the
updated source code.

To test, let's input a generic question like "Who is the fastest man alive?" As
an answer, we receive "The current fastest man alive is Usain Bolt",
confirming our successful connection to OpenAI.

Another test could involve requesting a Medium article title on a topic, say,
"give me a medium article title on passive income". The response might be
" How to Create Multiple Streams of Passive Income and Achieve
Financial Freedom".

Avoiding Repetitive Input

However, you'll notice that the prompt requires repetitive input, such as
"Give me a Medium article title on..." followed by the topic.

This redundancy can be addressed using prompt templates, which we'll
explore in the next chapter. With templates, we can streamline the input
process, ensuring users don't have to repetitively type the same prefix for
every request.

CHAPTER 6: PROMPT TEMPLATES

To avoid repetitively using "Give me a Medium article on...", we'll treat this
as a prompt template. Back in our app.py, add in bold:
import os
from apikey import apikey

import streamlit as st
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate

os.environ ["OPENAI_API_KEY"] = apikey

st.title('Medium Article Generator')
topic = st.text_input('Input your topic of interest')

title_template = PromptTemplate(
input_variables = ['topic', 'language'],
template = 'Give me medium article title on {topic} in {language}'

)

llm = OpenAI(temperature=0.9)

if topic:
response = llm(title_template.format(topic=topic,language='english'))
st.write(response)

Code Explanation
from langchain.prompts import PromptTemplate

We import the prompt template from LangChain.
title_template = PromptTemplate(

input_variables = ['topic', 'language'],
template = 'Give me medium article title on {topic} in {language}'

)

Having imported the prompt template, we create a Prompt Template
instance ‘ title_template ’ . This PromptTemplate will accept input
variables, which we declare in an input_variables array. Here, we specify
topic and language as input variables.

The template is a string "Give me a Medium article title on {topic} in
{language}". This could translate to "Give me a Medium article title on real
estate investing in Chinese", or any other language like French or German.

…
if topic:

response = llm(title_template.format(topic=topic,language='english'))

Next, we input title_template to our LLM. We obtain the topic from the text
input and insert it into our template (we hardcode language to ‘ english ’ at
the moment).

Running our App

Let's save these changes and test our setup. In our app, if we input
"investing", we get the title " A Beginner's Guide to Investing: How to Get
Started and Maximize Your Returns".

…
if topic:

response = llm(title_template.format(topic=topic,language=’french’))

If I change the language to French and rerun, the title is indeed presented in
French:

The advantage of using prompt templates is evident. They offer both
reusability and precision. Whether you wish to change the language or the
topic, you can do so without having to repeat the initial part of the template.

CHAPTER 7: SIMPLE CHAINS
In this chapter, we will delve into chains, beginning with a simple chain. In
app.py, import LLMChain with:
import os
from apikey import apikey

import streamlit as st
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
…
…

But first, why do we need chains?

While our language models can handle a plethora of tasks, they might be
constrained when operating in isolation. Up to this point, we've employed
LLMs for straightforward tasks: using a prompt template, feeding it to the
language model, and obtaining a response. However, for more complex
tasks, we'll need chains, starting with the most basic: the simple chain.

We've already imported our LLMChain. Add in the below in bold:
…
from langchain.chain import LLMChain

os.environ ["OPENAI_API_KEY"] = apikey

st.title('Medium Article Generator')
topic = st.text_input('Input your topic of interest')
language = st.text_input('Input language')

title_template = PromptTemplate(
input_variables = ['topic', 'language'],
template = 'Give me medium article title on {topic} in {language}'

)

llm = OpenAI(temperature=0.9)
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True)

if topic:
response = llm(title_template.format(topic=topic,language=’english’))
response = title_chain.run({‘topic’:topic,’language’:language })
st.write(response)

Code Explanation
st.title('Medium Article Generator')
topic = st.text_input('Input your topic of interest')
language = st.text_input('Input language')

In our Streamlit interface, we let users specify both a topic and a language
with text inputs.
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True)

After creating an OpenAI instance, we initialize our chain, which we call
title_chain. This chain expects both an LLM and a prompt.

response = llm(title_template.format(topic=topic,language=’english’))
response = title_chain.run({‘topic’:topic,’language’:language})

Instead of directly invoking the LLM with our prompt template, we'll run
the chain itself.
Because our title template requires two input variables, we use a dictionary.
Later, I'll demonstrate how to execute this with just one input variable.

Running our App

Specify a topic of interest and input language, and you will receive an
article title as response.

If you observe the terminal while the program runs, you'll notice the logs
detailing the chain's operations, thanks to the verbose=True setting:
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True)

Single Input Variable

If we simplify our input to just a single variable (removing the language
parameter), the chain's execution becomes even more straightforward.
…
from langchain.chain import LLMChain

os.environ ["OPENAI_API_KEY"] = apikey

st.title('Medium Article Generator')
topic = st.text_input('Input your topic of interest')
language = st.text_input('Input language')

title_template = PromptTemplate(
input_variables = ['topic', 'language'],
template = 'Give me medium article title on {topic} in {language}'

)

llm = OpenAI(temperature=0.9)
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True)

if topic:
response = title_chain.run(topic)
st.write(response)

In title_chain.run, instead of a dictionary, a single string variable will
suffice.

