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AUTHORS’ PREFACE

The aim of the present book is to ‘help the reader ac­
quire the proficiency needed to successfully apply the 
methods of mathematical physics to a variety of prob­
lems drawn from mechanics, the theory of heat conduc­
tion, and the theory of electric and magnetic phenomena. 
A wide range of topics is covered, including not only 
problems of the simpler sort, but also problems of a 
more complicated nature involving such things as 
curvilinear coordinates, integral transforms, certain 
kinds of integral equations, etc. The book is intended 
both for students concomitantly studying the cor­
responding topics in courses of mathematical physics, 
and for research scientists who in their work find it 
necessary to carry out calculations using the methods 
described here. We also think that quite apart from its 
value as a tool for acquiring technique, the book can 
also serve as a handbook, especially in view of the fact 
that answers to the problems are included.

A rather solid background in applied mathematics is 
needed to profit from the book in its entirety. However, 
most of the problems appearing in Chapters 2 to 5 will 
be accessible to those who have taken only the usual 
first course in methods of mathematical physics. Chap­
ters 6 to 8 are more specialized, and presuppose some 
familiarity with special functions, integral transforms, 
integral equations, and so on.

To make the book easier to use, each section begins 
with a brief introduction describing its contents and 
presenting a certain amount of relevant background 
information. However, it is not claimed that this in­
formation is complete in any sense, and the reader



Vl AUTHORS* PREFACE

desiring further details must consult the literature, e.g., 
the books and monographs cited at the end of each 
chapter.

The majority of problems in this collection are ac­
companied by hints, facilitating the choice of meaning­
ful methods of solution. In addition, certain problems, 
whose numbers are equipped with asterisks (e.g., *52, 
*148, etc.), are solved in detail in a special section at 
the end of the book. The problems singled out in this 
way have been selected either because they illustrate the 
application of certain specific methods, or because of 
their special difficulty or particular importance in the 
applications. Because of the applied character of the 
book, we restrict ourselves to formal solutions, whose 
rigorous justification can be supplied by the interested 
reader.

In compiling the collection, we have consulted not 
only the classic works on mathematical physics, but 
also a number of journal articles. Material accumulated 
during years of teaching and research in the Department 
of Mathematical Physics at the Leningrad Polytechnic 
Institute, as well as work done in connection with in­
dustrial projects, plays a role in the material presented 
here.

It would be impractical, and in many cases impossible, 
to cite the original source where a given problem was 
solved for the first time. Thus references to the literature 
have been confined to cases we find particularly relevant.

We would like to take this opportunity to thank Prof. 
G. A. Grinberg for many valuable suggestions made 
in the course of writing the book.

N. N. L.

I. P . S.

Y. S. U.



TRANSLATO R’S PREFACE

The present edition differs from the Russian original 
in various respects, of which three merit particular 
mention:

1. The Bibliography has been expanded and up­
dated. For example, the original sources of works 
translated into Russian have been tracked down, 
all references have been equipped with titles, further 
references (especially, later editions and English 
translations) have been added, and so on. As in 
other volumes of this series, the system of references 
is in “letter-number form.” Thus L10 refers to the 
tenth paper (or book) whose (first) author’s surname 
begins with the letter L, where the entire Bibliog­
raphy is arranged in lexicographic order, and 
chronological order as well, whenever there are 
several papers by the same author.
2. Working from an extensive list of errata sent 
me by the authors, I have corrected numerous 
misprints and mistakes present in the Russian edi­
tion. I am particularly grateful for their help, since 
the task of eliminating errors from a book of this 
type (consisting primarily of problems and answers) 
is both imperative and one which only the authors 
themselves can perform in finite time! The authors 
have also been kind enough to answer a number of 
specific questions that arose in the course of the 
translation.
3. It was felt that the English-language edition 
would benefit greatly by the addition of material 
on the approximate solution of problems of mathe­
matical physics, since the emphasis of the Russian

vii
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edition is on exact solutions. This led to the writ­
ing of a Supplement on variational and related 
methods by Professor Edward L. Reiss of the 
Courant Institute of Mathematical Sciences of New 
York University. The Supplement is independent of 
the rest of the book, even to the extent of having its 
own references.

r . a. s.
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PROBLEMS





1

DERIVATION OF EQUATIONS AND  

FORMULATION OF PROBLEMS

Chapter 1 is devoted to problem material on the derivation of the 
equations of mathematical physics and the formulation of appropriate initial 
and boundary conditions. It also serves as a convenient place to list the 
basic equations appearing later in the book. Throughout, we assume that the 
reader is familiar with the physical laws underlying the mathematical 
formulation of the problems which arise in various branches of physics.

The chapter consists of three sections devoted in turn to problems of 
mechanics, heat conduction and the theory of electric and magnetic phe­
nomena. Each section starts with the basic equations governing the corre­
sponding set of problems, with appropriate references to sources where the 
derivations can be found. Special attention is devoted to the formulation of 
problems of electrodynamics, since this subject is inadequately covered in 
the available literature.1 * 3

I. Mechanics

This section contains problems on the derivation of equations of motion 
and formulation of initial and boundary conditions for vibrating strings, 
membranes, rods and plates, as well as some examples pertaining to the 
statics of deformable media. It will be assumed that the reader has already

1 Those particularly interested in mathematical aspects of the formulation of physical
problems can find relevant material in C5, G l, LI, P2, SI and SI3. (The reference scheme 
is explained in the Translator’s Preface.)

3



4  DERIVATION OF EQUATIONS AND FORMULATION OF PROBLEMS

encountered the basic equations in a first course on mathematical physics.2 
Thus we shall merely list the equations concisely, at the same time explaining 
the notation to be used in the book.

1. The equation of a vibrating string is

d2u 1_ d^u _  q(x, t) 
dx2 ~  v2 dt2 ~  ~  T 9

where u(x, t) is the displacement of the point of the string with abscissa 
x at the time t, q(x, t) is the external load per unit length, T is the tension, 
and p is the linear density.

2. The equation for longitudinal oscillations of a rod of constant cross 
section is

d2u 1 d2u 
dx2 ~  ?  dt2

where u(x, t) is the displacement of the cross section of the rod with 
abscissa x at the time /, E is Young’s modulus, and p is the density.

3. The equation for transverse oscillations of a rod (beam) is

d*u 1 d2u q(xt t) 2_ j EJ
5 x 4 n4 dt2 EJ 'V p*S

where u(x, 0  is the displacement of the points along the midline of the 
rod, q(x, t) is the external load per unit length, E is Young’s modulus, 
/ i s  the moment of inertia of a transverse cross section, p is the density, 
and S is the cross-sectional area.

4. The equation of a vibrating membrane is

d2u | d̂ u _  J_ d\i_ __ q(x, y, t) 
dx2 +  dy2 ~  v2 dt2 “  T

where u(xy y, t) is the displacement of the point (*, y) of the membrane 
at the time /, q(x, y , t) is the external load per unit area, T is the tension 
per unit length of the boundary of the membrane, and p is the surface 
density.

5. The equation for transverse oscillations of a thin elastic plate is

A2u +  1  ^  =  q(x’ y> b2 = I —
b* dt2 D ’ V ph ’ 2 *

2 See S6 (Vol. II), SI4, T1 and T2. Concerning the derivation of the equations of
vibrating plates, see T4.
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where w(x, t) is the displacement of the point (x, y) of the midplane of 
the plate at the time f, q(x>y, t) is the density of the external load, D 
is the flexural rigidity, h is the thickness, p is the density, and

A =  —  +  —  
dx2 By2

is the two-dimensional Laplacian operator.

The above equations lead to corresponding equations for static 
deflections, if we regard the external load q and the unknown displace­
ment u as independent of the time t. For example, the equilibrium 
equation for the membrane is

6.
Sht tfu  =  _  q(x, y) 
dx2 dy2 T ’

:the static deflection of the plate satisfies the equation

A’u = 2 ^ > ,
D

and so on.

Among the other equations governing the statics of elastic bodies 
which will figure in this book, we cite the familiar equation

8' Pu ?u __
dx2 +  dy2 ~  ’

for twisting of a prismatic rod, where u(x, y) is the torsion function.

We now give some problems on the formulation of initial and boundary 
conditions for these equations, and also sortie problems on the derivation of 
other differential equations.

1. Describe the initial and boundary conditions for a vibrating string with 
fixed ends (0 < x  < /), which is stretched at the point x =  c and time / =  0 
to a height /?, and then released without initial velocity.

Ans.
fhx 0 < x <  c,

h(l -  x) , C <  X <  /,
l - c  

«Lo =  « L i =  °-

=  0;«|(=0 =  fix )  =
du
Jt t=o
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2. A concentrated load of mass m0 is fastened at the point x =  c of a 
string 0 < x < / of length /. Find the equations describing vibrations of the 
string with arbitrary initial conditions, assuming that the ends of the string 
are fastened.

Ans.
k ,  o <  x <  c, d \

l u 2, C <  X <  / ,  d x 2

with initial conditions

u\t=0 = f  (x),

V

1
2 dt2 0 =  1,2),

3f
=  £(*)><=0

and boundary conditions

l̂la=0  ̂2 f cc= i 0, l̂jcc=c 2̂) cc=c» 'dU2 
. dx dx/ x=c

m0 d2u 
T dt2 x~c

3. Formulate initial and boundary conditions for the problem of longi­
tudinal oscillations of a rod in the following special cases:

a) A rod of length / is clamped at the end x =  0 and stretched by a force F 
applied to the other end; at the time t =  0 the force is suddenly discontinued;

b) A tensile force F(t) is applied at the time t =  0 to the end x =  / of a 
cantilever in equilibrium;

c) A cantilever clamped at the point x =  0, with a load of mass M0 at the 
free end x =  /, undergoes longitudinal oscillations subject to arbitrary initial 
conditions.

Ans.

a) u|t=0 = Fx
E S ’

b) wl(=0 =  0,

c) wlf=o = /(x ) ,

du =  0 , u\x=0 = 0, du =  0;
dt t=o dx x=1

du =  0 , u\x=0 = 0, du
dt <=o dx X— 1! ES ’

du =  g(x), wl*=o =  0,
du _  M0 d2u

dt <=0 dx x=lr  ES dt2

4. Derive the differential equation for longitudinal oscillations of a thin 
rod of variable cross section S  =  iS'(x). As an example, derive the equation 
for oscillations of a conical rod.

Ans.
1 d

S(x) dx
1 ^  = 0 
v2 dt2 ’
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5. Derive the equation for torsional oscillations of a shaft of circular 
cross section.

Arts.
= 0,pe  _  j_a^}

dx2 v2 dt2
where 0(x, t) is the angular displacement of the cross section x  relative to the 
equilibrium position, v =  VG/p, p is the density, and G is the shear modulus. 

Hint. The torque at the cross section x is given by the expression

M =  GJ — ,
dx

where J  is the polar moment of inertia of a cross section of the shaft.

6. Formulate initial and boundary conditions for the problem of torsional 
oscillations of a shaft of circular cross section and length /, where the end 
x  =  0 is clamped and a disk-shaped mass with moment of inertia J0 is attached 
to the other end. At the time t = 0, the disk is rotated through a given angle 
a and then released without initial velocity.

