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0. PRELIMINARY MATERIAL

0.1 Syllabus

Systems of linear equations. Matrices and the beginnings of matrix algebra. Use of matrices
to describe systems of linear equations. Elementary Row Operations (EROs) on matrices. Re-

duction of matrices to echelon form. Application to the solution of systems of linear equations.
[2.5]

Inverse of a square matrix. The use of EROs to compute inverses; computational efficiency of
the method. Transpose of a matrix; orthogonal matrices. [1]

Vector spaces: definition of a vector space over a field (such as R, Q, C). Subspaces. Many
explicit examples of vector spaces and subspaces. [1.5]

Span of a set of vectors. Examples such as row space and column space of a matrix. Linear de-
pendence and independence. Bases of vector spaces; examples. The Steinitz Exchange Lemma;
dimension. Application to matrices: row space and column space, row rank and column rank.
Coordinates associated with a basis of a vector space. [2]

Use of EROs to find bases of subspaces. Sums and intersections of subspaces; the dimension
formula. Direct sums of subspaces. [1.5]

Linear transformations: definition and examples (including projections associated with direct-
sum decompositions). Some algebra of linear transformations; inverses. Kernel and image,
Rank-Nullity Theorem. Applications including algebraic characterisation of projections (as
idempotent linear transformations). [2]

Matrix of a linear transformation with respect to bases. Change of Bases Theorem. Applications
including proof that row rank and column rank of a matrix are equal. [2]

Bilinear forms; real inner product spaces; examples. Mention of complex inner product spaces.
Cauchy—Schwarz inequality. Distance and angle. The importance of orthogonal matrices. [1.5]
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0.2 Reading list

(1) Gilbert Strang, Introduction to linear algebra (Fifth edition, Wellesley-Cambridge 2016).
http://math.mit.edu/~gs/linearalgebra/
(2) T.S. Blyth and E.F. Robertson, Basic linear algebra (Springer, London, 1998).

Further Reading:
(3) Richard Kaye and Robert Wilson, Linear algebra (OUP, Oxford 1998), Chapters 1-5 and 8.
(4) Charles W. Curtis, Linear algebra - an introductory approach (Springer, London, Fourth
edition, reprinted 1994).
(5) R. B. J. T. Allenby, Linear algebra (Arnold, London, 1995).
(6) D. A. Towers, A guide to linear algebra (Macmillan, Basingstoke, 1988).
(7) Seymour Lipschutz and Marc Lipson, Schaum’s outline of linear algebra (McGraw Hill, New
York & London, Fifth edition, 2013).
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1. LINEAR SYSTEMS AND MATRICES

1.1 Systems of linear equations

Definition 1 (a) By a linear system, or linear system of equations, we will mean a set

of m simultaneous equations in n real variables x1,xs, ..., x, which are of the form
anry + apry + o+ AT, = b
a1+ ATy + o+ AT, = by
(1.1)
Am1T1 + GmaXe + -+ T, = bm>

where a;; and b; are real constants.

(b) Any vector (x1,xs,...,x,) which satisfies (1.1) is said to be a solution; if the linear
system has one or more solutions then it is said to be consistent. The general solution to
the system is any description of all the solutions of the system. We will see, in due course, that
such linear systems can have zero, one or infinitely many solutions.

(c) We will often write the linear system (1.1) as the augmented matrix (A|b) where

apy a2 - Qip by

A21 Q22 -+ Q2p ba
A= . b=

am1 Am2 - Amn bm

For now, we won’t consider a matriz (such as A) or vector (such as b) to be anything more
than an array of numbers.

Consider as a first example the following linear system of 3 equations in 3 variables.

Example 2 Determine the solutions (if any) to the following equations.
3x+y— 2z = -2 r+y+z=2 2z +4y + z = 0.

Solution. We can substitute z = 2 — x — y from the second equation into the first and third
to find

3r+y—22—z—y)=br+3y—4=-2 = br+3y=2;
2r4+4y+2-—z—-y)=0+3y+2=0 = x+3y=-2.

Subtracting the second of these equations from the first gives 4xr = 4 and so we see

x =1, y=(-2—-12)/3=-1, z=2—x—y=2. (1.2)
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Thus there is a unique solution (x,y,z) = (1,—1,2). We can verify easily that this is indeed
a solution (just to check that the system contains no contradictory information elsewhere that
we haven’t used). m

Whilst we solved the above rigorously — we showed of necessity (1,—1,2) was the only
possible solution and then verified it is a solution — our approach was a little ad hoc; at least,
it’s not hard to appreciate that if we were presented with 1969 equations in 2021 variables then
we would need a much more systematic approach to treat them — or more likely we would need
to be more methodical while programming our computers to determine any solutions for us.
We introduce such a process called row-reduction here.

We first improve the notation, writing the system as an augmented matrix.