In summary, this chapter introduced simple chains, the foundational type of
chain. They're easy to set up but offer limited capabilities. For complex
operations, we often need to resort to sequential chains, which we'll explore
in the next chapter.

CHAPTER 8: SEQUENTIAL CHAINS

So far, we have been using simple chains. We've used a title template, taken
a topic, formed a string — "Give me a medium article title on {topic}" —
and fed this to our chain. However, for more complex tasks, we can utilize
sequential chains.

For instance, currently, we only generate a medium article title. But what if
we also want the medium article content? Simple chains have their limits.
In this demonstration with sequential chains, we'll first ask our model to
provide a medium article title. Once we receive the title, we'll use it as an
input for a second chain to obtain the article content. The process will
become clearer as we proceed.

First, we'll import the sequential chain from LangChain.chain.
import os
from apikey import apikey

import streamlit as st
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain, SimpleSequentialChain
…

A simple sequential chain represents a sequence of chains. Each chain has a
single input and output, with the output of one chain serving as the input for
the next. For instance, we'll provide a topic as input, receive a title as
output, and then use that title as input for the next chain, which will then
generate the article body:

(source: https://blog.gopenai.com/zeroshot-fewshot-and-prompt-chaining-using-langchain-
4259d700d67f)

Currently, we have a title template, but we'll also require a similar template
for the article content. We can duplicate the title template and modify it for
the article content.
…
from langchain.chain import LLMChain

os.environ ["OPENAI_API_KEY"] = apikey

st.title('Medium Article Generator')
topic = st.text_input('Input your topic of interest')

title_template = PromptTemplate(
input_variables = ['topic'],
template = 'Give me medium article title on {topic}'

)

article_template = PromptTemplate(
input_variables = ['title'],
template = 'Give me medium article for {title}'

)

llm = OpenAI(temperature=0.9)
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True)
article_chain = LLMChain(llm=llm, prompt=article_template, verbose=True)

if topic:
…
…

Code Explanation
article_template = PromptTemplate(

input_variables = ['title'],
template = 'Give me medium article for {title}'

)

This new template will take the title from the first chain as its input.
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True)
article_chain = LLMChain(llm=llm, prompt=article_template, verbose=True)

In addition to our title chain, we'll need another chain for the article content.

Flexibility of Sequential Chains

And while we're at it, let's introduce another language model to demonstrate
the flexibility of sequential chains. Though our existing LM uses the GPT-3
model, there are newer models like GPT-3.5 Turbo and GPT-4. For this,
we'll use the ChatOpenAI constructor, which allows us to chat with the
GPT-3.5 or GPT-4 models. Add in the below in bold:
import os
from apikey import apikey

import streamlit as st
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain, SimpleSequentialChain
…
…
llm = OpenAI(temperature=0.9)
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True)

llm2 = ChatOpenAI(model_name=’gpt-3.5-turbo’, temperature=0.9)
article_chain = LLMChain(llm=llm2, prompt=article_template, verbose=True)

if topic:
…
…

Linking Them All Together

Now, having set up two LMs, two prompt templates, and two chains, it's
time to link them all together. We'll establish an overarching chain using the
SimpleSequentialChain with the below code in bold:
…
…
llm = OpenAI(temperature=0.9)
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True)

llm2 = ChatOpenAI(model_name=’gpt-3.5-turbo’, temperature=0.9)

article_chain = LLMChain(llm=llm2, prompt=article_template, verbose=True)

overall_chain =SimpleSequentialChain(chains=[title_chain, article_chain], verbose=True)

if topic:
response = overall_chain.run(topic)
st.write(response)

We list our chains in the order they should execute. The chains will run
sequentially from left to right.

After saving our changes and heading back to the browser, we can test our
updated setup. For instance, when I input "running" as the topic, I receive
both a title and the corresponding article content.

And by checking the system log, we can see the step-by-step chain
execution.

To conclude, chains, whether simple or sequential, offer different levels of
complexity depending on the task at hand. Your choice of chain will largely
depend on the intricacy of the task you aim to achieve.

CHAPTER 9: AGENTS
In this section, we'll delve into agents. Create a new file in your folder and
name it agents.py.

Language models are undeniably powerful. However, they sometimes
struggle with tasks that even basic applications handle with ease. They
might falter with logic, mathematical calculations, and communicating with
external components. For instance, if you asked ChatGPT to fetch the latest
article on LangChain agents, it would stumble since ChatGPT's training
only extends up to September 2021. While there are plugins enabling GPT-
4 to browse the internet and retrieve updated information, they are distinct
from agents.

In this tutorial, we'll create a Wikipedia research tool, demonstrating agent
functionality and its applications.