Ans. v HH
0,0|(=o =  « -  ,

e U  =  o.

90
dt
90
dx

Jo 3̂ 0
GJ dt2

7. A cantilever of length I is clamped at one end x =  0 and loaded by a 
force F at the other end. At the time t =  0, the action of the force is suddenly 
discontinued. Formulate initial and boundary conditions for the corre­
sponding oscillations.

Ans. Initial conditions

wL_o = ----- (3/x2- — x3),
1 6EJ

du
dt

=  0,

and boundary conditions 
du 
dx

u L=0 = =  0, HFu
dx2 dx3

0.

8. Describe initial and boundary conditions for the problem of free 
oscillations of a disk-shaped plate with clamped edge, whose initial deforma­
tion is due to a concentrated force F applied at the center of the disk.

Ans.

—— (a2 — i-2V
dt

du

I Fr\  r tu ,_ o  = -----In -  +
1 8 -kD a 16tzD

0 ;
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Hint. To determine the static deflection due to the concentrated force, 
consider the force as the limiting case of a load of density Fjizz2 uniformly 
distributed over a small disk of radius e.

9. Show that the problem of the deflection of a plate with a simply 
supported polygonal boundary reduces to the solution of Poisson’s equation

Aw = f(x , y),

with boundary condition w|r  =  0 ( /is  a known function).
Hint. Note that in the present case, the boundary conditions on the 

supported edge can be written in the form u\r =  0, Aw|r =  0.

10. Show that the velocity potential for the three-dimensional flow of an 
ideal incompressible fluid containing no sources is described by Laplace’s 
equation

Am =  0.

Hint. Use the condition
f v • n dS =  0
Js

(v is the vector describing the velocity of fluid particles at a given point, S is 
an arbitrary closed surface inside the flow, and n is the exterior normal to the 
surface S ) and the condition

v =  —grad m

for potential flow.

11. Formulate mathematically the problem of the flow of an ideal fluid 
past an object bounded by a surface .S', where fluid emanates from a point 
source of strength m located at a point M0 in the region exterior to S.

Ans. The problem reduces to finding a solution of the equation

Am =  0

which is regular (i.e., has no singularities) in the region exterior to S, except at 
the point M0. In a neighborhood of M0,

M m
Aizp |MM0|

+  a regular function

where M  is a point near M0 and p is the density of the fluid (\MM0\ denotes 
the distance between M  and M0). The desired function u must satisfy the 
boundary condition

du
dn

=  0



PROB. 12 DERIVATION OF EQUATIONS AND FORMULATION OF PROBLEMS 9

and the condition 

at infinity.
u = 0 ( R 1), R —► oo

2. Heat Conduction

As proved in courses on mathematical physics (see SI, Tl), the flow of heat 
in a body of thermal conductivity k , specific heat c and density p is governed 
by Fourier's equation

A T _ a ? 2: _ s
k dt k

where T(M, t) is the temperature at the point M , and Q is the density of heat 
sources within the body.3 The boundary conditions to be satisfied on the 
surface of the body (or its parts) depend on the particular problem under 
consideration. Most often it is assumed that the surface of the body has a 
given temperature =  /(P , /), where P is a point of the surface S, or that
the body radiates heat into the surrounding medium according to Newton's 
law, which states that the amount of heat radiated by a unit area of the 
surface per unit time is proportional to the difference between the temperature 
of the surface and that of the surrounding medium. In the latter case, the 
boundary condition takes the form

where d/dn indicates differentiation with respect to the exterior normal to S, 
7med is the temperature of the surrounding medium, and h is the heat 
exchange coefficient or emissivity. Without loss of generality, we can assume 
that 7med =  0; this assumption is made in all the problems involving heat 
conduction except Prob. 155.4

We now give a few problems on the formulation of initial and boundary 
conditions for the equation of heat conduction (and for the related diffusion 
equation).

12. Let the temperature of a conductor in the form of an infinite cylinder 
of radius a be initially the same as that of the surrounding medium. Suppose 
that starting from the time t =  0, the conductor is heated by a constant

3 The density of heat current (i.e., the heat flux) is described by the vector

q — —k grad T.

4 Examples of other boundary conditions encountered in the applications are given in 
Probs. 365, 367 and 370.



10  DERIVATION OF EQUATIONS AND FORMULATION OF PROBLEMS PROB. 13

electric current releasing an amount of heat Q per unit volume of the con­
ductor. Give a mathematical formulation of the corresponding problem of 
heat conduction, assuming that the heat exchange at the surface of the con­
ductor obeys Newton’s law.5

Ans. The temperature T(r, t) satisfies the equation

_ Q  x = kt
r 9 r \  dr/ Bt k ’ cp ’

with initial condition
T|t=o =  0

and boundary condition

13. A homogeneous sphere of radius a is heated for a long time by heat 
sources uniformly distributed throughout its volume with density Q. Write 
the equations which describe the cooling of the sphere after the sources are 
turned off, assuming that the heat exchange between the surface of the sphere 
and the surrounding medium, during both the heating and cooling, obeys 
Newton’s law.

Ans.

14. Two slabs of thicknesses ax and a2i made from different materials and 
heated to temperatures T* and are put into contact with each other at the 
time t — 0. Write the equations governing the resulting process of tempera­
ture equalization, assuming that the free surfaces are thermally insulated from 
the surrounding medium.

Ans.

d %

dx2
Cl Pl ST1 
ki Bt

(0  <  x  <  aj).
B2T2 _  C2P2 bt\  
dx2 k2 Bt

(a1 < x < ax + a2)y

with initial conditions
T< I _ T->0 rp I   rpO

l | i = 0  —  1 1> i 2 |i=0  —  1 2>

6 It is recommended that the problem be solved directly from underlying physical 
principles, without regarding Fourier’s equation as known.
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and boundary conditions

d j\
dx ~  l̂\x=ai — ^21x=oi:cc=0

k IB
kl dx

. dTi d]\
x=ai 2 dx x=ai dx

=  0.
x=ai+d2

15. A nonuniformly heated body in the form of a circular ring of radius a 
with a small cross section cools by giving off heat from its lateral surface. 
Write the equations describing the corresponding process of temperature 
equalization, assuming that the temperature drop inside the ring can be 
neglected and that the surface cooling obeys Newton’s law.

Ans.
1 d2T dT hp kt
2 -s 2  ̂ ^ 9a d<p ot S cp

where p  is the perimeter, S  the cross-sectional area and h the heat exchange 
coefficient. The temperature, which must be a periodic function of the angular 
coordinate cp, satisfies the initial condition

T \^ 0 = /( ? ) ,
where /  is a given function.

16. Show that the concentration C(x, y , z, t) of a substance diffusing in a 
gas or liquid obeys the differential equation

A C - i ^ - 2 ,
D dt D

where Q is the source density of the diffusing substance and D is the diffusion 
coefficient.

Hint, Starting from Nernst’s law q =  —grad C (where the vector q is the 
density of flow of the diffusing substance), write a conservation equation for 
an arbitrary volume element.

3. Electricity and Magnetism

An important class of problems of mathematical physics involves integra­
tion of the differential equations arising in various branches of electromagnetic 
theory. Assuming that the reader has previously encountered this subject 
(see G5, J6, PI), we shall regard the following basic equations as known:

1. The equations of electrostatics

Am =  — , E =  —grad u,
£

where u is the potential of the electrostatic field E, p =  p(M) is the 
volume density of charge at the point M , e is the dielectric constant of 
the medium, and A is the Laplacian operator.
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2. The equations

A u =  -  2
a

— ct grad u, (i)

for the distribution of d-c current density inside a homogeneous 
conductor, where u is the potential of the current field, j is the current 
density vector, Q = Q(M) is the volume density of current sources (in 
particular, Q may vanish), and a is the conductivity.

3. The equations

AA =  -  ^  j.(e), H =  -  curl A 
c (A-

for the magnetic field due to d-c currents, where A is the vector poten­
tial of the magnetic field H, the vector j(e) is the density of the (external) 
currents producing the magnetic field, p. is the magnetic permeability 
of the medium, c is the velocity of light in vacuum, and A is the 
Laplacian operator.6

4. Maxwell's equations
e 9E , 4.7r<r . 4ttcurl H =  - — +  —  EH-----j
c dt c c

i(0

curl E = (x9H 
c dt

divE =  ^ „
e

div H =  0
for the electromagnetic field in a homogeneous isotropic medium, 
where E and H are the electric and magnetic field vectors, e, p. and ct 
are the dielectric constant, the magnetic permeability and the conduc­
tivity of the medium, c is the velocity of light, and p and j(e) are the 
charge and current densities producing the field.7

8 The components of the vector A A in a Cartesian coordinate system are A Ax, A/4V 
and A Az. To calculate the components of the vector A A in other coordinate systems, one 
should use the relation

AA =  grad div A — curl curl A.

Expressions for the components of AA in cylindrical and spherical coordinates are given 
on p. 389-390.

7 It should be noted that if j(fl) is given, then p cannot be chosen arbitrarily, but must 
satisfy the differential equation

d o  47TCT— + ----
dt e

—div j(a)

implied by the first and third Maxwell equations.
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If we use the relations

T¥ 1 i A „  , 1 dAH =  -  curl A, E =  —grad u --------
(x c dt

to introduce the vector and scalar potentials A and m,8 the problem of deter­
mining the electromagnetic field reduces to integrating the system of equations

A a  5H: d2A 4tcct[jl dA _  .(e)
c2 dt2 c2 dt c *

. ep. d2u 4tz[lg du 47i p
u ~ 7 2~di2 ~~~cr  =  ~ T '

We now consider the mathematical formulation of various problems 
involving electric and magnetic fields (both static and variable), as well as 
some problems on transformations of the differential equations of electro­
dynamics which are useful in special cases.

17. Formulate mathematically the problem of finding the three-dimen­
sional electrostatic field between N  conductors of arbitrary shape at given 
potentials Vi (i =  1, . .  . ,  N).

Ans. In the region D bounded by the surfaces S{ (i =  1 , . . . ,  AO of the 
conductors, the potential u satisfies Laplace’s equation

Am =  0.

The boundary conditions have the form

where, in the case where the point at infinity belongs to Z>, these conditions 
must be supplemented by the requirement that at infinity the potential u 
approach zero uniformly in all directions.

Comment. If none of the surfaces St extends to infinity, then the products 
Ru and R2 grad u (where R2 = x2 +  y 2 +  z2) remain uniformly bounded as 
R -> oo. However, these conditions need not be included in the formulation 
of the problem, since the uniqueness of the solution is guaranteed by the 
above requirement that the potential u approach zero uniformly as R-+  oo.

18. A charge Q is placed at the point M0 = (x0, y 0i z0) near a conductor at 
potential K, bounded by a surface S . Formulate the corresponding problem 
of electrostatics.