31 —2|-2
11 1|2 | (1.3)
2 4 10

All that has been lost in this representation are the names of the variables, but these names are
unchanging and unimportant in the actual handling of the equations. The advantages, we shall
see, are that we will be able to progress systematically towards any solution and at each stage
we shall retain all the information that the system contains — any redundancies (superfluous,
unnecessary equations) or contradictions will naturally appear as part of the calculation.

This process is called row-reduction. It relies on three types of operation, called elementary
row operations or EROs, which importantly do not affect the set of solutions of a linear system
as we apply them.

Definition 3 Given a linear system of equations, an elementary row operation or ERO 1is
an operation of one of the following three kinds.

(a) The ordering of two equations (or rows) may be swapped — for example, one might
reorder the writing of the equations so that the first equation now appears third and vice versa.

(b) An equation may be multiplied by a non-zero scalar — for example, one might replace
2v —y+z=3byx— %y + %z = % from multiplying both sides of the equation by %

(c) A multiple of one equation might be added to a different equation — for example, one
might replace the second equation by the second equation plus twice the third equation.

Notation 4 (a) Let S;; denote the ERO which swaps rows i and j (or equivalently the ith and
Jjth equations).

(b) Let M;()\) denote the ERO which multiplies row i by A # 0 (or equivalently both sides
of the ith equation).

(c) For i # j, let A;;(\) denote the ERO which adds X\ times row i to row j (or does the
same to the equations).

Note this is not standard notation in any way, but I’ve introduced it here for
convenience.

All these operations may well seem uncontroversial (their validity will be shown in Corollary
40) but it is probably not yet clear that these three simple operations are powerful enough to
reduce any linear system to a point where any solutions can just be read off (Proposition 44,
Theorem 47). Before treating the general case, we will see how the three equations in (1.3) can
be solved using EROs to get an idea of the process.
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Example 5 Find all solutions of the linear system (1.3).

Solution. If we use Si5 to swap the first two rows the system becomes

3 1 —2] -2 11 1] 2
11 112 |23 1 —2]-2
24 110 24 110

Now subtract three times the first row from the second, i.e. Aj2(—3) and follow this by sub-
tracting twice the first row from the third, i.e. A;3(—2), so that

1 1 1 2 Meas 1 1 1 2 (o 1 1 1 2
31 2|2 | ™0 2 5|8 |0 2 58] @4
2 4 1 0 2 4 1 0 0 2 —-1|-4
We can now divide the second row by —2, i.e. My(—1/2) to find
1 1 1 2 (12 1 1 1 2
0 —2 —5|-8 | M o 1 214
0 2 -—-1|-4 0 2 —-1|-4

We then subtract the second row from the first, i.e. Ay(—1), and follow this by subtracting
twice the second row from the third, i.e. As3(—2), to obtain

L 12y, /10 —1pl-2\ /10 -1f] -2
001 204 |5 o1 2|4 |5 01 20| 4 |. (5
02 —1]|-4 02 —1|-4 00 —6|-12
If we divide the third row by —6, i.e. M3(—1/6), the system becomes
10 —lg| -2\ (/10 —13|-=2
0 1 21| 4 Y g 1 2l | 4
00 —6|-12 00 1 |2

Finally, we subtract 2% times the third row from the second, i.e. A32(—2%), and follow this by
adding 1% times the third row to the first, i.e. Az (13).

1 0 —1% -2 (52 0 —1% -2 e (372 1 0 0] 1
001 28 |4 |2 o1 o |1 |01 01
0 0 1 2 0 0 1 2 0 0 1| 2
The rows of the final matrix represent the equations x = 1, y = —1, z = 2 as expected from

(1.2). m

Remark 6 In case the systematic nature of the previous example isn’t apparent, note that
the first three operations Sia, A12(—3), A13(—2) were chosen so that the first column became
(1,0,0)T in (1.4). There were many other ways to achieve this: for example, we could have
begun with M,(1/3) to divide the first row by 3, then used Ai2(—1) and A13(—2) to clear the
rest of the column. Once done, we then produced a similar leading entry of 1 in the second
row with My(—1/2) and used Asi(—1) and Ags(—2) to turn the second column into (0,1,0)
in (1.5). The final three EROs were chosen to transform the third column to (0,0,1)T at which
point we could simply read off the solutions.
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Here are two slightly different examples, the first where we find that there are infinitely
many solutions, whilst in the second example we see that there are no solutions.

Example 7 Find the general solution of the following systems of equations in variables x1, xo, 3, T4.

(a) r1—To+x3+304 = 25 201 — To + x3 + 214 = 4 4xy — 3x9 + 3w3 + 814 = 8.
(b) T+ ro+a3t+re = 4 201 + 3w9 — 223 — 314 = 1; r1 + bxs + 6x4 = 1.

Solution. (a) This time we will not spell out at quite so much length which EROs are being
used. But we continue in a similar vein to the previous example and proceed by the method
outlined in Remark 6.