To begin, reconnect to OpenAI. You can reuse some code from our previous
programs, such as importing the OS and API key. Additionally, you'll want
to import OpenAI and several items from langchain agents. Add into
agents.py:
import os
from apikey import apikey

from langchain.llms import OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
os.environ[“OPENAI_API_KEY”] = apikey

we set temperature to 0 because we want an objective research tool without hallucinations
llm = OpenAI(temperature=0.0)

The primary function of agents is to leverage the GPT model to determine
the subsequent action. Essentially, when faced with a problem, they outline
the necessary steps to find a solution. This concept will crystallize as we

proceed. Add in bold:
import os
from apikey import apikey

from langchain.llms import OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
os.environ[“OPENAI_API_KEY”] = apikey

llm = OpenAI(temperature=0.0)

tools = load_tools()
agent = initialize_agent()

Agents require access to specific tools, such as Google or Wikipedia search
capabilities. By combining the GPT models with these tools, agents
determine their next course of action.

Checking the documentation under Integrations, then Tools
(https://python.langchain.com/docs/integrations/tools/), reveal a variety of
available tools:

While it might be tempting to load all available tools, it's essential to equip
the agent only with the necessary ones. Providing too many options may
lead the agent to select an inappropriate tool, causing errors. Add the code
in bold:
tools = load_tools(['wikipedia', 'llm-math'],llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True)

Code Explanation
tools = load_tools(['wikipedia', 'llm-math'],llm)

For this demonstration, we'll equip our agent with two tools: Wikipedia and
the llm-math tool, enabling basic mathematical operations. We must also
supply our language model to ‘ load_tools ’ .
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True)

Each agent type serves a unique purpose, as seen from the documentation
(https://python.langchain.com/docs/modules/agents/agent_types/):

For instance, a conversational agent
(agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION) is
optimized for interaction and may request additional inputs.

We'll employ the zero-shot react agent, the most versatile action agent:
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True)

For a deeper understanding, consult the documentation. To monitor the
agent's steps, we set the verbose parameter to true, enabling a detailed log in
the terminal.

Running the Agent

Although this example doesn't utilize Streamlit, it will still collect a prompt
directly from the terminal. Add in bold:
…
…
tools = load_tools(['wikipedia', 'llm-math'],llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True)

prompt = input('Input Wikipedia Research Task\n')
agent.run(prompt)

We feed the user prompt to the agent using ‘ agent.run ’ .

The agent accepts a user prompt in the Terminal, evaluates it, and, based on
the tools provided (ie: Wikipedia, llm-math), determines the necessary
actions to solve the problem.

Running our App

Before running our app, we have to install Wikipedia by running:
pip install wikipedia

To test the setup, save the file and execute it in the terminal:
python agents.py

For a test prompt, input: "In what year did the Titanic sink?" followed by
"How many years has it been since?"

After processing, the agent devises a plan, and as its first action: extracts
information from Wikipedia:

It then takes the ‘ Calculator ’ action next to calculate the difference
between the current year and 1912, the year the Titanic sank, delivering the
answer:

This example showcases the versatility and potential of agents in a myriad
of applications.

CHAPTER 10: CHAT WITH A DOCUMENT
In this chapter, we'll apply what we've learned about LangChain and large
language models by building a question-and-answer application for our
documents.

Users can upload various file types, including PDFs, Microsoft Word
documents, and text files. It then connects to the OpenAI model, and once
the document is uploaded, you can begin asking questions. This "Chat with
Document" chatbot app promises to be both enlightening and engaging.

Before we proceed, ensure you've installed ChromaDB. If you haven't,
simply run:
pip install chromadb

ChromaDB is an open-source vector database. If you recall, a vector
database allows applications to use vector embeddings. These embeddings
convert various formats (eg. text, images, videos, audio) into numerical
representations. This enables the AI to understand and attribute meaning to
these representations. These numerical representations are called vectors,
and vector databases are proficient at storing and querying such
unstructured data, particularly during semantic searches.

In this application, we'll use the open-source vector database, ChromaDB.

For our first document, I've taken the US Constitution's text from a website
and saved it as constitution.txt in the same directory as our Python scripts:

(constitution.txt is available in the source codes – contact support@i-
ducate.com)

Later, we'll expand our app to allow users to upload their files, including
PDFs and Word documents. But for simplicity, we'll start with this text file.

Let's create a new file named chatdoc.py. As always, we'll begin with our
necessary imports and setup the OpenAI key. Add in the codes:
import os
from apikey import apikey
import streamlit as st # used to create our UI frontend
from langchain.chat_models import ChatOpenAI # used for GPT3.5/4 model
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA

os.environ["OPENAI_API_KEY"] = apikey
st.title('Chat with Document') # title in our web page
loader = TextLoader('./constitution.txt') # to load text document
documents = loader.load()
print(documents) # print to ensure document loaded correctly.

