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AUTHORS’ PREFACE

The aim of the present book is to-help the reader ac-
quire the proficiency needed to successfully apply the
methods of mathematical physics to a variety of prob-
lems drawn from mechanics, the theory of heat conduc-
tion, and the theory of electric and magnetic phenomena.
A wide range of topics is covered, including not only
problems of the simpler sort, but also problems of a
more complicated nature involving such things as
curvilinear coordinates, integral transforms, certain
kinds of integral equations, etc. The book is intended
both for students concomitantly studying the cor-
responding topics in courses of mathematical physics,
and for research scientists who in their work find it
necessary to carry out calculations using the methods
described here. We also think that quite apart from its
value as a tool for acquiring technique, the book can
also serve as a handbook, especially in view of the fact
that answers to the problems are included.

A rather solid background in applied mathematics is
needed to profit from the book in its entirety. However,
most of the problems appearing in Chapters 2 to 5 will
be accessible to those who have taken only the usual
first course in methods of mathematical physics. Chap-
ters 6 to 8 are more specialized, and presuppose some
familiarity with special functions, integral transforms,
integral equations, and so on.

To make the book easier to use, each section begins
with a brief introduction describing its contents and
presenting a certain amount of relevant background
information. However, it is not claimed that this in-

formation is complete in any sense, and the reader
v
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desiring further details must consult the literature, e.g.,
the books and monographs cited at the end of each
chapter.

The majority of problems in this collection are ac-
companied by hints, facilitating the choice of meaning-
ful methods of solution. In addition, certain problems,
whose numbers are equipped with asterisks (e.g., *52,
*148, etc.), are solved in detail in a special section at
the end of the book. The problems singled out in this
way have been selected either because they illustrate the
application of certain specific methods, or because of
their special difficulty or particular importance in the
applications. Because of the applied character of the
book, we restrict ourselves to formal solutions, whose
rigorous justification can be supplied by the interested
reader.

In compiling the collection, we have consulted not
only the classic works on mathematical physics, but
also a number of journal articles. Material accumulated
during years of teaching and research in the Department
of Mathematical Physics at the Leningrad Polytechnic
Institute, as well as work done in connection with in-
dustrial projects, plays a role in the material presented
here.

It would be impractical, and in many cases impossible,
to cite the original source where a given problem was
solved for the first time. Thus references to the literature
have been confined to cases we find particularly relevant.

We would like to take this opportunity to thank Prof.
G. A. Grinberg for many valuable suggestions made
in the course of writing the book.
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TRANSLATOR’S PREFACE

The present edition differs from the Russian original
in various respects, of which three merit particular
mention:

1. The Bibliography has been expanded and up-
dated. For example, the original sources of works
translated into Russian have been tracked down,
all references have been equipped with titles, further
references (especially, later editions and English
translations) have been added, and so on. As in
other volumes of this series, the system of references
is in “letter-number form.” Thus L10 refers to the
tenth paper (or book) whose (first) author’s surname
begins with the letter L, where the entire Bibliog-
raphy is arranged in lexicographic order, and
chronological order as well, whenever there are
several papers by the same author.

2. Working from an extensive list of errata sent
me by the authors, I have corrected numerous
misprints and mistakes present in the Russian edi-
tion. I am particularly grateful for their help, since
the task of eliminating errors from a book of this
type (consisting primarily of problems and answers)
is both imperative and one which only the authors
themselves can perform in finite time! The authors
have also been kind enough to answer a number of
specific questions that arose in the course of the
translation.

3. It was felt that the English-language edition
would benefit greatly by the addition of material
on the approximate solution of problems of mathe-

matical physics, since the emphasis of the Russian
vii
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edition is on exact solutions. This led to the writ-
ing of a Supplement on variational and related
methods by Professor Edward L. Reiss of the
Courant Institute of Mathematical Sciences of New
York University. The Supplement is independent of
the rest of the book, even to the extent of having its

own references.
R. A. S.
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DERIVATION OF EQUATIONS AND
FORMULATION OF PROBLEMS

Chapter 1 is devoted to problem material on the derivation of the
equations of mathematical physics and the formulation of appropriate initial
and boundary conditions. It also serves as a convenient place to list the
basic equations appearing later in the book. Throughout, we assume that the
reader is familiar with the physical laws underlying the mathematical
formulation of the problems which arise in various branches of physics.

The chapter consists of three sections devoted in turn to problems of
mechanics, heat conduction and the theory of electric and magnetic phe-
nomena. Each section starts with the basic equations governing the corre-
sponding set of problems, with appropriate references to sources where the
derivations can be found. Special attention is devoted to the formulation of
problems of electrodynamics, since this subject is inadequately covered in
the available literature.!

I. Mechanics

This section contains problems on the derivation of equations of motion
and formulation of initial and boundary conditions for vibrating strings,
membranes, rods and plates, as well as some examples pertaining to the
statics of deformable media. It will be assumed that the reader has already

! Those particularly interested in mathematical aspects of the formulation of physical
problems can find relevant material in C5, G1, L1, P2, S1 and S13. (The reference scheme
is explained in the Translator’s Preface.)



4 DERIVATION OF EQUATIONS AND FORMULATION OF PROBLEMS

encountered the basic equations in a first course on mathematical physics.2
Thus we shall merely list the equations concisely, at the same time explaining
the notation to be used in the book.

1. The equation of a vibrating string is

Pu 1% q(x, t) A/_

axt  o? o
where u(x, t) is the displacement of the point of the string with abscissa

x at the timet, g(x, ?) is the external load per unit length, T'is the tension,
and p is the linear density.

2. The equation for longitudinal oscillations of a rod of conctant cross
section is
u  10% ,\/E
S, =0, v= /=
ox® v ot P

where u(x, t) is the displacement of the cross section of the rod with
abscissa x at the time ¢, E is Young’s modulus, and p is the density.

3. The equation for transverse oscillations of a rod (beam) is

0*u n 1 % _q(x,1) t) A/
ox*  a* o EJ

where u(x, ¢t) is the displacement of the points along the midline of the
rod, g(x, t) is the external load per unit length, E is Young’s modulus,
J is the moment of inertia of a transverse cross section, p is the density,
and S is the cross-sectional area.

4. The equation of a vibrating membrane is

2 2 2. T
Fu  u_ 13 _axy ) ,):A/Z’
P

0y* Ry T
where u(x, y, t) is the displacement of the point (x, y) of the membrane
at the time ¢, g(x, y, 1) is the external load per unit area, T is the tension
per unit length of the boundary of the membrane, and p is the surface
density.

5. The equation for transverse oscillations of a thin elastic plate is

Az _l_@_q(x,y, t)

u + , b= L

o D oh’

* See S6 (Vol. II), S14, T1 and T2. Concerning the derivation of the equations of
vibrating plates, see T4.
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where u(x, t) is the displacement of the point (x, y) of the midplane of
the plate at the time ¢, g(x, y, t) is the density of the external load, D
is the flexural rigidity, 4 is the thickness, p is the density, and

is the two-dimensional Laplacian operator.

The above equations lead to corresponding equations for static
deflections, if we regard the external load ¢ and the unknown displace-
ment u as independent of the time ¢. For example, the equilibrium
equation for the membrane is

6.
Pu  Pu__q(xy)
ax* 9y T '
‘the static deflection of the plate satisfies the equation
7.
Azu — q(X, )’)
D 3
and so on.

Among the other equations governing the statics of elastic bodies
which will figure in this book, we cite the familiar equation
8.
2 2
qu, du_
0x dy
for twisting of a prismatic rod, where u(x, y) is the torsion function.

We now give some problems on the formulation of initial and boundary
conditions for these equations, and also some problems on the derivation of
other differential equations.

1. Describe the initial and boundary conditions for a vibrating string with
fixed ends (0 < x < /), which is stretched at the point x = c and time ¢ = 0
to a height 4, and then released without initial velocity.

Ans.
h_x’ 0<x<ec,
ou
“|t=o=f(x) = 3 =0;
h(l — x) tlt=o
ﬁ , c<x<l,

ula:=0 = ulz:l = 0
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2. A concentrated load of mass m, is fastened at the point x = c of a
string 0 < x < [ of length /. Find the equations describing vibrations of the
string with arbitrary initial conditions, assuming that the ends of the string
are fastened.

Ans.
u, 0<x<ec 9% 10%;
wu={" Pu _10wi_o (1,2,
Uy, c<x<l, Ox v® ot

with initial conditions

d
ult=0 = f(x), ;l; = g(x),
and boundary conditions
Oou, Ou mg 0%u
ulla::l) = uZla:=l =0, ull::c = u2l==c7 (a_xz - a_xl) -~ = —;0—5‘—2 o

3. Formulate initial and boundary conditions for the problem of longi-
tudinal oscillations of a rod in the following special cases:

a) A rod of length /is clamped at the end x = 0 and stretched by a force F
applied to the other end; at the time ¢t = 0 the force is suddenly discontinued;

b) A tensile force F(¢) is applied at the time t = 0 to the end x =/ of a
cantilever in equilibrium;

c) A cantilever clamped at the point x = 0, with a load of mass M at the
free end x = /, undergoes longitudinal oscillations subject to arbitrary initial
conditions.

Ans.
b) ul,.o =0, —g;"ho: s Ulgmo =0, Z—Z,_L 1;(;)

4. Derive the differential equation for longitudinal oscillations of a thin
rod of variable cross section S = S(x). As an example, derive the equation
for oscillations of a conical rod.

S(lx)ax[ (x )_}_Lja_:o, ":A/%'

ANS.
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5. Derive the equation for torsional oscillations of a shaft of circular
cross section.

Ans. 8_26 1 8_29 B
axt o
where 6(x, ¢) is the angular displacement of the cross section x relative to the
equilibrium position, v = J Wp, p is the density, and G is the shear modulus.
Hint. The torque at the cross section x is given by the expression

0o
M=GJ—,
0x

where J is the polar moment of inertia of a cross section of the shaft.

6. Formulate initial and boundary conditions for the problem of torsional
oscillations of a shaft of circular cross section and length /, where the end
x = Oisclamped and a disk-shaped mass with moment of inertia J, is attached
to the other end. At the time ¢ = 0, the disk is rotated through a given angle
o and then released without initial velocity.

Ans.
" Blimo = z 8 _ 0
=0 I’ Otl—o
2
e|==0 =0, @ = — ﬁ' 'a—ez .
0x lz=1 GJ 0t? lz=1

7. A cantilever of length / is clamped at one end x = 0 and loaded by a
force F at the other end. At the time ¢t = 0, the action of the force is suddenly
discontinued. Formulate initial and boundary conditions for the corre-
sponding oscillations.

Ans. Initial conditions

F ou
Umo=—=0@Ix*—x%, —| =
i GEJ( ) Ot l0
and boundary conditions
Ou d"u ?°u
Uemo=-| =0, | =—| =
0x ls—0 0x le=t  0x*lz=1

8. Describe initial and boundary conditions for the problem of free
oscillations of a disk-shaped plate with clamped edge, whose initial deforma-
tion is due to a concentrated force F applied at the center of the disk.

Ans.

Fr*  r F ou
o=-—In-+—(@*—1r?), =| =0;
=55 e T e @ ™™ Fla
U|,g =0, ui _ 0.

a ¥ lr=a
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Hint. To determine the static deflection due to the concentrated force,
consider the force as the limiting case of a load of density F/me? uniformly
distributed over a small disk of radius e.

9. Show that the problem of the deflection of a plate with a simply
supported polygonal boundary reduces to the solution of Poisson’s equation

Aw =f(x, y),
with boundary condition w|r. = 0 (fis a known function).
Hint. Note that in the present case, the boundary conditions on the

supported edge can be written in the form u|p = 0, Au|, = 0.

10. Show that the velocity potential for the three-dimensional flow of an
ideal incompressible fluid containing no sources is described by Laplace’s
equation

Au=0.
Hint. Use the condition
j v.ndS=0
s

(v is the vector describing the velocity of fluid particles at a given point, S is
an arbitrary closed surface inside the flow, and n is the exterior normal to the
surface S) and the condition

v= —gradu
for potential flow.
11. Formulate mathematically the problem of the flow of an ideal fluid

past an object bounded by a surface S, where fluid emanates from a point
source of strength m located at a point M, in the region exterior to S.

Ans. The problem reduces to finding a solution of the equation
Au=0

which is regular (i.e., has no singularities) in the region exterior to S, except at
the point M,. In a neighborhood of M,,

y=—"r
dmp [MM,|

where M is a point near M, and p is the density of the fluid (|M M| denotes
the distance between M and M,). The desired function # must satisfy the
boundary condition

+ a regular function

du

=0
onls
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and the condition
u = O(R™), R—
at infinity.

2. Heat Conduction

As proved in courses on mathematical physics (see S1, T1), the flow of heat
in a body of thermal conductivity k, specific heat ¢ and density p is governed
by Fourier’s equation

where T(M, t) is the temperature at the point M, and Q is the density of heat
sources within the body.?> The boundary conditions to be satisfied on the
surface of the body (or its parts) depend on the particular problem under
consideration. Most often it is assumed that the surface of the body has a
given temperature T IS = f(P, t), where P is a point of the surface S, or that
the body radiates heat into the surrounding medium according to Newton’s
law, which states that the amount of heat radiated by a unit area of the
surface per unit time is proportional to the difference between the temperature
of the surface and that of the surrounding medium. In the latter case, the
boundary condition takes the form

oT )
— + hT
(an +

= hTmed,
S

where 9/0n indicates differentiation with respect to the exterior normal to S,
Tmea is the temperature of the surrounding medium, and 4 is the heat
exchange coefficient or emissivity. Without loss of generality, we can assume
that Tmea = 0; this assumption is made in all the problems involving heat
conduction except Prob. 155.4

We now give a few problems on the formulation of initial and boundary
conditions for the equation of heat conduction (and for the related diffusion
equation).

12. Let the temperature of a conductor in the form of an infinite cylinder
of radius a be initially the same as that of the surrounding medium. Suppose
that starting from the time ¢ = 0, the conductor is heated by a constant

® The density of heat current (i.e., the heat flux) is described by the vector
q= —kgradT.

4 Examples of other boundary conditions encountered in the applications are given in
Probs. 365, 367 and 370.
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electric current releasing an amount of heat Q per unit volume of the con-
ductor. Give a mathematical formulation of the corresponding problem of
heat conduction, assuming that the heat exchange at the surface of the con-
ductor obeys Newton’s law.®

Ans. The temperature T(r, t) satisfies the equation

10 ( ) LT e o _k
ror\ or ot k’ co’
with initial condition
T|r=0 = 0
and boundary condition
(aT + hT) = 0.
or r=a

13. A homogeneous sphere of radius a is heated for a long time by heat
sources uniformly distributed throughout its volume with density Q. Write
the equations which describe the cooling of the sphere after the sources are
turned off, assuming that the heat exchange between the surface of the sphere
and the surrounding medium, during both the heating and cooling, obeys
Newton’s law.

Ans.
1 a( aT) oT (aT )
=—\rr=)=—-—, hT
rto or ot or +

=0,

r=a

Q 2 _ 2
T). , = =
l‘r—O 6k ((1 ) + 3kh

14. Two slabs of thicknesses a, and a,, made from different materials and
heated to temperatures 77 and T, are put into contact with each other at the
time ¢ = 0. Write the equations governing the resulting process of tempera-
ture equalization, assuming that the free surfaces are thermally insulated from
the surrounding medium.

Ans.
0°T, c¢,p, 0T, 0*T, cyp, 0T,
—_—— s s 0< < s -2 __ere”-oe < x < +a,
ox*  k, ot O<x<a) o5 ky Ot (@ @+ ad)

with initial conditions
T1|z=o = Tg, Tz|t=o = Tg»

51t is recommended that the problem be solved directly from underlying physical
principles, without regarding Fourier’s equation as known.
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and boundary conditions

0% la=o ox o=a; Ox
15. A nonuniformly heated body in the form of a circular ring of radius a

with a small cross section cools by giving off heat from its lateral surface.

Write the equations describing the corresponding process of temperature

equalization, assuming that the temperature drop inside the ring can be

neglected and that the surface cooling obeys Newton’s law.

— 1,25

= 0’ nlz=a1 = T2|a:=ap kl 2
T=a; ax

=0.

z=ay+az

Ans.
2.
_l_é a—’]'; = '6_7: + ’2 T; T = ﬂ ’
a® d¢ or S cp
where p is the perimeter, S the cross-sectional area and 4 the heat exchange
coefficient. The temperature, which must be a periodic function of the angular
coordinate ¢, satisfies the initial condition

. . . T|1=0 = f((P))
where fis a given function.

16. Show that the concentration C(x, , z, ) of a substance diffusing in a
gas or liquid obeys the differential equation

where @ is the source density of the diffusing substance and D is the diffusion
coefficient.

Hint. Starting from Nernst’s law q = —grad C (where the vector q is the
density of flow of the diffusing substance), write a conservation equation for
an arbitrary volume element.

3. Electricity and Magnetism

An important class of problems of mathematical physics involves integra-
tion of the differential equations arising in various branches of electromagnetic
theory. Assuming that the reader has previously encountered this sutject
(see G5, J6, P1), we shall regard the following basic equations as known:

1. The equations of electrostatics

Au=—4—1r£, E = —grad u,

€
where u is the potential of the electrostatic field E, p = p(M) is the

volume density of charge at the point M, ¢ is the dielectric constant of
the medium, and A is the Laplacian operator.
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2. The equations

Ay =—=, j= —ogradu, (6))

for the distribution of d-c current density inside a homogeneous
conductor, where u is the potential of the current field, j is the current
density vector, Q = Q(M) is the volume density of current sources (in
particular, Q may vanish), and o is the conductivity.

3. The equations

AA=—4lP'j-(”), H=lcurlA
c w
for the magnetic field due to d-c currents, where A is the vector poten-
tial of the magnetic field H, the vector j* is the density of the (external)
currents producing the magnetic field, p is the magnetic permeability
of the medium, c¢ is the velocity of light in vacuum, and A is the
Laplacian operator.®

4. Maxwell’s equations
edE | 4mo 4r .

curl H=-—+ —E + — j9,
c ot c c
curlEz——Ea—H,
c ot
divE=4n—P,.
€
divH=0

for the electromagnetic field in a homogeneous isotropic medium,
where E and H are the electric and magnetic field vectors, €, u. and o
are the dielectric constant, the magnetic permeability and the conduc-
tivity of the medium, c is the velocity of light, and p and j'® are the
charge and current densities producing the field.?

¢ The components of the vector AA in a Cartesian coordinate system are AA4,, A4,
and AA,. To calculate the components of the vector- AA in other coordinate systems, one
should use the relation

AA = grad div A — curl curl A,

Expressions for the components of AA in cylindrical and spherical coordinates are given
on p. 389-390.

7 It should be noted that if j* is given, then p cannot be chosen arbitrarily, but must
satisfy the differential equation

dp 4mo
—_— — p = —divi®
o + . ] divj

implied by the first and third Maxwell equations.
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If we use the relations

H=lcur]A, E=—gradu—-§é

N c ot

to introduce the vector and scalar potentials 4 and «,® the problem of deter-
mining the electromagnetic field reduces to integrating the system of equations

2
aa LA droudA _ dmp
c® ot ¢t ot c
_ e 4muocdu 4w
c? or? ¢t ot €

We now consider the mathematical formulation of various problems
involving electric and magnetic fields (both static and variable), as well as
some problems on transformations of the differential equations of electro-
dynamics which are useful in special cases.

17. Formulate mathematically the problem of finding the three-dimen-
sional electrostatic field between N conductors of arbitrary shape at given
potentials ¥, (i = 1,..., N).

Ans. In the region D bounded by the surfaces S; (i =1, ..., N) of the
conductors, the potential u satisfies Laplace’s equation

Au = 0.

The boundary conditions have the form

uls, =V, i=1,...,N,

where, in the case where the point at infinity belongs to D, these conditions
must be supplemented by the requirement that at infinity the potential u
approach zero uniformly in all directions.

Comment. If none of the surfaces S; extends to infinity, then the products
Ru and R? grad u (where R? = x? + y* 4 z?%) remain uniformly bounded as
R — oo. However, these conditions need not be included in the formulation
of the problem, since the uniqueness of the solution is guaranteed by the
above requirement that the potential u approach zero uniformly as R — 0.

18. A charge Q is placed at the point M, = (x,, yo, 2,) near a conductor at
potential ¥, bounded by a surface S. Formulate the corresponding problem
of electrostatics.

® The quantities A and « are not independent, but are connected by the relation

u 4
de+5‘f—"+%‘ —o.
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Ans. The potential u satisfies Laplace’s equation at every point of the
region surrounding the conductor, except at the point My, near which

u= % + a regular function,

(R = |MyM] is the distance between the points M and M,). Moreover, the
potential satisfies the boundary condition u|g = ¥ and the condition that
u|,, — 0 uniformly in all directions.

19. A thin charged wire of charge ¢ per unit
length is placed inside a grounded cylindrical shell
whose generators are parallel to the wire (see
Figure 1). Formulate the corresponding two-
dimensional electrostatic problem.

Ans. The potential u satisfies the two-
dimensional Laplace equation

FIGURE 1 Au=—+5=0
x y
in the whole region D except at the point M,, where the potential has a
logarithmic singularity
u = —2gIn R 4 a regular function.
The boundary condition is u|r = 0.

20. Reformulate the preceding problem for the case where the charged
wire is placed outside the conductor, and the total charge per unit length of
the conductor is specified instead of its potential.

Ans. The boundary condition is now
ul _,
oslr

(0/0s denotes differentiation along the tangent to the contour I'), while the
condition at infinity becomes

|, = —2(Q + ¢) In R + a bounded function,
where Q is the charge per unit length of the conductor.

21. Show that the problem of the current distribution in a thin conducting
shell (see Figure 2) reduces to integration of the equation
i(e)

Au ="L,
ch
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where u is the potential of the current distribution in the shell (j = —o grad
is the current density vector), o is the conductivity and / the thickness of the
shell, j¢ is the normal component of the density of current applied to the
shell by using suitable electrodes, and A is the appropriate two-dimensional
Laplacian, i.e.,
ds* = HY do® + HEdB®,  Au — — [ﬁ(ﬂ ?E) n 2(&’.« 3_")]
HaHB oL Ha aa aB H‘; aB

(ds is the element of arc length on the surface of the shell).

Hint. Average equation (1), p. 12 (giving the volume distribution of
current) over the thickness of the shell.

N
Ho, (n
\ -
.
FIGURE 2 FIGURE 3

22. Suppose an object of arbitrary shape, made of magnetic material of
permeability w, is magnetized by being introduced into a homogeneous
magnetic field H, (see Figure 3). Formulate mathematically the correspond-
ing problem of magnetostatics.

Ans. If u is the potential of the magnetic field H (i.e., H = —grad u), the
problem reduces to integration of the equation
Au;, =0, i=12,
with the boundary conditions
ouy
on
and the following conditions at infinity

_ o
s on

ullS = "zls, s

—grad )|, = H,, 1, is bounded.

Hint. It helps to keep in mind that in the source-free part of space, the
magnetic field H satisfies the equations

curl H=0, divH = 0,
which imply
H= —gradu, Au=0.
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23. The differential equations for wave propagation down a long trans-
mission line, with self-inductance L, capacitance C, resistance R and leakage
conductance G per unit length, take the form

x:0 Ao x=l ou ol oI ou
——=L—+4+RI, ——=C—+ Gy,

Ox ot + 0x ot
£ L where u(x, 1) and I(x, t) are the values of the
voltage and current at the point x at the time
FIGURE 4 t (see T1, p. 18). Formulate initial and

boundary conditions for wave propagation
along such a line, if at one end a constant voltage E is switched on in series
with a lumped resistance R,, while the other end is terminated by a coil
of self-inductance L (see Figure 4).
Ans.
“|z=o =0, Ilt=0 =0,
ol
E= ula:=0 + Rolla:=0, ulx=l = Lo'a‘ .
tlz=y
24. Show that if j = 0 and p|,, = O, then the differential equations for
the electromagnetic potentials A and u can be satisfied by setting

A oIl n 4rpc
c ot c
.where II is the Hertz vector satisfying the equation

2!
am 2T drop A,
¢ or ¢t ot
Derive expressions for the vectors E and H in terms of the vector II.

Ans.

II, u = —divII,

H=: curl(i—’l—.I + 4ng H), E = curl curl IL.
c ot €

Hint. According to footnote 7, p. 12, it follows from j =0 and
p|imo = O that p = O for arbitrary 7.

25. Verify that if j = 0 and p|,_, = 0, then the vectors E and H satisfy
the same differential equation as the Hertz vector, i.e.,’

A — I THITE o,

® In some problems it is more convenient to start from these equations than from the
equations for the electromagnetic potentials or for the Hertz vector.
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26. Show that for steady-state harmonic oscillations of {requency o,
in which the time dependence of the quantities defining the electromagnetic
field (i.e., the vectors E and H, the charge and current densities which are the
sources of the field, etc.) is characterized by a factor "¢, Maxwell’s equations
(see p. 12) take the form

AA* + K*A* = — 4%‘ i

; 4
H* = 1 curl A¥, E*— — 2@ (curl curl A* — —& j(’)*) ,
® ck? c

where f* denotes the complex amplitude of a scalar or vector function f,

and?!®
2 .
kzh/w, Imk <O.

4

Comment. The importance of this problem consists in showing that only
one unknown function (rather than two) is needed to calculate the electro-
magnetic field in the case of harmonic time dependence.

27. Starting from Maxwell’s equations for the case of steady-state
harmonic oscillations, deduce the corresponding differential equations for the
two-dimensional (planar) electromagnetic problem, where

JO* = =0, jO* = j(x, ),
E: = E: = 0, E:‘ = E(x: Y),
HY=H,(x,y), Hy=H(xy, Hi=0.

Ans.
i
AE + K°E = T2,
c
H:c=__‘.:_Q§! Hv='—c—gE"
pio dy pio 0x

Hint. For harmonic time dependence, the connection between j** and
p* is given by
_ERI@ Lk
p* = o div ™,

which in the present case implies p* = 0.

1o For example, if j' = j*' sin wt, where j{* is real, then the actual values of Eand
H are given by the imaginary parts of the expressions E*¢'“* and H* ™",
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28. Derive the equations for steady-state harmonic electromagnetic
oscillations for the case of axial symmetry, where
i =jPN =0, =i 2)
E} =E(r,z), E,=0, E;=E(,2),
H =H; =0, H,=H(,?2).
Ans.

Hint. Note that
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SOME SPECIAL METHODS
FOR SOLVING HYPERBOLIC
AND ELLIPTIC EQUATIONS

This chapter deals with some special methods which, unlike those
considered later, can only be used to solve problems pertaining to partial
differential equations of a particular type, e.g., of the hyperbolic or elliptic
type.! Among such methods, we mention Riemann’s method for solving the
Cauchy problem for hyperbolic equations, the Green’s function method for
solving boundary value problems involving elliptic equations, complex
variable methods for solving the two-dimensional problems of potential theory
and so on. There are a great many such special methods, which in some cases
belong to the more difficult problems of the theory of partial differential
equations. Thus it will be impossible to go into very much detail here. Instead
we confine ourselves to a few simple problems illustrating the methods most
frequently encountered in practice.

I. Hyperbolic Equations

It will be recalled that problems of mathematical physics involving the
propagation of various kinds of waves (elastic, electromagnetic, etc.) in one,
two or three dimensions lead to the consideration of partial differential
equations of the hyperbolic type, subject to extra conditions. Depending on
the character of these conditions, the problem is classified as a Cauchy
problem or as a mixed problem. By the mixed problem for an equation of the

! Concerning the classification of partial differential equations, see C5, G1, T1, etc.

19
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Before the time ¢ = x/v, the point x is at rest. During the interval
o<,
v vy

i.e., as the source approaches, the point x undergoes harmonic oscillations of
frequency

().)1: > w.

v — vo
For ¢ > x/v,, i.e., as the source recedes, the frequency of the observed oscilla-
tions is

(the Doppler effect).

32. A semi-infinite rod, clamped at the end x = co and free from forces
at the end x = 0, undergoes longitudinal oscillations. Investigate the nature
of these oscillations, assuming that the initial conditions are of the form

ou
_a = , —_— = 0’
“lt_o f(x) ot lico
and that f(x) — 0 as x — oo.

Ans.

x. 1) Hfwt —x)+flot +x)], O0<x<ut,
x, 1) =
! WS —ot) + S+ o0)], ot < x < <o,

Hint. Make the even extension of the function f(x) to the negative x-axis,
and use the solution of the Cauchy problem for an infinite string.

33. Find the distribution of voltage and current along an infinite trans-
mission line with parameters L, C, R and G, given the initial conditions

u|t=0 = (P(x)’ ]|t=0 = qJ(X), —00 <x <,

assuming that the parameters of the line are connected by the relation
R_G
L C

(a distortionless line).
Ans.

u(x, 1) = e{é (ol — o) + (s + 00 + 5 (4o — o) — 9l + w)]},

I(x, t) = e‘“‘{% [$(x — vt) + $(x + v1)] + 2—10 [o(x — vt) — @(x + vt)]},
where « = R/L, v = 1/\/2.—(_',’.
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Hint. Use Prob. 23 to write the differential equation for u, introduce
a new unknown function w by writing u = e-"*w, and choose y such that the
coefficient of dw/d¢ vanishes.

34. Show that the solution of the wave equation

y_ L% _
v o
with radially symmetric initial conditions
Ju
Uo =0, = | =40) 0<r<o,
tli=o

is given by the formula

u(r, ) = (r — v)o(r — vt) + (r + vO)o(r + vt) n 1 prqj(p) do,
2r 2vr ¢

where the values of the functions ¢ and ¢ for negative arguments are given by
the relations

79

o(—r) = ¢(r), $Y( — 1) = Y(r).

Hint. Transform the equation by setting ru = w, where w is a new
unknown function. Then bear in mind that » remains bounded as r — 0.

35. Study the oscillations occurring in a gas initially at rest when a local
condensation s, is formed inside a sphere of radius a contained in the gas.

Ans. The condensation of the gas at an arbitrary point r is

Sy r<a lr — a

s = o<t ——,
0 r>a v
r — ot r—a r a
§ = 5 —, I o1t ,
2r v v
s=0, rta oo,
v

where v is the velocity of wave propagation in the gas.
Hint. By the condensation is meant the quantity

— P~ Po
Po

(i.e., the relative change in density of the oscillating gas), which satisfies the
differential equation

N

As —

2

S |-

0%s
or 0.
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where v = / ¢ PolCuPos €, and ¢, are the specific heats at constant pressure and
volume, and p, and p, are the initial values of the pressure and density. This
problem is a special case of the preceding problem, corresponding to initial
conditions

I {so, 0<r<a, os
Sjt=0 = =
0, r>a, ot

36. In a gas initially at rest, a condensation s = s, localized in the volume
bounded by a surface o is created at the time ¢t = 0. Show that the condensa-
tion at the point M = (x, y, z) at an arbitrary time ¢ is given by the expression

3
o\ s,,)’

S(x) Y 2, t) = So %
K13

=0

where S, is the sphere of radius vf with center at the point M, and o, is the
part cut out of S, by the surface o.

Hint. Use the general solution of the homogeneous wave equation
1 0%
Ay — —— =
v* or’
for arbitrary initial conditions (see G1, p. 197).

37. The solution of the Cauchy problem for the three-dimensional in-
homogeneous wave equation
u —léﬁ: —4np(x, y, 2, t)
v2 atz ’ ’ 3 ’
with initial conditions

0
u|t=0 = <P(x’ Vs Z)a ?ay; "_0: ¢(xa s z),

is of the form

a _ P(E)n’C;t—i)
3.2, ) = & (G + ) + | dE dn d,
T (1) wherer=\/(x—E)”—f—(y—v;)z—{-(z—t)z,

%, and c_la,,, are the average values of
the functions ¢ and ¢ over a sphere of
radius of with its center at the point M =
(x,», z), and the integration is over the
region G, bounded by this sphere
(see K4, p. 101). Starting from this fact,
solve the corresponding problem for
FIGURE 6 the two-dimensional inhomogeneous
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equation

u  u 1 %
Ox? + ayz 0% of - —4Ttp(x5 Y, t),

with initial conditions

u|t=0 = (P(xs y)9 Q_li

ol $(x, y).

t=0

Ans.
_9 . p€, )
u(x, y, t) = at(lw* + t*) 4 2va T oy dt dv d=,

. Z(t _T)z . rz
where

*=__1_ f(gy"]) 2 __ —_¥\2 _ 2
f P— S——\/mdidm rf=x—-8"+0-—m)7%

S is the disk of radius v¢ with center at the point (x, y), and D is the right
circular cone shown in Figure 6.

38. Show that one solution of the two-dimensional wave equation

is the function
u = Re f(0),

where f is an arbitrary analytic function of the argument 6, related to the
variables x, y, and ¢ by the relation

r—oXl i J1—e? —o.
v v

Comment. This class of solutions of the wave equation is widely used in
diffraction theory and other applications (see K4, p. 114 and S6, Vol. III;
Pt. 2, p. 176).

39. Applying Riemann’s method (see T1, p. 116), solve the hyperbolic
equation

(where v and c are given constants), with arbitrary initial conditions

U]ico = 9(x), % =
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Ans.
u(x, f) = % [e(x — v1) + @(x + v1)]
1 [zt _ 2 [ _
+o f . [¢(&)10<Jc R) — ”—;{C—' HQYANE R)] dg
where

R =) — (x — B

40. Find the distribution of current along an infinite transmission line
with parameters L, C, R and G, assuming that at the time ¢ = 0 the current
vanishes while the voltage is nonzero and equal to a constant ¥ on the section
of the line |x| < a.

Ans.
O<x<a—ut
I(x, t)lvt<a= ——-e_""I (IﬁIJ ), a—vt<x<a-+ul,
0, a—+ut<x< oo,
O N WY W=
I, Oa = { » oy O<x<wvt—a
27 © IO(IBI tz———v—2—), vt—a<x<vot+a,
0, vt+a<x<oo,
where
RC — LG
v= g 2ol am NG BT

and Iy(x) is the Bessel function of imaginary argument.

Hint. Use the result of the preceding problem.

41. A semi-infinite rod of variable cross section S(x) = S(0)e=**, where
the end x = 0 is clamped, undergoes longitudinal oscillations with initial
conditions

du
0 = , —| =0
”,r_o J(x) ot lio

Find the displacement of an arbitrary cross section of the rod at an arbitrary
time 1.
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Ans.

u(x’ t) — %eazlz[e—a(ﬁvt)ﬂf(vt + x) _ ea(z—vt)/Zf(vt _ x)]

4 St o] [T, (85) et [, () se= ]

if0 < x <ot
u(x, 1) = %[e‘“”"zf(x + ot) + €2 f(x — v1)]

o+vt
_ e"/zf Ja (oﬁ)f(i)e‘“wia if vt <x< oo,
4 o—vt 2 Rl

where R, , = Ve — (x F &)

Hint. By introducing a new unknown function w = VS(x)u, reduce this
problem to the integration of the equation in Prob. 39.

2. Elliptic Equations: The Green’s Function Method

A typical problem of the kind to be considered in this section is to find a
solution of a partial differential equation of the elliptic type which is well-
behaved in a given spatial region D and satisfies certain conditions on the
boundary S of D. The simplest such problem is to find a function # which is
harmonic in a region D with boundary S,® and satisfies one of the following
boundary conditions

uls = f(P), (2a)
2ul _sem), (2b)
on; ls
ou
(371, — hu) = f(P), (2¢)

where f(P) is a given function of a variable point P of S, n; is the interior
normal to S at P, and 4 is a positive constant. The problem is called the first
boundary value problem (of potential theory) or the Dirichlet problem if the
boundary condition is of the form (2a), the second boundary value problem or
the Neumann problem if the boundary condition is of the form (2b), and the
third boundary value problem or the Robin problem if the boundary condition

3 A function u is said to be harmonic in a (two or three-dimensional) region D if 4 and
its first and second partial derivatives are continuous and satisfy Laplace’s equation
Au =0 in D. If D is unbounded, certain extra requirements must be imposed on the
behavior of u at infinity (see T1, p. 265).
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is of the form (2c). Similar problems can also be formulated for Helmholtz’s
equation
Au+ k*u=0

and other equations of elliptic type encountered in mathematical physics.

One of the special methods for solving boundary value problems of this
kind is based on the use of the Green’s function (see S6, Vol. IV and T1,
Chap. 4). The key result of this theory is that the solution of the boundary
value problem for Poisson’s equation

Au = —F(M), 3

subject to any of the boundary conditions (2a)-(2c), can be written in quadra-
tures, once we know the Green’s function. The Green’s function does not
depend on the form of the functions f(P) and F(M), and can be found by
considering a special boundary value problem (see below).

Thus, for example, the solution of the first boundary value problem for the
equation (3) can be written in the form

u(My) = L 1) 2 o+ fD F(MYG dr, 4

where M is a variable point and M, a fixed point of the region D (do is the
element of surface area and dr the element of volume). Here the Green’s
function G(M, M,) is the function such that

1. G is harmonic in D except at the point M, near which G is of the form

1

G(M, M) = ———— + v,
( 0 4 MM,

where the function v is regular (i.e., has no singularities) in D;

2. G satisfies the boundary condition
GIS = 0.
It follows that v is harmonic and satisfies the boundary condition

1

Vg=——"7""",
ls 47 |PM,|

i.e., v is the solution of a special case of the Dirichlet problem.

The same formula (4) gives the solution of the first boundary value prob-
lem in two dimensions, if by the Green’s function we now mean a function
such that



PROB. 43 SOME SPECIAL METHODS 29

1. G is harmonic in a planar region D except at the point M, near which
G is of the form

1 1
GM, M) = —1In a regular function;
( 0) 2 MM, + g
2. G satisfies the boundary condition

on the contour bounding D.

Formulas of a similar kind can be found giving solutions of other bound-
ary value problems, involving Laplace’s equation, Poisson’s equation,
Helmholtz’s equation, etc.

Green’s functions for regions of various shapes can be found by using
the methods considered in Chaps. 4-7, and also by using certain special
techniques, like the method of images and the method of inversion.* The
method of images allows us to construct the Green’s function for a half-space
and for a sphere (or, in two dimensions, for a half-plane and a circle) and for
certain regions of a more complicated shape, e.g., the layer bounded by two
parallel planes or the interior of an angle of =/n radians (n = 1,2,...).
Starting from the Green’s function for a region D and using the method of
inversion, we can find the Green’s function for the region D* obtained by
inverting D in a sphere lying outside D. Thus, for example, we can find the
Green’s function for a sphere from a knowledge of the Green’s function for a
half-space, the Green’s function for the region bounded by two intersecting
spheres from the Green’s function for the region bounded by two intersecting
planes, and so on.

We now give some problems illustrating these methods of constructing
Green’s functions, and also a few problems of a more theoretical nature.

42. Construct the Green’s function for the two-dimensional Dirichlet
problem in the case where the region D is the first quadrant x > 0, y > 0.

Ans.

1 1 1 1 1
o mg =l Ly L L],
4nlIMM,|  |MM,|  |[MM,|  |MM,|

where M = (x, Vs z),M, = (xo,}’m zp), M, = (_xo,}’o, 2y), M3 = (—x,, —Jos Zp)
and M4 = (Xo’ — Vo ZO)'

Hint. Use the method of images.

43. Using the method of images, construct the Green’s function for the
Dirichlet problem in the case where the region D is the part of space lying
between two parallel planes z = 4-//2.

4 See T1, and in particular G5, which contains a number of interesting applications of
the method of inversion to problems of electrostatics.
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Ans.
M, My =+ 3 : L
TV 4n 2 R A [z — 2o — 20l
1
VR4 [z +zo— (2n + 1)1]2}’
where

R=+/(x — x0* + (y — yo).

44. Use the method of inversion to deduce the Green’s function for the
Dirichlet problem in the case where D is a sphere of radius a with its center at
the origin O, assuming that the expression for the Green’s function of a half-
space is known.

Ans.

G(M,M.,)=i[ 1 __a 1 ]
anL MMy~ [OMy] MM,]

where M, is the image of the point M, in the sphere.

45. Find the Green’s function for a hemisphere of radius a.

Ans.

G(M,Mo)=i[l __a 1 1 44 1 ]’
4mLIMM,|  |OM,]| [MM,| [MM,| ~ [OM,| |[MM,|

where M, is the image of M, in the corresponding full sphere, M, is the image
of M, in the diametral plane of the hemisphere, and Mj is the image of M, in
the full sphere.
46. The Green’s function G = G(M, M,) for the Neumann problem?®
ou

Au = —F(M), Pl f(P)

is defined by the conditions

1. G is harmonic in D except at the fixed point M, near which G is of the
form

= ————— + a regular function;
4 |IMM,| g

® Here M is a point of the three-dimensional region D, P is a point of the surface S
bounding D, and the functions f'and F satisfy the condition

fsfdc=jDFdr

for the solvability of the Neumann problem. If the Green’s function is known, the solution
is given by the formula

u(M,) = —fsf(P)G do +JD F(M)G dt + const.
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2.
0G| 1
anls s’
where S, is the area of the surface S;
3.
[6ds=0.

Verify that in the special case where D is a sphere of radius a with
center at the origin O, the Green’s function is

1 a
G(M, M,) = +
( ) 4 MM,  4m|OM,| IMM,]|
FIp I 2 _ 1
4ma | 10Q| | IMMy| 2ra
|OM,|  |OM,|

where M, is the image of the point M, in the sphere, and Q is the foot
of the perpendicular dropped from the point M onto the line OM,.

47. A conductor bounded by a closed surface S and held at a given
potential V is introduced into an arbitrary external field with potential u,.
Suppose we know the charge density p(P, M,) at the point P of the surface S
in the case where the surface is grounded and the external field is due to a
unit charge at an arbitrary point M, outside the conductor. Show that the
potential distribution in the general case is given by the formula

u(Mo) = V + uo(Mo) + [ uPe(P, My) do.
Hint. The formula

w(M,) = L f(P) g_c do

n
represents the solution of the boundary value problem
Aw = 0 outside S,
WIS:f(P)r Wloo:O

in terms of the Green’s function. Apply this formula to the function w =
u — uy, bearing in mind the electrostatic interpretation of the Green’s

function.

48. Find the Green’s function for the two-dimensional Dirichlet problem,
assuming that we know the function { = {(z) mapping a given region in the
z-plane conformally onto the upper half of the {-plane (Im { > 0). Use the
result to construct the Green’s function for the half-strip x > 0,0 < y < .
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Ans.

_ 1 -2
GM, M) = - Re {lnt — Zo}’

where £ and §, are the points of the half-plane corresponding to M = (x, y)
and M, = (x,, yp). In the case of the half-strip,

G(M, M,)
1, [eosh (x + xo) — cos (y + yo)llcosh (x — xo) — cos (y — yo)I
4rc [cosh (x + xo) — cos (y — yp)l[cosh (x — x) — cos (y + yo)]

Hint. The conformal mapping of the half-strip onto the half-plane is
accomplished by the function { = cosh z.

49. The boundary value problem

A*u = F(M),
2
uls =0, ﬁ =0

(A is the two-dimensional Laplacian, and M is a point of a planar region D
bounded by a contour S) is encountered in the theory of bending of thin
elastic plates. The solution of this problem can be written in the form

u(My) = [ FM)G dr

(dv is an element of area), where the Green’s function G = G(M, M,) is
defined by the conditions

1. G is the solution of the biharmonic equation A% = 0 which is regular
(i.e., free of singularities) in D, except at the fixed point My, near which
G is of the form

G — BL [MM,)® In [MM,| + a regular function;
03

Gls = 0, a_G
(]

= 0.
s

Verify that in the special case where D is a disk of radius @ with its center
at the origin O, the Green’s function is given by

a® [IMM,)*? a® |[MM,|* OM,|* [OM|?
G, g == [ ML, MG (,  1OMO) (, _ 1OME)],
16l a® | |OM® MM, a a

where M, is the image of the point M, in the circle bounding D.
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3. Elliptic Equations: The Method of Conformal Mapping

In mathematical physics one often encounters the problem of finding a
function which is harmonic in a two-dimensional region D and satisfies the
boundary condition

ulg =1 (5a)
or o
—| =/ (5b)
onls

where f'is a given function and » is the normal to the contour § bounding D.
For example, such problems arise in studying electrostatics, magnetostatics,
heat conduction, flow of ideal fluids, filtration phenomena, and so on. An
effective method of solving problems of this kind is to construct a function
of a complex variable { = F(z) such that F(z) is analytic in D and maps D
conformally onto a region D* (with boundary S*) of a special form for which
the solution of the given problem is either known or can be found more
simply than for the original region D. Here it is assumed that F'(z) is non-
zero in the region D, a condition which guarantees that the mapping is
one-to-one. In asserting that this method leads to a solution of the boundary
value problem, we rely on the fact that the Laplacian and the boundary
conditions (5a) and (5b) preserve their form® under the transformation from
the variables x and y to the new variables £ and v defined by the relation

£+ in= F(x + ip).

The method of conformal mapping can also be used to deal with more
complicated boundary value problems, e.g., problems where the value of the
unknown function u is specified on parts of the contour S while the value of
Ou/on is specified on the rest of S, problems of jet flow of an ideal flow where
the form of S is not known in advance but is determined in the course of
solving the problem, and so on.

In many cases, the construction of the function { = F(z) mapping the
region D onto the region D* can be accomplished by consecutive application
of several mappings which involve elementary functions. Of particular
importance in applied work is the case where D is a polygon and D* is the
upper half-plane. Then the function effecting the mapping can be found by
using the familiar Schwarz-Christoffel transformation (see W1). The use of
conformal mapping to solve problems of mathematical physics, involving

¢ In the case of the boundary condition (5b), the value taken by the normal derivative
on the contour S* is

1
[F'(2) |s 4
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the biharmonic equation as well as Laplace’s equation, is amply discussed in
books on complex variable theory and in special monographs (see B3, F10,
MI10, S7, etc.). Hence we confine ourselves here to a few typical problems
which illustrate the technique of the method, assuming that the reader is
already familiar with the elementary theory of conformal mapping.

In most of the problems, the required conformal mapping can be found
by using the Schwarz-Christoffel transformation. Problems 51, 57 and 59
require knowledge of the properties of elliptic integrals and Jacobian elliptic
functions. In connection with Probs. 50-54, the following remarks will be
found helpful: If ¢ is the potential of a stationary plane-parallel flow of an
ideal fluid, described by the velocity field v = —grad ¢, then by the complex
potential w = w(z) is meant a function of the complex variable z = x + iy
whose real part equals . In other words, w = ¢ + i}, where { is related to
¢ by the Cauchy-Riemann equations

do _ob ¢ _ 0¥

ox oy’ dy  ox
The lines of flow or streamlines are described by the family of curves ¢ =
const, and hence the function y is called the stream function. The amount of
fluid Q flowing per unit time between two streamlines ¢ = ¢; and ¢ = ¢,
(in a slab of unit thickness parallel to the xy-plane) is given by

0= Nh - 4’2'

The components of the velocity vector v = v, + iv, are related to the deriva-
tive of the complex potential by the formula

dw
dz

v, — iv, = —

The complex potential is a valuable tool for studying plane-parallel flows.?

50. An ideal fluid, whose velocity at infinity equals v, = v,, v, =0,
flows past an obstacle in the shape of an elliptical cylinder

2 2

X y

a®  b?

Use the method of conformal mapping to find the complex potential of the
flow.

7 Similarly, in the theory of stationary heat flow and in electrostatics, one can introduce
complex potentials, with the role of v and ¢ being played by q/k (the ratio of the heat
flow density to the thermal conductivity) and the temperature T in the first case, and by
the electric vector E and the electrostatic potential ¢ in the second case.
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Ans. The relation between the complex potential w and the variable z is
given in parametric form by the equations

’

vw(a—l—b)( az) a+bt a—ba
= — —|1 -1, = - -
Y 2a +5 = T T

where ¢ belongs to the region || > 4,0 < arg? < 7.

Hint. First make a conformal mapping of the part of the region occupied
by the flow and lying above the axis of symmetry onto the half-plane with a
semi-circular cut of radius a, and then map this region conformally onto the
upper half of the {-plane in such a way that the semi-circular arc of radius a
goes into the interval (—a, a) of the real axis.

51. Solve the preceding problem for the case where the obstacle is a
cylinder —a < x < a, —b < y < b of rectangular cross section.

Ans. The complex potential has the parametric representation
4 1 C‘z

w=— 2, z:AfA/_____dC%—ib (0 < argl < m),
0 1 _ k‘2c2

A——ak
E(k) — k"*K(k)

and the modulus of the elliptic integrals is determined from the condition

b E(k) — k’K(k')
a E(k)— k*K(k)

Hint. Use the Schwarz-Christoffel transformation to map the region
occupied by the flow and lying above the axis of symmetry y = 0 onto the
half-plane in such a way that the vertices +a, +a 4 ib go into the points
+1/k, 1.

*52. Study the two-dimensional J
motion of an ideal fluid in the channel

of variable cross section shown in c 4
Figure 7, assuming that at infinity the 2 I L.—[

0

direction of the flow coincides with — 2¢ 2b x
: N T—
the x-axis and has the values
vzlz—'—uo = Uy, vzla:—0+uo =0y

(av, = bv,). FIGURE 7
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Find the distribution of velocity along the axis of symmetry of the flow.?
Ans. The velocity distribution in parametric form is given by the equations

olv—o x 1[ t—1 b 1+(b/a)t] ( a)
=0 _ I _p— 4 g2 1<t<?).
P R Ty <%

Hint. Using the Schwarz-Christoffel transformation, map the domain
ABCDE onto the upper half-plane of
the complex variable { = & + iv, requir-

"’ A ing the points B, C and D to go into the

g e points {=—1, {=—XA and { =0,

r ———= where A is a number between 0 and 1

¢ o0 0 0., which subsequent calculations show to

be equal to the ratio b%/a®.

53. Solve the preceding problem for
\ the case where the channel has the form
shown in Figure 8, assuming that

vwlx-v—oo = Ug.

Valymo 1 x
v, 1+ &’ a =«

Hint. Transform the region bounded by the wall of the channel and the
axis of symmetry of the flow into the
upper half-plane of the complex vari-
able £, making the vertices B and C
go into the points —1 and 0. \ ] /

*54. Investigate the jet flow of a \ r F N ‘/ 0

liquid through a slot of width 2a in a

plane wall (see Figure 9), assuming

that the amount of fluid flowing I

through the slot per unit time (in a l
l

} &> 0).

/1

slab of unit thickness parallel to the
xy-plane) equals Q. Find the form of
the jet.

| X
Ans. In parametric form, the equa-
tion of the curve bounding the jet is FiGure 9

8 In Probs. 52-54, where the flow is symmetric with respect to an axis, it is convenient
to assume that ¢ = 0 along this axis. The value of ¢ along any other streamline can be
found by using the formula Q = |, — ¢,.
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given by
x _ i+ (@2 X=—1_[\/—‘___l| I+ V1 :l
a 14+&@2)° a 1+x72) 1— JT—1
O<t< 1)
The width of the jet at a great distance from the slot is
__—2a
1+ Q)

Hint. Use Kirkhhoff’s method (see K2, p. 332 ff.).

55. A pipe of radius a lies below the ground at depth 4 (see Figure 10).
Find the stationary temperature distribution in the region surrounding the
pipe, assuming that the temperature of the earth’s surface is zero, while the
temperature of the pipe is Ty,

Ans. -
. 7=0 g ey
In{(h + ¢)/a] J
< In \/(xz — ® 4 yP)? + dcy? =7
(= +y i

where ¢ = \/h2 — a%
Hint. Usea fractional linear transformation
- |
L= M
z+c
to map the given region into a circular ring.

FIGURE 10

56. Find the stationary temperature distribution in a wall of thickness a
near the corner of a building (see Figure 11), assuming that the temperature
of the inside surface of the wall is T, while the temperature of the outside

surface is zero.

Ans
noc 1
/ T = T,Re {—-_ In C],
() Tei
7=0 T=7 £=2[ In 1i—arctant}—i—l—%i,
a w2 1—

where

5/ //%4 t:(C+1)llz,
/ i , {—1

4 and In and arc tan denote the branches which
FiGure 11 go to zero as t — 0.
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Hint. Use the Schwarz-Christoffel transformation to map the figure
ABCDA onto the upper half-plane of the complex variable £, making the
points B, C and D go into the points —1, 0, A, where A is to be determined
(a calculation shows that A = 1).

57. Solve the problem of the stationary temperature distribution in a
homogeneous slab —oo < x < 00, —b < y < b of thickness 2b, inside
which there is another thin slab of thickness 2a (a < b) sharing the same
midplane and held at temperature T,. It is assumed that the temperature of
the outside surfaces of the slab equals zero. Calculate the flow of heat Q
given off by the source per unit time.

Ans.

. g )
w=T+4i =T(1—— ,

V="
where the relation between the complex variables { and z is given by the

equation

sn{ = 1 tanh =2 ,
k 2b

and the modulus of the elliptic function is

k = tanh =2 .
2b
Moreover,
_4hL K
o K

where x is the thermal conductivity of the slab, while K and K’ are the complete
elliptic integrals with moduli k and k' = /1 — k2.

Hint. Using the transformation

y 1
qi t = - tanh = ,
: k 2b
715~ -——+=4 Where k has the value indicated above, map the strip

—00 < x < 00, 0 < y < b onto the upper half-plane
of the variable f. Then use the Schwarz-Christoffel
transformation to transform this strip into a rectangle

h
0
!
| with vertices at the points + K, +iK” in the {-plane.

58. A wire with charge g per unit length is located
near the rectangular edge of a grounded conductor
FIGURE 12 (see Figure 12). Find the distribution of the electric
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field in the symmetry plane of the region between the wire and the
conductor.

Ans. In parametric form, the field is given by the formulas
TqNe

atne — V1 +
%:n\/1+n2+ln(n+\/1+n2) 0 <7<y,

where v, is the value of the parameter v corresponding to y = A.

Hint. Map the part of the z-plane lying outside the conductor onto the
upper half-plane of the variable { = § + i, making the corners go into the

points § = +1.

*59. On the axis of a box —a < x < 4,0 < y < b of rectangular cross
section with grounded walls, there is a thin wire with charge ¢ per unit length.
Write an expression for an appropriate complex potential, and calculate the
distribution of charge density on the walls of the box.

Eﬂ|m=0 = —

Ans. .
snXz_ L
w= —2qsn ——L—\/_k,
sn£z+—l
a \/k

where sn z is a Jacobian elliptic function with modulus k. The modulus k is
determined from the equation

X
K
where K = K(k) is the complete elliptic integral of the first kind and K’ =

K(\/ 1 — k?). The distribution of charge density on the wall —a < x < g,
y = 0 is given by the formulas

’

ESE RS

Kx Kx
cn — dn —
°o__a a ___ gkk
= ) 0= T T T
% 1+ksn2& ar
a

where cn z and dn z are Jacobian elliptic functions.

Hint. Use the Schwarz-Christoffel transformation to map the interior of
the rectangle onto the upper half-plane, making the vertices +-a, +-a + ib of
the rectangle go into the points 41, 4-1/k. During the calculations, bear in
mind that . .

s KL
2k



40 SOME SPECIAL METHODS PROB. 60

60. Find the electrostatic field on the axis of an electronic lens made of
two pairs of plates at potentials 4V and —V, separated by a space 2a
(see Figure 13).

V4 Ans.
20 &M*=Jl_&i
v L E, 1-2%
2
—l 5 x % 2 1—E 1-2
(—1<g<),
4 -V where
vV 2
FIGURE 13 Eo=—b(1'"7\),

and X\ is a number between 0 and 1 determined from the equation

a

1 1—% A
==In——-o .
26 2 14A 11—

Hint. Map the upper half-plane of the variable z = x + iy cut along the
line segments (—oo + ib, —a + ib) and (a + ib, co + ib) onto the upper
half-plane of the variable ¢, in such a way that the corners go into the points
+1, +1/A. Then transform the half-plane onto the half-strip

—E<Ret<7—r, Imt > 0.
2 2

61. Find the field on the axis of the electronic lens shown in Figure 14.

Ans.
Eyo V18 g
B, 1 EpY’ 4l
2 A
R T LR Rt - ‘ T o
atb A— a+b 1—f ———W-——gh——-2——ex
+Lln—1+£ - LW
a+b rA—1 no
|
—1< 1),
( E<) FIGURE 14

where A is determined from the equation

2
X +2x1+y+17\+i Y,nl%ﬂzm(wk),
— —_— a
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and we introduce the abbreviations

a—b Vi— Vol — (1A
—_— =Y, E0= .
a+b a+b 14y

Hint. Map the domain ABCDEA onto the upper half-plane of the variable
¢ = & + i, making the points B, C, D and E go into the points —A, —1, |
and p. After determining the function z = z({), carry out the transformation
{ =sint.

62. Find the magnetic field in the midplane of the magnet whose poles
have the rectangular shape shown in Figure 15,
assuming that the magnet is made of iron with

infinite magnetic permeability (n = oo). N4

Ans. S

Hlo_, m_1,11-¢ ¢ 1 [
H, 7~ 2h t 2 1+t — 22— x
O0<t<, —-1—

where H, is the homogeneous field in the mid- N
plane of the magnet at a great distance from the
edge. FIGURE 15

Hint. Map the region ABCD onto the upper
half-plane, making the points B and C go into the points —1 and O.

63. The region x > 0, y < 0 is filled with iron of magnetic permeability
g = co. Find the magnetic field due to a linear current source J passing
through the point (—a, 0).
Ans. The components of the field are determined by the relation
4iJ a*® — 22%3

T 3103 g4 + 223533 | q¥3°
where c is the velocity of light.

H

. — iH

v

Hint. Bear in mind that near the current source, the complex potential
of the magnetic field has a logarithmic singularity:

w= 2iJ In (z — zo) + a regular function.
c
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STEADY-STATE HARMONIC
OSCILLATIONS

A solution of a partial differential equation is said to be a steady-state
harmonic oscillation if its time dependence is described by the factor e*?,
where o is the frequency.! Problems involving steady-state harmonic
oscillations are among the simplest and the most important encountered in
mathematical physics. Because of the particularly simple form of the time
dependence, we can eliminate the variable ¢ from the original equation,
thereby reducing the problem to the determination of complex amplitudes
depending only on the spatial coordinates. In the special case where the
solution depends only on a single spatial coordinate, the equation for the
complex amplitude reduces to an ordinary differential equation. This
category, to which most of the problems in the present chapter belong, is
of considerable interest because of its numerous applications to concrete
problems of mechanics, electromagnetic theory, etc. Moreover, such prob-
lems are very important from a methodological standpoint, since they serve
as the best introduction to the technique of particular solutions to be con-
sidered in Chapter 4. Thus, for example, the problem of determining natural
frequencies anticipates the problem of determining eigenvalues, and the
problem of forced oscillations gives insight into ways of overcoming difficulties
associated with the application of the Fourier method to inhomogeneous
equations.

! In using complex quantities in intermediate steps of our calculations, we rely on the
fact that the equations of mathematical physics (at least, those considered here) are linear.
Thus, to obtain the final answer, we need only take the real or imaginary part of some
expression (depending on the conditions of the particular problem).

4
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This chapter contains three sections. The first is devoted to problems on
the determination of natural frequencies of vibrating systems (strings, rods,
membranes and plates), while the second deals with forced oscillations of
such systems.? The third section is concerned with problems on steady-state
electromagnetic oscillations in transmission lines and cavity resonators,
certain related problems on the propagation of electromagnetic waves in
waveguides of given cross section, etc.

|. Elastic Bodies: Free Oscillations

64. Find the natural frequencies for longitudinal oscillations of a canti-
lever beam of length /.

Ans.
_ 2n + 1

n
21
where v = \/E/E, E is Young’s modulus, and o is the density.

w v, n=20,1,2,...,

65. Solve the preceding problem, assuming that the free end of the beam
is loaded by a mass M.

Ans.

where the v, are consecutive positive roots of the equation

tan y = M
ytany = M,
Gie,0<y, <...<vy,<...),and M is the mass of the beam.

66. Determine the natural frequencies for torsional oscillations of a rod
of length /, one end of which is clamped, while the other end is attached to a
disk whose moment of inertia with respect to the axis of rotation is J,.

Ans.

w, =

Yn> n=1,2,...,

-~

where v = \/E/_p, G is the shear modulus, p is the density, the y, are con-
secutive positive roots of the equation

ytany = i
Jo.
and J is the moment of inertia of the rod.

* The forced oscillations studied in this chapter will always have the same frequency
as the perturbing force itself.
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67. Find the natural frequencies for transverse oscillations of a beam of
length / with simply supported ends.

Ans.

W, = —nmw, n=12,...,

where @? = \/EJ/pS, Eis Young’s modulus, J is the moment of inertia and .S
the area of a cross section, and p is the density.

68. Find the natural frequencies for transverse oscillations of a beam of
length / with clamped ends.
Ans.

2
m,,=“7ayf,, n=12...,

where the constant a is the same as in the preceding problem and the v, are
consecutive positive roots of the equation cosh y cosy = 1.

*69. Solve the preceding problem, assuming that one end of the beam
(of mass M) is clamped, while the other is loaded by a mass M,. Using the
method of successive approximations, calculate the values of the first three
frequencies, given that

M_s
M,
Ans.

mn—lzyf,, n=12,...,
where the v, are consecutive positive roots of the equation
Mo . .
14 coshycosy = I y(sin y cosh y — cos vy sinh ¥).

70. Find the natural frequencies for radial oscillations of a circular
membrane of radius a.

Ans.

w, =

Yo n=12,...,

Qe

where v = \/Fp, T is the tension per unit length of the boundary, p is the
surface density, and the vy, are consecutive positive roots of the equation
Jo(Y) = 0 involving the Bessel function of order zero.

71. Find the natural frequencies for oscillations of a rectangular mem-
brane with sides @ and b.
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Ans.
_-,wA/__+_ mn=12,...,

where v is the same as in the preceding problem.

72. Find the natural frequencies for transverse radial oscillations of a
circular plate of radius a whose edge is clamped. Calculate the first three
roots of the transcendental equation determining the frequencies.

Ans.

bz
m,,=a—zyf,, n=12,...,
where b% = \/D/ph, D is the flexural rigidity, p the density and / the thickness
of the plate, and the vy, are consecutive positive roots of the equation

Jo(ML(Y) + L((y) =0

(the notation is the same as in the theory of cylinder functions). Numerical
calculations show that the first three roots are v, = 3.20, y, = 6.30, y; = 9.44.

73. Find the maximum wavelength Amax of a nonplanar sound wave®
which can propagate inside a hollow cylinder tube with perfectly reflecting
walls, whose cross section is a) a rectangle with sides a and b; b) a circle of
radius a.

Ans.
a) Amax = 24, a>b;
2
b) lmux = _Tt_a )
Y1

where vy, = 3.832 is the smallest positive root of the equation J;(y) = 0 (for
waves which are symmetric with respect to the diametral plane).

74. Find the natural frequencies for acoustic oscillations in an enclosure
shaped like a rectangular parallelepiped with sides a, b and c.
Ans.

2 2
Oppnp = nvA/(m) + (%) + (L’)z, mnp=0,1,2,...,
a

c

where v is the velocity of wave propagation (m, n, p cannot all vanish simulta-
neously).

z
3 A plane sound wave f (t - l—)) can propagate unimpeded in a tube of arbitrary cross
section.
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75. Find the natural frequencies of an acoustic resonator,* where the
oscillations have axial symmetry and the resonator is a) a sphere of radius a;
b) a circular cylinder of radius @ and height /.

Ans.

a) Oy =

Q|

Y s m=20,1,2,..., n=12,...,
where the v,,, are consecutive positive roots of the equation

2YmJIm+ % (Ym) = Jm+ Ve (Ym)s

Jm+ 14(x) is the Bessel function of order m + 4, and v is the velocity of wave
propagation;
b) mmn=v/(M)2+ (), m=012..,
l a

where the vy, are consecutive positive roots of the equation Jy(y) = 0.

2. Elastic Bodies: Forced Oscillations

76. A string of length / with ends fastened at the points x = 0 and x =/
undergoes oscillations under the action of a concentrated force 4 sin (wf + ¢)
applied at some point x = ¢ of the string. Find the form of the forced
oscillations.

Ans.
sinﬁsinﬂ:—c), 0<x<e,
u(x, 1) = ﬂsin'(mt + ) N v v
oT sin(wl/v) in %- in w(l ;— x) ’ c<x<l,

where v = \/Fp, T is the tension and p the linear density of the string.

77. Solve the preceding problem for the case where the external force is
uniformly distributed over the whole length of the string.

Ans.
. wx . ol —x)
20° sin ; sin ———2v
ulx, ) = —— sin (w! s
(x 1) 'T ol in (@/ + @)
cos —
v

where g is the amplitude of the load per unit length of the string.

* An acoustic resonator is a device used to amplify acoustic oscillations, and consists
of an enclosure whose walls reflect sound.
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78. Find the forced longitudinal oscillations of a rod of length /, if the end
x = 01is clamped while the end x = /is acted upon by a force 4 sin (wf + ¢).

Ans.

. WX
Av Sln—v—
ulx, t) = — sin (0t + @),
(x, 1) ESo___ol (ot + 9)
v

where v =/ EW, E is Young’s modulus, p is the density and S the cross-
sectional area of the rod.

79. Find the forced oscillations of a beam simply supported at the ends
x = 0 and x = /, under the action of a uniformly distributed pulsating load
g sin ot.

Ans.
© !
ga® cosh -—f-o(x — -l) cos -\/—(-o(x — 5)
a
u(x, t) = 5 — + = — 1] sin wt,
Jo 2cosh\—/—w—l 2 os)-/-o—)-—l
a a

where @ = \/ EJ|pS, E is Young’s modulus, J is the moment of inertia, p the
density and S the cross-sectional area of the beam.

80. Solve the preceding problem under the assumption that the oscillations
are due to a concentrated force 4 sin wt applied to the point x = c.

Ans.

Aa® sin ot
u(x, t) = =/l Jal
2EJ o)\/ © sin Y sinh Y
a a
sinh — \/ \/m(l — c) \/wx sin‘l—w—l sinh \/w(l —9) sinh \/cox ,
a a a a
O<x<e,
Jal ~/—(l —x) . Vee Vol \/m(l Jmc
sinh — — — sin—
a 2 a
c<x<l

81. A cantilever is clamped at one end x = 0 and loaded at the other end
= I by a force 4 sin wt. Find the resulting forced oscillations.
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Ans. With the notation of the preceding problem,
o w © I
s . (co h\/wx cos\/mx)( h\/—+ niﬁ—)
Aa’ sin wt a a

TN Jol @

1 4+ cos — cosh
a

a

(sinh Yox — sin @) ( \/;1 + cos \@)
) \/— \/wl -

1 4+ cos —— cosh —

82. Find the forced oscillations of a circular membrane of radius a
due to a pulsating load ¢ sin (w¢ + ¢) uniformly distributed over the mem-
brane.

Ans.
Jo(wr/v)

__49]1_ i
u(r, t) = pmz[l Jo(wa/v):l sin (ot + o),

where v =/ Fp, T is the tension per unit length of the contour, p is the
surface density of the membrane, and Jy(x) is the Bessel function of order
zero.

*83. Solve the preceding problem, assuming that the load is uniformly
distributed over a disk of radius b < a.
Ans.
u(r,t) = — 7317—‘1”sin (ot + o)
20T
sty o), (0) (o] o
rwb  Jy(wa)lv v v v

st o) —a()u=)] per<a

where J,(x) and Y,(x) are cylinder functions.

b

V

84. Study the forced oscillations of a circular plate of radius a with a
clamped edge under the action of a uniformly distributed pulsating load
g sin (ot + o).
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Ans. With the usual notation from the theory of cylinder functions,

L)) 42,5

u(r,t)zwgph 11(\/_15;_‘1)‘]0(%) +J1(‘_/f:‘:—’_a)10(‘/_l:§‘;i') — 1{sin(wt + ¢),

where b2 = / D/ph, D is the flexural rigidity, A the thickness and p the density
of the plate.

85. Find the steady-state harmonic oscillations of frequency  inside a
spherical resonator due to a point source of sound located at the center of
the sphere, bearing in mind that the potential of a point source of frequency
o in free space is given by

sin (wt — kR)

=4

where k = w/v is the wave number and R the distance from the source.
Ans. The velocity potential is

ka cos (ot — ka) + sin (wt — ka) sin kr
+ A - >
ka cos ka — sin ka r

sin (ot — kr)

u(r, f) = A

where a is the radius of the sphere.

3. Electromagnetic Oscillations

86. Find the steady-state harmonic oscillations of voltage in a long
transmission line with parameters L, C and R, if the end x = 0 is attached to
a source of variable voltage E sin (wf + ¢), while the end x = /is terminated
by a resistance R,.

Ans.
sin 24— %) : x) + ﬁ‘; cos ol — x) : x)
u(x, 1) = Im { Ee"“"® 2 iz 2 ’
.ol R, wl
sin — + — cos —
v¥  iZ* v*
where

v*=—_l=—l——, Z*=A/£ /1__’5
\/LCA/ iR c oL

wl

are the complex propagation velocity and wave resistance of the line.
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87. Solve the preceding problem, assuming that the load terminating the
line is a concentrated inductance L,, instead of a resistance R,,.

Ans.

sin w(l — x) " wL, cos w(l — x)
u(x, 1) = Im | goi@t+® v* z* v¥
sin 3+ 0

88. Find the components of the electromagnetic field in a transverse
magnetic wave propagating in a waveguide whose cross section is a rectangle
with sides a and b.® Calculate the corresponding cutoff wavelength Amax
(i.e., the maximum wavelength passed by the waveguide).

Ans.
. MW mMmX . ATy _in
E, = —iv 2F cos BT gin T gitva—un)
a a
AT . MTX  ATY  iyn
E, = —iv 2T sin 27X cos 2 gmitve-ot)
b a
m?  n? mrx . nmy _;
E, =’ — + =) sin —= sin —= e ivamwt)
a b a b
AT . MTX  ATY iy
H, = ik ™= sin T cos 1Y gmitva—on),
b a
L MT  MTX . ATY e
H, = —ik == cos ¥ i 2 gmitve—on)
a a
H,=0,
2ab min®  n’n?
max — ———— , v = ke——z———;, m,n=1,2,...,
Jat + b a b

where k = w/c is the wave number. An arbitrary constant factor has been
omitted in all the expressions for the components of the electromagnetic
field.

89. Solve the preceding problem for a transverse electric wave.

® By a transverse magnetic wave (TM-wave) is meant a wave in which the magnetic
field vector H is perpendicular to the direction of wave propagation. Similarly, a transverse
electric wave (TE-wave) is a wave in which the electric field vector E is perpendicular to
the direction of propagation, and a transverse electromagnetic wave (TEM-wave) is a
wave in which both vectors E and H are perpendicular to the direction of propagation
(see S3, p. 154).
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Ans.
N MTX . ATY .l
E, = ik — cos —= sin —= DY gitva-ot)
a b
L MT . MTX ATY e
, = —ik — sin —= cos ATY gmitva—wt)
a a b
E, =0,
. MT . MTX  ATY .
H, = iv 2T gin 2 cos Y gmitva-on)
a a
L NT MTX . ATY e
H, = iv— cos —= sin Y gitva—ot)
a
2 2
H,= 7:2(21— + 2 ) cos T cog 2TV gmitvi—on)
b? a
2.2
n’n
v = k— ——, mn=20,1,2,...,
a2 b®

Amax =2a if a>b
(m and n cannot vanish simultaneously).

90. Find the components of the electromagnetic field in a transverse
magnetic wave propagating in a waveguide whose cross section is a circle of
radius a, and determine the corresponding cut-off frequency Amax.

Ans.
H’. = —ik m sin me Jm (Ymn _’_.) e—i(vz—wt),
a

Hw = —jk Lmn )'mn Lo cos mo J! (Ymn r) e—i(vz—mi)’
a
H,=0,

=
|

L R
Ym‘n Imn cos mep Jl (Ymn ___)e vz mt)’
a a

.m . Y\ itvee
E, = v = sin me Jm(y,,m —)e ivz—ot)
a

Ez — (Ymn) cos mcpJ (Ymn ) —1(\'2—0)[),

v__/\/kz mn

)\max = (YOI = 2 405),

Yo
where k = w/c is the wave number, and the y,,, are consecutive positive roots
of the equation J,,(y) =0(m =0, 1, 2, ...) involving the Bessel function of
order m.
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*91. Calculate the cutoff wavelength Amax for a TM-wave propagating in
a waveguide whose cross section is a circular sector of radius a and central
angle «.

Ans.
2ma

)\max = ’

Yo
where v, is the smallest positive root of the equations
Imnt¥Y) =0, m=1,2,...
involving the Bessel function J (x).

92. Describe the free harmonic oscillations in an electromagnetic resonator
in the form of a rectangular parallelepiped with sides a, b, ¢ and perfectly
conducting walls.

Ans.
mnx . Nnmw . TZ .. MmXx nw TZ
E,,=Acos—sm—ysmp—, H1=Msm—cos—zcosp——,
a b c a b c
. mmx nw . TZ mmnx . AT TZ
Ey=Bsm—cos—ysmp——, H,,=Ncos———sm——ycosp—,
a b c a b c
. mMmX ., nTm Tz mmx nmy . prnz
E,=Csm——sm—ycosp——, H,=Pcos—~cos—ysmp——,
a b c a b c

where m, n and p are integers, and the constants 4, B, C, M, N and P are
connected by the relations

TTa+Tp+Ec=0
a b c

Mz_l(ﬂrc_P_n )

ik\ b c

N=_1(P_nA_me),
ik\ ¢ a

(k is the wave number).

93. Solve the preceding problem for a resonator in the form of a circular
cylinder of radius g and length /.
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Ans.
, r\cos m nrz
Er=AJm(Ymn—) . cPSiI‘l_s
a/ sin me l
E,=B1 J,,.(Ym r)sm " sin T
r a/ cos me l
E,=CJ, (Ym —’) €08 P cos T2,
a/sin me l
H, = MlJm(Ymn -r)sm "% cos T2,
r a/ cos me l
a/ sin mo l

bl

H,=P 1 J;,,(Y,,m I)sm P sin 12
r a/ cos me )
where m and n are integers, the constants 4, B, C, M, N and P are connected

by the relations

Ater 2Ty,
a l
Ymn 1
A2 4+ B— =0,
a m
Mz—i(:FCm—BE),
ik l
=_i(AE_CM),
ik l a
1(pYmn
P=——{B-224 Am]),
ik a

and the v,,, are consecutive roots of the equation J,(y) = 0.

94. A high-frequency current I sin wt flows along a cylindrical conductor
of radius a, made of material of conductivity ¢ and magnetic permeability p.
Find the distribution of current density along the cross section of the wire,
and calculate the active resistance of the conductor at the frequency o (the
skin effect problem).

Ans. The complex amplitude of the current density is given by the
formula
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where
Ik J olka)
2ra Jy(ka)

The resistance per unit length of the conductor is

- |k|* [k Jo(ka) _ EJo(ka)jl
2raoc(k® — k®)L J,(ka) Jy(ka)l’

(the overbar denotes the complex conjugate), where

k=A/—4lo%)ﬂ =l\/27rcmp.(1 — ).
c c

Taking account of the asymptotic behavior of the Bessel functions for large
values of the argument, we find that

Jj(a) =

J(") A/ e~ e)8 R, A a
Jj(a) r R, 28
where
$— c
N 2now
and
1
Ry =—;
na‘c

is the d-c resistance.
95. Solve the skin effect problem for a conductor whose cross section is
a strip of width 2a. Find the correspondingcurrent distribution and resistance.

Ans.
ix) _ cos kx kx’ j(a) = L cot ka,
Jj(a) cos ka 2

R, = ———— (k cot ka — k cot ka),

20(k* — k7 ( )

where I is the amplitude of the total current. For high frequencies,

‘Lx) ) — R, Ro = "1— s

Jj(a) R, 3 2ac

where 3 is the same as in the preceding problem.