1o—1 1 3[2\ 42 /1 —1 1 3 |2\ A /10 0 12
9 —1 1 2|4 ™50 1 -1 —alo0 |*5 [0 1 -1 —4]o0
4 -3 3 8|8 0 1 -1 —4]|0 00 0 010

We have manipulated our system of three equations to two equations equivalent to the original
system, namely
Tl — Ty =2; 9 — xg — 4wy = 0. (1.6)

The presence of the zero row in the last matrix means that there was some redundancy in the
system. Note, for example that the third equation can be deduced from the first two (it’s the
second equation added to twice the first) and so it provides no new information. As there are
now only two equations in four variables, it’s impossible for each column to contain a row’s
leading entry. In this example, the third and fourth columns lack such an entry. To describe
all the solutions to a consistent system, we assign parameters to the columns/variables without
leading entries. In this case that’s z3 and x4 and we’ll assign parameters by setting z3 = s,
x4 = t, and then use the two equations in (1.6) to read off x; and z5. So

x1 =1+ 2, To = s+ 4t, T3 = 8, x4 = t, (1.7)
or we could write
(r1, 9,73, 24) = (t + 2,5+ 4t,s,t) = (2,0,0,0) + s(0,1,1,0) +£(1,4,0, 1). (1.8)

For each choice of s and ¢ we have a solution as in (1.7) and this is one way of representing the
general solution. (1.8) makes more apparent that these solutions form a plane in R*, a plane
which passes through (2,0,0,0) is parallel to (0,1,1,0) and (1,4,0,1) with s,¢ parametrizing
the plane.

(b) Applying EROs again in a like manner, we find

11 1 1]4\ 422 /1 1 1 1] 4

23 -2 -3[1 |*™5Y [0 1 -4 -5|-7

10 5 6|1 0-1 4 5|3

11 1 1| 4\ ME1/10 /10 -5 —6|—11
AWl 4 =5 -7 | ™25V (01 -4 5| -7
00 0 0|10 00 0 o 1
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Note that any x = (1, 2, 3, x4) which solves the final equation must satisfy
021 + 029 + 023 + 024 = 1.

There clearly are no such x; and so there are no solutions to this equation. Any solution to
the system has, in particular, to solve the third equation and so this system has no solutions.
In fact, this was all apparent once the third row had become ( 0 0 0 O ‘ —10 ) as the
equation it represents is clearly insolvable also. The final two EROs were simply done to put
the matrix into what is called reduced row echelon form (see Definition 41). m

Examples 5, 7(a) and 7(b) are specific examples of the following general cases.
o A linear system can have no, one or infinitely many solutions.

We shall prove this in due course (Proposition 44). We finish our examples though with
a linear system that involves a parameter — so really we have a family of linear systems, one
for each value of that parameter. What EROs may be permissible at a given stage may well
depend on the value of the parameter and so we may see (as below) that such a family can
exhibit all three of the possible scenarios just described.

Example 8 Consider the system of equations in x,vy, z,

THz=-5  2wtay+3z=-9 —z-ay+az=a?

where « is a constant. For which values of o has the system one solution, none or infinitely
many?

Solution. Writing this system in matrix form and applying EROs we can argue as follows.

1 0 1]=5)\42-2 /1 0o 1 _5 10 1 _5

2 a 3|-9 | ™Yo o 1 1 @ g 0 1 1

-1 —a al a? 0 —a a+1|a®2-=5 0 0 a+2|a®—-4
(1.9

At this point, which EROs are permissible depends on the value of a. We would like to divide
the second equation by « and the third by o + 2. Both these are permissible provided that
a # 0 and a # —2. We will have to treat separately those particular cases but, assuming for
now that o # 0, —2, we obtain

10 1 | =5\ M) /10 1| -5\ ACD (10 0|-a-3
0 a 1 1 WD g 1 10| 1/a |1 001 0]3/a—1
00 a+2|a?—4 00 1 |a—2 00 1| a—2

and we see that the system has a unique solution when a # 0, —2. Returning though to the
last matrix of (1.9) for our two special cases, we would proceed as follows.

10 1]-5)\ 42 /1 0 1]-5
a=0 00 1|1 |™E00 0 1|1

00 2|4 00 01

1 0 1]-5 10 1 | -5
a=-2 0 —2 1|1 | ™2 01 —12] -1

0 0 0|0 00 0 0

SYSTEMS OF LINEAR EQUATIONS 7



We see then that the system is inconsistent when o = 0 (because of the insolvability of the
third equation) whilst there are infinitely many solutions x = —5—t, y = (t—1)/2, z = ¢, when
a = —2. We assign a parameter, here ¢, to the variable z as the third column has no leading
entry.

Before we treat linear systems more generally, we will first need to discuss matrices and
their algebra.