* The quantities A and u are not independent, but are connected by the relation 

4 E|X d u  47TLL
div A H-----— H------ - u =  0.c at c
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Ans. The potential u satisfies Laplace’s equation at every point of the 
region surrounding the conductor, except at the point Af0, near which

u =  — +  a regular function, 
R

(R =  \M0M\ is the distance between the points M  and M0). Moreover, the 
potential satisfies the boundary condition u\s =  V and the condition that 

► 0 uniformly in all directions.

F ig u r e  1

19. A thin charged wire of charge q per unit 
length is placed inside a grounded cylindrical shell 
whose generators are parallel to the wire (see 
Figure 1). Formulate the corresponding two- 
dimensional electrostatic problem.

Ans. The potential u satisfies the two- 
dimensional Laplace equation

A d2u d2u A
i u = i ? + v “ 0

in the whole region D except at the point Af0, where the potential has a 
logarithmic singularity

u =  — 2q In R +  a regular function.

The boundary condition is u\r = 0.

20. Reformulate the preceding problem for the case where the charged 
wire is placed outside the conductor, and the total charge per unit length of 
the conductor is specified instead of its potential.

Ans. The boundary condition is now

(d/ds denotes differentiation along the tangent to the contour T), while the 
condition at infinity becomes

wjoo =  —2(Q +  q) In R +  a bounded function, 

where Q is the charge per unit length of the conductor.

21. Show that the problem of the current distribution in a thin conducting 
shell (see Figure 2) reduces to integration of the equation
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where u is the potential of the current distribution in the shell (j =  — ct grad u 
is the current density vector), a is the conductivity and h the thickness of the 
shell, j (ne) is the normal component of the density of current applied to the 
shell by using suitable electrodes, and A is the appropriate two-dimensional 
Laplacian, i.e.,

ds2 =  Hi da2 +  H\ dp2. J L r i/« e
HaH&ld<x\Ha d J  +  apWp ap /J

(ds is the element of arc length on the surface of the shell).
Hint. Average equation (1), p. 12 (giving the volume distribution of 

current) over the thickness of the shell.

n

22. Suppose an object of arbitrary shape, made of magnetic material of 
permeability p, is magnetized by being introduced into a homogeneous 
magnetic field H0 (see Figure 3). Formulate mathematically the correspond­
ing problem of magnetostatics.

Ans. If u is the potential of the magnetic field H (i.e., H =  —grad w), the 
problem reduces to integration of the equation

Am,. =  0, i =  1, 2,

with the boundary conditions

ul\s — M2|-S>
dui
dn

du2 
s on s

and the following conditions at infinity

—grad Mi|oo =  H0, is bounded.

Hint. It helps to keep in mind that in the source-free part of space, the 
magnetic field H satisfies the equations

curl H =  0, div H =  0,
which imply

H =  —grad w, Am =  0.
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23. The differential equations for wave propagation down a long trans­
mission line, with self-inductance L, capacitance C, resistance R and leakage

conductance G per unit length, take the form

du _  r dI i Rt
T * - l T, +  r ' ’

where u(x, t) and I(x, t) are the values of the 
voltage and current at the point x  at the time 
t (see Tl, p. 18). Formulate initial and 
boundary conditions for wave propagation 

along such a line, if at one end a constant voltage E is switched on in series 
with a lumped resistance R0, while the other end is terminated by a coil 
of self-inductance L (see Figure 4).

Ans.
M|f=o =  0, 4=0 =  0, 

e  =  «Uo +  «| *=! =  u

24. Show that if j(e) =  0 and p|<==0 =  0, then the differential equations for 
the electromagnetic potentials A and u can be satisfied by setting

A =  K OT +  4I f ij n i
c dt c

u = —div II,

.where II is the Hertz vector satisfying the equation
£(jl d2n  47ra(ji an

V~~a^= ’
Derive expressions for the vectors E and H in terms of the vector n .  

Ans.
e

A n  -  —  
e

H =  - curl
c ( f E =  curl curl n .

Hint. According to footnote 7, p. 12, it follows from j(e) =  0 and 
p|<=0 =  0 that p =  0 for arbitrary t.

25. Verify that if j(e) =  0 and p\t=Q = 0, then the vectors E and H satisfy 
the same differential equation as the Hertz vector, i.e.,9

AE -
e[x 92E 47T(JLC7 3E

c2 dt
e[x 92H 4tt[xct 9H
c2 9/2 c2 dt

=  0,

=  0.

9 In some problems it is more convenient to start from these equations than from the 
equations for the electromagnetic potentials or for the Hertz vector.
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26. Show that for steady-state harmonic oscillations of frequency co, 
in which the time dependence of the quantities defining the electromagnetic 
field (i.e,, the vectors E and H, the charge and current densities which are the 
sources of the field, etc.) is characterized by a factor eiCi\  Maxwell’s equations 
(see p. 12) take the form

AA* +  fc2A* =  - ^ j w *,
c

H* =  -  curl A*, E* =  — —  (curl curl A* — ,
(i. ck \ c I

where / *  denotes the complex amplitude of a scalar or vector function / ,  
and10

=  I m t < 0

Comment. The importance of this problem consists in showing that only 
one unknown function (rather than two) is needed to calculate the electro­
magnetic field in the case of harmonic time dependence.

27. Starting from Maxwell’s equations for the case of steady-state 
harmonic oscillations, deduce the corresponding differential equations for the 
two-dimensional (planar) electromagnetic problem, where

Ans.

r = r  =  0, y),
E*x =  E* =  0, E* =  E(x, y),

H*x = Hx(x, y), H* =  Hv{x, y), H* =  0.

A E + k* E = ^ j ,  
c2

c dE  c_dE
pico dy * v (ju'co dx

Hint. For harmonic time dependence, the connection between j (e)* and 
p* is given by

P* = ^ d i v . r ,

which in the present case implies p* =  0.

10 For example, if j(c) =  ĵ tf) sin cor, where )lQe) is real, then the actual values of E and 
H are given by the imaginary parts of the expressions E*ei0it and
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28. Derive the equations for steady-state harmonic electromagnetic 
oscillations for the case of axial symmetry, where

;<«>*=,(«)* =  o, jjf)* = j(r, z)
E* =  Er(r, z), E* — 0, E* = Ez(r, z),

H* =  H* =  0, J/* =  H(r, z).
Ans.

p _  dH 
T ~  ck2 9z ’

Hint. Note that

c2/c2 9z
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2
SOME SPECIAL METHODS 

FOR SOLVING HYPERBOLIC 

AND ELLIPTIC EQUATIONS

This chapter deals with some special methods which, unlike those 
considered later, can only be used to solve problems pertaining to partial 
differential equations of a particular type, e.g., of the hyperbolic or elliptic 
type.1 Among such methods, we mention Riemann’s method for solving the 
Cauchy problem for hyperbolic equations, the Green’s function method for 
solving boundary value problems involving elliptic equations, complex 
variable methods for solving the two-dimensional problems of potential theory 
and so on. There are a great many such special methods, which in some cases 
belong to the more difficult problems of the theory of partial differential 
equations. Thus it will be impossible to go into very much detail here. Instead 
we confine ourselves to a few simple problems illustrating the methods most 
frequently encountered in practice.

I. Hyperbolic Equations

It will be recalled that problems of mathematical physics involving the 
propagation of various kinds of waves (elastic, electromagnetic, etc.) in one, 
two or three dimensions lead to the consideration of partial differential 
equations of the hyperbolic type, subject to extra conditions. Depending on 
the character of these conditions, the problem is classified as a Cauchy 
problem or as a mixed problem. By the mixed problem for an equation of the * 19

1 Concerning the classification of partial differential equations, see C5, G l, T l , etc.

19
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Before the time t =  x/v, the point x is at rest. During the interval

v v0
i.e., as the source approaches, the point x undergoes harmonic oscillations of 
frequency

caycax = ---------->  eo.
V — v0

For t > x/v0, i.e., as the source recedes, the frequency of the observed oscilla­
tions is

(the Doppler effect).

cay
ca2 = ----------<  ca

y +  y0

32. A semi-infinite rod, clamped at the end x  =  oo and free from forces 
at the end x =  0, undergoes longitudinal oscillations. Investigate the nature 
of these oscillations, assuming that the initial conditions are of the form

4 = «  = /(* )>
and that f (x )  -► 0 as x -► oo.

Ans.

du
dt

=  0,
<=o

, N — x) + f ( vt +  *)]» 0 < x < vt,
u(x, t) =

Ut/(x -  vt) +f(x + V0J, Vt < x <  CO.
Hint. Make the even extension of the function f(x )  to the negative x-axis, 

and use the solution of the Cauchy problem for an infinite string.

33. Find the distribution of voltage and current along an infinite trans­
mission line with parameters L, C, R and G, given the initial conditions

4=o =  <p(*)» 4=0 =  *K*)> - C O  <  x  <  CO, 

assuming that the parameters of the line are connected by the relation
R _ G  
L ~  C

(a distortionless line).
Ans.

u(x, 0 =  [cp(x -  vt) +  cp(x + vt)] +  ~  [+(jc -  vt) -  +(x +

I(x, t) =  e““!| -  [<K* -  vt) +  <Kx +  «<)] +  ^  [<p(* -  vt) -  (p(x +  »0lj» 

where a =  R/L, v =  l/VLC.



PROB. 35 SOME SPECIAL METHODS 23

Hint. Use Prob. 23 to write the differential equation for w, introduce 
a new unknown function w by writing u = e-^w, and choose y such that the 
coefficient of dwjdt vanishes.

34. Show that the solution of the wave equation

with radially symmetric initial conditions

du 
dt«|<=o =  ?(r), 

is given by the formula
<=o

=  ip(r), 0 < r <  oo,

«(r, t) = ( r - v t M r - v t ) ± jL + v t)9(r + vt) + J _  p *  m  ^
2r 2vr J^vt

where the values of the functions 9 and ^ for negative arguments are given by 
the relations

? ( - ' • )  =  ?(»•). lW - r) =  +(»•)•

Hint. Transform the equation by setting ru =  w9 where w is a new 
unknown function. Then bear in mind that u remains bounded as r -^O.

35. Study the oscillations occurring in a gas initially at rest when a local 
condensation s0 is formed inside a sphere of radius a contained in the gas. 

Ans. The condensation of the gas at an arbitrary point r is

So, r <  a

,0 r > a
0 < t < a\

s so
r — ut 

2 r 9
\ r~~a\

v
< t < r +  a

y
V

5 =  0, r +  fl 
v

< t < 00,

where v is the velocity of wave propagation in the gas. 
Hint. By the condensation is meant the quantity

s =
Po

(i.e., the relative change in density of the oscillating gas), which satisfies the 
differential equation

a 1 32s A
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where v — Vcvp jc vp0i cv and cv are the specific heats at constant pressure and 
volume, and p0 and p0 are the initial values of the pressure and density. This 
problem is a special case of the preceding problem, corresponding to initial 
conditions

s0, 0 < r <  a9 g5 

0, r > a, dt
36. In a gas initially at rest, a condensation s — localized in the volume 

bounded by a surface cr is created at the time t — 0. Show that the condensa­
tion at the point M  =  (,x, y , z) at an arbitrary time t is given by the expression

«=*.£(' * ) .
where Svt is the sphere of radius vt with center at the point M , and at is the 
part cut out of $vt by the surface a.