A~ e—(a—z)/s R @ a

References
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(S17), Timoshenko (T2).
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THE FOURIER METHOD

The Fourier method is one of the most general techniques of mathematical
physics, and is effective in solving a very wide class of problems. Its use,
which is not restricted to equations of any particular type (e.g., hyperbolic
or elliptic), relies on the fact that linear problems obey the superposition
principle, i.e., any linear combination of solutions of a homogeneous linear
partial differential equation is itself a solution of the equation. Thus, if a
linear equation Lu = 0 has a certain set of particular solutions

U= u,, n=12,...,

o)
U= Z u,
n=1

isalso a solution, provided the convergence of the series permits interchanging
the operations L and Z. Similarly, if Lu = 0 has a set of particular solutions

the sum of the series

U = Uy, <AL Y,
which depend continuously on the parameter A in the interval (y, v), then the
integral
U = fvul d
H

is also a solution, provided the operations L and [ can be interchanged.
Given a problem of mathematical physics involving the integration of a
differential equation Lu = O subject to certain initial and boundary con-
ditions, the basic idea of the Fourier method is to construct a solution by

55
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superposition of particular solutions. If the operator Lu = 0 has an appro-
priate structure, we can ‘“‘separate variables,” i.e., the particular solutions
can be written as products of factors, each involving only one independent
variable and satisfying an ordinary differential equation. By suitably
choosing some of the parameters figuring in this relatively simple problem.
it is usually possible to satisfy all the homogeneous boundary conditions,
thereby singling out a countable or uncountable set of particular solutions
of the required type. Then, after making a superposition of these solutions,
we choose the remaining parameters in such a way as to satisfy the inhomo-
geneous boundary conditions.

Having made these general remarks, we now confine ourselves in this
chapter to problems of mathematical physics which lead to integration of the
differential equation

1

r(x){ax[p( )_] - Q(x)ul +Mu=0 a<x<bc<y<d), (1)

where M, is a differential operator of the form

il 0
M,=A—+B_—-+C,
oy* + dy +

A, B and C are given constants, and p(x), g(x) and r(x) are given continuous
functions such that p(x) and ¢q(x) are positive, and p(x) is continuously
differentiable.! [In the next chapter, we shall consider the inhomogeneous
case, where the right-hand side of (1) is a given function F(x, y).] For the
time being, we assume that the interval (g, ) is finite and that the behavior
of the functions p, g and r at the end points @ and b is such that the ratios all

P® 4@ ®
p(x)  p(x)  p(x)

approach finite limits as x —a and x —b. Moreover, we require the
solution of (1) to satisfy homogeneous boundary conditions at the end points
of (a, b), of the form

Oq a_u + Bau|:=a = 0. oy u

— =0, 3
ax x=a 8x a:=b+ Bbulz—b ( )

! Equation (1) is not the most general second-order equation with two independent
variables which permits separation of variables, but it includes as special cases most of
the commonly encountered equations of mathematical physics.
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where «,, a;, B, and B, are given constants, some of which may equal zero,?
and inhomogeneous boundary conditions at the end points of (c, d), whose
form depends on whether the differential equation is of hyperbolic, parabolic
or elliptic type (cf. footnote 1, p. 20). If the equation is of elliptic type,
it will be sufficiently general for our purposes to assume that these conditions
are of the form

Yc? + 8¢:u|1/=¢: = gc(x), Ya @ + 8d"‘,‘u=d = gd(x)’ (4)

Y lv=c ay y=d

where v,, Y4 8, and 3, are given constants, while g(x) and g,(x) are given
functions defined in the interval (¢, d). On the other hand, if the equation
is of the hyperbolic or parabolic type, which corresponds to problems of
mathematical physics where the variable y plays the role of a time varying
over an infinite interval (¢, o), then the inhomogeneous boundary conditions
take the form of initial conditions, i.e.,

4 .
o =S, | =g0) @)
Y lv=c
in the hyperbolic case, and
uly—e = /(%) @

in the parabolic case.

We now look for a function # = u(x, y) satisfying the differential equation
(1) and the boundary conditions (3) and (4) [or (4'), (4")]. Following the basic
procedure already mentioned, we consider particular solutions of equation

(1) of the form
U= X(x)¥(y). 5)
After substituting (5) into (1), the variables separate, and the result is a pair
of ordinary differential equations
(PX) + (r — X =0, (6)
MY —2AY=0 @)

% In particular, we obtain boundary conditions of the first kind
”|:=a = ulx:b =0
if @, = ¢, = 0, B, = B, = 1, boundary conditions of the second kind

ou _au
A% |emy  Ox

ifa, = &, = 1,8, = B, = 0, and so on. In the applications, one also encounters boundary
conditions of the form

=0

z=b

z=gq

ou

ou
”l:=u = “|z=by a_x =

p—c  OX

(39

’
r=0

which are not comprised in the formulas (3).
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determining the factors X and Y, where X is an arbitrary parameter. The
requirement that the particular solutions (5) satisfy the homogeneous
boundary conditions (3) leads to corresponding homogeneous boundary
conditions for the function X:

% X'(a) -+ B X(a) =0,  «,X'(b) + B,X(b) = 0. ®

The problem of solving equation (6) subject to the boundary conditions (8) is
called the Sturm-Liouville problem. For arbitrary A, this problem will in
general have no solution other than the trivial solution X = 0. However, for
certain values of A, called eigenvalues, there are nontrivial solutions, called
eigenfunctions. In the theory of the Sturm-Liouville problem, it is shown that
with our assumptions concerning the interval (g, b) and the functions p, ¢
and r, the spectrum (i.e., the set of all eigenvalues) is discrete, consisting of
countably many real eigenvalues A = A, (n = 1, 2, . . .), each associated with
a single eigenfunction X = X,(x) which is uniquely defined (except for a
constant factor). The eigenfunctions X,(x) are found to be orthogonal on the
interval (a, b) with weight r(x), i.e.,

[rx,0X,dx=0 if m#n.

Moreover, under certain conditions,? a function f(x) defined in (g, b) can be
expanded as a series of the form

) =Srxm, a<x<b,
with coefficients nt
[7rfx) X () dx
[rxdax

n =

The calculation of the eigenvalues and the corresponding eigenfunctions
is easily carried out in the case where the linearly independent solutions and
hence the general solution of (6) are known for arbitary A. In fact, substitution
of the general solution into the boundary conditions (8) then gives a homo-
geneous linear system for the arbitrary constants, and the condition that the
determinant of this system vanish leads at once to a transcendental equation
for the permissible values of A. After the eigenvalues and eigenfunctions have
been determined, we find the second factor Y(y) in (5) by solving (7), with
A = X,. If the original equation is of hyperbolic or elliptic type, the general
solution of (7) can be written in the form

Y(y) = cYP0) + 2Y D),

# For example, if f(x) is piecewise smooth in (a, b).
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where Y{ and Y{? are linearly independent solutions of (7) and c{, ¢®
are arbitrary constants.® In this way, we arrive at a set of particular solutions

U, = [PYP0) + cPYPMIX L), n=12...,

and the solution of the problem is then constructed in the form of a series

@
u=3Su,
n=1

where the coefficients ¢! are found by substituting this series into the
boundary conditions (4).°

If the function u satisfies boundary conditions of the type (3") instead of
(3), the above method carries over virtually without change, except that now
two linearly independent eigenfunctions may correspond to the same eigen-
value. Things become more complicated if the interval (a, b) is infinite, or if
one (or both) of the end points of (a, b) is singular, i.e., if one of the ratios (2)
becomes infinite as we approach the given end point. In such cases, which are
among the most interesting encountered in practice, the boundary condition
involving the singular end point or the point x = b = co cannot be prescribed
arbitrarily, but rather is replaced by a condition whose formulation in
concrete situations usually presents no special difficulties (most often, the
condition consists in the requirement that the solution remain bounded as
the singular point is approached). In the case where the interval (a, b) is
finite and only one end point is singular, the eigenfunctions are found as the
nontrivial solutions of equation (6) satisfying some condition of the type
just mentioned at the singular point and a condition like (3) at the other
end point. The same approach can be used to find the eigenfunctions for a
finite interval with two singular end points, for an infinite interval, and so on.
The essential difference between these cases and the case analyzed above is
that the spectrum may now be either discrete or not, depending on the
structure of the differential equation and the nature of the boundary con-
ditions. If the spectrum is still discrete, despite the presence of an infinite
interval or of a singular end point, the Fourier method can be applied with
no essential changes. On the other hand, if the spectrum is no longer discrete,
the character of the solution changes. In the case of a continuous spectrum,®

4 If the equation is of parabolic type, the general solution is of the form
Y(y) = e Ya(p).

® For rigorous justification of the application of the Fourier method to problems of
mathematical physics of this or more complicated types, see L1, TI, T7, etc. In many
cases, however, it is an easy matter to verify directly the validity of the solution found
formally by the procedure just described.

¢ Chapters 4-5 are devoted exclusively to problems with discrete spectra. Problems
with continuous spectra will be considered in Chapter 6.
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the solution is constructed from particular solutions by integrating instead
of summing with respect to the parameter A, and the unknown functions
appearing in the integrand are determined by using the theory of integral
transforms instead of the theory of expansions in series of eigenfunctions.”

The problems in the present chapter can all be solved by the Fourier
method (in most cases by the method just described), and are grouped into
five sections, two devoted to mechanics, two to heat conduction (including
a few problems on diffusion), and one to electricity and magnetism. We also
include a few problems involving inhomogeneous equations and inhomo-
geneous boundary conditions, which can be solved by the Fourier method
after being reduced to homogeneous problems by the use of appropriate
tricks. However, inhomogeneous problems will for the most part be con-
sidered in Chap. 5, where they are studied systematically. Since an entire
chapter (Chap. 7) will be devoted to the less familiar special coordinate
systems, we confine ourselves here to rectangular and polar coordinates
(both cylindrical and spherical). To illustrate further extensions of the
Fourier method, we include a few problems of a more complicated type,
e.g., problems involving three variables, elasticity theory, fourth-order differ-
ential equations, etc.

I. Mechanics: Vibrating Systems, Acoustics

*96. At the time ¢t = 0, a string with ends fastened at the points x = 0
and x = [ is plucked at the point x = ¢, and then released without initial
velocity. Find the displacement u(x, t) of an arbitrary point of the string if
u(c,0) = h.

Ans.

2 0
u(x, 1) = 2h | zsm (n:rc/l) sin % cos nﬂ;vt ,

el—c) = n

where v = \/m, T is the tension and p is the linear density.

u 97. Find the vibrations of a
string if the initial displacement
has the form shown in Figure

1 '
I h ]
Z\/'l H 16, while the initial velocity is
X s
a1 0 9 17 zero at every point of the
FIGURE 16 string.

? For information concerning such integral expansions and Sturm-Liouville theory in
general (especially the singular case), see Al, L13, S6, Vol. V and Té.
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Ans.

8hi : z cos [(2n + 1)ra/2l] cos 2n + Drx cos 2n + Dnot .

1) =
ucx, 1) (I —ax* 5 2n + 1)? 21 21

98. Solve the preceding problem, assuming that the initial form of the
string is a parabola symmetric with respect to the center of the string and
that the maximum initial displacement from equilibrium is 4.

Ans.

2 & (=D (2n + Dnx (2n 4+ Droot
t) = — .
uin ) = § an+ 1 Ty

99. At the time ¢t = 0, the center of a string of length 2/ fastened at the
points x = —/ and x =/ receives an impulse P. Find the subsequent
vibrations of the string

u(x, £) = 2P z cos [(2n 4 Dnx/21] in (2n + 1)mot '
TP n—o 2n + 1 21

Hint. Consider the vibrations of the string subject to the initial conditions

3 e, x| <e
“It=0=0’ LY B 295’ ’

Ot li=o
0 s e < |x| <1,

and then take the limit as € — 0.

100. Study the vibrations of a string fastened at the points x = 0 and
x =/ due to a suddenly applied load distributed along the string with
constant density g which subsequently remains constant. The string is
assumed to be at rest at the time ¢t = 0.

Ans.
uCx, 1) = gﬁ{i(l _ 5) 4 Z sin[2n + Drx/l]  (2n + Dmot).
21 l 2 @en+ 1) l

Hint. Before applying the Fourier method, make the problem homo-
geneous by subtracting out the static deflection of the string under the
uniform load.

101. Find the vibrations of a string —/ < x < / of mass m loaded at the
point x = 0 by a concentrated mass m,. In solving the problem, assume
that the load is initially displaced by a small amount A4, and that the initial
velocity of the string is zero.
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Ans.
sin 1— Ix|
cos y n 1 Y0t
u(x, t)—ZhZ z — cos—l—,
n=1 Yn 1 + sin Yn

2Y,

where « = m/m, and the vy, are consecutive positive roots of the equation
tan y = afy.

102. A rod of length /, density p and cross-sectional area S is clamped
at the end x = 0 and stretched by a force F applied at the other end x = /.
Study the longitudinal oscillations of the rod if the force is suddenly dis-
continued at the time ¢ = 0.

Ans.

u(x, ) = 8F1 Z (= (2n + Dnx S(2n + 1),w,’

n*ES ;= (2n + 1)2 21 21
where v = / E% and E is Young’s modulus.

103. Find the general solution of the problem of longitudinal oscillations
of a rod of length / with arbitrary initial conditions

ou
u|t=o = f(x), 3% heo g(x)
if the end x = 0 is clamped and the end x =/ is free.
Ans.
2 (2n + l)m)tf (2n + l)ni 21
u(x, 1) = 12,[ J@)sin e
« sin 2n + l)nvtf o(E) sin @t Dnt (2n + Drk —+— Dt dﬁ} (n —12—11)1rx

104. Investigate the longitudinal oscillations of a cantilever of length /
and mass M if the end x = 0 is clamped while the end x = / is loaded by a
concentrated mass M, which at the time ¢ = 0 experiences a displacement 3
without acquiring any initial velocity.

Ans.
u(x, t) =28 — Z €OS Yn - cos 122 ,
0 n=1 Yn 1+31n2Y'n I

2y,
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where the v, are consecutive positive roots of the equation
ytany = M—
M,

105. Find the longitudinal oscillations of a rod of length / if the end
x = 0 is clamped while the end x =/ receives an impulse P at the time
t = 0. The rod is assumed to be at rest before the impulse acts.

Ans. In the notation of the preceding problem,

u(x, 1) = 4P| Z (*1)n (2n + Dmx 2n + Dot .

nwM =y 2n + 1 21 21
Hint. Solve the problem of oscillations with the initial conditions
0, 0<x<l—eg
Ulig =0 ul _ P
1= T 0t limo |00 =—2, l—e<x<l
peS

where S is the cross-sectional area of the rod, and then take the
limit as € — 0.

106. Find the displacement of the points of a rod of length / clamped
at the end x = 0, which undergoes longitudinal oscillations under the action
of a pulsating force 4 sin w? applied to the free end x = /. The rod is assumed
to be at rest before the force begins to act.

Ans.
. WX
y sin —
u(x, ) = 2 Y sin wt
ESw wl
v
sin 2n + Dnx sin 2n + 1)mot
( ) f —n" 21 21
Zon 41 [(Zn + 1)71']2_ (31)2
2 v

Hint. To make the problem homogeneous, represent the displacement as
a sum of free and forced oscillations (see Prob. 78). Another method of
solution is given in Chap. 5 (see Prob. 211).

107. A conical cantilever with the dimensions shown in Figure 17 is
stretched by a force F applied at the end x = /. Study the longitudinal
oscillations which result when the force is suddenly discontinued.

Ans.

u(x, 1) = 2F cot o z COS Y, . YaX YUt

sin =%~ cos —*— ,
nE(a — x tan &) ,; v,[(sin 2v,/2y,) — 1] l l
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FIGURE 17
where the vy, are consecutive positive roots of the equation
a
tan y = (1 — l—cot a)y.

*108. Solve the problem of the longitudinal oscillations of the pyramid-
shaped cantilever of rectangular cross section and constant thickness shown
in Figure 18, subject to a given initial deformation u|,_, = f(x).

FIGURE 18

Ans.
o0

U, f) = 2 tan o z X,.(a — x tan a) cos vty, tan o
’ b® 5 (da’fmtyab®) — X7,(b) a

x[1 7X@ — Etan @)Xy, (a — & tana) dE,

where X,9) = Yoo (Iaz) — Jo(MY, (Y;Z),

Jo(x) and Yy(x) are cylinder functions of order zero), and the v, are con-

secutive positive roots of the equation
< X,b) = 0.

0| ——————— N— *109. Find the general solution
of the problem of longitudinal oscil-
lations of a rod consisting of two
FIGURE 19 rigidly fastened sections with different

. Weved

+
L,
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dimensions and elastic properties (see Figure 19). It is assumed that the ends
of the rods are clamped and that the initial state of the rod is characterized
by the conditions

ou

ult=0 = f(x), 'é? o

Ans

© S SEWPE) dE + Sap; | “ fEWP(E) dE
u(x, t) = 22 o f i P f i u,(x) cos Ynla! ,

a
= a,8,p, sin® 2 2 Yooty + a,S5p, sin’ v, !
aVg
where
x+a asv
(1)(x) Yn( a+ 1) Y: ; 1 —a,<x<0,
1 1v2
un(x) =
uP(x) = M}av_)_ sin y,,, 0<x< a,,
12

the vy, are consecutive positive roots of the equation

Sy Eqps tan v + S;V/E;p; tan Ya:% _ o,

a,v,

the two sections have Young’s moduli E

cross-sectional areas S; and
densities p; ( = 1,2), and v, = \/E/pi.

[

110. A pointer is fastened to the free end of a rod of length / clamped at
the end x = 0. Study the torsional oscillations which result if at the time
t = 0 the pointer is twisted through an angle a and then released without
initial velocity, given that the moment of inertia of the pointer with respect
to the axis of rotation is J,.

Ans.
J sin Ysz' t
0(x, t) = 20 — zcos Yn cos 122 ,
0 n=1 Y'n SIn 2Y'n l
14 —-
2y,

where the v,, are consecutive positive roots of the equation

Ytanyzi
Jo

Jis the moment of inertia, G the shear modulus and p the density of the rod,
and v = v/ Gle.
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111. Solve the preceding problem with arbitrary initial conditions

o =S 2| = g0
t lt=0
Ans.
. YnX
3 l
0(x, 1) = 22 m
2¢,
X l:cos ff (8) cos == Y" dg, -|- Y’;vtf '(§) cos =2 Yab d£:|

with the previous notation.

*112. A disk with moment of inertia J; is fastened to the point x = ¢ of
a cylindrical shaft with clamped ends x = 0 and x = /. Find the torsional
oscillations of the shaft if the disk is twisted through the angle « at the time
t = 0 and then released without initial velocity.

Ans.

0(x, ) = - 201 Z sin Y,,( E) si Yabt
EERL
! D,

where
D, = Y:{[ﬂ + s___m(2yna/l)} sin® Y,,(l — ﬂ)
l 2y, 1
N [1 _a + sin®2y,(1 — (a/l)):l 2Ynd }
l 2, l
sinY’l‘xsinYn(l—?—), 0<x<a,

en(x) =
smi’l'—smy,,(l IE)’ a< x<l,

the v, are consecutive positive roots of the equation

. Joy . vya . ( a)
siny = —sin—siny|1l — =],
O T A S

and J is the moment of inertia of the shaft.

113. A disk with moment of inertia J, is fastened to one end x = 0 of a
circular shaft, and another disk with moment of inertia J; is fastened to the
other end x = /. Find the torsional oscillations of the shaft if the relative
angle of rotation of the disks equals a.
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Ans.

J .
- (1 — COos Yn) + Yasiny,

J &
e(x’ t) - 2a z 2
2 (AL e re—n

JO 2Yn JO

X [1 (cosY—"— Y,"-’—”s YaX )cos Y”vt:l,
l J l 1
where the y,, are consecutive positive roots of the equation
o, 2)
(5+3):
tany = ———,
JoJy Y2 —1
JJ

and J is the moment of inertia of the shaft.

*114. Find the general solution of the problem of transverse oscillations
of a beam of length /, simply supported at its ends x = 0 and x = /, with
arbitrary initial conditions

o =1, 2| = 0o
Ans.
u(x, ”=§,§[ s f f(®)sin "“Eda
P nzﬂ:zazt nwf, nmx
g sin ———l fg(E) sin dE,] R

where a® = \/EJ/pS, E is Young’s modulus, J the moment of inertia of a
cross section, p the density and S the cross-sectional area of the beam.

115. Investigate the transverse oscillations of a beam of length /, simply
supported at its ends x = 0 and x =/, under the action of an impulse P
applied to the point x = c at the time t = 0.

Ans.

u(x, t) = sin —— sin

nJ/EJoSS  n? l I

Hint. Solve the problem of the oscillations of the beam with the initial
conditions

21P isin (nmefl) . nmx . n’rPa’t

P
ul —0 @ _ 0022—95, C—S<X<C+€,
t=0 — -
0t li=o
0, otherwise,

and then take the limit as € — 0.
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116. A beam of length 2/, clamped at its ends x = 4/, undergoes
transverse oscillations with initial conditions

u|t=0 = f(x), Z’Tu

= 0.

i=0

Find the oscillations of the beam, assuming that the initial deflection of the
beam is symmetric with respect to the center of the beam and that there is no
initial velocity.

Ans.
li cos (yaa®t/l%)
1,7 cos®y, cosh®y,

YaX

u(x, t) = (cosh Y. COS o cos y, cosh Y—'I'x)

X flf(i) (C°Sh Yn COS —Y’l'—E’ — cos ¥, cosh Y—’I‘é) dE,
0

where the y, are consecutive positive roots of the equation tan y + tanh y = 0.

117. A beam simply supported at the points x =0 and x =/ is in
equilibrium under the action of a concentrated force F applied at the point
x = c. Find the transverse oscillations which result if the force is suddenly
removed.

Ans.

2F[® &sin (nmefl) . nmx  n’mla’t
> sin —= cos ———

ulx, t) =
(x 1) m'EJ = nt l I

*118. Find the transverse oscillations of a cantilever of length / if the
initial deflection is due to a concentrated force F applied to the free end
x =/ and is suddenly removed at the time ¢ = 0.

Ans.

2FI° i X(x) cos (yaa’t/l®)

u(x, t) = , , T
EJ ;= (cos v, sinh v, — sin v, cosh v,)Y,

where

X ,(x) = (sin v, + sinh y,) (cos I';_x — cosh I'I‘—x)

— (cos v,, + cosh v,,) (sin \% — sinh l'lﬁ),

and the v,, are consecutive positive roots of the equation cos ycoshy 4 1 = 0.

119. A beam of length / is simply supported at the end x = 0 and clamped
at the end x = /. Find the transverse oscillations of the beam under the
action of a suddenly applied uniformly distributed load q.
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Ans.
gx(l —x) 2 2
x, ) ="——"(F+ Ix — 2x
uee ) =""egy ¢ )
4 o .: _ . . 2 2[

ql’ Zsmh Yn 52 (,:os}; Yn shmzy,, + sinvy,, X (x) cos Yn(: ’
EJ .5 Y. sinh® y, sin® vy, l
X ,(x) = sinh vy, sin YoX _ Gin Y, sinh YaX ,

where the vy, are consecutive positive roots of the equation tan y = tanh y.

Hint. Make the problem homogeneous by subtracting out the static
deflection of the beam.

*120. Study the axially symmetric vibrations of a circular membrane of
radius a due to an impulse P applied at the time 1 = 0 and distributed over
a disk of radius e.

Ans.
2Pv & J .
u(r, f) = =— Z —-;(Y;‘s/a) Jo (Y—"’:) sin M,
neT n=1 Y'nJl(Y'n)
where Jy(x) and J;(x) are Bessel functions, the y,, are consecutive positive roots
of the equation Jy(y) = 0, T is the tension per unit length of the boundary,
p is the surface density of the membrane, and v = J T/e,
Hint. The initial conditions have the form

P
ou v=—, 0<r<eg
TtEp

ul!=0 = O) ~

ot

t=0
e<r<a.

121. Find the general solution of the problem of vibrations of a ring-
shaped membrane fastened to the circles r = a and r = b, and subject to
arbitrary initial conditions

)
Uleco = £(9), 5‘;‘ =,
Ans.
23 YR, [ Yabt f
) == D | cos 2— R
u(r, 1) bz @) — AR b ), PR de
b . tf°
+ — sin Mf eg(P)R,,(P) dp}
YV b Ja

where

R = Y (L) — sstom(2)
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is a linear combination of Bessel functions of the first and second kinds, and
the y, are consecutive positive roots of the equation Ry(a) = 0.

122. Determine the axially symmetric vibrations of a circular membrane
of radius a due to a pulsating load g sin wt which is uniformly distributed
over the whole membrane and begins to act at the time ¢ = 0.

Ans.
u(r, ) = — iz[l
pw

Jo(wr/v)] 4 2ag S S Jo(ynr/a) _sin (y.vt/a)
Jo(ma/v) ‘*’T n=1 YnJl(Yn) l (v.Yn/“")a)2 ’

where the v, are consecutive positive roots of the equation Jy(y) = 0.

Hint. Make the problem homogeneous by subtracting out the forced
oscillations (see Prob. 82).

123. Find the vibrations of a rectangular membrane —a < x < a,
—b < y < b with initial conditions
ou

“|t=o :f(X, ), E 1o

where fis a given function which is even in each of the variables.
Ans.

u(x,y,t) = Z ZA,,,,, cos (@m —2:1)7rx cos (2n %2—b1)7ry

2 2
X €OS A/(2m + 1) + (2" + 1) Tut,
2a 2b
where
a [fb
Apn = 4 f f f(x, y) cos @m + rx cos 2n + Dmy dx dy.
ab JoJo 2a 2b

*124. Study the transverse oscillations of a circular plate of radius a
with a clamped edge, for arbitrary initial conditions

0
”It=o = f(n), i o

m=0 n=0

= g(r).

Ans.

L& R [y
w.n=53 Iﬁ(yn)Jo(y,o[“ " f of ()R, (¢) do

2 272

. yib (e
sin Yaz L pg(P)Ry.(p) dp],

a
+ szZ
where "

R = 1o Z) — s (*;’)
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is a linear combination of cylinder functions, the y, are consecutive roots of
the equation Ry(a) =0, b* = \/D/ph, and D is the flexural rigidity, & the
thickness and p the density of the plate.

125. Solve the preceding problem for the case whers the oscillations are
due to an impulse P applied at the center of the plate at the time ¢ = 0.

Ans.

R i o(vn) — Jolra)IRy, (1) . Yab't
26D st YAIr iy a*
Hint. Solve the problem with the initial conditions

u(r, t) =

u|t=0 = 03 a_u

ot

- m—:zph

P
_ Y R 0< r<eg,
=0 0, e<r<a,

and then take the limit as € — 0.

126. Investigate the transverse oscillations of a circular plate of radius a
with a clamped edge under the action of a concentrated force F applied to
the center of the plate. The plate is assumed to be at rest at the time t = 0.

Ans.

2, 1 2 2
D(r lna—2+a —r)

Fa* & | —J 2 bt
_ a Z 40('2Yn) - O(Yn) Ry,,(r) cos Y'nz ,
27tD n=1 Y'nlo(Yn)‘]o(Yn) a
with the notation of Prob. 124.

Hint. Make the problem homogeneous by subtracting out the static
deflection of the plate.

u(r,t) = 1617:;

127. Study the radial oscillations of a gas confined in a spherical reso-
nator,® assuming that the initial values of the velocity potential and its time
derivative are

ou| _

ult=0 = f(r), ot heo

® The velocity potential of an oscillating gas satisfies the wave equation

2
Au — —1- B_u
vt or?
(see T1, p. 25). In Probs, 127-130 it is assumed that the walls are perfectly reflecting, i.e.
that
ou

— | =0.
on |g
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Ans.
ur =25 o (Y"'/”)°°S(Y"”‘/“) f of (9 sin 122 dp + 2 [*01(6) d,

n=1 r

where the vy, are consecutive posmve roots of the equation tan y = v, a is the
radius of the sphere and v is the velocity of wave propagation in the gas.

128. Investigate the steady-state acoustic oscillations in a semi-infinite
cylindrical pipe of radius a, assuming that the distribution of the normal
component of the velocity of the air particles in the plane z = 0 is a given
function

(9 2|s=0 = f(r) sin w1,

Consider the special cases
D fO=v B S0 =uwh(Z),

where v is the smallest positive root of the equation J;(y) = 0.
Ans. The velocity potential is given by the formula

2eunt © —1\/k —(¥n /a )z JO(an/a) _YLP
5.0 = Im {5 3 o (ifa®) I Joorome(i2e) o),

where k = w/v, the vy, are consecutive nonnegative roots of the equation
Ji(Y) = 0 (y, = 0), and Jy(x), J;(x) are Bessel functions. In the special cases,

u(z, t) = — %‘c’cos (ot — kz),

u(r, z, t) = Im {vojo( ),\/_;/k—?/:) imt}

129. Find the steady-state harmonic oscillations of sound inside a conical
horn a < r < 0, 0 < 6 < «, assuming that the velocity distribution along
the base of the horn is given by

(), |rma = /(©) sin 1.
Consider the special case f(0) = v,.
Ans.

o't i 2v, +1 H®, (kr)
ksin® o ;7 P, (cos o) HY,\((ka)

P, (cos 6) J‘a |
5P (cosa)| o P m(cos ) sin 6.6
P, (cosa)| o ()P, (cos 8) sin

OV,

u(r, 0, 1) = Im {—

Ym=Vn

it (2) «
___€ Hyja(ker) f 7(6) sin © de’,
k(1 — cos «) H{})(ka) Jo
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where the v, are consecutive roots of the equation P, (cos a) = 0, P (x) is the
Legendre function and H{¥, (x) the second Hankel function. In the special
case,
u(r, 1) = 2000 A/a sin [wt — k(r — a)]— 2kazc:)s [wt — k(- —a)]
r 1 4 4k*a
130. Solve the problem of diffraction of a plane sound wave uye*(“t=*2
by a spherical obstacle of radius a.

Ans.

i(wi—kz) __ U, T glot

2kr
X i(zn + l)e—i'nnlz 2ka-’,;+'%(ka) —J, ;%(ka)
2kaH{Y\s(ka) — H{Zy(ka)

u=uoe

B (kr)P,(cos B),

where J,,,,(x) is the Bessel function of the first kind, H(x){.,, the second
Hankel function, and P,(x) the Legendre polynomial.

Hint. If the velocity potential is written as a sum
U= (uoe—ikz + ul)eiwl,

then solving the problem reduces to integrating Helmholtz’s equation

Au, + k2u, =0
with the boundary condition
aul a _ikz
- . = Z- (€& Up)|r=as
8r r=a a)‘ ( O)I

where u; must satisfy the radiation condition at infinity.

2. Mechanics: Statics of Deformable Media, Fluid Dynamics

131. Find the equilibrium shape of a rectangular membrane with sides
2g and 2b under the action of a uniformly distributed load ¢, choosing the
origin at the center of the membrane. Calculate the deflection of the center
of the membrane, assuming that the ratio b/a takes the values 1, 2 and 3.

Ans.

u(x, y)

=q_a"{1
T\2

( ) 16 & Z (=1 cosh [(2n + Dry/2a] cos (2n + l)nx}
o (2n + 1)® cosh [(2n + 1)b/2a) 2a
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where T is the tension per unit length of the boundary. Numerical calcula-
tions show that u(0, 0) = kQ/T, where Q = gab is the total load, and

klb/a=1 = 0.295, klb/d=2 == 0.228, klb/ﬂ=3 = 0-164.

Hint. Make the problem homogeneous by subtracting out the particular
solution of the equation for equilibrium of the membrane which depends
only on the coordinate x and satisfies the boundary conditions on the sides
x = %a.

*132. Find the equilibrium shape of a semicircular membrane of radius a
(see Figure 20) under a uniformly distributed load g.

Ans.

=Y

1{(r* a® 2arsin ¢
— E((a—z + 72) cos 2¢ — 2) arc tan g
2 2 2 2 2 o2
+l(%_a_) Sin2cplnaz-l—r2 2ar cos cp] __risin (p},
4 rt a® 4+ r® + 2arcos ¢ 2

a a
where T is the tension per unit length of the boundary.

Hint. To apply the Fourier method, sub-

¥ tract out the particular solution
2
qr_ . 2
u; = — ~—sin
1 T ¢
0 £ *#  of the equilibrium equation. To write the

solution in closed form, it is necessary to sum a

FIGURE 20 . . .
IOURE series (this has been done in the answer).

133. Study the twisting of a rod whose cross section is a rectangle with
sides a and b. Find the torsion function and the torsional rigidity.

Ans. The torsion function is

B N gg_z & sin[(2n + nx/alcosh[(2n + 1)(3b — y)r/a]
uix, y) = xa = x) =75 Zo @n 4 1) cosh [(2n -+ 1)mb/2a]

0O<x<a0<y<hb).
and the torsional rigidity is

)

b 64 i tanh [(2n + 1)mb/24]

C= Ga‘{ .
3a w5 2n+1)

where G is the shear modulus.
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Hint. Make the problem homogeneous by subtracting out the particular
solution of the differential equation for the torsion function which depends
only on the coordinate x and satisfies the boundary conditions for x = 0 and
x=a.

134. A rectangular plate with sides 2a and 2b, simply supported on its
edges, is acted upon by a uniformly distributed load ¢. Find the deformation
of the plate, choosing the origin at the center of the plate. Derive an ex-
pression for the deflection of the plate.

Ans.
24 (2n + 1)nb tanh n + )wdb
©,0) ga'| 5 643> (=D 2a 2a
uly, V) = —— T s 5
D24 =°,55@2n+1) 2 cosh (2n -i— Dnb
2a

where D is the flexural rigidity of the plate.

Hint. Subtract out the particular solution of the deflection equation
which depends only on the coordinate x and satisfies the boundary conditions
for x = *+a.

135. Solve the preceding problem, assuming that the boundaries x = +a
are simply supported, while the boundaries y = 45 are free. Calculate the
deflection at the center of the plate.

Ans.

ga*| 5 64v & (—1)
0,00 =24 |2 L v~ (D7
w00 ="yl t n"g,,(zrwrl)5

1+v sinh (2n+ Drb  (2n + Dmb cosh (2n + Drnb

v — v 2a 2a 2a
(3 + v) sinh 2n + Drb cosh (2n+ mb (1 —v) 2n + xb
2a 2a 2a

where v is Poisson’s ratio.

*136. A semicircular plate of radius a is clamped along the semicircular
arc and simply supported along its rectilinear edge. Find the deflection of
the plate under a uniform load. Write a formula for the deflection of the
axis of symmetry of the plate, and represent the result in the form of a graph.

Ans.

4 4 2 4 2 4
T qa’ [ r 1 ( r r a a) 2ar
ulr,~ ) =-—|———(6+ 12—+ 5— —4— —3—) arctan
( 2) 24D [a‘ 8n + a® at r rt a®*—r
3 . 3
_i(s r _11_;_+3_q+3a_3)]
a r r

4\ q4°

(see Figure 21).
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v(:3)
qa%240
012

008

Nl

QN

0 05 1
FIGURE 21

Hint, Make the problem homogeneous by subtracting out the particular

solution

Lr‘sin‘cp, O0<o<m

24D
of the deflection equation satisfying the boundary conditions on the rectilinear
edge.
137. An infinite cylinder of radius a is placed in a plane-parallel flow of
an ideal fluid. Find the velocity potential,
y choosing the origin at the center of the
(7,p) cylinder and the direction of the x-axis
opposite to the direction of flow (see Fig-
DI ure 22).

-—

N/
©
v‘/ ~— Ans.
a2
u(r, @) = vy (r =4 ——) cos ¢ + const,
r

where v, is the value of the flow velocity
far from the cylinder.

g

FIGURE 22

138. Find the velocity potential for flow of an ideal fluid emanating from
a source of strength m and flowing past an infinite cylinder of radius a, where
the configuration of the cylinder and the source is shown in Figure 23.

Ans.

u(r, @) = m In rb + const,
.2 pp
where bb = a? and the meaning of the var-
ious symbols is indicated in the figure.

y
g
. A5k |
Hint. Subtract the source potential \‘ 6 s

U = — Zin p + const
2m

from the solution. Ficure 23

139. Solve the problem of plane-parallel flow of an ideal fluid past a
sphere of radius a, choosing the origin of a system of spherical coordinates
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r, 6, ¢ at the center of the sphere, with the direction of the z-axis opposite
to that of the flow.

Ans.
u(r,0) =v (r + ) cos 8 + const,

where v, is the value of the flow velocity far from the sphere.

*140. Solve the problem of flow past a sphere of radius a due to a source
of strength m at a distance b from the center.

Ans.
1 a 1 r(1 4 cos 6)
omfla L e ]
u(r, ) rrp+b5 an3+rcose—6

with the same notation as in Figure 23, except that the x-axis now becomes
the z-axis.

3. Heat Conduction: Nonstationary Problems

141. A slab of thickness 2a, thermal conductivity k, specific heat ¢ and
density p is heated to temperature Ty, and its faces are then held at tem-
perature T, starting from the time ¢ = 0 (see
Figure 24). Find the temperature distribution
T(x, t) in the slab.

Ans. /
7 x

© (1) — T
T(r, 1y = 20 $ D0 0+
T n=0 2" + 1 7
X e—(2n+l)2n21/4a2 cos (2" ‘; 1)'n:x , //%
a

where © = kt/cp. Ficure 24
142. Describe the equalization of a given initial temperature distribution
T(x, 0) = f(x) in a slab whose faces x = 0 and x = a do not transmit heat.

Ans.
_ l ¢ 2 N —n’rtt/a® ﬂ:nx 'ma
Tt ) =2 f JEOdE+2 S e f 1(E) cos " gt

a1

143. Starting from the time ¢ = 0, a slab —a < x < a of thickness 2a
with a given initial temperature distribution T(x, 0) = f(x) radiates heat into
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the surrounding medium, whose temperature is taken to be zero. Assuming
that the radiation obeys Newton’s law, find the temperature distribution in
the slab for arbitrary time 1.

Ans.

D
1 Q0. cos a (7(2’/ )2 Y;I)E
T(x, t)=;2me " f(E)cos di
n——ll + Y
2Y(1)
.Y(z)x
1 @, — 0 Play? f E
- ¥ sinlz=> g ,
+- Z i M) £ £
2 (2)
y¢

where T = kt/cp, the ¥’ are consecutive positive roots of the equation

ah
tan y® = 0
Y

h is the heat exchange coefficient, and the y!? are the corresponding roots of
the equation

@
tan y® = — X

ah

144, Starting from the time ¢ = 0, heat is produced with constant density
Qin a slab —a < x < a of thickness 24. Find the temperature distribution
in the slab, assuming that its faces are held at temperature zero and that the
initial temperature is also zero.

Ans.

T(x, t) = Q_az(l - x_2> 1607 Z (D" enintatosad o (20 F Limx
’ 2k a =k S @2n+1)° 2a

Hint. Make the problem homogeneous by subtracting out the solution
of the corresponding stationary problem.

*145. An inhomogeneous slab consisting of two layers with different
thermal properties is heated to a certain temperature T,, and then cooled
by having its faces held at temperature zero starting from the time ¢ = 0.
Assuming that the faces of the slab are at x = 0 and x = a; + a, (where g,
and a, are the thicknesses of the two layers), find the temperature distribution
in the slab.
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Ans.

ta

az\/bz'Yn[ az\/ ZY‘n jl
—T — CcoS Y,
al\/bl al\/ Y

T(x, 1) = 2T, D,
n=1 l: 2az\/b2Yn azbsks . 5 }
Y| sin + sin"y,
al\/bl a;bik,
az\/bZYn n
a'b

. . a, +a; —x
sin v, sm\/ ZY"( =2 ), a, < x < a; + a,,
‘/blal

2 2
P X (0),

0<x<a,
X, (x) =

where the vy, are consecutive positive roots of the equation

Vbyks tan y + /by ky tanaz\/b2Y 0,
al\/ b,

the two layers have specific heats c;, densities p; and thermal conductivities
ki (i = l, 2), and bi = cipi/ki'

146. The ends of a thin rod of length / are held at different temperatures,
while the lateral surface of the rod gives off heat into the surrounding medium
according to Newton’s law. Find the temperature distribution along the rod,
assuming that the ends of the rod x = 0 and x = / have temperatures zero
and T, respectively, and that the initial temperature equals zero.

Ans.
T(z, 1) = To[‘““h Jux 2 2 oy SR i I e‘"”‘""j,
h vl amnt o let)
where p and S are the perimeter and cross-sectional area of the rod, 4 is
the heat exchange coefficient figuring in Newton’s law, and . = ph/S.
Hint. The problem reduces to integration of the differential equation

T _aT
o o M7
(see C3, p. 134).
147. A cylinder of radius ¢ is heated to temperature T, and then cooled
by having its surface held at temperature zero starting from the time ¢ = 0.
Find the subsequent temperature distribution in the cylinder, assuming that
all cross sections have the same temperature distribution.®

Ans.

T(r, t) = 2T Z JO(an/a) e—Y:‘\'/a"’
n=1 Yn"l(Yn)

® This corresponds to a long cylinder (theoretically, infinitely long).
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where r is the distance from the axis of the cylinder, Jy(x) and Jy(x) are
Bessel functions, the vy, are consecutive roots of the equation Jy(y) = 0,
7 = kt/cp where k is the thermal conductivity, ¢ the specific heat and p the
density of the cylinder.

*148. Describe the equalization of a given axially symmetric initial
temperature distribution T(r, 0) = f(r) in an infinite cylinder of radius a,
whose lateral surface does not transmit heat.

Ans.
a0

70,0 = 5] [/ 100 do -+ 5 LD 5 [y, (1) g,

where the vy, are consecutive positive roots of the equation J;(y) = 0.

149. An infinite cylinder of radius a, initially heated to the temperature
T,, subsequently cools off by radiating heat into the surrounding medium
according to Newton’s law. Describe the cooling process.

Ans.

& Ty () olYarla) e "
T(r, 1) = 2T, 1
1) 021 Jo(¥n) + Ji(¥n)  Yn

where the vy, are consecutive positive roots of the equation

Yi(Y) = ahJo(y).

150. Starting from the time ¢ = 0, Joule heat is produced with density Q
in a cylindrical conductor of radius 4. Find the temperature distribution
over a cross section, assuming that both the initial temperature and the
surface temperature equal zero.

Ans.
2 2 &, 2 4
10,1 = 221 - (1)'— 6 2ebrarte) e,]
4k a n=1 YnJl(Yn)

where the v, are consecutive positive roots of the equation Jy(y) = 0.

’

Hint. Make the problem homogeneous by subtracting out the particular
solution corresponding to the stationary distribution of temperature in the
cylinder.

151. A cylindrical conductor of radius a is heated for a long time by an
electric current producing heat in the conductor with density Q. Study the
process of cooling that ensues after the current is turned off, assuming that
the cooling from the surface always obeys Newton’s law and that the tem-
perature of the surrounding medium equals zero.

Ans.
T(r, t) =

200§ __Jlyarla)e il
k n=1 Y:;JO(Yn)[l + (ah/Yn)‘z] ’
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where the vy, are consecutive positive roots of the equation

YA(Y) = ahJi(y),

and 4 is the heat exchange coefficient.

Hint. To determine the initial condition for the cooling problem, find
the stationary distribution of temperature during the period of heating.

152. Find the temperature distribution in a cylindrical pipe a < r < b if
there is a constant heat current of density ¢ through the inner surface r = g,
while the outer surface r = b is held at temperature zero. The initial tem-
perature of the pipe is assumed to be zero.

Ans.

Q0 2 2
T(r, 1) = q_a{lné _ 7r_bz J;)(Yn)JI(Y;La/b) Ry"(r)e_y"r/b }’
k @ 51 YalJo(Ys) — Ja(yaa/b)]

where
r r
R = Yo Z) — sieom (),
where Jy(x) and Yy(x) are Bessel functions, and the y, are consecutive
positive roots of the equation Rj(a) = 0.

Hint. Subtract out the particular solution corresponding to the stationary
distribution of temperature in the pipe.

*153. Find the general solution of the problem of the cooling of a sphere
of radius a, given that the initial temperature distribution of the sphere is
T(r, 0) = f(r), while the surface temperature equals zero.

Ans.
2 & s o
T(r, ) = = Ze_’””/“ sin Mjf(p) sin 2= e dp,
ar =, a Jo a

where k is the thermal conductivity, ¢ the specific heat and p the density of
the sphere, and © = kt/cp.
154. Find the temperature distribution in a sphere of radius a whose

surface radiates heat starting from the time ¢z = 0 according to Newton’s
law, if the initial temperature is Tj.

Ans.

’

2Tya ah icos Y.  sin (y,r/a) e-y?.f/a’
1 — ah n=1 Yn 1— (Sin 2Yn/2Yn)

where A is the heat exchange coefficient, and the v, are consecutive positive

roots of the equation

T(r, t) =

Y .
1 — ah

tan y =
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155. A spherical object of radius a is heated for a long time by a source
producing heat with volume density Q. Study the process of cooling that
ensues after the heating is stopped, assuming that the cooling is due to
radiation from the surface and that the temperature of the air in the chamber
where the heating occurred is 7.

Ans.
N —vatla® n
T(r 1) = 2Qa’h Z €os Y, I smY—r,
(1 - ah)kr n=1 Yn[l - (Sln 2Yn/2Yn)] a
where the y, are consecutive positive roots of the equation
Y
tan y = .
Y1 an

Hint. To determine the initial temperature distribution in the sphere,
solve the corresponding stationary problem.

156. The region between two parallel planes x = 0 and x = a is occupied
by a solution with a given initial concentration C(x, 0) = f(x). Describe the
subsequent equalization of concentration, assuming that the walls are
impermeable. Examine the special case

0<x<e,

) = %
£ — {q,,

Ans. In the special case,

C(x, 1) = C, [1 _c 2 zs——m (n7efa) -riwtvua o '}ix-:!,
a

kY n a

c<x<a.

n=1

where D is the diffusion coefficient.

157. Find the concentration in a solution inside a cylindrical pipe
a < r < b with impermeable walls, if the initial concentration distribution is

C[ ) Co, a<gr<ec,
—0o=Jf(r)=

o =/ 0, c<r<b.

Ans.
. a0 ’ _ 2 2
C = Co{cz a’ 1t_ z RY;I(C)RY,;Z(V) ¢ ynDt/a }’
b 2 n=1 1 — [Jl(Yn)/Jl(Y'nb/a)]
where

R,() = ()Y, ({) ~ Yo (iaf)

where J,(x) and Y,(x) are Bessel functions, and the vy, are consecutive
positive roots of the equation Rj(b) = 0.
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158. Find the concentration of a gas inside a cylindrical metal object of
radius @, assuming that the initial concentration of the gas is C(t, 0) = f(r)
and that the object is surrounded by a medium in which the gas is maintained
at constant concentration C,. Consider the special case f(r) = C,.

Ans. r,.Du..

al J(Y'nr/a)
cr,)==¢C, + o
=7 z l(mm + (a*/ DY)’

@ n ay a’CyJy(y,)
A, =f Pf(P)Jo(—Y P) dp — 2 ==1In,
0 a o Yn
where the v, are consecutive positive roots of the equation

YY) = Jol):

In the special case,
220Cy — @G & € Iy, rfa)
D2 n=1Yn I(Y'n)[Yn + (azaZ/Dz)]
Hint. The problem reduces to solving the differential equation

1 BC

" Dot

C,t=0 = f(r)

C(r, 1) = % C +

with initial condition

and boundary condition

where « and «; are the coeﬂ“lcients characterizing the emission and re-
absorption of the gas by the surface of the metal (see G3).

4. Heat Conduction: Stationary Problems

159. Find the stationary temperature distribution 7(x, y) in an infinite
bar of rectangular cross section (see Figure 25) if three faces are held at
temperature zero, while a given temperature distribution T(x, b)) = f(x) is
maintained on the fourth side. Apply the
resulting general formulas to the special

case f(x) = To. Y
T=F(x)
Ans. . b N
T(x, y) = z sinh (nmy/a) sin "X 7:0 7:=0
a ;= sinh (nmb/a) a 3
g P 0 7=0 a d
f f(E') sm & FIGURE 25
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In the special case,

T(x, y) = 47, i sinh [(2n 4+ )ry/a] sin [(2n + )rx/al
V) S T & Ginh [(2n + )mb/a) 2n + 1 '

160. Find the distribution of temperature in a bar of rectangular cross
section if the two opposite faces y = 0 and y = b are held at temperatures
zero and T, respectively, while the other two faces x = 4-a radiate heat into
the surrounding medium (assumed to have temperature zero) according to
Newton’s law.

Ans.

T(x, y) = 2T, z sin vy, sinh (y,y/a) cos T2X
° a1 Yn + sin vy, cos v, sinh (y,b/a) a

where the v,, are consecutive positive roots of the equation

tany = —

and k is the heat exchange coefficient.

161. Find the stationary temperature distribution in a conductor of
rectangular cross section —a < x < a, —b < y < b, heated by an electric
current producing Joule heat Q per unit volume, if the faces of the conductor
are held at temperature zero.

Ans.

- Gi- G+ 2L G

cosh [(2n + Dmy/2a] cos (2n + l)nx]
cosh [(2n + 1)nb/2a) 2a ’

where k is the thermal conductivity of the conductor.

Hint. Subtract out the particular solution of the inhomogeneous heat
conduction equation which depends only on the coordinate x and satisfies the
boundary conditions for x = +a.

162. Solve the preceding problem, assuming that all faces of the
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conductor radiate heat into the surrounding medium (assumed to have
temperature zero) according to Newton’s law.

Ans.
Qaz{l ( xz) 1
=241 (1 _Z —
T(x; .V) k 2 a2 + ah
_, i sin y,, cos (y,x/a) cosh(y,y/a)

ah ,
YR+ (sin 2y,/2y,)]lY, sinh (y,b/a) + ah cosh (y,b/a)]

where the v, are consecutive positive roots of the equation
ah
tany = — |

163. A bar of rectangular cross section 0 < x < a, 0 < y < b is heated
by a constant thermal current of density ¢ incident on one face y = b of the
bar. Find the stationary temperature distribution over a cross section of the
bar, assuming that heat is lost by radiation into the surrounding medium
according to Newton’s law.

Ans.

T(x, y) = q Jy,siny, + ah(l — cosy,)
VT AT 2ah + vE + (ah)

cosh Yay + ah sinh Yn)

X ba : Y"hz a b(osY—"x+ﬂlsinY—”x),
coshh—}—l"—iﬂsinhﬁ— a Ya a
a 2akivy, a

where the vy, are consecutive positive roots of the equation

2ahy
2 P
Y — (ah) y

164. A rectangular bar consists of two

sections with different thermal conductiv- /// N
ities k; and k,, respectively (see Figure /% RN ———
Z

tan y =

Q|

26). Find the temperature distribution in
the bar, assuming that two opposite faces
y = +b are at temperature T,, while the
other two sides are at temperature zero. FIGURE 26
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Ans.

o fany, (cos Y. — COS Y"—az) cosh 122
. a a
T(x,y) =2T,2, : L T,(x),

_ k, . . n
"=y [—1 sin? Y222 4 22 e Y"il cosh 127
k, a; a ay

az
sin 12 gip Ynd2 0< x< ay,

a, a
T(x) =
Yn(al + as — X)

a

sin v, a; < x < a, + ay,

where the vy, are consecutive positive roots of the equation

tan y + ltan.Y =0. r=b
ko a,

165. Determine the stationary temperature ®=a =0
distribution in a bar whose cross section is a X )
“curvilinear rectangle,” with two faces consisting \ //
of arcs of concentric circles and the other two N/
faces of segments of radii of the larger circle \v4
(see Figure 27). It is assumed that one of the 0
curved faces r = b has temperature T;, while FIGURE 27
the other faces are held at temperature zero.

Ans.

(2n+1)n/a a (2n+1)r/a . (2n 1
4T, 2 (—) B (_) sin (2118
r a
T(r, ) = °Z

( )(2nb~l)n/a (a)(2n+l)n/a 2n +1
a b

166. Solve the preceding problem, assuming that one of the plane faces
¢ = ais held at temperature T, while the other faces are held at temperature
zero.

Ans.
(2n + D= In (r/a) sinh 2n + Dre
i In (b/a) In (b/a) .
n=t 2n +1 sinh 2n + Nrna
In (b/a)

167. Find the stationary temperature distribution in a cylinder of radius
a and length / (see Figure 28) with ends held at temperature zero and lateral
surface held at temperature 7,. Calculate the temperature distribution along
the axis of the cylinder, assuming that the ratio a// equals 0.5, 1, 2.
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Z Ans.
(r. 2) = 4_Tq§: I[(2n 4 D)wcr/1] sin [(2n 4 1)wz/l]
T o Lo[(2n + )mall] 2n -+ 1
where Ij(x) is the Bessel function of imaginary argument.
The results of numerical calculations of the quantity

>

T|r=0
To

FiGURe 28  are given in the following table:

z
1
a 0.1 0.2 0.3 0.4 0.5
1
0.5 0.246 0.458 0.611 0.698 0.726
1 0.072 0.134 0.188 0.221 0.232
0.005 0.009 0.012 0.014 0.015

168. Solve the preceding problem, assuming that the ends of the cylinder
do not transmit heat, while a given temperature distribution

T|ea =1(2)
is maintained along the lateral surface of the cylinder.
Ans.
1 (nnr/l) (2 J‘
T(r, z) = - d 0
(r,2) =1 f S dC+ = Z mal S T JS @0 "L .

*169. Solve Prob. 167, assuming that the ends of the cylmder cool off
according to Newton’s law and choosing the origin at the center of the
cylinder.

Ans.

T(r, Z) — ZTOZ SN Yn Io(zan/l) cos 2Ynz ,
n=1Yn + S]n Yn COS Yn 0(2'{,,0/1) !
where the vy, are consecutive positive roots of the equation

tan y = —
Y 2

and £ is the heat exchange coefficient.
170. The walls of a cylindrical hole drilled in an infinite slab of thickness A

(see Figure 29) are held at a given temperature T,. Find the stationary tem-
perature distribution in the slab, if its plane faces have temperature zero.
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Ans. I[
AT, &sin [(2n + Drz/h]
r - Byt e
 Kolon + tymr/h] -

Kol(2n 4+ 1)ma/h]’
where K(x) is Macdonald’s function.

171. Find the stationary temperature
distribution in a cylinder 0 < r < gq, FIGURE 29
0 < z < [ if the upper end is at tem-
perature T, while the rest of the surface is at temperature zero (cf. Prob. 167).

Ans.

T(r, z) = 2T, i Jo(Ynr/a) sinh (y,z/a)
’ " Y adi(y,) sinh (v,l/a)

where the vy, are consecutive positive roots of the equation Jy(y) = 0.

172. Heat is produced with constant density Q in a cylinder of radius g,
length / and thermal conductivity k. Find the stationary temperature distri-
bution if heat leaves the cylinder through the part of the upper end bounded
by the circle » = b < a, but not through the rest of the surface of the cylinder.
It is assumed that the flow of heat out of the cylinder is uniformly distributed
over the disk r < b.

Ans.

Qa”[ 22 21 J,(y.qbla)o(y.r/a) cosh (y z/a)}
T(r,z)= — 22| 2 4 = n n n t,
== 52T vy sl ™

where the v, are consecutive positive roots of the equation J;(y) = 0.

Hint. Subtract out a particular solution of the
inhomogeneous heat conduction problem which
depends only on the coordinate z.

173. A cylinder standing on a thermally in-
sulating slab is heated from above by a uniformly
distributed thermal current (see Figure 30), and
radiates heat from its lateral surface into the sur-
rounding medium (assumed to be at temperature
zero) according to Newton’s law. Find the station-
FIGURE 30 ary distribution of heat in the cylinder.
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Ans.
T 2) _ 2qa’h i : Jo(Yar/a) : 09sh (Ynz/a),
k221 Yao(yn)1 + (ah/y,)"] sinh (v,l[a)

where the v, are consecutive positive roots of the equation

YY) = ahJo(Y),
h is the heat exchange coefficient and ¢ is the density of the incident heat
current.

174. A semi-infinite cylindrical pipe a < r < b, 0 < z < oo is heated at
the end z = 0 held at temperature T,, and cooled at its lateral surfaces r = a
and r = b held at temperature zero. Find the stationary temperature distri-
bution in the pipe.

Ans.
—¥nz/a
3 Zo(m)e

T(r, z) = =T, —ar
0n§=:1 1 ']O(Y’n)

Jo(Ynb/a)

o)< vionl2) —sarnf]

is a linear combination of Bessel functions, and the y,, are consecutive positive
roots of the equation
b
Zo ("Y_) = 0.

a

(a<r<b0<z <),

where

*175. An inhomogeneous cylinder formed of two sections with different
thermal conductivities k, and k, (see Figure 31) is heated at its lateral surface
held at temperature 7, and cooled at its ends held at temperature zero.
Find the stationary temperature distribution 7(r, z) in the cylinder.

Ans.
h
tan vy, (cos Yn — COS Y—; 2) I, (Xh"—r)
T(r, 2) = 2T, D, : L= Z,(2),
n=1 (kl . 2 Yaltz | P . s ) (Yna)
Yo|— sin® —— + —sin” v, ) I,
k, hy hy hy
where
h
sin TrP2 g YR o,
Z,(z) = ' '
hy —
sinynsinl"(—z———z—), 0< z < hy,

FiGURE 31 h1
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and the v, are consecutive positive roots of the equation

tany—l—liltanzh—z: 0.
kZ 1
*176. Find the stationary temperature distribution in a sphere of radius
a, if one part of its surface S; is held at constant
temperature T,, while the remaining part S, is held at z
temperature zero (see Figure 32).

Ans.

T(r, 6) — ?{1 — cos @ — O [Ppys(cos @)

n=1

— P,_;(cos a)] (;r)nP,,(cos 0)},

in terms of the Legendre polynomials P,(x).

FIGURE 32

177. Solve the preceding problem, assuming that
heat is produced in the sphere with volume density Q, and that heat leaves
the sphere through the surface S, flowing in the normal direction with
constant density (the surface .S, does not transmit heat).

Ans.
LTS N
2¢* 1 — cosa

0 P i n
X Z n1(C0s @) — Pyy(Cosa) (r P,(cos 0) | + const,
n a

T(r,9) = —2[

n=1

where & is the thermal conductivity of the sphere.

Hint. Subtract out a particular solution of the inhomogeneous heat
conduction equation which depends only on the variable r.

178. A sphere of radius a is heated by a plane-parallel thermal current
of density ¢ incident on its surface, and gives off heat into the surrounding
medium according to Newton’s law. Find the stationary temperature dis-
tribution in the sphere.

Ans.

T(r e)=9_a[_1_ I cosb
’ 2k2ah  al + ah

2n
_ P,.(0) 4n + 1 (1) P, (cos e)},
a12n 4+ ah (2n — 1D(2n 4+ 2)\a
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in terms of the Legendre polynomials P,(x). Note that

1 . @2n — 3)2n — 1)

3:5- 1,2,...
2:4-6-+-(2n — 2)2n

I

Po0) =1, Py,(0) = (=1)"

Hint. Here the boundary condition takes the form

%cosﬁ, 0<6<7-;-,
G+ )],
! = 0, §<6<ﬂ.

5. Electricity and Magnetism

179. Find the electrostatic potential u(x, y) inside an elongated box of rec-
y tangular cross section (see Figure 33), if two
T opposite sides are at potential ¥ and the

v:0 other two sides are grounded.

Ans.
Y vV + b——x 4V & cosh [(2n + 1)mx/b]
0 (x, = — ———1 n
Ay l u(x, ) n Z:o( ) cosh [(2n + 1)ma/b]
i 5 908 [(2n 4 1)7r)’/b]_
| 2n + 1
Fioure 33 180. Find the electrostatic potential

u(x, y) inside a semi-infinite rectangular
box (see Figure 34), if the vertical wall is held at potential ¥ and the horizon-
tal walls are held at potential zero.

Ans.
u(x, y) = (14 arc tan _si(n'_y/_li .
™ sinh (7x/b)

Hint. To represent the solution in closed form, use the expansion

© e—(2ﬂ+l)z ] Siny
i )y =-arct ,
2 w1 sin (2n + 1) y 5 aretan == T -
" v=0
x> 0. | S
4
181. Find the electrostatic potential u(x, y) ‘ v=0

between two infinite parallel sheets if one 0O
sheet y = 0 is at potential zero, while a given FIGURE 34



92 THE FOURIER METHOD

periodic potential

PROB. 182

ulv=b =f(X)
is maintained on the other sheet (where f'is a function with a given period 2a).
Ans.
1 & sinh (nny/a)[ nrrxf“ nwé,
L y) == O T o T =4
u(x, ) a Z:l sinh (nwb/a) cos a Jo J (&) cos a :
2a 2a
o[ i ar] + L [y a

a Jo a 2ab Jo

182. A thin charged wire with linear charge density g is placed inside

~

FIGURE 35

and parallel to a conducting cylinder of
radius a held at potential zero. Use the
familiar method of images to solve the cor-
responding electrostatic problem, assuming
that the wire is a distance b from the axis

of the cylinder.
Ans.
u(r, ) = —2qln5_ + 2q lné ,
R a

where R and R are the distances shown in
Figure 35, and a? = bb.

183. Solve the preceding problem if the wire is placed outside the cylinder,
and if the cylinder has total charge Q per unit length.

Ans.

u(r, ) = —2q1In % — 2(q + Q) In r + const,

where R and R are the distances shown in Figure 36, and a? = bb.

vV

y
r R \R
¥ q
o & b
FIGURE 36

FIGURE 37
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184. Find the electrostatic potential u(r, ¢) in the space between two
conducting infinite half-cylinders, one of which is held at potential " and the
other at potential zero (see Figure 37). It is assumed that the half-cylinders
are separated by thin layers of insulating material along the lines where they
meet.

Ans.

2ar cos <p]

u(r, @) = %':l + 7%arc tan W

Hint. To solve the problem in closed form, use the expansion

2ar cos ¢

’
a2_ r2

ey _ 1\ 2n+1
—(——1)—-(-':) cos 2n + o = % arc tan r<a.

o 2n + 1\a

185. A cylinder of radius ¢ made from material with dielectric constant e

is introduced into a plane-parallel electric field with components E, = —E,,

E, = E, = 0. Find the resulting potential distribution, and show that the
field inside the cylinder is homogeneous.

Ans. The potential distribution is

2
u = Epx [l = 1(2)] + const outside the cylinder,

e+ 1\r
2 . .
u= Eyx + const inside the cylinder.
e+ 1
The field inside the cylinder is
p_ _ 2B
e+ 1

186. Find the electrostatic potential u(r, z) inside a closed cylindrical
surface of length / and radius a, if the base and lateral surface are held at
potential ¥, while the upper surface is held at potential zero.

Ans.

_ [y _ 2% Joltarfa) sinh (v,2/a)
u(r’ Z) o V[l ZZI YnJl(Yn) Sinh (Ynl/a)]’

where the vy,, are consecutive positive roots of the equation Jy(y) = 0.

Hint.
a 2
f rJo(M) dr = aJ2(¥x) .
0 a Yn

187. Two metallic hemispheres of radius a, separated by a thin insulating
washer, are held at potential ¥ and zero, respectively, corresponding to the
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boundary condition

v, 0<b<

“|r=u =

-n:
0, “<b<m
2

Find the electrostatic potential u(r, 0) in the space between the hemispheres.

Ans.

uom——P+Z?i;zmﬂﬁm¥m@mﬂ,

in terms of the Legendre polynomials P,(x), where

1-3-5---(2n — 1)
Po0) =1, Py (0) = (—1)" , o n=1,2,..
«0) ) = (— )" S

188. Find the electrostatic field of a point charge g placed at distance b
from the center of a conducting sphere of radius a (@ < b) held at potential
zero.?

Ans. The electrostatic potential is

u(r’ e)= +

=~ e
p] l*ﬁ:

where

R=\/b2+r2—2brcos6, R:\/52+r2—25rcosﬂ,
bb = a?, 7— 19
1 b

189. Solve the preceding problem, assuming that the sphere is made from
material of dielectric constant e.

Ans. The potential is

q < 2n + 1 r
u(r, 0) = b; s+1)n+l() P,(cos 0)

inside the sphere and
e s
u(r, ) = &=~ )Z@+Dn+1 P,(cos 6)

outside the sphere, in terms of the Legendre polynomials P,(x).

10 This problem can either be solved by the method of images or by the method of
inversion (starting from the familiar solution of the problem of a point charge placed over
a conducting plane).
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*190. Find the distribution of d-c current in a thin rectangular sheet,
if the current is applied by electrodes at the points x = —a, y = 0 and x = g,
y = 0 (see Figure 38).

y

/
s 8 4 Z/
pi——

7/

FIGURE 38

Ans. The potential of the current distribution in the sheet is

J [x 2 & sinh (nmx/b) n-n:y:|
ulx, y) = — —|=-+- —— " C0s —= const,
(x,7) 20hLb ng, n cosh (nma/b) b +
where o is the conductivity and 4 the thickness
of the sheet, and J is the total current flowing y
through the sheet.

Hint. The differential equation for the Y
potential of the current distribution in a thin w
conducting shell is given in Prob. 21.

191. Find the distribution of d-c current FIGURe 39
in a thin disk of radius a, if the current is
applied by electrodes at th= points r =a, ¢ =0 and r = a, ¢ = © (see
Figure 39).

Ans.

J

2
1—2—"cos<p-f——r~2
a
; 1 const.
2r r
1+ —cos¢ + —
a a

J
In
2noh

u(r, ¢) =

*192. Find the distribution of d-c current in a cylindrical shell of radius
a, height 2/ and thickness 4, if the current is applied by electrodes at the
points r =a, ¢ =0,z = £+

Ans.,

Q0

z sinh (nz/a) cos ncp}
-+2 t.
l:a + ,Z:, cosh (nlfa) n + cons

J
u(e, z) = —
(%, 2) 2noh
193. Find the distribution of d-c current in a hemispherical cap of radius
a, if the current is applied by electrodes at the points r = a, 6 = n/2, ¢ =0
and r = a, 0 = ©/2, ¢ = w (see Figure 40).
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Ans.

2

0 )
1 + 2tan—cos tan® —
Fruangyeosettany

u(8, ¢) = In + const,
v O 9) 2nch ] 2
11— 2tan5coscp + tan >

FIGURE 40

194. A d-c current J enters one end of a cylindrical conductor of radius a
made from material of conductivity o and leaves the other end, via electrodes
in the shape of disks of radius r < a (see Figure 41). Find the current
distribution inside the conductor, assuming
that the current is uniformly distributed over
the electrodes.

Ans.
u(r, z) = Ji 2J > sinh (y,z/a)
na’s  wbo ,; cosh (y,h/a)
Ji(y.b
1(Yn ia)zjo('Yn"/a) + const,
Yndo(Yn)

where the v, are consecutive positive roots of
the equation J,(y) = 0.

Hint.
fero (M) dr — ab Jy (an)_ FIGuRe 41
0 a Yn a

4

a

15
|

0 7

FIGURE 42

195. Find the current distribution in a homogeneous conductor in the
form of a rectangular parallelepiped —a < x < a, —b< y< b,—c< z< ¢,
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assuming that current enters and leaves via rectangular electrodes of dimen-
sions 28 X 2¢ applied at the boundaries z = 4-¢. The current distribution
is assumed to be uniform over the area of the -electrodes.

Ans.

mmnd mnz
sin —— sinh ——

Jz i a mmx

u(x, y, z cos ——
(3, 2) = 4cab 27:085,,,=1 m? mmc a

cosh —

where J is the current and o the conductivity.

*196. A cylindrical plpe a < r < b made from material of magnetic
permeability w is placed in a homogeneous magnetic field H,. Find the
resulting distribution of magnetic potential. Plot the lines of force for the
values p. = 5 and bja = 1.5.

Ans.
2 _ 2 g% 2

U, = Hoxl:l — o ( :Xb z @) z(b):l ~+ const, b<r< oo,

b+ 1) —a'(p — 1)

2b¥(n + 1) + (u — 1)(a/r)]
u, = Hy b+ 1 — a’p 1) + const, a<r<hb,

2

us = Hyx 4ub -+ const, 0<r<a.

b + 1) — a*(u — 1)
The lines of force are plotted in Figure 42.
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197. Find the magnetic field due to a current J flowing in a wire placed
inside a cylindrical hole of radius a drilled in iron of magnetic permeability
u, if the wire is at distance b from the axis of the hole. Plot the lines of
force for the values u = 3, bja = 0.5.

Ans.

2w —
A= —Hpr_He!

In R 4 const, O<r<a,
c cp+1

A2=—2i“L—_1]nr—w 2 In R + const, a<r< o,
c pn+1 c n+1

where 4, and A, are the values of the z-component of the vector potential
of the magnetic field in the air and in the iron, and

R=vr 4 b*—2brcos ¢, R=+r*+ b* — 2brcos o, bb=a’

The lines of force are shown in Figure 43.

FIGURE 43

198. Solve the preceding problem for the limiting case w = co. Find the
equation of the lines of force in the air and in the iron.

Ans.

A = — 2J In RR + const,
c

Ay = — 2 In r + const.

1
® c
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The lines of force are ovals of Cassini

RR = const

in the air, and circles
r = const

in the iron.

199. A sphere of radius @ made from material of magnetic permeability
p is introduced into a homogeneous magnetic field with components
H,= H,=0, H, = —H,. Show that the field inside the sphere is homo-
geneous, and find its value.

Ans.
g _ 3Ho
w2

200. A hollow sphere @ < r < b of magnetic permeability y is placed in
a homogeneous magnetic field H, = H, =0, H, = —H,. Solve the corre-
sponding problem of magnetostatics.

Ans.

3
Ob"uHyz + const, 0< r<a,

bw + 2)Qu + 1) — 2a°(p — 1)°
30w + 1)r® 4 (. — 1)a’]Hyz
Plb% + 2w + 1) — 2a%p — DF
b’(@® — b*)(w — 1) + 1)Hyz
“F b+ 2020 + 1) — 2a% — D7
*201. Find the magnetic field due to a d-c
current J flowing in a circular loop of radius
ro inside a hollow spherical shield made from
material of magnetic permeability p. (see Figure
44).
Ans. The components of the vector potential
of the magnetic field are
A,. = Af) = 0

2 2 (4n + 3)? 1
A,=A(r,0)= P}..1(0
? *9) c ,2;, @2n + 1)2n +2) 2n+1(0) FIGURE 44

% (,.0/,.)2n+217;"+1(cos 0)
[2n+ Dp+ 2n 4+ 2)1[(2n + 2)p + 2n + 1)]
— (a/b)"™"*2n + 1)(2n + ) — 1)’
r>b,

const, a<r<hb,

+ const, b < r < .

H
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in terms of the associated Legendre functions P}, ,(x). Note that

(2n + 1)

1-3-5-
Pln 0 — _1 n+1
241(0) = (—1) 2 4.6 2n

202. A lossless open-ended transmission line of length / with parameters
L and C is charged to a constant potential E (cf. Prob. 23). Determine the
current distribution along the line, assuming that a coil of self-inductance L,
is connected across the end x = / at the time 1 = 0.

Ans.

Ix, 1) = 20(_E§ sin (y,vt/1) sin (y,x/])
U Z Ecosyly: + a(l + )]

where the v,, are consecutive positive roots of the equation

| R

tan y =

=

« = LI|Ly, v = 1/JJLC is the velocity of wave propagation along the line,
and Z = Lv is the wave resistance of the line.

203. A transmission line with parameters L, C and R is short-circuited
at one end x = /and connected at the other end x = 0 to a source of constant
e.m.f. E. Find the voltage distribution along the line, for the case of zero
initial conditions.

Ans.
u(x, 1) = E(l - i) _ 2% e RULY
l T n=1
* * 1
o (cos nmo t+ RI gin 1Y t)sm (nmex/l)
l 2nnZ* 1 n
where
2 2
v*=L_. —RCI, Z* = Lv*.
JLC 4n*rPL

Hint. Make the boundary conditions homogeneous by subtracting out
a particular solution of the differential equation depending only on the
coordinate x.

204. A plane electromagnetic wave with electric field components E, =
E, =0, E, = E¢''“*~*® (where k = w/c is the wave number) is incident on
an infinite perfectly conducting cylinder of radius a. Find the resulting
diffracted electric field.
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Ans.
_; Jo(ka)
— E e ikrcos ¢ __ 0 H(2) k
E, OI: ng)(ka) 0 ( r)
& J (ka) .
. inn/2 n (2) it
ZE;e H—\_‘,f)(ka) H,(kr) cos ncp:le ,
where J,(x) and H!¥(x) are Bessel functions of the first and third kinds.
205. Solve the preceding problem, assuming that the cylinder is made
from material of conductivity o and dielectric constant .
Ans.
E =E [e—iklrcosw + liO(kZa)J(I)(kla) — kyJo(kya)Jo(kqoa)
o keHP(kna)J (ksa) — kndo(ka@)HE (ka)
125 emmn_balulkaa) o (lsa) — kol (ko) k)
n=1 koH P (keya)J (kya) — lin(kza)H(nz)l(kla)

Hl()2)(klr)

H®(k,r)cosn (P:l e,

r>a,
2i Jolkar)
= ) B B(k,a)J}
WJolkaa)Hg”" (kya) — koHg"(kya)Jo(kea)
+ 2Ze—imr/2 - J o(kor) cos ne : }eim
n=1 lin(kza)Hfz )I(kla) - sz;Z)(kla)J’n(kza)
0<r<a,

4 2 i
ky =<2, ky =«/m e — 4micw '
c 02

*206. Find the electromagnetic oscillations in a spherical resonator of
radius a excited by a dipole of moment P located at the center of the sphere,
assuming that the direction of the dipole coincides with the direction of the
z-axis.

Ans. The complex amplitudes of the field components are

H,= Hy =0,
H¢ = H(r, e) = 2[—1 + ikr e‘""
cr r
202 : -
+ ke 1+ lka2 - k*a . (sm kr o kr)Jsin 6,
ka cos ka + (k*a®— 1) sin ka \ kr
i 0 .
E, = — —(H 0),
"= rsinoog et
i 0
Eo = —Z(rH,),
® krar(r o)

E, =0,
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in terms of the spherical coordinates r, 6 and ¢, where w is the frequency of
the oscillations and k = w/c is the wave number.

References

Bateman (B2), Frank and von Mises (F6), Franklin (F7), Gray and
Mathews (G2), Grinberg (GS5), Jackson (J1), Jeffreys and Jeffreys (J4),
Lebedev (L9, Chaps. 6 and 8), McLachlan (MS5), Morse and Feshbach (M9),
Tikhonov and Samarski (T1), Tolstov (T7), Webster (W5). For further
problems, see Budak, Samarski and Tikhonov (B6), Gyunter and Kuzmin
(G7, Chap. 15), Smirnov (S5).
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THE EIGENFUNCTION METHOD FOR
SOLVING INHOMOGENEOUS PROBLEMS

In this chapter we study various inhomogeneous problems of mathematical
physics leading to integration of the equation

r—(lx—){i[p(x) %ﬂ — q(x)u} + Mu = F(x, y) (a<x<bc<y<d),
(1)

which is the same as equation (1) of Chap. 4, except for the presence of the
given function F(x, y) in the right-hand side.* This time we require that the
solution of (1) satisfy inhomogeneous boundary conditions
ou ou
G 5~ + Balt|z=a = falX), oy T
Pl | Jox¥) b oy
where a,, o, B,, B, are constants and f,(y), f,(y) are given functions. In the
elliptic case,
ou ou
Ye 7 + 8cu|u=c = gc(x), Ya 5 + 8du|u=d = gd(x)’ (3)
ay y=¢ ay v=d
where again v,, v, 3., 8, are constants and g,(x), g,(x) are given functions.
In the hyperbolic and parabolic cases, the boundary conditions (3) are
replaced by the conditions (4) and (4"), p. 57.
It is sometimes possible to find a particular solution «* of equation (1)

=b+ Bbu|z=b :fb(y)’ (2)

&x: T

! In particular, the functions p(x), g(x), r(x) and the differential operator M,, have the
same meaning as on p. 56.

103
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satisfying the conditions (2), and then the substitution ¥ = u* 4 v reduces
the present problem to the homogeneous problem which can be solved by the
Fourier method. The problem can also be solved easily in the case where only
the differential equation (1) is inhomogeneous, but not the boundary
conditions (2), so that f, = f, = 0. Then we can look for a solution in the
form of an expansion

u =§u,,(y)Xn(x), a<x<b (@)
n=1

with respect to the eigenfunctions X,(x) of the homogeneous problem, i.e.,
the nontrivial solutions of the equation

@X) + Or —X =0 ®
satisfying the homogeneous boundary conditions
% X'(a) + B X(@) =0, o X'(b) + B, X(b) =0. (©)

Suppose the right-hand side of (1) can be expanded in a series with respect to
the functions X, (x), so that

F(x, y) =D F,(0X.(x), a<x<b,
where =t

JorFe, X, (x) ax
f:rxi(x) dx

F,(y) =

Then, after substituting (4) into (1), the problem reduces to the integration
of the ordinary differential equation

Mu, — Nu, = F(y),

where the A, are the eigenvalues of the homogeneous problem. To determine
the resulting constants of integration, we substitute (4) into (3) [or into
equations (4'), (4"), p. 57], expand the functions on the right in terms of the
eigenfunctions X,(x), and then equate corresponding coefficients of the
functions X,(x).