1.2 Matrices and matrix algebra

At its simplest, a matriz is just a two-dimensional array of numbers; for example

(523) (2] (50) a1

are all matrices. The examples above are respectively a 2 x 3 matrix, a 3 X 1 matrix and a
2 x 2 matrix (read ‘2 by 3’ etc.); the first figure refers to the number of horizontal rows and the
second to the number of vertical columns in the matrix. Row vectors in R™ are 1 x n matrices

and columns vectors in R, are n X 1 matrices.

Definition 9 Let m, n be positive integers. An m X n matrix is an array of real numbers
arranged into m rows and n columns.

Example 10 Consider the first matrix above. Its second row is ( V2 7m0 ) and its third

column is -3
L

Definition 11 The numbers in a matriz are its entries. Given an m X n matriz A, we will
write a;; for the entry in the ith row and jth column. Note that ¢ can vary between 1 and m,
and that j can vary between 1 and n. So

Qa1
ith row= (a;,...,amn) and jth column =

amj

Notation 12 We shall denote the set of real m x n matrices as M,,,. Note that My, = R"
and that M,; = R},,.

Example 13 If we write A for the first matriz in (1.10) then we have azz = 0 and a3 = 2.

There are three important operations that can be performed with matrices: matriz addition,
scalar multiplication and matriz multiplication. As with vectors, not all pairs of matrices can
be meaningfully added or multiplied.
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Definition 14 Addition Let A = (a;;) be an m xn matriz (recall: m rows and n columns) and
B = (b;j) be a p x g matriz. As with vectors, matrices are added by adding their corresponding
entries. So, as with vectors, to add two matrices they have to be the same size — that is, to add
A and B, we must have m = p and n = q. If we write C' = A+ B = (¢;;) then

Cij = Qi + byj fori1<i<mand1<j < n.
Example 15 Let

1 2 1 2 3 1 -1
(1) me(323) eo(P7). am

N J/ N J/
—~ —~ ~~

2x2 2x3

Of the possible sums involving these matrices, only A + C and C + A make sense as B s a
different size. Note that
2 1

A+C:(0 .

)-c+a

Remark 16 In general, matrix addition is commutative as for matrices M and N of the
same size we have
M+ N=N+ M.

Addition of matrices is also associative as
L+(M+N)=(L+M)+ N
for any matrices of the same size.

Definition 17 The m x n zero matriz is the matrix with m rows and n columns whose every
entry is 0. This matriz is simply denoted as 0 unless we need to specify its size, in which case

it 18 written 0,,,. For example,
On — 000
=\ 000 )

A simple check shows that A+ 0,,, = A = 0,,,, + A for any m x n matriz A.

Definition 18 Scalar Multiplication Let A = (a;;) be an m x n matriz and k be a real
number (a scalar). Then the matriz kA is defined to be the m x n matriz with (i,j)th entry
equal to kaj.

Example 19 Show that 2(A + B) = 2A + 2B for the following matrices:

a=(51) m=(57)

Solution. Here we are checking the distributive law in a specific example. We note that

10 2 0
A+B—(8 5), and so 2(A+B)—(16 10),

2 4 0 —4 2 0
2A—(6 8)’ and 2B—(10 9 ), SO 2A+2B—(16 10).
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Remark 20 More generally the following identities hold. Let A, B,C' be m X n matrices and
A, it be real numbers.

A+ 0, = A, A+ B =B+ A; 0A = O0pn;
A+ (—A) = 0pp; (A+B)+C=A+ (B+C); 1A = A;
A+ p)A = XA+ pA; AMA+ B) = A+ A\B; ApA) = (A\p)A.

These are readily verified and show that M,,, is a real vector space. |

Based on how we added matrices then you might think that we multiply matrices in a similar
fashion, namely multiplying corresponding entries, but we do not. At first glance the rule for
multiplying matrices is going to seem rather odd but, in due course, we will see why matrix
multiplication is done as follows and that this is natural in the context of matrices representing
linear maps.

Definition 21 Matriz Multiplication We can multiply an m x n matriz A = (a;;) with an
p X ¢ matriz B = (b;;) if n = p. That is, A must have as many columns as B has rows. If this
is the case then the product C' = AB is the m X q matriz with entries

Cij = Zaikbkj fori<i<mandl <j<q. (1.12)
k=1

It may help to write the rows of A asry,...,r,, and the columns of B ascy,...,c,. Rule (1.12)
then states that

the (i,j)th entry of AB =r; - c; forl1<i<mand1l<j<q. (1.13)

We dot (i.e. take the scalar product of) the rows of A with the columns of B; specifically to
find the (i, j)th entry of AB we dot the ith row of A with the jth column of B.