Hint. Use the general solution of the homogeneous wave equation

u2 dt%
for arbitrary initial conditions (see Gl, p. 197).

37. The solution of the Cauchy problem for the three-dimensional in­
homogeneous wave equation

A 1 d2u A , .Au -  -  —  =  —4jcp(x, y, z, t \  
v dt

with initial conditions

«U» =  <p(*> y> z).
is of the form

du
dt =  >K*> y ,  z).

/  x d ,  —u(x, y, z ,t) = -  (t<pvt +
dt

PL , i : , ( - r)
%<) +  —--------------   d t dr) dt,

Jovt r

where r =  V (x — £)2 +  (y — ^)2 +  (z — K)2, 
yvt and tyvt are the average values of 
the functions cp and over a sphere of 
radius vt with its center at the point M  =  
(x, y , z), and the integration is over the 
region Gvt bounded by this sphere 
(see K4, p. 101). Starting from this fact, 
solve the corresponding problem for 
the two-dimensional inhomogeneous
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equation
d2u dhi _  1_ dhi
dx2 dy2 v2 dt2

=  — 47cp(x, y , 0 ,

with initial conditions

« L o  =  cp(jc, j>), =  <|<x, _>>)•
dt u=o

Ans.

where

S  is the disk of radius vt with center at the point (x9 y ), and D is the right 
circular cone shown in Figure 6.

38. Show that one solution of the two-dimensional wave equation

where /  is an arbitrary analytic function of the argument 0, related to the 
variables x , y, and t by the relation

Comment. This class of solutions of the wave equation is widely used in 
diffraction theory and other applications (see K4, p. 114 and S6, Vol. Ill, 
Pt. 2, p. 176).

39. Applying Riemann’s method (see Tl, p. 116), solve the hyperbolic 
equation

d2u <Pu 1 d2u
dx2 dy2 v2 dt2

is the function
K =  Re/(0),

t  -  e -  +  Vi -  e2- =  o.
V V

( F u _ l& u
dx2 V2 dt2

— cu =  0

(where v and c are given constants), with arbitrary initial conditions
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Arts.

u ( x ,  0  =  1  [<p(* -  v t)  +  <p(* +  » 0 ]

i r*+*tr _ v* /r t  _ ~\
+  -  m w j c  R) -  — -  9 W i( J c  R) dl,2v J x - v t  L R  J

where
R = \ /  (vt) 2 — (x — £)2.

40. Find the distribution of current along an infinite transmission line 
with parameters L, C, R and G, assuming that at the time t =  0 the current 
vanishes while the voltage is nonzero and equal to a constant V on the section 
of the line \x\ < a.

Ans.

f0, /------------, 0
/(x, 0|.i<« =  e—% ( \ p \ J f2 -  ). a - v t

Vo, a +  vt

0 < x < a — vt, 

< x < a +  vt, 

+  vt < x <  00,

Ojvi>a

•-['•(i hV1* -  !v 2) -

t ) .

where
0̂,

1

0 <  x < vt — a, 

vt — a < x < vt +  a, 

vt +  0 <  x <  oo,

„ r RC + LG a R C - L Gv = ~ ,___, Z =  Lv, a = -------------- , p =
y/LC 2 LC 2LC

and 70(jc) is the Bessel function of imaginary argument. 

Hint. Use the result of the preceding problem.

41. A semi-infinite rod of variable cross section S(x) = S(0)e~ax, where 
the end x =  0 is clamped, undergoes longitudinal oscillations with initial 
conditions

«|(=0 =  /(*)>
du
J t t=o

= 0.

Find the displacement of an arbitrary cross section of the rod at an arbitrary 
time t.
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Ans.

u(x, o = -e*xl2[e-a(x+vt)l2f(vt + x) -  e*{x~vmf(vt -  x)]

+  4
if 0 <  x < vt9

u(x, t) = -[e~mt/2f (x  + vt) + emt/2f (x* — nAl

« vt 
4

if vt < x <  oo,

where R12 =  V(i>02 — (* T  5)2-
By introducing a new unknown function w =  V r e d u c e  this 

problem to the integration of the equation in Prob. 39.

2. Elliptic Equations: The Green’s Function Method

A typical problem of the kind to be considered in this section is to find a 
solution of a partial differential equation of the elliptic type which is well- 
behaved in a given spatial region D and satisfies certain conditions on the 
boundary S  of D. The simplest such problem is to find a function u which is 
harmonic in a region D with boundary S,3 and satisfies one of the following 
boundary conditions

u s = f(P ) , (2a)
du
drii = m ,s

(2b)

(du (2c)

where f(P ) is a given function of a variable point P of 5, n{ is the interior 
normal to S  at P9 and h is a positive constant. The problem is called the first 
boundary value problem (of potential theory) or the Dirichlet problem if the 
boundary condition is of the form (2a), the second boundary value problem or 
the Neumann problem if the boundary condition is of the form (2b), and the 
third boundary value problem or the Robin problem if the boundary condition

3 A function u is said to be harmonic in a (two or three-dimensional) region D if u and 
its first and second partial derivatives are continuous and satisfy Laplace’s equation 
Aw =  0 in D. If D is unbounded, certain extra requirements must be imposed on the 
behavior of w at infinity (see T l, p. 265).
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is of the form (2c). Similar problems can also be formulated for Helmholtz's 
equation

Am +  kzu =  0

and other equations of elliptic type encountered in mathematical physics.
One of the special methods for solving boundary value problems of this 

kind is based on the use of the Green's function (see S6, Vol. IV and Tl, 
Chap. 4). The key result of this theory is that the solution of the boundary 
value problem for Poisson's equation

Am =  -F (M ), (3)

subject to any of the boundary conditions (2a)-(2c), can be written in quadra­
tures, once we know the Green’s function. The Green’s function does not 
depend on the form of the functions f(P )  and F(M), and can be found by 
considering a special boundary value problem (see below).

Thus, for example, the solution of the first boundary value problem for the 
equation (3) can be written in the form

<M0) =  f /(P) do +  f f{M)G dr, (4)
J S OUi J D

where M  is a variable point and M0 a fixed point of the region D (dcr is the 
element of surface area and dx the element of volume). Here the Green’s 
function G(M, M0) is the function such that

1. G is harmonic in D except at the point M0, near which G is of the form

G(M, M0) 1
4tt: |MM0|

+ v,

where the function v is regular (i.e., has no singularities) in D;

2. G satisfies the boundary condition

<7|s  =  0.

It follows that v is harmonic and satisfies the boundary condition

1 4tc |PM0| ’

i.e., v is the solution of a special case of the Dirichlet problem.
The same formula (4) gives the solution of the first boundary value prob­

lem in two dimensions, if by the Green’s function we now mean a function 
such that
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1. G is harmonic in a planar region D except at the point M0, near which 
G is of the form

G(M, M0) =  — In — ------1- a regular function;
27i \MM0\

2. G satisfies the boundary condition
G|s =  0

on the contour bounding D.
Formulas of a similar kind can be found giving solutions of other bound­

ary value problems, involving Laplace’s equation, Poisson’s equation, 
Helmholtz’s equation, etc.

Green’s functions for regions of various shapes can be found by using 
the methods considered in Chaps. 4-7, and also by using certain special 
techniques, like the method of images and the method of inversion.4 The 
method of images allows us to construct the Green’s function for a half-space 
and for a sphere (or, in two dimensions, for a half-plane and a circle) and for 
certain regions of a more complicated shape, e.g., the layer bounded by two 
parallel planes or the interior of an angle of n/n radians (n =  1,2, . . . ) .  
Starting from the Green’s function for a region D and using the method of 
inversion, we can find the Green’s function for the region £>* obtained by 
inverting D in a sphere lying outside D. Thus, for example, we can find the 
Green’s function for a sphere from a knowledge of the Green’s function for a 
half-space, the Green’s function for the region bounded by two intersecting 
spheres from the Green’s function for the region bounded by two intersecting 
planes, and so on.

We now give some problems illustrating these methods of constructing 
Green’s functions, and also a few problems of a more theoretical nature.

42. Construct the Green’s function for the two-dimensional Dirichlet 
problem in the case where the region D is the first quadrant x > 0, y  > 0.

Ans.

.\MM0\ |MM2| +  \MM3\ ~  |MJW4|J ’
where M =  (x,y, z),M0 =  (x0, y 0, z0), M2 =  (~ x 0)_y0, z0), M 3 =  (—x 0, —y0, z0) 
and Mt — (x0, —y0, z0).

Hint. Use the method of images.
43. Using the method of images, construct the Green’s function for the 

Dirichlet problem in the case where the region D is the part of space lying 
between two parallel planes z =  ±//2.

4 See T l, and in particular G5, which contains a number of interesting applications of 
the method of inversion to problems of electrostatics.

G(M, M„) =  — 
4tc
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Ans.
1 & ( 1

T  n — = ......  —
4tt W  +  [Z  -  z0 -  2n lf

___________ 1___________
\! R 2 +  [z +  z0 — (2 n +  1)/]

where
R =  V(x -  x0)2 +  O' -  jo)2-

44. Use the method of inversion to deduce the Green’s function for the 
Dirichlet problem in the case where D is a sphere of radius a with its center at 
the origin O, assuming that the expression for the Green’s function of a half­
space is known.

Ans.
1 a____ 1 _

|MM0| \OM0\ \MMX\
where Mt is the image of the point M0 in the sphere.

G(M, M0) =

45. Find the Green’s function for a hemisphere of radius a. 
Ans.

G(M, M(o) =  “ f;
1

4ttL|MM0|
a____ 1

|GM0| |MMj|
1

|MM2|
+ -2_ _ _ L_1

|OM0| |MM3|J ’
where M1 is the image of M0 in the corresponding full sphere, M2 is the image 
of M0 in the diametral plane of the hemisphere, and M3 is the image of M2 in 
the full sphere.

46. The Green’s function G = G(M, M0) for the Neumann problem5

A u = — F(M), 

is defined by the conditions

du
dni = f(P )

1. G is harmonic in D except at the fixed point M0, near which G is of the 
form

G = -----   +  a regular function;
4tt |MM0|

6 Here M  is a point of the three-dimensional region D, P is a point of the surface S 
bounding D, and the functions f  and F satisfy the condition

for the solvability of the Neumann problem. If the Green’s function is known, the solution 
is given by the formula

«(M „)------Js /(P)G da +  F(M)G dx +  const.
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2.

dG 1
dn{

where S0 is the area of the surface S ;
3.

da =  0.