The general case of inhomogeneous boundary conditions can be reduced
to the problem just considered (an inhomogeneous differential equation
and homogeneous boundary conditions) by looking for a solution of the
form u = w* 4 v, where u* is a sufficiently smooth function which satisfies
the boundary conditions (2) but, unlike the case mentioned above, is not
necessarily a solution of the differential equation. For example, if the
boundary conditions are of the first kind, i.e.,

Uama =fo0)s  Uloms = i)
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we can choose u* to be the following linear function of x:

(»)- @)

Similarly, if the boundary conditions are of the second kind, i.e.,

du . ou _
ax x=a_ fa(y)’ ax b fb(y)s
we can choose
«_1 (x —a) a) 1 (b —x)* x)
w= S BT — S ), ®)

and so on. However, it should be noted that this method, involving as it does
a function u* which is to a large extent arbitrary, is not always successful (for
example, in cases where the boundary conditions are discontinuous). In fact,
improper choice of #* [even such simple functions as (7) and (8)] can lead to
great complication in later stages of the calculations.

A more adequate method of solving inhomogeneous problems has been
proposed by Grinberg (G4),? and is free from the need to choose the function
u* in each particular case (which sometimes requires great ingenuity). In
Grinberg’s method, we try to solve the inhomogeneous problem by again
representing the solution as a series of the form (4), whose coefficients are

given by the formula
f ruX (%) dx i
[redeoax ['rxix) dx

u(y) = ©

in keeping with the general theory of expansion in series of orthogonal
functions. Thus, to obtain a formal solution of the problem, we need only
find the value of the integral i,. This can be done by the following device:
First we multiply equation (1) by X,(x) and integrate the result from a to b.
Then we integrate by parts twice, obtaining

au b b
(Pa—x X, — PXQ.“) +f [(pX7) — qX,Judx

b b
+ M,,f ruX, dx =f rFX,dx. (10)

% In cases where the boundary conditions are homogeneous and only the differential
equation is inhomogeneous, Grinberg’s method gives the same result as the classical method
of solution.
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Taking account of equation (5) and the boundary conditions (2) and (6), we
can write (10) in the form?

M, i, — nity = Fo — 2O X ()10 + %f(i) @ A

%y

in terms of the eigenvalues A,, where
b
F, =L rFX, dx.

Equation (11) serves to determine i,, since its right-hand side involves only
known functions. The resulting constants of integration are found from the
equations which result when the same method [i.e., multiplication by r X, (x),
followed by integration from a to b] is applied to equation (3) [or to equations
@), @, p. 571.

The method just described can also be applied to problems of mathe-
matical physics involving the Sturm-Liouville problem with singular end
points (see p. 59), provided that the eigenvalue spectrum is discrete. More-
over, the method can be extended to certain problems involving higher-order
equations (see Probs. 236-241), or to problems where the solution depends on
a larger number of variables.

It should be pointed out that for inhomogeneous boundary conditions of
the first kind, the series representing the solution will not be uniformly
convergent near the end points of the interval (g, b).* To improve the con-
vergence, we can apply the methods ordinarily used in such cases.® In the
simplest problems, we can improve the convergence by separating out the
slowly converging part of the series and summing it by using the tables given
in Sec. 2 of the Mathematical Appendix (see p. 381).

The problems in this chapter, as in the preceding one, are grouped into
five sections, two on mechanics, two on heat conduction (including a problem
on diffusion), and one on electricity and magnetism. Problems involving
coordinate systems more complicated than rectangular or polar coordi-
nates (both cylindrical and spherical) will be deferred until Chap. 7.
Problems with concentrated sources are usually regarded as limiting cases

3 In the case of boundary conditions of the first kind (&, == &, = 0), the right-hand
side of (11) should be replaced by
b) (@)
£+ 22 X fi -2
ﬁb Bu
4 If the boundary conditions are inhomogeneous only at one end point x = a, this
statement applies only at x = a. In the case of boundary conditions of the second kind,
the series representing the derivative du/dx exhibits similar behavior.
® See K1, Chap. 1, Sec. 5. Another method, of a completely general character, is given
by Grinberg (G5, Chap. 12).

X.a)f.().
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of the corresponding problems with distributed sources; this greatly simplifies
the calculations, allowing us to write the solutions in compact and symmetric
form. For example, the field due to a linear oscillator inside a cylindrical
resonator can easily be solved in this way (see Prob. 256), whereas the usual
method of solution (which involves subtracting out the singularity) leads to
very complicated calculations.

In the case of problems with inhomogeneous boundary conditions, the
choice of a method of solution is left to the reader, although we are of the
opinion that in such cases, Grinberg’s method has indisputable methodolo-
gical advantages. Of course, by proper choice of u*, certain problems can be
solved quite easily, without recourse to this method.

As a rule, the answers are given in the form of series, obtained after
improving convergence, or in closed form. In some cases, the solution is
given in two forms, corresponding to expansions in functions of each of the
two independent variables.

I. Mechanics: Vibrating Systems

207. A string of length / with fastened ends vibrates under the action of a
uniformly distributed pulsating load g sin wt. Describe the vibrations, assum-
ing that the string is at rest at the time 1 = 0.

Ans.
oy sin (2n +l Drot — (2n —+—Il)1rv sin of sin 2n +ll)7tx
qu ®
,t = ’
uex, ) ﬂ:szZ:o { l:(Zn + l)m):r @2n 4+ 1)?
wl
0<x<|,

where v = \/m, T is the tension and p is the linear density of the string.

208. Solve the preceding problem, assuming that the pulsating load acts
only on the section a < x < b of the string.

Ans.

. nmot nwo . . nmX
sin — — ——l sin w? sin T

2qul °°( nra nnb) I ®
u(x, 1) = COS —— — COS ——
(x. 1) Tr"’(oT,g, ! 5T {— (mw)2 n®
wl

209. Study the vibrations of a string due to a concentrated pulsating
load A4 sin wt applied at the time t = 0 to an arbitrary point x = c of the
string.
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Ans.

. nmut nmo n|e . NmX
sin — — — sin w! sin —l— sin —l—

24y 2 l wl
u(x, t) =
. 1) Z — (n_m) .
wl

Hint. Pass to the limit in the solution of Prob. 208.

*210. Find the general solution of the problem of a vibrating string
under the action of an external load g(x, f), assuming that the string is at
rest at the time £ = 0.

Ans.
IR nvrxf‘. nro(t — ) f n&
u(x, t)y = — ~sin — | sin ——— dv , T) sin —
(x, 1) nTﬂ};n ) l L)) d,
0<x<l.

211. Solve Prob. 106 on the longitudinal oscillations of a rod, which was
.solved by another method in Chap. 4.

Ans.®
2wl - @2n + Dnot
o, ) = 2AIZ . St — o S o i @1+ D
S5 [(2n + 1)1:}2 - (w_1>2 21
2 \

212. Investigate the vertical longitudinal oscillations of a rod of length /
suspended from the end x = 0 under the action of its own weight, subject to
zero initial conditions.

Ans.

16g/* Zl — cos [(2n + 1)7rvt/2l] (2n + Dnx

naz

v & @n + 1)° 21

where g is the acceleration of gravity, E is Young’s modulus, p is the density,
and v = \/E/p

u(x, 1) =

213. Investigate the longitudinal oscillations of the pyramid-shaped
cantilever of square cross section shown in Figure 45, due to a force 4 sin wt
applied at the time ¢ = O to its free end.

¢ To verify that the two forms of the solution given in the answers to Probs. 106 and
211 coincide, use the expansion

i(_l)n sin (2n + 1)E o w sin ok’

@n+ 1 —a®  4dacosn(e/2)’ (&l < m/2.
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Ans.
4  Sin Y"I % sin wt | s1nY"—l
v ) sin v,
u(x, ) = Z 2 Y . ,
2awE(b — x tan ) ,01 ) (Y,,v) Ya o Sin 2v,
wl 2y,

where the y,, are consecutive positive roots of the equation

tany = —
Y b—a /IE o i“ ”z‘-]
214. An inhomogeneous rod con- T} p 4
sisting of two sections made from 2___0}—'

different materials is clamped at one
end and is initially at rest. Find the FIGURE 46
longitudinal oscillations which result if

a constant force P is applied to the free end of the rod (see Figure 46).

Ans.
at &sin 1 — cos Y ) X (x

u(xl)—2P 12 Yn (2 Yn) () — ,
Vi ast Ya 15141 €OS® (Y,a50:/a102) 4 02820, sin® v,

gl . (a; + x)
0s 128201 i Y ,
avy a

—a,<x<0,
X'n(x) =

, vy(@2 — x)
smy,,cosY"—, 0< x < ay
av,
where the v, are consecutive positive roots of the equation

Y2l 2”1

a,v,

0,E,S; tan vy = 0,E; S, cot ——

the two sections have Young’s moduli E,, cross-sectional areas S, and
densities p, (i = 1, 2), and v; = V E,/p.
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215. A beam of length /, simply supported at its ends, is originally in a
state of equilibrium. Investigate the transverse oscillations of the beam

after applying an arbitrary load, uniformly distributed over the section
X < x < X,.

Ans.

2.2 o .
u(x, t) = 2l%a z (cos Xy o n-n:xz) sin (nnx/l)

m°EJ 2, l l n®

t 2 2 2
qu('r)sinn—na—l(:—i)d‘r, 0<x<,
0

where a? = x/EJ/pS E is Young’s modulus, J the moment of inertia of

a cross section, p the density and S the cross-sectional area of the
beam.

216. Solve the preceding problem, assuming that a) the load is uniformly
distributed over the whole length of the beam and is a periodic function of
time ¢(f) = ¢ sin wt; b) a concentrated pulsating force 4 sin wt is applied
to the point x = ¢ of the beam.

Ans. a)
2 2 2 2
(2n + 112) a’t _(@n+ :2) ma wtsin(zn -+—ll)'n:x
1%a%q w
u(x, 1) = :
(x 1) = mwEJ ,,Z {— [(Zn + 1)’nfa T @2n + 1)
wl?
n’nfa®  ninl’a nmx
2Aa21 o —12— — 7 sin wt sin '—l'— sin '—T
b)  u(x, 1) wE) g 1— (n2n2a2)2 o
wl?

*217. Find the transverse oscillations of a beam —I< x </ with
clamped ends under the action of a pulsating” force g sin wf, uniformly
distributed over the whole length of the beam, assuming that the beam is at
rest before the load is applied.

Ans.

2
2 2o sin Y"‘; Yot sin ot
) = 2gqla z tan vy, l ol?
WEJ ;5 Yncoshy,cosy, | (\(iaz)2

wl?

u(x,

X (%),
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where a% = /EJ/pS, in the notation of Prob. 215,

X ,(x) = cosh vy, cos % — cos ¥, cosh % ,

and the vy, are consecutive positive roots of the equation tan y + tanh y = 0.

218. Solve the preceding problem for the case where the external load
is a concentrated force A sin wf applied to the center of the beam.

Ans..

2 2
L Yad't  yaa®

& cosh vy, — cos 2 ol? sin o
u(x, 1) = Z n o Xa().
a1 Y2 cos®y, cosh® y, - (Y,,a)
ol

Hint. First replace the concentrated load by a load uniformly distributed
over the section —e < x < € of the beam, and then take the limit as € — 0.

219. Solve Prob. 217 for a beam 0 < x < / if the end x = 0 is simply
supported, while the end x = / is clamped.

Ans.
u(x, 1) = ql’a® isinh Yn —32 c.:os}: Yn s.inzy,, + sin vy,
wEJ .o Y. sinh® v, sin®y,
2
sin 1227 i Y" sin ot
I wl?
X ‘YB 2\2 ’ﬂ(x))

1 ()

where

X ,(x) = sinh v, sin Y—’l‘f — sin vy, sinh Yu¥ ,

and the vy, are consecutive positive roots of the equation tan y = tanh .

220. A concentrated force P is applied to the free end of a cantilever
initially in equilibrium (see Figure 47). Investigate the resulting transverse
oscillations, assuming that the force does

not change subsequently. P
Ans. 4o 4
% —X
2PP& 1 — cos (yaa’t/l? Z
e, ) =255 L= 0o (D) _y

EJ ;2 ya(sinh y, 4 sinv,) FIGURE 47



112 THE EIGENFUNCTION METHOD PROB. 221

where

X ,(x) = (cosh v, 4 cos v,) (sinh Y’l' — sin Y—’l'x-)

— (sinh vy, + sin v,) (cosh X—’l"-c — cos .%) ,

and the y, are consecutive positive roots of the equation cosh y cos y = —1.

221. Solve the preceding problem for the case where the force is a
periodic function of time P = 4 sin wt.

Ans.
2 2 2
P LR CLIP N
24la® & X o(x) I ol?
u(x, t) = z PV : 2 2\2
wEJ 221 Yi(sinh y, 4+ sin y,) - (Y_,,a_ )
wl?
*222. Solve Prob. 220 for the case where the force P = P(t) is arbitrary.
2 o 2 t —
u(x, t) = 2la Z X, f P(7) sin 22— O LR ) dv
EJ 221 Y3(sinh v, + sin v,) 2

*223. Investigate the transverse oscillations of a beam of mass M clamped
at the points x = 0 and x = /, due to a concentrated pulsating load 4 sin ¢
moving along the beam with constant velocity ». Assume that at the time
t = 0, the beam is at rest and the moving load is at the point x = 0.7

Ans.
2.2 2
)
cosn Tat_ cos(l + n—n—)wt
I wl

= Mo & (nznzaz)z _ (1 + m)2

wl® wl
nnla’t ™
cos — — —cos|l — —Jot
I ol nwx

si
( nzﬂ:zaz) ( n-n:v)2 !
— 1 —-=
wl? ol
224. Investigate the vibrations of a circular membrane of radius a due

to a load applied at the time ¢ = 0, if the load is uniformly distributed with
density ¢(f) over the circular ring r; < r < r,. Consider the special case

q(#) = ¢ sin .

" This is the problem of a locomotive moving along a railway bridge (see T2, Sec. 59).
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Ans.

reJi(Yara/a) — riJy(yari/a) Ya0(t — )
T,,z, TR ( a ) f aimyein B2 4w

where the v, are consecutive positive roots of the equation Jy(y) = 0, p is
the surface density, T is the tension per unit length of the boundary of the

membrane, and » = +/T/p. In the special case,

. t .
sin 222 — Y% i ot roJy (Y"rz) —nd; (Y"r‘
a

a wa a ) J (Y"r)

o _— .

1 — (M)’ Y2IXY.) a
wa

u(r, t) =

u(r, t)—-lT i

*225. Investigate the vibrations of a circular membrane of radius a due
to a pulsating load p sin wt applied at the time ¢ = 0 along the circumference
of a circle of radius b < a.

Ans.
t
ooph & in 122 Yo% Gin ot JO(Y"b)JO(M)
u(r, t) = vp Z a wa - a ; a
waT n=1 1 — (‘Y_"U) YnJI(Yn)
wa

Hint. Replace the load by a load distributed with constant density over
the area of the ring b — € < r < b + ¢, and then take the limit as € — 0.

226. A circular elastic plate of radius a, clamped along its boundary,
begins to oscillate under the action of a suddenly applied pulsating load
¢ sin wt, uniformly distributed over the area of the plate. Fird the resulting
transverse oscillations.

Ans.
2 2
2,2 o SID Y"b2 Y"b2 sin wt
u(r’ t) — 2qa b a wa Jl(Yn)R‘lu(r) ,
wD n=1 1 — (IE‘)2 Y:J :(Yn)l O(Yn)
wa®
where

R0 = 1o ) — s (2)

is a linear combination of cylinder functions, the y, are consecutive positive
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roots of the equation R)(a) = 0, D is the flexural rigidity, 4 the thickness
and p the density of the plate, and b% = Vv D/ph.

*227. Solve the preceding problem, assuming that the oscillations are
due to a concentrated pulsating force A4 sin w? applied at the center of the
plate (oscillations of the diaphragm of a loudspeaker).

Ans.
212 272
2 oSN h’:_f — Y"bz sin w?
ur = A S a e o) = JolyaRon(M)
oDy (I_i) e 3rIiCr)
wa?

Hint. Replace the concentrated load by a load distributed over a disk of
small radius &, and then take the limit € — 0.

2. Mechanics: Statics of Deformable Media

228. Find the deflection of a rectangular membrane —a < x < g,
—b < y < b due to a load uniformly distributed with density g over the
rectangle —c < x < ¢, —d < y < d forming part of the membrane.

Ans.

. 16ga® &sin [(2n + 1)rc/2a]

u(x, y)||u|<d - ﬂaT ’; (2n + 1)3
i cosh (2n + Dmy _; Dy 1
o 1_cosh(2"+1)#( —d) a ; cos &t )Trx,
2q cosh (2n + Dmb 2a
2a
__ 16ga* &sin [(2n + 1)ne/2a] sinh [(2n + 1)nd/2a]
u(x, y)llul>¢ T RT ,2;. (2n +1)®
Ginh @1+ l)21t(b —lyD i1
X 2 - b w2 )m‘,
cosh (____n + Dr 2
2a

where T is the tension per unit length of the boundary of the membrane.
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229. Find the deflection of a uniformly loaded rectangular membrane
(this is a special case of the preceding problem), and compare the answer
with that found earlier in Prob. 131.%

Ans.

u(x, y) = 16qa Z (=" { cosh [(2n + l)ny/2a]} cos @n + l)nx.
’ T 5 @2n+ 1) cosh [(2n + 1)mb/2a) 2a

*230. Find the static deflection of a
rectangular membrane under the action
of a line load p uniformly distributed

along an axis of symmetry (see Figure 48).
Ans. / |)/V /
» 1 V0
u(x, y) = 4pa 2 Z {1 __cosh [(2n+1)7ry/2a]} / l)/v /

T ‘=, cosh [(2n+1)wb/24]

» €08 [2n + 1)rx/2a]
2n + 1)? '

(12) FIGURE 48

Another form of the answer is

sinh @1t Drla — |xI)

4pb (=" 2l (2n 4 Dy
u(x, y) = z A CoS - . @13
0@+ 1" %’ 2b

231. Find the deflection of a circular membrane of radius a due to the
action of a line load p uniformly distributed along a diameter.

Ans.
2

rr 2r r & (rla)™™ — (r/a)? ]
u(r, l1———=—cosoln-—2) > “——""7 cos 2nep|,
(r, @) = T[ IR R S ;::2 n*—1 ®

where the series can be summed easily.

Hint. To solve the problem, replace the line load by a load uniformly
distributed over the sector —e < ¢ < ¢, ® — e < ¢ < w + ¢, and then take
the limit as € — 0.

232. Investigate the twisting of a rod whose cross section is a semicircle
of radius 4. Calculate the tangential stresses T on the surface of the rod.

® To compare the two answers, use formula 16, p. 385.
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Ans.

Tyg = 2a06[sin @ — 2(1 — cos ¢ In cot —3)] sin ¢,
k13

le=0 = 7l¢=n =

afG a® 2—_az r  afa r a+tr
—1—-r—,+——7—+-(———)1n-———

where 0 is the angle of twist per unit length and G is the shear modulus.

Hint. The sum of the series needed to represent the solution in closed
form is found in the solution to Prob. 132.

233. Find the torsion function u(r, ¢) for the twisting of a circular shaft

of radius g weakened by a radial crack going from the surface of the shaft to
its axis. Calculate the torsional rigidity C of the shaft.

( r)(2n+l)/2 ( r)z
2 o - -\
32a a a sin 2n + Do

ulr, @) = TZO 2n + D[16 — 2n + 1] 2
C= Ga‘{s—lgi 1 - ’—‘} — 0.878Ga",
® 5@+ 1P@n + 56— @n + F] 2

234. Investigate the twisting of a rod whose cross section is a circular
sector of radius a and vertex angle a.

Ans. The torsion function is

( r)z (r)(2n+l)n/a
2 oo -1 =\
u(r, @) = 8a a a sin(zn + Do

ST RSN L

O<r<ald< p<a)

235. Solve the preceding problem for a rod whose cross section is a
“curvilinear rectangle” a < r < b,0 < ¢ < «.
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Ans.
sin 2n + l)ncp

T =0 (2n + 1)

( a)zl: (r)(2n+l)n/a ( )(2n+1)n/a:] [ ( )(2'n+l)n/cz (a)(2n+l)n/a:|

¥ b/ L\b \r

b - ( )(2'n+1)n/u ( )(2n+1)n/a :
b \q

236. A rectangular elastic plate 0 < x < a, —b/2 < y < b[2 is simply
supported along its boundary and loaded by a concentrated force P applied
at the center of the plate. Find the deflection along the midline y = 0.

Ans.

u(r, @) = 8_1’22: l:(zn + 1)%r? ]

iy @1t Dmb 2+ Db
(-1 a a . (2n + Drx
Uly— sin N
oo = 47:31) g., @n+1)>° cosh? @0 72L b a
a

where D is the flexural rigidity of the plate.

Hint. Replace the concentrated load by a load uniformly distributed
over the rectangle

§—8<x<-‘23+8, —e<y<e,

and then take the limit as 3, e — 0.

237. Solve Prob. 134, using the method of this chapter.
Ans.®

. b 24 (2n —{2— )b tanh 2n -;— 1=nb
qa n a a
0,0 1—
u(0,0) = ,E, @n + 1 > cogh @1+ Db
2a

238. A rectangular elastic plate with sides a and b is simply supported
along the edges x = 0 and x = a and clamped along the edges y = 4-5/2.

® To reduce the solution to the form given in Prob. 134, use the formula

S (=1 Sns

& (2n + 1) T 1536
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Find the deflection of the plate under the action of a load p applied along the
midline x = a/2.

Ans.
2pa® & sin [(2n + 1)wx/a]
> =T, = -
u(x, ») = =0 Z( T a1y
[Sinh(zn + Dnb n @2n + Drnb cosh @2n + 1)chj| cosh @2n + Dny
w{1—2 2a 2a a a
sinh 2n + Db i 2n 4 Db
a a

2n + Dmy sinh (2n + Drb sinh @2n + Dmry
a 2a a
sinh (2n + D)rb n @2n + Dnb
a a

+ 2

239. A rectangular elastic plate, simply supported along its boundary,
is acted upon by bending moments

y m uniformly distributed along two

opposite edges (see Figure 49). Find the
deflection of an arbitrary point of the

mAb I
ojrz , plate.

[ 2 3
7 u(x’ y) = 4?; z‘;‘ic(l — E)
FIGURE 49 T a a
a a a

1s 2a
= (2n + 1)? cosh? @n + Drb
2a

5 sin X
a a sin( n 4+ rx

2n + 1)® cosh? Qn;_ﬂ) a
a

@2n + 1)-rcycosh 2n + Dnb . h 2n + Dry
a

.
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*240. Solve the preceding problem, assuming that the edges y = 4-5/2
are clamped.

4ma® n:"x( x)
x, y) = —|1-=
ux, ») m®D | 8a a

[sinh (2n + )mb n @2n 4+ Drb cosh 2n + l)nb:lcosh @2n + Dry
a 2a 2a a

|:sinh 2n 4+ Drb n @2n + l)ﬂ:b:l
a a

—2

\Y4L

3
I
o

@2n + 1)®

@n+ry ., 2n+ Dnb ., 2n + Dmy
" sinh » sinh . o @n + Dnx

[sinh (2n + Dmb n (2n + l)nb:| @n + 1)° a
a a

*241. Find the deflection of the center of a circular plate of radius a
with a clamped boundary under the action of a line load p uniformly dis-
tributed along one of its radii.

Ans.

pa®

64nD

ulr:o =

3. Heat Conduction: Nonstationary Problems

*242. A slab is heated by a thermal current of constant density g flowing
through the face x = 0 starting from the time ¢ = 0, while the face x = a is
held at temperature T,. Find the subsequent temperature distribution in the
slab, assuming that the initial temperature of the slab is zero.

Ans.

T(x, 1) = To+‘-’3(1 —5)
k a

_8a S { + (=" 2n + lnT:l —(2n+1)nPejaa? €O [(2n + 1)7rx/2a].
T 2 ' (n + 1)?

where k is the thermal conductivity, ¢ the specific heat and p the density of
the slab, and v = kt/cp.
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243. Solve the preceding problem, assuming that the face x = 0 is held
at temperature T = f(r), while the other face x = a is held at temperature
zero. Consider the special case f(t) =

Ans.

TG, = 25 m in 2% [ f(gpemr e s,

n=1

In the special case.

20281 — "
T(x, ) = A (1—5)7——— ——mn—].
x> ) |: a ° ,Zl n® a

244. Find the temperature distribution in a slab if the face x = 0 radiates
heat into the surrounding medium according to Newton’s law, while the
other face x = a is held at the temperature T, equal to the initial temperature
of the slab.

Ans.

T(x, t) = To{

1 + hx _ i COS Y, e—-)"ivn'/(«t2 sin Yn(a _ X)}’
1+ha syl — (sin 2v,/2v,)] a

where h is the heat exchange coefficient figuring in
\\_’_ Newton’s law, and the y, are consecutive positive roots
(@) of the equation

tany=——y—.

b ah
DY 245. Find the temperature distribution in a con-

ductor with the cross section shown in Figure 50,
\f—‘ heated from the time ¢ = 0 by a d-c current producing

LH/IH

— Joule heat with density Q. It is assumed that the

initial temperature is zero, and that the loss of heat

FiGure 50 into the surrounding medium is described by Newton’s
law.

Ans.

2 ® ~vat/a®
T(x, t)—-2Qa{(1——§—)+ ! Sin v, CSM],
4 2ah S Y31 A+ (sin 2v,/2y,)] a
where the v, are consecutive positive roots of the equation

tany = —.
Y

Hint. Unless a particular solution of the inhomogeneous equation is
subtracted out first, the expansion

1 2 & i
_(1 _ x_) 1 ___sin¥, cos Y2
2ah n=1 Y'n[l + (Sln 2Yn/2Y'n)] a

4 > —a<x<a

must be used to reduce the solution to the form given in the answer.
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246. Find the temperature distribution 7(r, t) in a cylinder of radius a
whose surface temperature varies according to the law

Tlr=a = f(x),
where T = kt[cp, assuming that the initial temperature of the cylinder is
zero. Consider the special cases a) f(t) = A1; b) f(1) = A4 sin wr.
Ans.

T(r, 1) = ZYnJO(an/a)f f(s)e—)'nz(ﬂr—s)/u2 ds,
a® .0 Ji(¥n)

where the v, are consecutive positive roots of the equation Jy(y) = 0. In the
special cases,

21— —yat/a®
a) T(r, t)=A[‘r—2a223e—J0 Yol ];
a

n=1 YnJl(Yn)

Yn
b T(r, t) = {sm ot + 2wa
) nzl (Yn + a*0®Jy(v,)

2
—y: a’w
X [e me _ cos wr — — sin mT]Jo(Y" )}
Yn a

Hint. Use formula 17, p. 385.

*247. Find the temperature distribution in a cylindrical conductor of
radius a heated from the time ¢ = 0 by a d-c current producing Joule heat
with density Q. It is assumed that the initial temperature distribution is zero
and that the loss of heat from the surface of the cylinder is described by
Newton’s law.

Ans.
2 2 S —vav/a® .
T(r, 1) = 222 {1(1 ') +-L gy L lvarla)
k 8 4ah n=1 Yn[l + (ah/Yn) ]JO(Y11)
where the y,, are consecutive positive roots of the equation

YY) = ahJy(Y).
248. Solve Prob. 150, using the method of this chapter.
Ans. 10
2Q 2 l 72 Iai
a1 — ™ L (Yar
T(r,l): J( )’ J(Yn)=0
k gl Yad1(Yn) \'a °

249. Find the temperature distribution in a cylinder of radius @ in which
heat is produced with volume density Q, assuming that the initial temperature

10 To reduce the answer to the form given in Prob. 150, use formula 18, p. 385.



122  THE EIGENFUNCTION METHOD PROB. 250

of the cylinder is zero and that heat flows out of the cylinder with surface
density ¢.

Ans.
Q 2q) qa( ) 2qa g e (w)
Tr,t=(————r+——1 + == Jo\—1,
(r. 1) k  ka 4k k Zl YadolYs) \a
where the vy, are consecutive positive roots of the equation J,(y) = 0.

Hint. Use formula 19, p. 385.

250. The outer surface of a cylindrical pipe a < r < b is held at tem-
perature T|,_, = f(<), while the inner surface is held at temperature zero.
Find the temperature distribution, assuming that the initial temperature is
zero.

Ans.
__In(r/a)
T(r, 1) = In (b/a )f( ) -
N Jo(Yn Jo Yn a) —y3 (1—s)/a?
T2 Wbl — i) o0 -2 [ror !
where

i~ rl?) oo

is a linear combination of Bessel functions of the first and second kinds, and
the v, are consecutive positive roots of the equation R,(b) = 0.

251. Find the temperature distributioninacylinder0 < r < 4,0 < z < [,
assuming that the initial temperature is zero, and that starting from the time
t = 0, the face z = / of the cylinder is held at temperature T, while the rest
of the surface is held at temperature zero.

Ans.
T(r,z, 1) = To[ Z( DT Ilmrer[l)

m 1 m Io(mna/l) l

fanS $Um

m=1 n=1 (mn)z + (Ynl/a)2
al\] 7\ Jolvarla) . mnz
X exp {— m-n:2—|-( ):|} sin — |,
p{ I:( ) 12 YnJI(Yn) I
where Jy(x), Ji(x) and I,(x) are Bessel functions, and the vy, are consecutive
positive roots of the equation Jy(y) = 0.

Hint. Make the boundary conditions homogeneous by setting

z
T = To'l-+u.



PROB. 255 THE EIGENFUNCTION METHOD |23

252. Solve the preceding problem, assuming that the surface of the
cylinder is held at temperature zero and that heat is produced inside the
cylinder with density Q.

Ans.

2 o © _ o—[(rnla)*+(mm/1)?)e
T(r 2, 1) = 8Qa Z Jo(yaria) : i sin (mnz/l)
Tk meiag,... nm1 Yod1(Yn) Yn + (mna/l) m

’

where the y,, are consecutive positive roots of the equation Jy(y) = 0.

253. Find the temperature distribution in a sphere of radius @ inside
which heat is produced with density Q, starting from the time ¢ = 0. It is
assumed that the sphere is initially at temperature zero and that its surface is
held at constant temperature zero.

Ans.
© 7 1\n 2 2
T(r, t) = Ty + %(a2 -+ 2a Z\ D (To + Qa )e‘" wielat gin 2
n

r kn*r? a

n=1

254. Solve the preceding problem if a) heat flows out of the sphere with
surface density ¢; b) heat is radiated into the surrounding medium accord-
ing to Newton’s law.

Ans.

200 1 —-Trzﬂ'/a2
a) T(r, 1) = (.Q_ — 3_q),l.__ @_ZIT‘{_ sin Yz~ ,
k ka kr ;23 Yasiny, a

where the y,, are consecutive positive roots of the equation tany = y;

20ha* & cos Y 23 . Yal
b) T(r, t) = z 1 — /%) sin -2,
)00 = o ey 2 F = Gnapgaygl S

where £ is the heat exchange coefficient and the vy, are consecutive positive
roots of the equation

tan y = .
¥ 1—ah

255. A diffusing substance enters a thin tube of length / with impermeable
walls. Find the concentration distribution in the tube if the density with
which the substance flows into the end x = 0 is a given function of time g(f).
It is assumed that the initial concentration in the tube is zero and that the
other end of the tube is joined to a vessel in which a given concentration C,
is maintained.
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Ans.
> [2(=D"C, ~D(2n+1)3n3/413
Clx,)=C, — 2D | ——— e 7"
0 =G Zo\:ﬂ:(Zn 1)
_1 Jle—D(2n+1)’n’(t—f)/4l’q(.,) d{l cos (2n + Dnx ,
1Jo 21
where D is the diffusion coefficient.
Vq
7=yl 4. Heat Conduction: Stationary
// Problems
T=fyly) / T=f(y)
Z % p 256. Find the stationary tempera-
0 7 =qpglx) ture distribution in a bar of rectangular
cross section, given the temperature
FiGure 51 distribution on its faces (see Figure 51),
Ans.
23, nmy|[® . nmg
T(x, y) = = D {sinh —=> | ¢,(E) sin — d¥
a., a Jo a
R a
+ sinh MJ oo®) sin "2 gt
a 0 a
b .
s
+ [ ) — (071016, ) o S XD
0 sinh (nrcb/a)
where
sinh hTy) sinh fm_(b_":_-‘i) , n< Y,
a a
G,(n,y) =

sinh nry sinh "_“(b_:___l) ,
a a

n>y.

257. Study the special case of the preceding problem corresponding to
the boundary conditions

fo(}’) =0, ) =T, Po(x) = T, Pp(x) = 0.

Ans.
) @S b = ) | gy sinh "™
T(x,y)=T°§+—z a a_ gin X |
4 T n sinh %2 a
a

Hint. Use formula 2, p. 384.
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258. A heat current Q flows into a bar of rectangular cross section
through two opposite faces and leaves the bar through the other two faces
(see Figure 52). Find the stationary temperature distribution in the bar,
assuming that both the incoming and the out-

going currents are uniformly distributed over
the faces.
Ans. Prettett
Tt 9) = —2-[yb— ) —x(a—x)], P —
2abk — a 5
where k is the thermal conductivity. ¢ SRR 1
Hint. To obtain the solution in closed form, FIGURE 52

use formula 9, p. 385.

259. Solve the preceding problem for an arbitrary distribution of current
density on the face, i.e.,

qz|z=0 =ﬁ)(}’), q:a]a:=a =f;1(y)1 qy|v=0 = (Po(x)» qv|1/=b = (Pb(x):
where the functions on the right satisfy the condition
a b
[0t — o ax + [ 110 — s ay =0
for the solvability of the Neumann problem.
Ans.

T(x, y) = ;1; f:(y — () — fo(m)] dn — ﬁ( f:%(i) d§

P2 S oI

a a

— cosh ﬂf ¢y(&) cos ii2 dt
a Jo a

—f[(—l)”f,.(n) — NG, ) dn|- D ong,

n sinh (nmb/a)
where b
cosh — cosh nr(b — ) A
a a
Ga(n, y) = A
cosh 2 cosh n(b — ) s M=)

a a

260. Two faces of a rectangular bar are thermally insulated, and the other
two are held at temperature zero (see Figure 53). Find the stationary tem-
perature distribution, assuming that heat is produced with density Q inside
the bar.
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Ans.
16Qa (=" | cosh [(2n + l)ny/Za]} (2n 4 Drx
— cos .
TG y) = Z, @n+ DU cosh [(2n + Dymb/2a] 2a
/
// 2c 2
7:=0 ﬁb b by
a X o o o F X
S S /4
FIGURE 53 FIGURE 54

*261. Heat is produced with density Q in the bar shown in Figure 54.
Find the stationary temperature distribution, assuming that a heat current of
constant density g leaves the bar through the section |x| < ¢ of the upper
face, while the rest of the surface of the bar is thermally insulated.

Ans.

2 21 © o
T(x, y) = — Q[YE + Zﬂ’z sin (nmc/a) cosh (nmy/a) cos ’L’E]

n’c o n® sinh (nmb/a) a

-+ const, (14)

where k is the thermal conductivity. Another form of the solution, suitable
for alb > 1, is

T(x,y)=f—c{a7_cx2—§y’
n

2 o n o
2ab Z( L smh [nm(a — ¢)/b) cosh =% cos _n_y} + const,
et n®sinh (nma/b) b b

x| < ¢,

2
T(x, y) = %{a M-

2 n
_ 2ab 2(—1) sinh (nme/b) oo M@ — XD o —} + const,
n?c .= n®sinh (nwa/b) b b
|x| > c.

262. Find the stationary temperature distribution in a conductor of
rectangular cross section heated by a d-c current producing heat with density
Q, if the surface of the conductor gives off heat according to Newton’s law.
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Ans.
4Qa 2 sin v,
T(x,y) = 5
( k gl Ya(2Yn + sin 2y,)
N [1 __ah 1 cosh (Y,.y/a)] cos Yo |
Yn tanh (y,b/a) + (ah/y,) cosh (y,b/a) a

where h is the heat exchange coefficient, and the vy, are consecutive positive
roots of the equation

ah
tany =—.
Y
263. Find the stationary temperature distribution in a rectangular
parallelepiped 0 < x < a,0< y < b,0< z < ¢, if the faces x =0, y = 0,
z = O are held at temperature zero, while the other faces have the temperature
distribution

le=a =.f;(y’ 2), T’v=b =.f;(x’ Z)’ T'z:c :fc(x’ }’)~

Ans.

T(x,y,z) =— Z Z {smh Ymn® f f f(&, m) sin —g sin — mtn d§ drn

m-l n=1 Slnh Ymnc

- ;; fo G mn(%, 2) [ " —f o, Q) sin

+ (=1 —f fi(E, ©) sin T d&} dc} sin ’":" sin T |

e,

G, (L 2) = — 1 y {s!nh Ymnl s1'nh Yunlc — 2), (< z,
sinh y,,,c sinh y,,,zsinh v, (c — 0, (> z

264. A heat current Q enters a bar of semicircular cross section through
its plane face and leaves through the curved face (see Figure 55). Find
the stationary temperature distribution in the bar, assuming that the
incoming and outgoing currents have constant
density.

where

Ans.

70 ) = 201 22(

v 1= (1/2n)(r[a)*"?
4n® — 1

where k is the thermal conductivity. FIGURE 55

cos 2ncp} + const,
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265. Find the temperature distribution in a bar whose cross section is
the “curvilinear rectangle” a<r < b, 0< ¢ < a, given the followipg
temperature distribution on the faces of the bar:

T|,_,=0, T|,_p = T T|eeo =0, T|o—a =T,
Ans.

T(r,9) =T, In (r/a) +

In (b/a)
., n(e — @) . nme
w (—1)" sinh ————= h
<3 O T b ™ o) nmn )
a1 . nma In (b/a)
n sinh
In (b/a)
Another form of the solution is
T(r, @) = To| £ + 2
x T
nre/o nw/a nr/o nn/e
o 1= (I [ e ()
X z b = 4 r sin nne .

n

4 [ ( b)mt/a ( a)nn/a:l T
a2y — (8
a b
266. Find the stationary temperature distribution 7(r, z) in a cylinder

0<r<a 0<z</! with an arbitrary axially symmetric temperature
distribution along its surface:

T!z=0 :ﬁ)(r)’ T|z=L =fl(r)’ Tr=a = (P(Z)

Ans.
= 2,,_1 Io("na/l){ (TIH) L #(Q) sin = dC
"—ff [(—1"fp) — So(P)1pGar, 0) dp} in™2,
e I NC N
G, (r, p) =

G G R o I G | L AR
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where Iy(x) and K(x) are cylinder functions of imaginary argument. Another
form of the solution is

2 1 - YaZ f : (m)
T =25 ——— 1 lGnp Yo [ 28) 4
(. 2) az,,z;lsinh (Y,,t/a)Jf(y,,){sm o Jo SRl 70 ) de

+sind B2 [y, (122) 4,

+anee [ 606,20 a2l (12),

Y‘nc Y'n(l _ Z)

sinh —2= sinh ~—%—= | { < z,
a a
G'n(zv c) = 1
sinh Y22 sinh M, >z,
a a

where the vy, are consecutive positive roots of the equation Jy(y) = 0.

267. A heat current Q enters a cylinder 0 < r < 4,0 < z < /through its
ends and leaves through the lateral surface. Find the temperature distribution
in the cylinder, assuming that the incoming and outgoing currents have
constant density.

Ans.

ol 22 z »®
T(r, Z) = 27[1—2];[1_2 - -l —_ 2_12 -+ const,

where k is the thermal conductivity.

268. Find the temperature distributioninacylinder0< r<a,—I<z</!
inside which heat is produced with density Q, if the surface radiates heat into
the surrounding medium according to Newton’s law.

Ans.
2 © :
Tz =22LS ___SiiYa
k n=1 Y'n[l + (SIn 2Yn/2Yn)]
hl
1 _ Y’n IO(an/l) COSM,
Ii(ynqall) n hl To(yqalD) !

Io(yaall) v,
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where 4 is the heat exchange coefficient, Iy(x) and I;(x) are Bessel functiong
of imaginary argument, and the y, are consecutive positive roots of the
equation

tany = h
Y "
Another form of the solution is
. (ah/ 1) cosh (ya2/a)
T(r, 2) = 2Qha"§ [tanh (y,!/a) + (ah/;y,,)‘] cosh (y,l/a) Jo(-er),
n=1 [1 + (ah/Yn) ]YnJO(Yn) a

where the vy, are consecutive positive roots of the equation

Y(Y) = ahJo(y).

*269. A thin wire heated by a d-c current producing Joule heat Q per
unit length is placed inside a cylindrical object (see Figure 56). Find the
temperature distribution in the object, assuming that the lateral
surface of the cylinder is held at temperature zero, while the
ends radiate heat into the surrounding medium according to
Newton’s law.

Ans,

o [1 B ah cosh (y,z/a) :I (ﬂ)
Y. sinh (y,!/a) + ah cosh (y,lfa)l °\ a /’

Ficure 56  Where the y, are consecutive positive roots of the equation
Jo(y) = 0.

Hint. Replace the line source by a source distributed over a cylinder of
small radius e, and then take the limit as € — 0.

270. Find the stationary temperature distribution 7(r, 0) in a sphere of
radius a, assuming that heat is produced with density Q inside the sphere,
while the boundary condition

oT )
— + hT
(ar +

=10,

involving a given function f(0), is satisfied on the surface of the sphere.
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Ans.

_Q 2
T(r, e)_6k(a )+ 3kh ff(ﬁ)smede

auo
2t

( )ﬂPn(cos 9)_[:‘;‘ (8)P,(cos 6) sin 6 d6.

5. Electricity and Magnetism

271. Calculate the two-dimensional electrostatic field due to the elec-
trodes shown in Figures 57(a) and 57(b).

J,
7 lv=v
X 7 L X
v=-V
(6)
FIGURE 57
Ans.
2V

a) u(x, y) = ‘/; (x+y

_V N {(_l)n Sinh nn[a _ ‘\/2(y — x)]

T p=1 20
. nnla — 2y + %)
sin
+ siny "ElaF V2Ay — x)]} 2
2a n sinh nw

b) u(x, y) = V[ + = Z cosh (nmy/a) sin (nvrx/a):|,

7t ,_y cosh (nmthb/a) n
where u(x, y) is the electrostatic potential.

*272. Find the electrostatic field in the electron-optical device shown in
Figure 58.1' What is the distribution of potential along the axis of symmetry?

' By an electron-optical device (for example, a lens), we mean a system of conductors
at given potentials producing an electrostatic field used to govern the trajectories of charged
particles.
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y Ans.
( 1)n+1
ul,_ =Vi1
v=0,z<a [ + Zozn + 1
¢ v =0 , o e~ @nHDma2b G (2n + l)nx}
0 ] 2b ’
u=V 4} 2b X Ve (—1y
i N -
a v=0 Ulv=0.2>0 = Z2n—l—1
FIGURE 58 « cosh (2n 4+ ra ¢~ (Ent1)ma/2b
2b

273. Find the electrostatic potential u(x, y) inside a box of rectangular
cross section 0 < x < @, 0 < y < b with grounded walls, due to a charged
wire along the line x = x,, y = y,.

Ans.
,, Sinh nn(a b—— %) sin m;y 0
u(x, y) =84, sinh Zsin T | x < x,
n=1 nrTa b b
n sinh —
b
nmtX, . NT
o sinh == sin byo nm(a — x) . nw
u(x, y) =84, sinh 222 sin 2 x> x,

. nmwa
=l psinh —
b

where g is the charge per unit length of the wire.

Hint. Solve Poisson’s equation, regarding the charge as uniformly dis-
tributed over the rectangle x, — 8 < x < x,+ 3,y — e <y <y, + ¢, and
then take the limit as 8,e — 0.

274. Find the electrostatic field u(x, y, z) due to a charge at the point
Xo, Yo Zp inside a rectangular parallelepiped0 < x < ¢,0< y < b,0< z< ¢
with grounded walls.

Ans.
u(x, y, z) = 16-n:q Z Z Cmaly, ¥ °) n 2TX0 i B0 iy MTEX i 202
m=1 n=1 Ymn a ¢ a c
where 5 -
m°  n
Ymn = ﬁ,/—z +
a
sinh ¥,,,V, sinh (b —
YmaYo sinh y ( y), Yo < ¥,
sinh v,,,b

GV, Vo) =
"""(y yO) sinh YmnY sinh Ymn(b - J’o)

sinh v, .b

s Yo > ).
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Hint. First assume that the charge is uniformly distributed over a small
volume, and then pass to the limit.

275. A charged wire, with charge ¢ per unit length, is placed inside a
grounded metal box whose cross section is a ““curvilinear rectangle” a <r <,
0 < ¢ < a. Find the elzctrostatic potential u(r, ¢) inside the box.

Ans.
( )n/a. ( )mr/a . nmQ,
sin o r\*™e  (a\"*] | nmo
u(r, @) = 442 o T — ! B sin —=,
(- (6)
)n/m

r<re
nr/a . nT“Po
( ( ) sin N [(b)mr/a (r)‘nn’/a] . nme
- —\T sin —
( )mr/a— (g)mr/a n r b o
a b

where ry, ¢, are the polar coordinates of the wire.

u(r, 9) = 442

’

r>=re

276. Examine the following special cases of the preceding problem:
a) a = 0, b = oo (charged wire inside a wedge);
b) a =0, b = o, « = 2 (charged wire near the edge of a conducting
half-plane);
c) b= o, a =m, @, = w/2 (charged wire over a plane with a semi-
cylindrical boss).

Ans.
e/ o 21t/a
1 — 2(1) cos (0 + <P)+ (1)
To o To .

uil-3 _ 2rc/a ’
o2 s =9 (1]
To o \Fo

1—2 Lcos¢°+¢+—£

b) u(r, ¢) =q In ro 2 o

I—ZA/Lcosu+ L
Fo

2 2 2\2
1+21sincp+(i) 1—2“—sinq>+(“)
ro r

Yo Yol

a) u(r,9) =¢qIn

c) u(r,¢) =qln oI
1-—2—smcp—+-()1+2—smq>+( )
Fo r

ro ror
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*277. Find the electrostatic field inside a grounded cylindrical shell
0 < r<a,0< z< Iduetoachargegq at the pointr =0,z =c.

Ans. The electrostatic potential is

u(r, z) = 4qzsmh bra(l — o)l YaZ Jo(yar/a)

- 2 , z<egc,
a,= sinh (y,l/a) a YnJi(Yn)
4 —
u(r, z) = s Z sinh (yyc/a) sinh Tl = 2) JO(YZr/a) S
a = sinh (y,l/a) a  YaJi(Yn)

where the y, are consecutive positive roots of the equation Jy(y) = 0.
Another form of the solution is

u(r, 7) = 4q zllo(nna/l)Ko(nan/:En;a;(I;(nna/l)Io(nrcr/I) sin n-'rltf i ,_,,;_z .

278. Find the electrostatic field inside a cylindrical shell 0 < r < a,

0 < z < I whose ends and lateral surface are at the potentials ¥, ¥, and V,
respectively.

Ans. The electrostatic potential is
u(r, z) = Vo(l - %) + W3

2 2L — (=)W + (=), — Vo I(nmrl) . nmz
+ z n Io(mta/l)sln 1

Another form of the solution is

B _ &sinh (y,2/a) Jo(y.r/a)
u(r,z) =V + 2V, V)lemh Crdla) 1T
2 sinh [y,(I — z)/a] Jo(Yar/a)
2V, —V - ,
A= Y vah(t)

where Jy(x), J;(x) and Iy(x) are cylinder functions, and the v, are consecutive
positive roots of the equation Jy(y) = 0.

279 Find the electrostatic potential along the axis of a cylindrical shell

0 < r < a,0 < z < 1if the lateral surface is held at a given potential
Ul,ma = f(2),

while the ends are held at potentials ¥, =0 and V, = V.

Ans.

Vz Vi(=1)" mr( sin (nnz/l)
Mo =7 Pt IZI[W +j @ sin = C] I(nmall)

where I(x) is the Bessel function of imaginary argument.
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280. Examine the special cases of the preceding problem which correspond
to the following potential distributions on the lateral surface of the cylinder:

a) f(2) = Va;

(k—1) k
b =V for Y—=<z<— (k=12,...,N);
) f(2) =V, fo N z N( )
0, O0<z<e,
C)f(2)=[
V, e<z<l
Ans.

Yz 23 e sin (nwz/l) |
2 ul'=° T t T Zl[( V=7 + Vol nl(nwall)’

B upoo = 22 4 2
1 T

& .onm L 2k — l)n-rc:l sin (nez/l)

X —D"V+2 — >V ;

Zl[( 'V + 2sin 21\/,21 RSITON Jnly(nmeall)

_ ylz | 2 &cos (nre/l) sin (nrez/l)
9 o = V[z ta Zl n I(nmall)

Comment. Case b corresponds to a piecewise constant potential, pro-
duced in electronic practice by the use of a voltage divider. Case c is the
problem of the distribution of electrostatic potential between two conducting
cylindrical caps separated by a negligibly small space.

281. What potential distribution must be maintained along the lateral
surface of the cylinder of Prob. 279 in order to obtain the distribution

N
u|,=o = V|:E 4 Zaﬂ sin mjl
| —— 1

along the axis, where the a, are any given numbers?
Ans.

N
Uyq = V':E + 2 a1, (ﬂ_"}ﬂ) sin m} :
[ — l l
*282. Determine the electric field on the axis of the electron-optical lens
shown in Figure 59, consisting of two cylinders at potentials ¥, if the potential
distribution in the space between the cylinders is given approximately by
the formula

. Tz
U|yma s<scs = Vsin —.

23
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FIGURE 59

Ans.

__r & cos (nmd/l) cos (nnzfl)
Elr-o = ! [1 + 22 1—(2n8/1)* Iy(nmall) ]

o vy [V} ue0 283. Find the potential distribu-
T 20~ S-r-s X tion in the electron-optical device

‘ S shown in Figure 60.
FIGURE 60
Ans.
u(r’ Z) — V|: _ 22 —Ynl/a inh ~2= YnZ Jo(an/a)} z< l,
a Yn 1(Yn)

u(r, 2) = 2 3, cosh Yot greeta JolYa /@)
=l a Yn‘Il(Y'n)

where the vy, are consecutive positive roots of the equation Jy(y) = 0.
Hint. Use formula 17, p. 385.
284. Find the potential distribution in the
electron-optical device shown in Figure 61, con-
sisting of two semicylinders (with closed ends)

at potentials ¥ = 0 and u = V, separated by a
negligibly small space.

Ans.

z> 1,

u(r, 9, z) = g + 4V2 zsm (mm/a) cos mg

T m=1 n=1 m FIGURE 61
@ ‘ —1
mzf J (Ymnr) dr cosh Ym’n(zz ) ,
Ymnd (¥ mn) - errlnl I i1 (Yomn)
a

where J,(x) is the Bessel function of order m, a is the radius and / the length
of the semicylinders, and the v,,, are consecutive positive roots of the
equation J,,(y) = 0.
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285. Find the distribution of d-c current in a thin conducting sheet, if a
current J enters and leaves via point electrodes applied at the points (4-c, 0)
[see Figure 62].12

FIGURE 62

Ans. The potential of the current distribution is

2J sin [(2n + 1)mc/2a]
ux ) == Zo @n + 1) sinh [(2n + )rb/2a]
(2n + Dr(b — |y)) . (2n + Dnx

X cosh sin -+ const,
2a 2a

where h is the thickness and o the conductivity of the sheet.

Hint. Regard the current as distributed over two small rectangles, and
then pass to the limit.

286. Find the distribution of d-c current in a thin conducting disk of
radius g, if a current J enters and leaves via point electrodes applied at the
points r = b, ¢ =0and r = b, ¢ = © (b < a).

Ans.
¥ [1—2icos¢+ .][ 2—coscp+( )z]
4rtch n r )
|:1+2;coscp+§:||:l+ZEcoscp+ (;;)z:]

Hint. To represent the solution in closed form, use the expansion

u(r, @) =

@ n
—%ln(1—2pcoscp+p2)=zp—cosncp, 0<p<l.
n=1 N
287. Find the distribution of d-c current in a thin cylindrical shell of
radius a, if a current J enters and leaves via point electrodes applied at the
points (a, —=/2, 0) and (a, =/2, 0) [see Figure 63].

12 The differential equation for the potential of the current distribution in a thin
conducting shell is given in Prob. 21.
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Ans.

2J i (—1)" cosh [(2n + 1)(I — |z])/a]
woh ,—o2n + 1 sinh [(2n + 1)l/a]

where A is the thickness and o the conductivity
of the shell.

C? 288. Solve Prob. 287 for the limiting case
|

of a cylinder of infinite length.

u(e,z) = — sin (2n + 1)¢ + const,

! Ans.
P= | 2 —
_277‘-_.01.-_-.7__ u(, 2) = J In cosh (z/a) — sin ¢
#
I
]

"~ 2moh  cosh (z/a) + sin ¢ '

*289. A thin conducting shell of hemispher-

v ical shape lies on a plane base, made of a good

conductor (see Figure 64). Find the distribu-

tion of d-c current in the shell, assuming that a

FIGURE 63 current J enters the shell by an electrode

applied to the hemisphere at the point r = g,

6 = 6,, ¢ = 0, while the current leaves through the rim of the hemisphere (in
contact with the plane).

Ans.

1 —2tan%tangcoscp+tan2&’tan29
2 2 2 2

J
u@®, @) = In
4mah tanzi6 — 2tan %‘-’ tan g cos ¢ + tan® 8

Hint. Introduce tan (9/2) as a new independent variable.

y

)

J

\\

(o)
N\

s

FIGURE 64 FIGURE 65

290. Suppose an infinite slab of conductivity o contains a line current
source (see Figure 65), from which a current J per unit length flows into the
slab. Find the distribution of current in the slab, assuming that the slab is
surrounded by a nonconducting medium.
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Ans. The potential of the current field is

u(x, y) = — L {[coshﬂ — os“(x—‘i'b)]_
4nc a 2
a a

291. Find the voltage distribution in a lossless transmission line of length
1,if the end x = 0 is connected at the time t = 0 to a source of variable e.m.f.
Ee~* and the end x = [ is kept open. It is assumed that the current and
voltage in the line are initially zero.

Ans.
in 2n + 1)mot + 2n + I)Tw[e‘”— cos (2n + l)-n:vt]
2Ev & 21 2la 21
u(x, t) = — 3
al = [ 2n + l)nv]
14+ —
2l

sin 2n 4+ )rx ’
21

where L and C are the self-inductance and capacitance of the line per unit
length, and v = 1 INLC is the velocity of wave propagation along the line.

292. One end x = 0 of a transmission line of length / with parameters
L, C and R is connected to a source of constant e.m.f. E, while the other end
x = l is connected to a resistance R,. Find the voltage in the line if the load
R, is suddenly disconnected.

Ans.
8E
1) = E — —Rt/2L
u(x, 1) 71:2(1 e e
y z [cos (2n + Dmoat RI sin 2n + l)n:u,,l]
b 21 (2n + )nLv, 21
(—1) sin @2n + Drx
21
(2n + 1)? ’
where

R, J RECI?
=" Up = - 2 2
IR JLC (2n + 1yn°L’

293, Find the steady-state electromagnetic oscillations in a perfectly
conducting waveguide whose cross section is a rectangle 0 < x < g,
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0 < y < b, assuming that the oscillations are excited by an infinite line
current source J = J, sin wt passing through the point (x,, y,).

Ans. The complex amplitude of the vector potential of the electro-
magnetic field is
2
g™ () - 0 -0
A= A,(X, y) = oz
n=t J(nn) — k*sinh '\/( )—- k*b

XanhA/( )—k2 sin =X | 0< y <y,
a

2
bmry e g ‘/(n—n)—kzy"
A=A(x, y) = : >

a 5 J(nn)_ 2 sinh ( )_ Kb

xsmh,\/( )——k”(b—y)sm-—-f Vo< y<b,
a

where 0 < x < a and k = w/c is the wave number.

Hint. Integrate the inhomogeneous wave equation for 4, assuming that
the current J is uniformly distributed over a rectangle whose dimensions are
then made to approach zero.

294. Find the electromagnetic field due to an
infinite linear current source J = J; sin w? placed
between two parallel perfectly conducting planes

~— 0 — (see Figure 66).
Ans. The complex amplitude of the vector po-
J tential of the electromagnetic field is

I: nmx o nm(x + 2b):|

a a
nm) [0\
expy\—af \ 7)== VI
X a2 <
FIGURE 66 J (’L’E)z__ ( 9)2
a c
295. Find the steady-state electromagnetic oscillations in a perfectly
conducting waveguide whose cross section is a circular sector 0 < r < a,

0 < ¢ < «, assuming that the oscillations are excited by an infinite line
current source J = J; sin w? passing through the point r = ry, ¢ = o,.

. A=Al =25

n=1
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Ans. The vector potential of the electromagnetic field is 4 = Im{4,e«t},
where

2 + 00,
A(r ©) = =S [ HOUa) HO (krg) — HO(er) HO(ka)]
col

n=1
k
Msﬁnﬂ@—osinm, r<rey
J(ka) o o
Ar, @) = 2”CJ°'Z[H“’(ka)H“)(kr) H®(kr)HP(ka)]
n=1
Iullero) sin =0 gin T2 p s g
J . (ka) o o

k = w/cis the wave number, and J,(x), H(x), H?(x) are cylinder functions.

*296. Find the electromagnetic oscillations in a cylindrical resonator
0 < r < a, —I < z < lexcited by a dipole of moment P located at the origin
of coordinates and directed along the z-axis.

Ans. The complex amplitude of the z-component of the vector potential
is given by the Fourier expansion

A(r, z) = [ao(r) + 2Za (r) cos _lz:l

where the coefficients a,, have the values

a, = I )[Io(a,.a)Ko(a a7) — Ko(an®o(x,r)], o, = */(;_ln)j’

k is the wave number, and Iy(x), Ky(x) are Bessel functions of imaginary
argument.

297. Find the electromagnetic field in an infinite cylindrical waveguide
with perfectly conducting walls, assuming that the source of the oscillations
is a current J sin o? in a coil of given dimensions, with a single uniformly
wound layer (see Figure 67).

Ans. The complex amplitudes of the compo- Z
nents of the electromagnetic field are g ]
E,=E,=0, {”T
: © 2
E,— — 8mwaNz le(y,,b/a) J, (M) A ) :
ca’h A JAy) a r
1— e cosha,z, O<x<Hh/2, 2
X
sinh aah e z > h[2,
¢ 0E, - i 10 —
H.= iw 0z’ H=- ror (rEe).  Ho =0, FIGURE 67
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2
o, =A/:Y—:— kz,
a

Jo(x) and Jy(x) are Bessel functions, k is the wave number, ¢ the velocity of
light, N the number of turns in the coil, and the vy, are consecutive
positive roots of the equation Jy(y) = 0.

where
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INTEGRAL TRANSFORMS

If application of the Fourier method to a given problem leads to a set of
particular solutions depending continuously on some real or complex
parameter, we say that the problem has a continuous spectrum.! Character-
istically, the solution of a problem of this kind is constructed from appropriate
particular solutions by integrating with respect to the parameter, i.e., the
solution takes the form of an integral expansion involving the eigenfunctions
(the continuous analogue of the series expansions considered in Chaps. 4
and 5).2 Problems with continuous spectra are encountered in all branches
of mathematical physics, and can often be solved by the method of integral
transforms, to which the present chapter is devoted. We begin by reminding
the reader of the necessary background information.

By an integral transform of a function f(x), defined in an interval (a, ),
we mean an expression of the form

1@ =["fOKx D dx,  c<T< o, (1)

‘where a and ¢ are real numbers (the value — o is allowed), and K is a function
called the kernel of the transform. More generally, we allow K to depend on
a complex parameter p = ¢ 4 it varying over some region D of the complex

! As a rule, such problems involve unbounded domains.

* The theory of integral expansions has undergone considerable development in recent
years (see e.g., Al, L13, L14, L15, T6, T7 and S6, Vol. V. We also mention the classic
paper by Weyl (W7).

143
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plane. Then (1) is replaced by
f0) =" f(9K(x, pydx,  peD. @)
Examples of transformations of type (1):

1. The Fourier transform
K(x,7) = L 4=, c=—o.
J21
2. The Fourier cosine transform
K(x,7) =J2cosrx, a=0, ¢=0.
™

3. The Fourier sine transform

K(x,r):A/gsinrx, a=0, ¢c=0.
™
4. The Hankel transform
K(x, ©) = xJ (tx), a=0, ¢=0,
where J (x) is the Bessel function of the first kind of order v > —4.

5. The transform

K(x,7) = K;((x) or &'—(_)9 , a=0, ¢c=0,
Jx

where K (x) is Macdonald’s cylinder function.?®

6. The Mehler-Fock transform
K(x,7) = P_,AHT(x), a=1 ¢=0,

where P (x) is the Legendre function of the first kind.
Examples of transformations of type (2):
7. The Laplace transform

K(x,p)=e?, a=0,

where D is the half-plane lying to the right of some line ¢ = o, par-
allel to the imaginary axis.

8. The Mellin transform
K(x,p) = x**, a=0,

where D is the strip between the parallel lines 6 = o, and ¢ = o,,

? The second expression for K(x,r) leads to a more symmetric inversion formula
[see formula (21), p. 195).
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Provided that the function f(x) belongs to an appropriate class (depending
on the integral transform in question), we can express f(x) in terms of its
integral transform by using a suitable inversion formula, which for transforms
of type (1) takes the form

1) =[7 FM(x, ) d. 3

Here M(x, t) is a suitable function defined in the region a < x < o,
¢ < 7 < oo and called the kernel of the inverse transform. In the case of the
transforms 1-6 just enumerated, we have

1 )
1. M(x, 1) = ——¢€ '™,
()= 2=
2
2. M(x, ) = A/— COS TX,
T
2 .
3. M(x, ) = A/-— sin X,
T
4. M(x, ) = tJ (tx),
5. M(x, 7) = 2t sm2h 7t K (X) or 27 szh T K,-Tgx)’
T X 7r NE
6. M(x, ) = 7 tanh ntP_,, ;(x).

In the case of transforms of type (2), the inversion formula takes the form
1 N
1 = L | fomee, p an @
2ri J
where M(x, p) is the kernel of the inverse transform, defined for all x in the

interval (@, o) and p in the region D, while I is a suitable path of integration
contained in D. For example,

M(x, p) = e**
for the Laplace transform, while
M(x, p) = x~?

for the Mellin transform. In both cases, I' is a straight line parallel to the
imaginary axis and lying in the region D.

We now turn to the integral transform method. for solving partial differ-
ential equations. The basic idea is to look for some integral transform & of
the solution, rather than for u itself, deferring the calculation of u until the
end of the problem. In many cases, we can choose the kernel K in such a
way that the original equation for u is transformed into-a simpler equation
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for 4, with one less independent variable. Of course, the extra conditions
on the function u are transformed into corresponding conditions on its
integral transform, but the conditions involving the behavior of u as x — a,
x — oo are automatically taken into account when transforming the original
equation for u. The integral transform method has many advantages, e.g., it
is applicable to both homogeneous and inhomogeneous problems, it simplifies
calculations and singles out the purely computational part of the solution,
it allows us to construct an operational calculus for a given kernel by using
tables of direct and inverse transforms of the functions most commonly
encountered in the applications, and so on.4

The present chapter is devoted to the solution of problems with con-
tinuous spectra by writing the solutions as integral expansions involving
suitable functions or by using the method of integral transforms.® The
problems are not classified by physical content, but rather by the particular
transform used. There are five sections, the first on the Fourier integral and
the Fourier transform, the second on Hankel’s expansion and the related
transform, the third and fourth on the Laplace and Mellin transforms, and
the fifth on expansions with respect to cylinder functions of imaginary
argument.® Many of the more difficult problems are equipped with solutions.

I. The Fourier Transform

Given a real function f(x), defined in the interval (— oo, 00), suppose that

1. f(x) is piecewise continuous and of bounded variation in every finite
subinterval [a, b], where —o0 < a < b < ;?

2. The integral
7 1feorax

is finite.

¢ Although the literature on the application of integral transforms to physical problems
emphasizes the Laplace and Fourier transforms, a number of works have appeared in
recent years on the application of various other integral transforms (see e.g., G5, H3,
K3, L8, L10, S8, 89, S10, T8).

% As already noted, every integral expansion of the form (1) or (2) is accompanied by
an inversion formula of the form (3) or (4), and conversely, and hence the distinction
between the method of integral expansions and that of integral transforms is purely formal.
Thus problems on the Fourier integral will be grouped with those on Fourier transforms,
problems on Hankel’s integral formula with those on Hankel transforms, and so on.

® Other integral expansions and transforms will be found in Chap. 7, which is concerned
with the method of curvilinear coordinates.

7 In particular, this condition is satisfied if f(x) is piecewise smooth in [a, b}, or if f(x)
satisfies so-called Dirichlet conditions in [a, b) (see W8, p. 161).
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Then f(x) satisfies the Fourier integral theorem
1 ® —17\:: TAE
J(x) = b f(E)e df, —o<x<oo, Q)

where, if f(x) has a jump discontinuity at the point x = ¢, the left-hand side
should be replaced by the sum

3[f(c — 0) + f(c + 0)]

(see TS, p. 13). Formula (5) is valid under other conditions (see TS, Chap. 1),
and can be written in the alternative form

f(x) = i J:D [cos )\xf:of (&) cos AE dE + sin )\xf:)f (&) sin AE d&] d\

—oo < x < 0.

The Fourier transform of a function satisfying the above conditions is
defined as

O =—= f f(x)e*®dx, —o <A< 0. (6)
Then, according to formula (5), the inverse of (6) is given by
f(x) = —f fWe™=dy,  —o0 <x< co. )

Formulas (5)—(7) play an important role in solving a wide variety of physical
problems, in particular, boundary value problems for the Laplace and
Helmholtz equations involving infinite strips, infinite cylinders, etc. In
general, the application of these formulas is called for in problems leading
to integration of the equation '

F+Lu~f(x,...) —00 < x < 00,

where L is a linear differential operator which does not contain x, and
f(x,...)is a given function.

Besides the formulas already written, many problems of mathematical
physics involve the application of the Fourier sine and cosine integrals

f(x) = 2 fwsin Ax d)\fwf(E) sin A€ dE, 0< x < oo, 8)
T JO 0

f(x) = 2 ~fmcos Ax dxfwf(ﬁ) cos A€ dE, 0< x < oo, )
TJo 0
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valid for functions obeying the obvious analogues of the above conditions,
i.e., such that

1. f(x) is piecewise continuous and of bounded variation in every finite
subinterval [a, b], where 0 < a < b < ;

2. The integral
[ 1reorax

is finite.

The analogues of (6) and (7) are then

70y = J% ff(x) sindxdx,  f(x) = A/ 7% L “foysinaxdr,  (10)

FACN) =A/% me(x) cosAx dx,  f(x) =A/12r Lmj;()\) cos Ax dr. (11)

Formulas (8)-(11) are encountered in solving boundary value problems for
the Laplace and Helmholtz equations involving half-strips, semi-infinite
cylinders, etc.

The problems which follow are taken from various branches of physics,
and are all susceptible to solution by using expansions or transforms like
formulas (5)-(11).

298. Solve the problem of the temperature distribution in an infinite
rod, with the following special initial temperature distributions T'|,_, = f(x):

a) j(x) — {Tm le < x07
0, Ix| > xo;
b) f(x) = Te ™",
Ans.

To- Xo + X Xg — X
a) T(x,t) = 75[(1) (—z/;—) + (D(_Z_\/—‘;_)],
where @(x) is the probability integral;
b) T(x, f) = T, @/ (1+4a’n)
\/ 1 + 4o®t
Here k is the thermal conductivity, ¢ the specific heat and p the density of the
rod, and © = kt/cp.

299..A semi-infinite body bounded by the plane x = 0 has a given
initial temperature distribution

Y P =f(x), 0< x < oo,
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Find the subsequent temperature distribution in the body, assuming that its
boundary is held at temperature zero starting from the time ¢t = 0. Apply
the general result to the special case f(x) =

Ans.

=z

T(x, 1) = \_/1;[ f:/?e—a’f(x —2/ts)ds — f;ﬁe-”f(—x +2/75) ds],
where
T(x, 1) = T,® (

v
inthe special case.

300. Find the stationary temperature distribution T(x,y) in a semi-
infinite body bounded by the plane y = 0, if the part |x| < a is held at tem-
perature T, while the other part |x| > a is held at temperature zero (see
Figure 68).

Ans.

QNN

T(xa }’) = P'(I,}')§
where ¢ is the angle subtended by the
segment —a< x < a, y=0 at the ‘
point P = (x, y). 70 7= 7:0

301. Find the stationary tempera- FIGURE 68
ture distribution T(x,y) in a semi-
infinite slab 0 < x < o0, 0 < y < b if the face y = b is held at tempera-
ture T,, while the other two faces are held at temperature zero.

Ans.
T(x,y) = 2Ty arc tan (tanh ZX tan 2 )
T 2b 2b

Hint. Use the formula

Y
1=2f SMAX o x>0
T Jo A

302. A heat current Q enters a semi-infinite body through the section
[x] < a of its plane boundary (see Figure 69). Find the stationary tem-
perature distribution in the body, assuming that the current is uniformly
distributed and that the surface of the body radiates heat into the surrounding
medium according to Newton’s law.

Ans.

Q ® sin Aa

e cos Ax dA,
o NA+h)¢

T(x, y) =
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where k is the thermal conductivity of the body and 4 is its heat exchange
coefficient. In particular, the temperature of the part of the surface |x| < a
has the representation in closed form

T|,,=0 (2] <a = -Q—[l — cos ah cos xh + 1 {Si [(a + x)h] cos (a + x)h
' 2kah T

+ Si[(a — x)h] cos (a — x)h
— Ci[(a + x)h] sin (a + x)h — Ci[(a — x)h] sin (a — x)h}},

where Si (x) and Ci (x) are the sine and cosine integrals.

\\\xﬁﬂltf\\\\\ y q O%A d

*303. Solve the two-dimensional stationary heat conduction problem for
a quadrant of thermal conductivity k (see Figure 70), if the face y = 0 is held
at temperature zero, while the other face is covered by a thermal insulator
except for the section 0 < y < b through which heat flows with constant
density g. Find the distribution of heat current through the face y = 0.

Ans.

T(x, y) = 2 f 1 - cosAb eMsinaydy,  q(x,0 =21n (1 +
mk Jo A? T
304. Find the stationary temperature distribution in the quadrant x > 0,
y > 0 if the face y = 0 is held at temperature T,, while the face x =0
radiates heat into the surrounding medium according to Newton’s law.
Find the temperature distribution along the radiating face.

Ans.

b2
_2.

X

® Az
T(x, y) = T.,[1 _ 2k e—ﬂﬂ] o,
nJo AA+ h)

T|poo = %[(’E‘ —Si (yh))cos yh + Ci (yh) sin yh:],

where Si (x) and Ci (x) are the sine and cosine integrals.



PROB. 307 INTEGRAL TRANSFORMS |51

Hint. Take the Fourier sine transform of the required function T(x, y),
i.e., multiply the relevant differential equation by sin Ay and integrate with
respect to y from 0 to co.

305. The end of a semi-infinite cylinder 0 < r < 4,0 < z < oo is held at
constant temperature T,, while the lateral surface is held at temperature zero.
Find the stationary temperature distribution in the cylinder, by expanding
the required function in a Fourier sine integral with respect to z.

Ans. 5 [ 1Ow) sin A
T— To[l__f Mﬂ_zﬂ],
nJo I(Aa) A

where Iy(x) is the Bessel function of imaginary argument.

Hint. Introduce a new unknown function u =T — T, and use the
integral

1=3f SINAX x>0,
7 Jo A

306. Solve the preceding problem, assuming that a given temperature
distribution T|,_, = f(r) is maintained on the end of the cylinder, while the

lateral surface radiates heat into the surrounding medium according to
Newton’s law.

Ans.
T(r, z) = 7—2t J; Asin Az [L Gi(p, Nef(p) dp:l dx,
where
{[AKy(Aa) — hKy(Aa)]I(Ar)
+ D) + AL OaIK 00} 0D o o,
GA(P» r) = D()\)
{[AK,(Aa) — hKo(Aa)lIo(Ap)
Io(kr)
+ [ML(Aa) 4+ hIg(Aa)IKo(Np)} —— D()\) p=r,

D(\) = M,(Aa) + hIy(2a),
I.(z) and K,(z) are Bessel functions of imaginary argument, and 4 is the heat
exchange coefficient.

307. Find the stationary temperature distribution in a semi-infinite
cylinder 0 < r < a, 0 < z < oo if the lateral surface is maintained at the
temperature T|,_, = f(z), while the end radiates heat into the surrounding
medium.

Ans.

_ 2 Io(Ar)  da ®
Tma—nﬁ A)ﬁ)W+vff©%©ﬂ,

@x(z) = A cos Az + h sin Az,
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Hint. To solve the problem, use the following generalization of the
Fourier integral theorem (see L13, p. 79):

2 J ) j
= - d\ dt, 0< x < oo,
JO =" i Py F®ex®) dt

308. Find the two-dimensional electrostatic potential in the half-space
—00 < x < ®,y > 0,if the potential distribution u|,_, =f(x) is maintained
on the plane y = 0.

Ans.
+00 /2
u(x, y) = J‘ —'Li)— =lf f(x 4+ y tan 0) d6.
© (E - x) T J—m/2
Hint. To reduce the solution to final form, use the integral
® a
f e*cos bx dx = 47—, a>0.
) a"+ b
y
P=x,y)
9 X
vl Wtk vl et uth
FiGURE 71

309. Examine the special case of the preceding problem corresponding to
the piecewise constant potential distribution in the plane y = 0 shown in
Figure 71.

Ans.

1 n
u(x, y) = 1—: z Vidgs
k=0

where V, is the value of the potential in the interval (x,_;, x;) and ¢, is the
angle subtended by (x,_,, x,) at the point P = (x, y).

310. Find the distribution of electrostatic potential in the planar electron-
optical lens shown in Figure 72 (cf. Prob. 282).%

Ans.
d.

Vo+Vy Vo, — Vi{*® cosh Ay sin Ax
u(x, y) = s + 1, e 1J; Y

2 b1 coshih A

® Note that the integrals representing the solutions of Probs. 310-311 can be expressed
in terms of elementary functions.
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Hint. Subtract out the particular solution #(V, 4 ¥;) of Laplace’s
equation, and then use the expansion

1=3f SIMAX x>0
0

T A
¢ y
v vzl Ve h [
|
I 1 i |
_21/, 0 X —_ T) { 0 ; X
| |
vk v=h [ L Va.j Ve
20
FIGURE 72 FIGURE 73

311. Find the distribution of electrostatic potential on the axis of the
planar electron-optical lens shown in Figure 73.
Ans.
V, — sz‘” sin Aa cosh Ay
u(x, y) = Vs 2
(x.7) 2t T o A coshAh
312. A thin charged wire of charge g per unit length is placed between
two parallel conducting planes (see Fig-

cos Ax dA.

ure 74). Find the resulting distribution Y
of electrostatic potential, and also the .0
density of charge on the planes y =0 T £
and y = h. A 97
Ans. The potential distribution is | T
X
u(x, y) = 4qf sinh 7§(h —a) 0 v=0
° A sinh Ak FIGURE 74

X sinh Ay cos Ax dA, y < a,
where the corresponding formula for y > a is obtained by permuting y
and a. The charge density on the planes is
1 )
q ra cosh (rx/h) — cos (nafh)
o(x) = — ——sin — X
2h h 1
cosh (nex/h) + cos (rafh)

y=h

Hint. First assume that the charge is uniformly distributed over the
rectangle —8 < x <3, a — e <y < a+ ¢, and then take the limit as 3,
e — 0. To solve the corresponding Poisson equation, take the Fourier cosine



154 INTEGRAL TRANSFORMS PROB. 313

transform of the unknown function, by multiplying the equation by cos Ax
and integrating with respect to x from 0 to co.

*313. Find the electrostatic field of a thin charged wire of charge ¢ per
unit length located near the plane interface between two dielectric slabs (see
Figure 75).

7 Ans.

P2 X € — €y X
sy B =t i
% // B1R1 &1 & T Ep Ky

"’2 q(y—a)+q_el—eza+y

% B = ,
\ §§ ” sR? e+ e R
§([2) \\ E(z) — __zi_i , E(2) — 2q y—a ,
N g+ eRE " g +e R
where
FIGURE 75 sz — x? + (y * a)z.

Hint. To avoid any difficulties associated with the behavior of the
logarithmic potential at infinity, set up a system of equations for the com-
ponents of the electrostatic field.

314. Find the potential distribution in the electron-optical lens shown in
Figure 76.

Ans.