(alternatively, if you don ’ t want to copy the code, contact support@i-
ducate.com for the source codes)

Run in the Terminal:
streamlit run chatdoc.py

You can see the StreamLit UI running in the browser and in the Terminal, it
loads and prints the text file:

mailto:support@i-ducate.com
mailto:support@i-ducate.com

Next, we have to split our document into chunks because if the text is too
long, it cannot be loaded into model. We use
RecursiveCharacterTextSplitter to break our text into smaller, semantically
related chunks (means sentences in each chunk are semantically related to
each other. Add the codes in bold:

…
…
os.environ["OPENAI_API_KEY"] = apikey
st.title(‘Chat with Document')
loader = TextLoader('./constitution.txt')
documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)

to see the chunks
st.write(chunks[0])
st.write(chunks[1])

Code Explanation
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)

chunks = text_splitter.split_documents(documents)

RecursiveCharacterTextSplitter is the recommended one for generic text. It tries to
split the text until the chunks are small enough. The default list is ["\n\n",
"\n", " ", ""]. This has the effect of trying to keep all paragraphs (and then

sentences, and then words) together as long as possible, as those would
generically seem to be the strongest semantically related pieces of text.

We use the default values of 1000 for chunk size and 200 for chunk overlap.
If chunk size is too small or too large, it leads to imprecise search results or
missed opportunities to surface relevant content. As a rule of thumb, if a
chunk makes sense to a human (without its surrounding context), it will
make sense to a language model too. So, finding the optimal chunk size is
quite crucial to ensure search results are accurate and relevant. You can play
around with the chunk size.

Chunk overlap is the overlap between chunks you need to maintain
continuity between one chunk and the next. We will see this concretely later
when we run our app.
st.write(chunks[0])
st.write(chunks[1])

We print the first two individual chunks to see how they look like.

Running our App

You can see the above two chunks. The size of each chunk is 1,000. You
can also see the chunk overlap. Eg. ‘ PRESENTED BY MR. BRADY\n\n
OF PENNSYLVANIA\n\n July 25, 2007 \x01 Ordered to be printed ’ .

The chunk overlap is like a rolling window across paragraphs in case
there ’ s a relevant sentence that had to be a part of the first and later chunk.

Embeddings
Once we have our chunks ready, we'll create our embeddings using
OpenAI's extensive library of embeddings which is built from the corpus of
text from all over the Internet.

Embeddings measure the relatedness of text strings and are commonly used
for searching and clustering. Each embedding is a vector of floating point
numbers where the distance between two vectors measures their
relatedness.

(source: https://medium.com/@hari4om/word-embedding-d816f643140)

Take for example in the above figure, ‘ man ’ , ‘ woman ’ , ‘ king ’ ,
‘ queen ’ is represented in a vector form across multiple factors (‘ living
being ’ , ‘ human ’ , ‘ royalty ’ etc). Here, we just have seven factors but it
can be 4,000-5,000. In vector form, it will seem that man and woman are
closer related whereas king and queen are closer.

The idea behind embeddings is to map words or sentences to vectors. Then,
these vectors are stored in a database. New sentences can be compared to
these embeddings to determine their relatedness.

With the embeddings in place, we'll initialize our vector database. Add in
the codes in bold:

os.environ["OPENAI_API_KEY"] = apikey
st.title(‘Chat with Document')
loader = TextLoader('./constitution.txt')
documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)

chunks = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(chunks, embeddings)

We initialize the vector store from Chroma. Chroma is an open source
lightweight embeddings database that stores embeddings locally. We pass in
the document chunks and the OpenAI embeddings.

Now, we can query this vector store using our retrieval chain. Add in the
following in bold:

…
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)

chunks = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(chunks, embeddings)

initialize OpenAI instance
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0)
retriever=vector_store.as_retriever()
chain = RetrievalQA.from_chain_type(llm, retriever=retriever)
get question from user input
question = st.text_input('Input your question')

if question:
run chain

response = chain.run(question)
st.write(response)

We tell the RetrievalQA chain, use the vector store and perform a Question
and Answer retrieval. The RetrievalQA chain then look up the relevant
vectors from the vector database and then ask the chain to return a response
based on the user's question.

Running our App

To demonstrate, let's run our app and pose a question to the US
Constitution. For instance, "What is the age requirement to be a senator?".

Our app should return "30 years" as the answer. We can ask another
question:

Behind the scenes, the question is used to retrieve relevant documents from
the vector database. It identifies pertinent documents with high similarity to
keywords in the question. Once these documents are fetched, they're used,
along with the model, to generate a response.

In subsequent lessons, we'll extend this application to handle PDFs and
Word documents, showcasing its potential in fields like law and finance.
For example, we load legal documents or financial statements, create
chunks from them, embed them into a vector store, and query the
documents and get the response using large language models.

CHAPTER 11: ADDING MEMORY (CHAT

HISTORY)
Currently, we can pose a question to our document and receive a response.

We have previously received a response that a senator must be at least 30
years old. However, if I were to ask a subsequent question, like multiply
that number by two, what would happen? In normal human interactions, we
would understand "that" refers to 30 years old. Therefore, 30 times two is
60.