Verify that in the special case where D is a sphere of radius a with 
center at the origin O, the Green’s function is

G(M, M0) = 1
4tt |MM0| 4tt|OMoI IMMjI

J _ l n________ 2________
4™ n x _  \OQl |MMX|

\OMx\ |OMj|

1
27Cfl’

where Mx is the image of the point M0 in the sphere, and Q is the foot 
of the perpendicular dropped from the point M  onto the line OMlt

47. A conductor bounded by a closed surface S and held at a given 
potential V is introduced into an arbitrary external field with potential w0. 
Suppose we know the charge density p(Pf M0) at the point P of the surface S  
in the case where the surface is grounded and the external field is due to a 
unit charge at an arbitrary point M0 outside the conductor. Show that the 
potential distribution in the general case is given by the formula

«(M0) =  V +  u„(M0) +  fs  u0(P)p(P, M0) da. 
Hint. The formula

w(M0) =  f f(P) —  da 
Js dn

represents the solution of the boundary value problem
Aw =  0 outside S ,

w\s = f(P ), w \a = 0
in terms of the Green’s function. Apply this formula to the function w = 
u — w0, bearing in mind the electrostatic interpretation of the Green’s 
function.

48. Find the Green’s function for the two-dimensional Dirichlet problem, 
assuming that we know the function £ =  £(z) mapping a given region in the 
z-plane conformally onto the upper half of the £-plane (Im £ >  0). Use the 
result to construct the Green’s function for the half-strip x  > 0, 0 <  y  < n.
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Ans,

G(M, M0) =  -

where £ and £0 are the points of the half-plane corresponding to M  =  (x , j>) 
and M0 =  (x0, j>0)- In the case of the half-strip,

G(M, M0)
____ 1_ | [cosh (x +  x0) — cos (y +  y0)][cosh (x — x0) — cos (y — y0)]

4n [cosh (x +  x0) — cos (y — ^0)][cosh (x — x0) — cos (y + y0)]

Hint. The conformal mapping of the half-strip onto the half-plane is 
accomplished by the function £ =  cosh z.

49. The boundary value problem

(A is the two-dimensional Laplacian, and M  is a point of a planar region D 
bounded by a contour S) is encountered in the theory of bending of thin 
elastic plates. The solution of this problem can be written in the form

(di: is an element of area), where the Green’s function G = G(M, M0) is 
defined by the conditions

1. G is the solution of the biharmonic equation A2u = 0 which is regular 
(i.e., free of singularities) in D, except at the fixed point M0, near which 
G is of the form

Verify that in the special case where D is a disk of radius a with its center 
at the origin O, the Green’s function is given by

A 2u =  F(M),

u(M0) = j DF(M)G dT

G =  — |MM0|2 In |MM0| +  a regular function;

2.

where Mx is the image of the point M0 in the circle bounding Z>.
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3. Elliptic Equations: The Method of Conformal Mapping

In mathematical physics one often encounters the problem of finding a 
function which is harmonic in a two-dimensional region D and satisfies the 
boundary condition

«U = /  (5a)
or a

-* = / ,  (5b)on s
where/ is a given function and n is the normal to the contour S bounding D. 
For example, such problems arise in studying electrostatics, magnetostatics, 
heat conduction, flow of ideal fluids, filtration phenomena, and so on. An 
effective method of solving problems of this kind is to construct a function 
of a complex variable £ =  F(z) such that F(z) is analytic in D and maps D 
conformally onto a region Z)* (with boundary S *) of a special form for which 
the solution of the given problem is either known or can be found more 
simply than for the original region D. Here it is assumed that F'(z) is non­
zero in the region Z>, a condition which guarantees that the mapping is 
one-to-one. In asserting that this method leads to a solution of the boundary 
value problem, we rely on the fact that the Laplacian and the boundary 
conditions (5a) and (5b) preserve their form6 under the transformation from 
the variables x  and y  to the new variables \  and tj defined by the relation

£ +  />) =  F(x + iy).

The method of conformal mapping can also be used to deal with more 
complicated boundary value problems, e.g., problems where the value of the 
unknown function u is specified on parts of the contour while the value of 
du/dn is specified on the rest of S, problems of jet flow of an ideal flow where 
the form of S is not known in advance but is determined in the course of 
solving the problem, and so on.

In many cases, the construction of the function £ =  F(z) mapping the 
region D onto the region D* can be accomplished by consecutive application 
of several mappings which involve elementary functions. Of particular 
importance in applied work is the case where D is a polygon and D* is the 
upper half-plane. Then the function effecting the mapping can be found by 
using the familiar Schwarz-Christoffel transformation (see Wl). The use of 
conformal mapping to solve problems of mathematical physics, involving * 1

0 In the case of the boundary condition (5b), the value taken by the normal derivative 
on the contour S* is

1
\F'{z)\ /•
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the biharmonic equation as well as Laplace’s equation, is amply discussed in 
books on complex variable theory and in special monographs (see B3, F10, 
M10, S7, etc.). Hence we confine ourselves here to a few typical problems 
which illustrate the technique of the method, assuming that the reader is 
already familiar with the elementary theory of conformal mapping.

In most of the problems, the required conformal mapping can be found 
by using the Schwarz-Christoffel transformation. Problems 51, 57 and 59 
require knowledge of the properties of elliptic integrals and Jacobian elliptic 
functions. In connection with Probs. 50-54, the following remarks will be 
found helpful: If <p is the potential of a stationary plane-parallel flow of an 
ideal fluid, described by the velocity field v =  —grad cp, then by the complex 
potential w = w(z) is meant a function of the complex variable z =  x  +  iy 
whose real part equals <p. In other words, w =  cp +  /^, where is related to 
cp by the Cauchy-Riemann equations

d<p __ cty  

d x  d y  ’

3cp
dy d x

The lines of flow or streamlines are described by the family of curves cj> =  
const, and hence the function x is called the stream function. The amount of 
fluid Q flowing per unit time between two streamlines and 4* =  4*2
(in a slab of unit thickness parallel to the xj>-plane) is given by

0  =  l + i -  W-

The components of the velocity vector v =  vx +  ivy are related to the deriva­
tive of the complex potential by the formula

dw
V* ~  wv = -  —  • dz

The complex potential is a valuable tool for studying plane-parallel flows.7

50. An ideal fluid, whose velocity at infinity equals vx =  vy = 0, 
flows past an obstacle in the shape of an elliptical cylinder

Use the method of conformal mapping to find the complex potential of the 
flow.

7 Similarly, in the theory of stationary heat flow and in electrostatics, one can introduce 
complex potentials, with the role of v and cp being played by qfk (the ratio of the heat 
flow density to the thermal conductivity) and the temperature T in the first case, and by 
the electric vector E and the electrostatic potential <p in the second case.
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Ans. The relation between the complex potential w and the variable z is 
given in parametric form by the equations

w = v ^ a  +  b) 
2  a ( •+ 3 -

a +  b t . a — b az ---------------1------------
2 a I t

where t belongs to the region |f| >  a, 0 <  arg t <  n.

Hint. First make a conformal mapping of the part of the region occupied 
by the flow and lying above the axis of symmetry onto the half-plane with a 
semi-circular cut of radius a, and then map this region conformally onto the 
upper half of the £-plane in such a way that the semi-circular arc of radius a 
goes into the interval (—a, a) of the real axis.

51. Solve the preceding problem for the case where the obstacle is a 
cylinder —a < x < a, —b y  b of rectangular cross section.

Ans. The complex potential has the parametric representation

where

z =  a [ —-----?L dQ +  ib (0 <  arg £ < 7c),
Jo 'M  -  k%2

^ _______ak*_____
~  E(k) -  k'2K(k) ’

and the modulus of the elliptic integrals is determined from the condition

b _  E(W) ~  k2K(k') 
a ~  E{k) -  k,2K(k) ’

Hint. Use the Schwarz-Christoffel transformation to map the region 
occupied by the flow and lying above the axis of symmetry y  =  0 onto the 
half-plane in such a way that the vertices ± a ,  ± a  ± i b  go into the points 
±1 Ik, ±1.

*52. Study the two-dimensional 
motion of an ideal fluid in the channel 
of variable cross section shown in 
Figure 7, assuming that at infinity the 
direction of the flow coincides with 
the jc-axis and has the values

(ava = bvh). F ig u r e  7
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Find the distribution of velocity along the axis of symmetry of the flow.8 
Ans. The velocity distribution in parametric form is given by the equations

= t, ln i n i + _sn i ± s m
t +  1 a 1 — (bja)tJ

Hint. Using the Schwarz-Christoffel transformation, map the domain
ABCDE onto the upper half-plane of 
the complex variable £ =  E, +  nr), requir­
ing the points B, C and D to go into the 
points £ = —1, £ =  — X and £ =  0, 
where X is a number between 0 and 1 
which subsequent calculations show to 
be equal to the ratio b2ja2.

53. Solve the preceding problem for 
the case where the channel has the form 
shown in Figure 8, assuming that

=  va

âjlv=0 1
(i +  5)a

X

a Jo t -  1 J a  > o).

Hint. Transform the region bounded by the wall of the channel and the 
axis of symmetry of the flow into the 
upper half-plane of the complex vari­
able making the vertices B and C 
go into the points —1 and 0.

*54. Investigate the jet flow of a 
liquid through a slot of width 2a in a 
plane wall (see Figure 9), assuming 
that the amount of fluid flowing 
through the slot per unit time (in a 
slab of unit thickness parallel to the 
x^-plane) equals Q. Find the form of 
the jet.

Ans. In parametric form, the equa­
tion of the curve bounding the jet is

o  i
^  h- 2 tf-H ^

J2*
1 I 1
' i '

F ig u r e  9

8 In Probs. 52-54, where the flow is symmetric with respect to an axis, it is convenient 
to assume that ^ =  0 along this axis. The value of ij; along any other streamline can be 
found by using the formula Q =  |<J/i — ^2|.
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given by

X _  +  (tc/2)
a ~  1 +  (w/2) :

1
a 1+(tc/2)L

/"i-----  1 , I -!- V 1 — tJ l  -  t — - I n ----- -— =
V 2 1 — Vl — U

The width of the jet at a great distance from the slot is

2 b = ----—-----.
1 +  (2/*)

Hint. Use KirkhhofTs method (see K2, p. 332 ff.).

(0 < t < 1).

55. A pipe of radius a lies below the ground at depth h (see Figure 10). 
Find the stationary temperature distribution in the region surrounding the 
pipe, assuming that the temperature of the earth’s surface is zero, while the 
temperature of the pipe is TQ.

Ans. 

T =
In [(h +  c)ja]

x In V (x2 — c2 +  y2)2 +  4 c2y2

(x -  c f  +  /  :

z + c
to map the given region into a circular ring.

T~- 0

where c =  \Jh2 — a2.
Hint. Use a fractional linear transformation

F ig u r e  10

56. Find the stationary temperature distribution in a wall of thickness a 
near the corner of a building (see Figure 11), assuming that the temperature 
of the inside surface of the wall is T0t while the temperature of the outside

surface is zero.
Ans.

T  =  T0 Re ( -  In K
17T /

z 2 1, 1 +  f-  = ---- In------- — arc tan t
fl tiL2 1 -  /

where

+  1 +  ly

and In and arc tan denote the branches which 
go to zero as / —► 0.F ig u r e  11



3 8  SOME SPECIAL METHODS PROB. 57

Hint. Use the Schwarz-Christoffel transformation to map the figure 
ABCDA onto the upper half-plane of the complex variable making the 
points Bf C and D go into the points —1, 0, X, where X is to be determined 
(a calculation shows that X =  1).