Remark 22 We shall give full details later as to why it makes sense (and, in fact, is quite
natural) to multiply matrices as in (1.12). For now, it is worth noting the following. Let A be
an m x n matriz and B be n X p so that AB is m x p. There is a map L from R, to R,
associated with A, as given an n x 1 column vector v in R, then Av is a m x 1 column vector
in R,. (Here the L denotes that we are multiplying on the left or premultiplying.) So we have
associated maps

La from RY, to R” Lg from R? | to R}, Lug from RY | to Ry

col» col» col*

Multiplying matrices as we have, it turns out that
L AB — L A© L B-

This is equivalent to (AB)v = A(Bv) which follows from the associativity of matriz multipli-
cation. So matriz multiplication is best thought of as composition: performing Lap is equal to
the performing Lg then L 4. |
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Example 23 Calculate the possible products of the pairs of matrices in (1.11).

Solution. Recall that a matrix product M N makes sense if M has the same number of columns
as N has rows. A, B, C are respectively 2 x 2, 2 x 3, 2 X 2 matrices. so the products we can
form are AA, AB, AC,CA,CB,CC. Let’s slowly go through the product AC.

1|2 1|-1\ [ 1x1+2x1 727\ (3 7

-1 0 (-1 ) 7? 7]\ )
This is how we calculate the (1,1)th entry of AC. We take the first row of A and the first
column of C' and dot them together. We complete the remainder of the product as follows:

)(1 i\ (2|1><<—1>;2><(—1)|>:(3>.

-1 0 1] -1 77 7o)

Q—ll\?)\) :1):Q—1)xf—l—0x1\?{?):;§);
)

1
1 (
)(1 ) - ((2)|(_1)x(_1§1+0><(_1) l):<—31 )

So finally
1 2\(1 -1\ (3 -3
-1 0 1 -1/ \ -1 1 )

We complete the remaining examples more quickly but still leaving a middle stage in the
calculation to help see the process.

(1 2 1 2\ ([ 1-2 240\ (-1 2
AA_(—1 0)(—10)‘(—1+0 —2+0)_<—1 —2)’
g - (12 2 3\ (146 244 342\ (7 6 5\
—\-10 2 1)\ 140 —240 =340 )~ -1 —2 -3 )

(
ea - (! ;)Ez )= (1ran) = (22),
(

cp - (L YL 23Y_(1-32-23-1\_(-202)

N 1 -1 3 21) \1-32-23-1) \-220 2)
(1 -1\[(1 -1\ [(1-1 —-141\ (00

CC_(l—l) 1—1)_<1—1 —1+1)_(0 0)'

|

Definition 24 The n X n identity matrix I, is the n X n matriz with entries

s _ {1 =,
TV 0 if i

For example,
100
Ig - ( é (1) ), ]3 = 010
0 01

The identity matriz will be simply denoted as I unless we need to specify its size. The (i, j)th
entry of I is denoted as d;; which is referred to as the Kronecker delta.
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Remark 25 (Sifting Property of the Kronecker Delta) Let x1, ...z, be n real numbers,
and 1 < k <n. Then
i=1

This is because d;, = 0 when i # k and dy, = 1. Thus the above sum sifts out (i.e. selects) the
kth element x;,. W

There are certain important points to highlight from Example 23, some of which make
matrix algebra crucially different from the algebra of real numbers.

Proposition 26 (Properties of Matriz Multiplication) (a) For an m x n matriz A and
positive integers [, p,

Aonp = Omp; OlmA = Oln; AIn = A,’ ImA = A.

(b) Matriz multiplication is not commutative; AB # BA in general, even if both products
meaningfully exist and have the same size.

(c) Matrixz multiplication is associative; for matrices A, B, C, which are respectively mxmn, nxp
and p X q we have

A(BC) = (AB)C.

(d) The distributive laws hold for matriz multiplication; whenever the following products and
sums make sense,

A(B+C)=AB+AC, and (A+ B)C = AC+ BC.

(e) In Example 23 we saw CC = 0 even though C' # 0 — so one cannot conclude from MN =0
that either matriz M or N 1is zero.

Proof. (a) To find an entry of the product A0, we dot a row of A with a zero column of 0,
and likewise in the product 0;,, A we are dotting with zero rows. Also, by the sifting property,

the (7, j)th entry of Al, = Zzzlaikékj = ;j;
the (7, j)th entry of [,A = 22:15%%3' = a;;.

(b) In Example 23, we saw that AC' # C'A. More generally, if A is m x n and B is n x p then
the product AB exists but BA doesn’t even make sense as a matrix product unless m = p.
(c) Given i, j in the ranges 1 <i < m,1 < j < ¢, we see

P n
the (i, 7)th entry of (AB)C' = Z (Z aisbmn) Cryjs

r=1

n P
the (i, 7)th entry of A(BC) = Zais (Z bsrc,,]) )
s=1 r=1

These are equal as the order of finite sums may be swapped.
(d) This is left as an exercise. m

s=1

Because matrix multiplication is not commutative, we need to be clearer than usual in what
we might mean by a phrase like ‘multiply by the matrix A’; typically we need to give some
context as to whether we have multiplied on the left or on the right.
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Definition 27 Let A and M be matrices.