Yet, when we test this, we get a ‘ I don ’ t know ’ response.

It seems the app only considers the immediate question without
acknowledging previous context. It fails to recognize follow-up questions
within the scope of a larger conversation.

How can we address this?

Our app needs to remember prior questions and answers, essentially
requiring a chat history. In this chapter, we'll discuss how to preserve
context and add memory to our application.

Firstly, we'll transition from using the RetrievalQA to the Conversational
Retrieval Chain. To implement this, make the changes in bold:
…
import streamlit as st
from langchain. chat_models import ChatOpenAI
from langchain. document_loaders import TextLoader
from langchain. text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings

from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.chains import ConversationalRetrievalChain
…
…
…

llm = ChatOpenAI(model=’gpt-3.5-turbo’, temperature=0)
retriever=vector_store.as_retriever()
chain = RetrievalQA.from_chain_type(llm, retriever=retriever)
crc = ConversationalRetrievalChain.from_llm(llm, retriever)

question = st.text_input('Input your question')

if question:
…

The conversational retrieval chain retains chat history while still leveraging
retrieval capabilities.

Running the Chain with Chat History

Add the codes in bold:
…
if question:

response = crc.run({'question':question,'chat_history':})
st.write(response)

When you run the chain, we need to supply a dictionary that specifies the
question and the chat history. To establish a chat history, we store each
question and its answer in the session state. Add the codes in bold:
question = st.text_input('Input your question')

if question:
if 'history' not in st.session_state:
 st.session_state['history'] = []

response = crc.run({
'question':question,

 'chat_history': st.session_state['history']
})
st.session_state['history'].append((question, response))
st.write(response)

Streamlit offers a session_state property, where we can store variables in a
session. If history doesn't already exist in the session state, initialize it as an
empty array. Then, append each question-response pair to this array.

Running our App

Once you've made these modifications, launch the application in Streamlit.

Now, when you ask the age requirement for senators and follow with a
multiplication query, the system comprehends the entire conversation,
returning a coherent response.

Maintaining context through chat history can significantly enhance
conversational interactions. In case you got lost at any stage, here ’ s the
entire code of chatdoc.py:

import os
from apikey import apikey
import streamlit as st # used to create our UI frontend
from langchain.chat_models import ChatOpenAI # used for GPT3.5/4 model
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain

os.environ["OPENAI_API_KEY"] = apikey
st.title('Chat with Document') # title in our web page
loader = TextLoader('./constitution.txt') # to load text document
documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(chunks, embeddings)

initialize OpenAI instance
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0)

retriever=vector_store.as_retriever()

crc = ConversationalRetrievalChain.from_llm(llm, retriever)
get question from user input
question = st.text_input('Input your question')

if question:
if 'history' not in st.session_state:

st.session_state['history'] = []

response = crc.run({
'question':question,
'chat_history': st.session_state['history']

})

st.session_state['history'].append((question,response))
st.write(response)

CHAPTER 12: OUTPUTTING THE CHAT

HISTORY
Suppose you wish to display the chat history. It's quite simple. Add the
below codes in bold:
…
…
question = st.text_input('Input your question')

if question:
if 'history' not in st.session_state:

 st.session_state['history'] = []

response = crc.run({
'question':question,

 'chat_history': st.session_state['history']
})
st.session_state ['history'].append((question, response))
st.write(response)
st.write(st.session_state['history'])

After saving your changes and rerunning the program, you'll observe the
chat history displayed.

The chat history appears to be structured like a 2D array.

For a more structured printout, consider using a for loop. Add the codes in
bold to iterate through each entry in the session state.
if question:

if 'history' not in st.session_state:
 st.session_state['history'] = []

response = crc.run({
'question':question,

 'chat_history': st.session_state ['history']
})
st.session_state ['history'].append((question, response))
st.write(response)
st.write(st.session_state['history'])
for prompts in st.session_state ['history']:
 st.write("Question: " + prompts[0])

 st.write("Answer: " + prompts[1])

For each entry, the first index corresponds to the question, and the second
index represents the answer. By implementing this, the output will be more
organized and easier to interpret.

However, we now face an issue. The chat history persists indefinitely,
leading to an ever-growing chat log. Another issue is that users are limited
to the Constitution text. How should we allow users to upload different
files, like PDFs or Word documents, and also refresh the chat history? We'll
delve into these aspects in the next chapter.