57. Solve the problem of the stationary temperature distribution in a 
homogeneous slab — oo <  x  <  oo, — b < y  < b of thickness 2b, inside 
which there is another thin slab of thickness 2a {a < b) sharing the same 
midplane and held at temperature T0. It is assumed that the temperature of 
the outside surfaces of the slab equals zero. Calculate the flow of heat Q 
given off by the source per unit time.

Ans.

» =  r  +  4 - 7 i ( i - i ) ,

where the relation between the complex variables £ and z is given by the 
equation

sn £ =  -  tanh — , 
k 2 b

and the modulus of the elliptic function is

Moreover,

k =  tanh tza 
2 b

Q
4TJ) K_ 
x K'*

where x is the thermal conductivity of the slab, while K and K ' are the complete 
elliptic integrals with moduli k and k' =  V 1 — k2.

a a

Hint. Using the transformation

. 1 * u nzt =  -  tanh — ,
k 2 b * 58

x where k has the value indicated above, map the strip 
— co < x < co, 0  y  < b onto the upper half-plane 
of the variable t. Then use the Schwarz-Christoffel 
transformation to transform this strip into a rectangle 
with vertices at the points ±iK ' in the £-plane.

58. A wire with charge q per unit length is located 
near the rectangular edge of a grounded conductor 
(see Figure 12). Find the distribution of the electricF ig u r e  12
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field in the symmetry plane of the region between the wire and the 
conductor.

Ans. In parametric form, the field is given by the formulas

E lvl®=0
-  W l  +  r)2 ’

^  =  W i +  + ln to +  Vi +  v)2) (0 <  7 ) <  •»)„),

where rjQ is the value of the parameter tj corresponding to y  =  h.
Hint. Map the part of the z-plane lying outside the conductor onto the 

upper half-plane of the variable £ =  £ +  ry), making the corners go into the 
points £ =  ±1.

*59. On the axis of a box ~a  < x < a ,  0 < j ; < 6 o f  rectangular cross 
section with grounded walls, there is a thin wire with charge q per unit length. 
Write an expression for an appropriate complex potential, and calculate the 
distribution of charge density on the walls of the box.

Ans.
sn ■Kz

w =  —2q sn a
i

V k
Kz , i

s" T  +  7 k
where sn z is a Jacobian elliptic function with modulus k . The modulus k is 
determined from the equation

b K'
a K 9

where K =  K(k) is the complete elliptic integral of the first kind and K' — 
K{sj 1 — k2). The distribution of charge density on the wall —a <  x  < a, 
y — 0 is given by the formulas

<*0

Kx . Kx cn —  dn —

1 +  fcsn2 —  
a

<T0
q Ksfk 
a 7C

where cn z and dn z are Jacobian elliptic functions.
Hint. Use the Schwarz-Christoffel transformation to map the interior of 

the rectangle onto the upper half-plane, making the vertices ±a, ±a  +  ib of 
the rectangle go into the points ±1, ±l/&. During the calculations, bear in 
mind that
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60. Find the electrostatic field on the axis of an electronic lens made of 
two pairs of plates at potentials + V  and —V, separated by a space 2a

(see Figure 13).
Arts,

V i -  s2

T
Zb

_L

't
bZo^

I
-'®|i/=0

- V E0 1 -  W  ’
7zx_ 1 ^  1 ~h 5 , X2?
2 b~~ ~

- V

2 1 - 5  1 ~  X2
( - 1  < 5 <  l),

where

F ig u r e  13

and X is a number between 0 and 1 determined from the equation

E0 = - (  1 - X 2),
b

iza 1 , 1 — X X— =  -  In-----------    .
lb 2 1 +  X 1 - X 2

Hint. Map the upper half-plane of the variable z — x +  iy cut along the 
line segments (— oo +  ib> — a +  ib) and {a +  ib, oo +  ib) onto the upper 
half-plane of the variable 5, in such a way that the corners go into the points 
±  1, d= 1/X. Then transform the half-plane onto the half-strip

7C n  .  71— -  < Re t < -  , 
2 2

Im t > 0.

61. Find the field on the axis of the electronic lens shown in Figure 14. 

Ans.

V i - e  
i -  m

n
ii

- 2 5 -  =  i ± J &  (X +  ?) +  - i _  In ' - ± 1
a +  b X2 — 1 a +  h 1 — 5

+  _ £ _ l n l ± i
ci b X — 1

( -1  < 1),
where X is determined from the equation

e y
p  *
I T D

------2 a------- A------2 b ------

Vi
II

F ig u r e  14

yX2 +  2X +  Y i i X +  1 1 +  yX i / 1 , b\r _ +  ln_ _ _ rln_ -------+
2
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and we introduce the abbreviations

a - b  _  £  _ V1- V t l -  (1/X2)
a -j- b d b 1 “h yX

Hint. Map the domain ABCDEA onto the upper half-plane of the variable 
£ =  5 +  n), making the points £, C, Z> and is go into the points —X, —1, 1 
and {x. After determining the function z — z(C), carry out the transformation 
£ =  sin t.

62. Find the magnetic field in the midplane of the magnet whose poles 
have the rectangular shape shown in Figure 15, 
assuming that the magnet is made of iron with 
infinite magnetic permeability ((x =  oo). y A

Ans. **

Hy |y=Q   j JCX   A I A A__ I
H00 ~  ' 2h ~  t 2 1 + t

(0 < t < 1),

B

0

D
— -x

where Hm is the homogeneous field in the mid- fj
plane of the magnet at a great distance from the
e<^ 8 e * F ig u r e  15

Hint. Map the region ABCD onto the upper 
half-plane, making the points B and C go into the points — 1 and 0.

63. The region x > o ,y  < 0 is filled with iron of magnetic permeability 
(A =  oo. Find the magnetic field due to a linear current source J  passing 
through the point (—a, 0).

Ans. The components of the field are determined by the relation

Hx -  iHy = 4iJ a2/3 -  2z2/3
3cz1/3 z4/3 +  z2/V /3 +  a413 9

where c is the velocity of light.
Hint. Bear in mind that near the current source, the complex potential 

of the magnetic field has a logarithmic singularity:

w =  —  In (z — z0) +  a regular function.
c
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3

STEADY-STATE HARMONIC  

OSCILLATIONS

A solution of a partial differential equation is said to be a steady-state 
harmonic oscillation if its time dependence is described by the factor et£0*, 
where is the frequency.1 Problems involving steady-state harmonic 
oscillations are among the simplest and the most important encountered in 
mathematical physics. Because of the particularly simple form of the time 
dependence, we can eliminate the variable t from the original equation, 
thereby reducing the problem to the determination of complex amplitudes 
depending only on the spatial coordinates. In the special case where the 
solution depends only on a single spatial coordinate, the equation for the 
complex amplitude reduces to an ordinary differential equation. This 
category, to which most of the problems in the present chapter belong, is 
of considerable interest because of its numerous applications to concrete 
problems of mechanics, electromagnetic theory, etc. Moreover, such prob­
lems are very important from a methodological standpoint, since they serve 
as the best introduction to the technique of particular solutions to be con­
sidered in Chapter 4. Thus, for example, the problem of determining natural 
frequencies anticipates the problem of determining eigenvalues, and the 
problem of forced oscillations gives insight into ways of overcoming difficulties 
associated with the application of the Fourier method to inhomogeneous 
equations.

1 In using complex quantities in intermediate steps of our calculations, we rely on the 
fact that the equations of mathematical physics (at least, those considered here) are linear. 
Thus, to obtain the final answer, we need only take the real or imaginary part of some 
expression (depending on the conditions of the particular problem).

42
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This chapter contains three sections. The first is devoted to problems on 
the determination of natural frequencies of vibrating systems (strings, rods, 
membranes and plates), while the second deals with forced oscillations of 
such systems.2 The third section is concerned with problems on steady-state 
electromagnetic oscillations in transmission lines and cavity resonators, 
certain related problems on the propagation of electromagnetic waves in 
waveguides of given cross section, etc.

I. Elastic Bodies: Free Oscillations

64. Find the natural frequencies for longitudinal oscillations of a canti­
lever beam of length /.

Ans.
2w +  1 „ , „con --= ——— nv, n = 0, 1, 2, . . .  ,

where v = \JEjp, E is Young’s modulus, and p is the density.

65. Solve the preceding problem, assuming that the free end of the beam 
is loaded by a mass M0.

Ans.
V 1 o“ » =  -  Yn> n =  1. 2 , ,

where the yn are consecutive positive roots of the equation

* My tan y —M0
(i.e., 0 <  Yi <  . . . <  y„ <  . . .), and M  is the mass of the beam.

66. Determine the natural frequencies for torsional oscillations of a rod 
of length /, one end of which is clamped, while the other end is attached to a 
disk whose moment of inertia with respect to the axis of rotation is J0.

Ans.
“ n =  -Yn> n — 1 , 2 , ,

where v =  'jG/p, G is the shear modulus, p is the density, the y„ are con­
secutive positive roots of the equation

, J y tan y =  -  ,
*̂0

and J  is the moment of inertia of the rod.

2 The forced oscillations studied in this chapter will always have the same frequency 
as the perturbing force itself.
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67. Find the natural frequencies for transverse oscillations of a beam of 
length / with simply supported ends.

Ans.
2A 2 2 < n=  "5 n 7T , n = 1,2, . . . ,

/2

where a2 = yjEJjpS, £  is Young’s modu lus, 7 is the moment of inertia and £ 
the area of a cross section, and p is the density.

68. Find the natural frequencies for transverse oscillations of a beam of 
length / with clamped ends.

Ans.
a2 2 t ~

=  j 2 Tn> * =  1,2, . . . ,

where the constant a is the same as in the preceding problem and the yn are 
consecutive positivfe roots of the equation cosh y cos y =  1.

*69. Solve the preceding problem, assuming that one end of the beam 
(of mass M ) is clamped, while the other is loaded by a mass Af0. Using the 
method of successive approximations, calculate the values of the first three 
frequencies, given that

—  =  5.

Ans.
a2 2

wn =  y2yn. n = 1,2, . . . ,

where the yM are consecutive positive roots of the equation

1 +  cosh y cos y =  —  y(sin y cosh y — cos y sinh y).
M

70. Find the natural frequencies for radial oscillations of a circular 
membrane of radius a.

Ans.
V 1 o<»n =  -Y». n = l , 2 .........a

where v = yjT/p, T is the tension per unit length of the boundary, p is the 
surface density, and the y n are consecutive positive roots of the equation 
y 0( y )  =  0  involving the Bessel function of order zero.

71. Find the natural frequencies for oscillations of a rectangular mem­
brane with sides a and b.
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Ans.

<»mn =  +  —  > m , n  =  1 , 2 , . . . ,
V a2 b2

where v is the same as in the preceding problem.

72. Find the natural frequencies for transverse radial oscillations of a 
circular plate of radius a whose edge is clamped. Calculate the first three 
roots of the transcendental equation determining the frequencies.