Vi+ Ve N Vo — V, r I(Ar) sin Az I
2 T o I(xa) A

where Ij(x) is the Bessel function of imaginary argument.

u(r, z) =

£l

FIGURE 76

Hint. Reduce the problem to one with boundary conditions which are
odd in the variable z, and then make a sine expansion, using the formula

1=3j Sindz o 2>
0 A

315. Find the potential of the electrostatic field due to a point charge g
placed on the axis of an infinite conducting cylinder of radius a.
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Ans.

_ 49 29 f ® Ko(Aa)
,2) = = — | —=—=1I(Ar) cos Az dA,
u(r, 2) JrE+ 22 wmde I(a) o)

where Ij(x) and Ky(x) are Bessel functions of imaginary argument.
Hint. In the course of the calculations, use the following integral rep-
resentation of Macdonald’s function:

Ky(0a) J’w COs Az d
a)=| F—/——daz.
d o Jai+ z*

316. Find the distribution of electrostatic potential inside a conducting
cone 0 < r < 0, 0 < 6 < 6, due to a point charge ¢ on its axis (see Figure
7).

Ans.

q
Ja® — 2ar cos 6 + r*
L fm P_y4,(—cos 6By)
JraJdo  P_y . .(cos 6)
where P (x) is the Legendre function of the first kind.

u(r, 0) =

ry dr
P_y4,i(cos 6) cos |7In ; oshoes”

z
Hint. Introduce new variables r

|

x=InL, u=r12, |

“ |

To expand the source, use the following integral representation q+

of the Legendre function: I

® COS TX "l

dx.

o y/2cosh x — 2 cos « {
317. A point current source is placed on the axis of a

cylindrical tube filled with a medium of conductivity o, and 0

surrounded by a medium of conductivity 6,. Find the potential  Ficure 77

of the current field in each medium.?

P_y; i(cosa) = 2 cosh v
T

Ans.

ul(r’ Z)

J 1 2 ®  Ko(Aa)K;(Aa)Io(Ar) cos Az dA
==t 25— o) :
dno /Py 22 ¢ o 6.K(Aa)l;(A\a) + o,1(Aa)K;( a)

J f ® Ko(Ar) cos Az dx
2rfa Jo o, Ky(Aa),(Aa) + oalg(Aa)Ky(Aa) A

uy(r, z) =

® This is the problem of ‘“‘electrical coring” (see Fock’s paper F2).
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where I,(x) and K,(x) are Bessel functions of imaginary argument, J is the
current emanating from the electrode, and a is the radius of the tube.

318. A line current J is placed between the boundary planes of two
massive bodies made from iron of magnetic permeability p. (see Figure 78),
Find the magnetic field in the air space.

y w Ans.
H 2J y
Mfaa’w H“’=__[x2+y2_(“_l)
@ —Ab
—_— xf ¢ sinh 7'\y cos Ax dA |,
) o cosh Ab + psinh Ab .
77747777777777777 2 [ x
H, ==— + -1
(M) R B (=D
© —Ab N
FIGURE 78 xf e " cosh 7.\y sin Ax dA |.
o cosh Ab + p.sinh Ab i

Hint. Take the Fourier transform of the equations for.the.components of
the magnetic field.

319. Solve the preceding problem, assuming that the iron /has infinite
magnetic permeability.

Ans.
H,=— 2—"|: - y —f e — =2 sinh Ay COs AX d)\]
clx®*+y* Jo sinh Ab
H, — 2—1[ X +j e osh Ay oo d)\]
clx*+y ) sinh )\b

320. A current J flows in a circular loop placed on a cylindrical core
made from material of magnetic permeability w (see Figure 79).

Find the distribution of magnetic field on the axis of the core ’

(see Lebedev’s paper L3). |

Ans. !

Hjpo— — 4uJ J‘ K,(Aa) cos Az " . i
10a)K;(Aa) + pli0a)Ko(Aa) -

where 7,(x) and K,(x) are Bessel functions of imaginary argu-
ment, and c is the velocity of light.

{

*321. Find the electromagnetic field radiated by a line cur-
rent Jyetot placed inside an ideally conducting shield of rectangu-
lar cross section (see Figure 80). Investigate the limiting case
b— oo, FIGURE 79
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Ans.
4ikJ [ _sin \a_ sinh [\/7\2 K (b — |)’|)]
o V3 —k®*  coshVA? — k%

where k = w/c is the wave number and E, is the complex amplitude. For
b — oo, we have

E(x,y) = — n Ax dA,

B ) = " (HPUS G+ 0 ) ’
— HO(kN(x — a)® + y¥)] b o
in terms of the Hankel function H®(x), ¢ , —° d
which gives the familiar law for reflection by
a conducting plane of the radiation due to a
FiGure 80

line source.

322. Find the electromagnetic field produced in a cylindrical waveguide
by a dipole of moment P placed at the origin and directed along the axis of
the cylinder. Find an expression for the longitudinal component of the
electric field.

Ans. The complex amplitude of the z-component of the electric field is

2P [© o [1(W/N — K ))Ko(sA — kP 1)
E= A
j ( [ 1,2 — K a)
KN — ol — i r)] cos Xz di
12 — K a) ’

where a is the radius of the cylinder, and Iy(x), Ky(x) are Bessel functions of
imaginary argument.

TW

323. Find the steady-state oscillations produced by a point source of
sound of frequency w placed on the axis of an infinite cylindrical tube with
ideally reflecting walls.

Ans. The velocity potential is

4 sin (wt — kv/r® + z%)

u(r, z, t) =

Vit 4 2
2A4 ot K(\/?\ — k%a)
+ Im [ f ——I A kP ]
- 0 T (\/)\ 0(\/)\ k® r) cos Az dA

where Iy(x), I;(x) and K,(x) are Bessel functions of imaginary argument.

Hint. Concerning the character of the singularity at the source point,
see Prob. 85.
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*324. Study the stress distribution in an elastic half-plane due to arbitrary
stresses

cvlv=o :f(X), T::ulv:o = g(x)
applied to its boundary.

Ans.

_2 (" YO+ G —B®) ey
> nL» Vg 00
2y [ yf(€) + (x — E)g(k)
= —E)d
w2 TENCET
V() + (x -- §)g&)
v nf-m e &

Hint. Take the Fourier transform of the system of equations

do, 01, ot oc

i 1 0, i} v _ 0,

Ox + oy 0x + oy

d%c, n &, _ o*t,,
dy?  ox* ox 9y

from two-dimensional elasticity theory.

=0

325. Examine the special case of the preceding problem obtained when

a concentrated force P with components P, = 0 and P, = P is applied at the
origin.1?

Ans.
_ _2Pxy oo 2Py
,n(x2 + y2)2 ’ v ,n(xz + y2)2 ’
o _2Pxy®
v n(xz 4 y2)2 ‘

326. Study the stress distribution in an elastic half-plane y > 0 due to a
concentrated force P applied at the point x = 0, y = a and directed along
the y-axis.!! Find an expression for the shear stress 7,

Ans.

oy = :’:{(1 = )[E2 - R—z] + 21 + v(a — y)[y L "RTa]

2

2 2
1 1

1% This is Flamant’s problem, solved by inspection (without recourse to Fourier trans-
forms) in courses on elasticity.

11 Another way of solving this problem is given in M6,
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where

. Ryuy=Vx*+(y+a?
and v is Poisson’s ratio.

Hint. Regard the force P as a distributed body force with components
X and Y, and use the equations

do, . Otg, or 0o,

bk ST X=0, = 21 y=0,
0x + dy + 0x + dy +

0° 0°

o,
a—yz(a,c —ve,) + —8;2(6,, —va,) = 2(1 + V)fa;
from two-dimensional elasticity theory.
327. Study the two-dimensional stress distribution in an elastic strip
compressed by two concentrated forces P applied at the points x =0,
y = +b(see Figure 81). Find the normal stress o, along the axis of symmetry.

Ans.

ZEI sinh Ab + Ab cosh Ab cos Ax d\.
0

2)\b + sinh 2Ab

61/|11=0 =
T

Hint. See Prob. 324,

y

a P
L = A
N 2NNN £
P d

X

!

FIGURE 81 FIGURE 82

*328. A semi-infinite thin elastic plate, clamped along the edge y =0,
is loaded by a concentrated force P at the point (0, b). Find the bending
moment M and the shear force N along the clamped edge (see Figure 82).

Ans.

P 2P
nb® 4+ x*’ n (b® 4 x3)?

Hint. Replace the concentrated force by a force uniformly distributed
over the rectangle —8 < x < 8, b — e <y < b + ¢, and take the Fourier
cosine transform with respect to the variable x of the differential equation
for deflection of the plate. Then pass to the limit §, e — 0.

Mlu=o = -

-
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329. A thin elastic plate, in the form of an infinite strip —o0 < x < oo,
0 < y < b of width b, is clamped along its edges and loaded by a con-
centrated force P at the point (0, ). Find the bending moment along the
edge y = 0.

Ans.
—M |v=0
__coshxdh
sinh® Ab — X*b*’

330. Solve the preceding problem, assuming that the edges of the strip
are simply supported and that the force is applied at the point (0, 5/2). Find
the deflection of the center of the strip due to the force.

Ans,

- ff [a sinh Ab sinh A(b — @) — (b — a)Ab sinh Aa]
T JO

P 2 W o1 —
u(0,bj2) = 2 |7 Simhe—p
8nD Jo p® cosh® (u/2)

where D is the flexural rigidity of the plate.

du.,

2. The Hankel Transform

Given a real function f(r), defined in the interval (0, o0), suppose that

1. f(r) is piecewise continuous and of bounded variation in every finite
subinterval [a, b], where 0 < a < b < o0;

2. The integral
© -
IS
is finite.
Then f(r) satisfies Hankel’s integral theorem'?

fO =7 n0ma [T 100 de,  0<r<w,  (12)
where J (x) is the Bessel function of the first kind of order v > —3%. If f(x)
has a jump discontinuity at the point r = ¢, the left-hand side should be
replaced by the sum
#Hfle —0) + f(c+0)]
(see W4, p. 456 fI.). Formula (12) is one of the most important integral
expansions encountered in mathematical physics.

The Hankel transform of a function satisfying the above conditions is
defined as

™ =[T1rn0nrdr,  0<A< o, (13)

12 Sometimes called the Fourier-Bessel integral.
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Then, according to formula (12), the inverse of (13) is given by

S0 = [T 7000, 0<r< . (14)

There is a generalization of formula (12), known as Weber's integral
(see T6, p. 75)

_ © (P)‘(r)l di ©
f —fo *-——-JE(M) "+ Yi0a) L feep)pde, a<r<oo, (15)

involving the linear combination

CP)\(V) = Jv()\a)yv()‘r) - Yv()‘a)‘]v()‘r)

of Bessel functions of the first and second kinds (v > —}). A sufficient
condition for validity of (15) is that f(r) be piecewise continuous and of
bounded variation in every finite subinterval [«, 8], where @ < a« < § < o0,
and that the integral

[7 VFismiar

be finite. It should be noted that Weber’s integral reduces to Hankel’s
integral‘as a — 0. '

Hankel’s integral expansion and the Hankel transform can be used to
solve a number of problems of mathematical physics, e.g., boundary value
problems for the Laplace and Helmholtz equations involving half-spaces and
regions bounded by parallel planes, certain problems of elasticity theory, etc.!®
The problems that follow can be solved quite readily, as soon as one has
acquired the necessary experience in handling Bessel functions.

331. Find the stationary temperature distribution in the half-space z > 0,
if a given temperature distribution T]z=o = f(r) is maintained on the boundary
z = 0. Examine the special case

Ty, r<a,

o |

0, r>a.
Ans.

T(r,2) = [, eI an [ 7(elare)e de.

13 In general, application of these formulas is called for in problems leading to in-
tegration of the equation
10/ ou v?
;E("a—")—r—i“*‘[‘u—f(r,...), 0<r< o,

where L is a linear operator which does not contain r, and f(r, . ..) is a given function.
Weber’s expansion plays the same role for the interval a < r < oo (see Probs. 335-337).
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In the special case,
T(r, z) = Toa f: e, (ha)Jo(Ar) d),

where Jy(x) and J,(x) are Bessel functions.
Hint. To evaluate the integral

[ 34xede do
use the differential equation for the Bessel function.

332. Solve the preceding problem, assuming that the half-space is heated
by a thermal current of constant density ¢, incident on the disk of radius q
with center at the origin, while the rest of the boundary exchanges heat with
the surrounding medium according to Newton’s law.

Ans.
e—lz

A+ h

where £ is the heat exchange coefficient.

T(r, 2) = ‘-If fo N J,0a) ) dn,

333. A cylindrical rod of radius a, heated to temperature T, is intro-
duced into an unbounded medium whose initial temperature is zero.
Find the temperature distribution TY(r, f), assuming that the medium
and the rod have the same thermal conductivity k, specific heat ¢ and
density p.

Ans.
T=Toa |, e U006 dh,
where © = kt/cp.
*334. Examine the process of temperature equalization (in unbounded
space) of an arbitrary axially symmetric initial temperature distribution

T|mo=f(r), 0<r<co.
Ans.

T(r, t) = 1 ~lxwe“(”br’i)/"‘lo (r_s) f(s)s ds,
2t Jo 2t

where Ii(x) is the Bessel function of imaginary argument.
Hint. To calculate the coefficient in the Fourier-Bessel integral, use the
formula
L] o
f e LA g d = - e—<r’+3‘>f“1.,(lf).
0 27 27
(see W4, p. 395).
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*335. A cylindrical hole of radius a is drilled in an infinite body, and the
walls of the hole are maintained at temperature T, starting from the time ¢ =0.
Examine the evolution of the temperature distribution in the body, assuming
that its initial temperature is zero.

Ans.
2T, r (NIl — ] d)
0

(. ) Jia) + Yi(a) A’

T
where
ox(r) = Jo(Aa) Yo(Ar) — Yo(Aa)Jo(Ar),

and Jy(x) and Yy(x) are Bessel functions of the first and second kinds.

Hint. Set v =0 in formula (15).

336. A cylindrical conductor of radius @ heated by a d-c current passes
through an infinite slab of width 2k (see Figure 83). Find *he stationary
temperature distribution in the slab, assuming that the surface temperature
of the conductor is Ty, while the faces of the slab have temperature zero.

Ans.

T(r,2z) = To[l — 2[‘” ea(r) . cosh Az @],
n Jo Ji(Aa) + Y3(Aa) cosh Ak A

where o,(r) has the same meaning as in the preceding problem.

- —

&>

g

- RERREREE!

FIGURE 83 FiGurg 84

337. The walls of a cylindrical hole terminating at the plane surface of an
infinite body (see Figure 84) are held at a given temperature 7,. Find the
stationary temperature distribution in the body, assuming that it radiates
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heat from its surface into the surrounding medium according to Newton’s
law.
Ans.

2h [ ox(r)e ™ dx ]

T(r, z) = To[l — ) A + h)[J20a) + Y30a)ld

where
ox(r) = Jo(Aa)Yo(Ar) — Yo(Xa)Jo(Ar),
and A is the heat exchange coefficient.

338. Find the distribution of electrostatic potential in the space between
two grounded plane electrodes z = a, due to a point charge ¢ at the point
r=0,z=0.

Ans.

u(r, z) = Jo(Ar) d,

q f ®© _,acosh Az
1 g =
V4 22 0 coshAa
in terms of the Bessel function Jy(x).

Hint. Use the formula

1 ° ~Az
——— = e MJ(Ar)dA, z>0.
Vit D

339. Find the electrostatic field due to a point charge g located near the

plane interface between two media with different dielectric constants (see

Figure 85).
Ans.
ul(r,z)z(i-l- g_i__"‘:zl,
&Ry, €&+ R,
2g 1 _—
uy(r, z) = — — 2 2
or, 2) &t eR’ R, x/r + (z F a)

Hint. To represent the solution in closed form, use the hint to Prob. 338,

7
7
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FIGURE 85 FIGURE 86
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340. Find the electrostatic field produced by two point charges +¢ and
—q, between which there is a slab of material of dielectric constant ¢ (see
Figure 86). Calculate the field on the line joining the charges.

Ans.

© —A(a—b)
s f Ae cosh Az a, Iz <b,
0

sinh Ab 4 e cosh Ab

q fw sinh Ab — ¢ cosh Ab
(Iz| — a)® o sinhAb + ecosh Ab
341. A .d-c current J enters the ground through an electrode making
contact with the earth’s surface (z = 0) over the area of a disk of radius a.
Find the current distribution in the earth, and examine the limiting case of a
point contact.
Ans. The potential of the current field is

E'zlr-=o =
e M BHD A gy |z| > b

u(r, z) = —J—f I oa 00D, z>o,
Tac Jo A

where Jy(x) and Jy(x) are Bessel functions, and o is the conductivity of the
earth. In the limiting case,

—J

2navrt + 22

342. A point electrode carrying current J is placed on terrain consisting

of two layers of different conductivities (see Figure 87). Calculate the
potential of the current field on the earth’s surface.

u(r,z) =

Ans.
ulz=0 - Znilr + 27‘1.{0-1 (o1 = o3) :cl sinhe):a‘—’:(i;:)cosh Aa dh.
-— - - _. — , 2
\(a // 0 I 7
\ o /.
FIGURE 87 FIGURE 88

343, Determine the electromagnetic field of a vertical radiator (antenna)
placed at height 4 over the plane surface of the earth, assumed to be perfectly
conducting (see Figure 88).
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Ans. The z-component of the vector potential of the electromagnetic

field is p
e __+&.

Al Z):Z( R R

(all other components vanish), where
RV +r, R-JGIWTin
o is the frequency of the oscillations, ¢ is the velocity of light, P is the
moment of the radiating dipole, and k = w/c.
Hint. Use the expansion
iVt f © e‘vm‘J.,()\r))\
Vit b e
344. Solve the preceding problem, assuming that the earth has finite
conductivity.
Ans. The vector potential of the electromagnetic field is

P e—ik;R
A = _{
cl R +

—ikR e—ncl"z)
’

dx.

[

o 22— k2
V2 — I — VI s Vi )
VA2 — k2 4 KA — K2

VA ViR
2PKE (> AeT' AR
A® — 2f Nex 3 2\/ S 2J,,()\r') dx,
N ¢ Jo kiNA® — ki + kiNA* — k;

where -
o cw — 4moi)w
=@ gy = Yo —dmode

c c

in terms of the earth’s dielectric constant € and conductivity ¢.14

345. Using the solution of Prob. 344, find an expression for the normal
component of the electric field on the earth’s surface for the case where the
dipole is placed directly on the surface itself (# — 0).

Ans.

E o — 2Pmi(5_2)2 leyky {( ki kg kg 1 ) otk

- o \iy) K —KANKE - kE o kR

. ( k?kz ik, ki 1)e~ikzr

ki+ Kk  r o kr?
3,3 e JE—
(ki + k3) Ve ko kg s2—1
14 Details on the transformation of these expressions into a form suitable for calculation

as well as an analysis of the corresponding physical picture of wave propagation, can be
found in the specialized literature (see e.g., F6, Chap. 23, Sec. 1 and S14, Secs. 31-32).
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Hint. Use the Van der Pol substitution
. d—L
1 klk2 J‘\/k12+k2,/k1 \/sz _ 1
N N N A oo R
kz + k2

346. Determine the electromagnetic field

of a horizontal radiator located at height z
h above the plane surface of the earth, P
assumed to be a perfect conductor (see m A R
Figure 89). ,,‘7\;
. 0 (
Ans. The vector potential of the electro- o + y
magnetic field has the components (2 _+ y P~
—~ikR  ,—ikR
Az=A(r,z)=’—°(e——e_ )
<\ R R F 89
A, =4, =0, IGURE

347. Solve the preceding problem, assuming that the earth has finite
conductivity.

Ans.
A(l) _ B{e—ihR
e cl R
y SRRV 5 OIS k2 VA ) ),
0 \/)\2_ k2\/7\2— k2+\/)\2
AP = (k1 — k) cos ¢
o 2~V Nk (z+h)
y f A%e J,(Ar) a,
(k32 — k2 + K322 — KD(VA2 — k2 + AR — Kk
A(z) 2P Ie—-’\/l —k1 h+\/l —kg zJo()\r)
clo N KL IN—K »
49 =22 3y cos
c
w 2 VN VA ks
XJ‘ A%e J1(7\r) dn
o (k32 — K+ kWA — KW — K2 + VA — kD)

For further details, see F6, Chap. 23, Sec. 2 and S14, Sec. 33.

348. Find the magnetic field of a horizontal radiator lying on the plane
surface of the earth, assumed to have dielectric constant € and conductivity o.
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Show that the magnetic field on the earth’s surface can be expressed in terms
of elementary functions.

Ans,

Hoo= 2P sing d [1 d ( ar _ 1e‘"“")].
= ck’—k’dr rdr r

349. Find the steady-state acoustic vibrations due to a disk-shaped
piston of radius a inserted in an infinite screen and vibrating with velocity
o Sin w1,

Ans. The velocity potential is

o J(Aa)
u(r,z,t) = Im {v agt| ———
( ) 0 o \/)\2 — kz

V¥4 () d)\},

where k = o/c and J(x), Jy(x) are Bessel functions.

350. A concentrated normal force P is applied to the plane surface of a
semi-infinite elastic body z > 0. Study the resulting stress distribution in the
body, and find expressions for ¢, and 7,,.

Ans.

o, = — 3P 22(rt 4 2% 1, = _3P rz¥(r® +
2r 2r
where the force P is assumed to be applied at the point r = z = 0.

Hint. Use the formulas

2)-5/2,

0 0’u 0 0 u]
"= % [(2 VA ] o [(1 KR
expressing the stresses o, and t,, in terms of the biharmonic stress function
(v is Poisson’s ratio). Then expand the quantities Au and 9%*u/0z* in Hankel
integrals (see also the solution of Prob. 351). In the boundary conditions,
first replace the concentrated force P by a force uniformly distributed over a
small disk of radius ¢, and then take the limit as ¢ — 0.

g

*351. Generalize the preceding problem to the case of a concentrated
force P with components P, =P, =0, P, = P, applied at an arbitrary
interior point of the body (with coordinates r = 0, z = a). Find an expression
for the stress o,.

Ans.
P (. (1 1), Mz—a)
g, = 8n(1 — v) (=2 a)(Ri’ Rg) " Ry
. . 15(z+a)* 9
+ (_Z;;_a) [a + (3 — 4V)z] + 2az(z + “)[_(Z_R;—Q - 5‘—3]}

where R, , = NI (z F a2
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Hint. Use the stress function

P
—_— 2 2
8n(1—v)‘/’ + 7

corresponding to a concentrated force P (with components P, = P, =0,
P, = P) applied to the point r = z = 0 of an infinite elastic body (see T4,
p- 355).

352. Study the transverse oscillations of an infinite elastic plate due to a
concentrated force P(¢) applied at the point r = z = 0 starting from the time
t=0.

Ans.

1

i b9 3 el

where D is the flexural rigidity and p the density of the plate, and Si(x) is the
sine integral.

u(r, t) =

3. The Laplace Transform

The Laplace transform is acknowledged to be the most effective tool for
dealing with the nonstationary problems of mathematical physics. Since the
whole subject has been thoroughly treated in the literature,’® we shall confine
ourselves to a few brief remarks, mainly for reference purposes.

Let f(¢) be a real function defined in the interval (0, o) such that

1. f(¢) is piecewise continuous in every finite subinterval [a, T], where
I<a<T< o,

2. The product f(f)e-t is absolutely integrable on (0, c0) for some
suitable 6; > 0.

Then the Laplace transform of f(t) is defined by the formula

f(p) = fowf (e dt, (16)

where p = ¢ 4 it is any complex number in the half-plane Rep > o,.2¢ If
it is also assumed that f(¢) is of bounded variation in every finite subinterval

15 See the relevant books cited at the end of this chapter (p. 202).

16 Laplace transforms can also be defined for functions satisfying weaker conditions.
Note that the function fis an analytic function of p in the domain Re p > ¢,. The values
of fin the rest of the complex plane can be determined by analytic continuation.
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[a, T]," then formula (16) can be inverted by using the Fourier-Mellin
theorem

o=+ f fp)e* dp, an

where I' is a straight line parallel to the imaginary axis lying to the right of
the line Rep = o, (see Figure 90). Conversely, (17) implies (16) if f(p)
satisfies appropriate conditions.

The application of the Laplace transform
T P method is called for in nonstationary problems
rr leading to integration of the equation

1
a* o
where L is a linear differential operator which
does not contain ¢, @ and b are given constants,
and f(¢, . . .) is a given function. Its use allows
FIGURE 90 us to eliminate the time ¢, thereby reducing the
problem to the determination of a function 7
satisfying a simpler equation. In particular, if the unknown function u
depends only on one spatial variable (in addition to the time), the equation
for 1 will be an ordinary differential equation.

After finding #, the problem can be solved by using the inversion formula
(17), where the path of integration I must be chosen in such a way that all
the singular points of # lie to the left of I'. The actual calculation of the
complex integral (17) can be carried out by various methods, the most
important of which involve the use of Cauchy’s theorem and residue theory,
expansion in series, application of the convolution theorem, use of appropriate
tables,'® etc. The variety of available methods makes it possible to obtain
the solution of the problem quickly, in the form most suitable for understand-
ing the physics of the situation and making subsequent numerical calculations.
This constitutes the great advantage of the Laplace transform method, which
is particularly suitable for studying wave propagation along transmission
lines, physical problems with boundary conditions involving time derivatives
(see Probs. 365, 367, 370), and so on.

This section contains a variety of nonstationary problems, dealing first
with heat conduction, then with electricity and magnetism, and finally with
mechanics. Because of the abundance of specialized literature on Laplace
transforms, we have omitted the simplest problems belonging to these
categories. At the end of the section, we give a few problems of a more

ou
b"a‘t—f(t,---).

o Lu —

17 In particular, this condition is satisfied if f(r) is piecewise smooth in [a, T}, or if f(¢)
satisfies Dirichlet conditions in [a, T).
18 The tables in E3 are particularly complete.
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complicated nature (e.g., Probs. 391, 405, 406), to be solved by combining
the Laplace transform with some other integral transform (e.g., the Fourier
transform or the Hankel transform).

353. Starting from the time ¢ = 0, the plane boundary of a semi-infinite
body of thermal conductivity k, specific heat ¢ and density p is maintained
at the temperatureT |@=o = f(r), where = = kt/cp. Find the subsequent tem-
perature distribution in the body, assuming that the initial temperature is zero.

Ans.
@ 2
T(x, t)——— a, e”“f('r—4 2)du, x> 0.

Jm

354. Consider the followmg special cases of the preceding problem:
a) f(v) = T; b) f(7) = Ar;
Ty 0< v <7y, .
C)f()—{’ > s d) f(7) = T, sin wr.
Ans.

a) T(x, f) = To[l _ (D(;\xﬁ)];
b) T(x, 1) = Av{(l + ;—:) [1 — d)(z_\"/;)] _ \7’;_; e—z’/«];

1—(D—x—, 0< 1< 7,
c) T(x,t) =T, (2ﬁ)

(D(Z\/'r%r_o) —@(2—3—;), T > To;

d) T(x,t) = T f} sm[m (‘r — “i;):'e_“’ du,

2
where @(x) is the probability integral.

*355. Solve Prob. 353 for a given density g of heat current incident on the

boundary (instead of a given surface temperature distribution). Examine the
special cases!®

a) ¢ = qo; b) g = g, sin w7.
Ans.,

T(x, ) = ?{%—‘g e-x’/‘:: x[l - Q(E\%)]_}_
T],.=o quo[ (N/2 tm:) sin ot — S(A/TZr 1:) cos w-r:l,

1* In Case b, consider only the surface temperature.
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where C(x) and S(x) are the Fresnel integrals, and k is the thermal con-
ductivity.

356. Find the evolution in time of the temperature on the plane boundary
of a semi-infinite body, if the density of heat current incident on the body is
a given function of time ¢ = g(r). Consider the special case g = const.

Ans.

1 N ds
T|omo = Y= fOQ(S) Nk

|=—° - k\/_ \/T

*357. A semi-infinite body, heated to the initial temperature T, radiates
heat from its plane boundary x = 0. Find the distribution of temperature in
the body, assuming that the radiation obeys Newton’s law and that the
temperature of the surrounding medium is zero.

Ans.

=il ool )

where A is the heat exchange coefficient.

In the special case,

Hint. To simplify the calculations, substitute the integral representation

1 J ® oV
— =| e ds
Jrt+h Jo

into the inversion formula, and then reverse the order of integration.

358. Starting from the time ¢ = 0, a train of heat current pulses g = f(7)
such that
oy 0 < T <7,

f(‘r)={0, < T < T,

S+ =f()

flows through the plane boundary of a semi-infinite body. Find the tem-
perature distribution in the body after a large number of cycles, assuming
that the initial temperature is zero and neglecting heat exchange between the
surface of the body and the surrounding medium.

Ans. For finite x,

29,7
A q°°\/ as T— oo,

k\/TI:T*

359. Two semi-infinite bodies made from different materials, one heated
to temperature T, and the other held at temperature zero, are put into
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contact starting from the time ¢ = 0 (see Figure 91). Describe the subsequent
equalization of temperature.

Ans.

-2 0f)]} oo

T(x, f) = Z"_aa[l—@(——x )] x <0,

\\‘\\\\\

0
27

where ®(x) is the probability integral, and //////
b, = GPi (= 1,2), o= /clplkl FIGURE 91
k Cap2ks

i

360. The temperature distribution

T|x=0 = f(y)

is maintained on the plane boundary of the half-space 0 < x < oo,
—o < y < oo, starting from the time ¢t = 0. Solve the corresponding
problem of heat conduction, assuming that the initial temperature equals
zero.

Ans.

® f(S) —[ 2+( — )z]/4 kt
T ’ ) t == e ., s m v=s Td ’ = -
wn0=2]" 5 T T

Hint. Take Laplace and Fourier transforms in succession.

361. Find the temperature distribution
inside a body shaped like a quadrant

L (x > 0,y > 0), whose surface is held at
/T X .

t. temperature 7 starting from the time¢ =0
2 (the initial temperature is assumed to be

zero). Plot the corresponding isotherms.

I \,%:o.zs T(l:,n ; f) = To[l - q)(zi\/;)q)(z%/;)]'

0.5 The result of the calculations is shown in

) 075 ,  Figure 92,
0 ! 2 27 Hint. Look for a solution of the form
FIGURE 92 T = Ty[1 + u(x, t)v(y, t)], and then reduce

the problem to Prob. 354, Case a.

362. Find the temperature distribution inside a body shaped like an
octant (x > 0,y > 0,z > 0), whose surface is held at temperature T,
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starting from the time =0 (the initial temperature is assumed to be
Zero).

Ans. y
T(x, y,2,1) = To| 1 — q>(—i‘—_)<b(——_)q>(i_)].
. 32 ) ol: 2/ \2x 2/~
363. Find the temperature T(x, f) in a slab of finite thickness, if one
face x = 0 is held at temperature T, starting from the time ¢ = 0, while the
other x = a is held at temperature zero. It is assumed that the whole slab

is initially at temperature zero. Give two forms of the solution, one suitable
for large ¢, the other for small z.

Ans. 2 &
T(x, f) = Tol:l _X =z Zsm (nmx/a) e—nnr/a]’
a T p=1 n
& 2a — x + 2na x + 2na
e 7o ) s 2na)]
(x ) On%,o[ 2\/T 2\/1

Hint. To obtain the second form of the solution, expand the Laplace
transform of the desired function in ascending powers of the quantity e=Vr,
364. Solve the preceding problem, assuming that a thermal current of

constant density ¢ is incident on the face x = a, while the face x = 0 radiates
heat according to Newton’s law.

Ans.
0, _ —7',.21/0.2
T(x, =2\ L 1 X gy S oslmle —xjale™ ™ )
k ‘ah a n=1 [ah(l + ah) + Yn]Yn sy,
where the vy, are consecutive positive roots of the equation
Y
coty =—,
v ah

and A is the heat exchange coefficient.

365. Solve Prob. 363 assuming that the face x = 0 is held at constant
temperature T, while the face x = a is connected to a thermal capacitance.®
Derive expressions for the density of heat current on the faces of the slab.

Ans.

2kTy & 14 o’y —¥a"t/a®
q |¢=0 = Z 2 2 € ’
@ Sltatay
zakTo i Yn . e—-}’r.21/¢z2
a a2 (l + o+ azYi) smy,

|pma =

b

% By a *thermal capacitance’ we mean a body in which any temperature drop can be
neglected. In Probs. 365, 367, etc., C, denotes the amount of heat needed to raise the
temperature of the body by 1 degree, referred to unit area, unit length, etc.
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where the y, are consecutive positive roots of the equation

cot y = ay, a=-—cl.
cpa

Hint. The boundary condition at x = a has the form

oT
ot

where C, is the thermal capacitance per unit area and k is the thermal
conductivity.

- T

z=a ax

’
r=a

366. Find the temperature distribu- ;)
tion in a slab —a < x < a in which,
starting from the time ¢ = 0, there is %
a process periodically producing heat
according to the law shown in Figure 93.

The temperature of the faces of the 0 1, 21 31, 41, 57, T
slab and the initial temperature are 0 o T T
assumed to be zero. FiGURE 93

Ans.
Tx, ) = Q {a2 —x* 16a2§’: (=1)" cos (xghax/@) .2 4

’ _ 3, 4,2

k'l 4 7 S (2n + 1)L 4 e Mo
Ty < 1

w* S (2n 4 1)?

x [(1 4 cosh A, (x +a) cos A,(x — a)+ cosh A, (x — a) cos A ,(x +a)
cosh 2A,.a + cos 2\,.a

) cos 2A\%r

+4

sinh A,(x — a) sinAy(x + @) + sinh A, (x + @) sinA,(x—a) 2%*1]}
cosh 2\,a + cos 2\,a L
where
A =/—(2" + Ur
27,

367. A thin cylindrical rod (probe), heated to temperature 7y, is inserted
into the ground, in order to measure the ground’s thermal properties.
Describe how the temperature of the probe varies with time, assuming that
the temperature drop inside the rod can be neglected (see T10).

Ans.

T|r=a =

)

4']}’ x J‘ @ e—)‘z\'/a2 ‘2\
o aJgd) — SV + YA — (VI A

nz
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where J,(x) and Y,(x) are Bessel functions of the first and second kinds,
a = Cyf2ra’cp, C, is the thermal capacitance of the probe per unit length, g
is the radius of the probe, k is the thermal conductivity, ¢ the specific heat
and p the density of the ground, and = = kt/cp.

Hint. Solve the heat conduction problem for the domain r > a with the

boundary condition
oT
= 2nak —
r=a or

oT
T1'=a= = Ty, Co—
| ,1=0 0 Py

, t>0.
r=a

368. Use the Laplace transform to solve Prob. 335, and then show that
the two answers are equivalent.

Ans.
o[ 2 [_eme™
T(r,t) = To[l x J; J:()\a) + Y:O\a) A j]

where
ea(r) = Jo(Aa) Yo(Ar) — Yo(Aa)Jo(Ar).

The equivalence of this result and the answer to Prob. 335 follows from the
expansion

1.2 f ® o) d\
nJo J2a) + Y(ha) A

369. Investigate the heating of a cylindrical cable if, starting from the
time ¢ = 0, heat is produced with density Q in the core of the cable, while
its outer surface is held at temperature T, (see Figure 94). Find the tem-
perature of the core, neglecting any temperature drop inside the core.

Ans.
Tlr—a = g'
- 2ntk
{ b wb&  Jo(Ya)i(Yaa/b)
X {ln-—— 2 .
a a =1 Yn[Jo(Y'n) - Jl(Y’na/b)]

2 2
X R, (a)e" "},

where

Ry(r) = Yy(Y)o(yr/b) — Jo(Y) Yo(yr/b)
is a linear combination of Bessel functions, and the vy, are consecutive
positive roots of the equation R)(a) = 0.

FIGURE 94

370. Starting from the time ¢ = 0, heat is produced with density Q in a
cylindrical conductor of radius a. Find the temperature along the axis of the
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conductor, assuming that heat leaves its surface by way of a thermal capaci-
tance and the initial temperature is zero.

Ans.

Tlr=0 _ o = a’u(l + 4o)

2 e—)'..’r/a’
T : T 24 “z 2, 2 2 }’
k 20 + 1 4(2(1 + 1) n=1 Yn(a' Yn + 2“ + I)JO(Yn)
where the y, are consecutive positive roots of the equation
Ji(y) + avJo(y) =0,

C, is the thermal capacitance per unit length, and « = C,/2ma’cp.

*371. At the time ¢ = 0, a cold cylinder of radius a is encased in a thin
heated cylindrical sleeve covered on the outside by a thermally insulating
layer (sce Figure 95). Find the temperature distri-
bution in the cylinder, assuming that the initial

temperatures of the cylinder and the sleeve are 0 \
and T,, respectively, and neglecting any tem-
perature drop inside the sleeve.
Ans.
T(r, 1)
Ynl') vatesa®
© Jo( 2 )e \

1
=T —+ :

- 1 ay?
1 - n=ly . (1 4+ — 4 _g) FIGURE 95
+ ™ o(Yn) 2 )

where the y, are consecutive positive roots of the equation
Ji(Y) + evJo(y) =0,
C, is the thermal capacitance of the sleeve per unit length, and & = C,[2ra’cop.

372. A diffusing substance is distributed in the half-space x > 0 with a
given initial concentration
0<x<a
C = x) = 0> ’

iz =/ () 0, x> a.

Find the density of the substance through the boundary x = 0, assuming
that the concentration on the boundary is maintained at zero starting from
the time ¢t = 0.

Ans.
D C, z
q |x=o = —\/\/n_t 2(1 — /4Dt

where D is the diffusion coefficient.
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373. Find the concentration distribution of a diffusing substance in the
half-space x > 0 bounded by an impermeable wall, assuming that the initia}
concentration equals zero and that the substance is released with constant
density Q in the layer 0 < x < a during a finite time interval T. Derive an
expression for the concentration of the substance on the wall x = 0.

Ans.
C|¢=o.¢<'_r = —QDiz{;z- ®(2\/aﬁ) — %[1 — @(2\75)} + .‘%A/gt e—a’/wt}’
-8 Pl -olii=rl]
+=

ol i) 11 B =T )

374. A substance diffuses outward through the lateral surface of an
infinite cylinder of radius a into the surrounding medium, where the con-
centration of the substance equals zero at the time ¢t = 0. Find the subsequent
concentration distribution, assuming that the substance flows out of the
cylinder with constant density g. Derive a formula for the concentration of
the substance on the surface of the cylinder.

Ans,

-~

1

z
\ \ \\\ o= FL ) + Vi)
\ ) x (1 — e—z‘m/a’) dx

in terms of the Bessel functions J,,(x) and

Y, (x).
20 *375. A diffusing substance emanates
from a thin cylindrical tube of length /
FIGURE 96 closed at one end, and enters the half-

space z > 0 through an opening in the
impermeable wall z =0 (see Figure 96). Find the amount of substance
inside the tube as a function of time, assuming that the flow of current
is constant over a cross section of the tube and that the initial values of the
concentration of the substance in the tube and in the half-space equal C,
(per unit length) and 0, respectively.

Ans.

2M, [ (1 — aT)e - in x)?
M) = _of (sm x) dx,
7 a) x

® 1 4 sin®x — 2 sin x sin (1—}—7 x
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where a is the radius of the tube and M, is the initial amount of substance
inside the tube (M, = C,/).

376. The end x = 0 of an infinite transmission line, with self-inductance
L and capacitance C per unit length, is joined at the time t = 0 to a source of
e.m.f. E = f(t). Find the voltage u(x, ¢) at every point of the line.

Ans.

0, t<Z,
v
u(x, t) =
f(t—f), t>%,
v v

where v = 1 /\/ LC is the velocity of wave propagation along the line.

377. Solve the preceding problem for the case of self-inductance L,
capacitance C, resistance R and leakage conductance G per unit length,
chosen to satisfy the relation RC = LG (a distortionless line).

Ans.

X
0) t<_:
v

e‘”‘/ﬁf(t—f), t>%
. v

378. A condensor of capacitance C,, charged to the potential V, is
discharged at the time ¢ = 0 into an infinite line with parameters L and C.
Find the distribution of current I(x, t) in the line.

Ans.

u(x, t) =

X
0, <=,
v

I(x, t) =
(x, 1) | 4 O PR

4 v
where Z = +/ 176 is the wave resistance of the line, and « = 1/CyZ.

379. The end x = 0 of an infinite line with self-inductance L, capacitance
C and resistance R per unit length is connected at the time ¢ = 0 to a source
of constant e.m.f. Study the resulting process of propagation of a voltage
wave along the line (see C2, p. 202).

’

Ans.
0, t<Z,
v
u(xy t) = t (o2 2
E|:e—a:c/v + fj e Il(tx T (x/v) d’T] , > _Jf ,
vV Yy \/1-2 — (x/v)z v
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where E is the size of the applied e.m.f., « =
R/2L and Iy(x) is the Bessel function of imag-

o~
inary argument.
- . é y arg

x-0 x=l

380. A line of length / with parameters L

and C is terminated at the end x = / by a resist-

FIGURE 97 ance R, (see Figure 97). Find the subsequent

voltage in the load R,, assuming that the end

x = 0 is suddenly connected at the time ¢ = 0 to a source of constant e.m.f,

E. Under what conditions is there no reflection of waves from the end of
the line?

Ans.

0, 0<t<T,

Z — R\
“==E1-( °)] 2n — DT <t < (2n + DT,
-t [ Z+R, @n =1 (2n + 1)
n=12,...,

where Z = \/ L/C is the wave resistance of the line, and T = I[v is the time
it takes a wave to go from one end of the line to the other. There is no
wave reflection if the resistance R, equals the wave resistance Z.

381. Solve the preceding problem, assuming that the line is terminated
by a lumped capacitance C, rather than by a resistance R, Derive an
expression for the voltage across the capacitance in two forms: a) as a trigono-
metric series; b) in closed form for the first few reflections.

Ans.

t
a) u,z:_l: El: 42 sin Y" cos Z_’_"_],

71 2, + sin 2y, T
where the v, are consecutive positive roots of the equation

Ic
Cot ‘Y = .I’ oL = —
b) * G
0, 0<t<T,
1 Sty = | 1 — e T <t<3T,
2E
—e W [1 + 6a (ng— — 1)]e-3“l“’”>-”, 3T <t <5T,
and so on.

382. Solve Prob. 381 for the case where the line is terminated by a
lumped inductance L.

Ans.

1 @ i .
a) u]z=l=E|: —42 —S]u"—cosY—]
14 a n1 2Y, — sin 2y, T
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where the vy, are consecutive positive roots of the equation

IL
tany = — A4 , *=—
o® Lo
b)
0, o<t <T,
_21_E ul,_, el m-11 T <t <3T,
el T)-11 _ [1 _ Za(i _ 3)] e~/ T)-3] IT <t < 5T,
T ’ ’
and so on.

383. Write the general expression for the reflected waves in Prob. 382.%

Ans.
. t
“,z=l = 2E2 (_l)n—le—a[(t/T)—(2n—1)]Lﬂ_l{za(_’l__‘ —(@n— 1))},

n=1
where QN — DT <t<(2N+ DT, N=1, 2, 3, ..., and L,(x) is the
Laguerre polynomial, defined by

et d”  un
L.(x) = o Zx_"(e x™).

Hint. Note that the Laplace transform of the Laguerre polynomial is

L(x) = ;1,(1 — —;)ﬂ

384. Using the residue theorem, give the solution of Prob. 380 in the
form of a Fourier series.

Ans.
1 L Rge~vi! R nrsin(nmot/l) — a cos(nmot/l)
E e =1 aZ% — R?,[l 2“,,;( D o* + n’n’ }

Ry, < Z;

1 “l =1— M
E =1 \/R_—_g — 22

& af(n— B cos [(n — PDmot/l] | Bsin [(n — Pmvt/l] Z
x 2D ( R R N M ) Rz

* The details are given in L9, Sec. 4.25.
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where
a=—ln£+—R-°, {3=-lnR°+Z, v=——, Z=Lo
Z — R, 2 R,—Z JIC
385. Study the propagation of waves
20 a4 il g along an inhomogeneous transmission
£ ® line consisting of a finite section of

length / with wave resistance Z,, fol-

lowed by an infinite section with wave

FIGURE 98 resistance Z, (see Figure 98). Find the

reflected and refracted waves appearing

at the junction, assuming that at the time ¢ = 0 an arbitrary e.m.f. E = f(f)
is applied at the end x = 0.

Ans.
0, 0<t<Z,
Uy
x x 2] —x
t — =}, < t< s
uy(x, t) = f( vl) 1 v,
f( _5) _Z sz(l 2l—-x)’ 21—-x<t<21+x’
Uy Z,+ 7, Uy Uy Uy
0, o<t<T+ =}
V2
2Z, ( x—l) x— 1 x—1
2 oy _p_ , T <t<3T ;
Zl+sz 2 + 12 * U2
uy(x, 1) = 2Z, |:f(t—T—x—l)+Zl—zzf(t—3T~—x_I)],
Z,+ Zy 2 Z,+ Z, (2
v+ 2= oo 2!
Uy Uy

where v, = 1/y/ L,Ciand v, = 1f J L,C, are the velocities of wave propagation
along the two parts of the line, and 7 = //v,.

*386. A voltage wave E = E,e—t produced by a lightning discharge at
the end x = 0 of a transmission line activates a lightning rod at the point
x = 1. Find the voltage in the section of the line after the lightning rod,
assuming that the rod behaves like an ohmic resistance R, during its time
of operation.



PROB. 389 INTEGRAL TRANSFORMS |83

Ans.
0, O<t<Z,
v
1 _ ( Z )k 2akljv
2E, 2Ry + Z el
2 + _Z_ 1_ Z ezal/v
R, 2Ry + Z

x+ Qk= _, x4 2k k=1,2,..),
v v

u(x, ) =

where v is the velocity of wave propagation along the line, and Z is the wave
resistance.

387. A constant e.m.f. E is applied at the time ¢ = 0 to the end x =0
of a semi-infinite cable (a line with parameters R and C). Find the voltage
at every point of the cable.

Ans.

u(x, 1) = E[l _ d)("‘/R,C)},
2/t
where ®(x) is the probability integral.

388. Find the voltage in a cable of length / if a source of constant e.m.f.
E is applied to the end x = 0, while the end x = / is terminated by an ohmic
load R,.

Ans.

14all —(x/D] S sin (y,x/l) e
Ltall - (D] 5% L

1 + o« n=1 [1 + o+ (Yn/a)] sin vy, COs Y,
where the v,, are consecutive positive roots of the equation

2RO
u(x, t) =E ’

tanyz—z,
«

C and R are the capacitance and resistance of the cable per unit length, and
o = RI[R,.

389. Solve Prob. 387 for a cable with leakage conductance G per unit
length.

Ans.

u(x, t):f{evan[l _(p(zzc R_?Jr A/_‘(g)]

revmfi-o( -2}
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390. Study the propagation of voltage waves in the compound line with
equivalent circuit shown in Figure 99, caused by switching on a constant
e.m.f. E at the end x = 0.

Ans.
2 [m? .
u(x, ) = E[l —= f sin («x tan ¢) cos (Bt sin ¢) cot ¢ dcp:l,
TJo

where L, C and K are the self-inductance and capacitances per unit length of
the line, « = +/C/K and B = 1/LK.

fﬁf/f* ) i

FIGURE 99

Hint. The equations governing the current and voltage in the line are

au aIL lft
——=L—==— | Idt,
Ox ot K oK
ol ou
——=C—, I=1 Iy,
0x ot L+ Ix

in terms of the voltage u(x, f), the total current I(x, f), and the currents
Ir(x, 1) and Ix(x,t) flowing through the self-inductance and capacitances
L and K.

391. Near the plane interface between two slabs of material with dielectric
constants ¢, and e,, there is a source of electromagnetic oscillations radiating
a spherical wave whose Hertz vector has components

n,=11, =0,
1, R

m L5
Rj v,

where f(£) = 0if £ < 0, R is the distance from the source to the observation
point, and », = ¢/, is the velocity of propagation of electromagnetic
waves. Find the Hertz vector on the interface for the limiting case where the
source is located on the interface itself.
Ans.
H|z=0 = H1 - Hz’
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where

H1=

n2=

r
0, <,
21
2o, [Virowe® rs 1 r
} — vd)r ___J\- 2 2 d 2 ’ b=
1 2 Y ity V 14 aton)? N, vy + v; Vst —1 Uy
r
0, <,
Uy

20}v, J“/H(vxlvz)a f( rs ) p 1 r
t— t>—
4 __ .4 s H
(vl va)r (02t/r)V 1+ (v3/v2)* \/v? + v: \/52 —1 Ve

and v, = c/v/ e—, (i = 1, 2) are the velocities of propagation of electromagnetic
waves in the two media.

Hint. Take Laplace and Hankel transforms in succession.

392. Consider the special case of the preceding problem corresponding
to a wave with the steep front described by the function

Ans,

0, E<O,
J® = {1 £>0.
0, t<L,
U
II, =
_ 2 _flw 1]
1L — (afo))'lr v /P0? + 03) — r* v
( 0, t<—,
v
IIz = 2
2(vy/v,)? [1 v 1 jl r
Y] DSy [ P
1— (fod)'lr oy /2(w? + v3) — 12 23

393. A force F(t) is applied at the time # = 0 to the end x = 0 of a semi-
infinite rod. Study the resulting propagation of elastic waves in the rod.

Ans. The displacement of an arbitrary point of the rod is

0, 0<t<Z,
v
u(x, 1) =

t—(x/v)
if F(r)dr, Z<t< oo,
ES Jo v

where E is Young’s modulus, p the density and S’ the cross-sectional area of
the rod, and » = \/E/p.
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394. Suppose one end x =0 of a
rod of length / is clamped, while a

S S/ compressive force F(f) with the saw-

| l : | {‘7 tooth wave form shown in Figure 100

: /] __ .4 is applied to the other end x =/,
0O 1 2t 3t 4t 5

T starting from the time ¢ = 0. Investi-

FIGURE 100 gate the resulting longitudinal oscil-

lations, and find the reaction at the

fastened end, assuming that the period « equals the time T = I/v it takes an
elastic wave to traverse the rod (v is the velocity of wave propagation).

Ans.

F(r)

0, 0<t<T 2n+1DT<t<@n+3)T, n=135,...,

1
— R, =
24 Rle-o %—m nT<t<m+ DT, n=1,256,9,10,....

395. A cantilever clamped at the end x = 0 begins to oscillate under the
action of an impulse delivered to a concentrated mass M, fastened to the
free end x = /. Find the dynamic reaction at the clamped end, assuming
that a velocity v, is imparted to the mass M, by the impulse.

Ans. 5
R|zmo = =2 ESf(0),
v
where
0, 0<t<T,
e =T T<t<3T,
f)=

e 4 [1 — 2a(t — 3T))e 3D, 3T <t < 5T,
in terms of the velocity of wave propagation v and the constants « = ES/Mp,
T = lv.
Hint. The boundary conditions for the displacement u(x, ¢) at the end

x =l are 2
Moa—';=—ESa—u, t>0,
ot ox
ou
— = —VUy, t=0.
ot ’
396. Use the Laplace transform to solve Prob. 106.
Ans.
u(x, ) = ﬁ:___sm (wx/v) sin wt
wES\cos (wl/v)

sin [(2n + Dmrx/21] sin [(2n + D)rot21]
2n + 1 1 — [2n + Drof2le)?)’

4 & n
+ ;Zo(_l)
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397. A constant force Q is applied to the end x = 0 of a semi-infinite
beam, starting from the time ¢ = 0. Find the deflection at any point of the
beam, assuming that the beam is initially at rest.22

Ans.

ux, 1) = 2EJ x'f (Za\/t)
where

f(x)=(1+27"2)E‘C(A/§")]‘("z_xz)[l‘s( f")]

E is Young’s modulus, J the moment of inertia of a cross section, p the density

and S the cross-sectional area, a® = +/ EJ/pS, and C(s), S(x) are the Fresnel
integrals.

1+ x%)—

398. Solve the preceding problem, assuming that a constant bending
moment (rather than a constant force) is applied to the end x = 0. Find the
bending moment along the beam at any time .

0 =51 - () - s

399. Find the displacement of the end x = 0 of a semi-infinite beam
struck at the time ¢ = 0 by a mass M, moving with velocity v,.

Ans.

Ans.

v 2a\/ t o -
tea =% i o)
where « = 2v/2 paS/M and ®(x) is the probability integral.

400. Find the transverse oscillations of a beam —I < x </, simply
supported at both ends, due to an impulse P acting at the center of the beam.
Write an expression for the deflection of the center of the beam.

Ans.

4Pla® i sin [(2n + 1)’n%a®/41%]
n2EJ /5 (2n + 1) )

401. Find the deflection of an infinite elastic plate, if at the time ¢ =0
a constant force Q is applied to the point x = y = 0 (see L16, p. 424).

_Q[n_ (r_” L " L’]
u(r, 1) _411:D[2 Si 41') sin +4r (41') ’

52 Problems 397-399 are treated in Lurye’s book L16.

ulz-:-o =

Ans.
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where D is the flexural rigidity and p the surface density of the plate, T =
N D/p and Si(x), Ci(x) are the sine and cosine integrals.

Hint. At the point where the force is applied, u|,=0 must be bounded,
and moreover

D=l
or 2rD
*402. Solve the preceding problem, assuming that an impulse P (rather
than a force Q) is applied to the point x = y = 0.

Ans. i » - ﬁ
u(r, 41:\/9—0[2 Si (41)]'

403. At the time ¢ = 0 an impulse with components P, = 0, P, = P is
applied to the point x =y = 0 of an infinite elastic plate. Describe the
resulting process of wave propagation.

Ans. The elastic potentials are given by the formulas

0, t<<,
a

o(r, 1) = -
Pyﬂ/tz—rz, 1>,
2mpr a a
0, t<i,

Y(r, 1) =

Px A/tz—f 1>
2mpr? b*’ b’

where

a:A/)\+2p'., b— J

are the velocities of propagation of the longitudinal and transverse oscillations,
A and p are Lamé’s constants, and p is the density.

404. Solve the preceding problem, assuming that the source of the
oscillations is a concentrated force with components 0, =0, Q, = Q.

Ans.

o, D rja = 41?})2[‘«/712 - é‘“ (a_t + A/W___l)}’

pr a a ’

= Sl 2 (o1 [T

where the elastic potentials are zero for smaller values of the time.
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405. Show that the solution of the two-dimensional wave equation

Pu, Pu_ 10
ox*  9y* ot
in the domain x > 0, subject to zero initial conditions and the boundary
condition u|z=° = f(»), can be written in the form

0, t<%,
v

y ) t) = 2,2
u(x, y, 1) ?ﬂ)—tfw_\/va'z_ca f(n) dn t>5
T VA x2+(y—n)2\/v2t2—xz——(y—v;)"” v’

Hint. Take Laplace and Fourier transforms in succession.
*406. Show that the solution of the wave equation
Pu, Pu_ 1,
ox®  9y? o’ ot
for a medjum with attenuation, subject to zero initial conditions and the
boundary condition u|,_, = f(y), can be written in the form

O<x<o0,—000<y< 0)

u(x, y, )
0, <X,
v
xe—vbH2 fw\/ e [Sinh vbr N vt cosh (vbr/2):, S(m) dn .
™ y——\/vktz-:zz 2 r x2 + (y — n)Z ’ v ’

where

r=ot — xt —(y —
Deduce the solutions of Probs. 308, 360 and 405 as special cases.

4. The Mellin Transform

Let f(r) be a real function defined in the interval (0, c0) such that

1. f(r) is piecewise continuous and of bounded variation in every finite
subinterval [a, b], where 0 < a < b < o0;

2. Both integrals

Leigonar,  [Teetisolar (18)

are finite for suitably chosen real numbers o; and o,.



190 INTEGRAL TRANSFORMS PROB. 407

T Then the Mellin transform of f(r) is defined by the
formula

1@ = | rrar, (19)

r where p = o + it is any complex number in the strip

o o, < Rep < q, (see Figure 101). The inversion of
(18) is given by the formula

1 — P
0= fr Fo)r* dp, (20)

where T' is a straight line parallel to the imaginary
axis lying inside the strip.?

The Mellin transform is related to the Laplace and Fourier transforms,
and is the appropriate tool to use for solving problems of two-dimensional
elasticity theory and potential theory involving angular regions. The required
technique can easily be acquired by working through the following small set
of problems.

FIGURE 101

*407. Find the stationary temperature distribution inside the dihedral
angle 0 < r < 0, 0 < ¢ < a < m, if one boundary is held at temperature
zero, while the temperature distribution

T Tos O<r<a,
I“’=°‘_ 0, r>a

is maintained on the other boundary.
Ans.
aY'/*. w
(9
r o

uil-3 )
1+ (ﬂ) cos T?
r

o

T(r, @) = Earc tan

408. Solve the preceding problem, assuming that a given distribution of
heat current

05 a—e<r<a-+e,
q°l°=°‘ 10 otherwise

2 See e.g., TS5, Secs. 1.5 and 1.29. The conditions imposed on f(r) can be weakened.

2 A few remarks are in order concerning the choice of the path of integration I' in
the inversion formula (20). If the behavior of the function fas r — 0 and r — oo is known
in advance (e.g., from physical considerations), then the boundaries of the strip (ay, a2)
can be found from the requirement that both integrals (18) be finite. If the behavior of
the function f'is known only at one end point of the interval (0, ), say as r — 0, we can
first determine the left-hand boundary oy, and the line I' must then lie to the right of "
and to the left of the nearest singular point of the function f figuring in the integral (20).
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is maintained on the boundary ¢ = . Consider the case of a concentrated
current Q entering the boundary along the line r = a, ¢ = «.

Ans,
0T In (r/a) + sin e

Cos| 5
T(r, 9) = Ql( In—— “
2nk cosh ﬂ—n—L/—a-) cosh M — sin T
o 2x 2

where k is the thermal conductivity.

409. Use the Mellin transform to solve Prob. 303.
Ans.

T(r, 9) = qb fw cos [t In (#/b)] + 7 sin [v In (r/b)] sinh to
P rk o (1 + % cosh (tn/2)

410. A thin charged wire, with charge g per unit length, is placed along
the line r = ry, ¢ = @, inside the dihedral angle 0 < r < 0, 0 < ¢ < a,
whose boundaries are held at potential zero. Find the potential of the
resulting electrostatic field.

Ans.

2q [°*i* sin p(a — ) sin ro\V
u()‘, (P),q><q:o = T p( Po P 2 dp’

o—iw p sin pa r
o+im o 3 — v
u(r, q;)lwq,0 = 2_qJ‘ sin p@y SI.n p(a CP)("_o) dp,
i Jo—iw p sin pa r

where |o| < w/a. In particular, the imaginary axis can be chosen as the path
of integration.

411. Calculate the following special cases of the preceding problem:
a) a = 2w, ry = a, ¢, = = (line charge opposite the edge of a conducting

half plane);
b) a« = 3=%/2, ry = a, ¢, = = (line charge near a conducting right-angular
corner);
c) « = =/2 (line charge inside a dihedral angle).
Ans.
142/ T5in® 4]
a 2 a,
a)

u(r, ) =qIn = ;
I—ZA/—rsin-(E-f-r
a 2 a
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1— 2(5)2/3cos Art @) + (I)da
3 a
b) u(r, ) =qIn - 7
1— 2(1) cos Ar — ) + (l)
a 3 a
2 4
1— 2(£) cos 2(¢ + + (L)
9 A1 @) —qn e (¢ + o) "o

R

1— 2({;)2005 2(¢ — o) + (i)

412. The common boundary of two media of dielectric constants ¢, and
€, consists of two planes intersecting at the angle 2« (see Figure 102). Find
the electrostatic field due to a charged wire lying in the plane of symmetry.

Ans.
E® :Z_q{r—{—acos q>+_§_
" 1 }{2 2ir
y J‘”“’" sin 2a(p — 1) cos (x — @)(p — 1) (c_z) _ldp}
1-iw Sin7(p — 1)[sinm(p — 1) — Bsin (w — 20)(p — ] \r ’
po _ 240 f Miw cos o(p — 1) (g)”"dp’
r €y + & Ji-io sinw(p — 1) — B sin (m — 20)(p — 1) \r
2q|a sin ¢ B
E(l) — _{,_ o
¢ el R? + 2ir
Xf‘“” sin 2a(p — 1) sin (x — @)(p — 1) (g)”“dp}
1-iw sin(p — 1)[sinn(p — 1) — Bsin (x — 2«)(p — D]\r ’
EO® _ 2qi f‘*‘w sin @(p — 1) (g) —1dp,
® e+ J1mie sinm(p — 1) — Bsin (x — 2u)(p — 1) \r
where
_ €9 — €&
B Eg + €y
and R js the distance from the charge to the observation point (see G5,
Chap. 14).

(€)

FIGURE 102 FIGURE 103
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413. Investigate the bending of a thin wedge-shaped elastic plate with
simply supported edges, loaded by a concentrated force P applied at an
arbitrary point of the axis of symmetry (see Figure 103).2

Ans. The deflection of an arbitrary point of the plate is given by the
formula

u(r, ) = Pror f {cos ¢ sinh (@ — @)t — cos (x — ¢) sinh ¢t
4nD Jo
cos[tin(r/ry)] dx
cosh at + cos at(v® + 1)’

¢ >0,

+ =[sin ¢ cosh (¢ — ¢)t — sin (x — ¢) cosh ¢t}

where D is the flexural rigidity of the plate.

414, Let « = =/2 in the preceding problem. Show that the deflection of
the points on the axis of symmetry of the plate is given by the formula

2
To To
Pror|1{r  r 'l_rz‘ l+r
u(r, 0) = —=2 —(—+—°) In +In
47D|2\r, r 1+£3 )
r? r

*415, A thin elastic plate 0 < r < ©, 0 < ¢ < « is clamped along its
edges and loaded at the point (ry, ¢o) by a concentrated force P. Find the
bending moment and shear force along the edge ¢ = 0.2

Ans.
Pry [*[sin ¢q sinh at sinh (& — @)t
M|¢=0 = 0

Tr sinh®at — 12sin% o

sin « sin (¢ — - 1 sinh @47 r
— - (2 %)2 — Po ] cos (‘r In —°)dr,
sinh®at — 1°sin® r

Nlgoo = :—:g fo {cos @, sinh at sinh (& — o)t

+ t[sin a cos (¢ — @,) cosh at sinh (¢ — ¢g)T — cos « sin (& — @) sinh at

cos [t In (ro/r)]
sinh? at — 72 sin «

dr.

X cosh (@ — ¢o)7] — 7° sin « sin (& — @) cosh @,7}

25 Problems 413, 414 and 417 are treated in Uflyand’s paper U3.
26 Another way of solving this problem is due to Sakharov (§82).
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416. Use the Mellin transform to solve Prob. 328 (a special case of the

preceding problem).
Ans.
M|,o— P re sin® ¢, oo — 2P rs sin® @,
=0 P 4 — 2rgrcos @y 0T (r® + 12 — 2ror cos @)

Hint. Use the formula
f sinhrp svbde — 1 sin ¢
o sinhn 2cosh ¢ 4 cos ¢

417. Solve Prob. 415 assuming that one of the edges of the plate (¢ = «)
is supported. Consider the special cases a) « = «/2 and b) a = © (the
quadrant and the half-plane).

Ans.
Pro (>, . . . .
M|¢=o = n—:"J; [sin ¢q sinh (26 — ¢@g)T — sin (2@ — ¢@,) sinh ¢o1]

cos [t In (r/ry)]
sinh 2at — T sin 2«

In the special cases, we have

2P i in 2
2) M|, = — 2200 2Pr, smchosm %0 .

i r +——Zcos2cpo

(A/ +J )smcposm—-
)

1-+-—2——2—coscp0
o To

b) M|¢=0 ==

Al

5. Integral Transforms Involving Cylinder Functions
of Imaginary Order

Let f(x) be a real function defined in the interval (0, o) such that

1. f(x) is piecewise continuous and of bounded variation in every finite
subinterval [a, b], where 0 < a < b < o0;

2. Both integrals

1/2 1 0
f 1£C)l x7H* In = dx, f 1) dx
[] X 1/2

are finite.
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Then f(x) satisfies the formula

f(x) =T%J:DT sinh ©t "(x)d f f&) \'/'l(;)dﬁ 0<x<oo, (21)

where K (x) is Macdonald’s function. If we write

7 _ ® Kit(x)
f(v) —J; f(x) —\/; dx, 0< 1< 00, (22)
it follows from (21) that
S =2 f T K b redr,  0<x<w (@)
n* Jo Jx

Besides the more familiar transforms considered so far, formula (21), proved
by one of the authors of this book (see L6, L8), plays a role in certain physical
problems.

If we use the formulas

x=x  E=x, [fOaWx=gr (>0

to introduce new variables, (21) takes the form
2 a0
g(r) = —2f K, (Ar)t sinh ot d-rf glp) —— "O\p) dp, 0O0<r<oo, (24
T 0

which, although less symmetric than (21), is more suitable for solving the
problems encountered in mathematical physics. Formula (24) holds provided
the integrals

1/2 )
[Pewrrmtan, [*gerrra e
0 r 1/2

are finite. The following expansion of this type is useful in the applications:?

e = 2f K, (Ar) dx, 0<r< . (26)
nJo

In addition to the above formulas involving Macdonald’s function, there
is an analogous expansion in Hankel functions and a corresponding inversion
formula, which play a role in certain applications. These relations can be
deduced formally from (24) by setting A equal to a pure imaginary (A = ik),

27 However, note that the first of the integrals (25) is not finite for g(r) = eAr,
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and then using the relation between the functions K (z) and H:z’(z). In this
way, we find the formulas?®

® @) Iy
) = f A AL M W @
0 r

o(r) = — %f ()P HP(kr) t sinhnrdr, O0<r<oo. (28)
0

The integral expansion (24) can be used to solve the Dirichlet problem
and other problems of potential theory for regions bounded by two inter-
secting planes (the three-dimensional problem), for wedge-shaped regions
bounded by two parallel planes and two intersecting planes (perpendicular
to the parallel planes), and so on. Formulas of the type (27) and (28) are
encountered in solving problems involving the diffraction of acoustic and
electromagnetic waves by an obstacle in the shape of a dihedral angle
or a cone. The following problems illustrate
various physical applications of the above ex-
pansions.

*418. Find the stationary temperature distri-
bution in a wedge-shaped body of thickness /
(see Figure 104), if the temperature distribution

FIGURE 104 T|p=y = f(r) sin L’;Z , n=12...

is maintained on the boundary ¢ = o, while the other boundaries are held
at temperature zero.

Ans.

©
T(r, 9, 2) = 2 sin 252 { £00) + % sinh wr
g 1 Jo T

xf 1) — OIK, (H-P)d_P}MK. ("_7") 4
0 T I P Sinha‘r it l y

where K (z) is Macdonald's function.
419. Solve the preceding problem for an arbitrary temperature dis-
tribution

T|¢=a =f(ra Z)
on the face ¢ = «.

%8 For conditions under which (28) implies (27), see the paper K3.
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Ans.

T(r, 9, 2) = gl Z T,(r, ) sin n%z ,

n=1

X S}nh (PT Kir (!'E) d’r’
sinh at l

1. = fo l f(r, z) sin '"l‘—z dz.

Hint. Expand the function f(r, z) in a Fourier series with respect to
sin (nmz/l), and then use the result of Prob. 418.

420. Find the stationary temperature distribution in the ‘“quadrant-
shaped” slab0 < x < 0,0 < y < 0, 0 < z < |, if the boundary x = 0 is
held at constant temperature T,, while the other boundaries are held at
temperature zero.

Ans.

T = -8%’ PO ) Lz L [@n + Drezl} [0 (™ SR OT_ 0 1on 1 1)yrer/l] d.
™

et 2n 41 0 2 sinh (7tt/2)
By using the representation
1

Ki(x)=——"7—— f cos (x sinh f) cos Tt dt
cosh (mt/2) Jo

of Macdonald’s function, this result can be brought into simpler form:

8T, . &.sinh [(2n 4 Dmz/l] [ cos [(2n + 1)rr sinh ¢/1]
= — sin 2cpz dt.
n? 2n + 1 o cosh2t + cos2¢

n=0

421. Find the distribution of the electric charge density induced by a
point charge ¢ placed near the edge of
a thin conducting half-plane (see Fig-
ure 105).

Ans. -

S N/ —
i /x[(x + a)® + 2°]

*422. Solve the preceding problem, as-
suming that the charge ¢ is located at an
arbitrary point r =r, ¢ = @, z = 0.
Find the distribution of electrostatic
potential. FIGURE 105
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Ans. 2al 1 1
u(r, ¢, 2z) = _q_[_ arc tan ¢, — — arc tan ¢,],
k1 Rl R2
here
W R, =ri+ 2%+ ry — 2ryrcos (@ F @),
Y A=/cosh 3o + cos 3(e F o) . cosha— i—l;r_ﬁ:_i-_zz
cosh 4 — cos }(¢ F @) 2rr

423. A point charge g is placed near the edge of a conductor of rectangular
shape held at potential u = 0 (see Figure 106). Find the distribution of charge
density on the boundaries of the conductor.?®

Ans.

o(r, z) = —21 [2C0$h)\+ V21

4r,/2arLr(2 cosh A + /2)**

_ 16 (e x dx ]
3mr Joosh Y2 (2x% — 1)%/4x® — 3x — cosh A’
where
2 2 2
cosh A — r+z+a )
2ar

FIGURE 106 FIGURE 107

424. Find the current distribution produced in the ground by a point
electrode located near a wedge-shaped layer, assuming that the layer has
conductivity o, while the rest of the ground has conductivity o, (see Figure
107). Write an expression for the potential distribution on the earth’s surface.

Ans.

Woo— — %3 f cos Az di f K,.,()\a)K,,()\r) .smh 2 — )t i,
n°o; Jo o sinhwt 4 B sinh (x — 20)7
Wy = = 4J f c0s 2z d f . K,-,()\a)K,-T(?\r) sinh v
(0, + 03) Jo o sinhwt + B sinh (x — 2a)7

% This problem was first solved by Macdonald (M1).
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where
Gy — 0}
p=2—1,

o; + 0y

J is the current and K (x) is Macdonald’s function (see S4).

425. Show that the solution of the preceding problem can be reduced to
the form

“l =0 = = 2B f 2 - :
= wme\ it 2 Jotart 2
_1_(32 ® sinh 3¢ d§ }
sin 8 Jo sinh =€ \/(r + a)® + z% + 4arsinh? }nE)’
I J { ———1
e m(a; + ap) \/() + a)? + 2°

_ B (= sinh 8¢ d& )
sin 8 Jo sinh 7€ \/(r + a)? + 2% + 4ar sinh® }nE)’

B

d = arccos=
2

if « = =/4, and to the form

U|gao = — ﬂ{ 1
o mo \\/r® + a® + 2% + ar
L+ B (" cosh 3§ d§ }
2 cos %8 o cosh g \/(r + 0)2 + 22 + dar sinh? %En ’
“l _ 3J { 1
o+ eVt ) + 2
B (" sinh 3¢ d§ }
sin 8 Jo sinh 7§ \/(r + a)® + 2% + 4ar sinh® inE)’
3 = arc cos ! _; B

if « = w/3.
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426. Solve the problem of diffraction of a
plane electromagnetic wave

E,=E, =0, E, = Ee®™

(where k = w/c is the wave number) incident on
a thin perfectly conducting sheet (see Figure
108) making an angle « with the direction of
wave propagation (Sommerfeld’s problem).

—_—
—_—
—_—
—

FIGURE 108

Ans. The complex amplitude of the z-component of the total field is

) 1 eiﬂ/d \/E‘ sin Yo 2
E = Eoe—tkr cos tp[_ + f e—zs dsjl
0

2 Jn
" Eoe‘""'cos (o200 [_ l + ﬂ V 2kr sin Y(¢—2) e_“z ds]
2 Jnlo
(see K3).

427. Using the result of the preceding problem, find the current dis-
tribution on each side of the sheet. Consider the special cases where a) « = 0;
b) a = m/2.

Ans. The required densities are determined by the system of linear
equations

.. . Ee [2 l: e w 2e4
J— N — —| —cos - _+_ —

A=) Jike 2w

—ikr COS &

2nN w
. . Eyc .
Jl‘—]zz'_‘slnae
2n

) v 2kr sin Y e
Sil’l ae"’" COosa e—ts dsjl ,
0

where j, and j, are the densities on the upper and lower sides of the sheet,
respectively. In the special cases,

a) == D £
! 2 277:\/71—:\/%’
E.cl 1 e—ikr 2ei1r/4 \/k—r 2
SN F ] S|
) Ju2 4 \/ﬂ\/ikr+ \/n 0 s+

428. A line source of a-c current J = Jyeit is placed parallel to the edge
of a thin conducting sheet 0 < x < o, —00 < y < oo. Find the distribution
of induced currents if the source lies in the plane of the sheet at a distance a
from its edge.

Ans. The complex amplitude of the current density is

. JO A/E e—ik(z+a)
7= 2N x x +a
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429. Find the electromagnetic field of a dipole of moment P located on
the axis of a perfectly conducting conical reflector of vertex angle 2, if the
dipole lies at a distance a from the vertex of the cone (see L10).

Ans. If r < a, the complex amplitude of the magnetic field is given by the
series

H®,  (ka) J,,o1a(kr) Py (—cos a)PL,(cos 6)

Ja Jr sin v, [8Pv(acos a)]
v v=vq

H(r, 8) = Z( +3)

where the v, are consecutive positive roots of the equation P (cos «) =0
involving the Legendre function P (x), and J (x), H® are cylinder functions.
The corresponding formula for r > a is obtained by permuting the symbols
r and a in the general term of the series.

430. A plane acoustic wave u,e*“*~*® is incident on a screen in the form
of a half-plane r > 0, ¢ = a. Find the wave reflected from the screen.

Ans. The complex amplitude of the velocity potential at an arbitrary
point is

1 U] V 2kr sin Yo .
u= uoe—tkrcos¢[ + e—n dS

JrJo
i 1 £t/ V'2kr sin Vé(o—2a) s
. uoe—tkrcos (o—2a)| _ =2 — e—zs dS
Jmdo

431. A point source of sound, radiating a spherical wave

sin (ot — kR)
- %0 ’

R

is placed on the axis of a conical resonator 0 < 6 < « with perfectly reflecting
walls. Find the velocity potential inside the cone.

Ans. The complex amplitude of the velocity potential is

H®, (ka) J, ,4kr) P, (—cos )P, (cos )

Ja Jr sin v, [an(gos oz)J
v v=vq

U|,<q = ugm IZ(V +d

where the v, are consecutive positive roots of the equation P\"(cos ) =0,
and a is the distance from the source to the vertex of the cone. The corre-
sponding formula for r > a is obtained by permuting the symbols r and a.
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CURVILINEAR COORDINATES

A physical problem can often be greatly simplified by the introduction of
a suitable system of orthogonal curvilinear coordinates, facilitating the
formulation of the boundary conditions and making it possible to solve the
problem by using the techniques of Chaps. 4-6. These earlier chapters
contain an abundance of examples illustrating the simplest systems of curvi-
linear coordinates, i.e., polar, cylindrical and spherical coordinates. We now
turn to more complicated coordinate systems, whose effective use will allow
the reader to solve a much larger class of problems.

Perhaps the most important use of curvilinear coordinates is to solve
boundary value problems for the Laplace and Helmholtz equations. How-
ever, neither the three-dimensional Laplace equation nor the Helmholtz
equation permits separation of variables when written in arbitrary orthogonal
curvilinear coordinates, a fact which prevents us from applying the methods
developed in the preceding three chapters. Therefore a problem of great
theoretical and practical interest is to find all coordinate systems which
actually lead to separation of variables in these equations. Some special
results pertaining to this problem, which has not yet been solved completely,
will be found in concise form in Sec. 8, p. 247.1

The material given here is organized as follows: All problems involving a
given coordinate system are grouped together, regardless of their physical
content or spectral character (the latter determines whether the solution
takes the form of a series or an integral). In the case of two-dimensional
systems, considered in Secs. 1-3, all the necessary preliminary material is
presented in problem form. However, in the case of three-dimensional

! See also the papers cited at the end of the chapter (p. 252).
203
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systems, considered in Secs. 4-7, more background information on differ-
ential equations, special functions, etc. is needed, and this material is
summarized at the beginning of each section.