CHAPTER 13: UPLOADING CUSTOM

DOCUMENTS
In this chapter, we let users upload their own documents. Add in the
following codes in bold:
…
…
from Langchain.chains import ConversationalRetrievalChain

os.environ ["OPENAI_API_KEY"] = apikey

def clear_history():
if 'history' in st.session_state:

del st.session_state['history']

st.title('Chat with Document')
uploaded_file = st.file_uploader('Upload file:',type=['pdf','docx', 'txt'])
add_file = st.button('Add File', on_click=clear_history)
loader = TextLoader ('./constitution.txt')

documents = loader.load()
…
…

Code Explanation

…
st.title('Chat with Document')
uploaded_file = st.file_uploader('Upload file:',type=['pdf','docx', 'txt'])

We include a file uploader with the message "Upload file." We specify that
we accept file types like PDF, DOCX, and TXT. Once the file is uploaded,
it will be stored in the uploaded_file variable.
uploaded_file = st.file_uploader('Upload file:',type=['pdf','docx', 'txt'))
add_file = st.button('Add File', on_click=clear_history)

Following the file upload, we have a button with the label "Add file." This
button will be activated by the user when they're ready to upload their
chosen document. The on_click event will trigger the clear_history method
when the button is clicked.
def clear_history():

if 'history' in st.session_state:

del st.session_state['history']

The clear_history method ensures that each time we upload a new
document, the previous chat history is cleared.

Uploading and Reading the File

To read the file, add the codes in bold:
…
…
add_file = st.button('Add File', on_click=clear_history)

if uploaded_file and add_file:
bytes_data = uploaded_file.read()
file_name = os.path. join('./', uploaded_file.name)
with open (file_name, 'wb') as f:

f.write(bytes_data)

loader = TextLoader(file_name)
documents = loader.load()

…
…

Code Explanation
if uploaded file and add_file:

This check ensures that the program only progresses with the file upload
once the file has been specified and the "Add file" button has been clicked.
Without this check, the program might mistakenly attempt to upload a non-
existent file, resulting in errors.

bytes_data = uploaded_file.read()

Once the file is uploaded, its content will be read in binary format and
stored in the bytes_data variable.

file_name = os.path.join('./', uploaded_file.name)

The binary data will then be copied into a file in the current directory,
retaining the same name as the uploaded file. You can choose to save this to
any directory by specifying the desired path.This action will return the file
name.

with open (file_name, 'wb') as f:
f.write(bytes_data)

Next, the program will open the file in binary read mode.
loader = TextLoader(file_name)

Finally in TextLoader, replace the hardcoding of constitution.txt with
file_name.

Processing the File

At this point, the file name is supplied to our text loader. Ensure proper
indentation to maintain the correct scope:
if uploaded_file and add_file:

bytes_data = uploaded_file.read()
file_name = os.path.join('./', uploaded_file.name)
with open(file_name, 'wb') as f:

f.write(bytes_data)

move code under ‘if’ scope
loader = TextLoader(file_name)
documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter (…)
…
…

crc = ConversationalRetrievalChain.from_l1m(llm, retriever)

question = st.text_input('Input your question')

if question:
…
…

If you run your code now, you get an error:

This is because crc, the ConversationalRetrievalChain instance, is now in a
different scope with the below:

…
crc = ConversationalRetrievalChain.from_llm(llm, retriever)

question = st.text_input('Input your question')

if question:
if 'history' not in st.session_state:

st.session_state['history'] = []

response = crc.run({
'question':question,
'chat_history': st.session_state['history']

})
…

We thus store crc in the session state for it to be accessible to all. Add the
following in bold:

…
…

crc = ConversationalRetrievalChain.from_llm(llm, retriever)

st.session_state.crc = crc

success message when file is chunked & embedded successfully
st.success('File uploaded, chunked and embedded successfully')

question = st.text_input('Input your question')

if question:
if 'crc' in st.session_state:

crc = st.session_state.crc

indent below code to make sure scope is correct
if 'history' not in st.session_state:

st.session_state['history'] = []

…
…
for prompts in st.session_state ['history']:

st.write("Question: " + prompts[0])
st.write("Answer: " + prompts[1])

Thus, the entire process — chunking, embedding, etc. — will only proceed
if a file has been uploaded and the "Add file" button clicked. This avoids
unnecessary expenses tied to processing.

Now, let's save our progress and rerun the program. Browse and select the
constitution.txt (or your own file) and click "Add file"

We can then ask a question, such as the age requirement to become a
senator.

If everything runs smoothly, the chat history should display the correct
responses.

When a new file is uploaded, the chat history resets. Because of the codes:
def clear_history():

if 'history' in st.session_state:
del st.session_state['history']

…
add_file = st.button ('Add File', on_click=clear_history)

This ensures that the program remains contextually accurate.

In conclusion, we've successfully added a file upload feature and the
capability to refresh the chat history. In the following chapter, we'll extend
the file uploading feature to accommodate more file types, including PDF
and Word files.