Ans.
b2 2 i ~w „ = - 2r«. n = 1 , 2 , . . .  ,a

where b2 =  v D/ph, D is the flexural rigidity, p the density and h the thickness 
of the plate, and they,, are consecutive positive roots of the equation

</o(y)A(y) +  A(y)/o(y) =  0

(the notation is the same as in the theory of cylinder functions). Numerical 
calculations show that the first three roots are yt =  3.20, y2 =  6.30, y3 =  9.44.

73. Find the maximum wavelength Xmax of a nonplanar sound wave3 
which can propagate inside a hollow cylinder tube with perfectly reflecting 
walls, whose cross section is a) a rectangle with sides a and b\ b) a circle of 
radius a.

Ans.

a) Xmax — 2(3,

b)
. 27xa
Xmax —

Yi
where yx =  3.832 is the smallest positive root of the equation ^(y) =  0 (for 
waves which are symmetric with respect to the diametral plane).

74. Find the natural frequencies for acoustic oscillations in an enclosure 
shaped like a rectangular parallelepiped with sides a, b and c.

Ans.

< *m nV =  +  ( “ )  > m ’ « .  P  =  0 ,  1 , 2 ,  . . . ,

where v is the velocity of wave propagation (m, n, p cannot all vanish simulta­
neously).

3 A plane sound wave /  
section.

can propagate unimpeded in a tube of arbitrary cross
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75. Find the natural frequencies of an acoustic resonator,4 where the 
oscillations have axial symmetry and the resonator is a) a sphere of radius a\ 
b) a circular cylinder of radius a and height /.

Ans.

*0 ̂  77171 =  _ YfHTlJ W — 0, 1, 2, , n =  1 , 2 , . . . ,
a

where the ymn are consecutive positive roots of the equation

771̂771+ (Ym) Jm+ '/̂ (Ym)>
/ m+i^(x) is the Bessel function of order m +  £, and v is the velocity of wave 
propagation;

where the are consecutive positive roots of the equation Jt(y) = 0.

2. Elastic Bodies: Forced Oscillations

76. A string of length / with ends fastened at the points x =  0 and x =  / 
undergoes oscillations under the action of a concentrated force A sin (at +  cp) 
applied at some point x =  c of the string. Find the form of the forced 
oscillations.

Ans.

u(x, t) = Av sin (at +  9) 
a T  sin (al/v)

x

(OX .sin —  sin 
v

ac . sin — sin
v

a(l — c) 
v

a(l -  x) 
v

0 < x < c,

C  <  X <  /,

where v = \!T jp, T is the tension and p the linear density of the string.

77. Solve the preceding problem for the case where the external force is 
uniformly distributed over the whole length of the string.

Ans.

«(x, 0 =
2 qv2 

a 2T

. ax . a(l — x)sin —  sin----------
2 v 2 v

al cos — 
2 v

sin (al +  9),

where q is the amplitude of the load per unit length of the string.

4 An acoustic resonator is a device used to amplify acoustic oscillations, and consists 
of an enclosure whose walls reflect sound.
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78. Find the forced longitudinal oscillations of a rod of length /, if the end 
x =  0 is clamped while the end x =  / is acted upon by a force A sin (c0/ +  cp).

Ans.
. cox^  sm —

w(x, 0 =  —— ---- T  sin («< +  <p),Eo 0) colcos —
V

where r =  \Ae/p, E  is Young’s modulus, p is the density and S  the cross- 
sectional area of the rod.

79. Find the forced oscillations of a beam simply supported at the ends 
x =  0 and x =  /, under the action of a uniformly distributed pulsating load 
q sin a)/.

Ans.

2 cosh------
a 2

2  cos
V Cl) I 
~ 2

s in  cot,

where a2 =  VEJjpS, E is Young’s modulus, J  is the moment of inertia, p the 
density and S the cross-sectional area of the beam.

80. Solve the preceding problem under the assumption that the oscillations 
are due to a concentrated force A sin 0 / applied to the point x =  c.

Ans.

«(x, 0 =
_______Ac? sin cot______

2£/o)Vci) sin sinh

. , V<*>/ . V<*>(/ — c) . \ji£>X . . * V&>(/ — c) . , Vwx'sinh-----sin--------------sm-----------sm -—  sinh------------ sinh------ ,
a a a a a a

0 < x  < c,
, . >/wl . Vo)(/ — x) . yjCi)C . y/tol . t \/u>(l — x) , .sinh-----sin-------------- sm ---------sm------ sinh--------------sinh------ ,

a a 2  a a a
c <  x <  /

81. A cantilever is clamped at one end x — 0 and loaded at the other end 
x =  / by a force A sin c0/. Find the resulting forced oscillations.
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Ans. With the notation of the preceding problem,

w(x, 0 = Aa3 sin at
2 EJa^J c

( ucosh---------- cos
a x \ ( . t al . Va l\—  11 sinh-------1- sin-----1
a / \ a a '
yjal >/<*>*1 +  cos-----cosh------

a a

( ,  ,  \ / ( 0X  . V c * ) x \ /  J a lsinh-------- sin-------11 cosh-------- h cos-----1
a a / \ a a '

I I  U>A>/1 +  cos-----cosh------
a a

82. Find the forced oscillations of a circular membrane of radius a 
due to a pulsating load q sin (at + cp) uniformly distributed over the mem­
brane.

Ans.

«(-•. <>=— 7 ^ 1  »»«*< + »)•pco L J0(aalv)j

where v = yjj/p, T  is the tension per unit length of the contour, p is the 
surface density of the membrane, and J0(x) is the Bessel function of order 
zero.

*83. Solve the preceding problem, assuming that the load is uniformly 
distributed over a disk of radius b < a.

Ans.

u(r, 0 =  — —■— sin (at +  cp) 
2aT r

2 v 
I nab

J0(ar)lv
J0(aa)lv

0 < r < b 

b < r < a,

where Jn(x) and Yn(x) are cylinder functions.

84. Study the forced oscillations of a circular plate of radius a with a 
clamped edge under the action of a uniformly distributed pulsating load 
q sin (at +  cp).
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Ans. With the usual notation from the theory of cylinder functions,

/V «a\ ,

1 3

•/ 1 1 I J 01 1 0 1 I
<7 \ b ) \ b / \ b J I b /

co2p/i ■ /V «a\ 
°l fc /

r
“I b /

1 sin(cof-fcp),

where b2 =  V Djph, D is the flexural rigidity, h the thickness and p the density 
of the plate.

85. Find the steady-state harmonic oscillations of frequency o> inside a 
spherical resonator due to a point source of sound located at the center of 
the sphere, bearing in mind that the potential of a point source of frequency 
a) in free space is given by

_  . sin (cot — kR)

where k =  cd/d is the wave number and R the distance from the source. 
Ans. The velocity potential is

a sm (°>t — /cr) ,  ̂ ka cos (odt — ka) +  sin (cot — ka) sin kr
^ i A . . . »  5r ka cos ka — sin ka r

where a is the radius of the sphere.

3. Electromagnetic Oscillations

86. Find the steady-state harmonic oscillations of voltage in a long 
transmission line with parameters L, C and R, if the end x =  0 is attached to 
a source of variable voltage E sin (o>t +  cp), while the end x  =  / is terminated 
by a resistance R0.

Ans.

u(x, t) = l m{ Ee i^ ) -

. co(/ — x) , R0 6)(/ — x)sin —-------  H---- - cos —------- 1
v*______iZ^______ u*_

. o)/ , R0 c0/ sin-----1---- -  cos —
iZ*

where

sJl c

** 6)L

Z* iR
coL

are the complex propagation velocity and wave resistance of the line.
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87. Solve the preceding problem, assuming that the load terminating the 
line is a concentrated inductance L0, instead of a resistance R0.

Ans.

. cx)(/ — x) , a)L0 o)(/ — x) 1 
sin —1 --------  -(- — -  cos  -------  '

u(x, t) =  Im Ee V z*
. 6)/ , CoLn 0)/sin-----b —  cos —

v* Z* u*

88. Find the components of the electromagnetic field in a transverse 
magnetic wave propagating in a waveguide whose cross section is a rectangle 
with sides a and b.5 Calculate the corresponding cutoff wavelength Xmax 
(i.e., the maximum wavelength passed by the waveguide).

Ans.
„ . mn mnx . nnyEx = — iv —  cos ----- sin —- e l(vz wt).

a a b

Em= - i ^  s i n ^ c o s ^ ^ — ')

2 / m2 . n2\ . tmcx . nTcy
E' = ,' l 7  + W s," V !,nT '

- < ( V 2 —

ik M7T . m 7 T X  M 7Ty— sin-----cos —~ p
b a b

—i(v z -o it)

^max

H, = - i k  ZZ  cos ^  sin HZ 
a a b

H z =  0,

2qfr
V«2 +  b2 ’

m, n =  1, 2, . . . ,

where & =  <o/c is the wave number. An arbitrary constant factor has been 
omitted in all the expressions for the components of the electromagnetic 
field.

89. Solve the preceding problem for a transverse electric wave.

4 By a transverse magnetic wave (TM-wave) is meant a wave in which the magnetic 
field vector H is perpendicular to the direction of wave propagation. Similarly, a transverse 
electric wave (TE-wave) is a wave in which the electric field vector E is perpendicular to 
the direction of propagation, and a transverse electromagnetic wave (TEM-wave) is a 
wave in which both vectors E and H are perpendicular to the direction of propagation 
(see S3, p. 154).
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Arts.

Ex = ik nn—  cos m7cx . -----sin , W7tZ e-i(vZ-U()
b a b

Ey = _ .. W7T . m7VXi/c —  sin -----
a a b

E ,= o,
Hx = IVmn . —  sin mizX CQS HZ

a a b

//„ = IVnn— cos mnx . -----sin tVTty i(va_coO
b a b

H ,= 2/m 2 n2\ mnx nny _7T
t a  +

—- cos
w

-----cos —- e
a b

II — mV2
a2

n27T2
" ft2 ’

m, n =  0, 1,

Xmax — if a >  b
(m and n cannot vanish simultaneously).

90. Find the components of the electromagnetic field in a transverse 
magnetic wave propagating in a waveguide whose cross section is a circle of 
radius a, and determine the corresponding cut-off frequency Xmax.

Ans.
—i(vz—o t)

Hy =  — ik cos mcp J 
a

H z =  0,

Er = — iv cos mcp J

- i ( v z - i o t )

VZ—Oit)

Hr = -  ik — sin m<p Jm [ymn e ■'

m mn

m (Ymn ~) e~t{

Ev =  iv -  sin mcp Jm(ymn - )  
r \ a1

Ez = W<P ■/ ”1(Ymn a) e"<<VZ"“°’

v = t

Xmax =  —  (Yoi =  2.405),
Yoi

where k =  co/c is the wave number, and the ymn are consecutive positive roots 
of the equation Jm{y) =  0 (m =  0, 1, 2, . . . )  involving the Bessel function of 
order m.
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*91. Calculate the cutoff wavelength Xmax for a TM~wave propagating in 
a waveguide whose cross section is a circular sector of radius a and central 
angle a.

Ans.
_  ^na Xmax — »

To
where y0 is the smallest positive root of the equations 

*An7i/a(T) ^  1,2, . . .

involving the Bessel function / v(x).