Besides problems of the simpler kind, this chapter contains some relatively
difficult problems, whose solution requires the use of various integral trans-
forms, knowledge of the properties of certain special functions, and so on
(see e.g., Probs. 483, 497, 502-504). These problems are intended for the
adequately prepared reader, and can serve as practice material for those
trying to deepen their understanding of the methods of mathematical physics,
Finally, it should be kept in mind that some of the problems can be solved
more simply by using other methods (e.g., conformal mapping or inversion),

I. Elliptic Coordinates

432. Study the system of elliptic coordinates «, 8 related to the rectangular
coordinates x, y by the formula
x + iy = ccosh (« + iB) O<a<oo, —nt<P <) ¢))
Show that the curves a = const, 3 = const form an orthogonal system of
confocal ellipses and hyperbolas (see Figure 109). What is the appropriate
expression for ds?, the square of the element of arc length? Write Laplace’s
equation in elliptic coordinates.
Ans.
ds® = c*(cosh® @« — cos® B)(da® + dp?),

1 (8214 aﬂu)
_ vu Y=o
“ o o

 c¥(cosh? o — cos? B)

N

a = ¢ cosh dg
b = ¢ sinh dg

FIGURE 109 FIGURe 110

433. A conducting elliptic cylinder with semiaxes @ and b is placed in a
homogeneous electric field (see Figure 110). Find the distribution of electric
charge density on the surface of the cylinder.
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Ans.
c=£’(a+b) cos (B — ) ,
4n Ja?sin® B + b®cos? B

where E, is the external field.

Hint. Introduce elliptic coordinates «, 8 (see
the preceding problem), where the parameter
¢ equals the eccentricity of the given ellipse.

*434. A wire with charge g per unit length
is placed inside a hollow conducting elliptic FIGURE 111
cylinder with semiaxes @ and . Find the poten-
tial distribution inside the cylinder, assuming that the wire is parallel to the
axis of the cylinder (see Figure 111).

Ans.

u(e, B) = 2‘1[% — o+ 2§:Mﬂcos nB* cos nﬁ],

n—1 h cosh n«g

in terms of the elliptic coordinates « and {8, where «yand B* are the parameters
defined by the relations

tanh oy =

ST

, cosf* =

o I

d<eo).

Hint. Regard the charge ¢ as uniformly distributed over the “curvilinear
rectangle”

0<a<?d, B*~§<|m<a*+§,

and then take the limit as 8, e — 0.

435. Solve the preceding problem, assuming that the charged wire is
placed outside the cylinder at the point x = d (d > a), y = 0.

Ans.

* — 20) —
u(a, B) = g In cosh (o* + o — 20,) — cos B . cosho* = ii, ¢ =2t _ bt
cosh (a* — &) — cos B c
Hint. To sum the series, use the formula

Q0 —ny
In(Zcoshy—2005x)=y—22e—cosnx, y>0.
n=1 n
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436. Find the distribution of induced charge on an infinitely long con-
ducting strip, near which there is a wire with charge ¢ per unit length, as
shown in Figure 112.

Ans.
e__a_Nd—-d
2 (d — x)Va® — x
/‘
- +a q
0 x=d g
FIGURE 112

*437. An elliptic cylinder of given dimensions, made from material of
magnetic permeability u, is introduced into a homogeneous magnetic field
making angle y with the major axis (see Figure 110). Find the magnetic
potential, and show that the field outside the cylinder is homogeneous.

Ans.
u = Hyxcosy+ ysiny)
+ Hy(1 — wab a+b (cos y cos 8 n sin y sin B)e‘“
Ja® = b\ a+pb b+ pa
+ const outside the cylinder,

=Ha+b(cosY sin y
u of )a-l-p.bx+b—{—p.a

where H, is the external field, and the ellipse has semiaxes a and b.

Hint. The choice of the particular solutions for the region outside the
cylinder is dictated by the requirement that grad u be bounded.

y) <+ const inside the cylinder,

438. A hollow elliptic cylinder, made from material of magnetic per-
meability y, has a cross section bounded by the confocal ellipses

2

2
y
_|__1 24X — b= — b=
ai b b2 (Vai — b} = Va3 2= ©)

Suppose the cylmder is mtroduced into a homogeneous magnetic field with
components

H,=—H,, H,=H,=0.
Find the distribution of potential in the body of the cylinder.
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Ans.
u(, )
— Hye - sinh «, sin? (¢ — ay) 2—i— @ cosh a; cosh (@ — ;) € cos B,
sinh (e; — &;)(sinh a; + p” cosh ;) + pe** cosh (x; — )

where

b; .
tanh o, = —* (i=1,2).

a

439. A cavity in the shape of an elliptic cylinder with semiaxes a and b
is hollowed out of iron of magnetic permeability , and contains a line
current J whose direction is parallel to the axis of the cylinder. Find the
vector potential of the magnetic field, assuming that the current passes
through the point x, < Ja? — b2, y, = 0 of the semimajor axis.

Ans.

A1=—gllnR—+———(y.—1)
c

& e " cosn
Z ?° cosh nacos nf + const, 0< a < a,
1 n(cosh noy 4 @ sinh neg)

g
4

=1

e "cos nf + const, & > ap,

i sinh ne, cos nf,
a1 n(cosh noy + w sinh noy)

where 4, and A4, are the values of the z-component of the vector potential in
the air and in the iron, respectively, R is the distance from the point (x,, 0)
to the point (x, y), « and B are elliptic coordinates, c is the velocity of light,
and
tanhao=é, cosﬁoz—x_";.
a \/ a? — b?

440. Solve the preceding problem for the limiting case w = co. Find the
tangential component of the magnetic field on the interface between the air
and the iron.

Ans.
4J 2.¢7" cos nf,
¢ .1 hsinh nog

2Jo

lAz= — — + const,
7 c

Ay =—— ln R+ — cosh na cos nf3 + const,
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The tangential component of the magnetic field on the interface is

2J 1 2J p

Holooy = 2 _Yer
- ¢ Ja* — b*+Jcosh®xy — cos®’B ¢ ab

where p is the length of the perpendicular dropped from the origin of co-
ordinates onto the tangent to the ellipse at the point M = («,, 8).

441. A d-c current flows in a conductor whose cross section is an ellipse
with semiaxes a and b, producing heat with volume density Q. Find the
temperature distribution inside the conductor, assuming that its surface is
held at temperature zero.

Ans.

T(o ) = & (a* — bz)(l -

M) (cosh 2ay — cos 2f),

cosh 2a,

where k is the thermal conductivity and

tanh oy = _lz

a
Hint. Subtract out a particular solution u = P(x, y) of the inhomogeneous
heat conduction equation, where P(x, y) is a polynomial in x and y.

442. A thinsheet of width 2a is placed
in a plane-parallel flow of an ideal fluid.

s ’? Find the velocity potential, assuming that

7 the direction of the flow makes angle y
/{‘ with the plane of the sheet (see Figure

-a 2q +a P 113).
0 Ans.
u=vy(xcosy+ ysiny
~+ a sin ye % sin §3),
FiGure 113 where v, is the velocity of the flow far
from the sheet.

*443. Solve the problem of the twisting of a rod of elliptical cross section
with two cuts extending to its foci, as shown in Figure 114. Calculate the
torsional rigidity C numerically for the cases where the ratio of the semiaxes
is 1, 3 and §.

Ans. The torsion function is

u(a, ) = —c?sinh®a sin® B +

2_317_25: cosh 2n + D sin 2n 4 1)B
n S cosh (2n + Dog (1 — 4n%)(2n + 3)
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The torsional rigidity is

R R TR P

Co bja o’ a 2a
S ___i [(Zn — 1) sinh 2n + 3)ay + (2n + 3) sinh (2n — 1oy
o 20n + 1)

1
(1 — 4n%)(@2n — 1)2n + 3)® cosh 2n + 1o,

— sinh 2n + l)ao]

where tanh «y = b/a, and C, is the tor-

sional rigidity of the ellipse without the 4

cut. The result of the numerical calcula- d:d

tions are 0

£ — 0997, < = 0.970, BT ¢ ¢80 B
< = 0.826.
C, loja=3/4 a=-gy

Hint. Subtract out the particular so-
lution —2, FIGURE 114

444. Find the torsion function of a rod of semielliptic cross section.
Ans.

8_1725: sinh (2n 4+ Do sin (2n + 1)

u(x, B) = —c®sinh® o sin®* B — ,
(@ B) = —c @SB = 2 k(2 + D @n* — D@n + 3)
where a and b are the semiaxes of the ellipse, and

tanha.,:é, c?=a® — bi
a
445. Find the stationary temperature distribution in a body whose surface
is the hyperbolic cylinder

2 2

x y
=1, x>0,
a2 b2
given the temperature distribution on the surface.

Ans.

T(oc,B)=l [)w[f @h_w_cos;\a+fsm

c ; sin Nx:| d)\,
A cosh A, sinh AB,
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where . )
S *‘ﬂf_wf(a) cos hada,  f; =f_w S (@) sin Aat do

are the Fourier cosine and sine transforms of the function f(«) figuring in the
boundary condition

b
¢ Tlp=p, = f (@) (tan Bo = ;)
B3 Hint. In Probs. 445-447 use elliptic
q B=0 ., coordinates defined by
0 _x=d x7c x.{.iy:ccosh(q-{—iﬁ)

FIGURE 115 instead of by formula (1), p. 204.

446. Find the density of electric

charge on two perpendicular grounded planes between which there is a
charged wire, as shown in Figure 115.

Ans.
2
olamo = — qd V1= (o’ (dfc) , c<x < 0,
m(xje) — 1 x*— d?
2
Oamje = — qd Vi = (dfey (dfc) , —o<y< o

WOt +1 y+d

447. A charged wire with charge ¢ per unit length is placed on the axis
of symmetry of a slot of width 2a cut in a grounded conducting metal plane.
Find the resulting electrostatic potential #. What is the charge density on the
two parts of the plane?

Ans. ho 4 si
u(o, B) = g In e T sin B
cosha — sin 8
The charge density is
q a
6 =——— x> a.

mxJxE — at
Hint. In elliptic coordinates, the two parts of the plane have equations
B=0andf =m.
2. Parabolic Coordinates

448. Study the system of parabolic coordinates «, {3, related to the
rectangular coordinates x, y by the formula

x+iy=§(a+i[3)2 (—0 << 00,0< P < o0). @)
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Show that the curves « = const, § = const ¥
form two orthogonal families of parabolas
(see Figure 116). What is the appropriate
expression for the square of the element of
arc length? Write Laplace’s equation in a>0
parabolic coordinates.

Ans. d
a<o
ds® = c*a® + PA(doa’® 4 dp?),
1 (82u Bzu)
U=—r——|—+—) =0.
02(a2 + ‘32) aaz aB2
*449. A charged wire with charge ¢
per unit length is placed at the focus of a FIGURE 116

conducting screen in the form of a para-
bolic cylinder. Find the resulting electrostatic field.

d = const B = const

Ans. The electrostatic potential is

_ 4 [ sinh 2@ — B)
u(e, B) = 4‘1_[3 A cosh 2By

in terms of B, the value of the coordinate 8 on the surface of the cylinder,
given by

COS Ao d)\.

Bo= \/;’72'»

where p is the focal distance of the parabola and c is the scale factor figuring
in formula (2). Using formula 13, p. 385, we can write the solution in closed
form:

" T + 1)

cosh -~ COS S,
u(o, B) = 2q1n —20 2B 3)

cosh =% _ cos 8

2B 28,

450. Write a solution of the preceding problem in the form of a series of
functions depending on the variable .

Ans.

u(a, B)

Using the formula

_3 ie-@"“)"'““z‘“ cos [(2n + 1)mB/2B,]
—ML m+ 1 '

ipzn+lcos(2n+1)x=lln1+2pcosx+p2 21
a0 2n+1 4 1—2pcosx+p*’ )

to sum the series, we arrive at formula (3).
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)2 451. A charged wire with charge ¢
per unit length is placed parallel to the
edge of a thin conducting half-plane (see
Figure 117). Find the resulting charge

4 0 L0 * distribution on the half-plane.
L P Ans. q A/;
c=——"/[—.
2n(a + x)N x
FIGURE 117 Hint. The equation of the half-plane

in parabolic coordinates is 8 = 0. In
solving the problem, regard the charge as uniformly distributed over the
area of a curvilinear rectangle bounded by appropriate curves « = const,
B = const, and then make the dimensions of the rectangle go to zero.

3. Two-Dimensional Bipolar Coordinates

452. Study the system of two-dimensional bipolar coordinates «, {,
related to the rectangular coordinates x, y by the formula
x—}—iy=ctanh°%lB (—o<a< o0, —n<B<n). ©)

Show that the curves § = const are circles

2 )2 c
_ t — —_—
x (y —ccotP Sn’ p

a-=const

FiGURE 118
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going through the points x = +c, while the curves « = const are the
orthogonal circles

02

(x —ccotha)® 4 y* = —
sinh® o

(see Figure 118). What is the appropriate expression for the square of the
element of arc length? Write Laplace’s equation in two-dimensional bipolar
coordinates.

Ans.

2
d2= c d2 dz,
’ (cosh & + cos B)z( w8y

(cosh « + cos B)® (& n @) .
2 da2 aBz -

c

Au =

453. Find the electrostatic potential in the region between two parallel
cylinders of radius a, held at potentials 4V, respectively, if the axes of the
cylinders are a distance 2/ apart (see Figure 119). Calculate the capacitance
per unit length between the pair of cylinders.

Ans. In terms of bipolar coordinates «,  with parameter ¢ = s/ 12 — o2

u = Vﬁ s C = .i. , %

h ) 4oty P ey

where
ha L AT A
cosh &y = p " "
(the two cylinders have equations asdo d=do
o =

+atp). b a1

454. A cylindrical pipe of radius a
is buried in the ground at depth b FiGure 119
(see Figure 120). Find the stationary
temperature distribution in the region surrounding the pipe, if the tempera-
ture of the ground is zero while a heat current Q, uniformly distributed with
respect to angle, leaves the pipe’s surface.

Ans.

Tl ) = km sinh ao[ g

'n —nao

sinh na cos nﬁrl ,
n cosh ne,

where cosh ay = b/a and k is the thermal conductivity.
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FIGURE 120

455. Two parallel cylinders of radius a with axes a distance 2/ apart are
placed in a plane-parallel flow of an ideal fluid, making angle « with the line
joining the centers of the cylinders. Find the resulting velocity potential.

Ans.
u(e, B) = v/ I — a®

sinh 2 e "
X {cos Y| ——mm8m8M8M8M8M ™ + 2 —1)* sinh n« cos n
{ Yl:cosh o + cos B + ,,z::l( ) cosh na, B]
. sin 8 < e " .
-+ sin [———— +2 -1 cosh na sin n ]},
v cosh o -+ cos B ?:"1( ) sinh no, g

where cosh ay = I/a and v, is the velocity of the flow far from the cylinders.

456. Solve the problem of the twisting of a circular shaft weakened by
an eccentrically drilled hole, as shown in Figure 121 (see W6).

Ans. The torsion function is

u(e, B) = aj sinh? al{coth «, + coth o,

_ cosh «
cosh « + cos 8
=) (_ l)n

2 i ———————————————
+ a1 sinh n(a, — o)

X [e7™* coth «, sinh n(a, — &)

FIGURE 121

+ e ™2 coth «, sinh n(ax — «,)] cos nB},
where «, and «, are determined from the relations
al— a4+ &* a? —a; — d*

cosh oy = ——, coshoy = ———

2da, 2da,
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*457. A narrow slot is cut in a circular shaft subject to twisting (see
Figure 122). Find the torsion function and calculate the torsional rigidity.
Calculate the rigidity numerically for the case A/a = }.

Ans.

The torsion function is

.2
u(o, B) = a sinhzao‘— sin_ P ¢

_ a:=a,
(cosh « 4 cos B)*
1< —(n+Y8) (- o) ¢} }
- n sin + ’ g,
+ - Zﬂa e (n+ B ho )
where [ o
27 a2 H 1
a Zf sin® @ sin (n + 2)2{3 a8,
(cosh ag + cos B) ’
sinh oy = h2a — h) (h < a).
2a(a — h) FIGURE 122
The rigidity is
C = Ga*sinh* [smh ab—— 2n + 1 ———f—;l,
a® sinh® o aonzo o "Zo( n a2 Tenh'a

where

b, zfz" sin® B sin (n + {;)f &,
o (cosha + cos B)

In the case hja = }, it is found that C = 1.28Ga* (compare with the result of
Prob. 233).

Hint. Subtract out the particular solution —y% To calculate the rigidity,
use the formula

j f Ay — § Auydo +f [ — Z:'Jmods = 0.

In the numerical calculation of the coefficients a,, and b, use the relations

2n — 1 2n 4+ 3
a, = n2 An—l - 2 An+1’
A, = ! [ + (2n + 1)2 (=nme™™* —— 1 ]

sinh agl2n + 1 o} (n+ 3)>—m®

1{2n — 1 2n + 3
b'n = El: 2 B‘n—l - 2 Bn+lj"

1 3 1
B, = A h 2 1 —1)"e ™0 ————— |,
" sinhzao[ ncoshag + (2n + ),,,Z=,'"( e = mz:l
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458. An eccentrically drilled tube, with the cross section shown in Figure
121, is subjected to a pressure uniformly distributed over its interior surface,
Find the resulting (two-dimensional) deformation of the tube, if no forces
act on its outer surface. Calculate the normal stresses on the inner surface
of the tube (see J3).

Ans.
og 222 (a? — d®® — aj(ap + 2d cos p)?

p a+ailad — (a,— d)llad — (az + a)]

b

where p is the pressure.

459. A charged wire with charge ¢ per unit length is placed at height 4
inside a long tunnel of semicircular profile. Find the electrostatic field in
the plane of symmetry, assuming that the walls of the tunnel constitute an
equipotential surface.

Ans.
44 sin 2f*(1 + cos f)
a cos 2B — cos 28*

E|a=0 =
where a is the radius of the semicircle, and f* is determined from the formula

tan — =
2

g* _h
pr
Hint. In asystem of bipolar coordinates, the region in question is bounded
by the coordinate surfaces 3 = 0 and B = =/2. Expand the solution in a
Fourier integral with respect to the
variable a.

460. A conducting plane has a
semicylindrical boss of radius a, as
shown in Figure 123. Find the distri-

r bution of electric charge induced on
the surface of the conductor by a wire
carrying charge ¢ per unit length

FIGURE 123 placed in the plane of symmetry (see
Figure 123). Calculate the maximum
value of the electric field on the surface.

Ans. The charge density is

_q sin 2B*(cosh o — 1)
2ra sinh®a« 4 sin® B*

o(x) = — x=acoth§
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on the plane, and

g sin 2f* cosh « . 1
— ———————,  sing=
2ma cosh® « — sin® p* P cosha

o(p) = —

on the boss, where B* is determined from the formula

Qs

*
tan§—=
2

The maximum field is
8qh

h®—a®

Emax =

Hint. Use formula 15, p. 385.

461. Solve the preceding problem, assuming that there is a semicylindrical
groove in the plane (rather than a boss).

Ans. The charge density is

*
sin (1: +32(3 ) (cosha — 1)
o(x) = — L x=acoth§

* ’
3ma cosh gﬁ + cos (7r + 28 )
3 3
on the plane, and
—_ *
sin &r_}__@_) cosh « 1
q .
o(e) = — — e sin @ =
3na coshg:—? 1 cos 2(m ; B*) cosh «

on the surface of the groove.

462. A cylindrical body with cross section in the shape of a symmetrical
circular lune is placed in a homogeneous plane-parallel flow of an ideal fluid,

with velocity components v, = —v,,
v, = v, = 0 (see Figure 124). Find the y
resulting velocity potential.

Ans Bhy

u(, B) p=m .\\\\%\ b\a ET
inh N _
sinn o

= Uy YR s -
Va b [cosh o + cos f A ZT Po
J‘w sinh AB, cosh A(x — B) in Aot d)‘:l’
o sinh mA sinh (mr — BoA FIGURE 124
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where
b

a

e
2

and v,, is the velocity of the flow far from the body.
Hint. Use the system of bipolar co-

y ordinates
/[3 ﬁzﬁ\;\ X + iy = c tanh % —; i
/ “
Itj_ﬂ& c'\\' x (o <a <, By<pP<2r— By,
BN :
i\ N, | instead of the system given by formula
\_ BB 4), p. 212.

N\
S P
463. Find the torsion function for a
FIGURE 125 cylinder whose cross section is a circular
lune bounded by the curves 8 = 3, and

B = B, in bipolar coordinates, as shown in Figure 125 (see Ul).
Ans.

u(e, B) = { cos — 2cotf f sinh AR, sinh AP — cos Ao dA
’ cosh & 4 cos sinh Az sinh A(B, — Bl)

2 cot Blf sinh AB, sinh A(B, — B)
[}

COS Aot dk},
sinh Am sinh A(B, — B,)

where the parameters 3, and {3, are determined from the relations

cot B3,
cot B3,

[
I’

sin {3,
sin 3,

a;

as

’

c=va: - E=+al— I

Hint. To make the problem homogeneous, subtract out the particular
solution §(c* — x? — y?) from the equation for the torsion function, where ¢
is the scale factor of the system of bipolar coordinates.

464. A semicircular elastic plate of radius a is clamped along its edges
and loaded by a concentrated force P applied at an arbitrary point of its
axis of symmetry. Find the distribution of bending moments along the edges
of the plate.?

* Problems 464-466 are treated in Uflyand’s book U2,
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Ans.
M|‘,=° = EI:: (cosh & + I)J; [sinh )\71: sinh 7\(%': — ﬁ*)

cos Aot dA

— Xcot B* sinh Ap* |— 28 A% 4R
cot f* sin B]sinh”(mﬂ)—)\”

M|B=,,/2 -_r cosh af [sinh An sinh AR* cot 3*
2 0 2
— Asinh x(’-‘ - p*)}——, cosdadh
2 / Isinh® (\r/2) — A2
where $* is determined from the relation
g*_ b
a

tan — =
2

’

b is the distance from the point of application of the force to the rectilinear
edge of the plate, and «, 8 is a system of bipolar coordinates.

465. Solve the preceding problem for the case of a uniformly distributed
external load ¢q. Write an-expression for the deflection along the axis of

symmetry.
Ans.
4 0

=——i“—f['hx s ( h)\—thz‘—’-t'h)\):l

u|‘,‘=o 3200052(3/2){ , sinh A cos —Asin 8| coshAB —co > sinh A
Adr 2(3}
———————————————— e t =1

sinh? Owf2) — ¢ CosRtan

where D is the flexural rigidity of the plate.

466. Find the distribution of bending moments along the edges of an
elastic plate in the form of a symmetric circular lune —8, < B < By, duetoa
concentrated load P applied at the center of the plate.

Ans.
sinh AR, cos A«
sinh 2ABy + A sin 2B,

P sin «©
M|B=tBo = - _z_ﬁ) (cosh & + cos Bo)f
0 0.

4. Spheroidal Coordinates

Turning to three-dimensional coordinate systems, we first consider the
case where the region of interest is an ellipsoid. If all three semiaxes of the
ellipsoid- are different, it is necessary to deal with Lamé functions, whose
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theory lies beyond the scope of this book.®> However, in most cases of
practical interest, two of the semiaxes of the ellipsoid are equal. Then the
ellipsoid reduces to a spheroid, i.e., an ellipsoid of revolution, the corre-
sponding coordinate systems are called spheroidal coordinates, and the
appropriate particular solutions of Laplace’s equation can be written in
terms of elementary functions and spherical harmonics, whose theory, unlike
that of Lamé functions, has been fully developed. Moreover, these particular
solutions can be used to solve boundary value problems for the region
bounded by a hyperboloid of revolution
(see Probs. 483-485).4

By prolate spheroidal coordinates we
mean coordinates «, {8, ¢ related to the
rectangular coordinates x, y, z by the
formulas

x = c¢ sinh « sin 3 cos ¢,
y = ¢ sinh a sin B sin ¢,

z = c cosh a cos 3,

where
FiGure 126 O<a<om, 0BT, — <<,
and ¢ > 0 is a scale factor.® Then every point of space is characterized by a
unique triple of numbers o B, ¢. The corresponding triply orthogonal
system of surfaces consists of the prolate spheroids « = const with foci at the
points (0, 0, 4-c), the double-sheeted hyperboloids of revolution 8 = const,
which are confocal with the spheroids, and the planes ¢ = const passing
through the z-axis (see Figure 126). The square of the element of arc length
and Laplace’s equation take the form

ds® = c*(sinh® « + sin® B)(da® + dp?) + c® sinh®a sin® B d¢?,
1 1 8(. au) 1 8(. au)

Au = 9 (sinh o 24} + -1 2 (5in g 2
"= PGinh® « + sin® B) |:sinh e R By (L P

1 | ) azu]
g4l o
+ (sinhza + sin® B/ 0¢®

If there is no dependence on the angle ¢, the appropriate particular solutions

? For the general theory of ellipsoidal coordinates and Lamé functions, see e.g., H4
and W4. Some problems involving ellipsoidal coordinates, but not requiring knowledge of
Lamé functions, are given at the end of this section (see Probs. 486-489).

4 Spheroidal coordinates can also be used to solve boundary value problems for
Helmholtz's equation, but then the particular solutions involve more complicated functions,
called spheroidal wave functions (see S18, S19).

®If a point has cylindrical coordinates r, @, z, then z + ir = ¢ cosh (¢ + iB).
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of Laplace’s equation for dealing with boundary conditions specified on the
surface of a prolate spheroid (« = «y) are given by

= u, = M,P,(cosh &) P,(cos ), n=0,1,2,...
in the case of the interior problem (0 < & < «,), and by
u=u, = N,Q,(cosh &)P,(cos B), n=0,1,2,...

in the case of the exterior problem («y < « < 0).% Here P, () is the Legendre

polynomial of degree n, Q,(z) is the Legendre function of the second kind
(of degree n), and M., N, are arbitrary constants.’

Similarly, if there is no dependence on the angle ¢, the use of the super-
position method to solve boundary value problems for the region bounded by
the hyperboloid of revolution = B, starts from the following particular sol-
utions of Laplace’s equation, which depend continuously on the parameter t:

u=u; = MP_yg, . (cosha)P_yg,;(F cosB), >0 ©)

Here P (2) is the Legendre function of the first kind, and the plus sign pertains
to the interior region 0 < 8 < , and the minus sign to the exterior region
Bo < B < w. The general solution is now constructed by integrating (5)
with respect to 7. To determine M, we use the Mehler-Fock theorem}?
instead of the theory of expansions in series of spherical harmonics.

Next we consider oblate spheroidal coordinates o, B, ¢ related to the
rectangular coordinates x, y, z by the formulas

x = ccosh asin f cos ¢, y = ccoshasinBsin¢, z = csinh a cosf,
where
O<a<oo O0KB<s®, —T<o<m,

and ¢ > 0 is a scale factor.® In this case, the triply orthogonal system of

8 For particular solutions in the more general case of dependence on ¢, see e.g., L9,
p. 218.

* The functions Qn(z) can be expressed in terms of elementary functions by using the
recurrence relation

(1 + DQ@nsi(2) — 2n + D20a(2) + 1Qn(2) =0, n=12,...
together with the formulas

1 z+1 z z+1
=—In——o0 =-ln'— — 1.
0@ =zIn—, Q@=3h— —1
® See L9, Sec. 8.9 and also Probs. 483-485.
* ®If a point has cylindrical coordinates r, ¢, z, we now have z 4 ir = ¢ sinh (« + if).
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surfaces consists of the oblate spheroids « = const, the single-sheeted
hyperboloids of revolution 3 = const and the planes ¢ = const (see Figure

127). The square of the element of arc
P length and Laplace’s equation now take
the form

ds® = c¥(cosh® « — sin® B)(da® + dB?)
+ c? cosh® a sin® B d¢?,
V4 Au — - 1 . I: 1
c*(cosh® « — sin® B)Lcosh a

X i(coshcxa—u)-}- Li(sin B@)

a:x aa sin ‘3 aB aB
F + ( o o )a_zu]
IGURE 127 sin? B cosh®a/ g%

If there is no dependence on the angle ¢, the appropriate particular solutions
of Laplace’s equation for dealing with boundary conditions specified on the
surface of an oblate spheroid (« = ;) are given by

u = u, = M,P,(i sinh &)P,(cos B), n=012,...
for the interior problem (0 < & < a,), and by
# = u, = N,Q,(i sinh &) P,(cos )

for the exterior problem (¢, < a« < o). Here the boundedness of grad u
plays a role (see L9, p. 217).

Having made these preliminary remarks, we now give a number of
physical problems whose solution involves the use of spheroidal coordinates.

467. Find the charge density on the surface of a conductor in the form of
a prolate spheroid with semiaxes a and b, carrying total charge Q. What is
the capacitance of the spheroid?

Ans.
Q 1 0 1
g = ————— —_—,
4nc® sinh a, v/cosh®a, — cos® B 4mab® A/ 22 P
iy
a b
C— 2¢ ’

a+c

In——

a—c

where

¢ =+Ja® — b}, tanhao=é.
a
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Hint. Introduce a system of prolate spheroidal coordinates such that the
surface of the ellipsoid has equation o = «,.

468. A point charge ¢ is placed at the center of a hollow conducting
shield in the form of a prolate ellipsoid with semiaxes a and 4. Find the
potential distribution inside the shield, assuming that its surface is at zero
potential.

Ans.

q
e, § = =]

1
Jsinh? & 4 cos? B

_3 Qsx(cosh a)
é@m + 1)P,,(0) P (cosh o P, (cosh a)P,,(cos a)},

where P,(x) and Q,(x) are the Legendre functions of the first and second
kind, tanh ay, = b/a, and

1-3-5---(2n—1)
2:4:6--+2n
Hint. Subtract the potential of the point charge from the solution. To
express the solution in series, use the integral
1 Py(x)dx
-1 /sinh® « + x*
469. Solve Prob. 467 for the case of an oblate spheroid.
Ans.

Py0) =1, Pp,(0) = (—1)"

, n=12,...

= 2P3,(0)Q5.(cosh a).

o= Q 1 __9 1
4mc? cosh oy /cosh® ag — sin® B 4ma®h A/r2 z?
prinae
a* b
c=—-F
. c’
arc sin -
a

where

¢ =a*— b? tanhao=é.
a
470. Find the charge density on the surface of a conducting disk of
radius a, carrying total charge 0. What is the capacitance of the disk?

Ans.
a:——Q—__:, C=@,
4rav/a® — rt T

where r is the distance from the center of the disk.
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z *471. Find the surface charge density induced on a disk
iq by a point charge g located at an arbitrary point of its axis
J of symmetry (see Figure 128).1°

C@ Ans.
= — -q— 2)2(1 az Sin2 B)_3l2+ L
’ 41ra2[(d + d? \/E cos [3
(4n + Dn!
F 128 X2 (=)' 5—— 0, d)p (cos B) |,
IGURE go F( + %) 2: 2 B
in terms of the Legendre functions of the first and second kind P,(z) and

0.(2), where B = arc sin (r/a), and r is the distance from the center of the
disk to an arbitrary point on its surface.

Hint. Use the expansion

L i3 @n + 1)Pu(0)Qui sinh a)P,,(x).
Veosh?a — x* a0

472. A grounded plane screen with a circular aperture of radius a is
placed in an electric field which is homogeneous at a great distance from the
screen. Suppose the field has the value E, to the left of the screen and the.
value E, to the right of the screen (see Figure 129). Find the potential in
the surrounding space, and calculate the field along the axis of symmetry
(a problem of interest in electron optics).

Ans. The potential is r
a
“Iz>o ==(E1 — Ey)
T £ £
X (l—sinhaarctan _1 )cosB—Ezz, - -
sinh « - —
p—— 0 p—
a - 7 .
U|,co == (E; — Ey) —_ —_
3
X (1 — sinh « arc tan — 1 ) cos B — E,z,
sinh « FIGURE 129
while
E. _ . .
E|,o.50 = Ey + = E”(arc tan — 1 smhza)
sinha  cosh®«
E|r=0.z<0 =E, + E, — El(arc tan — 1 _ -ﬂr—lllzi)
sinha  cosh®«

is the field along the axis.

1% This problem can be solved more easily by using integral equations (see Prob. 551b).



PROB. 475 CURVILINEAR COORDINATES 225

Hint. Introduce spheroidal coordinates with parameter ¢ equal to the
radius of the aperture, and look for a solution of the form

"lz<o = Ay(a) cos B — E;z,
Ul,50 = Ay(e) cos p — Eyz.

473. An oblate dielectric spheroid, with semiaxes @ and b and dielectric
constant ¢, is placed in a homogeneous electric field E, directed along its
axis of symmetry (in the negative z-direction). Solve the resulting problem of
electrostatics.

Ans. The potential is

u= Eoz + const

e cosh? ay — sinh® «y — (¢ — 1) sinh a, cosh® &, arc cot sinh a,

in the dielectric, and

Eoc(e — 1) sinh aq cosh® ag(1 — sinh « arc cot sinh «) cos B

u=Eyz — 2 ) - 2 .
e cosh® ay — sinh* «y — (e — 1) sinh a4 cosh® &, arc cot sinh
—~+ const
in the air, where
b
tanh ag = —.
a

474. Find the resistance of a grounding rod inserted in ground of con-
ductivity o (see Figure 130), assuming that the rod is shaped like half of
a prolate spheroid with semiaxes @ and b, where a > b (see Ol).

Ans.

2 2

Re— L jpatya—b
4ro /q? — b2 a — \/q® — b?

7 & B:7

r

§<§ (o) \\\\\\ (o)

a=ao a[%

4 z
FIGURE 130 FIGURE 131
475. A constant current J enters the ground through a point contact

placed on the earth’s surface over a hole filled with material of conductivity
oy, different from the conductivity o, of the rest of the ground (see Figure 131).
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Find the current distribution in the ground, assuming that the boundary
between the two media is the prolate spheroid with equation

2 2
a—z-l-;z':], z>0.

Ans. The potentials of the current field in the two media are given by

J J(gp — 0y)

§(4n + 1)P,,(0)

U, =
' 2mo,R 21:0'1\/ a® — b*alo
Q3n(cosh ag)Q3,(cOsh ag) Py,(cosh )Py, (cos B)
6,Qzn(cosh ag) Py, (cosh ag) — 05P;,(cosh og)Q3,(cosh ) ’
J Q0
Uy = ——— (4n + 1)P,,(0)
21v/a® — b sinh? « Zo *

Q2.(cosh a)Py,(cos )
6,Q5,(cosh ag)P;,(cosh ag) — 65P,,(cosh ag)Q5,(cosh o)’

where R is the distance from the source to the field point, tanh «, = b/a,
P,(x) and Q,(x) are Legendre functions, and

1-3:5---(2n—1)
2:4:6-+2n
476. A d-c current enters ground of conductivity o through a grounding

plate in the form of a disk of radius a (see Figure 132). Find the distribution

of current under the plate, and calculate
the resistance of the plate.

PO(O) = lr PZn(O) = (_l)n

, n=12,...

r Ans. The potential of the current
field is

2V .
u = — arc cot sinh «,
T

where V is the potential of the plate.
The resistance is

L

FIGURE 132 R = .
40a

Hint. Introduce a system of spheroidal coordinates (0 < & < oo,
0< B < nf2).

471. A prolate spheroid made from material of magnetic permeability w
is introduced into a homogeneous magnetic field H, directed along its axis
of symmetry (in the negative z-direction). Solve the resulting problem of
magnetostatics, and show that the field inside the spheroid is homogeneous.
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Ans. The field inside the spheroid is

H,— — Hy
cosh® ay — w sinh® ¢y + (. — 1) sinh® &, cosh a, In coth %’
where
tanh oy = b .
a
Substitution for «, leads to the expression
Hz = — b2 Ho N c = az - bz-
1= 2 (- 1)[1 ~i]nw:|
c 2c a—c

478. Find the stationary temperature distribution in a prolate spheroid
o = &, if a given axially symmetric temperature distribution

T(O(, B)Iu=ao =f(ﬂ)
is maintained on its surface. Consider the special case where one half of the
surface of the spheroid (z < 0) is held at temperature zero, while the other
half (z > 0) is held at temperature T,

Ans.
T(a, B) = i ﬂl—- P,(cosh «)P,(cos B)f“f(n)P,,(cos %) sin v dx,
2 70 P(cosh o) 0
in terms of the Legendre polynomials P,(x). In the special case,

4n + 3 P,.(0)
T(x, B) = [ +nzo 2+ 1) Poa(cosh a) Py,1(c0s B)Py,ys(cosh oc)].

Hint. To calculate the integral

[ 1p,(x) dx,
J0

use the recurrence relation

@2n + DP(x) = Pops(x) — Pra(x).
479. Find the stationary temperature distribution in a prolate spheroid
with semiaxes @ and b, whose surface is held at temperature zero, if heat is
produced inside the spheroid with constant density Q.

Ans.
2 2
T(a, B) = — %i—l:sinh2 asin® B — i—i—z
+ b (3 cos®* B — 1)(3 cosh® « — 1)]
3(3a® — ¢?) ’

in terms of the spheroidal coordinates « and 8, where ¢ = Ja? — b?and k is
the thermal conductivity.
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Hint. Make the problem homogeneous by subtracting out the particular
solution — Qr?/4k of the inhomogeneous heat conduction equation.

480. A body in the shape of a prolate spheroid with semiaxes a and b is
placed in a homogeneous flow of an ideal fluid, directed along its axis of
symmetry (in the negative z-direction). Find the resulting velocity potential.

Ans.

cosh & In cothZ — 1

u(a, B) = v,c| cosh a + cos B + const,
ac 1 n a+c

B 2 a—c

where ¢ = v/a* — b2 and v, is the velocity far from the body.

*481. Calculate the gravitational potential due to a homogeneous prolate
spheroid with semiaxes a and b, and find an asymptotic expression for the
potential in the case of small eccentricity c.

Ans. The potential outside the spheroid is
2
T

b
u(a, B) = :/'——{cosh (3 cos? B — 1)

pa
a® — b*
+ [2(sin® B — sinh®«) + 3 sin® B sinh® «] In coth g},

where p is the density, and the gravitational constant is taken to be unity.
For small ¢,

u ~M|:1—+ c_z P(cose)]
R 5R*° ’
where
M = $mpab®

is the mass of the ellipsoid, and

N 2 _
R=+r*+ 2% 0—arctan—, Pz(x)=3x2 l.
z

Hint. Inside the spheroid, subtract out the particular solution —mpr? of
the inhomogeneous equation.

482. Solve the preceding problem for the case of an oblate spheroid.

Ans. Outside the spheroid the gravitational potential is

a®b

u(e, B) = \/aT_:p—b-; {[2(cosh® & + sin® B)

— 3 cosh®« sin® B] arc cot sinh « — sinh a(3 cos®* B — 1)}.
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For small ¢, r B=B,
1

c’ J
A~ M|— — —— Py(cos 0) |,
* [R sge | e0s V)

where P
M = §npa®b. q ,

. . 0 . -
Hint. Inside the spheroid subtract out a=0 B=0
the particular solution — ¢

—mp(a? — b?) cosh? a sin? 8

of the inhomogeneous equation.

*483. A point charge ¢ is placed at FIGURE 133
the focus of a grounded conductingscreen
shaped like a hyperboloid of revolution (see Figure 133). Solve the resulting
problem of electrostatics.

Ans. The electrostatic potential is

7t ® 7 tanh v P_vg, ,(—cos
wa, ) = L _q_f Verinl Bo)
R c¢Jo coshmt P_yg, .(cos By)

P_y4,-(cosh «)

X P_yg (cosB)dr, 0< B < By
where P (x) is the Legendre function of the first kind.

Hint. Introduce prolate spheroidal coordinates «, B, ¢ such that the
hyperboloid has equation 8 = 8,, and make use of the Mehler-Fock theorem

f(@ = [ % tanh neP_yg, (cosh a) d | * (EYP_y4,.(cosh E) sinh & dE
(see L9, p. 221).

484. A point charge g is placed near the vertex of an electrode shaped
like a hyperboloid of revolution. Find the potential in the surrounding space,

assuming that the charge lies on the axis of
the hyperboloid (see Figure 134).

Ans.
:a___q:f”t h r(l —)
R 2egm o G T2

y P(l _ ’_)f_A__(:M)
4 2/ P_ygi(—cos B

X P_ug,i(cos Bo)P_14, .(cosh a) d,
FIGURE 134 Bo < (3 < T

485. A d-c current J flows into ground of conductivity ¢ through an
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electrode placed at the bottom of a hollow shaped like a hyperboloid of
revolution, with equation § = B, in spheroidal coordinates (see Figure 135),
Find the current distribution in the

z ground.
Ans. The potential of the current
field is
J J
u= —
2n6R  2moc

o B=Aq
VAN
’ \Q'B)o)\ 9 f” Tsinhnr Pl (cos By)
?\\\ X’{ o cosh®nt Plig, . (—cos Bg)

X P_igi(—cos Bo)P_14,;(—cos B)

X P_y4,(cosh a) dr,
where R is the distance from the source to the field point, c is the eccentricity
of the hyperbola § = ,, and P (x) is Legendre’s function.

486. Find the charge density on the surface of an ellipsoidal conductor

with semiaxes a, b and ¢, carrying total charge Q. What is the capacitance
of the ellipsoid ?

Ans.

FIGURE 135

(¢

__9 1
4rabc x2 yz z2 ’
NERTA
2

¢= f‘” ds
0 \/(02 + 5)(b* 4 s)(c* + )

Hint. Introduce ellipsoidal coordinates «, 8, v, defined as the roots of
the cubic equation

x2 y2 z2

N T N
Then look for a solution depending only on.a.

487. Find the charge density on a thin elliptic plate with semiaxes @ and b,
carrying total charge Q. What is the capacitance of the plate?

1.

Ans. o 0 1
47tab/\/1—_x_2_£’
a2 b2
C a
= 2 12\’
K(\/a —b)
a

where K(k) is the complete elliptic integral of the first kind.
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Hint. Take the limit ¢ — 0 in the solution of the preceding problem.

488. An ellipsoid with semiaxes a, b and ¢, made from material of
magnetic permeability (@, is placed in a homogeneous magnetic field H,
directed along its major axis. Find the resulting magnetic field inside the
ellipsoid.

Ans. The direction of the field coincides with that of the external field.
The magnitude of the field equals

H,

1+ 2 f i &
2 o (a® 4 s)V(a® + s)(b® + s)(c® + s)
489. Calculate the gravitational potential of a homogeneous ellipsoid of
density p (see S16, p. 161).

Ans.

© X2 y? 22 ds
u = wpabc |:1 - — = s :l = = )
y a?+s b 4s A+ siV(@ + )+ s)cE + 5)
where A is the positive root of the equation

x2 n yz n 52
ad+r PPN A

and the gravitational constant is taken to be unity.

1=0,

5. Paraboloidal Coordinates

Physical problems involving a region bounded by a paraboloid of revolu-
tion can be solved by introducing paraboloidal coordinates «, B, ¢ related to
the rectangular coordinates x, y, z by the formulas

x =capcosp, y=cafsing, z= g(oc2 — B,

where
O<ca<oo O0<B<o0, —T<p<L T,

and ¢ > 0 is a scale factor.}* In this case, the triply orthogonal system of
coordinate surfaces consists of the two families of paraboloids of revolution

1 1f a point has cylindrical coordinates r, ¢, z, then

24 ir = g(tx + Py,
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r « = const and 8 = const, together with the
a = const 8 = const planes ¢ = const (see Figure 136). The square

N of the element of arc length and Laplace’s
equation take the form

ds? — c¥(o 2y(do® 4 dB? 2 202 3 9

40 /{ g0 © c(a1+ﬂ)(laa+as)+caﬁd<p,
\ M= T 8 [ZE(“ 5&)

13 (p20) , (L 1)24]

) +Baﬂ(ﬁ3ﬁ * (a2+l32 29"

If there is no dependence on the angle ¢,12

the use of the superposition method to

FIGURE 136 solve boundary value problems for the region

bounded by a paraboloid of revolution

B = B, starts from the following particular solutions of Laplace’s equation,
which depend continuously on the parameter A:13

I,(A)
Ko(AR)
Here Iy(x), Jo(x) and Ky(x) are cylinder functions, the upper row pertains
to the interior region (0 < B < B,) and the lower row to the exterior region
(Bo < B < o0). The general solution is now constructed by integrating (6)
with respect to A, where, to determine M,, we use Hankel’s integral theorem
[see formula (12), p. 160). Paraboloidal coordinates can also be used to solve
boundary value problems for Helmholtz’s equation, but then the particular
solutions involve confluent hypergeometric functions (see E2, Vol. 2, Secs.
8.7-8.8).

490. Solve Prob. 483, assuming that the conducting screen is shaped like
a paraboloid of revolution, with equation 8 = {3, in paraboloidal coordinates.

Ans.

u = (o, B)Jo(Ae) (6)

_ 20 29" KB
ue, B) = B o 1,08y I (AB)Jo(Aa) A,

in terms of the Bessel function of the first kind Jy(x) and the Bessel functions
of imaginary argument J(x) and Ky(x). Note that

e 2

12 See Prob. 492 for the case where dependence on ¢ is present.
13 Formula (6) is an abbreviated way of writing two formulas, one involving the function

I,(\B), the other K,(\B).
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where p is the focal distance and c is the scale factor figuring in the definition
of the paraboloidal coordinates.

Hint. Use the integral

f "J"(‘”‘Z dx = Kyab)  (a>0,b> 0).
+b

491. Find the stationary temperature distribution in a body shaped like a
paraboloid of revolution B = B, if a given axially symmetric temperature
distribution

T(a, ﬁ)le:po = f()
is maintained on its surface.
Ans.
To(A
76 = [ 208 5 o o e ae
Io(ABo)

492. Solve the Dirichlet problem for the domain bounded by the parab-
oloid of revolution § = f3,, assuming that the boundary condition is of the
form

Ulpcge = £u@) ", m=0,1,2,...,
sin no
where f,(«) is a given function. Use the result to construct solutions for
arbitrary boundary conditions depending on .

Ans. Inside the paraboloid,
L,(A8)
(A J, ()N dA
u(o, B, ¢) = ff( ) == 108 (Roph dn "o’
where £,(A) is the Hankel transform of f(a):!

£ = [, £, (Ao de.

cos ne.

6. Toroidal Coordinates

Besides spherical and spheroidal coordinates, there are other coordinate
systems whose use is intimately connected with Legendre functions. First
we consider toroidal coordinates o, B, ¢ related to the rectangular coordinates
X, ¥, z by the formulas

¢ sinh o cos ¢ ¢ sinh a sin ¢ csin f8
=, =, Z = — ] (7)
cosha — cos B cosh « — cos 8 cosh & — cos B

14 Cf. formula (13), p. 160.
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where
O<au<<oow, —<Pf<gnw, —Tt<o< T,

and ¢ > 0 is a scale factor.1>¢ The corresponding triply orthogonal system
of surfaces consists of the toroidal surfaces & = const, satisfying the equation

2
(r~ccotha)2+zz:(_ )
sinh o

where r = +/x* + %, the spheres § = const, satisfying the equation

(r—ccotB)+ r*= (L)z, (8)

sin §

FIGURE 137

and the planes ¢ = const (see Figure 137). Note that all the spheres (8)
intersect in the circle r = ¢, z = 0. It is clear from (7) that x, y and z are

15 In the next section, we shall consider a closely related coordinate system, i.e., three-
dimensional bipolar coordinates.
16 If a point has cylindrical coordinates r, @, z, then

csinh « csin 3
y - - =
cosha — cos B’ cosha —cos 8’

or more concisely,

z + ir = ic coth

o+ B
-



CURVILINEAR COORDINATES 235

periodic in B and ¢, with period 2. Therefore we can choose B, < B <
By + 27, ¢, < ¢ < ¢y + 2w instead of —w < B < ®, —7 < ¢ < = (which
corresponds to the particular choice §; = ¢, = —m), and it is sometimes
convenient to do so.

In toroidal coordinates, the square of the element of arc length is

c2
~ (cosh & — cos B)?
and Laplace’s equation takes the form

_a_( sinh o @_) n i( sinh a_u)
O \cosh a — cos B da 0B \cosh o« — cos 8 9p

ds® (do® + dB* + sinh® « do?),

1 P _
sinh a(cosh & — cos B) d¢®

©®

Unlike the cases considered so far, equation (9) does not permit separation
of variables directly. However, if we first introduce a new function v by
making the substitution

u=x/2<:oshoc—2<:os{3v,

(9) goes into a new equation belonging to the class which permits separation
of variables (see L9, p. 223). If there is no dependence on the angle o, it
turns out that Laplace’s equation (9) has particular solutions of the form

u = u, = /2 cosha — 2 cos B [4,P,—14(cosh &) + B,Q,-1¢(cosh «)]

X [C, cos vB + D, sin vf],
in terms of the Legendre functions of the first and second kinds, where v is a
parameter and A4,,..., D, are arbitrary constants. In boundary value
problems involving the region bounded by a torus, the parameter v is deter-
mined by the requirement that the solution be periodic in 8. This leads to
the particular solutions

Q,14(cosh a)
P, (cosh &)’

u = u, = /2 cosh « — 2 cos B [M, cos n + N,, sin n]

where the upper row pertains to the interior problem («y < « < o) and the
lower row to the exterior problem (0 < « < «,). In problems involving the
region bounded by two intersecting spheres 8 = 8, and 8 = 8,, the appro-
priate particular solutions are obtained by choosing v = it (v > 0), and are
of the form

u = u, = /2 cosha — 2 cos B [M; cosh 1B + N_sinh tB]P_, . (cosh a),
(10)
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where §8; < p < 8, for the interior problem and 8, < § < 2w + B, for the
exterior problem. Then the solution of the problem is constructed by
integrating (10) with respect to , where the factors M_and N_ are determined
by using the Mehler-Fock theorem (see L9, Sec. 8.12).

This section contains a number of physical problems which can be solved
by using toroidal coordinates. Most of the problems are rather difficult, and
are intended for those with the necessary background in the theory of special
functions.??

493. Find the electrostatic potential due to a charged toroidal conductor
at potential ¥, with the dimensions shown in
Figure 138. Calculate the capacitance of the

r
a:d, conductor.
§ ) Ans. The potential is
i [ u(oc,ﬁ):l—/\/2coshoc—2cos{3
T
| | 21
a=0
+5 41 -7 X [————————Q_” x(cosh o) P_,5(cosh a)
} ' P_, 5(cosh ay)
l l > Qn—yg(cosh ap) :]
| | +2) = — 2 P, 1(cosh a) cos nB |,
\ Zl Pr—y4(cosh ) 6 “ P
§, and the capacitance is .
FIGURE 138 C = Q[Q—x/z(COSh %) +2 Qn-14(cosh o‘o)]’
7 LP_;,4(cosh a) o1 Pa—14(cosh ag)

where P (x) and Q (x) are the Legendre functions of the first and second kind,
and

c=VIE—a coshaozl—.
a

Hint. Introduce toroidal coordinates «, 3, ¢ with parameter ¢, such that
the surface of the conductor has equation a = a,. In the course of the
solution, use the integral

f" cos nf dp
0 /2 coshag — 2 cos

— 0, s4(cosh «).

*494. Find the distribution of electrostatic potential on the axis of a
grounded conducting torus introduced into a homogeneous electric field E,
directed along its axis of symmetry (in the negative z-direction).

17 Some of the problems can be solved more easily by using other methods (by inversion,
say).
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Ans.

U|,—o = Eoz ——Eo\/lz— a smB > M@ sin np,
2 ;71 Pa—yg(cosh «p)
where

l
cosh oy = —,
a

and the dimensions / and a are the same as in Figure 138.

495. Solve the preceding problem, assuming that the external field is due
to a point charge g at the center of the torus.

Ans.

u|1'=0 =

g _ 2qsinip [Q—l/z(COSh %) z( ) Qn-15(cosh ap) cos n :I
z  nJ/IP — g?LP_y,(cosh ao) P,._n,g(cosh o)
496. A currentJ flows in a ring-shaped conductor of circular cross section

(see Figure 138). Find the resulting magnetic field along the z-axis, assuming
that the current J is uniformly distributed over the cross section of the ring.

Ans.
_ 12 3/2
164/2 (—,‘! — 1) J
H|y= — ——%—" = (1 — cos p)**
I ca

X {Qil/z(COSh ao)Ql—'l/z(COSh %) — Qi'l/z(COSh “o)Qll/z(COSh o)

+ 25: [Q2-14(cosh ag) Q- 1¢(cosh ag) — Q% 14(cosh ag)Qa—14(cosh ag)] cos npy,

n=1
where ]
coshayg = —,
a

¢ is the velocity of light, and Q)(x), Q%(x) are associated Legendre functions
of the second kind.

497. Find the distribution of a-c current along the surface of a perfect
conductor shaped like a ring with circular cross section. Calculate the self-
inductance L of the ring.!®

Ans.

L _1_[Q‘_l,z<cosh %) ,$ 1 Qhylcosh ao>]
L 2n*/P — a®LP! y(cosh o)~ aci4n® — 1 Ph_sg(cosh ap)
where ]

cosh oy = —,
a

18 This is the skin effect problem (see F1).
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the dimensions / and a are the same as in Figure 138, and Pl(x), Q}(x) are

associated Legendre functions of the first and second kind. The distribution

of current density along the periphery of the ring is

_ LJ [(cosh & — cos B)]“’z[ 1 5 2 cos np ]
32n°  sinhoo(l* —a%)  LP_j(coshay)  iZh Prosg(cosh ag) 1

where J is the total current.

J@) =

*498. Suppose a d-c.current flows in a ring-shaped conductor with the
dimensions shown in Figure 138, producing heat with density Q. Find the
temperature distribution inside the conductor, assuming that its surface is
held at temperature zero.

Ans.
2 2 inh®
Tap = Q=) sinile gt
k |2 cosha — 2 cos p)?
. 2 "
l:smh %Q”"y/z(cosh ap) Q_1/x(cosh )
3‘TCQ_1/2(COSh %)
. 2 0 " 1
2 sinh® oy Qn-14(cosh o) Q,-y4(cosh ) cos nﬁ]},
3 2 Qa-ss(cosh ag)

in terms of the Legendre function of the second kind Q (z), where

l
coshog = —,
a

and k is the thermal conductivity.

Hint. Subtract out the particular solution — Qr?/4k of the inhomogeneous
heat conduction equation. Use the integral

T d 1
f cos np dp = - Q. _15(cosh o).
o (2cosha — 2cos B)** 3
499. Calculate the gravitational potential of a homogeneous torus of
density p, with the dimensions shown in Figure 138, assuming that the
gravitational constant equals unity.

Ans.

2
u(x, B) = — 4—9;— sinh? 0g\/2 cosh & — 2 cos (5{[Q_l s2(cosh ag)Q; o(cosh o)

— Q2 /5(cosh ag)Q’ 4 /5(cosh ag)]P_; o(cosh )

+ ZE[Qn_%(cosh )03 14(cosh o)

n=1

— Q%_14(cosh ag)Qn—1¢(cosh ay)]Pr—14(cosh «) cos nB},
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where P (x) and Q (x) are Legendre functions, Q%x) is the associated
Legendre function of the second kind, and

c=+vVP—a coshoco=l—.
a
500. A torus with the dimensions shown in Figure 138 is introduced into
a homogeneous flow of an ideal fluid, whose direction coincides with the
axis of symmetry of the torus. Solve the resulting hydrodynamical problem,
and find the velocity distribution along the axis.

Ans. The stream function is

v, r? sinh «

_F
2 /2 cosh & — 2 cos B

v =

X [gi’ P!, i(cosh &) + > ¢, Ph-14(cosh @) cos "ﬁ:l ,

n=1

where Pl(x) and Q)(x) are associated Legendre functions,

4 { 2 2\l
= ——————— {0, (I* — a*)Qn-14(cosh
nPy-14(cosh ay) ( 1@l o)
24
4_ _—
(4n* — 1) sinh &
cosh «y = I/a, and v,, is the velocity of the flow far from the torus. The
constant A is determined from the condition

I
0 Ox
501. Find the surface density of free charge on a thin charged conductor

shaped like a spherical bowl of radius a (see Figure 139). Calculate the
capacitance of the bowl (see J2, p. 250).

Cn

[sinh agQ%—14(cosh otg) — 1]},

dp = 0.

a=ag

Ans. The charged density is r1

Q= o
2 cos P, c

0, =

_v [\/2 cosh a — 2 cos B,
' 4n’q

/2 cosh « — 2 cos [3.,] a:=0

”‘NQ:;::::X
— arc tan 0 ’
oo i ‘
* 1
on the inner surface of the bowl, and 4 xT

9&0

|4
6, =0, + —
° it 4ra FIGURE 139
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on the outer surface, where V is the potential of the bowl and

Sin Bo == £ .
a
Using the formula

4a® — b®  cosh x — cos B,
b®—o®  2cos® B,
where the distances b and p are shown in Figure 139, we find that
o, = L[JM — arc tan J4az — bz]
i 4nq b2 — Pz b2 — pz '
The capacitance of the bowl is

b
4a® — b 9 arc tan ———
\/ a + \/ iz — bz

Hint. To calculate the density, use the integral

© 1 h _ .
J’ v sinh it cozh (m [3,,)1- P_ss, (cosh a) dr — 2 sin 3B,
0 cosh® 72 cosha — 2cos B
X [l + 208 1B, arc tan 2 205 4o ]
«/Zcosha—ZCOSﬂo \/2coshaz——200sﬁ0

*502. Find the surface density of induced charge on a thin conductor
shaped like a spherical bow] of radius a, due to a point charge ¢ located at
the point r = z = 0 (see Figure 140).

r

Ans.
qb“‘\/4az — b?
G = 3 2p3
R 8n°a“R
c R b — 24°
] z X [arc tan —— PR
L Vi =Y R
¢ -
___R Jbz —~ 2a2]
Vit —ptN R - T
2 2 2
FIGURE 140 6. =0, — qb*(4a” — b)

e 16ma’R®
where o, and o, are the charge densities on the outer and inner surfaces of
the bowl.

Hint. Subtract out the potential of the point charge. To expand this
potential in a Mehler-Fock integral, use the relation

1 _jwcoshﬁo-r
V2cosha + 2cos By 7o

P_y;,:(cosh «) dr.

cosh tt
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503. Find the potential distribution in the space surrounding a charged
conductor shaped like the “spherical zone” shown in Figure 141.

Ans.
u(x, B) = V/2 cosh o« — 2 cos B

X fm[sinh (2 + By — B)T — cosh (T — By)T

P—‘/f+ir(COSh a) -
sinh (v 4 By)* cosh ntt
where P (x) is the Legendre function of the

first kind, ¥ is the potential of the conductor
and sin B, = c/a.

x sinh (x — B)t]

FIGURE 141

504. Use the result of the preceding problem to calculate the capacitance
of a hemisphere of radius a.

Ans. i

C=2a (1 - ——_)

J3
505. A lens-shaped conductor at zero potential is introduced into a
homogeneous electric field E, directed along its axis of symmetry (in the
negative z-direction), as shown in Figure 142. Find the resulting potential

distribution.
Ans.

u = Eyz — 2Eyc\/2 cosha — 2 cos 8

xf“’ T sinh (m — Bo)t
‘ 0 cosh Tt

X M P_yz, .(cosh &) dr.
sinh Byt

[

506. Find the gravitational po-
FIGURE 142 tential of a homogeneous hemisphere
of density p and radius a.
Ans. The potential outside the hemisphere is
2npa®
u(e, B) = 'SL

xf E‘% sinh (8 — m)r + (1 + 2¢%) sinh (5?" ~ aH

/2 cosha — 2 cos 8

P—%-HT(COSh (l)
sinh (3nt/2) cosh =t




242  CURVILINEAR COORDINATES

Hint. Inside the hemisphere, subtract out the particular solution —2mpz?
of the inhomogeneous equation. Use the integral

3sin®p —ctﬂf 7 sinh (r — B)r

(2 cosh & — 2 cos B)*? cosh 7t

P_y;, ;. (cosh &) dr

P_y, . (cosha)dr.

© 72 cosh ( — B)r
e

cosh Tt

7. Three-Dimensional Bipolar Coordinates

By three-dimensional bipolar coordinates, we mean coordinates «, B, ¢
related to the rectangular coordinates x, y, z by the formulas

¢ sin « cos ¢ ¢ sin « sin ¢ csinh
~ 2R R S AP R
cosh B — cos a cosh f — cos « cosh § — cos a

where
O<a<n, —0o<B<o0, —T<p<m,

and ¢ > 0 is a scale factor.!® The close resemblance between (11) and the
formulas defining toroidal coordinates should be noted (see p. 233). The
corresponding triply orthogonal system of surfaces consists of the spindle-
shaped surfaces of revolution « = const, satisfying the equation

c 2
(r —ccota)® 4+ 22 = (—),
sin
the spheres 8 = const satisfying the equation
z — ccot re= ’
( B + b

and the planes ¢ = const (see Figure 143). The square of the element of arc
length is

2
T e B i )

1% If a point has cylindrical coordinates r, ¢, z, then

csina csinh
—— = ——
cosh —cos a’ cosh B —cos a’

or more concisely

o + i
5

z + ir = ic cot
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and hence Laplace’s equation takes the form

_@_( sin 21_4_) i( sin a_u)
0o \cosh B — cos o o 0B \cosh B — cos « 9
1 o*u
— =0. (12
sin a(cosh B — cos «) 0¢® (12

FiGURE 143

To separate variables in (12), we first introduce a new function v by making
the substitution

u=\/2005h(3—2cosozr,

as in the case of toroidal coordinates. If there is no dependence on the angle
@, it turns out that Laplace’s equation (12) has particular solutions of the
form

u=u,=/2coshB — 2cosa[4,P,cos «) + B,cos «)]
x [C, cosh (v + })B + D, sinh (v + $)B],
in terms of the Legendre functions of the first and second kinds, where v is a
parameter and A4,,..., D, are arbitrary constants (see L9, p. 232). In
boundary value problems involving a region $; < f < 8, bounded by two

nonintersecting spheres 8 = 8, and B = B,, it is easy to see that the appro-
priate particular solutions are

u = u, = /2cosh B — 2 cos « [M, cosh (n + })P
+ N, sinh (n 4+ 3)B]P,(cos a), n=0,12,...,

in terms of the Legendre polynomials P,(x), and the general solution is
constructed by summing these solutions. In problems involving the region
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bounded by the spindle-shaped surface « = «,, the appropriate particular

solutions are obtained by choosing v = —4 + it (v > 0), and are of the

form

u=u,=./2coshP — 2cosa[M costB + N_sin tB]P_14,.(+cos «),
©>0, (13)

where the plus sign corresponds to the exterior problem (0 < a < o) and
the minus sign to the interior problem (2, < a < =). In this case, the
general solution is obtained by integrating (13) with respect to 7, and the
factors M_and N_ are determined by taking Fourier cosine and sine trans-
forms with respect to f.
This section contains problems from various branches of mathematical
physics which can be solved by using three-dimensional bipolar coordinates.
The last three problems (Probs. 512-
r 514) involve limiting cases of bipolar
vV V=l and toroidal coordinates, and lead to

40 @ . &w 0, elegant formulas for the capacitance

N of such objects as a pair of spheres

% _ in contact or the surface obtained by
ﬁ' 'Bo B 'ﬁo . . .

f——— 2/ rotating a circle about a tangent line.

507. Find the electrostatic field in

FIGURE 144 a spark gap consisting of two con-

ducting spheres of radius a, with

centers a distance 2/ apart, if the spheres are at potentials ¥, and V,
respectively (see Figure 144).

Ans. The electrostatic potential is

& [V, + V; cosh (n 4+ $)B
u(e, B) = /2 cosh B — 2 cos « [ 2
8= P Z:o 2 cosh(n+ §)Bo
Ve — Vi sinh (n + ’})B]e—(w%)eop (cos &),
2 sinh(n + 3)B, "
in terms of the Legendre polynomials P,(x), where

-+

cosh By = ! .
Hint. Use the expansion

1
J2coshB — 2cosa

*508. Find the capacitances C,;, C,, and Cy, of a system of conductors
consisting of two spheres of radii a, and a,, with centers a distance 2/ apart.?

a0
= > e8P (cos ).

n=0

% Concerning the meaning of Cy,, Cy, and Cy,, see the solution, p. 370.
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Assuming that the radii are equal (a, = a, = a), tabulate C,, as a function
of the ratio //a.

Ans.

Cun = ey + S e 0 cosh (n + BB, + ) — 048]

1
2sinh B, 3% (n+¥%)B
e+ l

X Sinh (n £ DG + B

e~ (nt ) (B1+82)
smh (n+ DB + B

2 sinh B Z [e—(n+/€)an cosh (n + 3)(B, + B2) — e-("+‘/3)¢31]
2 n=0

Cp=c i

Cp=c {

e—(n+'/5)ﬂz l
X = )
sinh (n + $)(B, + B2)
where f3,, 8, and c are determined from the relations

41* 4 af — aj 4% — a% + a?

cosh B, = , coshfB, =
Py 4la, Ps 4la,
¢ = a, sinh B, = a, sinh f,.

I

- 1.2 1.4 1.6 1.8 2.0
a

Cl‘.\

= 0.572 0.431 0.356 0.306 0.269

Hint. In three-dimensional bipolar coordinates «, 8, ¢, the surfaces of
the conductors have equations 3 = —8, and g = ,.

509. A conducting sphere of radius a is buried to a given depth in a
liquid of dielectric constant €. Find the potential distribution outside the
sphere, assuming that the sphere is at potential ¥ (see Figure 145). Calculate
the capacitance of the sphere.

Ans.
» © et HE—BOP (cos )
Uy = Ve2cosh p — 2 cos ), 2 ,
n=o Sinth (n +- $)Bo 4 € cosh (n + B,

—o < B <O,
i sinh (n + 3)B + e cosh (n + })B
=0 sinh (n + $)By + € cosh (n + 1),
X e8P (cosa), 0 < B < By

ug = V/2cosh B — 2 cos «

C=+P—¢g
[ 1 i e sinh (n + $)Bo + cosh (n + By -(2n+1)a,]
2sinh By, ;o sinh (n 4 B, + € cosh (n + 3)By ’
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in terms of the Legendre polynomials P,(x), where

cosh By = ! .
a

FIGURE 145 FIGURE 146

510. Find the potential distribution outside a charged spindle-shaped
conductor at potential ¥ (see Figure 146).

Ans.
u(a, B) = V /2 cosh p — 2 cos

» f‘” cos T P_i4, ., (—cos o)
o coshtm P_yz, ;. (cos o)
in terms of the Legendre function Pv(x), where

P_i4, ;.(cos a) d,

. (4
sinog = —.
a
Hint. In bipolar coordinates «, B, ¢, the surface of the conductor has

equation « = a,. In the course of the solution, use the integral representation
2 cosh nrf‘” cos f df _

0 \/2cosh 3 — 2 cos a,
511. Solve the preceding problem, assuming that the conductor is placed

in a homogeneous electric field E, directed along the axis of rotation (in the
negative z-direction).

P_ysi(—cCOs ) =

Ans.

u = Eyz — 2Ec\/2 cosh § — 2 cos af
o coshmr

o

P_ %+i‘r( —Cos al))

P_y;., ..(cos &) sin fr dr.
P_y4,.1:(c0s o) il b
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*5]12. Calculate the capacitance of a conductor consisting of two touching
spheres of equal radius (see Figure 147).
Ans. C =2aln2. rt

Hint. Introduce degenerate bipolar
coordinates, defined by the formula

. c
z+ ir= ,
* «+if
which can be obtained from the formula
o+ if

2

N

z 4 ir = ic cot

(cf. footnote 19, p. 242) by replacing FIGURE 147
a, B, ¢ by ae, Be, 4ce and taking the
limit as € — 0. Then the surfaces of the spheres have equations § = +-8,.

513. Calculate the capacitance of a conducting sphere of radius a lying
on a plane with dielectric constant ¢ (see Figure 148).

Ans.
Z
_e41,e+1
B Bo C—ae_lln 5
Y \u=v 514. Calculate the capacitance of a
8:0 0 (n conductor in the shape of the surface
NN NN obtained by rotating a circle of radius a
\k\\(\[)b\\‘ \(z)x: about one of its tangents (a ‘“‘doughnut
AN NN without a hole”).
Ans.
FIGURE 148 = da[® KO—(X) dx,
mJo  Iy(x)

where I(x) and Ky(x) are Bessel functions of imaginary argument.

Hint. The surface of the conductor has the equation « = «, in degenerate
bipolar coordinates (see the hint to Prob. 512).

8. Some General Problems on Separation of Variables

515. Show that a necessary and sufficient condition for being able to
separate variables in Helmholtz’s equation Au + k% = O (where A is the
two-dimensional Laplace operator) in a system of curvilinear coordinates «, 8
defined by the formula

x + iy = f(a + iB) (14)
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(where f is analytic) is that f be the solution of the third-order linear differ-
ential equation
["Q) =M@ =0
(A is an arbitrary constant).
516. Using the result of the preceding problem, show that apart from
linear transformations (corresponding to translation and rotation of the
coordinate axes or change of scale in the xy and «B-planes) the only trans-

formations of the form (14) leading to separation of variables in Helmholtz’s
equation are the following:

x + iy = ¢**®  (polar coordinates),
x + iy = cosh (« + if) (elliptic coordinates),
x + iy = (« + iB)*  (parabolic coordinates).
517. Show that Laplace’s equation
Pu 10u 1 Pu
o rar 0z2*

has infinitely many particular solutions of the form

P
2’

u = r2A(@)B(B)P(9),

where «, B, ¢ are a system of orthogonal curvilinear coordinates defined by
the formula

z + ir = f(a + iB),
and f(€) is a solution of the differential equation
4
S5O = 2, WHO,
k=0
where the A, are arbitrary real constants (see L2).

518. Show that all the three-dimensional coordinate systems considered
in this chapter (as well as .cylindrical and spherical coordinates) can be
obtained as special cases of the coordinate system of the preceding problem.

Ans. Cylindrical coordinates:
f@ =g A =1, M=A=N=N=0,

o=z B=r,

u = [AJ,(vr) + BY,(vr)][C cosh vz 4+ D sinh vz] (:1); ig

where J,,(x) and Y ,(x) are Bessel functions of the first and second kind.
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Spherical coordinates:
fQO=¢€ N=1 A=N=Ah=%7=0,
a=Inr, =06,
Cos (Lo
sin pe’
where P¥(x) and Q%(x) are associated Legendre functions of the first and

second kind for the interval (—1, 1).2
Prolate spheroidal coordinates:

S =ccoshl, A= —c% A=1 AN=AN=N=0,

cos
sin wo’

u = [Ar' + Br~"'][CP%(cos 0) + DQ%(cos 6)]

u = [AP¥(cosh o) + BQ%(cosh a)][CP¥(cos B) + DQ%(cos B)]
Oblate spheroidal coordinates:
f@ =csinhq, A=c% =1 A=lh=7M=0,

cos uo

u = [AP}(i sinh ) + BQY(i sinh «)][CP}(cos B) + DQ4(cos B)] ;- e

Paraboloidal coordinates:

_&
Q==

u = [AJ,(va) + BY,(va)][CI,(vB) + DK, (vB)]

)\1320, 7\°=7\2=7\3=7\4=O,

COos [L¢
sinpe’
where I,(x) and K, (x) are Bessel functions of imaginary argument.
Toroidal coordinates:
c 1 1

. g
= ci coth 2, =—=, h=—7, M=—"—, M=x=0,
f(©) =cico 5 0 4 2 2 4 4 1 3

u = /2 cosh o — 2 cos B[APY_1¢(cosh &) + BQ}_14(cosh )]

CcoS L

X [Ccos vB + D sin vf] sin po

Three-dimensional bipolar coordinates:

7\4=——1’ MN=27=0,

4 c*
- M= 4c*’

f(C)=cicot5, Ao %

u = /2 cosh B — 2 cos a[AP¥(cos a) + BQY%(cos )]

CcOoS ¢

X [C cosh (v 4+ $)B + D sinh (v + $)B] sin po

* See e.g., L9, p. 193,
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519. Prove that besides the coordinate systems listed in Prob. 518,
separation of variables in Laplace’s equation is also possible in coordinates
defined by the formula

z+ ir = f(o + iB),

where f(%) is one of the Jacobian elliptic functions sn {, cn g, dn .22 Con-
struct particular solutions of the form

u = r*A(«)B()D(p)
for each of these three functions.
Ans.
L f@Q=sng A=1 N=0, A=—(14+k? AN=0 A=K
u=ritA@BE) o ¥,
where A(x) and B(B) are solutions of the differential equations

A+ [vra—w (Emefla o,

cnadna

and p, v are arbitrary parameters.

2. fQ) =cnl, N=k"%,, MN=0, N=—(k2—k?, WN=0, A= —k%

A" + [v + G- (ﬂ;)}\ =0,

sn o dn
" _nf——cniB Vig _
B [v+(} PL)(sniﬁdniﬁ)z:]B 0
3. fQ =dn¥, A=—k? N=0, N=14+k? ¥N=0 Ar=-1,
2
A"+ [v + G- u*)(—ﬂ&)]A —o,

sn o cn o,

A (ﬂ)}B —o.

sn i cn if

22 See L2, W2, W3, and also the paper L4, where a system of solutions of Laplace’s
equation suitable for solving boundary value problems for a ring of oval cross section is
constructed.
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520. Verify that the biharmonic equation A%z = 0 (where A is the two-
dimensional Laplace operator) has infinitely many particular solutions of the
form

u= 1+ BIAG G

where «, § is a system of two-dimensional curvilinear coordinates defined by
the formula

x + iy = f(a + iB),
where

dag
PR’
and F(¥) is the solution of the differential equation
F'(Q) — p*FQ =0

(A and p are arbitrary parameters).

f@ =

521. Using the result of the preceding problem, show that the two-
dimensional biharmonic equation permits separation of variables in rec-
tangular, polar, two-dimensional bipolar and degenerate bipolar coordinates,
and construct the corresponding particular solutions.

Ans. The general transformation called for here is of the form

a

JQ = pwcothpl + b

+4,

where a, b and d are arbitrary constants.
1. Rectangular coordinates:
fO=%¢ u—0 a=1, b=d=0,
o =X, B=y

cos Ay

u = (A cosh Ax + B sinh Ax 4+ Cx cosh Ax 4+ Dx sin Ax) sin Ay °

2. Polar coordinates:
f(C)=e5, P‘:%, a:d=1, b=—%s
@ = ln r, B = (P’

cos Ag

— A - A2 —A+2
u=(Ar*+ Br™* + Cr Dr )sin)\cp'
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3. Bipolar coordinates:

g

l —_—
f(C)—ctanhE, (J.—'i, a=

u=—-=5— [Adcosh( + Da+ Bsinh (A + 1
cosh « + cos 8
+ Ccosh (A — D + D sinh (A — 1)a] 5 ;g .

4. Degenerate bipolar coordinates:

f(c)=£’ P'_)'O’ a=_—c-2a b=']'.a d=‘c':
¢ 2 b b
— i . cos AR
U= @1 [A4 cosh A« + B sinh A + Ca cosh A + Da sinh Ax] i 3 .
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INTEGRAL EQUATIONS

The use of integral equations to prove existence theorems for problems
of mathematical physics, or to find approximate solutions, is a classical
subject, which lies outside the scope of this book but is treated in con-
siderable detail in the available literature. The purpose of this chapter is
simply to show how integral equations can be used to find exact solutions of
certain physical problems. The methods we have in mind are admittedly
quite special, but very effective in the cases to which they apply, and their
full possibilities do not yet seem to have been exploited. As an example of
the successful application of integral equations to physical problems, we cite
the work of Grinberg, summarized in his book GS5, devoted to the solution
of a number of interesting problems from the theory of electricity and
magnetism.

This chapter consists of two sections. The first is devoted to some
nonstationary problems of diffraction theory which can be reduced to the
solution of familiar integral equations, e.g., Abel’s equation, Volterra’s
equation with a difference kernel, etc. The second section, stemming from
Grinberg’s work, is primarily concerned with stationary problems stated in
terms of electrostatics, but with obvious analogues involving magneto-
statics, heat conduction or d-c current flow.

Because of their relatively greater difficulty, we omit problems whose
solution requires the use of the Wiener-Hopf method, or problems which
involve singular integral equations containing integrals of the Cauchy type.
Concerning these topics, the reader should consult the relevant references
cited at the end of the chapter (see p. 271).

253
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I. Diffraction Theory

*522. A plane electromagnetic wave with electric field components

E,=E, =0, E,=f(t—f)
V.

is incident on a perfectly conducting half-plane (screen) x > 0, z = 0.
Denoting the components of the resulting electric field (the sum of the
incident and reflected waves) by 0, 0, E and setting

S

show that the reflected wave u can be represented in the form

u—j \/g(s—)sd
R S L

where the function ¢(s) satisfies Abel’s integral equation

- 7;"‘{’—; ds = /(5.

Hint. Look for a solution of the wave equation depending only on £ and 4.,

*523. Solve Prob. 522, assuming
that the incident wave encounters the
screen at the time ¢ = 0, i.e.

Excited Quiescent g(®), £>0,
/\ poes reo=E> 0
O\ Describe the diffraction process graph-
ically.
Ans.