In case you get lost at any point, here ’ s the entire code of chatdoc.py:
import os
from apikey import apikey
import streamlit as st # used to create our UI frontend
from langchain.chat_models import ChatOpenAI # used for GPT3.5/4 model
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain

os.environ["OPENAI_API_KEY"] = apikey

def clear_history():
if 'history' in st.session_state:

del st.session_state['history']

st.title('Chat with Document') # title in our web page

uploaded_file = st.file_uploader('Upload file:',type=['pdf','docx', 'txt'])
add_file = st.button('Add File', on_click=clear_history)

if uploaded_file and add_file:
bytes_data = uploaded_file.read()
file_name = os.path. join('./', uploaded_file.name)
with open (file_name, 'wb') as f:

f.write(bytes_data)

loader = TextLoader(file_name)
documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(chunks, embeddings)

initialize OpenAI instance
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0)
retriever=vector_store.as_retriever()

crc = ConversationalRetrievalChain.from_llm(llm, retriever)

st.session_state.crc = crc

success message when file is chunked & embedded successfully
st.success('File uploaded, chunked and embedded successfully')

get question from user input
question = st.text_input('Input your question')

if question:
if 'crc' in st.session_state:

crc = st.session_state.crc

if 'history' not in st.session_state:
st.session_state['history'] = []

response = crc.run({
'question':question,
'chat_history': st.session_state['history']

})

st.session_state['history'].append((question,response))
st.write(response)
for prompts in st.session_state ['history']:

st.write("Question: " + prompts[0])
st.write("Answer: " + prompts[1])

CHAPTER 14: LOADING DIFFERENT FILE

TYPES
We'll explore how to load different file formats, such as text files, PDFs,
and Word documents, into our LangChain app.

Currently, we only accept text files, which we load via the text loader. What
we'll do is examine the file extension—be it .txt, .pdf, or .doc—and use the
appropriate loader based on that. Add the codes in bold:
…
…
if uploaded_file and add_file:

with st.spinner('Reading, chunking and embedding file...'):
bytes_data = uploaded_file.read()
file_name = os.path.join('./', uploaded_file.name)
with open(file_name,'wb') as f:

f.write(bytes_data)

name, extension = os.path.splitext(file_name)

if extension == '.pdf':
from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader(file_name)

elif extension == '.docx':
from langchain.document_loaders import Docx2txtLoader
loader = Docx2txtLoader(file_name)

elif extension == '.txt':
from langchain.document_loaders import TextLoader
loader = TextLoader(file_name)

else:
st.write('Document format is not supported!')

documents = loader.load()
…
…

Code Explanation
name, extension = os.path.splitext(file_name)

To extract the file extension, we utilize the os.path.splitext() method, where
we input the filename and receive both the filename and its extension in

return.
if extension == '.pdf':

from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader(file_name)

Based on the extension, we'll choose the corresponding loader. If the
extension is .pdf, we'll import the PyPDFLoader, which aids in loading
PDFs. Following that, we'll use loader = PyPDFLoader and provide the
filename.

elif extension == '.docx':
from langchain.document_loaders import Docx2txtLoader
loader = Docx2txtLoader(file_name)

If the extension is a .doc, we'll utilize the Docx2txtLoader .
…
import streamlit as st
from langchain. chat_models import ChatOpenAI
from langchain. document_loaders import TextLoader
from langchain. text_splitter import RecursiveCharacterTextSplitter
…
…

elif extension == '.txt':
from langchain.document_loaders import TextLoader
loader = TextLoader(file_name)

For a .txt extension, we'll use our existing TextLoader. We also relocate the
import statements here so that we don't inadvertently import the textLoader
when it's not in use.

else:
st.write('Document format is not supported!')

documents = loader.load()

There might be scenarios where a user uploads a file with an extension we
don't currently support. In such cases, a notification or alert could be
beneficial.

After loading, the rest of the process remains unchanged, regardless of the
file type. It's just the source that varies based on the file extension.

If you're curious about adding support for a new file type or extension and

need the appropriate loader, you can consult the LangChain documentation.
Here, you'll find a range of integrations they offer. For instance, if you're
looking for a Powerpoint integration, it will guide you to use the
UnstructuredPowerPointLoader.

Displaying a Spinner While Waiting

Currently, when a user uploads a file, there's a perceivable wait time during
the chunking and embedding phases. By adding a spinner with a message
like "Reading, Chunking, and Embedding File", users will have a visual cue
that processing is in progress. Add in bold:
…
…
if uploaded_file and add_file:

with st.spinner('Reading, chunking and embedding file...'):
bytes_data = uploaded_file.read()
file_name = os.path.join('./', uploaded_file.name)
with open(file_name,'wb') as f:

f.write(bytes_data)
…
…
st.session_state.crc = crc
st.success('File uploaded, chunked and embedded successfully')

question = st.text_input('Input your question')

Ensure you indent the rest of the code under the spinner's scope.

Running Our App

Let's test our updates. After browsing and selecting a PDF (for instance, a
user guide for SpaceX's Falcon 9 rocket) and clicking "Add File", you
should observe the spinner in action:

Once the file is successfully uploaded, you can proceed with inquiries like
"How many engines does the Falcon 9 rocket have?" and receive accurate
answers:

Feel free to try this with a .doc file; it should work seamlessly.

With these enhancements, our chat-with-document app is more robust and
versatile. It now supports multiple document types, connects to a language
model, processes queries, and retains chat history for contextual awareness
in subsequent interactions.

I hope you've gleaned valuable insights from this chapter. The potential
applications span various fields, including legal, medical, scientific, and
technical domains. The possibilities are boundless.