(a) To premultiply M by A is to form the product AM —i.e. premultiplication is multiplication
on the left.

(b) To postmultiply M by A is to form the product M A — i.e. postmultiplication is multipli-
cation on the right.

Notation 28 We write A? for the product AA and similarly, for n a positive integer, we write
A™ for the product

AA--- A

—_—

n times

Note that A must be a square matrixz for this to make sense. We also define A° = I. Note that
AMA" = A™F for natural numbers m,n. Given a polynomial p(z) = apx® + ap_12* 1+ +
a1x + ag, then we define

p(A) = apA* + ap A 4 4 @ A+ aol.

Example 29 Let

cosa  sina 01
A_<Sina —cosa) and B_(O 0)' (1.14)

Then A? = I, for any choice of . Also there is no matriz C' (with real or complex entries)
such that C? = B. This shows that the idea of a square root is a much more complicated issue
for matrices than for real or complex numbers. A square matriz may have none or many, even
infinitely many, different square roots.

Solution. We note for any « that

42 cos? a + sin® o €OS (¢ Sin v — sin « cos « 10 I
- . . . 2 = = 19.
sinacosa —cosasina  sin®a + (—cosa) 01

To show B has no square roots, say a, b, ¢, d are real (or complex) numbers such that

(0 1\ _(a b\ _( a+b batd
“\oo) \eca) " \ctard vevra® )
Looking at the (2,1) entry, we see ¢ =0 or a +d = 0. But a + d = 0 contradicts b(a + d) =1

from the (1,2) entry and so ¢ = 0. From the (1, 1) entry we see a = 0 and from the (2, 2) entry
we see d = 0, but these lead to the same contradiction. m

Let’s look at a simple case of simultaneous equations: 2 linear equations in two variables,
such as
axr + by = e; cr+dy = f. (1.15)

Simple algebraic manipulations show that typically there is a unique solution (z,y) given by

_de—0bf _af —ce
T ad —be Y= wd—be

(1.16)
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However if ad — bc = 0 then this solution is meaningless. It’s probably easiest to appreciate
geometrically why this is: the equations in (1.15) represent lines in the zy-plane with gradients
—a/b and —c/d respectively, and hence the two lines are parallel if ad — bc = 0. (Notice that
this is still the correct condition when b = d = 0 and the lines are parallel and vertical.) If the
lines are parallel then there cannot be a unique solution.

We can represent the two scalar equations in (1.15) and (1.16) by a single vector equation

in each case:
() G)-(5) 0
(z>:ad1—bc(—dc j)(;) (1.18)

Equation (1.17) is just a rewriting of the linear system (1.15). Equation (1.18) is a similar
rewriting of the unique solution found in (1.16) and something we typically can do. It also
introduces us to the notion of the inverse of a matrix. Note that

(2 (e ) =wan=( ) (40 am

So if ad — bc # 0 and we set

a b 1 d —=b
A:(c d) and B:ad—bc(—c a)’

then BA =1, and AB = I.

Definition 30 Let A be a square matrixz. We say that B is an inverse of A if BA= AB = 1.
We refer to a matriz with an inverse as invertible and otherwise the matriz is said to be
singular.

Proposition 31 (Properties of Inverses)

(a) (Uniqueness) If a square matriz A has an inverse, then it is unique. We write A~! for
this inverse.

(b) (Product Rule) If A, B are invertible n X n matrices then AB is invertible with (AB)™!
B7tAL

(¢) (Involution Rule) If A is invertible then so is A~ with (A™)"" = A.

Proof. (a) Suppose B and C were two inverses for an n X n matrix A then
C=1,C=(BA)C=B(AC)=BI,=B

as matrix multiplication is associative. Part (b) is left as Sheet 1, Exercise S3. To verify (c)
note that
(AYA=AAT) =1

and so (A™1)"" = A by uniqueness. ®

MATRICES AND MATRIX ALGEBRA 14



Definition 32 If A is m xn and BA = I,, then B is said to be a left inverse; if C satisfies
AC = I, then C is said to be a right inverse.

e If A is m x n where m # n then A cannot have both left and right inverses. (This is
non-trivial. We will prove this later.)

e If A, B are n x n matrices with BA = I, then, in fact, AB = I,, (Proposition 167).

Inverses, in the 2 x 2 case, are a rather simple matter to deal with.