")
FIGURE 149 u={Jo JE—s
0, 1<0,

o0 =1 [ 2,

The diffraction process is illustrated in Figure 149.

y

ds, n>0,

where
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524. Solve Prob. 523 for the special case where
a) g(€) = 1 (a wave with a rectilinear front);

b) g(€) = sin wé.
Ans. In the notation of Prob. 523, the reflected wave u has the following
representation in the excited zone:

a) u=3arcsinA/3,
™ g

b) =2 VA& sin oy — (& =11l
Tt Jo 1472

525. By passing to the limit z — o in the formulas of Prob. 524, solve
the well-known Sommerfeld problem on the steady-state sinusoidal electro-
magnetic oscillations due to a plane wave incident on the edge of a con-
ducting screen (see Prob. 426).

Ans.
u = Im {u*e™'},
where

2 . . ® 2 w
u* = — ezn/de—zk:c e—u ds, k —_ —
d Vi(r—a) v

526. A plane electromagnetic wave with components
E,=E,=0, E,=f(:—ﬁ—")

v
is incident on a perfectly conducting screen shaped like a parabolic cylinder

r = x + 2a. Setting
E:f(t_x+a)_uy
v

where E is the z-component of the electric field, show that the reflected wave
can be represented in the form

u —f ___—(s) s
o JE—s T (2al)

(E=t_x+a’ n=t—"=8, r=\/x_2+yz)’
v v
where ¢(s) is the solution of the integral equation
13
@(s)
——————ds = f(¥).
—o JE— s+ (2afv)

Hint. Look for a solution of the wave equation depending only on £ and v.




256 INTEGRAL EQUATIONS PROB. 527

527. Solve the preceding problem of diffraction theory, assuming that the
wave makes contact with the screen at the time ¢ = 0 and is continuous along
its front,! i.e.,

O A S TR

0, £ <O,
Describe the diffraction process graphically.
Ans.
n S)
. OJ————ETTWM, n >0,
0, 7 <0,
where

1fg »
= — | £ emdp.
o) 21rirKe P

Here ¢ and K are the Laplace transforms of the functions g(£) and

—1/2

ko= (z+2)7,

- o /3]

where ®(x) is the probability integral and the path of integration I' is a
straight line parallel to the imaginary axis
Quiescent lying to the right of the singular points of

y one ria 20 e integrand.
The diffraction process is indicated in

€ cited Figure 150. The boundary of the excited
zone / vt ta zone is the envelope of the secondary waves
7 ¥ reflected from points of the screen, in keep-
ing with Huygens’ principle.

so that

> 528. Suppose the incident wave in Prob.
\ 547 has the equation

FiGure 150 g = 2 arc tan A/ ve .
T 2a

Show that the reflected wave u can then be represented in the form

2 ,\/ )
¥ = —arctan [—————, 7> 0.
- E—n + (2afv)

! The case of a discontinuity on the wave front can be treated by passing to the limit,
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529. Consider the problem of diffraction of a plane sound wave
f(t x4 a)
v /-

by an obstacle shaped like a parabolic cylinder. Show that the reflected wave
has the representation?

#(s)
u_fw\/a—s+(2a/v) ’

@—t—xt“,n=t—r:“,r=Jﬁ+y1

where ¢(s) is the solution of the Volterra integral equation

1 [2a(*® (s)
<P(E) + 2,\/ v J; E, — + (za/u)]a/z f (E)
(see F8.)

530. Solve the preceding problem, assuming that the wave encounters the
obstacle at the time ¢t = 0:

g€), E£>0, _
J@® = { 0, £ <0 g(0) =0.
Ans.
" ¢(s)
= o
0, 7 <0.

where, in the notation of Prob. 527,

a 03
o) = [ 2mi fr 1— %\/2a/v pK 4P.

*531. Consider the problem of diffraction of a plane sound wave

-2

by an obstacle shaped like a paraboloid of revolution r = z + 2a. Applying
the technique of the preceding problems, show that the reflected wave has
the representation

O
" —j £ — s+ (2a/v) as

(E=t—~z+a, n=t—r_a, r=\/x2+y2+z2>,
v

v

®In problems on diffraction of acoustic waves (unlike the case of electromagnetic
waves), we write the total solution in the form f(§) + u.
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where (s) is the solution of the Volterra integral equation

(s)

2a _,
s+ P =57 ®

oo +2["
(see FB8).

*532. Solve the preceding problem, assuming that the incident wave has
the equation

o= 2% m-o

0, £ <0,

Ans. In the excited zone (v > 0),

_ o(s)
“ f E st Qap

a1l pg s
=-— | ——=——c¢
o) = v2riJrl — (a/v)pK
In the last formula, & and K are the Laplace transforms of g(€) and the
kernel

where

dp.

1
£+ (afv)’

and the path of integration I is a straight line parallel to the imaginary axis
lying to the right of the singular points of the integrand. Note that

K= e‘z‘”’”Ei(— 2a_p)’

v

K(E) =

in terms of the exponential integral Ei(x).

533. Consider the problem of diffraction of a plane wave by a paraboloid
of revolution r = z + 2a with homogeneous boundary conditions of the
first kind. Show that. the reflected wave has the representation

" (s)
u _L, E s+ )

(s=r-2E0, mmi =0 o),

v

where ¢(s) is the solution of the integral equation

¢ (s) e
f—w £ — s+ (2afv) ds = /().
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534. Using the Laplace transform, solve the integral equation of Prob.
533 for the case of a wave of the form

g, &E>0,

f® = {0 £ <0 g(0) = 0.

Ans. In the notation of Prob. 532,

1 [ 2
= — | Eemap.
CRb=1% 2

2. Electrostatics

535. A conductor of arbitrary shape, bounded by a surface Z, is intro-
duced into a given external field E° (see Figure 151). Show that the density
of charge induced on the conductor satisfies the
integral equation

EM | 1L f o(M)

N =
o(N) 2n 2n |2

cos (r yv>»m)dS (1)
ErpN

where M and N are two arbitrary points of the
surface X, dS is the element of area, r 4 is the vector
joining M to N, n is the unit exterior normal to X
at the point N, and EY = E°-.n is the projection of
E° onto n.

FIGURE 151

536. Show that in the special case where the surface of the conductor is
an infinite plane, the solution of the integral equation (1) is given by?

_ Ex(N)
o(N) = o

Use this result to find the charge density induced on a conducting plane by a
point charge g placed at height h above the plane.

Ans.
_ 4h
2nR?’

o(N) =
where R is the distance from the charge to the point N of the plane.

* Naturally, this result can be found in other ways. The present method is of interest
mainly because the final result is obtained practically without calculations.
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537. A metallic sphere of radius a at potential V' is introduced into an
external electric field E°. Starting from the integral equation (1), show that the
density of charge induced on the surface of the sphere is given by

0 0

oy — BN |V )
2n 4ra

where #° is the potential of the external field. Examine the special case where

the source of the field E° is a point charge ¢ at distance b (b > a) from the
center of the sphere.

Ans.

where R is the distance from the charge to the given point N of the surface
of the sphere.

538. Solve the preceding problem, given the total charge Q of the sphere
(rather than its potential). Use the formula so obtained to solve the problem
of the charge distribution on the surface of an initially uncharged insulated
sphere introduced into a homogeneous external field E°.

Ans.
ES(N
O_(N): ﬂ( )+__1_[Q+ ’20____u0(N)}’
2 4rala
where @° is the average over the sphere of the potential of the external field:

_ 1 j‘

#° =—— | u’(N)dS.

4na® Jx )

In the special case
o(N) = 3E cos 0,
41

where 6 is the angle between the direction of the external field E° and the
radius vector drawn from the center of the sphere to the point N,

539. A cylindrical conductor with cross section bounded by an arbitrary
contour I' (see Figure 152) is introduced into a given plane-parallel field E°.
Show that the density of charge satisfies the integral

n equation

o(N) o(M)

f ———| cos (ryn, ) ds, (2)

E%N 1
_EX )+_
rilryy

2r T

where M and N are two arbitrary points of the contour
I', ds is the element of arc length, r,,y is the vector
joining M to N, n is the unit exterior normal to I" at the
FIGURE 152 point N, and EJ = E° - n is the projection of E° onto n.
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540. Suppose a conductor shaped like an infinite circular cylinder of
radius a, carrying charge Q per unit length, is introduced into an external
plane-parallel field E°. Show that the density of induced charge on the
surface of the conductor is given by

Q| ExN)
c,(N)_2n'a+ v

Consider the special case where
a) The external field is homogeneous;
b) The source of the external field is a line charge with charge ¢ per unit
length, placed outside the cylinder at the distance b from its axis.

Ans.

2) o(N) = Q | Ecosf

+ -,
2ra 21

where 0 is the angle between the direction of the homogeneous field (of

strength E) and the vector drawn from the center of the cylinder to the given

point N on the surface of the conductor;

Q + q _ _l b2 _ a2
2ra 2n  aR?

where R is the distance from the line charge to N.

b) o(N) =

’

541. Find the distribution of charge density on the inner surface of a
grounded cylindrical shell of radius a, assuming that the external field is
produced by line charges parallel to the axis of the cylinder passing through
the points M, = (a, @), k =1, 2, .

Ans.

U(N) ——quca —ak,

a y=1

where g, is the charge per unit length of the line chargc passing through the
point M, and R, is the distance between the points M, and N.

*542. The electrostatic field in the region 0 <y < h between two
grounded parallel planes is due to line sources whose free-space field is E°.
Show that the densities o4(x) and o,(x) of induced charge on the planss y = 0
and y = h satisfy the system of integral equations

0 h (* on(8)
) = 5 Bl — f Ny o
__Lpy RT__el®
Gh(x) - 2TC Elll!l=h x f—m (a _ x)z + h2 d&’

and then solve this system.
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Ans.
f + e lMﬁn —d
7o) = 47:2 gy A
f + e IMf —z)\a;
w0 == | A e

where f'is the Fourier transform of f(x), i.e.,?

f= f " f(x)e™ dx,
and o

fo(x) = E:lv=07 fh(x) = E:|v=h'

Hint. Take the Fourier transform of each of the equations (3).

543. Solve the preceding problem for the special case where the field E
is due to a line source with charge ¢ per unit length, passing through the
point M, = (0, b).

Ans.

. b . mb

sin — sin —
=49 _ -4 ___ "
Go(x) oh b’ ou(x) oh e
cosh ™ — cos =2 cosh =X + cos =2
h h h h

Hint. To obtain the solution in closed form, use formula 15, p. 385.
544. Suppose a system of line sources, whose free-space field E° has
components E?, EJ, 0 in cylindrical coordinates, is placed inside a dihedral

angle 0 < ¢ < a with grounded conducting walls. Show that the charge
densities o4(r) and o,(r) on the walls satisfy the system of integral equations

i) = L p, O[O
271 0

™ e* + r* — 2rpcosa
1 sina [ ® poop)
u(r) = — — EYpue — —— L do,
™ 2r elo-s n Jo p® 4+ r® — 2rpcosa °
and solve this system, using the Mellin transform.
Ans.
1+io £ o8 _ : _ _
oo(r) = 1 Josinm(p — 1) + f,sin(r — a)(p — 1)

4% J1-iw  sin(2n — a)(p — 1) - sina(p — 1)
X sint(p — 1)r~?dp,
o (r) = — —— ”“”fa sinm(p — 1) + fysin(r — )(p — 1)
1- sin(2r — a)(p — 1) - sina(p — 1)
X sinn(p — 1)r " dp,

4 This definition of the Fourier transform differs from the customary one by a numerical
factor.
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where fis the Mellin transform of f(r), i.e.,

j=" s0wer ar,
and

fo(") = Eg|¢=0’ fa(r) = Eglcp=a'
Hint.

f” todt _m sin(mw— a)s
o #—2tcosa+ 1 sina sinms

—1 < Res < 1.

545. Solve the preceding problem, assuming that the field E° is due to a
line source with charge g per unit length, passing through the point M, =
(ro» 9o)- Use the formula so obtained to find the electrostatic field due to a
charged line placed at distance « from the edge of a conducting half-plane
(« = 2w, ro = a, @y = ™) or near a right-angular corner (« = 3x/2, r, = q,
9o = T).

Ans.
sin ~Po
o
o) = — L 2 :
CR
ro r o
sin =0
o) = — 4 ——— =% —.
[ o
ro r o

546. A conductor shaped like an open surface of arbitrary form (see
Figure 153) is placed in an external field E°. Show that the sum of the charge
densities on opposite sides of the surface satisfies the integral equation of the
first kind

f oM) 45 — v — (), @
t [rprnl
where o(N) = 6,(N) + o,(N), u, is the potential of the
external field and V is the potential of the conductor, while
the difference between the charge densities is given by the
formula BN 1 M)
oi(N) — og(N) = =2 | = f B2 05 (r yyu, 1) dS.
2n 2m Jx [rpypl® FIGURE 153
©)
Thus, to solve the electrostatic problem completely, it is sufficient to know
the solution of the integral equation (4) [see G5, Chap. 20].




264 INTEGRAL EQUATIONS PROB. 547

547. Show that equation (5) takes the form

Ex(N)

ay(N) — 03(N) = o

for a plane surface, and the form

EN) | ¥ —u'()
2r 4nR

for a spherical surface of radius R, regardless of the form of
the boundary curve.

0)(N) — ay(N) =

548. Write the integral equation (4) for the case where the
surface of the conductor is a disk of radius R or a thin spheri-

9 a calbowlr = R,0 < 0 < «(see Figure 154), assuming that the
external field has rotational symmetry with respect to the
FIGURE 154 : 5
z-axis.
Ans.
E 2
4f PG(P) ( \/Pr)d =V — 0("), 0 <r< R
op+r \p-

for the disk, and

* o(9) sin ¥ /sin & sin 6 Ve i
Rﬁsini(zme)K(sin;(«He))d”“V u'®), 0<0<

for the bowl, where K(k) is the complete elliptic integral of the first kind.

*549. Show that the integral equations of the preceding problem can be
reduced to the integral equation

*f») 2/xy
nJox +y (x-{- )dy—g(x) 0<x<a,

and solve this equation.
Ans.

____J’ sds s g(0)t dt
ntdy \/s—yzds J;z———fi

5§50. Using the results of Probs. 548 and 549, find the distribution of
charge on a disk of radius R at potential ¥ introduced into an arbitrary
axially symmetric external field.

® Problems 548-555 are considered in Lebedev’s paper LS.
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Ans.

1 d (B sds d [ 0 tdt
61(")+Gz(f)——n—2r; ) \/SQ—T);;J;[V—VO)]‘/SE—_?,

ox(r) — oo(r) = i EYP),

where EX(r) is the normal component of the external field on the surface of
the disk.

551. Find the charge density on a thin conducting disk of radius R for
the following cases:

a) The disk is charged to potential ¥, and there is no external field
(freely charged disk);

b) A point charge ¢ is placed on the axis of symmetry of the disk, at
distance 4 from the disk.

Ans.
. |4 1
a) Ul(r)=62(r)=5;&_?7_j;
qh A/Rz —r R+r =
b) cl'z(r) = — m [arc tan g + R + 5 s

where o, is the charge density on the side facing the charge.

552. Find the charge distribution on a thin spherical bowl r = R,
0 < 6 < « at potential ¥ placed in an arbitrary axially symmetric external
field E°.

Ans.

B 1 _d_ ® tan %s ds
2n"R sin 36 dB Jo \/tan® s — tan® 36
o d (*[V—u’(®)]tan}t dt
ds Jo \/tan® }s — tan® }z €0s ¢ ’

0,(0) + 0’2(6) =

61(6) — oy(6) = i EX0) + ﬁ v — u(0)],

where () and E?0) are the values of the potential and the normal com-
ponent of the electric field on the surface of the bowl, while 6, and o, are the
charge densities on the convex and concave sides of the surface.
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553. Solve the preceding problem for the following special cases:

a) There is no external field (free charge distribution);

b) The external field is homogeneous, and the potential ¥ is zero (a thin
conducting spherical shield with a circular hole, placed in a homo-
geneous field E°).

Ans. -
T
a;,2(0) = I: [arc tan Vsin® o — sin” 40 + ﬂ____ :{:1-‘],
! cos o Jsin® o — sin® 36~ 2
0 . <.rif
o1(8) = — 3—’?"&(:8—0[:}: T} arctan Vsin® Ja — sin %9]
4r 2 cos }a

_ E’cos }x3cos 0 — 2 cos® ja
4n*  fsin® jo — sin® 30
554. Suppose a conducting plane at potential ¥, with a circular hole of
radius R, is placed in an arbitrary axially symmetric external field (see

Figure 155). Show that the problem of determining the charge distribution
on the plane reduces to solving the integral

z equation (4), and find the distribution.
Ans.
o) ot =S4 [ b
—v0 o ___ w0 ™1 2 2 4y J,
L 2R ——] © su”(t) dt
X —

l ds t\/ £— s

FIGURE 155

o)(r) — oy(r) = 5; EXr),

where o, is the charge density on the upper surface of the plane, while #°(r) is
the potential and E)(r) the normal component of the external field at the
point r.

555. Solve the preceding problem, assuming that the external field is due
to a point charge g on the axis of symmetry of the hole at distance 4 from the
plane.

Ans.

gh PR A/ + hz
01o(r) = —od an 2)3/2|:arc tan — A/ T hz .

§56. Show that the problem of the charge density on a grounded thin
conducting half-plane, introduced into a given plane-parallel external field
E°, reduces to the solution of the integral equation of the first kind

[Fo@mpx—gdE=s, 0<x<w, ©)




PROB. 558 INTEGRAL EQUATIONS 267

where o(x) is the total charge per unit length, o(x) = o,(x) + 05(x),® and
f(x) = $u°(x), in terms of the potential u°(x) of the external field at the point
x. Solve this integral equation.

c(x)_ldi[xd%ﬁ e®)In |jx+:§§| ]

o(x) = ’1‘ [f(x) — fO)].

Hint. Set x = 0 in (6) and subtract the result from the original equation.
Then take the Mellin transform of the equation so obtained.

Ans.

where

557. Use the result of the preceding problem to find the charge dis-
tribution on the surface of a thin conducting sheet x > 0, if there is a line
source with charge ¢ per unit length near the edge of the sheet.

Ans.

n
sin £
o — 2
1,2 = — — = (&) 3
2 /rox 1+2F2 [Zcos 2 v
ro ry 2
where r,, ¢, are the polar coordinates of the @
1

point M, and the upper sign pertains to the den-
sity on the side of the sheet facing the charge.

558. Two media with dielectric constants ¢,
and ¢, are separated by a surface X (see Figure FIGURE 156
156). Consider the electrostatic field in the
resulting inhomogeneous medium due to sources whose free-space field is E,.
Show that the density of polarized charge on the surface X, determining the
secondary field,” satisfies the integral equation

o(N) = 21:(51 + 52)|: (V) +f r sz|2 c0s Eaew, 1) dS], @

where M and N are two arbitrary points of the surface X, dS is the element
of area, r,, is the vector joining M to N, n is the unit exterior normal to

¢ The difference between the densities is given by the previous formula
1
oy(x) — 65(x) = = EJ(x).
2

" The potential of the secondary field in each medium is given by

u(P) = fG(M)dS i=1,2.

[Tarpl
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X at the point N, pointing from the medium with dielectric constant ¢, to
the medium with dielectric constant e,, and E? = E®- n is the projection of
the external field onto n (see G5, Chap. 14).

559. Using the integral equation (7), find the distribution of polarized
charge for the case where the surface X is an infinite plane (this generalizes
Prob. 536).

Ans.
0
— N
o(N) = €, — & Ex(N) )
e, +e 2%
560. Derive the two-dimensional analogue of equation (7), corresponding
to the plane-parallel electrostatic problem of an inhomogeneous medium

made up of two homogeneous media with dielectric constants €, and ¢,.
Ans. M
o(N) = -—el_—%[E‘,’,(N) + Zf o(M) cos (T gzn»> M) ds], (8)
271:(&1 + 52) r lrlu_)\yl
where n is the unit normal to the contour I' representing the interface
between the dielectrics.

*561. Consider a dihedral angle whose interior 0 < ¢ < « s filled with a
medium of dielectric constant e,, and whose exterior « < ¢ < m is filled with
a medium of dielectric constant e, (see Figure 157). Show that the corre-
sponding two-dimensional electrostatic problem reduces to solving the

system of integral equations

n
€1 — &
(&) (") 27t(e, + €5)
_E° e au(p)p dp jl
\\\\\&\\\\\\ X [ Ew|¢=o+2sma£ r* + o* — 2rpcosal’
0r) = 5=
n 2n(e, + €2)
FIGURE 157 X [Eol .+ 2sin ocfw ao(p)e dp }’
o= o r+ p* — 2rpcosa

where o, and o, are the densities of polarized charge on the faces ¢ = 0 and
@ = «. Solve this system by using the Mellin transform.

Ans.
o) = B[ fiBsin(r —o)(p — 1) — fysinn(p — 1)
° 4n% Jicio sin?n(p — 1) — BZsin® (x — )(p — 1)
X r~?sinn(p — 1) dp,
B [ fysinm(p — 1) — foBsin(t — a)(p — 1)
Ga(r) = T a.

4r%i J1iniw sin®nm(p — 1) — BEsin®(m — a)(p — 1)
X r ?sinn(p — 1) dp,
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where f'is the Mellin transform

7= rerar,

and

fo(") I‘O—o’ fa(r) = 0|<p—au B - — 52

E1‘4“52

562. Solve the preceding problem for the special case where « = 7t/2 and
the external field E° is due to a line source with charge g per unit length,
located in the medium with dielectric constant e, at the point r = a, ¢ = m.

Ans.
_4a B pE o [iHie sin® n(p — 1) a\?
(") ae, 2mi J;—zm sin®n(p — 1) — B%sin® 4n(p — 1)( ) 4p,
o) = & £ [ _sindnlp — D sin(p — 1) (g)” p

ae, 2mi J1-ico sin® m(p — 1) — B¥sin® jn(p — 1) \r

563. A slab of dielectric constant g, bounded by the parallel planes
y = 0 and y = h and surrounded by a medium of dielectric constant ¢, (see
Figure 158), is introduced into an arbitrary plane-parallel field E°. Show that
the resulting electrostatic problem reduces to solving the following system
of integral equations for the polarized charge densities 64(x) and 6,(x):

€, — Eg
%) = 2n(e, + €2) y
0 on() d
[ Elv“°+2hfm(x—£)+h] (&2)
— &
o (x) = 2,r(e1 + €9) \ /I\(f"
[ 2 [f 0 ] DO,
- (e — B+ A (&)
Solve this system of equations.
Ans. FIGURE 158
~|Aln
ao(x) = 4(3 . %‘rz e dx,
c,,(x) B f;z Be A .ﬂ) —t)\z d)\

4l 1 — Bz —zmn

where f is the Fourier transform of f(x), i.e.,

=] s ax,
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and
— &
So(x) = Eoly_o, flx) =E Iv—h’ = 2.
€ T &

564. Solve the preceding problem for the special case where the external
field E° is due to a line source with charge ¢ per unit length passing through
the point x = 0, y = A/2.

Ans.

qB e—)\hlz
x) = op(x) == | ——— cos Ax d\.
) = o) =142 | T

*565. A perfectly conducting half-plane x > 0, y = 0 is introduced into

an external electromagnetic field with components

E,=E,=0. E,= E%x, y)e“.

Show that the sum j = j; + j, of the current densities flowing in the upper
and lower sides of the half-plane satisfy the integral equation

E(x) = —f HPlk |x — E|1j(E) d&,
where

—
— 4
E(x) = E%x,0), k= J o —omed,
c

and ¢, p and o are the dielectric constant, the magnetic permeability and
the conductivity of the medium, while the difference between the current
densities is

2 —11:/2 an(x y)

9
2w oy )

fl_Jz——

y=0

Solve the integral equation by using the transform (27), p. 196.
Ans.

i) c?
x =
i 2nwx

where

e™/*H{P(kx) dr,

E(0) }’r sinh?® v
sinh 7ot

”{;—T () — EQ)e ] —

cosh ot

= m/zf f(x) H(z)(kx) dx

[it is assumed that f(x) approaches zero as x — 0 in such a way that the
integral converges at its lower limit].

*566. A plane electromagnetic wave with components

Ez — Ev — 0, Ez — Eoei(mt—kz)



PROB. 566 INTEGRAL EQUATIONS 271

is incident on a perfectly conducting half-plane r > 0, ¢ = a. Using the
result of the preceding problem, find the distribution of current density on
the half-plane.

Ans.
0 (,—in/d V2krsin Y
jl + jz _ cE’ e i/ cos éa e—ikr + sin « ein/de—ikr cos af e cle—i.!2 ds
- 1 ’
nyml  \[2kr 0

¢

j]_ _ jz — sin o e—ikrcos «
2r
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52. The solution of the problem reduces to the determination of the
complex flow potential w = ¢ + i, whose imaginary part is a harmonic
function which equals zero on the axis of symmetry and takes the value
¢ = —v,a on the walls of the channel. To determine w, we need only find a
conformal mapping of the region ABCDE onto the upper half-plane of the
variable { = £ + iv. Suppose that in applying the Schwarz-Christoffel trans-
formation, we make the points of the z and {-planes correspond in the way
suggested in the hint to the problem. Then the relation between z and ¢ is
obtained by integrating the equation

d_z — 1/2, —1/2y—1
e ME + DYHC + N,

where M is a constant to be determined later. Bearing in mind that z = ib
if { = —1, we find that

where the integration is along any path joining the point = —1 to a given
point £ in the upper half-plane.
It follows from the condition

lim [ZIC=—E —_ Z|c=5] = ia
£—0

that M = aV/\/r, and hence it only remains to determine the value of the
parameter A. This is done by using the correspondence between the points
z = ia and { = —\. Since in evaluating the integral with { = —X as its
upper limit, we can integrate along the line segment joining the points
{ = —1and { = —A, on which

{4+1=1—5 C+r=e€"(—1), {=—s A<s< ),
275
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the last requirement leads to the formula

=i
a ki1 — A s’

which, after carrying out the integration, implies A = (b/a)® and hence
M = b|=n. As is easily verified, the complex potential in the {-plane is

w=—24n,
7
which, together with the transformation z = z(¥) just derived, gives a para-
metric solution of the problem.
To calculate the velocity along the axis of symmetry (§ > 0, = 0), we
use the formula

dw
v, — v, = — —
dz’
which implies
v:clv=0 (E + )\)1/2
v,  JAEF1

where the relation between x and & must be established by using the trans-
formation z = z({). Choosing the path of integration to be a curve con-
sisting of the segment (—1, —R) of the real axis, an arc of a circle of radius
R and the segment (R, £), and then taking the limit as R — co, we find that

I e
T R-wlJ1 \§ — A s £ \s+ A s

After some simple calculations, this leads to

I[, 1= AJETDIELN , 7, JEFTDIELN +1
=11 = 1 .
[“1+Jw(£+1>/(a+x)+‘/A "JETDIE+ N — }

The final formulas, given in the answer to the problem, are obtained by
introducing the new parameter

X
a T

gL Bt
JVWEF L

54. This problem belongs to a category which is both of considerable
mathematical interest and of great importance in the applications, i.e.,
problems -involving the formation of a jet at the boundary of an obstacle
placed in a stationary plane-parallel flow of an ideal liquid. In such problems,
the form of the jet is not known in advance, but must be determined from the
condition that the velocity vector have a constant value on the free surface
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of the jet. For the case where the walls of the obstacle impeding the flow
consist of line segments, an effective method of solving such problems is
based on the possibility of establishing a connection between the complex
potential w and the derivative dw/dz, starting from examination of the
kinematic picture of the fluid motion.

Thus consider the part of the region occupied by the flow which is bounded
by the axis of symmetry 4B, the free boundary of the flow BC and the wall
CD. The behavior of the velocity components v, and v, along the boundary
of this region is determined by the following relations (where v, = Q/2b and
2b is the width of the jet at a great distance from the slot AB):

On A4B, v, =0, —u,<v,<0,
On BC, v:+ vi=1l
On CD, —v,<v,<0, v, = 0.

Introducing the auxiliary complex variable { = dw/dz and taking account of
the formula
vy, — iV, = — dw
z v dz I
we find on the basis of the above picture of the flow that the region ABCD is

mapped conformally onto the interior of the circular sector

& < s —§<argC<0

in the -plane, with the boundary of the jet going into the arc of the circle
Under the transformation®

{ = ub(\/; — \/tTl),

this sector is mapped into the upper half-plane of the complex variable ¢,
with the curves 4B, BC and CD in the original plane going into the negative
real axis, the segment (0, 1) and the segment (1, ). In the t-plane, the
determination of the complex potential reduces to constructing a function
analytic in the upper half-plane whose imaginary part takes the value zero
on the negative real axis and the constant value —Q/2 on the positive real
axis. It is easy to see that the solution of this problem is

Q Qi

w=-=Int— =,

! To obtain this expression, it is convenient to first transform the sector into a half-strip
by using the transformation
r 8
s§=-—iln—,
2 vy

with the Schwarz-Christoffel transformation being applied afterwards.
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which, together with the results found earlier, gives

—_—_—_——— = —— — 1

dt  Cdt 2mo, t )
Integrating (1) and bearing in mind that the point z = a must correspond to
the point ¢ = 1, we obtain

z=%[\/;—1+\/t——_1+arctan\/;_~——_l]+a, )
Ty

where we choose the branch of the arc tangent which vanishes as ¢t — 1.

The functions w = w(z) and z = z(¢) establish the required connection
between the complex variable w and the variable z in parametric form. To
determine the form of the boundary of the jet, we need only separate real
and imaginary parts in (2), assuming that the variable ¢ belongs to the
interval (0, 1). This gives the following parametric representation of the
curve bounding the jet:

_9Q _ol =_1 I_L/:]
x_nv,,(\/t D+ a, y—nvb[\/l : 21n1—\/1_~—_t

O<t< ).
The width 2b of the jet at a great distance from the slot, and the corre-

sponding value of the velocity v, = Q/2b are found from the condition that
x = b for t = 0, which implies

a 2\ 0
b=——"—, v=(1+—)—,
1+ (2/m) b n/ 2a
and immediately leads to the formulas given in the answer.

59. Guided by the hint to the problem, we construct the function z = 2()
mapping the interior of the rectangle onto the upper half-plane. Using the
Schwarz-Christoffel transformation, we find that

dZ 1 -1/2 1
Z=ME-D"C-=) =M 0< k<),
dt ©-= ( kz) V=81~ k) (

which implies

4 dc
=M ,
’ Lm — )1 — K0

since the symmetry requires that the point z = 0 correspond to the point
{ = 0. The values of the constants M and k are determined from the con-
dition that the points z = a and z = a + ib correspond to the points { = 1
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and { = 1/k. This leads to the formulas

dt
o /(1 — )1 — k)

& — MK(K) (kK =VT— K,

V{1 =T — K

where K(k) is the complete integral of the first kind.? Eliminating M, we
obtain the relations

b_KE®) oz [ &
a Kk’ a oI — O — )
the first of which is an equation for determining the modulus k, while the
second solves the given problem of conformal mapping.
According to the theory of elliptic functions, the inversion of the integral
in the last expression is given by the formula

C—sn&
a

= MK(k),

where sn z is Jacobi’s elliptic function. Under the conformal mapping, the
point z = z, = 4ib goes into the point { = {, = sn (iKb/2a) = i/ k. The
expression for the complex potential in the {-plane is

sn&—'—
= —qunc G = —2qln;—3/£.
- sn =2 4

To calculate the distribution of charge density on the walls of the box, we
use the relations

E—zE——d—W, 0'='LE",
dz 4r
where E, denotes the field normal to the surface of the conductor at the
point where the value of the density o is being determined. Applying these
formulas, we find that the charge distributiononthe wall —a < x < a,y =0

is the expression given in the answer to the problem.

69. The displacement u(x, t) of any point of the midline of the beam
satisfies the differential equation

o'u 1 %
= __=0
ox* +aa

% To reduce the second integral to canonical form, use the substitution VI kG =
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and the boundary conditions

ou 0°u

ox °or

To find the natural frequencies for transverse oscillations, we write
u(x, t) = v(x) sin (ot + o).

Then, after substituting this expression into the differential equation and the
boundary conditions we find the following conditions determining the
amplitude v(x):

u

3,
- e
z=0 axz

a=1 axs

=0,

ulz=0 - ==l_

x=1

2
; w
v — — v =0,

Myw?

’ ” " [

V|geo = Ve =0, v e =0, V| =— .
' I EJ a=1l

The general solution of this equation is

Jox Jo x

-+ B, sin
a

v(x) = A, cos + A, cosh Jox + B, sinh Jox .
a a

The fact that the end x = 0 is clamped allows us the determine two of these
constants, and leads to the expression

v(x) = A(cos \/E X cosh @) + B(sin \/B x_ sinh \/E x).

a a a

Then, imposing the remaining conditions at x = /, we obtain the following
homogeneous system of equations for the quantities 4 and B (for brevity,
we set y = Jo lla):

A(cos y + cosh ) + B(sin y + sinh y) = 0,

A [Y%’ (cos Yy — cosh y) + (sin y — sinh Y):I

-+ Bl:y %{2 (sin y — sinh y) — (cos y + cosh Y)j] =0.

The equation determining the natural frequencies is obtained by setting the
determinant of this system equal to zero. The result is

1 + cos y cosh y = % y(sin vy cosh y — cos v sinh ¥).

If the roots of this equation are denoted by vy, (n = 1,2, ...), the natural
frequencies are
_2 =1,2
mn—FY"’ n=14,...
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83. The problem of finding the forced oscillations of the membrane
under the action of a load ¢ sin (w¢ + ¢) distributed over a disk of radius
b < a can be posed as follows: Find the solution of the differential equation

lﬁ(r @E) 10% q(r,t)
or

ror _v_zﬁ— T

governing the oscillations of the membrane, where

q(r, £) = Y(r) sin (0 + o),

A 0<r<b,
qJ(r)_{o, b<r<a 3

which satisfies the boundary condition
ui,.=,n =0
and has the same frequency « as the perturbing force. Writing
u(r, 1) = w(r) sin (ot + o),

and substituting this expression into the differential equation and boundary
condition, we find that

1d e ) _
rdr( dr) + 2w- T’ wa) = 0.

The solution of this inhomogeneous equation, obtained by variation of con-
stants, has the form

w—AJo(v) +BY,,(D)
=[] - w2

The constant B equals zero because of the requirement that the solution
be bounded at the point r = 0. The constant A is determined from the
condition w(a) = 0, which gives

= g7 b O[5 = ()0 Jo e

After some manipulation, the desired expression for the amplitude takes the
form

w(r) = [[We)G(e, e de, )
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where Jo(mp/U)J((or)Y( ) Y( )J( )]
Go, 1) = = x "0(“’“/”)[ o\7 ) ~ P\ )\ ) e
T () ()] e
%

Substituting (3) and (5) into (4), and using the formulas

e P e P 2
pJo(Ap) dp = - J1(Ap), eYo(hp) dp = = Yi(Ap) + —
0 A 0 A TA

and the familiar expression

T Y§x) — Yo(o)Ji(x) = fx

for the Wronskian of the Bessel functions, we finally obtain the answer on

p- 48.

91. If the z-axis is parallel to the generators of the wave guide, then the
only component of the electric field of the TM-wave is

E — Eei(mt——vz)
H

(o is the frequency of the oscillations and v is the propagation constant),
whose amplitude satisfies Helmholtz’s equation

16( ) 1 0°E s g
LIE | @ — WE=0
r or + 262+( V)

(k = w/c = 2x/A, where A is the wavelength) and the homogeneous boundary
conditions '
E,r=a =0, E|¢=o =FE, o= 0.

These equations have infinitely many nonzero solutions of the form

E= E,,,,,zJ,,,,,,,(Y'""r) sinm, m=12,...,
a a

where the y,,, are the roots of the equation

J mn/a(Y) =0,

and the value of the propagation constant corresponding to v,,, is

V=an=A/k2— (ﬁl_ﬂ_)z
a
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A wave with an imaginary value of v,,, falls off exponentially in the z-direc-
tion and is essentially unable to propagate in the wave guide, i.e., a wave
can propagate in the guide only if v,,, is real. This leads to the inequality
A< 2
Ymn
The maximum wavelength which can propagate in the guide is given by the
formula

2ra
)\mnx =T

Yo
where v, is the smallest positive root of the equations

Jmn/a(Y) =0, m=1,2,...
96. The problem reduces to integration of the equation

Pu 10 _
oxt v?or’ ’
with initial conditions

E, 0<x<e,

c @ _

h(ll—x)’ c<x<l, ot li=o
—c

“|¢=o = f(x) =

and boundary conditions
Ulpep = Upey = 0.
Setting u(x, t) = X(x)T(¢) and separating variables, we arrive at the equations
X'"+2X=0, T+ nT=0.
Solving the first of these equations with the boundary conditions X(0) =

X(1) = 0, we find the corresponding eigenvalues and eigenfunctions

2_2
7\=7\"=nl:[: , X=X,,(x)=sinn—7;x

The solution of the second equation satisfying the conditions 7'(0) = 0 is
given by

n=12..)).

nmt
T= T,(t) =c,cos —.

Therefore the set of particular solutions of the equation of the vibrating
string satisfying all the homogeneous conditions is
nmx nmot

u=u,=c,sin ] cos T n=12,...
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According to the basic idea of the Fourier method, we now look for a
solution of the given problem in the form of a series

& nwx nrot
u(x, t) = D ¢, sin — cos — ,
n=1 [

where the coefficients c,, are determined from the condition u,|=o = f(x), i.e.,
coincide with the coefficients of the expansion of the function f(x) in a
Fourier series

f(x)=Zc,,sin—m;—x, 0<x<l
n=1

As is well known (see T7, p. 35),

l
¢, = Zf 7(x) sin "= dx,
1Jo l

and hence in the present case

n =

2h1* . nmc
——————sin —
n*rc(l — c) l
which leads to the answer on p. 60. It can be shown that this series represents

a piecewise smooth function of the variables x and ¢, satisfying the equation
of the vibrating string and all the initial and boundary conditions.

3

108. In the present case, the differential equation for longitudinal
oscillations of a beam of variable cross section takes the form

1 1 0%
Zl-=Z=2 =0,
P(x) 6x[ ) :I v? Ot
where

y(x) = o — xtan a
is the variable height of the cross section at x measured from the axis of

symmetry of the beam. Setting u(x, ) = X(x)7(t) and separating variables,
we find that the factors X and T satisfy the equations

x' —B% % L aX =0, T+ Aa*T=0. (6)
y

The first of these equations reduces to Bessel’s equation in the variable y
2 3 \2
d_X+ld_X+ (—\-/—):—)X=O,

dy*  ydy tan «
with general solution

X = AJo(t‘/”) + BYO(‘/X’V).

tan «
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Using the boundary conditions

ou
=0, —( =0,
ulz-—o 0x z=1
which imply the conditions
ax
X[.o=0, —| =0,
Iv—a dy v=b

we obtain the eigenvalues

2
A=2, = (hﬁ'ﬂﬁ),
a

with corresponding eigenfunctions X(x) = X, (x), where

X0 = %o ) — s (2),

and the vy, are consecutive positive roots of the equation X,'() = 0. Inte-
grating the second of the equations (6) and taking account of the condition
T'(0) = 0, we find that

vy, tan o

T=c, cos
a

It follows that the set of particular solutions satisfying the homogeneous
conditions is

vty, tan o
u:unzc,,X,-n(y)cos—ﬁ‘—z—, n=1,2,...

The solution of our problem is then constructed in the form of a series

®©
u(x, 1) = u,,
n=1

where the coefficients ¢, are determined from the condition

Ulo =f(x) =2 ¢, X, (»), b<y<a.
n=1

Using the formulas
. 0, m # n,
X, NX, My dy = {b*[ a* _,
%, ?[b_”? Y@ —0,0]  m=n
we find that
2 [0 100X, 00y dy
b 44°
'”:2'{2 b2

Cp, =

— X3 (b) ’




286 SOLUTIONS PROB. 109

where the relation

, 2
X?n(a) == T‘;

has also been used. In this way we finally arrive at the answer on p. 64.

109. The problem reduces to integration of the system of equations

u, 1 0%,
—_— — = —= =0, —a, < x <0,
ox* o} or !
0%u, 1 0%,
— —=—=—2=0, 0 < x < a,,
ox®  v: or :
with initial conditions
ou
ul,—e = f(x), —| =0
o =100, 5|
and boundary conditions
u1|z=——al = uz|:c=a2 =0, “1|x=o = u2|==o,
ou du
E;S,=| =E,S;,—
=1 ax z=0 w2 ax =0

Separation of variables leads to the expression for the displacement

u(x, t) = Zc,,X,,(x) cos Yatu! ,

n=1 a

satisfying all the conditions of the problem except the first initial condition.
Here

Xﬁ,"(x)=sinllazsinyﬂ(i+ 1), —a, < x<0,
Lpa, a
Xo(x) = @)

. . Yaui(ag — x
X®(x) = sin vy, sin Yat(ds — x) , 0<x< a,
94,

where the y, are consecutive positive roots of the equation

Sav/Eaps tan y + S;/Eypy tan Y2224 — 0,
a

102

It can be shown that the eigenfunctions X, (x) of the problem are orthogonal
on the interval —a; < x < a, with weight

r(x) — {Slpl’ —a < x< 0,
Sng, 0 <Xx < a,.
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Therefore the initial condition uI,=o = f(x) implies

Sier [, SOOXD(x) dx + Sapy [ FOXP(x) dx
Cp = - .
Sien [, XD dx + Sapa [ IXOCT dx

@®)

Substituting the eigenfunctions (7) into (8), we find that the denominator
becomes

l(a,Slpl sin? Y2192 | .S, 0, sin? Y,,).
2 0,4,

Thus the solution finally takes the form given in the answer on p. 65.

112. To solve the problem, we have to integrate the differential equation

1%

ox® 2ot

for torsional oscillation of the shaft, subject to the following initial and
boundary conditions (J/,, denotes the polar moment of inertia per unit length
of the shaft)

a—x, 0<x<a,

a a0 0
Blio = ) = 5=

a(l — x) d<x<l =

l_a b 3

6|:=0 = e|z=l =0, e|z=a—0 = elz=a+0’
00 00 0%
GJD (_ T ox z=u—0) - JO é?

ax T=a+0 8x
Separating variables, and taking account of the fact that the ends are clamped
and there is no initial velocity, we find the following particular solutions:

T=a

=

¢ sin \/A x cos /A vt, 0< x<a,

¢® sin \/X(l - %C) cos/avt, a<x<l

Using the fact that the two sections of the shaft are joined at the point x = a,
we obtain the eigenvalues

3w

A=, =12
1

?
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and the corresponding eigenfunctions

sinyn(l—lg) i Y’I'x, 0<x<a,
B.(x) =

sinY’l'asiny,,(l——IE>, a<x< |
(n=1,2,...), where the v, are consecutive positive roots of the equation

Joy Ya ( a)
siny = — sin —siny{1 — —).
TET Y T

If the solution of the problem is written as a series

0(x, ) = ic 0,.(x) cos Y"l

n=1

then the coefficients ¢, must satisfy the relation

f(x) = Zce(x) 0<x<l

n=1

In the present case, the functions ¢, (x) = 9'7‘(x) are orthogonal, i.e.,

[ 4n0) dx
0, m#£n

s sin (2Yna/l)] 9 ( a)
—— L 1 _ =
21({ LT R S

+ [1 — 15 4 2*"[21 — ("/Dl] sin® Y—I“) m=n.
Yn

It follows that
_ [ 1o dx
IRerE

which leads to the answer on p. 66.

)

114. The problem reduces to integrating the differential equation
d%u 1%
ox*  ator
for transverse oscillations of the beam, with initial conditions

o =S 2| = g9
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and boundary conditions

Tul = 0*u
=ul,_,=—
axz z=0 N ox® z=1

Writing u(x, t) = X(x)T(¢) and separating variables, we find the differential
equations

= 0.

“|¢=0 =

X —AX =0, T'+a\T=0
for the separate factors, with general solutions

X = A cos Vx + Bsin ¥Ax + C cosh ¥Ax + D sinh \‘/Xx,
T = M cos v/ Aa’ + N sin Vg,
Using the boundary conditions
X0 =X"®=x(D=Xx"(D=0,

we arrive at the eigenvalues
4_4
n'w
= =T

and eigenfunctions
nmx
>

X=X,,(x)=sin-T n=12,...
Determination of the constants M, and N, in the expansion

2.2 2 2. 2 2
n*w“a’t . nwha®ty . nmx
2 + N, sin 0 ) n

reduces to evaluation of the Fourier coefficients of the functions

o0

u(x, t) =Z (Mﬂ cos

n=1

l

o0 2 2 m
f(x)~_—ZMnsinn—7ln-c, glx) =2 anNﬂsinn—}ric O<x<.

12 n=1
118. We want the solution of the equation

a1
ox*  a' o

n=1

0

satisfying the initial conditions

“|t=o = f(x), Py o= 0

and boundary conditions

ou
Ox

o%u

z=0 axa

_ &

= = 0,
z=] 3x3

z=l

“|z=o =
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where the initial deflection f(x) is the solution of the following static problem:3

F
EJ’

Writing u(x, ) = X(x)T(t) and separating variables, we find that

f®0) =0, fO=f'©)=f(=0, f"(h=

X = Acos VA x + Bsin VA x + Ccosh ¥A x + D sinh V2 x,
T = M cos x/iazt + Nsin \/Xaﬁt.
Using the boundary conditions
X0 =X0=X"=X"()=0
we obtain the eigenvalues

A, =

=[5

and eigenfunctions

X (x) = (sin v, + sinh v,) (cos Y'l' — cosh Y—’l‘x)

— (cos vy, + cosh v,) (sm I?— — sinh M),
where the y, are consecutive positive roots of the transcendental equation
cosycoshy +1=0.

Next we show that the functions X,(x) are orthogonal on the interval
(0, ). Multiplying the first of the equations

X —2X,=0, X®_2X,=0
by X,, and the second by X,, we subtract the results from each other and

integrate with respect to x from O to /. Taking account of the boundary
conditions, we obtain

l 11
()‘n_)‘m)f anmdx=(xl;:Xm—'X’rlr’zX'n+XlrlnX,n_X:X;n) =
[} 1]

after integration by parts. This immediately implies the required ortho-
gonality of the functions X,(x). Using the general theory of expansions in
series of orthogonal functions, we can represent the solution of the problem in
the form

[t rex.0 3

(9)
[tx2) ae

\

u= Zlcos -Y—";:—l X (%)

3 An explicit expression for f(x) is given in Prob. 7, but will not be used in our method
of solution.
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The integral in the numerator is easily evaluated by replacing X, by X /A,
and integrating by parts, which gives

L 1@X.@ de = Hoew - xag + xu — X0 ]

XD F

l
x<Md= :
+ [ x e ae 7

To evaluate the integral in the denominator, we use the formula
l
l m
[ =Luaw + xq0 - 2xoxzon

(see T2, p. 336), which in the present case takes the form

l

[rea-iao.

] 4

Substituting these integrals into (9), we find that

3 o 2 2
ﬂz fn(x) cos Yn‘: t N
EJ n=1 Y'nX'n(l) I
The form of the solution given in the answer on p. 68 is obtained after
making the substitution

u(x, t) =

X,(!) = 2(cos vy, sinh y,, — sin vy, cosh y,).

120. The problem reduces to integration of the equation

2
12,20 124 _,

ror\ or) oo
for a vibrating membrane, with initial conditions
P
ou —_, 0<r<e,
“|t=o =0, — =f(r)= 7‘529
ot li=o
0’ e<r < a,

and boundary condition
u|,=a =0.

Writing u(r, t) = R(r)T(¢) and separating variables, we arrive at the equations

li(,ﬂ) 4+ AR =0, T" 4+ W*T = 0.
rdr\ dr

The permissible values of the parameter A are obtained from the requirement
that the first of these equations have solutions which are bounded in the

region 0 < r < a and satisfy the boundary condition R(a) = 0. This leads
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to the eigenvalues and eigenfunctions

2?

A=, =Tz R=R,,(r)=Jo(—Y—"r) (n=1,2..),
a a

where the vy, are consecutive positive roots of the equation Jy(y) = 0.
The solution of the equation for a vibrating membrane satisfying all the
homogeneous conditions is

utr, ) = 3 e sin 122 g, (127).
n=1 a
The constants ¢, are determined from the condition
ou
2 =),
Ot lt=o S

which, after substitution of the series for u(r, t), takes the form

f(r)—;ZCnYnJo(Y"), O<r<a.

n=1
According to the well-known formula for the coefficients of expansions in
Fourier-Bessel series (see T7, p. 221), we have

Y n 2PJ,(y.qela

Hap o ff( )Jo(Y ) dr — 1(Yn2/) ’

a a’J (Y,.) mepaYaJi(Ys)
which implies the answer on p. 69.

124. We want the solution of the equation

o] %
ror\ orLror\ or +b‘ ot?

for transverse oscillations of a plate which satisfies the initial conditions

du
_a = s — = r N
“lt_o f@ 3t lizo g(r)
and boundary conditions
Ou
ul,_, =0, —! =0
| or lr=a

Separating variables, we obtain
u(r, t) = R(nT(),

li{ri[ll(rﬂ):\}—)\R=0,
rdr\ drlirdr\ dr

T" + b*\T = 0.
The functions R(r) remaining finite at the center of the plate are of the form

R(r) = ATV r) + BI(Vr).
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It follows from the boundary conditions

R@ =R'(a)=0

that
4
A=r =12 R=R,(,
a
where

R, = tnaa () — scon(Z),

and the v, are consecutive positive roots of the equation R(a) =
The eigenfunctions R,ﬂ(r) are orthogonal on the interval (0, @) with
weight 7, since

T, =) f FR.R,, dr
a 0

R T W
drlrdr dr drLrdr\ dr

where we introduce the abbreviation R, = R, and use the boundary con-
ditions for the function R,(r). The solution of the problem is given by the
formula

=0’

r=a

) R 2p% (o
utry ) = 3, 2o [cos T f F(O)Ru(e)e do
n=1 f Ri(p)p dp
a®* . Yibi (e
+ gy i f 2R ()e dp]

The value of the integral
| “Ripdp

can be found from the relation

fa d ___{R”2__R _ilili( iR_n)] _R;IR;:__RIRIII}
nPae drLrdr\ dr Y e

which takes the form

’
r=a

a ]
fo R)p do = Re¥@) = a1y, )05r)

after some simple calculations.

132. The problem reduces to integration of the equation
12(,3u) Lou_ g
ror\ or
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with zero boundary conditions

u|r=a = u|q>=0 = u|¢=n =0.
If we write u = u; + u,, where

Uy = — ar’ sin®
' ar’ ®

the function u, must satisfy Laplace’s equation

10 ( auz) 1 0%u,

-=lr=2)+=—=0,

ror\ or/ r*o¢’

with the boundary conditions
9a° sin®
ar ¥
The substitution u,(r, \) = R(r)P(¢) leads to the equations
2
LA dR) dp_o g g
rdr\ dr 2 de

K
with general solutions

“2|¢=0 = u2|¢=n =0, “er=“ =

R = ArVX + Br-ViX, ® = Ccos JA @ + Dsin /Ao
By satisfying the homogeneous boundary conditions
®(0) = O(w) =0,
we obtain the eigenvalues A, = n? and the eigenfunctions
D, (¢) = sin ne, n=12,...

Because of the finiteness of the sclution for r = 0, the constant B must be set
equal to zero.

Thus the function u, can be represented as the sum of the series

Uy = zAﬂ(—r) sin ne. (10
n=1 a
It follows from the boundary condition for r = a that

2 0
%sinch::ZAﬂsinncp, O<op<m,

n=1

and hence, by the theory of Fourier series,
2 fn 0, n
An=qi,1,f sin® @sin npdo = {4442 {
i 0 —_ ,
T (2k + 1)[4 — (2k+ 1)7]

I

2k,

n=2k+1.
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Substituting the values of the coefficients 4,, into (10), we obtain
2.0.2 2 ® 2n+1 4
u(r,q>)=—qr sin go_i_mz(r) sin 2n + )¢ _
2T nT .Zo\a (2n + 1[4 — (2n + 1)%]
This result can be written in closed form by using the expansions

0 2741

e i 1 Zpsm<p
sin (2n + 1)¢ = —arc tan ——-
0. 2n+1
Z = cos(2n+1)q,=l 1+ 2pcos ¢ + p*
o 2n 4 1—2pcos ¢+ p*’

where |p| < 1, |@| < . After some manipulation, we obtain

. 2n+1 .

e’ sin (2n + 1)o 1[ 1( ) :I 2p sin ¢
—_ = 1 2 t. il xSt 4
,,Z @ntDld—@nt DY 8 > P+ cos 2¢ | arc tan 1o

2
+i(iz—— pz) sin2q>ln1+2()coscp+pz—l(l—— P) sin @,
32\p 1—2pcos¢+p 8\p

which immediately implies the form of the solution given in the answer on
p- 74.

136. We want the solution of the equilibrium equation

Ay =21
D
for a semicircular plate which satisfies the boundary conditions
0%u %u ou
Upeo = 7| = Ulo=n = =0, ul,_,=—| =0.
I@—o a(p2 p=0 l@— a(P p=mt l or r=a
Setting

w2 (Zsint g — )
24D A
we find that the function v(r, ¢) satisfies the homogeneous biharmonic
equation A% = 0 with the boundary conditions

aZv azv . 4
v = — = Vg = — =0, v|,_, = SIn" @,
Iw—o acpz 0 lw a<P2 o=t l a ?
Ov 4 .,
— = —sn ¢.
ar r=a a

We can separate variables in the biharmonic equation by looking for par-
ticular solutions of the form

v =v,(r, ¢) = (4 cos ue + Bsin pe)R(r).
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It follows from the boundary conditions for ¢ = 0 and ¢ = = that
A=0, p=n n=12,...).
Moreover,
R(r) = Cr* + D r"t%,

since the deflection at the center of the plate is bounded. Therefore, summing
particular solutions, we find that

o(r, @) = i l:M n (ﬁ)ﬂ+ N, (ﬁ)ﬂ+z:| sin ne. 68))

n=1

The values of the constants M, and N, are determined from the boundary
conditions on the arc r = a:

sin® ¢ =2(M,, + N,) sin ne,

n=1

4 gin® o= [nM,, + (n + Z)N":I sinng, 0<o<m.
a il oa a

This gives the system
M,+ N, = zf sin ¢ sin ne do,
TJO

nM, + (n + 2)N, = §f sin® @ sin no do.
T Jo
After some simple calculations, we find that

J, =J‘:sin‘ psinnede

S ey o]
8 2n—+—4+n——4 n—+—2+n—2 +n’

which implies

M,="=2%2; N =%=1;
T i
Using the expansion
z ( 1) 2n+1=1arctan 29 o IPI< 1,
aso2n +1 2 1—p

we can sum the series (11) for ¢ = =/2, thereby expressing the deflection of
the axis of symmetry of the plate in closed form in terms of elementary
functions.

140. To reduce the problem to a special case of the Neumann problem,
we subtract out the velocity potential of the source, by setting u = ug + #,



PROB. 140 SOLUTIONS 297

where
m
ug = — -+ const
4rp
(p is the distance from the source to an arbitrary point of the flow). Then the
function »; must be a solution of the equation

2('-2 a_u!) + .._1_ i(sin Qﬁ) f— 0’

or\ 0r sin 0 90 29

which is regular outside the sphere, and satisfies the boundary condition
o | _ _ ou
or lr=a or

and the condition uy|,_, — 0 at infinity. Setting u,(r, 6) = R(r)®(6) and

separating variables, we arrive at the equations

(FPRY — AR =0, — (sinB-@) + 20 = 0.
sin 0
This equation has finite solutions for 6 = 0 and 6 = = if and only if
A=xA, =nn+ 1), n=012,...,

which determines the eigenvalues of the problem. The corresponding eigen-
functions are

r=a

,(6) = P,(cos 0),
where P,(x) is the Legendre polynomial of degree n. Similarly, for R,(r) we
obtain
R, (r) = A,r" + B,r 1,
where 4, = 0, because of the condition at infinity.
Thus we find that

uy(r, 0) = B,r"'P,(cos 0), (12)
n=0

and to determine the constants B,, we need only satisfy the boundary condi-
tion

m 9(1/p) S —nm2

— =2 =>m+ )B,a"?P,(cos), O0<b<m.

4r ar r=a ZO( ) ( )
In the present case, we can calculate the coefficients B, in (12) by differentiat-

ing the expansion of the generating function
n

1 1 1& (r)
- = =~ —) P,(cos 0),
p /r* — 2brcos 6 + b an:;)b

thereby obtaining

(13)
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Substitution of (13) into (12) gives

m[l a& n ( ) :l
=—|- a(cos 0 1
u [ +—= br 2wt 1 (cos 9) (14)
This series can be summed by integrating the expansion
2
I r ()P(cose) b=%<a
P r*—2brcos 6 + B nZO b

with respect to the parameter b from 0 to b, which leads to the relation
2 p™! Py(cosb) [* db In r(1 + cos 6)
aon+1 o/r* — 2brcos 0 + b? pHrcosb—5b
(15)

Writing (14) in the form

ST g

a,n+1 r
and using (15), we arrive at the expression given in the answer on p. 77.
145. The problem reduces to solving the system of equations
O Ty _ e 0T,

, 0< x <ay,
x* k, ot !
’T, 0, 0T,
—_— =, a; < x < a, + a,,
ox* k, Ot ! S

with initial condition
Tle=o =T,
and boundary conditions

Tllz=0 = Tzla:=u|+az =0, Tll::=a1 = T2|z=ap

kl a_’ll — k2 aTz
ax r=a) ax r=a)

Application of the Fourier method leads to the expression

2]
T(x, 1) = D, Cpe " o' X (x),
n=1
for the required temperature distribution, satisfying the homogeneous
boundary conditions for arbitrary values of the coefficients C,, where

X(l)(x) z\/ 2 Yn sin YnX , 0< x< a,
X,(x) = Cah
\/—2Yn(al + a; — X)
\/Fl a;

2 . .
X®(x) = sin v, sin a; < x < a, + ay,

(16)
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and the vy, are consecutive positive roots of the transcendental equation
\/b_zkztany—l-\/b—,kltang-z—\/j%:O (b,-:f;;—P", i=1,2).

a3/ 01 i

By the usual procedure, it can be shown that the eigenfunctions X, (x) are
orthogonal on the interval 0 < x < a; + a, with weight

r(x) — {clpl’ 0 <x < a,,
C2P2 @ <x< a + a.
Therefore the coefficients C, can be calculated by using the formula
y g
a air+a
oo [ 7 X0® dE + e, [ 1E)XPE) d

aal1+aa ' (17)
[XPE) dE

Substituting from (16), we find that the denominator of (17) equals

2“2\/B;‘Y

ll: . in’ ]
—[ a;c1p4 SIN — + ayCypp SIN” v, |-
oM 1P1 al\/bl 2C2P2 Y.

n a1

caon [ XPEP dE + capy [

ay

Then setting f(§) = T, in (17) and making some simple calculations, we
arrive at the answer on p. 79.

148. We want the solution of the equation

12(,07) o1
ror\ or ot
satisfying the initial condition

Tliwo = /()
and the boundary condition

T o,

or lr=a

Setting 7(r, ) = R(r)O(r) and separating variables, we obtain

l(rR’)’ 4+AR=0, O +2r0=0.
,
Then _
R =Jy(J/rr)

is the solution of the first equation which is finite on the axis of the cylinder.
From the boundary condition R'(a) = 0, we find the eigenvalues
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and corresponding eigenfunctions

R=R,= JO(Y—"'-),
a

where v, =0,vy,...,Yn ... are consecutive nonnegative roots of the
equation J,(y) = 0. The general solution of the second equation is

3 2
— —Yn /G
O, =c,e v,

T(r,v) = Zc va'tlay (")

obtained by summation of particular solutions, satisfies all the conditions of
the problem, except the initial condition. Since the eigenfunctions are
orthogonal with weight r on the interval (0, a), it follows from the initial
condition that the coefficients c, are given by

faf(P)Jo (u) o do

a

and the expression

153. The problem reduces to integration of the differential equation

L2 (a0T) o
rtor\ or ot
with initial condition
. T|r=0 = f(r)
and boundary condition
T|r=a -

Setting T(r, ) = R(r)®(r) and separating variables, we obtain the equations
LRy +3R=0, © +20=0,
K

whose general solutions are

in /A X
R=AS'“‘/ r+B°°S‘/ L, ®=cCce™
r r

From the condition that R be finite at the center of the sphere, we find that
B = 0, while the boundary condition R(a) = 0 leads to the eigenvalues

2.2

n
A=Ay =

a2
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and corresponding eigenfunctions

1 . nmr
R =R, =-sin—.
r a

Summing particular solutions, we obtain

1& a2 . nnr
T(r,'r)=-2c,,e’””/“ sin —

n=1

The coefficients ¢, must be determined from the initial condition

T|1=0=f(r):1_zcn3inms o<r<a,
r r

n=1

which, by the theory of Fourier series, implies
2 (° . nmp
¢a == f(p)sin—pdp.
aJo a

This leads at once to the answer on p. 81.

169. This temperature distribution problem leads to integration of

Laplace’s equation
Z(rEE) + L5 o,
r ar( ar) z*

with boundary conditions

T|r=a = T, (_ + hT) = 0.

2=+1/2

Writing T(r, z) = R(r)Z(z) and separating variables, we obtain the ordinary
differential equations

1Ry —3R=0, Z'+2rz=0,
.

with general solutions
R = AIo(\/7_\r) + BKO(\/Xr), Z = Ccos \/;z + Dsin \/i z.

The constant B equals zero because of the requirements that the temperature
be finite on the axis of the cylinder. The boundary conditions

(ZI i hZ)|z=i”2 = O
lead to the eigenvalues

I

4y
7\=)\,,='F-
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and eigenfunctions

2v,2
Z=Z"=cos%,

where the v, are consecutive positive roots of the equation

hl
tany = —.
2y
The expression
T(r, 2) = Zc,,lo (2Yl"r) cos g% (18)
n=1

satisfies Laplace’s equation and the boundary conditions on the ends of the
cylinder. To determine the constants c,, we use the boundary condition on
the lateral surface

& 2 1
Tl,=u=To=zc,,Io( Y"a) cosaﬁ'z, ——l<z<—.
n=1 l l 2 2

Because of the orthogonality of the eigenfunctions, this gives

12
Ty f cos 2z dz .
2y,.a 0 l 2T,sin v,
[ S ) =

j‘/ 2 Yn d Y'n + Sin Yn cos Y’n ‘
1
Substituting (19) into (18), we obtain the answer on p. 87.

(19)

Ccos
0

175. We have to integrate the system of differential equations

bl 8Tl) T,
rar( or =

0z
1 a( 8T2) o',
ror\ or o

0z
with boundary conditions

T|,a=T, T

r=a

=0, —h, <z<0,

=0, 0 <z < hy,

=T

z=—hy
| _ . n
dz le=o 3z
Application of the Fourier method leads to the expression

Z—hz ’

Tllz:l) = T2|z=0 =0, kl

2=0

76,9 = 3 e, 2,00 ( ) (20)

n=1 1
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for the required temperature distribution, satisfying all the conditions of the
problem except the boundary condition on the lateral surface, where

ZM(z) = sin Ynhs sin Yo(z + 1) , —h, <z<0,
hl 1
Z,(2z) = h
Z®(z) = sin v, sin i;_—_z_) , 0<z<hy

1
and the vy, are consecutive positive roots of the equation

tany+&tanY—hz=0.

2 1
The eigenfunctions Z,(z) are orthogonal on the interval (— Ay, h,) with weight
r(z) — kl’ '_'hl < ¥4 < 0,
ky, 0<z< h,

To see this, we multiply the equations

2 2
z,+ Yz, -0, z,+Irz -0
a a

by r(2)Z.,(2) and r(z)Z,(z), respectively, subtract the results from each other,
and then integrate with respect to z from —h, to h,. This gives

v2— 4 [* he
_"_2_"‘f Z,Z,rdz =f riz,.Z2, — Z,Z,)dz
a —h1 —hy

’ ’ 0 ’ !’ hz
= k(2020 — Z0ZW) [ + k(22D — 202 [ =,
where we have used the boundary conditions
ZP(—hy) = Z(hy) = 0, Z300) = Z(0), kiZ'(0) = keZ3'(0).

The orthogonality of the functions Z;,(z), together with the condition T|,=“ =
T,, implies
ky° ) ()
I, (:{,,_a) cn=T 1200 & + kaf, 200 &
n 0 Iy .
h ky f_,h[Z%"(C)]z dC + ky) " (ZPQT

Evaluating the integrals in (21), we obtain

@n

2Ty tan vy, (cos Y. — €OS Y;hz)

1

Ynlo (Y—”a) (El sin® Yahs + hy sin® Y,,)
hy 7 \k, hy hy

Substitution of these coefficients into (20) gives the answer on p. 89.

Ch =
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176. The problem reduces to integration of Laplace’s equation

a(,m) 1 a( ar)
9 (9T 02L) — o,
ar\" or) Tameae " 20

with boundary condition

To, 0<b<a,
T|po = £(6) = { "0

The required harmonic function is constructed as a series

T(r, 0) = z%()gmwx (22)

n=0

where P, (x) is the Legendre polynomial of degree n. Because of the boundary
condition, the coefficients ¢, must coincide with the expansion coefficients of
the function f(8) with respect to the Legendre polynomials, i.e.,

) = chemm, 0<b<m,
which implies "

2n+1

n

1
ntl f P,(x) dx.
2 cosax

For n = 0 we immediately find

cos aPo(x) dx =1 — cos a.

For arbitrary n, we use the recurrence formula

. (2n + DP,(x) = Py i4(x) — Ppy(x),
obtaining

1
1
fm aP,,(x) dx = P [Pny(cos &) — P, (cos )], n=12,....
Substituting the values of ¢, obtained in this way into (22), we find the
answer on p. 90.

190. To solve the problem, we find it convenient to assume that the
current J is uniformly distributed with density J/2ch over a small section
|yl < e of the sheet (where 4 is the thickness of the sheet), afterwards taking:
the limit as € — 0. Then the problem reduces to integration of the two-
dimensional Laplace equation

8
+ ay =0,
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with boundary conditions

ul o
6y y=1b ’ Ox

s Iyl <e

x=xa

0, [y] > e

Application of the Fourier method leads to an expansion of the form

a0

., NTX nm

U = CoX + ZC" sinh —b— cos Ty + const,
n=1

whose coefficients are calculated from the formulas

f f) cosJ dy

(n=1,2,...).

Substituting for f(y), evaluating the integrals and taking the limit as € — 0,
we find the answer on p. 95.

co = %fof(y) dy, c,=

nw cosh (mra/b)

192. The potential of the surface current must satisfy Laplace’s equation

1 a= 8
a a 3z
(cf. Prob. 21). To formulate boundary conditions for the problem, we first

assume that the current J is distributed with constant density over the section
[el < e, z= 41, so that

=0 (—r<o<sm —l<z<]))

J
= f(¢) = {2achs’
0, [ > e.

du lol <,
0z lz=x1
Writing
u, = 0,(2)Z,(2), n=0,12,...,
and separating variables, we obtain

D, () = A, cos np 4 B, sin ng,

Z,(z) = C, cosh nz + D, sinh nz , Zo= Cy+ Dyz,
a a

where we use the required periodicity of the solution in the angular variable
¢. Because of the symmetry with respect to the plane ¢ = 0, the coefficients
B, vanish, and hence the solution of the problem can be written as a series

u(e, z) = z (M cosh 22 + N, sinh ) cos n@ + Nyz + const.

n=1
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The boundary conditions give

M,=0, f(9) :Z L N, cosh%’cos ne + N,
n=1

i.e.,

IJ‘" J
N = — d = ,
- of((P) ¢ 2rahc

nN,
a

2 J sinne

coshn—l=sz(cp)cosncpdcp=—
a wJo nt 2achc n

Taking the limit as € — 0, we obtain

J
" mnho cosh (nlfa)’
which leads to the answer on p. 95.

196. The problem reduces to integration of the system of differential
equations

b 00, i = 1,
19( o) 10%, ST
-s\r5) +555=0 a<r<b i=2 —mw<o<m
ror\ or r* do )
0<r<a, i=3,
for the potential of the magnetic field, with boundary conditions

t],_..o = Hox + const,

Quy | _ Ouy duy | _ | Ouy
0@ lr=s ¢ lr=v’ or lr=s or lr=v
duy| _ Oug Ouy | _ Qug
3<p r=a 3<p r=a, al‘ r=a ar r=a.

Bearing in mind that the required potentials are even periodic functions of the
variable ¢, we represent the functions u; as series

00,
uy, = Hyr cos ¢ +ZA,,r“" cos no,

n=1

Uy =Cylnr +z(B,,r" + C,r ™) cos ne,

n=1

[e]
Uy = Z D, r" cos ne
n=1
(where arbitrary additive constants have been omitted). Because of the
boundary conditions, the constants C, and C, (# > 2) vanish. To determine
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the remaining constants, we use the system of equations
A, — b*B, — C, = —Hyb?,
Ay + pb®B; — pCy = Hyb?,
a*B, 4+ C, — a*D, = 0,
uatB, — pCy — a*D, = 0.
It follows that

A1=—

Hob*(y? — 1)(b* — a%)
A ’ A

2H,b*(u + 1) D — 4H b
A ’ 1 A ’

272
Cl=2H,,ab(p. l),

Bl=

where
A =b*u + 1) — a*(p — 1)%

Substituting these coefficients into the series for the u,, we obtain the answer
on p. 97.

201. In this problem, it is convenient to characterize the magnetic field
by a vector potential which in each of the media (air, magnetic material, air)
has a single component

Ag) = A%, ), i=1,2,3.
Setting
AV = A+ A,, A® = A4, A® =4
where
2r, [T cos ¢ do

Ay(r, 0) = (23)

o/r® — 2rrysin 8 cos ¢ + r?

is the vector potential of the loop, we reduce the problem to determination of
the functions A; satisfying the differential equations?

a( aA) 1 a( aA) A,
9 L 9 gne — =0, O ,
or or T sin 0 00 s 00 sin% 0 <r<a
a( aA) 1 a(. aAz) A,
Z — Z(sino 222 =0, b,
a\" or) Tsn0ae\™ 20/ sinto asr<
a( aA) 1 a(, BAB) A,
2 — Z(sin0pZ22) — =0, b<r<
a\" o) Ten0a0\™ " 38/ sinto r<®
4 Note that

A
(AA), = Ady, — —2

rsin? 0’
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and the boundary conditions

A= )y 2 A= 2 A,

A(2)|r=b = Am)|r:=b ’ A(a)‘r—un - Os _l-i (rA(z))|r=b = z (rA(a))|r=b .
w or or

Looking for solutions of these equations of the form 4 = R(r)®(0), we obtain
the equations
(PRY —AR =0, — (sinf 0 + (x — flz—)e —0. (4
sin 0 sin® 0

The permissible values of the parameter A are determined from the condition
that the second of the equations (24) have solutions which are regular in the
closed interval 0 < 6 < w. This requirement leads to the eigenvalues and
corresponding eigenfunctions

A=N,=nn+1), 6=0,=P(cosd) (®=0,1,2,..),

where the P}(x) are associated Legendre functions of the first kind. The
general solution of the first of the equations (24) is

R = R, = Mr* + Nr—1,

Taking account of the behavior of the functions 4; near r = Qand r = oo,
we find that they can be represented as series of the form

Ay(r, 0) = i A,r"Pi(cos ),

n=0

Ar, 0) =S B + C P (cos),

n=0
Aq(r, 0) = D,r""P'(cos ).
n=0

The vector potential of the source can also be represented as an expansion in
terms of Legendre functions, by starting from the formula

1 1 2 . ro\"
= — 4 » P,(sin 0 cos (p)(—“) ,  r>re (25
\/rz—er.,sinOcos o+r: r :,Zl r °

Using the additiorr formula for spherical harmonics

3 L Tn—m+1)
P,(sin 8 cos ¢) = P,(0)P,(cos 8) + 2 —"—"
(sin 6 cos o) (0)P(cos B) "Zl L(n+m+ 1)

X PT(0)P™(cos 0) cos mo,
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and substituting (25) into the integral (23) for 4,, we find after some simple
calculations that

2 & 1

Aglroyy =—
o= D

Then the boundary conditions lead to the following system of equations for

determining the coefficients 4,,, B,, C, and D,:

.2.'_75!_ P},(O) (Q )n+l
¢ nn+ 1\a ’

) . ﬂ) n+1
P,(0)P’(cos O)( r) .

a"4, —a"B, —a "'C, = —

n+1

Zil P;(O) ( ﬁ )’IH-I
¢c n+1\a/ ’
b"B, + b="-1C, — b~"-1D, =0,

(n+ a4, — a"B, + 5 a™'C, =

ntlymg, 2
e t
Solving this system we obtain

b=""1C, + nb="*"1D, = 0.

2reJp.

n= cn(n 4+ 1)
(2n + 1)*PL0)rg*!

“Tne + D + UinGa + 1) + ol — @/6)™n(n + @ — *

which leads to the solution in the region outside the shield given on p. 99,
if we bear in mind that P},(0) = 0.

206. The magnetic field in the spherical resonator has only a ¢-component
with complex amplitude H, = H(r, 8). Writing H = H, + H,, where®

__Psin6
cr®

H,

(1 + ikr)e

is the magnetic field of the source, we find that H, satisfies the equation

AH, + (k”— 1 )H1=0.

rtsin® 0

Next we introduce a new unknown function u = u(r, 6) such that

__Ou
1= A~
a6
® This expression can be obtained from the relations
P e tkr P e—tkr
Hy, = (curl A®),, A = 2 ¢ cos, AP =—— ¢ sino.
c
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Then u is the solution of Helmholtz’s equation
19 ( au) 1 9 ( du ) .
= 0 Ku =0
r*or\ or + r® sin 6 00 sin 00 ke

which is regular inside the sphere. Since the tangential component of the
electric field

Ee—k—a—(H)

must vanish on the surface of the sphere, it follows that

sl

Using the Fourier method to solve the differential equation for u, we find that

("Ho)

r=a

u(r, 6) = \—}7 S ol msakr)P(cos 6), (26)

in terms of the Legendre polynomials P,(x) and the Bessel functions of half-
integral order J,,(x). Using the boundary condition and the familiar

relation
Ja/z(z) A/—(sm—z — COs 2)»

we find that the coefficients c, equal

mk Pk it 1+ ika — k*a*
2 ¢ (1 — k%a®) sin ka — ka cos ka

Cn|n¢1 =0, € =

Substituting these values of ¢, into (26) and differentiating with respect to 6,
we arrive at the expression for H, = H(r, 6) given on p. 101.
210. The problem reduces to solving the equation
axt ook T

of the vibrating string, with zero initial conditions

Pu 10 _ q(x,0) @7

ou
Upo=—| =0
|¢o 0t lt—o

and homogeneous boundary conditions

u,z=0 = ul::-! =0
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of the first kind. We look for a solution in the form of an expansion

u(x, f) = X, (%),

= f ey

with respect to the eigenfunctions X, (x) of the corresponding homogeneous
problem, where the weight r equals 1 and

l
i, =f°an(x) dx.

The functions X, (x) are the nontrivial solutions of the equation

X' 4+2X=0
satisfying the homogeneous boundary conditions
X0 =Xx()=0

Such solutions exist for

2.2

A= n = ’1_75. =1,2 ,

12

and are of the form
nrx

X=X,(x)= sm—l—

To determine the coefficients #,, we multiply (27) by X,(x) and integrate
with respect to x from 0 to /.8 Integrating by parts twice and taking account
of the boundary conditions, we obtain

u, + (mw) == fq(x 1) sin 22X dx.

The solution of this equation can be found by variation of constants:

nrot . ol [

nmot .
#,=A,cos—— + B, sin— +
" l + I nrT Jo l

n nro(t — r)d

TJ:q(E, T)sin ﬂ;é dt.

To calculate the constants 4, and B,, we use the initial conditions for the
function #,, which are obtained by multiplying the original initial conditions
by X,(x) and integrating with respect to x from 0 to /. The result is

#,(0) = #,(0) = O,
which implies 4, = B, = 0. In this way, we arrive at the answer on p. 108.
® In the interest of using a unified approach, we follow the general scheme on p. 105.

For problems of the type under consideration, this method is entirely equivalent to that
described on p. 104.
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217. We have to solve the inhomogeneous equation

%u | 10% gsin ot

ox!  a* o EJ
for transverse oscillations of the beam, with zero initial conditions

(28)

du
Upo=—| =0
It o at t=0
and homogeneous boundary conditions
ou
Ul = — = 0.
Je=ss Ox lz=t1

A feature of this problem is that it involves an expansion in terms of eigen-
functions of a fourth-order differential operator. Following the usual
method, we represent the solution as an expansion

— " x.(x)

u(x, 1) =§: J,

at | rX3(x) dx

with respect to the eigenfunctions X, (x) of the homogeneous problem, where

i, =J‘ilruX"(x) dx.