CHAPTER 15: CHAT WITH YOUTUBE
We already have our "question-answering chat with document" application.
Now, we're going to make a small tweak to this app, allowing it to chat with
a YouTube video. You're likely familiar with lengthy YouTube videos that
can be time-consuming to watch. Imagine if you could directly ask
questions about these videos to save time.

In this tutorial, we'll show that not only can you load data from documents,
but you can also source data from platforms like YouTube, Wikipedia, and
other online resources.

If we refer back to the LangChain documentation and the document loader
section I mentioned earlier, you'll find an entry on how to load documents
from Youtube transcripts
(https://python.langchain.com/docs/integrations/document_loaders/youtube
_transcript).

We can utilize the YouTube loader, but first, we need to install the YouTube
transcript API. You can easily install this by copying the given command
and running it in your terminal.
pip install youtube-transcript-api

To avoid disturbing my current code, I've copied everything and pasted it
into a new file named chat_youtube.py. Much of the original code remains
untouched. But we no longer need the file upload functions, so those can be
removed.

Given that we're loading from YouTube, there's no need to upload byte data
anymore. We'll retain the session and chat history components.

chat_youtube.py will look something like (add the codes in bold):
import os
from apikey import apikey

import streamlit as st
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import YoutubeLoader

os.environ["OPENAI_API_KEY"] = apikey

def clear_history():
if 'history' in st.session_state:

del st.session_state['history']

st.title('Chat with Youtube')
youtube_url = st.text_input('Input your Youtube URL')

if youtube_url:
loader = YoutubeLoader.from_youtube_url(youtube_url)
documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
 …

 …

Since the user will be providing a YouTube URL, we need an input field for
that. We create an input field labeled "Input your YouTube URL". We then
load the Youtube transcript with the user’s Youtube URL input.

Running our App

Once everything's set up, we'll save and run the new chat_youtube.py file.
streamlit run chat_youtube.py

For demonstration purposes, let's use a familiar music video: "Never Gonna
Give You Up."

After entering the video URL and letting the app process, you can ask a
question like, "What am I never going to do?" The app should return
something like: "you are never going to let someone down"

And yes, you've just been subtly "rickrolled"!

I hope you enjoyed this chapter and now understand how to load data from
external sources as well.

In case you got lost, here’s the entire code of chat_youtube.py:
import os
from apikey import apikey

import streamlit as st
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import YoutubeLoader

os.environ["OPENAI_API_KEY"] = apikey

def clear_history():
if 'history' in st.session_state:

del st.session_state['history']

st.title('Chat with Youtube')
youtube_url = st.text_input('Input your Youtube URL')

if youtube_url:
loader = YoutubeLoader.from_youtube_url(youtube_url)
documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(chunks, embeddings)

initialize OpenAI instance
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0)
retriever=vector_store.as_retriever()

crc = ConversationalRetrievalChain.from_llm(llm, retriever)

st.session_state.crc = crc

success message when file is chunked & embedded successfully
st.success('File uploaded, chunked and embedded successfully')

get question from user input
question = st.text_input('Input your question')

if question:
if 'crc' in st.session_state:

crc = st.session_state.crc

if 'history' not in st.session_state:
st.session_state['history'] = []

response = crc.run({
'question':question,
'chat_history': st.session_state['history']

})

st.session_state['history'].append((question,response))
st.write(response)
for prompts in st.session_state ['history']:

st.write("Question: " + prompts[0])
st.write("Answer: " + prompts[1])

Final Words
We have gone through quite a lot of content to equip you with the skills to
create LangChain LLM AI apps.

Hopefully, you have enjoyed this book and would like to learn more from
me. I would love to get your feedback, learning what you liked and didn't
for us to improve.

Please feel free to email me at support@i-ducate.com to get updated
versions of this book.

If you didn't like the book, or if you feel that I should have covered certain
additional topics, please email us to let us know. This book can only get
better thanks to readers like you.

If you like the book, I would appreciate if you could leave us a review too.
Thank you and all the best for your learning journey!

mailto:support@i-ducate.com

ABOUT THE AUTHOR

Greg Lim is a technologist and author of several programming books. Greg
has many years in teaching programming in tertiary institutions and he

places special emphasis on learning by doing.

Contact Greg at support@i-ducate.com

mailto:support@i-ducate.com

	Preface
	Chapter 1: Introduction
	Chapter 2: What is LangChain
	Chapter 3: How does Langchain Work
	Chapter 4: Installation, Setup and our First LangChain App
	Chapter 5: Connecting to OpenAI LLM
	Chapter 6: Prompt Templates
	Chapter 7: Simple Chains
	Chapter 8: Sequential Chains
	Chapter 9: Agents
	Chapter 10: Chat with a Document
	Chapter 11: Adding Memory (Chat History)
	Chapter 12: Outputting the Chat History
	Chapter 13: Uploading Custom Documents
	Chapter 14: Loading Different File Types
	Chapter 15: Chat with Youtube
	About the Author