Proposition 33 The matrix A = ( CCL Z

ad — be # 0 then
1 d —b
A7l = :
ad—bc< —c a )

Remark 34 The scalar quantity ad — bc is called the determinant of A, written det A. It is
a non-trivial fact to show that a square matrixz is invertible if and only if its determinant is
non-zero. This will be proved in Linear Algebra II next term. M

Proof. We have already seen in (1.19) that if ad — bc # 0 then AA™! = [, = A1 A. If however

ad — bec = 0 then
B ( d —b >
—c a

satisfies BA = 0. If an inverse C for A existed then, by associativity, 0 = 0C' = (BA)C =
B(AC) = Bl = B. So each of a,b,c and d would be zero and consequently A = 0 which
contradicts AC = 1,. m

> has an inverse if and only if ad — bc # 0. If

We conclude this section with the following theorem. The proof demonstrates the power
of the sigma-notation for matrix multiplication introduced in (1.12) and that of the Kronecker
delta. In this proof we will make use of the standard basis for matrices.

Notation 35 ForI,J in the range 1 < I <m, 1 < J < n, we denote by Er; the m X n matrix
with entry 1 in the I'th row and Jth column and Os elsewhere. Then

the (i,7)th entry of Ery = 01;0;

as 07;07; = 0 unless i = I and j = J in which case it is 1. These matrices form the standard
basis for M,,,.

Theorem 36 Let A be an n X n matrixz such that AM = MA for all n X n matrices M. i.e.
A commutes with all n x n matrices. Then A = \,, for some real number \.

Proof. As A commutes with every n X n matrix, then in particular it commutes with each of
the n? basis matrices E7;. So the (i, j)th entry of AE; equals that of E7;A for every I, .J,1, j.
Using the sifting property

the (Z,]) th entry of AE[J = Zaikéméh = ai[(SJj;
k=1

the (Z,]) th entry of E[JA = Z 511-5Jkakj = 5]iCLJj.
k=1
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Hence for all I, J, 1, j,
CLZ']5J]‘ = 5Iia'Jj' (120)

Let ¢ # j. If we set [ = J = i, then (1.20) becomes 0 = a;; showing that the non-diagonal
entries of A are zero. If we set I =i and J = j, then (1.20) becomes a;; = a;;, which shows that
all the diagonal entries of A are equal — call this shared value A and we have shown A = \I,.
This shows that any such M is necessarily of the form AI,, and conversely such matrices do
indeed commute with every other n X n matrix. =

1.3 Reduced Row Echelon Form

Now looking to treat linear systems more generally, we will first show that the set of solutions
of a linear system does not change under the application of EROs. We shall see that applying
any ERO to a linear system (A|b) is equivalent to premultiplying by an invertible elementary
matrix E to obtain (FA|Eb), and it is the invertibility of elementary matrices that means the
set of solutions remains unchanged when we apply EROs.

Proposition 37 (Elementary Matrices) Let A be an m X n matriz. Applying any of the
EROs Sry, Mi(\) and Ar;(X) is equivalent to pre-multiplying A by certain matrices which we
also denote as Sry, My(\) and Ar;(\). Specifically these matrices have entries

1 i=j5#1,J
o B 1 1=J 75=1,
the (i, 7)th entry of S;; = | il j=J
0 otherwise.
1 i=j#1,
the (i, 7)th entry of M;(\) = AN i=j=1,
0 otherwise.
1 L=
the (i, j)th entry of Ar;(N\) = A i=J j=1,
0  otherwise
The above matrices are known as elementary matrices.
Proof. The proof is left as an exercise. m
Example 38 When m = 3 we see
010 100 1 0 -2
Sopo=110 0 |, Ms(7)y=|( 0 1 0 |, A31(=2)=1 0 1 0
0 01 0 07 0 0 1

Note that these elementary matrices are the results of performing the corresponding EROs
So1, M3(7), A31(—2) on the identity matriz Is. This is generally true of elementary matrices.
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Proposition 39 Elementary matrices are invertible.
Proof. This follows from noting that

(Si) ™" = Sji = Sij (Aij(N) ™ = Ay (=N); (M;(N) ™! = M;(A),
whether considered as EROs or their corresponding matrices.

Corollary 40 (Invariance of Solution Space under EROs) Let (A|b) be a linear system
of m equations and E an elementary m X m matriz. Then x is a solution of (A|b) if and only
if x is a solution of (EA|EDb).

Proof. The important point here is that F is invertible. So if Ax = b then FAx = Eb follows
by premultiplying by E. But likewise if FAx = Eb is true then it follows that Ax = b by
premultiplying by £~'. m

So applying an ERO, or any succession of EROs, won’t alter the set of solutions of a linear
system. The next key result is that, systematically using EROs, it is possible to reduce any
system (A|b) to reduced row echelon form. Once in this form it is simple to read off the system’s
solutions.

Definition 41 A matriz A is said to be in reduced row echelon form (or simply RRE
form) if

(a) the first non-zero entry of any non-zero row is 1;

(b) in a column that contains such a leading 1, all other entries are zero;

(c) the leading 1 of a non-zero row appears to the right of the leading 1s of the rows above
it;

(d) any zero rows appear below the non-zero rows.

Definition 42 The process of applying EROs to transform a matrix into RRE form is called
row-reduction, or just simply reduction. It is also commonly referred to as Gauss-Jordan
elimination.