In the present case, the weight r = 1, and the functions X,,(x) are the solutions
of the equation
X0 X =0

satisfying the boundary conditions
XEH=X'(+hH=0.

Simple calculations show that?

4
>\=x,,=YT‘", n=1,2,...,

X ,(x) = cosh v,, cos Y—’l'x — cos ¥, cosh YaX ,

where the v, are consecutive positive roots of the equation
tan y 4 tanh v = 0.

To determine the functions #,, we multiply (28) by X,(x) and integrate
with respect to x from —/to /. Integrating by parts four times and taking
account of the boundary conditions we obtain

v, (Yaa\. _gqa* . *
i, + (—) 4, = ——sin wtf X (x) dx.
l EJ - )

7 Concerning the orthogonality of the functions X,(x), see the solution of Prob. 118.
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The solution of this equation satisfying the zero initial conditions
#,(0) = #,(0) = 0
obtained by multiplying the original initial conditions by X, (x) and integrat-
ing with respect to x from —/ to /, is given by
@Yot _ Yna®
g _ ga®l P I
" EJ e o — (azY:)z
12

The final form of the solution, as given in the answer on p. 110, is found by
taking account of the easily verified formulas

) @ sin sin wt

f-l z X, (x) dx.

12

X, (x) dx = 41 sin v,, cosh v,, ’
]

Yn

l
f X2(x) dx = 5’ X1y = 21 cosh? v, cos® v,
-

222. The problem reduces to integrating the equation

4 2,
for the oscillating beam, with zero initial conditions
ou
oo =500
and inhomogeneous boundary conditions
dpn= 24| —Pul _o T _ PO
0x la=0  0x* oz 0x® lo=t EJ

Applying Grinberg’s method, we look for a solution in the form of an expan-
sion
< u
u(x9 t) = Z N — Xn(x)
f:rX %(x) dx

n=1
with respect to the eigenfunctions X, (x) of the homogeneous problem, where
i, =folruX,,(x) dx.

Explicit expressions for the functions X,(x) are obtained by solving the
equation
X — X =0,
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with homogeneous boundary conditions

X(0)=X'0)=X"()=X"()=0.
This gives

=t-

x=x,,=’;— n=1,2...,

X (x) = (sin v, 4 sinh Yn)(co< 1’;— — cosh %‘)

— (cos v,, + cosh Y,,)(sin % — sinh %),

wherethe v, are consecutive positive roots of the equation cosycoshy + 1 =0,
The functions X,(x) are orthogonal on the interval (0, /) with weight r =1
(see the solution to Prob. 118), and the integral of X2(x) is

J X%(x)dx = - X 2(l) = I(sinh v, + sin v,)%

To determine the coefficients i,, we multiply (29) by X, (x) and integrate
with respect to x from O to /. After a bit of manipulation, we arrive at the

equation
. Yaa\ - at
o (2o
l EJ

The solution of this equation satisfying the initial conditions

1,(0) = ,(0) = 0,

obtained by multiplying the original initial conditions by X,(x) and
integrating with respect to x from 0 to /, is given by

P() X (D).

272 ¢ 2 2,
i =2 x f P(z) sin Y24 —7) 4
EJY: 0 2

and immediately leads to the answer on p. 112.

223. Clearly we can express the dependence of the external load on the
coordinate x and the time ¢ in the form

A sin wt
forvt —e<x<vt+e
Q(xvt)z‘{ 2e

0 otherwise,
where € > 0 is arbitrarily small. Let

nnwx

u(x, t) = lg zu,, sin 7
n=1
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where
- ' nmx
4, = | usin— dx.
0 1

Multiplying the equation for the oscillations by sin (nmx/l), integrating with
respect to x from 0 to /, and taking account of the boundary conditions, we

obtain
i, + (n—@)‘ﬂ _a fl (x, ) sin == dx
" 1 )% T B LI 1
or
4 4
i + (m) 7, = 2% sin ot sin 77
1 EJ 1

)
= 2 cos (1~ 252) 1 — cos (@ + 222)1]
2EJ l l
after passing to the limit € — 0. The general solution of this equation is

2,2 2 2.2
_ an'n’t . an'r’t
u, = A, cos —_I"’ + B, sin Iz

4
+ %[Hl cos (m — %)t — H,cos (m + %)t]’ (30)

where we introduce the abbreviation

1
H,,= .
TR
) !
Using the initial conditions
ou
=0 — A = 0»
,t o Ot lt=o0
we find that
ﬁnlcno = ﬁy:lt=0 =0,
and hence
Aa®
B, =0, A, = — — (H, — Hy).
n 2E.I ( 1 2)

Substituting these values of the coefficients into (30), and letting M denote the
mass of the beam, we obtain the answer on p. 112.

225. To solve the problem, we assume that the external load is distributed
over the membrane with density

p sin ot

q(r, ) = 2e
0 otherwise,

forb—e<r<b-+te,
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where € > 0 is arbitrarily small. The deflection u(r, t) of an arbitrary point
of the membrane is then the solution of the inhomogeneous equation

12(,20) 12 _ gt

ror\ or] R of T’
with homogeneous initial and boundary conditions
ou
Ulo=—| =0, Ul =0.
eeo 0t li=o I

The desired solution is constructed as an expansion

u=3 T R,

n=1 JoarRﬁ(r) dr

with respect to the eigenfunctions R,(r) of the homogeneous problem. The
latter are the solutions of the equation

(rRY + MR =0

which are unbounded in the closed interval [0, @] and satisfy the boundary
condition R(a) = 0. As usual, #, denotes the integral

iy =f0“ruR”(r) dr.

It is easily verified that the eigenvalues and eigenfunctions are given by

A=r=, =12,

R=R,r) = J.,(%),

where Jy(x) is the Bessel function and the vy, are consecutive positive roots of
the equation Jy(y) = 0. Applying the usual method for determining the
coefficients #,, we obtain

2 2 o b+e
,;H(m)ﬁn:mm_w'f ,o(ﬁ:),d,,
a 2eT  Jo—e a
or

2 2
i, + (M) i, = pbv JO(Y—"b) sin ot
a T a

after passing to the limit ¢ — 0. Integrating this equation with zero initial
conditions

,(0) = #,(0) = 0,
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we find that
sin T2 _ Y0¥ in or Jo (Y“b)
_ 2abpv a wa a
T ar T [y
wa

which leads to the answer on p. 113.

227. To solve the problem, we regard the concentrated load as the limiting
case of a load distributed over a disk of small radius . Then, to determine
the transverse oscillations of the plate due to this load, we integrate the

equation
) LR
rorl orlLror\ or ‘or’ D
where
A sin wt
‘I("»t)={ ne? O<r<s
0, e<r<a,
subject to zero initial conditions and the boundary conditions
ou
Ulpeg=—| =0.
Ir—-a al‘ r=a
Let

u(r, ) = > — R,
n=1 J; rRXr) dr

where the R, (r) are the eigenfunctions of the homogeneous problem and
i, = f: ruR,(r) dr.

The functions R,(r) are the solutions of the differential equation

ld{ d[ld( dR)]}—kR:O
rdr\ drLrdr\ dr

which are bounded for r = 0 and satisfy the conditions
R(a) = R'(a) = 0.
Therefore

R=R,, R(N= Io('Y)Jo(Iar) - Jo('Y)Io(IaE)’

where the v, are consecutive positive roots of the equation Ry(a) = 0. The
corresponding eigenvalues are

cey

4
A==, n=1,2,
a
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and the functions R, (r) are orthogonal on the interval (0, a) with weight r
(see the solution to Prob. 124).

Multiplying the original differential equation by rR, (r), integrating with
respect to r from O to &, and then integrating by parts four times, we obtain

4 4
ﬁ;:—i—(m)ﬁ,, b Asmmtf 'R, (1) dr,
a D

‘I'CE2

or
Abt —— R, (0)sin ot.
2nD

after taking the limit as ¢ — 0. The solution of this equation satisfying the

boundary conditions
is

272 212

sin Tnbt _ Yab

_ Aa®h? a* wa®

Un = z Ry, (0) 2p2\2

2nw Dy, | — (Y,,b )

wa?

Substituting these values of &, into the series for u(r, t) and using the formula

sin wt

[2rR2 () dr = @ r)I%),
we finally arrive at the form of the solution given in the answer on p. 114,

230. To solve the problem, we replace the line load p by a load uniformly
distributed over the strip —e < x <, —b < y < b of width 2¢, i.e., we
reduce the problem to integration of Poisson’s equation

31
3x ay T 2T (31

@ gy _ {— 2 x<e
0, |x] > e,

with homogeneous boundary conditions of the first kind:

Ul o = Uy yp = 0.

Two forms of the solution can be found. To obtain the first, we represent the
displacement as a series with respect to the eigenfunctions of the correspond-
ing homogeneous problem which depend on the variable x:

_2 i (2n + 1)7rx 3 f 4 cos 2n + l)nx
a’s "o

2a 2a
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Multiplying (31) by cos [(2n + 1)7x/2a], integrating with respect to x from 0
to a, and then integrating by parts twice, we obtain®

2 z
7 — |:(2n + l)n:jl i = — _.p_f o5 2n + Drx dx,
2a 2T Jo a
or
., [@n+ l)nir_ _ . r
“n [ 2a n 2T

after taking the limit as e —0. The solution of this equation satisfying the
conditions &, ., = 0 is

cosh MX
i = 2pa® 1 — 2a
" wT(2n + 1) cosh 2+ Drb

2a
which immediately implies formula (12), p. 115.
The second form of the solution is obtained by expanding u in a series
with respect to eigenfunctions which depend on the variable y:

=) b
_2 Z os 21t Dy , i, =f u cos 1+ Dy dy.
b, 2b 0 2b

This time the coefficients #, are functions of the variable x (rather than of y),
and are determined by the equation

pb(__l)n+1
Sy aE— <e,
@ — [(2” + 1)’1 —f) = {meTn £ 1)y I=E
2b
0, |x|] > e.
The solution of this equation satisfying the conditions ﬁn|z= 1o=0is
; b f 2 (2n 4 Dr(x — )
= h+———— 27
T — 1)[ J@sin 2b ¢
(2n + Dnx
cosh S L b ™a

Substituting for f(£) and taking the limit as e — 0, we obtain
sinp 21t D@ — |x))

i — 2pb*(—1)" 2b
n- 9 2 )
n“T(2n + 1) cosh (2n —;-bl)na

®We also take account of the boundary condition u|,_, =0 and the relation
(9u[dx) |,_o = O implied by the symmetry of the problem.
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which implies formula (13), p. 115. Which form of the solution to use in
making calculations depends on which series converges more rapidly (this
depends primarily on the ratio a/b of the sides of the rectangle).

240. The problem reduces to solving the biharmonic equation

o'u o%u o'u
L) gu_,
ox* ox® 0y? + oy

with boundary conditions

U]og = U = 0 9*u o*u m
—0 = g — — = — = ——
“ o= ’ 0x® lz=0 8y2 z=a D ’
ou
u|11=.-tb/2 = 5 v—:tb/2=

1t is easy to construct a function
u* mx(a — x)
2D

satisfying both the differential equation and the boundary conditions at x = 0
and x = a. If we set

u=u*+uo,
then the new unknown function » must be a solution of the homogeneous
biharmonic equation satisfying homogeneous boundary conditions in x:
| _ o
0x?lz=0  Ox*

This enables us to use the Fourier method, where the boundary conditions in
the variables y take the form

U|z=0 = vlz=a =

=0.

T=a

v
dy
Taking account of the boundary conditions in the variable x, we look for
particular solutions of the biharmonic equation A% = 0 of the form

v|11=:tb/2 = u*(x), =0.

y=+b/2

v:v,,(y)sinn—nx, n=12,...
a
The amplitude v, must then be a solution of the differential equation
2 4
o) — ("—“) vl + (”—") b, =0
a a
which is even in y, and hence

v, = A, cosh nlay + B,y sinh r%y .
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Writing v as a series

Q0
v =Z(A,, cosh = 4 B,y sinh 'ﬂ) sin 2%,
n=1 a a a

we determine the coefficients 4, and B, from the remaining conditions

o
oy
This requires expanding the known function #*(x) in a Fourier series with

respect to sin (nmx/a). In this way, we eventually arrive at the answer on
p. 119.

241. Suppose the line load p is replaced by a load uniformly distributed
over the sector —e < ¢ < ¢, 0 < r < a with central angle 2¢, where € > 0
is arbitrarily small. Then the problem reduces to solving the inhomogeneous
biharmonic equation

0.

U,yab/z = u*(x), =
y=b/2

2 2 .L < €,
1302) 320 52 -
ror\ or r*de“lLror\ or r‘de 0, lol > ¢,
with homogeneous boundary conditions
ul,l,a = u =0.
or lr=a

With our way of measuring angles, u is an even function of ¢ and hence can
be written as a cosine series

u(r, @) = 1  + 2 Zﬁ,, cos ne,
T n=1
where

™
i, =fo u cos ne deo.

To find #,, we multiply the equation for u by cos n¢ and integrate with respect
to ¢ from O to . Then, integrating by parts four times, we find that

(i’ 1d n’)’_ _ psinne
ar*  rdr rt eaDn ’

where the right-hand side can be replaced by p/aD after taking the limit as
e — 0. We are interested in the solution of this equation which is regular for
r=20,ie.,

- - %
a4, = A,r" + B,r"* + ay,

4
% )4 r

T aD@ — (16 — )’
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except for the cases n = 2 and n = 4:

4 4
% prilnr % p rinr
Ug = —— ———, Uy —_—— .

~aD 48 aD 96
The constants 4, and B, are determined from the conditions
(@) = ti,(a) = 0.
242. The problem reduces to integration of the heat conduction equation
T _oT

= 32
oxt ot (32)

with the zero initial condition
T"l’=0 =0

and inhomogeneous boundary conditions

oT
—k—| =4q, Tlea=T
0x lz=0
It is easy to see that the linear function

T* = To+%(a—-x)
is a solution of (32) satisfying both inhomogeneous boundary conditions in
the variable x. Therefore, writing
T=T*—u,
we find that u satisfies the differential equation

O _ ou
ox* ot
with initial condition
o = TH® =Ty + % (a — x)
and homogeneous boundary conditions
Ou

=0 =0.
ax z=0 ’ ulm—a

Application of the Fourier method gives

& 2 1 3 2n + rx
U= c e a0’ oo @2n + lmx

n=0 20

where the ¢, are the coefficients of the Fourier expansion of T*(x) with respect
to the functions cos [(2n + 1)7x/2a].
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247. We have to solve the inhomogeneous equation

li(,a_T) _ar_9 (33)
ror\ or ot k
with the zero initial condition
TIT=0 = 0

and homogeneous boundary condition of the third kind:

(a—T + hT) =0.

or r=a
Suppose the solution is of the form

T=Z——5——mw,

=1 f:rR:(r) dr
where
T, = [*TR,(Pr dr,

in terms of the eigenfunctions R, (r) of the homogeneous problem. The latter
must satisfy the equation

Lery + 2R =0, (34)
r
the boundary condition
R'(@) + hR(@) =0
and the requirement that R(0) be bounded. Solutions of the required type
exist if
_Ya

7\=7\" ) n=1,2,...,
a

where the vy, are consecutive positive roots of the equation

v/1i(Y) = ahJy(y).

The corresponding solutions of (34) are

R=R,(r) = Jo(%).

These functions are orthogonal with weight r on the interval (0, @), and more-

over
"R dr = & 113 )] = &2 haY,
[[rrie dr = L e + sz = F g1+ (2]

n
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To find the functions T,, we multiply (33) by R,(r) and integrate from 0
to a. Then, integrating by parts twice and taking account of the boundary
conditions, we find that

2 2
T+ (ﬁ)T,,=Q—“M. (35)
a ko Ya

The solution of (35) satisfying the condition T, = 0 is
4
Tn — QTa Jl('afn) [1 _ e-—yﬁr/a’].

Therefore the desired temperature distribution can be represented as a series

n

T(r, T) — 2Qa2 i Jl(Yn)JO(an/a) [1 _ e-y;’.'r/ag].

k n=1 Y:[J(zl(Yn) + J:(Yn)]

This form of the solution is suitable only for small values of T, i.e., during the
initial stages of the heating. For large values of , it is convenient to subtract
out the terms of the series which are independent of time, by using the formula
1(1 . _) _ ZJI(Y'A) Jo(Yar/a) )

8 a n=1 Y:l Jg(Yn) + J?(Y'n)

Then T{(r, 7) takes the form given in the answer on p. 121.

261. The problem reduces to finding the solution of the equation

T | T
L PT_ 0
a9y y k
which satisfies the boundary conditions of the second kind®
oT| _ 9T oT ~28 . x<o
—a-—' a ) 7 = f(x) = ke
X lz=+a Y lv=0 Y lv=b 0’ ixl > c.

The solution can be obtained in two different forms, either as a series with
respect to the eigenfunctions X,(x) satisfying homogeneous boundary con-
ditions in the variable x, or as a series with respect to the eigenfunctions
Y,(y) satisfying homogeneous boundary conditions at the end points of the
interval 0 < y < b. The first form of the solution is

T(x,y)—-—T + 257, cos M=%, (36)

ot a

® The density ¢ of the heat current through the section [x| < ¢, y = b can be expressed
in terms of the density Q of heat produced inside the bar by using the condition gc = Qab
for solvability of the problem.
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where
a
nmx
T, =f T cos — dx.
0 a

To determine T,, we multiply the original inhomogeneous equation by
cos (nmx/a) and integrate with respect to x from 0 to a. This gives

nTw 2 —_— gg = 0,
T‘;l’ - (_) Tn = k’ ;
. a 0, n>1,
which implies

T,=— Q;’,f + Ay + By,

T.=A4, cosh 2% +B mhn_ny, n> 1.

a a
Using the boundary conditions in y, we find that

2
dT, , f 7(x) cos T dx = — 288 g e
dy y l=o d y lv=b nwke a
which leads to the following values of the constants:1
an
A, = — Qa’b sin (nrc/a) B, —0.

2n2ke sinh (nmb/a)’

Substituting 4,, and B, into (36), we obtain formula (14), p. 126.
To obtain the other form of the solution, we set

T(x, y) = —To—{— ZT cosnzy

where

T, chos-—

Then, by the same procedure as before, we obtain the differential equation

2
T, — ("f) To=(=D"Y() (37
determining the coefficients T,,. The solution of (37) satisfying the conditions'*
ar,| _df| _,
dx le=o dx lz=a

10 The constant A, remains indeterminate,

11 The desired solution T(x, y) is an even function of x, and hence, from now on, we
need only consider the region 0 < x < a.
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can be found by variation of constants, and turns out to be

cosh 2%
Qab® (—1)"*! b{., nra .. nn(a—c)
T = ¢ n*n’k nma sinh == — sinh b
sinh —
i b
1 — cosh 1;-2‘ , x <ec,
+ , n=12...
cosh nm(x —c) cosh ™%

osh — , x>c,
b

Similar calculations for the case n = 0 lead to the following expression:

2b (a — o)x?, x<ec
2kc
T, = const +
2
@(ax - x_)’ x> c.
k 2
After some manipulation, we find that
2
Qax , Ix| <e,
sz 2kc
T(x,y) = — =+ + const
2k ' |Qalxl
= |x] > ¢,
k
nwy
—1)" cos —
2Qab*& (=1 b
2
ke i n? sinh 222
b
sinh nw(a — c) osh 2=% __ sinh 274 R x| < e,
b b
X

. , nmc nr(a — |x
— sinh — cosh nr(a — |xI) R |x|] > c.

The form of the solution given in the answer on p. 126 is obtained if we
improve the convergence by using the formula

00 (_1)n+l nz xz
z g COSnx=———, —TT<X<T
Zoon 12 4

to carry out partial summation of the series.



PROB, 272 soLuTioNs 327

269. To solve the problem, we assume that heat is produced with uniform
density Q/ne?inside a cylinder of arbitrarily small radius €. Then the problem
reduces to integrating Poisson’s equation

13( 3T) 0°T ——=, 0<r<e
- — —_ + f— — k
ror r or 0z% Yy e
with boundary conditions

oT
Traa = 0’ (_ hT)
| 0z +

0, e<r<a,

=0.

z=%l

Expanding the solution in a series of eigenfunctions of the corresponding
homogeneous problem depending on the variable r, we find that

23 B, n[af
T(r, z) = pr ’gl 700 Jo L) T, = , T, p; rdr,

where the y, are consecutive positive roots of the equation Jy(y) = 0.
Multiplying the original equation by rJy(y,r/a) and integrating with respect
to r from O to a, we obtain

T _ (L.)*T _ _ QaJi(y.cla)
" a/ " ek vy,

3

or
2
T — (ﬁ) T, =— 2
a 2k
after taking the limit as ¢ — 0. The solution of this equation satisfying the

boundary conditions
drT,
4ln hT,,)
(dz +

- Qa* [ 1 ah cosh (y,z/a) ]
" 2mky? ¥, sinh (y,l/a) + ah cosh (y,l/a))’
which leads to the answer given on p. 130.

=0

z=kl

is

272. This problem of electrostatics reduces to finding a solution of
Laplace’s equation
ox*  0y*
satisfying the following inhomogeneous boundary conditions of the first
kind:

=0

Vv, 0< x<a,

U,0o=V, Ulyep =f(x) =
|e=o0 lv=so =S (%) {0’ 4<x < oo,
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Following Grinberg’s method, we look for a solution in the form of an
expansion with respect to the eigenfunctions of the corresponding homo-
geneous problem,? i.e.,

u(x, y) = % zu,, cos(—z—njbﬂ,

where

b
a, =J; u cos (—2-'%-)1:1 dy.

To determine the unknown quantities #,, we multiply Laplace’s equation by
cos [(2n + 1)my/2b] and integrate with respect to y from O to b. Taking
account of the boundary conditions, we obtain

_, @2n 4+ Dr a1 (2n 4+ D
T [ 2b } =D Ty T

We want the solution of (38) which is bounded at infinity and satisfies the
condition

(%)

i 1\
s = [V cos C2E D2 g, BVCDT
n+ NHm

It is easy to see that this solution can be written in the form

% — B_sinh (@n + Hrx 2bV(—1)  x<a,
i, = 2b 2n + Drn
-(2) C e—(2n+1)n=/zb x> a,

where the values of the constants B, and C, are determined from the *““contact
conditions”

- I oy o
un|z=a—o - un|z=a+0s un|z=a—o - un|z=a+o’

which imply

__1\nt1 1\
_ 2bV(—1) ¢~@ntima/an c, — 2bV(—1) cosh 2n + Dra .
2n + Dr @2n + Dr 2b

Substitution of these values of the coefficients into #, leads to the following
series solution of the problem:

“,w<a = —z (-1) [ e~ (2ntmd/2 g (2n + 1)7‘35:] cos (2n + Dy ,

n

T,—o2n+1 2a 2b
pa z (=1 cosh (2n 4+ Dra et/ o (2n + Dny )
a0 2n + l 2b 2b

12 Choosing the other form of the solution leads to an expansion in a Fourier sine
integral over the integral (0, ).
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To obtain the final form of the solution, we improve the convergence by
using the formula

i 2n 4 1 z
cos n+ x=-, x| < =
2 ( ) 4 x| <3
to sum the slowly convergent part of the first series. It would be noted that
the solution can also be written in closed form.

2717. To solve the problem, we first assume that the charge ¢ is uniformly
distributed with density p over an arbitrarily small cylinder 0 < r <3,
c—3e<z<c+ 3¢ ie, we reduce the problem to integration of

Poisson’s equation
19( 0u 0*u
-r-‘a_r( ) + P —4mp(r, 2),

where
— for 0<r<3, c—ie<z<c+ de
p(r, z) = {™d%
0 otherwise,
subject to the boundary conditions

ulr-:a = u'zao = u|,=z = 0.

One of the two possible forms of the solution is an expansion with respect to
the functions Jy(y,r/a), which are the eigenfunctions of the corresponding
homogeneous problem, i.e.,

u(r, z) = az 5:: J?(-Y'n ( . ), i, =J‘:ujo(1;‘—r)rdr,

where the y, are consecutive positive roots of the equation Jy(y) =0.
Multiplying the original equation by rJy(y,r/a) and integrating with respect
to r from O to a, we arrive at the equation

2 a
a (ﬁ) i = —471:f olt, z)Jo(Y—"t) tdt, (39)
a 0 a

which is to be solved with zero boundary conditions
ﬁ'nlz:-o = ﬁnlz=l = 0.

The general solution of (39) satisfying the first of these conditions is

__, sinh(y,z/a) 4ma Ya(z — Ya
R T s e L b



330 soLuTIONS PROB. 282

Using the other boundary condition to calculate 4, and then passing to the
limit 3, € — 0, we obtain
A" — z_ag sinh Y_"(l___c). .
Yn a
Thus the coefficients @, are equal to

sinh Y2 = ) Gy Y2

2aq a a

a, = —l X l
Y. Sinh Yul sinh YaC sinh _Y_"(__C)
a a a

) 0<z<eg,

, c<z<,

which immediately leads to the answer on p. 134.
The other form of the solution can be obtained by expanding u(r, z) in a
series with respect to the eigenfunctions in the variable z, i.e.,

22 _ . nnz i ' nmz
u(r,z) = =) 4, sin—, 4, = | usin—dz.
n=1 l 0 l

282. Since the potential distribution must be an odd function of the
coordinate z, the problem reduces to solving Laplace’s equation

12(,0) , P _
ror rar +azz— ’
with boundary conditions
u|z=0 =0, u|==l =V, ulr:-a =f(Z),
where
v, d<z<l,

f(z):{VsinE, 0<z<d.
2%
To obtain homogeneous boundary conditions in the variable z, we set
u=vi_y
!

Then the function »(r, z) will be the solution of Laplace’s equation satisfying
the homogeneous conditions
v|==o = ”lznz =0

and the following boundary condition on the lateral surface

z

V(;—l), d<z<,

E—sin’-z), 0<z<.

v,r=a = CP(Z) =
"
l 28
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To find the function v, we can now use the Fourier method, which, after
separation of variables and determination of eigenvalues and eigenfunctions,
leads to the expansion

or, 2) —Zc,.fo(""’) in 2,

where the coefficients ¢, are found from the condition
v|,,=a = ¢(2).

After determining the potential u(r, z), the electric field on the axis of the
lens can be calculated from the formula

289. Suppose the current is distributed with uniform density over the
arbitrarily small area

> d €
B, —-<6<0+ -, <-=.
()} > o+2 |l >

Then the problem reduces to integration of the equation

1 3(. au) 1
g 4
a®sin 6 00 sin 00 +a smea =J6, o),

0< e<’5‘, —nm<o<m (40)
(see Prob. 21, p. 14), where

J 3 3 .
— =  for B — - <0<6+ -, <,
16, 9) = cha® 8¢ sin 6 or Do ) o + > Lol 5
0 otherwise,
subject to the boundary condition
U|grje = O.

If we introduce a new variable by writing

4 = tan ‘2’ 76, 9) = F(4, o),

then (40) takes the simpler form

19 1 0%
4;84;(4’64,) +$an> (1_{_4)2)2 F(y, ). 0<d<i
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whose solution can be constructed as a Fourier series

200
y + — Zﬁncos ne,

1
u=-
T T

n=1
where

i, = f: ucosngde.

To determine the coefficients i, we follow the usual approach, obtaining the
differential equation

dit n® 4qa*
¢ ")——u— fF(uLn)cosn dn
v d¢( ap) P A+ k
whose general solution is
= And" + B,

L2 2a J; (l_f_gﬁ [(g‘)n_ (g)_njl ng:‘F(E, n) cos nv d.

The constants 4, and B, are determined from the boundary condition

ﬁnlw=1 =0

and the condition that i, be bounded for ¢ = 0. Passing to the limit §
e — 0, we find that!?

J - 0,
A = — —— n__ n , =t -,
n 4chn (QJO 4’0 ) q’o an 2

B, =0, n=12,...,

’

which implies
i— X{(¢§—¢E")¢", 0< ¢ < do
dohn (4" —¢p, be< ¥ <L,

= n=12,...).
For n = 0 we have

n

i J X{ln‘po’ 0<¢<4’0:

°T2h llnyg,  de< <l

Therefore the desired solution has the following series representation:

J & cos n
“,osq,sqm = 2' 'rwh- []n $o + z(% — do)¢” cp:l
n=1

Ugpy<r = ﬁ[]n ¢ +§:(¢— oM cos n(p}

'* The coefficients B, vanish for arbitrary values of § and e.
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Using the formula

[+2) n
Se °°S___"x=_%1n(1—-29¢osx+pz) (el <1,0<x <m)
ne=1 n

to sum the series, we arrive at the answer given on p. 138.

296. In this problem it is convenient to characterize the electromagnetic
field by the vector potential Ae'*, whose complex amplitude has components
A, = A, =0, A, = A(r, z). Suppose the current in the dipole is replaced by
a current distributed over the volume of an arbitrarily small cylinder

0<r<8 —S<z<=.
2 2

Then A(r, z) is determined by the differential equation

16( aA)+8A+k2A _y

ror\ or c
where

€ €
PR o~ for 0<r<3, —5<z<5,
0 otherwise.

The tangential component of the electric field must vanish on the surface of
the resonator, and hence
—o 2 ( 8A)
2=l or or

04| _ 04
We look for a solution of the problem in the form of a Fourier cosine series

2=0 aZ

0z

A(r,2) = - /T + = Z/i' cos m;z
where =
l
4, =f A cos T2 4z,
0 l

The usual argument implies

%%(r%) (zz k)A-
dr( )

where the last condition is equivalent to

J(r, %) cos ——E dag,

Anlr-:a =0,
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because of the differential equation for 4,. Using the method of variation
of constants, we find that

_ 4 1 a . et
= ,o(ana)LGn(r, pe dpfoj(p. %) cos l dz,

o, = A/ % — K,
G (l‘ P) — lIO(anP)[IO(ana)Ko(anr) - Ko(ana)lo(anr)]’ p<n
= Io(n)To(% @)K 0) — Ko(@@)o(2,0)], > 1.

Then, passing to the limit 3, ¢ — 0 and bearing in mind that lim Je = 0, we
arrive at the expression &0

¢ Io(“na)

which immediately implies the answer on p. 141.

[To(x @) Ko(a,r) — Ko(apa)lo(e,1)],

303. We want the solution of Laplace’s equation

o’T | 0°T
— 4+—==0 0<x<0<y<om
ot "oy ( y )
satisfying the boundary conditions
q
oT — T 0< y< ba
Thea =0 2=| =fO)={ &
X lz=0

0, b<y< oo
Application of the Fourier method leads to the particular solutions
T=T, = B,e sin\y, A>0,

which are bounded in the quadrant 0 < x < o0, 0 < y < oo and vanish for
y = 0. Integrating with respect to the parameter A, we obtain

T(x, y) = f: B,e7**sin Ay d),

where the coefficient B, is determined from the boundary condition

T =f(y)=f Bdsindydk, O0<y < oo
0x lz=o 0
Because of the theorem on expansion in a Fourier sine integral, we have
2 J’ w . 29 1 — cos Ab
By =—— sinAydy = —= ——,
A > of(y) ydy =— 32

which is the same as the expression for T(x, y) given on p. 150.
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313. To avoid the difficulties associated with the fact that the logarithmic
potential does not go to zero at infinity, we look for the components of the
electric field in the two media:

Ea;l& y1s Ezza Ey2
Setting

Ey=EQ +ED, E,=E” +EP, E,=E, E,=E>,

where E'® is the field due to the charged wire in an unbounded medium of
dielectric constant ¢, with components

E® — qx E® — g(y — a)
alx*+ (v — @)’ N R T )
we obtain the system of differential equations
OEY  QE( OE;” OE{

ox dy v oy ox
which, together with the boundary conditions

(ES + E o = Ellios &ilES” + Bl = €, )0,

Ef:l)’ E1(/1)lu—v+uo - 0’ Eg:z)! Ei(lz)lv—v—uo g 0’ ES:)’ Ef/')lc-o:!:ao - 0’
determine the functions E{, E¥ (i = 1, 2). A convenient way of solving (41)
is to use the method of integral transforms, by taking the sine transform of
E!" and the cosine transform of E{? (i = 1, 2).} Thus we multiply the first
of the equations (41) and the second of each pair of boundary conditions (42)

by cos Ax, and the second of the equations (41) and the first of each pair of
boundary conditions by sin Ax. Then, integrating from O to co, we find that

=0, @én

(42)

(i) {0
g -0, L g
y
SRR S
2¢, 2

1 (1 2 2
E®, ED|, >0, ED E®|, .0,
where

E® — J;w EVsinaxdx, EP= fow E cos Ax dx.
The solution of the system (43) is
E“) E® — Tg & — € e 2@,
2e; 6, + €,
E® = _E®— _T  ~Ma-v)
&+ &

14 Note that the cosine transform of EJ" and the sine transform of E!” vanish,
because of the symmetry of the problem.
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Using the inversion formulas
w_2 (g0 w_2["gw
ED ==| EPsinaxdy, EP==] EPcoshixd
TJ0 TJo
and making a few simple calculations, we arrive at the expressions for the

components of the electric field given in the answer on p. 154.

321. The electric field has only a z-component, whose complex amplitude
we denote by E(x, y). If we regard the current as distributed over an arbi-
trarily small rectangle a — 8 < x < a + 3, |y| < ¢, then the solution of the
problem reduces to integration of the inhomogeneous Helmholtz equation

47:1

(49)
where
J
— for a—9d<x<a+3, <e,
i(x, y) = { a8 W
0 otherwise,

with boundary conditions

E, 0—- :hb_O Elz_’m"*o.

To solve the problem, we first make a Fourier sine transform, carrying (44)
into the ordinary differential equation

E'— (0 — K)E = 4’””f J(E, ) sin AE dE (45)
C
for the quantity

E =fm E sin Ax dx.
0
The solution of (45) satisfying the boundary conditions
E |u= +6=0
can be obtained by variation of constants. Then, taking the limit as 8, e — 0,
we find after some simple calculations that
2mikJ  sinh VA% — k% (b — | W
VN — K coshy/AT— K*b

This immediately leads to the answer on p. 157, if we use the inversion
formula

E=—

nAa.

E=~2-f E sin Ax dA.
0

3
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324. We want the stresses o,, T,, and o, satisfying the system of equations

0
90y | Oty _ Otey + 90, =0, (equilibrium equations)
x

ox 0Oy ' 0 dy

d%, ) Oty | O,

(46)

0y*? oxdy  0x*

and the boundary conditions

0 (compatibility equation)

UVIV=0 = f(x), Tzvlv=0 = g(x).
Introducing Fourier transforms
F= f~i Fe** dx

of the unknown functions, we multiply each of the equations (46) by e***
and integrate with respect to x from —oo to oo, taking account of the
behavior of the stresses as x — 4 00.1® This gives the system of ordinary
differential equations

—iXe, +7,=0, —iM,,+5,=0, @
o) + 2izt,, — A%, = 0,

which must be solved with the boundary conditions
6’v|v=-o Zf: ?zvlv-=0 =g
and the conditions at infinity.
Gy Ty 0y —0 as y—> 0.
The solution of the system (47) satisfying all the conditions of the problem is
Tu=A+ Bry)e My,

5. = 1B = ) — 4 Bl
i A

5, = 1['—;—' A+ B+ y)jle“'“”,
1

where the constants 4 and B have the form
A=g  B=if— %‘ g

18 We assume that the stresses and their first derivatives approach zero at infinity. It
should be noted that the problem cannot be solved in this way for the Airy stress function,
since the latter cannot be expanded as a Fourier integral.
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The final form of the solution given on p. 158, involving various integrals,
is found by using the inversion formula

_1 f Fe= ™ d)
27 V-

to go back from the quantities %,, 5,, G, to the stresses 1,,, o,, o, themselves,

328. Replacing the concentrated force P by a load uniformly distributed
over the arbitrarily small rectangle

3 3 € >
—-<x<z, b—-<y<b+-,
2 2 2 Y + 2
we reduce the problem to integration of the inhomogeneous biharmonic
equation
o*u 0*u ' q(x, )
249 — = 48
ox* + ox* 0y* + oy* D (“8)

where
L for —§<x<§, b—5<y<b+f,
q(x, y) = (3¢ 2 2 2 2
0 otherwise,

subject to the boundary conditions

Taking the Fourier transform of (48), where
0= f: u cos Ax dx,
we obtain the following equation for #:1¢
a® — D" 4+ N = ;l)-f q(&, y) cos AE dE. (49)
[}

The general solution of (49) can be obtained by variation of constants, and
has the form

#(y) = (4 + Bry)e™ + (C + Ery)e

1
+
2D

vax(y. ) dnqu(i, m) cos Ag dE,
0 0
where

Ky, M) = My — m) cosh A(y — n) — sinh A(y — 7).

16 It is assumed that « and its first three derivatives with respect to x go to zero as
x — 0,
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At this stage, it is convenient to simplify the calculations by taking the
limit as 8, e — 0. The result is

ilo<y<p = (A + Bry)e ™+ (C + Edp)e,

ycy<w = (4 + BAy)e™ + (C + Ehy)e + 2 0 ).
The constants C and E are determined from the condition
ﬂl,,_.,, — 0,
which gives
P P
C= 14 2Ab)e™, E=— A,
8D)\’( + Ab)e 8DA3 ¢

The other two constants are found from the boundary conditions

a'v=o = ﬁ'lv=o =0,
which implies
A= -C, B=-2C—E

The value of the deflection u(x, y) is obtained by using the inversion formula.
To find the bending moment and the shear force

on the clamped edge, we differentiate the expression

—Ab
)<y = %Ts [(1 + Ab + X®by) sinh Ay — Ap(1 + Ab) cosh Ayl

obtaining
Pa| _phe™ o
e 2D 9y*l=o 2D
The values of M and N are then found by substituting the corresponding
values of M and N into the appropriate inversion formulas.

_ _(L4+2rb)Pe™

334. The problem reduces to integration of the heat conduction equation
19 ( ar) oT
c—\r—=)=7—, 0<r<o,
ror\ or ot

with the initial condition
T|1=0 = f(r)
Writing T = R(r)®(r) and separating variables, we obtain

lory +2R=0, @ +20=0.
r
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Integrating these equations, and taking account of the boundedness of T as
r— 0, we find that

T=T, = ce " Uy(JA ).
It follows from the boundedness of T as r — co that the parameter A can
only take positive values A = p2. This leads to the following set of particular
solutions depending continuously on p:
T=T, = cue"‘szo(p.r), 0< < oo.
The general solution is then constructed as an integral of the form

T(r,v) = [ c,e " Uur) du. (50)
The coefficients c, are determined from the initial condition, which gives
o= u ], S(Iounryr dr, (51)

if we take account of Hankel’s integral theorem. Substituting (51) into (50),
reversing the order of integration and then integrating with respect to u, we
find the form of the solution given in the answer on p. 162.

335. We want the solution of the equation

1_2(r3_T)=8_T’ a<r<ow (52)
ror\ or ot
satisfying the initial condition T}, = 0 and the boundary conditions!”
T'r:a = TO’ T'r—*co —0.

Writing

ex(r) = Jo(Aa) Yo(Ar) — Yo(Aa)Jo(Ar),
we carry out a “Weber transform” by multiplying (52) by r¢a(r) and inte-
grating from a to co. Taking account of the behavior of the various functions
as r — oo and the relations

, 2
CP;‘(G) =0, CPA(“) = T
na
we find that
Q — \T = g.& s (53)
dt T
where

T= f:) Troy(r) dr.

17 It is assumed that V' T and \/?(ar/ar) approach zero as r — o, and that the integral
© -
f Vr|T|dr
a

converges.
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The solution of (53) satisfying the condition T’,=o is

7— 2Ty _ o),
.

)\2
To determine the solution T(r, t) from its Weber transform, we use the
inversion formula
T(r, %) zf T a(r)\ d\
0

Ji(xa) + Y3(ra)
[cf. formula (15), p. 161].

351. As is well known (see T4, p. 343), in the case of axially symmetric
problems of elasticity theory, the stresses can be expressed in terms of a
solution u(r, z) of the biharmonic equation (it is assumed that there are no
body forces). To subtract out the singularity at the point of application of
the force, we write

U= Uy + U,
where

o= 8n(1-v)\/r+(z ay

is the stress function corresponding to a concentrated force P applied to an
infinite elastic body, and u, is a biharmonic function regular in the region
z > 0. Since the unknown stress o, is related to the function u by the formula

0 o%u
= — —_— A ey B
o, 2 [(2 v) Au % :|

to solve the problem we need only find the quantities Ay, and 0%,/0z%. The
first quantity is harmonic in the region z > 0 and can be written as an
integral

Auy = [ 7 eI d, (54)

while the second quantity is biharmonic in the region z > 0 and can be
written in the form

a Zh —f (B, + Cy2)e 22 Jo(Ar)A dA (55)

(note that the integrand is biharmonic). Comparing the result of differ-
entiating (54) twice with respect to z with the result of applying the operator

18( a) 0?
A—L19(.9) ., 9
ror rar -i_az2
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to (55), we find that C, = —3}A4,. To determine the remaining constants,
we have to use the boundary conditions

ozlz=0 = Trzlz=0 =0,

which can be written as conditions on the function u, ;18

a2 0%u 0 o%u
SENVWRES T
0z l:( V) Auy — 02°% 1|, 0z ( V) Ao — 0z% 1,0
2
[(1 — ) Au, — 2 “‘} [(1 V) Aug — 2 “0}
0z% 1|, 0z*

Performing the differentiations on the right, expanding the results in Hankel
integrals and substituting from (54) and (55), we obtain a system of linear
equations determining the constants 4, and B,. The formula given in the
answer on p. 168 is obtained after evaluating certain integrals of a familiar

type.

355. The problem reduces to integration of the one-dimensional heat
conduction equation

T _ar
ox* ot
with the initial condition
TIT=0 = 0
the boundary condition
oT
—k— | =gq(t
0x lz=0 q( )
and the condition at infinity
Tlm_.w — 0.

Introducing the Laplace transform
T =fom Te ™ dT,

we multiply the differential equation and boundary conditions by e=** and
integrate with respect to v from 0 to co. If we take account of the initial
condition, this gives

T"—pT'=0, —kT'|pco=¢ Tluw—
which implies

T—9 Ve Reyp>o.

k\/p

18 The second of these equations follows from the formula
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The problem is now solved by using the Fourier-Mellin inversion theorem

1 pr—3a 5 AP

— Je -,
2mik Jr 7 Jp

where T' is a straight line parallel to the imaginary axis lying to the right of

all the singular points of the integrand. In Case a, where ¢ = g, = const, we

have 1 - g
— ‘ﬂ) il fevr—\/pz _p_ . (56) T
k 2miJr p/p
. T

As the next step, we calculate the deriva- p=0+it
tive

_a_’I-‘:_ggLJ‘e'nr—\/;zd_p. R r

ox k 2miJr p £
Applying Cauchy’sintegral theorem to the o

contourshown in Figure 159, and then tak-
ing the limit as e — 0, R — oo, we obtain'®

oT qo[ 2J°°_ I dr]
—=—=1—-= T sin —
Ox k wdo \/rxr —

90 x
— a1 o(2)]
k [ 2\/1: FIGURE 159

where @(x) is the probability integral. It follows that

-t o))

and the final form of the solution given in the answer on p. 171 is obtained
from this formula by integrating by parts.

In Case b,
10
9 o+ Pt
— _qle _L e‘pr—‘/;z dp
k 2miJr Jp (PP + o)

The temperature of the surface of the body can be found by using the con-
volution theorem, which gives

go 1 f ®  pedp _ I
T|, o= ¢ as
oo = k 2miJr w? + p? \/p k\/-n: sin (v — s) \/s

and leads at once to the answer on p. 171.

!° Direct application of the method of contour integration to the integral (56) itself
is impossible, since the corresponding integral along the circle of radius e becomes
infinite as ¢ — 0.
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357. Using the Laplace transform, we write the solution in the form of

a contour integral
77—\/112
T=7{1 ”f—ﬁ———— }
2ni Jr p(h + \/ p)

where I' is a straight line parallel to and on the right of the imaginary axis,

and +/ p denotes the branch of the square root whose real part is positive.?
A simple way of calculating the integral

1 eﬂf—\/vz
" 2midr p(h + \/p)

_ —s(\/p+h) ds
Jp +h f

and then reverse the order of integration. Together with the result obtained
in the solution of Prob. 355, this gives

J :f‘”e_hs ds L em—\/;(zﬂ) d_p =fwe—hil:1 B (D(x +_s)i| "
0 2niJr p 0 2\/1

Integrating by parts, we find that

Al o)) ol 7]

which leads at once to the answer on p. 172.

is to make the substitution

371. The problem reduces to finding a solution of the equation

Li@él)zéz
ror\ or ot
satisfying the initial conditions

0, r<a,
TIT:O B {To r=a

and the boundary condition

oT laT)
_+_ —_-—
( o adr
Taking Laplace transforms and using the initial condition, we obtain the
equation

=0.

r=a,t>0

La(dn)
rdr\ dr

20 For this branch, \/; # —h, and hence p = 0 is the only singular point of the inte-
grand.
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and the condition

(a(pT— Ty + 1T') o,
a

which together imply
P aaTyly(\/p r)
Jpleayp I(\/p a) + I,(\/p a)]

The solution of the problem is given by the inversion formula

_aaT, I&\/p r)e*" dp

2ri Jr \/ploay/p I(/p @) + L(/P )]
The contour integral can be evaluated by residues, since the integrand is
single-valued. The singular points of the integrand consist of poles at the
points p = 0 and p = p, = —y?/a?, where the v, are consecutive positive
roots of the equation

T

Jiy) + ado(y) = 0.

Calculating the residues at these points, we immediately find the answer on
p. 1772t As in other problems with boundary conditions involving time
derivatives, the solution of this problem is greatly simplified by the use of
Laplace transforms.

375. In the first region 0 < r < 0, 0 <z < oo, the concentration
Ci(r, z, t) satisfies the equation
oC

1 a( aCI) 0°C; 10C,
~—|r== — ==, 57
ror\ or + 0z* D ot 7
the initial condition
Cllt=09

the boundary condition

ac, z{f(t), O<r<a,

0z l:=0 |0, a<r<o
[where f(¢) is a function to be determined later], and the conditions at
infinity

(58)

Cllr—vao - 0’ Cllz—-co —0.

In the second region (the tube), the concentration Cy(z, ) satisfies the one-
dimensional equation

ot ’

0z*

Sk

211t is easy to see that the integral along the large circle of radius R completing the
contour of integration goes to zero as R — oo,
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the initial condition

C2]¢=o = Gy,
and the boundary conditions
L —ra, %~ (60)
0z |z—0 0z lz=—1

Taking first the Laplace transform and then the Hankel transform of (57)
and (58), and using the initial condition and the condition CI[,_.,, — 0, we
obtain

dza (P z) =

— — | =4+ 2%)C, =0,

dz* D !
dz'l f ~
— | ==aJ,(Aa), Cilzv0 = 0,
dZ z=0 A l( ) 1|

where a single overbar denotes the Laplace transform and a double overbar
the Laplace transform followed by the Hankel transform. Integrating the

equation for C,, we obtain
= _ _JaJ,(6a) e~V (/D)

Cl:
)\N/)\Z-FE
D

Cllr=z=0 =J; El)\ d\ = \/—EL—/_B [e‘a\/I’/_D . 1]

after inverting the Hankel transform. Similarly, taking the Laplace transform
of (59) and (60), we find that

c _E‘_o+f'cosh\/p/—D(z+ l)
' JpID sinh \/p[D 1

In the present approximation, we can find the unknown quantity / by using
the relation

which implies

C—1Ir=z=0 = C2|z=0’
which implies
)

VpD(e“V?P _ | — coth \/p/D 1)

f=

The amount of substance M in the tube can now be calculated from the
formula

M f e, 1) dz = M, e d”
= z,t)az = + — f —
- 2mi Jr p./pID[e=*V?™® — 1 — coth /p[D ]
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where M, = C,lis the initial amount of substance inside the tube. Integrating
along the contour shown in Figure 159, we obtain the answer on p. 178.

386. We want the solution of the system

oL | Ou, ou, o
Lo ta=% o Tax=0 O<x<h
o, | duy duy | A,
Lo tax=0 Cqta=0 (<x<=

satisfying zero initial conditions and the boundary conditions

“1|¢=o = Ee ™! uzlz-vco -0,
u
“1l==t = u2|z=-l’ Il|:==l = Izl==l +-2 .
Ro =1
Eliminating the variable ¢ by taking Laplace transforms, we obtain
Lpf1+d—u—l= ,  Cpij d—13=0 O<x<,
dx dx
Lpiz-i—é‘-g:O, Cpﬁz—{—d—iz:O (I < x < ),
dx dx
_ E -
ul'a:-o = » _: <’ u2|z—~w -0,
- _ iy
ullzal = "zlz=n Illz:l = Izlznz + = .
Ro @=]

These equations can be solved for @, #,, I, and L. In particular, for @, we
obtain the expression
- Eo e—p(:—l)/v

‘= 1w cosh pT+ [1 + (Z/Ry)] sinh pT’

where v = 1/v/LC is the propagation velocity, T = /v is the time it takes a
wave to traverse the part of the line going from x =0to x =1/, and Z =
«/ L/C is the wave resistance. Then the Fourier-Mellin inversion formula
leads to the following representation of u, as a contour integral:
[t—(z/v)+T1
ug(x, t) = L ¢ - dp , x> 1
27ni Jr cosh pT+ [1 4+ (Z/R,)] sinh pT p + «

The most interesting form of the solution can be obtained by using the
expansion

] el e
cosh pT+ [1 + (Z/Ry)} sinh pT 2Ry + Z ,=)\2R, + Z
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and then integrating term by term. This gives

uy(x, ) = 2RoEq i( Z )"_l_ f Pli—(@/v)—2nT) dp .
e 2Ry + Z ;,=4\2Ry + Z/ 27i Jr p+a

According to the formula

ife’" dp _{0, T <0,

2niJr p+a e " >0,

all the terms of this series vanish for fixed x and ¢, starting from some value
of n. In particular, we have

u2|0<t<:/1} =0,

2ReEq_ —att-(@ion
2Ry + Z ’

2ROEo l:e—a[t—(a:/v)] + __Z__ e—a[t—(a;/v)—ﬂl‘]:l’
2R, + Z 2R, + Z

u2,z/*v<t< 2T+ (zfv) —

u2l2T+(a:/u)< t<aT+(zx/v) —

and so on. The general result given in the answer on p. 183 can easily be
obtained by induction, with the help of the formula for summing a finite
geometric series. The jumps in the voltage can be interpreted as the arrival
at the point x of successive refracted waves.

402. The problem involves integration of the equation

2,
A2u+%-“§=o (r=Dpt, 0< r< o0),

T

subject to the conditions
pP/D
Ou ( 0 ) — 0<t<e
—_— = 0’ — A = — ’ ’
or lr=o " or (Bu) r=0 /@ 2rfpe (e—0)
0, T>¢€,

at the point of application of the force, and to the condition at infinity
ul,_, o —0.
Going over to the Laplace transform i, we find that i satisfies the differential

equation
A% + p¥i =0, (61)
the boundary conditions
di ( d \- )
—| =0 —(A
dr lr=o ’ dr( )

:L: ﬁ'r*w—’o

r=0 2nD
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and the condition at infinity
|y — 0.
The solution of (61) vanishing at infinity is
7= AKy(r\p €™*) + BK(r/p e,

where v/, 1—7 denotes the principal branch of the square root (jargp| < ).
Taking account of the behavior of the Macdonald function near the point
r = 0 and using the boundary conditions, we find that

P
B=—-4=——.
4rip\/Dp
Application of the convolution theorem gives

P TF (1) dr,

4ri,/Dp Jo

R = L [ U7 ) — Ko7 e,
2ni Jr

u(r,t) =

where

Transforming this expression by integrating along the contour shown in
Figure 159, we eventually obtain?®?

F&) = 2 [T IKr5 &7 — Ktrif5 e

2ri Jo

— Ko(rpe ™% + Ko(r\/p €] dp
= % L e P [Io(r\/p ™) — Ig(r\/p €%} dp.

Using the formula
—b%/40*

® 24 e

e 2% J(bx)x dx = s

fo o(bx) >
to evaluate the integral, we find that

2

F(t) = —'—lsinr—,

it 4v

which immediately leads to the answer on p. 188, after integrating with respect
to .

22 Note that the function Ky(z) is analytic in the z-plane cut along the line (— o0, 0),
and use the formula
Ky(e'™y) = Ko(y) — inly(p).
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406. Taking first tae Laplace transform of the original differential
equation and boundary conditions, and then the Fourier transform with
respect to the variable y, we find that

where
u= J:} eMdy fow ue?dt, F= f_w f(ne™*ndn.
1t follows that

i =~ FeV @ +or e

l
p
where the radical denotes the branch of the square.root which has positive
real part. Using the inversion formula

P dp—l- ue ™ d)
2ni Jr 21t V-0

and reversing the order of integration, after substituting for # and F, we
obtain

u= L f wf (n) dn L f e wa A=V o s iae gy
21 J-w 2riJr  pJ-o

The inner integral can be evaluated by using the formula?

® —aViS - 2 np2
J; e N+2" 005 BA dr = \/az s Kl(\/o( + pzz) (62)

involving Macdonald’s function K;(x). Then the solution can be represented
as the following double integral:

5]“’ f(n) dy
—oVx? 4 (y — 9)?

1 2 2 dp
~— 4 4 ot 4P
x2niJ;~/;E+bPK1(J;2+bP\/x2+(y—y))2)e . (63)

u=
3

# To deduce (62), substitute . =1, v = —} into formula (5.15.6) on p. 134 of L9,

recalling that
2 =
J_12(2) =A/— cosz,  Ky;u(2) =~/_ e+,
k174 22
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We now use Cauchy’s theorem to evaluate the contour integral

1 -
J(t, ) = — » dp,
(6w =—— ero(l-"\/P\/P + c)e” dp

bypassing the branch points p = —c and p = 0 both on the upper and lower
branches of the cut. The result is

e—ct2 Vit — u?

cosh , t>u,
J(t, ) = (V2 — 2 (64)
0, t <y,
where in the course of the calculations, we use the formula
/2 . 2 _ L2
f Jo(z, sin x) cosh (z, cos x) sin x dx = M s Zy > 2y
0 N

[easily deduced from formula (4.455) of R2, p. 240 by setting p =0,
q = —4%. It follows from (63) and (64) that

Vord_g?

x f Vo= flpdn 9@

= W 0 [y,
VI B (y — ) o

ult>a;/v = - -

u|¢<rc/1) =0,

u=1\/x”+(y~n)”, ¢ =v*h.
v

The answer on p. 189 is easily obtained by evaluating the inner integral.

where

407. This problem can easily be solved by using the Mellin transform.
Suppose the function T being sought is such that
T = 0(1), r%Z = 0(1) as r—0,
r

(65)

T= 0@, raa—T =0(r—") as r— oo,

where s is some positive number.? Multiplying Laplace’s equation AT = 0
by r#+1, where p is a complex number such that 0 < Re p < s, and integrating
the result from 0 to co, we obtain
(r"+l Z—T - pr”T)‘ + p’T + d—T- =0, (66)
r

2 The existence of a solution with these properties can be anticipated from physical
considerations. After the solution has been obtained, we can easily verify that it actually
satisfies all the conditions of the problem.
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where
T= [ Trar 67)

is the Mellin transform of the function T. It follows from (65) that the term

(T por)

r

@

0

vanishes if 0 < Re p < 5,2 thereby reducing (66) to
d*T 2
— + T = 0’
do? P

together with the boundary conditions

P
le=0 =0, T|¢=a = 75%

(implied by those obeyed by the function T). Thus we see at once that

p
71,2 S
p sin pa

which, in particular, implies that s = 7/a.
The temperature distribution T is now determined by using the inversion

formula
T— ﬁ J‘o-Hun sin p(P(g)néE ’
27l Jo—io sin pa\r/ p
where 0 < ¢ < m/a. The line integral can be evaluated by using residue
theory, after completing the contour of integration by the arc of a circle of
sufficiently large radius, lying to the left of the line Re p = o if r < @ and to
the right of this line if » > a. After some simple calculations, we obtain

’

1 & (—1)*/ r\rri=
2- Z(—)(I) sin =% o0<r<a,
T « Mp=1 N a o
T, o 1 o ___1 n+1 nre/o
0 _z( ) (E) sinﬂ"_‘P, 4a<r< .
T p=1 n r o«
Using the formula
o2 _1 n+1 .
Z( ) Pn sin nx = arc tan—ﬂx_’ 92 < 1,
w1 1+ pcosx

to sum the series, we arrive at the single analytical expression for the function
T(r, @) given in the answer on p. 190.

%5 Note that it also follows from (65) that the integral is analytic in the strip 0 <
Re p < s, being uniformly convergent in every closed subset of the strip.
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415. If we replace the concentrated load by a uniformly distributed load
with density
P 3 3. € €
— for rg—=-<r<ry+-, —o<e< @+,
a(r, @) = | ro B¢ °7 3 0Ty BTSSR,
0 otherwise,

where & and ¢ are arbitrarily small positive numbers, then the problem
reduces to solving the inhomogeneous biharmonic equation

A2u=‘_1£"l’)_‘9.) O<r<ow, 0<o<a), (68)

subject to the boundary conditions

du

ou
=2 —y =2 =o
u,’o—o a(P =0 u"P—“ a @ lo=a

Multiplying (68) by r?+2 (where p is a suitably chosen complex number), and
integrating from 0 to co, we find that 2

”“aa Au — (p+ Dr*tAu + (p + 1 —r —(p— )(p + D> } )

+ (G + D+ [0 — D+ + DS g_cpz
= % Lmq(r, or*tdr, (69)

where

= fl:our”_2 dr. (70)
Suppose the function u is such that the quantities r—u, Ou/dr, r Au and
r*(0Au/or) are all O(r*1) as r — 0 and all O(r—52) as r — oo, where s; > 0,

s, > 0. Then the integrated term |{. . .}|s° in (69) vanishes if —s; < Rep <s,,
thereby reducing (69) to the ordinary differential equation®

d4- 2 2d2- 2 2=
+[(p—l)+(P+l)] ; F(—D(p+ D

1 Jm »+2
== r, @)r* i dr.
D Jo q(r, ¢)

26 In problems of elasticity theory involving integration of the biharmonic equation,
it is best to use a modification of the Mellin transform, in which the exponent p is replaced
byp — 1.

*7 By the same token, the integral (70) is analytic in the strip —s, < Rep < 53, being
uniformly convergent in every closed subset of the strip.
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Using the method of variation of constants, we find that

= Acos(p— 1)¢ + Bsin(p — 1)¢ + Ccos(p + )¢ + Esin(p 4 1)¢
¢ 1 — — 1 —_ ©

_l_f [5"1 (P 1)((P l) _ sin (P + 1)(‘10 l)] dtJ; q(P» t)PD-H dp,

4Dp Jo p—1 p+1
where the boundary conditions
dii di
ﬁ o — — = a —y — = 0
Iw 0 dcp =0 'w a dcp o=t

serve to determine the coefficients 4, B, C and E. Passing to the limit §,
e — 0 and solving for these coeflicients, we find that # is a meromorphic
function with poles at the points where the expression p?sin? « — sin? pa
vanishes, and moreover that the number s, = s, is the smallest root of the
equation

pEsin? a — sin? pa = 0.

‘The bending moment M and the shear stress N along the edge ¢ = 0 can be
determined from the relations

2 - —_— 3 -~
d’a ,  Nryog=—D da

Mr,_o=—D .
Icp 0 d(p2 =0 dCP3 ©=0

Using the inversion formula for the Mellin transform, and choosing the
imaginary axis as the path of integration, we find, after a certain amount of
calculation, that M and N are the same as in the answer on p. 193.

418. Following the Fourier method, we look for particular solutions of
Laplace’s equation of the form

T = R(r)D(¢) sin % .
Separating variables and integrating the resulting equations, we find that
T=[Al /= (n7r[A) 4 BK /= (nnr[N)][C cosh /X @ + Dsinh VA ¢lsin 27;—7' ,

where I,(x) and K,(x) are cylinder functions of imaginary argument. Because
of the behavior of /,(x) and K,(x) as r — 0 and r — oo, the boundedness of
the solutions T requires that 4 = 0 and A > 0. Thus the particular solutions
needed to solve the boundary value problem, which has a continuous spec-
trum (0, o), are of the form

T= T, = (M, coshte + N, sinh w)K,.,("T’") sin "T"z , 0<t< oo
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The general solution.is constructed by-integrating with respect to the parameter
7. Noting that Ty, = 0, we have

T = sin WI N, sinh 7o K,.,(T‘—’) dr.
1 Jo l
The coefficient N, is determined from the boundary condition
Tloe = f(r)sin =%,
which gives
£(r) =f N, sinh K("—’I") dv, 0<r< . 1)
0
For a certain class of functions f(r), we can invert (71), obtaining?®

N_sinh ta = Zz'T sinh .mf () K (nmr[l) ar
T 0 r

The conditions for using this formula are usually satisfied, except that f(r)
may not go to zero sufficiently rapidly as r — 0. If f(0) # 0, then in most
cases encountered in practice we can use the formula®

N, sinh 1 = -2-f(0) + %T sinh n‘rfw[f(r) — f(0)e ™" M dr (72)
T 3 0 r

to determine N, (see L9, pp. 150-153). Assuming that the conditions imposed
on f(r) are sufficient to guarantee the applicability of (72), we arrive at the
result given in the answer on p. 196.

422. We subtract out the source potential, by writing
u=9_y,

where R is the distance from the charge ¢ to an arbitrary point of space. Then
the problem reduces to integration of Laplace’s equation

18( 30) 10 o™

LA v, %% 9
ror\ or r23<p2+322
O<r<o, 0<¢p<22r,—w < z< ©),

with boundary conditions

vlt&=0 -

x|

0; v | o=2r
o=

9
R

28 This follows from formula (24), p. 195.
3 Implied by formulas (24) and (26), p. 195.
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Expanding the function v in a Fourier cosine integral, i.e., setting
vzgf ¥ cos oz do,
T JO
we find that 7 satisfies the equation
1 a( 315) 10% 5.
19(,00) L LI0_ o5 (73)
ror\ or r? 0¢?
and the boundary conditions

B
Ol,g= |+ = = cos oz dz,
lo=o (R o0 Jo Rl
Lo}
13] o = 9 cos 6z dz,
=tr o R p=21T

which, after evaluating the integrals take the form

ﬁ|=a=0 = 5Iw=2n = ‘IKo(C"\/r2 + "g — 2rry €os ),
in terms of Macdonald’s function K,(x). Using the Fourier method to integrate
(73), we represent 5 as an integral

b= f M, . cosh ('n: K..(or) d~
cosh tt

(see the solution to Prob. 418), where the coefficient M, . is determined by
the condition

Ko(cx\/ r® + r2 — 2rry cos @p) :fomMU,,KiT(cr) dr, 0<r<o. (74)

To avoid the difficulties associated with direct application of the inversion
theorem, we write the left-hand side of (74) in the form

Ko(ov/r® + 12 — 2rry cos @)

= [Ko(cr\/r2 + rg — 2rrgy cos @) — Ko(arg)]
+ Ko(org)[l — 7] + Ko(arg)e™

and use the formula
—or 2 f K..(or) dr.
TJo

Then the inversion formula implies

— g

M, =2 Ky(ory + 2 Kyoryye sinh mf ' K,(or) dr
1 T 0

+ % T sinh m'f [K‘,(cr\/rz + r2 — 2rrycos 9,) — Ky(oro)1Ki-(or) dr
b3 0 r

(75)
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The integrals appearing in (75) can be calculated by using the formulas

L "KW = Byoos ) — KK

ke ) )]
T sinh ntt 2 sinh }nt.
[T0 - ek 0 - 1 tanhidne
0 x 2t cosh int
which lead to the result

M, _=

a,T

cosh (m — o)t K (ory).

410

Thus the solution of the problem takes the form

4 © © h _
b= —‘if cos o "“f O DT cosh (= — gor Knlor)Keor) d.

e Jo 0 cosh nt
(76)

Substituting the known integral representation

K. (x)K.(y) =J:°K0(\/ x® 4+ y® + 2xy cosh s) cos s ds

into (76), reversing the order of integration and evaluating inner integrals,*
we find that

b 1 f ""[ 1 n 1 ]
21 \/2rry Ja Leosh s — cos 4(¢ + @) cosh 3s + cos $(¢ — o)
sinh }sds (1
\/cosh s — cosh A ’
where
2 2 2
cosh A = Z+rtr .
2rr,

To obtain the final form of the solution, given in the answer on p. 198, we
evaluate the integral in (77) by making the substitution

cosh S_ cosh A cosh ¢.
2 2

30 The formulas

j ® cos Ts ds 1 ® sin Ts ds
o Vcosh A +coshs SinhmT ), +/coshs — cosh A
(<] .
cosh ¢t . 1 sinh }s
ntsdtT=- —  ————, 0<¢ <2
J; sinh 2nt sin T AT 4 cosh s + cos 3¢ v ™

are used in the course of the calculation.
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434. Introducing elliptic coordinates « and {8, where
x = ¢ cosh a cos f3, y = csinh «sin
and c is the eccentricity of the given ellipse, we assume that the charge ¢ is
uniformly distributed over the curvilinear rectangle

O<a<y, a*—§<lal<ﬁ*+§.

The problem then reduces to integration of Poisson’s equation

o*u  Ju

Tu L U 4ol 78

da®  0p* P ®)
where

q € €
—— for 0< SprF—=-< <B*+-,
o= p(oB) ={2n%e ®<8%P 2 BT <8 +2

0 otherwise
is the charge density inside the elliptic cylinder, and
h = cv/cosh? « — cos? B

is the metric coefficient. Since u must be even in the variable 8, we look for a
solution of the form

L2
u=-1dy+ - D i,cosnp,
T

N

q =

1

n
where

i, = ["u cos np dB.

Multiplying (78) by cosnf and integrating from 0 to w, we obtain the
equation

iy — n*i, = —41rfo"ph2 cos np dp,

whose solution is easily found by variation of constants:
4, = A, cosh na + B, sinh na — &Ef cos nf dBJ’ ph® sinh n(a — &) d&.
nJo 0o

The condition that the components of the electric field be bounded at the
foci of the ellipse implies B, = 0. The value of the second constant A4, is
determined from the boundary condition

ﬁn|a=an =0,

where «, is the value of the coordinate « on the surface of the. cylinder.
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Taking the limit as 3, e — 0, we find that

4 Sinh n(ay — )

2
a,,:iqcosnﬂ n=012,...,
n

cosh not,
which immediately implies the answer on p. 205.

437. Since the regular solutions of the two-dimensional Laplace equation
are of the form

u = u, = A, cosh na cos np 4+ B,, sinh n« sin nf3, n=012,...

inside the ellipse « = &, and of the form

u=u,=e¢e¢"YC,cosnf + D,sin nf), n=20,12,...
outside the ellipse, we look for a magnetic potential of the form

u = Hy(x cosy + ysiny) + Ze"‘“(C,, cos n + D, sin nB)
n=1
in the air, and

Q0
u® = (A, cosh na cos n + B, sinh na sin np)
n=1
in the magnetic medium (arbitrary additive constants are omitted). The
values of the coefficients 4, ..., D, are determined from the condition
that the tangential component of the magnetic field and the normal com-

ponent of the magnetic induction be continuous on the boundary surface,
ie.,

ou® ou® ou® ou®
8[3 a=ao— B a=ao, 6a a=ao_ " aa a=ao.
This gives
Cy = (1 — WHge e* cosh g sinh <.xo cos y
cosh &g + W sinh «q
% cosh a. si .
D= (1 — pL)Hoce ‘cos g sinh o sin
sinh oy 4 |2 cosh &,
__ Hyce®™cosy - Hgce* sin y
' cosh o + wsinh og ' sinh oo + & cosh oy

where all the other coefficients vanish. The final expressions for ™ and
u® given on p. 206 are obtained by using the relations
a

. b
coshoyg = —, sinhog = ~
c c

31 The other combinations of products of hyperbolic and trigonometric functions lead
to infinite values of grad « at the foci of the ellipse.
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443. To make the problem homogeneous, we write the torsion function

as a sum
= —y2 4.
Then v is a solution of Laplace’s equation regular inside the cut ellipse
(i.e., in the region || < ap, 0 < f < =) and satisfying the boundary con-
ditions
V]amo = Vplar =0,  ¥|qcq, = (¢ sinh &, sin B)?.

Applying the Fourier method and using the evenness of v in the variable «,
we construct a solutien of the form

cosh na .
v= zA sin nf3.
a1 cosh na,

The constants 4, are determined from the boundary condition for « = a,,
which gives
8¢c® sinh® o
A, ={ = n(d—n®’
0 n=24,6,...

Thus the torsion function is given by the series

n=1735,..

cosh(2n + 1)a  sin (2n + 1)B
= — + 79
v Eo cosh2n + Do On £ 31 — 48y’
while the torsional rigidity can be calculated from the formula
C = 46[ [ uh® do d, (80)

where
h = cy/cosh® a — cos? g

is the metric coefficient. Substituting (79) into (80) and evaluating the double
integral, we arrive at the expression given in the answer on p. 209.

449. Choosing a system of parabolic coordinates «, § such that the
surface of the cylinder has equation § = @,, and regarding the charge ¢ as
uniformly distributed over the small area bounded by the curves |a| = §,
B = ¢, we reduce the problem to integration of Poisson’s equation

0’u 0% 2
——+a—Bz——4nph (—oo<a< 0, 0<B < Bo)
where
q
o= (2K 5 for |a| <3, B <e,

0 otherwise,
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and

h=co? + p2
is the metric coefficient. The problem is solved by taking the Fourier cosine
transform. Writing

i

(e}
=f° u cos Aa da,

we multiply Poisson’s equation by cos A« and integrate from 0 to co. This
gives the equation

@' — Nl = —4n f:o eh? cos Aa da,
whose solution is easily found by variation of constants:
© 8
# = Acosh AR + Bsinh A — 4—;\‘ f cos A dozf ph?sinh A(B — %) dn.
0 0

The requirement that grad u be bounded at the focus of the parabola implies
B = 0. The value of the constant A is determined from the boundary
condition

tilp-p, = 0,
which, in the limit 8, ¢ — 0, gives

A= 2—’;‘1 tanh AB,.

The corresponding value of # is

2req sinh A(B, — B)
A cosh AB,

and the final answer (see p. 211) is obtained by using the inversion formula

u= R

2 [}
u=—f % cos A dA.
T Jo

457. If we introduce bipolar coordinates «, 8 as shown in Figure 122,
p. 215, and represent the torsion function u as a sum
u=—y*+v,
the problem reduces to determining the function v which is harmonic in the
domain ay < a < 0, 0 < B < 2w and satisfies the conditions
c*sin® B
(cosh ag + cos B)?’

2
v|B=0 = v|B=Zx =0, v,m=au =Y |m=ao =
— 0.

Voo

The solution is constructed as a series

N —n(a—%0)/2 o3 np
v = ZC,, e sin —2- ,

n=1
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whose coefficients, according to the theory of Fourier series, are given by

C, = c? J‘”“ sin® B sin $np
[]

T x (cosh &g + cos B)*

To calculate the torsional rigidity, we use the relation

2rc 2
C=G[—2f y*ds +J (yzgg—v?L) dB:l,
s 0 Ox Oa / la=xo

implied by the formula given in the hint to the problem (see p. 215) after
setting ¢ = —y2.

471. Setting

q
u==+4uy,
R 1

where R is the distance from the source to an arbitrary point of space, we
reduce the problem to integration of Laplace’s equation

Au, = 0,
with the boundary condition
. d
“1|a=o =-1] -_ ___2L_7 , sinh oy = —
R la=0 cv/sinh® &, + sin? B a

and the condition at infinity
ullu-*eo - 0

In keeping with the discussion on p. 222, we look for a secondary potential
in the form of a series

Uy = > 4,0,(i sinh a)P,(cos B),

where the coefficients 4,, are determined from the boundary condition.
Using the theorem on expansion of an arbitrary function in a series of
Legendre polynomials, we find that

__2n+1¢_1_J’1 P,(x) dx
" 20,(0) ¢ J-1{/cosh® ¢ — x?

for even n, while 4,, = 0 for odd n. To evaluate (81) for even n, we use the
integral

81

b Py.(x) dx

Jp= =,
" —1\/b2—x2

b>1,
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which can be evaluated by expanding (b — x?)~/2 in a power series and
then integrating term by term. Using well-known formulas, we find that

1 o] 1
J _l Pzn(x) dx — _1_ P(m + %) 1_ xz"'Pz,,(x) dx

"bJa VT (b bateTAI(m + 1) b
_ 2%l i L'(m + HI'Cm + DI'm +n 4+ 1) 1
b . TR(m + DI(m — n + HTQ2m + 2n + 2) b*™

I(n + 3) i (n + Hin + $)e ( 1 )"

T R bTn+ 9,5 ki@n+ 9, b
where
PO\ + k)
Ny — e
(Y8 oy
The result can be expressed in terms of the hypergeometric function
< (o
Floo Bi 73 2) = o P ')"(B)" 2,
. k=0 k! ()
ie.,

_ I'(n + %)
w2 + )

Using the familiar formula

R, 843 2) = (1 — 7F (v — B vi =),

F(n+.%,n+é;2n+%;;1;)-

1
we find that
1 T%n+3) 1 ( 1 )
J,=— F{n ,n+1;2n+ 3%; — ,
J7 T(2n + 3) sinh®* e tht nTE sinh®

or
Jn = 2'P21|(0) Q2n(i sinh O‘o),

because of the definition of the Legendre function of the second kind. Thus
the required values of the coefficients A4, are

Azp = 2 (4n + 1)Qu(i sinh o),
TIC
which leads to the potential distribution
u=2 1+ 295 (4n 4 1)0,,(i sinh ap)Qy(i sinh «)Py(cos B),
R mec,5

if we note that
Py(0) _ 2i
0:,(0) =
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The distribution of charge on the surface of the disk is now found by
differentiation, according to the formula

a=0

L)
4r\c/sinh? o + cos® 8 da

481. The problem reduces to solving the system of equations

Ayt = —4wp 0 < o < ap), Aut® =0 (otg < & < 00)
for the gravitational potentials »‘¥ and u‘®, with boundary conditions
(o] @
u(l),a—a = u(z)la—a ’ au = au .
e e aa a=0g aa a=ag
Setting
utt) = Uy + U, u? = Uy,
where
Uy = —mprt = —mpc? sinh?  sin? f3,

and noting that u, is harmonic inside the spheroid (« < o), while u, is
-harmonic outside the spheroid (« > «,), we have

U, = iA,,P,,(cosh «)P,(cos B), Uy = EBnQn(cosh «)P,(cos B).

n=0 n=0

Using the boundary conditions, we obtain the formulas

—2rpc? sinh® ay[1 — Py(cos B)] + iAnPn(cosh o) P,(cos B)

n=0
= Z B, 0Q,(cosh ay)P,(cos B),
n=0
—4mnpc? cosh ag[1 — Py(cos B)] + i A, P,(cosh ay)P,(cos )
n=0

= i B, 0Q,(coshag)P,(cos B)
determining the coefficients,®* which imply that "
A,=B,=0, n=134,5,...

Thus A4y, By, 4,, B, satisfy the system of equations

AgPy(cosh ag) — ByQy(cosh ) = &mpc? sinh® ay,

AyPy(cosh ag) — ByQi(cosh ag) = #mpc? cosh g,

AyPy(cosh oy) — B,Q,(cosh ag) = —§mpc? sinh® g,

AyPj(cosh ag) — B,Qji(cosh ay) = —4mpc? cosh ay,

32 Note that
sin? 8 = §[1 — P,(cos B)].
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whose solution is33

A, = #mpc? sinh? oco(l + 2 cosh a, In coth %)

Ay = #mpc? sinh® ao(l ~— cosh «, In coth oﬂ),

By = #mpc? cosh ay sinh®g, B, = —&mpc? cosh a, sinh® a.

Substituting for B, and B, in the formula for u,, we find that the gravitational
potential outside the spheroid is

2
U, = mp Q{[Z(sinz B — sinh®«) + 3 sinh® « sin® B] In coth%
c
+ cosh a(3 cos® B — 1);.
To obtain an asymptotic representation of the gravitational potential for

small eccentricity ¢, we introduce spherical coordinates R and 6, and use the
formulas

z=§(e“+e“")cos{3=RcosO, r=§(e°‘—~e"°‘)sinﬁ=Rsin0.

Solving for « and f, we find that

IR{A/ 2¢c c? A/ 2 cz}
cosha ==—{,/1 4+ =cos 0 + — 1—-—= 0+ =i,
=Wt RV RV R

IRJ 2c ct A/ 2c c’)
cosB==-—{/1+=cosO+— —. /1 —=cos8 4+ =}
sP ZC{ +R +Rz R +R2
It follows that as ¢ — 0,

R C2 . c2
cosa = 11+ 555 500] + 0( ).

c2
cos 3 = cos O + O(P)

33 Here we use the expression

Pa(2)0(2) — Qu(2)Po(2) =

1 -2z
for the Wronskian of the Legendre functions, as well as the formulas

Po(2) =1,  Py(2) = 332 — 1),

11322 —1_ z+41
Qz(z)*E[Tlnz_l —32:].

1 z+41
Qi(z) =3I —,
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Using these formulas and the exact solution found previously, we obtain
1, c c*
Uy = M[E + S—Ré Py(cos 0) + O(P)]’

where M is the mass of the spheroid (cf. the answer on p. 228).

483. If we write

U= Uy + uy,

where u, = g/R is the source potential (R is the distance from the charge to
an arbitrary point of space), and introduce spheroidal coordinates «, B, such
that the hyperbola has the equation B = @,, then the problem reduces to
finding the function #; which is harmonic in the region 0 < § < 8, and
satisfies the boundary condition

“1|B=eo =-1 1

R L=a.,= N c(cosh « — cos By)

In prolate spheroidal coordinates, Laplace’s equation takes the form

- 1 2(sinh aal!) + ——_1 i(sin %) =0
sinh « da O sin B 0p op
if we assume that u, is independent of ¢. Setting

u = A(0)B(®),
we obtain the equations

1

sinh o

(sinha-AY + A =0, ——(sinB-B’Y — AB =0
sin 3
for the separate factors. Therefore

u = [MP(cosh«) + NQ,(cosh «)][CP,(cos B) + DQ,(cos B)], (82)

where P,(z) and Q,(z) are Legendre functions of the first and second kind,
and v is an auxiliary parameter related to A by the formula

A= —v(v+ 1.

Taking account of the behavior of the Legendre functions near the points
z=1 and z = oo, we see that in order for the solutions (82) to represent
bounded real functions in the region 0 < « < 0,0 < f < B, the parameter
v must be chosen equal to —% + it (v > 0), and the constants N and D
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must be set equal to zero.3 Thus we arrive at the particular solutions
uy = uy . = C.P_ig, (cosh @)P_yg, ;.(cos ), 7> 0.
To construct the general solution, we integrate over the parameter <, obtaining
Uy =J‘°=°CTP _vsrid(COSh a)P_y4. ;-(cos B) dr,
where the coefficients C; must satisfy the boundary condition

q
¢(cosh o« — cos f3¢)

=f C.P_4, ;.(cos Bo)P_14,;.(cosh a) dT, o> 0.
0

“1|p=po =

Using the inversion formula implied by the Mehler-Fock theorem, we find

that
C.e— tanh ©tt J. sinh P_y;, . (cosh «) da
cP_yz, ;.(cos Bg) Jo cosha — cos f3,

__49_° tanh 7t fw P_ygi(8) dt
¢ P_ygyi(cos Bo) J1 E—cosBy

Evaluating the integral, we arrive at the formula for the electrostatic
potential given in the answer on p. 229.3

3 In particular, we use the formula

T
Py(cosh a) = —(—v——t—l—)—e"““’“ tannvF(v + 1, 4;v + 3;e72%)

VeI +2)
TG+ v)

—————— " F(—V, §; } — v;e7*%),
V(1 +v)

which shows that a bounded solution in the interval (0, ) exists only if —1 < Re v <0,
The extra requirement that «; be real compels us to set v = —} + iT.
3 To prove the formula

® Poigin(®) n

J= -
1 & —cosBy cosh T

P_14,(—cos Bo)

(see L7), use the integral representation

2 (¢ cos Ts ds
P_14 ,ir(cosh o) = —f v
™ Jo V2 cosh & — 2 cosh s

and then reverse the order of integration with respect to « and 5. After evaluating the inner
integral, this gives
J=2(" cos Ts ds _
o V2coshs —2cosp, coshnt

P_14,ix(—cos Bo),

where we have used another integral representation of P_14,+(x).
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494. Bearing in mind that the potential  can be represented in the form
u = Eyz + u,, where u, is harmonic outside the torus and goes to zero at
infinity, we look for a solution of the form

u = Eyz + /2 cosha — 2 cos A,
0 v B,gl P,_i4(cosh o)

The coefficients 4, are found from the boundary condition and coincide with
the coefficients of the function
—2E,c sin B(2 cosh g — 2 cos B)~%2

when expanded in a'Fourier sine series in the interval (0, 7). Thus we find
that

P,_yi(cosh ) sin

4Ec (T sin P sin nfB df
Ay=—— 7 -
7 Jo (2 coshag — 2 cos )Y
Integrating by parts and using the formula given in the hint to Prob. 493, we
arrive at the answer given on p. 237.

498. Setting
or 2 2 2
T=—=—+u, r=x"++y5
4k Y

we reduce the problem to finding the function u. This function is harmonic
outside the torus (0 < a < ;) and goes to zero at infinity (i.e., as o« — 0,
B — 0). We look for a solution of the form

& h
u = ./2cosha — 2cos ZA,‘M—“)—COS np,
am0  Qn_ys(cosh ap)
where the coefficients A4, are determined from the boundary condition

Q

u|¢=¢o = Z—k- r2l°!=ao‘

It follows from the theory of Fourier series that
_ Qc*sinh® aoJ"‘ dp
N kr o (2 cosh oy — 2 cos B)%2’
2Qc? sinh® aof“ cos np df

kr o (2 cosh g — 2 cos B)**’
Evaluating these integrals, we eventually arrive at the answer on p. 238.

A, =

n=12 ...

502. If we subtract out the singularity at the point r = z = 0 by setting
q
U= ———+ uy,
Vit + 2
the potential 4, of the secondary field is harmonic in the region 0 < « < o,
Bo < B < 2w 4 B, outside the conductor, and vanishes as « — 0, f — 27,
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The function u, can be represented in the form of an integral

cosh (m 4 By — B)
cosh t

U = — % V2 cosha — 2 cos Bf M, P_y, (cosh &) dr.
1)

It follows from the boundary condition

la-po = tp-aripy = 0
that M. coincides with the coefficients of the expansion of the function

(2 cosh & + 2 cos By)~12

in a Mehler-Fock integral with respect to the functions P_,,; (cosh ),
ie.,

(2 cosh « + 2 cos By) ™2 =fowM,P_% +iz(cosh o) dr, o> 0.

In the present case, we cannot determine M, directly by using the inversion
formula implied by the Mehler-Fock theorem, since the function being
expanded does not belong to the class for which the theorem holds (see L9,
p. 228). However, it can be shown without recourse to the Mehler-Fock
theorem (ibid., p. 229) that

(2 cosh a + 2 cos By)* = f “’“‘% P_y;, .(cosh ) dr,
o coshmr
and hence
__cosh Byt
' coshmr

Therefore the solution of the problem is

U = —‘l\/Zcosha—ZcosB
¢

o f ® cosh Byt cosh (t + By — B)T

cosh® T

P_,;,(cosha) dt.

The charge density on the inner and outer surfaces of the spherical bowl are

given by
cosh & — cos 3, du
4me op

Performing the differentiation with respect to § and evaluating the resulting
integrals by replacing the Legendre function by its integral representation

P_yguin(cosh @) = 2 cosh s f costydy
’ T o /2cosh ¢ + 2 cosha

we eventually arrive at the closed-form expressions for o, and o; given in
the answer on p. 240.

cosh a — cos B, du

0=B0 ? 4rc op p=2n+B0

i
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508. To calculate the capacitances, we must first solve the electrostatic
problem, assuming that the spheres have arbitrary given potentials ¥; and v,
Introducing a system of bipolar coordinates «, 8, ¢ in which the spheres
under consideration have equations # = —f; and f = {8, we reduce the
problem to determining a function # which is harmonic in the region
—B, < B < B; and goes to zero as a« — 0, 3 — 0. The desired solution can
be constructed in the form of a series

u=./2coshP —2cosa i [4, cosh (n + 3)B + B, sinh (n 4+ £)B]P,(cosa),

n=0

where the coefficients 4, and B,, are found from the boundary conditions
Ulpeg, =V o=V

which immediately lead to a system of linear equations for 4,, and B, if we
use the familiar expansion

1 N —(n+44)B
=De P,(cos a), > 0.
J2cosh B —2cosa ,,Z:, ( ) P

After determining u, the charges on each conductor can be calculated from

the formulas
o ol [(-2)
B=—P1 2 Jo aﬁ

a1

To find the capacitances Cy;, Cy, and Cyp,, We use the relations

do.
B=B2

Ch= QIIV1=V,=1a Crp= Q1|V1=0,V,=—1 = Qz[V,=—1,V,=o, Co = QzIV1=V,—_-1-

512. In the new coordinate system, the problem reduces to solving the
equation

Pu u W w2 v _

9o | 9B  «(o® + BYOx ol + BEOR

with the boundary conditions

2

u|ﬁ=iﬁu =V

Variables can be separated by setting

u = Jo? + P2 A(2)B(R).

Integrating the resulting equations for A(«) and B(f), and noting that « must
be even in  and bounded at « = 0, we arrive at the following particular
solutions:

u=u, = M,;Na® + B2Jy(uo) cosh uf, > 0.
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The solution is then constructed in the form

/| N coshup
u= Vo +Bfo oon g, T

Using the well-known formula

1 =j ) () dp, B> 0,
Vor + g2 Jo
and taking account of the boundary condition ”Ip— =V, we find that
N, = ePo, and hence
u = V/o® £ B f eubo COSNBB ;s du. (83)
) cosh uf,

To calculate the total charge Q on the conductor, we start from the relation

SINCI

After substituting (83) into (84) and reversing the order of integration, we
obtain the expression3®

w  o—kBo
Q=cV dy =2Valn2.
0

(84

ﬂBo

cosh uf3,
The capacitance C is now determined from the formula Q = VC.
522-523. If we set
E=f (t — iC—) —u,
v

the problem reduces to finding a solution of the wave equation
Pu, Pu_ 13

ox? + oy* or?

satisfying zero initial conditions, the boundary condition

sl

and the condition that u vanish at infinity. Introducing new variables

S

X

‘E=t—v’ 7)=t_£ (r=‘/x2+y2)’

3% Note that the parameter c is related to the radius a by the formula ¢ = 2af,.



372  SOLUTIONS PROB. 523

and looking for a solution which is a function only of § and %, we obtain the
equation
0*u 1 Ou

0€ on + 26 —m)dn

whose solution is

_ o) _ 4o
=] E st v,

where ¢ and ¢ are arbitrary functions. Moreover (£) = 0, since

u|r—vw = ul'n-'—oo = 09

?(s)
u_fw\/a—s ) (85)

On the screen v = &, u = f(£), and hence ¢(s) must satisfy Abel’s integral
equation

and therefore

_o(s)

d =
| | B i
with solution??
1 d _fE®
d
o(s) = \/_E E.

If s < 0, then the integrand vanishes identically by hypothesis, which implies
@(s) = 0.
It follows from (85) that

u|~n<0 = 0,

i.e., the excited zone is bounded by the circle v = 0 (see Figure 149, p. 254).
Outside the excited zone,
E= f(t - 5)
v

and in particular, E = 0 for x > v¢. For n > 0, i.e., in the excited zone,

u_jjé’“_’s ,

g(&)
f N Edi.

where

37 See e.g., S6, Vol. II, p. 220.
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531-532. In the present problem, considerations like those given in the
solution of Probs. 522-523 show that the reflected wave can be represented

in the form
I O
! f E st @am (86)
where ¢(s) satisfies the Volterra integral equation
@(s) 2a ,
+ — @9 - , 87
%) ETr GRS ® )

and the variables £ and v are defined by

R I B T R e
Assuming that
0’
=& =0 o=

we find that ¢(s) = 0if s < 0, and hence u = 0 if y < 0. Thus the boundary
of the excited zone is determined by the equation n = 0. The value of u
inside the excited zone (n > 0) is given by (86) and (87) with f(£) replaced
by g(£) and the intervals of integration (— oo, £), (— o0, n) replaced by (0, £),
(0, n).

The integral equation

o(s) _2a ,
[& —s+ (2a/v)]2

belongs to the class which can be solved readlly by the use of the Laplace
transform.®® Writing

9(8) + geE), &>0 (88)

f=[7 e,

multiplying (88) by e~* and integrating with respect to £ from 0 to oo, we
find that

where

dE = —e*?" Ej (— 2—“2),

v

e
K _L £ + (2a/v)

3% In the applications, it is sometimes more convenient to construct the resolvent of the
given equation, without recourse to the Laplace transform (see e.g., F8).
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and Ei (z) is the exponential integral. The final answer can be obtained by
using the inversion formula

o) = fae”‘ dp,
2wiJr

where the line T' lies to the right of the singular points of the function G,

542. To find integral equations for the charge densities, first let M = x
be a fixed point in the plane y = 0. Then

COos (rMA\r, n) - 0
if the variable point N = £ also belongs to the plane y = 0, while

h

b}
|* 37wl

cos (Fpy, M) = — [Tpn] = \/(E, — x4+ h
if N = £ belongs to the plane y = h. Therefore the integral equation (2) on
p. 260 takes the form

_ _1_ 0 . ’1 ® a(&)
o) = 2 E”,"=° T f—w E—xP+h

In just the same way, choosing M = x in the plane y = h, we obtain the
integral equation

_ 1 . h © ao(€) d
olh(x) - 271' E‘yly:h - J;w (E - x)2 _+_ h2 E"

This system of integral equations can be solved by using Fourier transforms.
Multiplying each equation by e** and integrating with respect to x from — oo
to oo, we obtain

o = Lk f:em aleo _9®

dt.

2t T w (£ — x)? + h?
G, — — L" — ﬁ fw iz foo 0‘0(5) d
o= 2r 1y —coe dx —a (E — X)z + h2 E’
where
7=1" fxe dx
and

Jo®) = Ejlyer filx) = Egfymn

(for brevity). Reversing the order of integration and using the well-known
formula

® cos A\ T _nin
dn = —e ™
J;n“+h2 Ky
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we obtain the following system of linear algebraic equations for &, and &,:

G + Pt 5, = .ZL:;, Mg 45, =— 'zil;:
It follows that
s _if;"i'e_mhf-h _ __l—/';'_’_e—ﬂlh/’o
0T o 1 — e 2’ =T T

The answer on p. 262 is now an immediate consequence of the inversion
formula

f(x) = L f S 4,
2t J-w
549. The integral equation
*f(0) K(z\/ﬁ
TJox + y x+y
can be solved as follows: Writing (89) in the form

ff(x) 1 K[ 2J/x[y }dx
y 1+ (xfy)y L1+ (x/y)

)1 K[ 2J}Tx}dx=g()’),

) dx = g(y), O0<y<a (89)

md ox 1+ (%) L+ (/)
we make a Landen transformation
1 2k
NE) K
14k (l + k) Ko,
obtaining
”f(") ()d 4+ 2 ff(") ()dx=g(y). 90)

Because of the formulas

(Ji’) Vo — sz)(y —

-7
-l
(90) becomes

2 (Y z ds
z x| ———4
2w V&0 — )
ds

2 a v
+-1/x)d = g(y).
e, Jor =0t =)

><I'—~ '*<I
I<
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The expression on the left can be represented as a double integral over the
trapezoid bounded by the lines s =0, s = x, s = y and x = a. Changing
the order of integration in this integral, we obtain

2P T LY gy — ). 91
ﬂfo\/yz_s x = g(y) ©n

2 s\/x2—32

If we write

SX) gy —w), O<s<a,

s\/xz— 2

(91) goes into Schlomilch’s integral equation

v
2. ___l@__ds___g(y)’ 0<y<a,
ntJo \/yz g
with solution
v = & [ 804
dS 0\/32 — ta

(see W8, p. 229). To deduce f(x) from a knowledge of ¥(s), we use the
formula

2d [* Y()s
T dx a:\/sz_xz

(see B1). Substituting for W(s), we arrive at the answer on p. 264.

f(x)=— ds

561. To find integral equations for the virtual charge densities on the
planes ¢ = 0 and ¢ = «, we note that if M = r is a fixed point in the first of
these planes and if N = p is an arbitrary point of the interface between the
two dielectrics, then

psma if N belongs to the plane ¢ = «,
cos (Faen, M) = {Vr? + o* — 2rp cos «
0 if N belongs to the plane ¢ = 0.
Applying formula (7), p. 267, we find that
B o B f ® sa(p)e
r)=— —E,|.- = sin do,
ou(r) 2 ¢|¢_0+1t * o r’+ p® — 2rpcosa e
where
_E— &
I .

By a similar argument, if we choose the fixed point M in the plane ¢ = «,
then

B 1o B Jw oo(p)p
=E)|, - s do.
O'a(r) 7 :pl:p_a + - n o ) "2 T p2 — 2rp oS P
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This system of integral equations can be solved by using Mellin transforms.
Multiplying each equation by r*~! and integrating with respect to r from 0
to co, we eventually obtain the system of linear algebraic equations

sin(m —a)(p — 1) _ B
0 — - Gy = fo’
sinw(p — 1) C2n 92)
sin(m—o)p—1)_ , — _ B #
sinw(p — 1) %o+ % 2r I

for G, and &,, where
f=10 rorar
and

fl)(r) = Eg|¢=o, fa(r) = Eg|¢=a

(for brevity). To guarantee the convergence of the integrals appearing in (92),
we choose p to be acomplex number of theform p = 1 4 it (— 0 < T < 0).*
Solving the system (92) for 5, and 5, we find the values of the charge densities
by using the inversion formulas
1 1+iom 1 1+ic0 » 4
= . Gor7dp, « = 1. Gl .
% 2ni J1-io gor AP ’ 27 J1-ieo ° P
565. The requirement that the tangential component of the electric field
be zero on the surface of the conductor leads to the integral equation of the
first kind

meff’(k Ix — &DJj(§) d& = < E(x), 0<x< oo, (%3)
0 W

where j(£) is the total density of current flowing on both sides of the half-
plane, and E(x) is the tangential component of the external field at the point
x.40 This integral equation can be solved by using the integral transform (27),
p. 196. To reduce (93) to a form suitable for application of this method, we
multiply the equation

-3 2
f HE(KE) j(E) dE = <= E(0)
0 TTW

3% Each of the densities o, and o, is O(r—%) as r — 0 and O(r—%2) as r — oo, where
s; <1 and s, > 1. The functions f, and f5 are assumed to be O(1) as r -0 and O(r—%)
as r — 0, where s > 1.

4 Here we have

/(&) =jxlv=+0 +jz|v=-0 =jl +j2a E(X) = E:lv-:l)'

The difference between the current densities is given by formula (9), p. 270, implied by the
conservation law for the circulation of the magnetic field around a closed contour.
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by e=*** and subtract it from (93). The result is

J:o[Hff’(k Ix — &) — e ™ H{?(kE)j(E) dE = 7—:; [E(x) — E(0)e™™]. (94)

Multiplying both sides of (94) by

iz Hiz (kx)
X

and integrating with respect to x from 0 to co, we obtain

@ o py(2 _ _ —ikz
f J(E) d&f HO )(k IX El) e , Hl()Z)(k‘E) en‘r/ZHi(Tz)(kx) dx
0 [}

X

2 /2 — 7=
e J’ E(x) — e **E(0) H®P(kx) dx, (95)
0

TW X

assuming that it is legitimate to reverse the order of integration. The inner
integral in the left-hand side can be evaluated after making the preliminary
transformation

o 17(2) _ _ —ikxpy(2)
f Ho®(k Ix — E) — e Hy (kD) rsregy oy oy g
0 X

o py(2) _ — H(®)
_ f Ho (k Ix — &) = Ho (KE) preiagy o1y g
0 X

© _ p—ikw
+ H®(kE) f 1= mrg®xy = 1, + 1,
0 x
It then follows from the addition theorem for Hankel functions, [see L9,

formula (5.12.11), p. 126] that

w nt/2 (2)
L= Hm(ke,){ f DD 1 gmrpydicn) ds — f & Hi (k) dx}
13

X

0 (2)
ok [ D e
g X

22 £
+2> {Hg,?(kz,)f Tnlkx) ez @ k) dix
0

m=1

+ J(KE) f Hy, “"‘) e IH(kx) dx).
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The integrals on the right can be evaluated in closed form, eventually leading
to the expressions

1 2 7°

I, = ———— H®(k — " PHE(k l:l 2 ]

' it sinh gt (k8) = mit? GBI+ ,nz::, m® 4 <*

— L h®e) — 2 e coth ne HOKE),
it sinh nt it
v 2 1

I, = HP(k [ - ]

: o (k&) itsinh®t  itsinh {nt

Thus we finally have

o py(2) _ _ —ikzpy(2)
f Hy (k|x El) e ""Hy (kE) em/ZH,-(,z)(kx) dx
X

= —2— [H{P(kE) — e™/2 coth et H{P(KE)).
it sinh ntt

If we now introduce the integral transform

H®(kx
/2 n-( )’ 0<T<w,
X

o(7) =L o(x)e”
(95) takes the form

2

it sinh 7

2
[ E() — EJ®) cosh m] — < B — e ™EO)],
TW W
which implies

Ej(E) =

[E(x) — e *E(0)];.

c? { EQ) it tanh nT
7w \cosh Tt

The final form of the solution given in the answer on p. 270 is obtained by
using the formula®!

o(x) = — % f @(t)e"*t sinh nt HP(kx) dtr, 0 < x < 0.
0
566. The problem reduces to solving the integral equation
20

© E .
f H® K |r — pl)j(p) dp = — 4%, 0 < r < o,
0 W

We assume that k is of the form k& = |k| e=**(0 < y < =/2) as in Prob. 565,

41 The applicability of this formula is guaranteed by the requirement that k be a complex
number of the form k = |k| e~i¥ (0 < y < m/2), and that the external field be due to line
sources located in the finite part of the xy-plane.
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and also that the angle between the half-plane and the direction of prop-
agation of the incident wave is less than v.%2 Then the problem can be solved
by using the general formulas obtained in Prob. 565, with

x=r §=p, E(x)= E% " coso.

Bearing in mind that

- ® (2)
[E() — e EQ)] = E° f (emivr e _ gmimnygrera His (k1) g,
0 r

0
= -—ﬁ— (cosh e — 1),
7 sinh ot
we have
CZED ©
pj()=—-— | vtanh~nr €*"/% cosh v HZ(kp) d=.
21e Jo
The last integral can be written in the form
; 250 d
pj() = =— = [¢(m + &) — $(x — )],
21w do
where
1 [®cosh Bt .
B =~ | BT Oy an, g <ty

2i Jo cosh wr

In the paper K3, it is shown that

. 1 ein/4 \/;p cos LB 2
Uy = e~ 1 Jr J et s,
T Yo

Using this formula and performing the differentiation with respect to «, we
obtain the expression for j = j, 4 j, given in the answer on p.271.

%2 These restrictions are needed to guarantee the convergence of the integrals and to
justify using the inversion formula, but can be dropped in the final results. In particular,
the expressions for the current densities j, and j, found here are also valid for real &, in
which case they coincide with the corresponding formulas for the Sommerfeld problem
(see Prob. 427).
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1. Special Functions Appearing in the Text

Certain basic functions
The gamma function

I'(z) = f et ldt, Rez>0.
The probability integral

d(z) —%J‘ —L dt.

The Fresnel integrals
z 2 z 2
C(2) =f cos i dt, S(2) =f sin L dt.
0 2 0 2
The exponential integral

z i
Ei(z)=f %d:, 0 < arg z < 2.

The sine integral

Si(z)zf S"”d

The cosine integral

Ci (2) J.@dt larg z] < .

38l
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Orthogonal polynomials
The Legendre polynomials

1
Pr) = ot ae

The Hermite polynomials

Ho) = (e L= n—0,1,2,...
dx"

*P—1)" n=0,1,2,...

The Laguerre polynomials

—a
LA(x) = e "—' ‘%(e"x"“‘) n=012...,

LJ(x) = L(x).
Cylinder functions
The Bessel function of the first kind

1\ v+2k
J,(2) = z (—=DAz/2) larg z| < .
STk + D0tk +v+ 1)’
The Bessel function of the second kind
Y,(z) = J,(z) cos v — J_,(2) ’ larg z| < .

sin vt
The Bessel function of the second kind of integral order (n =0, 1, 2, ...)

Y, (z) = llm Y(2) = -J (2) l“_ - g gll+—l)l(2)zk_

(— 1z
k+1 k+n+ 1)}, arg z| < m,
mzo g or W+ DYkt n+ D)L Jargzl <
where {(z) is the logarithmic derivative of the gamma function (the first sum
is omitted if n = 0).
The first and second Hankel functions
H(z) = J(2) + iY(2), H{Nz) =J,(2) —iY(2), |argz| <m.
The Bessel function of imaginary argument
(22"
I(2) = larg z| < .
gr(k+1)r(k+v+1> &
The Macdonald function
™ I_V(Z) 1,(2)

K(z) = - ——"—>—=, |argz| <.
Sln \419
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The Macdonald function of integral order (n =0, 1,2, ...)

K.(2) = lim K (z) = (—1)"*',(2) ln =

von

l‘n—l(_l)k(n — k — 1)| E 2k—n
+ 2;_: k! (2)
n S _(z[2)"%
~1) Zk,(H 53 [k + 1) 90+ n £ D),
larg z| <,

where {(2) is the logarithmic derivative of the gamma function (the first sum
is omitted if n = 0).

Spherical harmonics
The Legendre functions of the first and second kinds

1—2z

PV(Z)=F(—V,V+I;1; )) lz_ll<2’

00— LD p(f 020 b 30,
F(v + 5)(2z)"+1 z

|z| > 1, larg z|] < m,
where
& (@B
2w 2 <t
T'(\ + k)
o

F(o, B;v;2) =

M) =1, Mp=———7—"=Mr+1D---A+ k-1

is the hypergeometric series.!
For real x in the interval (—1, 1), the Legendre function of the second
kind is defined by the formula

0u(x) = 3Qy(x + i0) + Q,(x — i0)].

Analytic expressions for the spherical harmonics appearing in this book
can be found in H4, L9 and M2.
The associated Legendre functions
P:,"(Z) — (22 . l)mlz d PV(Z) , Q (Z) ( l)m/2 d Qv(z) ,
dz™ dz™
largz — )| <= m=1,2,...).

! The functions Py(z) and Qy(z) are defined outside the indicated regions by using
analytic continuation (see e.g., L9, Sec. 7.3).
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The associated Legendre functions for the interval (—1, 1)

m/2 d Pv(x)

P,(x)=(—1)"1 — 2,
O7(x) = (—D"(1 — m/deQv,,(.x)-

Elliptic integrals and functions
The elliptic integrals of the first and second kinds

4 P j—
F(cp,k):f——__-i—q)__—n-_, E(¢,k)=f J1 — k*sin® ¢ do.
o1 — K*sin® @ 0

The complete elliptic integrals of the first and second kinds

K(k) = F(;—‘ k), E(k) = E(g k).

The Jacobian elliptic functions
sn z = sin ¢, cnz = Cos @, dnz=+/1 — k?sin® o,

where ¢ is the inversion of the elliptic integral of the first kind, i.e.,

zZ = F((p, k) f ——_:
V1 — k%sin® ¢
Further information on special functions can be found in such books as
Erdélyi et al. (E2), Gray and Mathews (G2), Hobson (H4), Jackson (J1),
Lebedev (L9), Lense (L11, L12), MacRobert (M2), Magnus and Oberhettinger
(M3), McLachlan (M5), Ryshik and Gradstein (R2), Smirnov (S6, Vol. III,
Pt. 2), Snow (S12), Watson (W4), and Whittaker and Watson (W8).

2. Some Expansions in Series of Orthogonal Functions

Q0

{ Zsin(nﬂ:x/a):’_‘»'(l_f) 0<x<a
.n=l n 2 a ’ h

5 i cos (nmx/a) _ i (

n=1 n

2sin"—"), 0<x<a
2a
2 21 Sin (nmtx/a X
3. Z(_l) 1_%_)="_
=1

s 0<x<a.
2a

4. Z(—l)"—lw=ln (ZCos;—x), 0<x<a.
n a
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&sin [(2n 4+ Dmxf2a] =
5. =-, 0<
,Z, 2n 41 4 x<a
& cos [(2n 4+ Dnx/2a] 1 X
6. = —Incot—, 0< .
g‘, 2n+1 2 ce 2a x<a
"° o 8in [(2n + l)rrx/2a] 1 X
7. 1 —Intan —, 0 .
Zf ) w1 2 sx=a
8. S (—1y cos [(2n + 1)nx/2a) _T , 0< x<a
= 2n + 1 4

0s (n'rcx/a) 2(1 x xz)
9. -— =4+ =], 0 < a.
,,é “\6 2 T aa sx<d

c
n—1 €08 (nmtx/a) (nn:x/a)
10. D (—1) -

n=1

of 1 x’)
- — ), 0<x<a.
" (12 aa <<

1 icos [(2n+l)nx/2a]=12(1 _J—‘) 0O<x<a
. < (2" + 1)2 8 a ’ S S a.

2 8in [(2n + Drx/2a]  =°x

12. =T 0 ~x <
g 2n + 1)% a sx<a
=) 2 3
13. sin (nmx/a) 3(1 s x_), 0<x<
Zl P \ea 4 2a <x<a
14. Z( = sin (’mx/a) = -n—( 5-) 0<x<a
n=1 2 a
sin [(2n + 1)1tx/2a] 7 ( x)
15. =—\1— — 0<
Zo @n + 1 16a\" 2 x<a
& ncos [(2n + Dnx/2a] _ m ( )
16. — A )
2.1 @+ 18 R sx<d

iJo(Y,.r/a) 1
n=1 YnJI(Yn) 2
where the vy, are the positive roots of the equation Jy(y) = 0.

2

ZJO(Y‘nr/a) 1(1 _ %)’ O<r < a,
n= lYnJI(Yn) 8 a

where the vy, are the positive roots of the equation Jy(y) = 0.

9. ZJO(an/a)_l(rz 1

— ==, 0<r<a,
'n=1YnJ0(Yn) 4 az 2)

where the vy, are the positive roots of the equation J;(y) = 0.

s O<r<a,
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20' x2m — Po(x)
2m + 1
Z 2m(2m — 2) - - (2m — 2n + 2)
4 1 P;,(x),
+§l("+ Y omt ham +3) - @mt o+ =™
m=1,2,...
21 x2m+l___ 3Pl(x)
2m + 3
T 2m(2m — 2)---(2m — 2n + 2)
4 3 P, ,
F2 Y am + 5~ am + 2n 43 ®
m=12,...
22, _—_"t i"P,,(x), —1<x<1, It|<1.

\/l — 2tx + x n=0

For various other expansions in orthogonal functions (and series of a

different kind), we refer to the handbooks by Jolley (J5) and Ryshik and
Gradstein (R2).

3. Some Definite Integrals Frequently Encountered
in the Applications

o v—1
1.f X _dx=—"—, O0<Rev<l.
o 1+x sin v

) f‘” x" dx Tt sin(w — @)v
' ol—2xcosq>+x  siny sin ¢

, —1 < Rev<l,

0< o <2m

f smaxdx=7_2r, a> 0.

w

4. f °°S‘”‘_°°Sb"d —m2,  a=0, b>o0.
0 a

sf COsbX 4o Tpwm  as0 b>0.
0 2+x 2a

(=)

fe-“ =1 gy P("), a>0, Rev>0.
a



10.

11.

12.

13.

14.

15.

16.
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.J.e % cos bx dx = —2 , a>0.
° 2+b2
ao—aa: b
e *sin bx dx = ———, a>0.
a2+b2
f‘”_” N
e dx = ~*—, a>0.
)

. _
T 32,2
fe ’cosbxdx~\/ et > 0.
0 2a

® Jr
f P Ll =N" g2ab a>0, b>0.
0 2a

J sin x dx=f cos x2dx = IA/W.
2N 2

. h“_" . TP
® sinh px T SN a5 24

. sinrxdx = - —————, 0<p<a
cosh gx g coshn—r+cosn—p
q q
hm-
© sinh —
f gsinrxdng————q—— 0< p<yq
¢ sinhgx 9 cosh ™~ + cos T2
q q
. Tp
© - sin —
f %ﬂcosrxdxzf————i——— 0< p<yqg
o sinhgx 9cosh = + cos Z2 P
q q
h-rcr p
w cos cos -
2
f M;l—‘picosrxdx=7—r———q—ﬁ—, 0< p<gq.
¢ Ccoshgx T cosh =0 4 cos ZP
q q

- F(q er p)F(q;p)
J cosh px ,_ nea . 0<p<q
0
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18. f eI (bx) dx = ———,  a> 0.
0 N,

a2+b2

19. f e J (bx)x"+! dx = a l;)m e’ p 50, Rev> —1.
0 a

© x"+1J (bx) .= a’ *b*
o (x*+ a®*! 20w + 1)
a>0, b>0, —1<Rev<2Rep+ %

20.

Kv—u.(ab)’

a1, J‘ K(a\,/x +y)

Z)u/ 2

J(bx)x"* dx
bv 2 b2 ©u—v—1
= ;(_\/_ay_i__.) u_v_l(y\/a + b9,
a>0, b>0, y>0, Rev>—1.

Among the handbooks on definite integrals, we cite those by Dwight (D2)
and Ryshik and Gradstein (R2), as well as the celebrated compendium of
Bierens de Haan (B4).

4. Expansion of Some Differential Operators in Orthogonal
Curvilinear Coordinates

General formulas

Let (9,1, 92, 95) be a system of orthogonal curvilinear coordinates related
to Cartesian coordinates (x, y, z) by the formula

x = x(q1, 92 93)s Y = Y91, 92.95)s Z = 2(q1, 92 Ga)-
Suppose the square of the element of arc length in the given system is
ds* = hi dgy + hj dq; + h; dgs,

where the A, are the metric coefficients

ox\? oyY [0z .
AEF G
dq, * 0q; * 9q; '

Then the differential operators (grad u),, div A,-Au, (curl A),, [where u and
A are given functions of the coordinates, and the index ¢, denotes the
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corresponding vector component] take the form

=
QD

(grad u),, = L

k)

q;

=
v

1

{ (hahdy) + = (hhAq,)+ (h thq,>}

|2 (e 20) (20 +_3_(Mi)}
hyhyhs\0 h, 0q, 0q;\ hy 0qy 095\ hs 0q, ’

1
(curl A),, = —h{a - (isAe) a(thq)},
(curl Ay = (2 (hite) — Ly,
hgh,\0g, 04,
(corl W), = 2 () — 2 (i)
hyhy\0q, 09,

Cylindrical coordinates
X=rcosqp, y=rsing, z=z,
O<r<ow, —rnm<p<n, —0<z< 0),
ds® = dr? + r? de? + dz?, h.=1, h,=r, h,=1,

rad ), = 2, (gradw, =12, (grad w), — 2
or rde

%’
dlvA—l—(rA,)—i-la—A—‘p-i—aA )
ro 0¢ 0z
13( au) 1 %
Ay =-— - — R
! ror 8r+28<p+232
104, 04
14), =-— — —2,
(curl A). r de 0z
0A 0A
1A), = Zr — %4,
(curl A), 0z or
(curl A),— (A laA
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The coordinates of the vector AA = grad div A — curl curl A are:

(AA)r = AAr - lz r 2 aA
r r acp
1 2 04,
(AA)cp = AA‘P - K a(p
(AA), = Ad,,

Spherical coordinates
x=rsinfcosq, y=rsinOsing, z=rcosH,
O<r<om, 0<l<n, —T<o9<mn),
ds®* = dr® + r? d6% + r? sin? 0 do?, h,=1, hy=r, h,=rsinb,

ou 1 0u 1 Ou
d = d =" %a° d = 70
(grad u), or (grad u)g - 29 (grad u), rsin 6 do
div A = 1; 0 (r*A,) + ——= 2
r°or r

or
2,
Auziéa—(r”é!i)+ 1 a(mea—l-‘)%— 1_2u

r*or\" or/  r*sin 626 00/ = r*sin®0 d¢?’
(curl A), = —1_6 ™ (A4, sin 6) — rsiln 5 %1—0,
(curl A)y = ﬁ %% )
(curl A), = 1 a&;:) ,
(AA),=AA,—%A,—rz—;n—e%mesine)— ﬁ%%’
1 204, 2cosb 04,

AAYy = Ady — ——— Ay 4 2% £€08D 04,
(G4 * y*sin6 +r 20  r®sin?0 d¢

1 2 0A,  2cosb 04,

AA), = A4, — '
( )‘P @ r?sin%0 ¢ r¥sin 6 a(p r®sin® 0 aCP

Expressions for the above differential operators in other special orthog-
onal curvilinear coordinate systems can be found in Chapter 7 of this book,
and in the handbook by Magnus and Oberhettinger (M3).



Supplement

VARIATIONAL AND RELATED
METHODS'

Many, and perhaps most, mathematical problems encountered in science
and engineering are difficult or impossible to solve by analytical methods. It
is also found that explicitly obtained exact solutions are often too cumber-
some for interpretation and numerical evaluation. Therefore, in these in-
stances, it is either necessary or convenient to employ approximate methods
which yield accurate numerical estimates of the solution. The recent develop-
ment of high speed electronic digital computers has made practical the success-
ful application of many of these methods to complex problems.

This supplement contains a collection of typical problems that illustrate
a special class of approximate methods. They are related either directly or
indirectly to the variational formulation of physical problems. Almost all
of the examples are concerned with boundary value problems for ordinary or
partial differential equations. However, with suitable and sometimes trivial
modifications, the methods presented can often be applied to other situations,
e.g., eigenvalue problems or problems involving integral equations or integro-
differential equations.

The selection of problems was, in large measure, influenced by the amount
of computational work necessary to obtain a solution. Hence, by necessity,
they are essentially “simple.” However, the methods employed can usually be
applied directly to more complicated problems, the only additional difficulty
being that the calculations are more involved.

The supplement is independent of the main body of the book in the sense

1 This supplement was written by Edward L. Reiss, Courant Institute of Mathematical
Sciences, New York University.
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that all equation and problem numbers refer only to those in the supplement,
Literature references, indicated in brackets, are to items in the references
section on p. 412.

I. Variational Methods

I.I. FORMULATION OF VARIATIONAL PROBLEMS?

Physical probleths can frequently be formulated mathematically as
minimum problems, as well as in terms of differential or integral equations.
The solution is then a function, selected from a certain class called admissible
Junctions, which minimizes a specified functional® with respect to all admis-
sible functions. For example, Hamilton’s principle is an alternative to New-
ton’s equations of motion as a formulation of the laws of mechanics. It
states that if u(x, ¢) is a vector describing the motion of a mechanical system,*
then between any two times #, and ¢,, the actual (stable) motion is an admis-
sible vector which coincides with the actual motion at t = ¢, and ¢t = ¢, and
makes the functional

f:(T— U) dt

a minimum. Here T and U are the kinetic and potential energy functionals of
the system. The admissibility conditions usually take the form of boundary
conditions and of continuity requirements on u and its derivatives. If the
mechanical system is in equilibrium, so that 7= 0 and u is independent of ¢,
then Hamilton’s principle becomes the principle of minimum potential energy:
the actual (stable) displacement of the system is an admissible vector that
minimizes the potential energy functional.

It is usually not difficult to show that the admissible function (or vector)
that minimizes the functional is the solution of a system of differential
equations (or sometimes integro-differential equations, or integral equations)
called the Euler equations for the functional. Thus in mechanics we obtain

* For a fuller discussion of the calculus of variations and its applications, see [3, 4, 8].
? Here we use the general term functional to denote any mapping of a set of functions
(e.g., admissible functions) into real numbers. Thus, for example,

F= f: [ dx

is a functional, where f(x) is any piecewise continuous function on the unit interval, In
our applications, the domain of the functional is the set of admissible functions.

* We use bold face to indicate a vector, and x = (x,, x, . . . , X,) is the vector of p
independent variables. The function u is a vector-valued function of p + 1 variables.
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the equations of motion as the Euler equations for Hamilton’s principle and
the equilibrium equations as the Euler equations for the principle of minimum
potential energy.

To illustrate these remarks, consider the functional

1) =[ Tpow™® + qCeu® + 2/ (x)ul dx W

for the scalar function u(x) of the single variable x. Here a prime is used
to denote differentiation. The admissibility conditions are the following:
u(x), u'(x) and u"(x) are continuous functions in the closed interval [a, b]
which satisfy the boundary conditions

u(a) = Uy, u(b) = U, (2)

where u, and u, are prescribed numbers. The prescribed functions p(x), p’(x),
q(x) and f(x) are continuous in [a, b]. We shall now show that if the admis-
sible function u(x) minimizes I, i.e., I[u] < I[v] for all admissible functions v,
then u is a solution of the Euler equation

Lu=@u) —qu=f, a<x<b. (3)

To see this, we introduce #(x), the variation of u, namely a function defined in
the interval [q, b], which has a continuous second derivative and satisfies the
homogeneous boundary conditions (2) [i.e., vanishes at the end points a and
b], but is otherwise arbitrary. Consider the admissible function v = u + ¢,
where the real number ¢ is a parameter. Then

J(&) = I[v] = I[u + «if)

is a quadratic function of ¢, given by

J@=nﬂ+mmm+§uﬂ @
where
I, = dJ(0) L L= (V)] ,
de de?

It is easy to show, by using integration by parts and the conditions #(a) =
u(b) = 0, that

1 = 2f " (u'it + qui + fit) dx = —2["(Lu — i dx. )
Since I[v] is minimized when € = 0 and hence J(¢) is a minimum at € = 0, it

follows from (4) that 7,[u, 4] = O for all variations @#(x). Thus we conclude
from (5) that u satisfies the Euler equation (3).
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1.1.1. Determine the Euler equation corresponding to the functional (1)
if u(a) = uy and no conditions are specified at x = 5. Determine the bound-
ary conditions that # must satisfy at x = b in order to minimize 7 (they are
called natural boundary conditions.)

Ans. Lu = f, u'(b) =0.

Hint. Let i(a) = 0 and () be arbitrary.®

1.1.2. Let F(x,u,u’) be a specified twice continuously differentiable

function of its arguments x, » and »’. Determine the Euler equation of the
functional

1] = ["F(x, u, w) dx,

assuming as admissibility conditions that u, »’ and u” are continuous in
[a, b] and satisfy (2).

Ans.
(EE) _9F _,
ou’ du
1.1.3. Let F(x,u, ', ..., u™) be a specified twice continuously differen-

tiable function of its arguments, where u(™ = d"u/dx". Determine the
Euler equation of the functional

I[u] =fabF(x, w,u'y ..., u'™) dx,

assuming as admissibility conditions that u, ', ..., '™ are continuous in
[a, b] and have prescribed values at x = q, b.

Ans.
oF ( aF)' ( aF)” ( oF )"0
— | = _ .. _1 n = 0
ou ou’ + ou” +=D ou'™

1.1.4. Determine the Euler equation of the functional

1) = [ 2 + u2 +2/(x, y)u] dx dy
D
for the functions u(x, y) defined on the domain D in the xy-plane bounded by
the contour C (the subscripts denote the corresponding partial derivatives,
e.g., U, = 0u/0x). The admissibility conditions are that  and its first and
second partial derivatives be continuous and that u satisfy the boundary

condition 4 = o(s) on C, )

where s is arc length along C and ¢ is a specified function on C. The function
fis prescribed and continuous on C.

Ans. Au = uy, + u,, = f(x, ).

® For a discussion of more general boundary conditions, see [1], pp. 203-207.
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1.1.5. In Prob. 1.1.4, alter the admissibility conditions so that (6) is
satisfied on a subarc C; of C. On C, = C — C,, there are no specified
boundary conditions. Determine the Euler equation and the natural bound-
ary condition that must be satisfied on C, in order that # minimize 1.

Ans. Au = f(x, y), u, =0 on C,,

where the subscript n denotes differentiation with respect to the unit outward
normal n to D.

1.1.6. Determine the Euler equation of the functional
1 =] [laCx, )t + blx, yu + c(x, yout -+ 2f(x, Y)ul dx dy,
D

using the admissibility conditions of Prob. 1.1.4. Here a, b, ¢ and f are pre-
scribed continuous functions on D, and a and b have continuous first partial
derivatives.
Ans.
(auy), + (bu,), — cu = f.
1.1.7. Determine the Euler equation and natural boundary condition for
the functional

1 =] [laCe, y)u2 + u) + e(x, p)u® + 20 (x. y)u] dx dy
D

+ ], alx(s), YOMAG)® — 29(sIul ds,

where C is the contour bounding D, the functions a, ¢ and f are prescribed
and continuous on D, and a has continuous first partial derivatives. The
prescribed functions A(s) and ¢(s) are continuous on C.

Ans.
(aua:)z + (auy y T cu =_f, un + Au = o.

1.1.8. Determine the Euler equation of the functional
11l = [ [1(Awy* — 2f(x, yyul dx dy,
D

where f'is a prescribed continuous function on D. The admissible functions
u(x, y) have continuous partial derivatives up to and including the fourth
order, and satisfy the boundary conditions

u=o(), u=Us) onC. )
Ans.
A% = Upgag + 2Ugeyy + Uy =f(x: »-

Hint. Let # = 4, = 0 for x, y on C.
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1.1.9. Determine the Euler equation of the functional
1) = [ [[(Au)* — 201 — V)(upaty, — u2,) — 2fu] dx dy,
D

where the admissible functions have the same continuity properties as in
Prob. 1.1.8 and the condition (7) is satisfied on the subarc C; of C. The
remaining part of the boundary C, = C — C, is “free,” i.e., no conditions
are specified on C,. Determine the natural boundary conditions on C,. When
C, = 0, compare the results with those obtained in the previous problem.
The constant v is a specified number in the range 0 < v < .

Ans.
A = f, vAu + (1 — V)(ugen? + 2ug,niny + uy,ng) =0,
(Au)n + (1 - V)[(uuy - uzr)nlnz + umv(nf - ng)]s’
where n, and n, are the x and y-components of the outward unit normal to D,
and the subscript s denotes differentiation with respect to arc length s along C.

Hint. On C,, @ and 4, are arbitrary.

1.1.10. Determine admissibility conditions and a functional whose Euler
equation and natural boundary condition ‘yield the following boundary
value problem for the region D in the xu-plane with contour C:

A% = f(x, y) for x, y in D,

u=0, vAu+ (1 — v)(Uuyeh? + 2uznn, + u,n3) =0  for x,yonC.

Ans. The functional is given in the preceding problem. The admissible
functions have the same continuity properties as in Prob. 1.1.8, and in addi-
tion, u = 0 on C.

1.2. THE RITZ METHOD [14]

The minimum property of the solutions of boundary value problems
suggests a method for their approximate determination. Suppose that a
sequence of admissible functions is constructed whose limit minimizes an
appropriate functional. Then the function obtained by truncating the se-
quence after a finite number of terms may provide an approximation to the
minimizing function. The approximation is presumably more accurate
when more terms in the sequence are retained. Specifically, we select a
family of admissible functions

u = U(x;c) (8)
depending on n (unknown) parameters ¢ = (c;, ¢y, . . . , C,). Inserting these
functions into the functional and performing the necessary integrations, we
obtain

1[U(x; ¢)] = ®(c), ®
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where @ is a function of the n parameters c. Necessary conditions for ® to be
a minimum are that

QCL):O, i=12,...,n (10)
oc;
The m solutions ¢ = ¢/, j = 1,2, ..., m of the algebraic equations (10) give

the stationary points of ®. Let ¢ = ¢° be a stationary point which also fur-
nishes a minimum of ®. Then we expect that the function u = U(x; ¢%),
which is called a Ritz approximation and which minimizes I with respect to
all admissible functions of the form (8), is an approximation to an admissible
function that minimizes /.8

In practice, the family of admissible functions is usually formed by taking
a linear combination

i(x; ) = u’(x) + 2 c;#(x), (11)
i=1
where u° is an admissible function and the #’ (j = 1, 2, .. ., n) are variations.

We shall refer to U in the form (11) as a trial solution. For linear problems,
the functional 7 is quadratic in » and its derivatives. Then substitution of (11)
into the equations (10) leads to a system of linear algebraic equations for c.
Naturally, we should try to choose the functions #° and # so that they
approximate the solution as closely as possible. However, there are several
practical considerations governing their selection. First of all, they should be
chosen so that the integrals necessary to obtain @ are “easy” to evaluate.
Furthermore, the #’ must be sufficiently different. If, for example, two of the
functions are identical, then the resulting system of linear algebraic equations
for ¢ will have a zero determinant. If two or more of the functions @’ differ
only slightly, then the determinant may be small and it will be difficult to
solve the algebraic equations accurately. If natural boundary conditions are
to be satisfied on some portion of the boundary, then, as we have seen in
Sec. 1.1, it is not necessary to impose them as part of the admissibility con-
ditions, since the solution of the minimum problem automatically satisfies
them. However, if it is easy to select u, and @&’ which satisfy the natural
boundary conditions, then it is advantageous to do so in the Ritz method.
To illustrate the application of the Ritz method, consider the boundary
value problem consisting of the differential equation (3) and the boundary
conditions (2), where the associated functional is (1). For simplicitly, we
take uy; = u, = 0, so that u®= 0.7 Then substituting (11) into (1) and

¢ Convergence properties and the sense of approximation afforded by the Ritz method
have been established in special cases (see [S5, 11]).
7 For the variations we may take, for example,
W=(0b—-x)a—x)x), j=12,...,n
or
Jr(x — a)

W’ = sin
b—a ’

J=1L2...,n
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performing the necessary differentiations, we obtain /[u] = ®(c). Applying
the stationary conditions (10), we find that the parameters c; satisfy the system
of algebraic equations

> Aye;+B=0, i=12...,n (12)
where =

Aji= Ay =Lb(pﬁ,fﬂ,f + qu,4,) dx,
Bi:f:faidx, Lj=12,...,n

1.2.1. Prove that if the #’ are linearly independent functions and the
coefficients p(x) and g(x) satisfy the conditions p(x) > 0, g(x) > 0 for all x in
[a, b], then the system (12) has a unique solution.

Hint. Show by contradiction that the homogeneous form of the system
(12), i.e., with B; =0 (i =1, 2,.. ., n), has only the solution ¢ = 0.

1.2.2. Use the Ritz method to obtain an approximate solution of the
boundary value problem

W +u+x=0, u(0)=u(l) =0
for each of the following trial solutions:
a) U=cx(1 — x); b) U= cx(1 — x) 4+ cx*(1 — x);
©) U=cx(1 — x)+ c(1 — x?).
Why are these legitimate trial solutions? Compare the approximations so
obtained for u and u’ with the exact solution.

Ans.

5 17 7 8 7
a) 0_1—8’ b) 6‘1—@, szz-l ; © Cl——ﬁ, C‘z—"ﬁ
(see [11], p. 269 and [1], p. 220).

1.2.3. Use the Ritz method to obtain an approximate solution of Bessel’s
equation
X" +xu' +(x2—Du=0
in the interval 1 < x < 2, where u(1) = 1, u(2) = 2. Compare the result
with the exact solution.
Hint. First write Bessel’s equation in the form (3).

1.2.4. Use the Ritz method to obtain an approximate solution of the
boundary value problem
(xu') +u=x, u0) =0, u(l)=1,
of the form U = x 4+ x(1 — x)(c; + ¢px).
Ans. 85 35

Cl—

see [91).) % T
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1.2.5. Use the Ritz method to obtain an approximate solution of the
boundary value problem
W+ +xu+1=0, u-—1)=ul)=0
of the form
a) U=c (1 —x%) + c(1 — x%;
b) U= c,(1 — x4 cx(1 — x*) + c5(1 — x8).
Ans.
2) ¢ _ 1050 o 231
11063’ T 4252
b) ¢; ~ 0.966, ¢, ~ —0.00474, ¢, ~ —0.0297.
(see [1], p. 209).
1.2.6. Obtain a Ritz approximation to the solution of the boundary value
problem
[(2— x®u"]" + 40y =2 — x2,  y'(£1) =y"(4+1) =0,
of the form U = ¢; 4 cpx% 4 x4,
Ans.
143363 953 189
1= T o s C= — y C3 = _———
40 - 79301 79301 79301

(see [1], p. 219).

Hint. UseProb. 1.1.3 to formulate the functional. Note thattheboundary
conditions are natural boundary conditions. Determine how accurately the
boundary conditions are satisfied by the approximate solution.

1.2.7. Use the Ritz method to obtain an approximate solution of the
Poisson equation
Au = u, + u,, = —2,
subject to the condition u = 0 on the boundary of the rectangle |x| < g,
|y] < b, where the trial solution is of the form
a) U= c(x* — a®)(y* — b%);
b) U = (x* — a®)(y® — ad[cyx + co(x® + y?)] (for the square b = a).

Ans.
5 5259 15 35
a =—"—: b) a¥, ===, a'c
)T k@ry D i T 4a
(see [11], p. 281).
Hint. Use Prob. 1.1.4.
1.2.8. Solve Prob. 1.2.7, using the Ritz method with

16277

00 00
mmnx nr
U= Z Z c,,mcos——cos——y.
m=1,3,6,... n=1,3,6,. .. 2a 2b
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Show that the constants c,,, so obtained coincide with those found by the
method of separation of variables.

Ans.

Cn = 128774a2b%(— 1) 4™+ =1 [mn(b*m? + a?n?)]~
(see [11]. p. 282).

1.2.9. Apply the Ritz method to construct a solution of Au = —1 satis-
fying the boundary condition u,, + u = 0 on the sides of the square |x| < 1,
[y] < 1 (see Prob. 1.1.7), where the trial solution is of the form

a) U=c; + c(x? + yB); b) U=c; + c(x® + y?) + czx%2

Note that the trial solutions need not satisfy the boundary conditions,

since they are natural conditions.

Ans.
2) 3 o — 15'b) 139 o — 15 C_S
T T e T8 PT 160 © T 56
(see [1], p. 429).
1.2.10. Solve Prob. 1.2.9 by the Ritz method, selecting trial solutions that
satisfy the natural boundary conditions. Make use of the symmetry of the
solutions in x and y. Compare with the answer to Prob. 1.2.9.

1.2.11. Find Ritz approximations to the solution of
3
5—v
on the rectangle |x| < 4, [y| < 1, where u = 0 on the edges of the rectangle.
As trial solutions, use

a) U=c(l —y3(1 — 4x3)(5 — )%
b) U= (¢, + coy)(1 — yA)(1 — 4x3)(5 — y)%.
Ans.

Au +

u, +1=0

a) ¢
(see [1], p. 459).
Hint. Use Prob. 1.1.6.

1.2.12, Obtain a Ritz approximation to the solution of the biharmonic
equation A% = 0, satisfying the following boundary conditions on the edges
of the square |x] < I, |y| < 1:

U, =0 for x= 41, y= 41,
Uy,=1—y* for x4 1,

7
= 7h ; b) 10%c, &~ 10.185, 10%, ~ 4.84

U, =20 for y=+1.
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As trial solutions, use
a) U=3y*(1 — 3% + c(x* — 1*(y* — 1);
b) U=2y%(1 — &y») + (x® — D*(y2 — 1)%(cy + cox® + c5)?).

Ans.
a) ¢, ~ 0.0425; b) ¢; ~ 0.0404, ¢y = ¢y &~ 0.0117

(see [17], p. 167).

Hint. Transform the boundary conditions into the form (7), and then use
Prob. 1.1.8.

1.2.13. Determine a Ritz approximation to the solution of A%y = f(x, y)
in the rectangle 0 < x < a, 0 < y < b, satisfying the boundary conditions
of Prob. 1.1.10 on the edges of the rectangle. Use a trial solution of the form

U= Z Z Cun SIN m sin n:y

m=1 n=1

mY¥  (nV]7E(e[? . mmx . nmy
el 1 GIT L e sin ™22 sin =2
(see [16], p. 345).

1.2.14. Use the Ritz method to obtain an approximate solution of the
clamped rectangular plate problem A%z = f where f is a constant (see
Prob. 1.1.8), subject to the conditions u = u,, = 0 on the boundaries of the
rectangle 0 < x < g, 0 < y < b. Use a trial solution of the form

U= (1 - cosZT")(1 - cosz"Ty).
)

1.3. KANTOROVICH'S METHOD?

Ans.

Conn =

Ans.

(see [18], p. 288).

Kantorovich’s method, which is sometimes called the mixed Ritz method

or the method of reduction to ordinary differential equations, is essentially a

generalization of the Ritz method. More “freedom” is permitted in the selec-

tion of the trial solutions (8) and (11) by allowing the parameters ¢ to be

functions of one of the independent variables x, say x. The functional 7 then
reduces to a functional

I[U(x; e(x))] = ¥[e(x)] (13)

of n functions ¢;(x), which are determined so as to furnish a minimum of V',

® For a general description and analysis of this method, see [11].
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Thus the ¢;(x) are solutions of a system of n ordinary differential equations
which are the Euler equations of V. The solutions of these equations subject
to appropriate boundary conditions yield the approximation U(x; ¢(x)).

For simplicity, we shall consider Kantorovich’s method only for a
rectangular region g, < x < ay, by, < y < b, in the xy-plane. However, the
method can be applied to regions of more general shape (see [11]). We shall
employ trial solutions of the form

U(x, y; e(x)) = u%(x, y) + > c(x)i(x, y), (14)

J=1
where u° satisfies inhomogeneous boundary conditions and the # homo-
geneous boundary conditions on y = b, ;. The boundary conditions on x =

ay, a, yield the values of ¢;(ap) and ci(ay), j=1,2,...,n.
As an example (see [11], p. 304), consider the problem of solving the
equation Au = —1 for x, y in the square |x| < 1, [y] < 1, subject to the

boundary condition.# = 0 on the edges of the square. As a trial solution, we
take U = (I — y?)c(x), which satisfies the boundary conditions on y = 4-1.
To make the trial solution satisfy the conditions on x = -1, we require that
¢(—1) = ¢(1) = 0. Then the associated functional (see Prob. 1.1.4) reduces to

ITu] = Ye(x)] = gfl (3 ¢ et — c) dx.

-1\5
The Euler equation of ¥ is obtained by using (1) and (3), and is given by
o S5 5
2¢7 73
Solvingthisequation and applying the boundary conditions ¢(—1) = ¢(1) =0,
we obtain 5
c(x):.l.(lﬁm)f)’ k =,\/-5_’
2 cosh k 2
1 cosh kx
=L (1 - k),
2( Y cosh k

1.3.1. Solve the above boundary value problem by Kantorovich’s method,
using the trial solution
U= — yHles(x) + co(x)y?).
Compare with the result of the Ritz approximation obtained in Prob. 1.2.7.
Ans.
cosh o, x

— 0.0156 ——,
cosh a_ cosh a,

&ix) ~ —]5 +0.516 oshe-x

cosha_x | cosh a+x)
cosh a_ cosh «,

where a, = (14 4 \/B—S)W are the roots of the characteristic equation
€4 — 28E% + 63 = 0 (see [11], p. 317).

co(x) ~ 0.114(——
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1.3.2. Solve the above boundary value problem by Kantorovich’s
method, using the trial solution

U= Z ci(x)cos (j + §)ry.
=0

Verify that this yields the infinite series representation of the exact solution.
Ans.

(x) = (— 1) 37 — _S[I_M}’ i=1,2,...
¢(x) = (=127 — b cosh (J — 3)m Y

(see [11], p. 320).

1.3.3. Use Kantorovich’s method to solve the clamped rectangular plate
problem, i.e., A%« = 1 in the rectangle |x| < a, |y| < b, with boundary con-
ditions u = u,, = 0 on the edges of the rectangle. Use U = (y2 — b?)%c(x)
as a trial solution.

Ans.
24c¢(x) = A cosh «f cos B + Bsinh £ sin € + 1,

where § = x/b, A = d,/dy, B = d,|d,,
dy = B sinh ar cosh ar 4- o sin Br cos Br,
—d, = «a cosh ar sin fr + B sinh ar cos Br,
d, = o sinh ar cos Br — B cosh ar sin Br,
r=alb, « ~ 2.075 and B ~ 1.143 (see [11], p. 322).

1.3.4. Use Kantorovich’s method to obtain an approximate solution of
A%y = 0 on the semi-infinite strip 0 < x < oo, |y| < 1, subject to the follow-
ing boundary conditions:

Ug(x, £1) = uy(x, £1) =0, u,,(0,y) =)»*— %, u,0,y) =0,

limu,(x, y) = hm uw(x y) = O uniformly in y.

Use the trial solution

U= (1 _1 Yz) C(X)

(note that U satisfies the boundary conditions on y = +1).
Ans.

c(x) = e‘“'(cos Bx + g sin Bx),

where y = a + Bi ~ 2.075 + 1.143iis a root of y* — 6y + &2 = 0 (see [10]).



404 SUPPLEMENT

2. Related Methods

The application of the Ritz method to the solution of boundary value
problems requires a variational principle. However, in some problems there
is no such principle, while in others, it is difficult to determine the proper
functional or cumbersome to evaluate the integrals needed in the Ritz method.
Thus, in this section, we shall discuss three procedures for obtaining approxi-
mate solutions which do not require a variational functional, although they
lead to approximations related to those obtained by the Ritz method.

For simplicity, consider the following boundary value problem involving
a single function u(x):

Lu=f for xinD, Bu=g for xonC. (15)

Here L is a differential operator defined in a domain D, B is a boundary
operator defined only on the boundary C of D, and f and g are prescribed
functions. Thus Bu = g is the boundary condition for the single differential
equation Lu = f.

As in the Ritz method, we seek an approximate solution of (15) of the form

u = U(x;¢),

depending on n parameters ¢ = (cy, €y, - . . , ¢,). We shall assume, unless it
is otherwise specified, that ¢ is independent of x. In general, the approximate
solution U does not satisfy the differential equation and the boundary con-
dition, and in fact

LU — f=e(x;¢) for xinD,

(16)
BU — g = E(x;¢) for xon C,

where e and E, called the interior error and the boundary error, are algebraic
functions of x and c. If ¢ is a function of one independent variable, then e will
be an ordinary differential operator acting on ¢, and E will contain initial or
boundary conditions for ¢. If the function U is selected so that E = 0 for all
x on C, the procedure used to determine c is called an interior method, while
if e = 0 for all x in D, the procedure is called a boundary method.

We wish to determine ¢ so that the errors are, in some sense, as small as
possible. Essentially, each of the methods described below amounts to
ascribing a definite meaning to the term “small.”

2.1. GALERKIN'S METHOD [7]

In Galerkin’s method, the n parameters are chosen to make the errors
orthogonal to a set of »n independent functions w!(x), w¥(x), ..., w*(x),
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usually taken to be orthogonal. This gives n conditions of the form

fD e(x; e)wi(x) dx + fc E(x;cw'(x)ds =0, j=1,2,...,n (17

where ds is an element of area on C. These are n algebraic equations for
determining the n parameters c. In fact, the equations are linear if L and B are
linear operators and U is chosen in the form

U=u'+ D ci, (18)
i=1

as is customary in practice. The interior Galerkin method® corresponds to
choosing u® and &, j = 1, 2, .. ., n to satisfy the inhomogeneous and homo-
geneous boundary conditions, respectively. In the applications, it is custom-
ary (but not essential) to set w = @, j = 1,2, ..., n, and we shall do so in
all the problems that follow. If, as n — co, the w’ form a complete set of
functions, then e — 0 as n — oo (being orthogonal to every function of a com-
plete set). Some convergence properties of Galerkin’s method are discussed
in [12].

Practical selection of the functions # and w' is governed by the same
considerations as in the Ritz method, i.e., they should make evaluation of
the integrals in (17) easy and they should be sufficiently dissimilar (say
orthogonal) to lead to a “well-conditioned” system of algebraic equations.

If the boundary value problem (15) can be derived from a variational
principle, then, in many cases, it can be shown that Ritz’s method coincides
with Galerkin’s. If the parameters c; in (18) are permitted to be functions of
one variable, we obtain the Galerkin-Kantorovich method. The conditions
(17) then give ordinary differential equations and boundary conditions for
determining c.

2.1.1. Given the differential equation (3) and the boundary conditions
(2), with uy = u; = 0, show that the Ritz and Galerkin methods lead to the
same system of algebraic equations (12) for determining the coefficients c.

Hint. Use integration by parts.
2.1.2. Given the differential equation

(auz)z + (buy)y —cu :f

(see the answer to Prob. 1.1.6) and the boundary condition ¥ = 0 on C, show
that the Ritz and Galerkin methods lead to the same system of algebraic
equations for the coefficients c.

® The expression Galerkin’s method conventionally denotes the interior Galerkin
method.
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2.1.3. Solve Prob. 1.2.3 by Galerkin’s method without transforming
Bessel’s equation into the form (3). Compare with the exact solution, and
also with the Ritz approximation using the same number of parameters.

2.1.4. Use Galerkin’s method to obtain an approximate solution of the
boundary value problem
W'+ xu +u=2x u0) =1, u(l) =0,
choosing a trial solution of the form
U= (1—x)(1 4 c;x + c3x% + c3x3).
Ans.
g~ —0209, c,~ —0.789, ¢, ~ 0.209

(see [13], p. 115).
2.1.5. Solve Prob. 1.2.4 by Galerkin’s method, using the same trial

solution. Verify that ¢; and ¢, satisfy the same algebraic equations as in the
Ritz method.

2.1.6. Use Galerkin’s method to solve the boundary value problem
u™® 4oy =1, u(0) = u"(0) = u(l) = u"(1) = 0,
choosing a trial solution of the form
U = ¢, sin tx + ¢, sin 3mx.
= 4n Y (rt + 1)L, ¢, = 4[3n(81x=t 4 1)]?
(see [6], p. 233).
2.1.7. Solve Probs. 1.2.7 and 1.2.12 by Galerkin’s method, using the same

trial solutions. Verify that the coefficients c; satisfy the same algebraic
equations as in the Ritz method.

Ans.

2.1.8. Use Galerkin’s method to solve Prob. 1.2.9, choosing the following
trial solutions which satisfy the (natural) boundary conditions:
a) U=c[9 — 3(x* + ¥ + x¥H?];
b) U= a9 — 3(x* + )% + x¥7]
+ c2[30 — 5(x2 + y?) — 3(x* 4 y%) + x¥(x? + yH)].
Ans.
5
a) c = 5 ; b) 10%; ~ 73.3, 10%, ~ 5.38
(see [1], p. 413).

2.1.9. Use the Galerkin-Kantorovich method to obtain an approximate
solution of the heat equation u,, = u, in the semi-infinite strip 0 < x < 1,
t > 0. The boundary and initial conditions are

u(0, t) — u,(0, 1) — u,(1,¢) =0, t>0,
u(x, 0) = 1, 0<x<1,
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and u must remain bounded as  — c0. Use a trial solution of the form
2 3
U= cl(t)(l + x — x;) + cz(l)(l + x — x?),
which satisfies the boundary conditions but not the intial conditions.
Ans.
¢,(t) ~ 0.586¢~0-740! | 2 45¢-11-8¢ c(1) &~ 0.144¢70:740t — 2 30g11-86¢

(see [6], p. 372).
Hint. Inapplying (17), set the area integral over the strip and the boundary
integral over the initial line separately equal to zero.

2.1.10. Use the Galerkin-Kantorovich method to obtain an approximate
solution of the wave equation u,, = u,, in the semi-infinite strip 0 < x < 1,
t > 0, where the boundary and initial conditions are

u(0,1) = u(l,1) =0, t>0,
u(x, 0) = x(1 — x), u(x,0)=0, O0<x< 1.

Use a trial solution of the form

U= x(1 = x)[ey(t) + eo()x(1 — x)].
Ans.
¢, ~ 0.804 cos at + 0.197 cos B¢,

cy &~ 0.911(cos az — cos Bt),

where a ~ m, B &~ 10.11 (see [6], p. 375).

22. COLLOCATION

Of all the approximation procedures under consideration, the collocation
method is perhaps the simplest to apply. In this method, the n parameters are
determined by requiring the errors in (16) to vanish at n points xy, X, . . . , X,
in D + C called the collocation points. Of course, these points must be chosen
so that the resulting system of equations has a solution, say ¢%(x;). The ideal
collocation points are those for which ¢%(x;) minimizes the maximum error
forall x in D 4 C. For example, if we define

E(x;) = max [e(x; )l + max | E(x; (x))l, (19)

then as the collocation points we should take the values x;, j = 1,2,...,n
for which & is a minimum. However, no general procedures are presently
available for a priori selection of points satisfying this criterion; in fact, they
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are usually determined by intuition or by practical considerations such as
computational simplicity. Only interior or boundary points need be con-
sidered as collocation points, depending on whether interior or boundary
collocation is employed.

A disadvantage of collocation is that the approximate solution may vary
considerably with the position of the collocation points. One way to minimize
this is to take a sufficient number of points and distribute them over the
domain and the boundary.

An obvious generalization of the collocation method is to allow the
parameters to be functions of one variable, say x. Then the errors will
depend on ¢(x) and its derivatives, and collocation may yield a system of
differential equations and boundary conditions for determining the param-
eters.

2.2.1. Solving Prob. 1.2.2 by interior collocation, using U = cx(1 — x)
as a trial solution and the following collocation points:
a) x=4 b)x=14 o x=1i
Compare with the Ritz approximation and the exact solution. In each ease,
evaluate

& = max |e|
0<z<1

[cf. (19)]. Does the approximation with smallest & have the smallest deviation
from the exact solution?

Ans.

E ; © ¢ :IE
7 29
2.2.2. Solve Prob. 1.2.5 by interior collocation, using
U= (1— x¥(c; + cox* + c3x%)
as a trial solution and the following collocation points:

4
=—: b)c=
a) ¢ 55 ) ¢

a) x=14,% (setc;=0); b) x=14%,43.
Ans.
a) 6 ~ 0.929, ¢, ~ —0.0512; b) ¢; ~ 0.932, ¢, ~ —0.0341, ¢; ~ —0.0302
(see 1], p. 182).
2.2.3. Solve Prob. 2.1.6 by interior collocation, using the same trial

solution and x = §,  as collocation points. Compare with the approxima-
tion obtained by Galerkin’s method.

Ans.
=2+ 1027w+ 1), o= (V2 — 1)278lnt + 1)
(see [6], p. 233).
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2.2.4. Solve Prob. 1.2.7 for the square b = a by interior collocation, using
the same trial solutions. For the trial solution a, use x =y =0 as the
collocation point, and for the trial solution b, use the points x = y = 0 and
x =y = af2. Compare with the Ritz approximation and the infinite series
solution.

Ans.

1 25
P 2 . 2 — 4 —
d)ac—z, b)ac,—42, a‘c, o
(see [15], p. 437).

2.2.5. Use boundary collocation to solve Prob. 1.2.7 for the square b = a.
To select trial solutions, it is convenient to introduce polar coordinates

P + yz, 0 = tan™* 4 .
X
Then the function
2
U= _'5 + ¢, + ¢or* cos 40 + cgr® cos 86

is a solution of the differential equation. Determine the parameters c,, ¢,
and c;, using the collocation points

r=a,0=0, r=\/§§, tanﬁzé, r=y2a, 6=

N |

Compare with the solutions obtained by interior collocation (Prob. 2.2.4)
and by the Ritz method (Prob. 1.2.7). Also compare with the infinite series
solution (Prob. 1.2.8).

Ans.
¢, ~ 0.590a2, a’c, ~ —0.0924, abc, ~ 0.00254
(see [2]).
2.2.6. Use boundary collocation to determine an approximate solution
of Au = —2 where u = 0 on the boundary of a regular hexagon with sides

of length 2a/\/§ whose vertical sides lie on x = +a. As a trial solution, use

the function
2
U= — 'E + ¢; + cpr® cos 60 + cyr'? cos 126,

which solves the differential equation. Choose polar coordinates with respect
to the center of the hexagon, and use the collocation points

r=a, =0, ,._E’_ 6= r=l l—3a, tan(‘)=L

T
V3 6’ 2N 2 2J/3°

¢ ~ 0.541a%, a'c, ~ —0.0445, a'°c, ~ 0.00363
(see [2]).
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2.2.7. Solve Prob. 1.2.9 by interior collocation, using the trial solutions
of Prob. 2.1.8. For the one-parameter approximation, use the collocation
points

) x=y=0;, bx=y=4; c)x=y=4%

For the two-parameter approximation, use the collocation points

dx=3% y=% x=1 y=4
) x=4% y=4% x=i y=4
Compare these approximate solutions with those obtained by the Ritz and

Galerkin methods.

Ans.
) L b) ¢ : c)
= —, = — cC= —;
V=R 1 2
446 32
d) ¢, = g5z ~ 0,074, € = = ~ 0.00528;

e) 103%¢c; ~ 74, 10%, ~ S.15
(see [1], p. 411).

2.2.8. Solve Prob. 1.2.9 by boundary collocation, using the following trial
solutions and collocation points:

a) U=—}(*+ ) +e x=1, y=14

b) U=—i(x2+y2)+61+62(x‘—6x2y2+y4),
x=1, y=1% x=1, y=4

(Both trial functions are solutions of the differential equation.) Compare with
the results of Prob. 2.2.7.

Ans.
a) ¢ ~ 0.813; b) ¢, ~0.821, c,~ —0.0144

(see [1], p. 413).

2.2.9. Use boundary collocation to solve Prob. 1.2.14 for the square
b=a. Let r and 6 be polar coordinates with respect to the center of the
square, and use the trial solution

4
U= —éz + ¢, + car® + (cgr* + c4r®) cos 49 + (czr® + cg'°) cos 86

and the collocation points

Yy =

FNE

/
2 0=0 r=212, tanﬁ:-l—
2 4 2

faln
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Verify that U is a solution of the differential equation. Compare with the
approximate solution obtained by the Ritz method in Prob. 1.2.14.

Ans.
¢, ~ 1.296F, ac, ~ —2.256F, a‘c; ~ —0.3603F,

abc, ~ 0.3078F, abcy ~ 0.01074F, a'®cg &~ 0.00207F,
where F = fa'/64 (see [2]).

2.3. LEAST SQUARES

In the method of least squares we seek an approximate solution in the
form u = U(x; c), as before, but the parameters ¢ are determined to minimize
the “mean square error” of the errors e and E in (16), i.e.,

fD w(x)éi(x; ¢) dx + fc' Q(x)E*(x; ¢) ds = minimum, (20)

where the weighting functions w(x) > 0 for x in D and Q(x) > 0 for x on C
are at our disposal. Usually it is convenient to take w = Q =1, and we
shall do so in the problems below. Necessary conditions for the mean square
error (20) to be a minimum are obtained by differentiating (20) with respect
to each c;:

f e—dx+fQE——ds—0 j=12,...,n. 21)
D

This gives n algebraic equatjons for determining the n parameters c; by the
method of least squares.

The method of least squares is usually less convenient than collocation,
since the additional integrals in (21) may be difficult to evaluate. On the other
hand, the method of least squares is more systematic than collocation, since
there is no arbitrariness corresponding to the selection of collocation points.

2.3.1. Solve Prob. 1.2.2 by interior least squares. As the trial solution,
use the function

U=cx(1 —x)+ cx(1 — x2%),

which satisfies the boundary conditions. Compare the results with the Ritz
and collocation approximations (see Prob. 2.2.1).

Ans.
4448 c 413
101 - 2437° 27 2437

Cl:

(see [1], p. 220).
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2.3.2. Use interior least squares and the trial solution
U= c(x*— a®)(y* — a?
to solve Prob. 1.2.7 for the square 6 = a. Compare the resulting approxima-
tion with those obtained by the Ritz and collocation methods (Probs. 1.2.7
and 2.2.4). Also compare with the infinite series representation of the solu-

tion obtained by separation of variables.
Ans.

(see [15], p. 436).

2.3.3. Solve Prob. 1.2.9 by interior least squares, using the trial solution
U=c[9 — 3(x* + y%) + x*] which satisfies the boundary conditions.
Compare with the approximations obtained by the Ritz, Galerkin and
collocation methods (Probs. 1.2.9, 2.1.8 and 2.2.7).

Ans.

15
‘= Tel

(see [1], p- 414).

2.3.4. Solve the equation Au = x2 — 1 in the rectangle |x| < 1, [yl < }
by the boundary least squares method, where u = 0 on the edges of the rec-
tangle. Use the trial solution

x2 x2 2 2\ 1 4 2. 2 4
=S\ 1) Fal =) 4 el —6xyt 4y,
which is a solution of the differential equation.
Ans.
16643 848
€= ——", Cy = ——
60 - 2443 2443

(see [1], p. 417).
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