Example 43 Of the following matrices

0120 —4 1 0 vV20
0001 = |, 01 2 0|,
0000 O 00 0 1
10 1 2 1 00 V3
01 |, 01|, 010 0 |,
00 00 002 1

the first three are in RRE form. The fourth is not as the second column contains a leading
1 but not all other entries of that column are 0. The fifth matriz is not in RRE form as the
leading entry of the third row is not 1.
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We have yet to show that any matrix can be uniquely put into RRE form using EROs
(Theorem 122) but — as we have already seen examples covering the range of possibilities — it
seems timely to prove the following result here.

Proposition 44 (Solving Systems in RRE Form) Let (Alb) be a matriz in RRE form
which represents a linear system Ax = b of m equations in n variables. Then
(a) the system has no solutions if and only if the last non-zero row of (A|b) is

(00 - 0f1).

(b) the system has a unique solution if and only if the non-zero rows of A form the identity
matrix I,,. In particular, this case is only possible if m > n.

(c) the system has infinitely many solutions if (A|b) has as many non-zero rows as A,
and not every column of A contains a leading 1. The set of solutions can be described with k
parameters where k is the number of columns not containing a leading 1.

Proof. If (A|b) contains therow ( 0 0 -+ 0|1 ) then the system is certainly inconsistent
as no x satisfies the equation
01‘1+01‘2+"‘+01‘n =1.

As (A|b) is in RRE form, then this is the only way in which (A|b) can have more non-zero rows
than A. We will show that whenever (A|b) has as many non-zero rows as A then the system
(A|b) is consistent.

Say, then, that both (A|b) and A have r non-zero rows, so there are r leading 1s within
these rows and we have £ = n — r columns without leading 1s. By reordering the numbering
of the variables x4, ..., z, if necessary, we can assume that the leading 1s appear in the first r
columns. So, ignoring any zero rows, and remembering the system is in RRE form, the system
now reads as the r equations:

Ty + A1(r+1)Tr41 + a1, = bl; T Ty + Qp(r41)Tr41 + -+ Ty = by

We can see that if we assign z,,4,..., ¥, the k parameters s,,1,..., s,, then we can read off
from the r equations the values for z1,...,z,. So for any values of the parameters we have a
solution x. Conversely though if x = (z1,..., z,,) is a solution, then it appears amongst the
solutions we’ve just found when we assign values s, = x,11,..., s, = 2, to the parameters.
We see that we have an infinite set of solutions associated with £ = n—r independent parameters
when n > r and a unique solution when r = n, in which case the non-zero rows of A are the
matrix /,,. |

Remark 45 Note we showed in this proof that

e a system (A|b) in RRE form is consistent if and only if (A|b) has as many non-zero rows
as A;

e all the solutions of a consistent system can be found by assigning parameters to the vari-
ables corresponding to the columns without leading 1s. M
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Example 46

1 -2 0 2| 3 1002
01 0]-1
0 0 1 1|-2 |, ,
0O 0 0 0] 1 00 113
no solutions 0 0 0 0
unique solution
1 2 0 03 1 -2 0 2| 3
00102, 0 0 1 1|-2
00 0 11 0 0 0 0] O
one parameter family of solutions two parameter family of solutions
(3—2s,s,2,1) (3+2s—2t,5,—2—t,t)

Theorem 47 (Existence of RRE Form)
Every m x n matrix A can be reduced by EROs to a matriz in RRE form.

Proof. Note that a 1 X n matrix is either zero or can be put into RRE form by dividing by its
leading entry. Suppose, as our inductive hypothesis, that any matrix with fewer than m rows
can be transformed with EROs into RRE form. Let A be an m x n matrix. If A is the zero
matrix, then it is already in RRE form. Otherwise there is a first column c¢; which contains a
non-zero element . With an ERO we can swap the row containing « with the first row and
then divide the first row by a # 0 so that the (1, j)th entry now equals 1. Our matrix now
takes the form

0O --- 0 1 &l(jH) . &m
0 - 0 ay :
0 - 0 Gmj GmGen - G
for some new entries @y (j+1), - - - , Gmn- Applying consecutively Aio(—as;), A13(—as;), - -, Aim(—my)

leaves column ¢; = e] so that our matrix has become

0o --- 0 1 dl(j—H) dln
T B

By induction, the (m — 1) x (n — j) matrix B can be put into some RRE form by means of
EROs. Applying these same EROs to the bottom m — 1 rows of the above matrix we would
have reduced A to

0 0 1 Gy ... G
0 0 0
Do RRE(B)
0O --- 0 0
To get the above matrix into RRE form we need to make zero any of d;(j11), ..., G1, which are

above a leading 1 in RRE(B); if Gy, is the first such entry to lie above a leading 1 in row [ then
A1 (—aqx) will make the required edit and in due course we will have transformed A into RRE
form. The result follows by induction. m
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