92. Describe the free harmonic oscillations in an electromagnetic resonator 
in the form of a rectangular parallelepiped with sides at b, c and perfectly 
conducting walls.

Ans.
„ . mnx . nny . pnzEx = A cos----- sin —-  sin -— , rr . mnx nny pnzHv = M sin-----cos —-  cos -— .

„ „ . mnx nny . pnzEv =  B sin----- cos —-  sin -—
a b e

TI KT mnx . nny pnz Hv = N cos-----sin —- cos -— .

„ ^  . mnx . nny pnzEz = C sin------ sin —- cos -— ,
a b c

rr n mnx nny . pnz H7 = P cos-----cos — -  sin -— ,

where my n and p are integers, and the constants A, B, C, M, N and P are 
connected by the relations

—  A + — B + — C = 0 
a b c

i k \ b  c !

n  = _ L ( p? a _ ™ A ,
ik \ c a /

P = _ L ( ™ B _ ™ A\ t
ik\ a b /

(k is the wave number).

93. Solve the preceding problem for a resonator in the form of a circular 
cylinder of radius a and length /.
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Ans.

Eq = B -  Jm 
r

Er = A J ' L mA ^ r n 9
\ at sin mcp

r \ a) cos n

E, = c j L mA C0*mir
\ a1 sin mcp

r\ cos mcp mzz
"  I . sin ~ r  9 a! sin mcp I

r\ cos mcp mzz-  I T cos---- ,
aJ sin mcp I

r\ sin mcp . mzz - I  Y sin —- , 
a) cos mcp /

r \cos mcp mzz -  I T cos —  , 
at sin mcp I

r \sin mcp . mzz- I  T sin----
at cos m 9 I

r\sin mcp mzzT cos — , 
at cos mcp I

where m and n are integers, the constants A, B, C, M, N and P are connected 
by the relations

and the ymn are consecutive roots of the equation Jm(y) =  0.

94. A high-frequency current I sin flows along a cylindrical conductor 
of radius a, made of material of conductivity <r and magnetic permeability [j l . 
Find the distribution of current density along the cross section of the wire, 
and calculate the active resistance of the conductor at the frequency a> (the 
skin effect problem).

Ans. The complex amplitude of the current density is given by the 
formula

A ?mn +  C ™ =  0,
a I

± B -  =  0,
a m

j ( r )  J 0(k r )
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where
=  Ik J0(ka) 

2na J^ka)
The resistance per unit length of the conductor is

RCO

Ifcl2
2tw<j(k2 — k2)

. Jo(ka)
Ji(ka)

j-_Ja(ka)l

(the overbar denotes the complex conjugate), where

k  =  J —  =  - y/2nuu>[L  (1  —  i).
w c c

Taking account of the asymptotic behavior of the Bessel functions for large 
values of the argument, we find that

where

and

8 =

Ro =

J -
— ~-(a-r)/8

2tCC6)[jL

2na g

is the d-c resistance.

Re a —- ^  — , 
R0 2S

95. Solve the skin effect problem for a conductor whose cross section is 
a strip of width 2a. Find the corresponding current distribution and resistance.

Ans.
j(x) _  cos kx 
j{a) cos ka ’

j(a) — “  cot ka>

RCO
l /cl2

2a(k2 -  k 2)
(/c cot ka — k cot ka),

where I  is the amplitude of the total current. For high frequencies,

j(x)
j(a)

- ( a - x ) / 8 Re
Ro

a
S ’ Ro

where $ is the same as in the preceding problem.

1
2ao 9
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THE FOURIER METHOD

The Fourier method is one of the most general techniques of mathematical 
physics, and is effective in solving a very wide class of problems. Its use, 
which is not restricted to equations of any particular type (e.g., hyperbolic 
or elliptic), relies on the fact that linear problems obey the superposition 
principle, i.e., any linear combination of solutions of a homogeneous linear 
partial differential equation is itself a solution of the equation. Thus, if a 
linear equation Lu = 0 has a certain set of particular solutions

u = uni n =  1,2, . . . ,
the sum of the series

00 

71 =  1

is also a solution, provided the convergence of the series permits interchanging 
the operations L and E. Similarly, if Lu =  0 has a set of particular solutions

u = (JL < X < v,
which depend continuously on the parameter X in the interval (jx, v), then the 
integral

is also a solution, provided the operations L and J can be interchanged. 
Given a problem of mathematical physics involving the integration of a 
differential equation Lu =  0 subject to certain initial and boundary con­
ditions, the basic idea of the Fourier method is to construct a solution by

55
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superposition of particular solutions. If the operator Lu =  0 has an appro­
priate structure, we can “separate variables,” i.e., the particular solutions 
can be written as products of factors, each involving only one independent 
variable and satisfying an ordinary differential equation. By suitably 
choosing some of the parameters figuring in this relatively simple problem, 
it is usually possible to satisfy all the homogeneous boundary conditions, 
thereby singling out a countable or uncountable set of particular solutions 
of the required type. Then, after making a superposition of these solutions, 
we choose the remaining parameters in such a way as to satisfy the inhomo­
geneous boundary conditions.

Having made these general remarks, we now confine ourselves in this 
chapter to problems of mathematical physics which lead to integration of the 
differential equation

rOolJx ^  9x] ~ +  MyU =  ° (° <  *  <  b' ° < y < ^

where Mv is a differential operator of the form

MV = A T~2+ +  C>dy
d_

dy

A , B and C are given constants, and p(x), q(x) and r(x) are given continuous 
functions such that p{x) and q(x) are positive, and p(x) is continuously 
differentiable.1 [In the next chapter, we shall consider the inhomogeneous 
case, where the right-hand side of (1) is a given function F(;t,j>).] For the 
time being, we assume that the interval (a, b) is finite and that the behavior 
of the functions p , q and r at the end points a and b is such that the ratios all

p'(x) q'(x) r'(x) ,
p(x) ’ p(x) ’ p(x)

approach finite limits as * —► <z and x-+b. Moreover, we require the 
solution of (1) to satisfy homogeneous boundary conditions at the end points 
of (a, b), of the form

Bu
Bx +  PauL=a =  0.

du
'dx +  Pi>wL=& =  0, (3)

1 Equation (1) is not the most general second-order equation with two independent 
variables which permits separation of variables, but it includes as special cases most of 
the commonly encountered equations of mathematical physics.



THE FOURIER METHOD 57

where aa, ab, (3a and (3b are given constants, some of which may equal zero,2 
and inhomogeneous boundary conditions at the end points of (c, d), whose 
form depends on whether the differential equation is of hyperbolic, parabolic 
or elliptic type (cf. footnote 1, p. 20). If the equation is of elliptic type, 
it will be sufficiently general for our purposes to assume that these conditions 
are of the form

+  M v= i =  s /x ) ,  (4)
y = d

du
' dv +  ^ c ^ |v = c  gc(x).

du

where yc, yd, $c and are given constants, while gfx)  and gd(x) are given 
functions defined in the interval (c, d). On the other hand, if the equation 
is of the hyperbolic or parabolic type, which corresponds to problems of 
mathematical physics where the variable y  plays the role of a time varying 
over an infinite interval (c, oo), then the inhomogeneous boundary conditions 
take the form of initial conditions, i.e.,

Ĵy=c
du
dy

=  g(x) (4')

in the hyperbolic case, and
« U  = / «  (4")

in the parabolic case.
We now look for a function u =  u(x, y) satisfying the differential equation 

(1) and the boundary conditions (3) and (4) [or (4'), (4")]. Following the basic 
procedure already mentioned, we consider particular solutions of equation 
(1) of the form

u = X(x)Y(y). (5)

After substituting (5) into (1), the variables separate, and the result is a pair 
of ordinary differential equations

( p X j  + Q* -  q)X = 0, (6)
MyY — XY = 0 (7)

2 In particular, we obtain boundary conditions of the first kind

u\x=a = u\x=b = 0 
if aa =  <xb — 0, (3a =  p6 =  1, boundary conditions of the second kind

du du
•dx x=a dx

if afl =  a6 =  1, pa =  p6 =  0, and so on. In the applications, one also encounters boundary 
conditions of the form

|*=B
du
~dx

du
Tx (3')

which are not comprised in the formulas (3).
r—c s=0
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determining the factors X  and Y, where X is an arbitrary parameter. The 
requirement that the particular solutions (5) satisfy the homogeneous 
boundary conditions (3) leads to corresponding homogeneous boundary 
conditions for the function X:

a aX\a)  +  £aX(a) = 0, *bX'(b) + £bX(b) =  0. (8)

The problem of solving equation (6) subject to the boundary conditions (8) is 
called the Sturm-Liouville problem. For arbitrary X, this problem will in 
general have no solution other than the trivial solution X  =  0. However, for 
certain values of X, called eigenvalues, there are nontrivial solutions, called 
eigenfunctions. In the theory of the Sturm-Liouville problem, it is shown that 
wilh our assumptions concerning the interval (a, b) and the functions /?, q 
and r, the spectrum (i.e., the set of all eigenvalues) is discrete, consisting of 
countably many real eigenvalues X =  \ n (n =  1 , 2 , . . . ) ,  each associated with 
a single eigenfunction X = Xn(x) which is uniquely defined (except for a 
constant factor). The eigenfunctions Xn(x) are found to be orthogonal on the 
interval {a, b) with weight r(x), i.e.,

dx = 0 if m ^ n .

Moreover, under certain conditions,3 a function f (x )  defined in (a, b) can be 
expanded as a series of the form

fix) = 2 /„ * „ ( » ,  a < x < b,
71 =  1

with coefficients
Xn(x) dx/ >   Jfl___________

n  r b  o
}arXl(x)dx

The calculation of the eigenvalues and the corresponding eigenfunctions 
is easily carried out in the case where the linearly independent solutions and 
hence the general solution of (6) are known for arbitary X. In fact, substitution 
of the general solution into the boundary conditions (8) then gives a homo­
geneous linear system for the arbitrary constants, and the condition that the 
determinant of this system vanish leads at once to a transcendental equation 
for the permissible values of X. After the eigenvalues and eigenfunctions have 
been determined, we find the second factor Y(y) in (5) by solving (7), with 
X =  X„. If the original equation is of hyperbolic or elliptic type, the general 
solution of (7) can be written in the form

Y(y) =  c n \ y )  + m \ y ) ,

3 For example, if f{x)  is piecewise smooth in (ay b).
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where Y ^  and Yl2) are linearly independent solutions of (7) and c 
are arbitrary constants.4 In this way, we arrive at a set of particular solutions

and the solution of the problem is then constructed in the form of a series

where the coefficients c{j ] are found by substituting this series into the 
boundary conditions (4).5

If the function u satisfies boundary conditions of the type (3') instead of 
(3), the above method carries over virtually without change, except that now 
two linearly independent eigenfunctions may correspond to the same eigen­
value. Things become more complicated if the interval (a , b) is infinite, or if 
one (or both) of the end points of (a, b) is singular, i.e., if one of the ratios (2) 
becomes infinite as we approach the given end point. In such cases, which are 
among the most interesting encountered in practice, the boundary condition 
involving the singular end point or the point x  =  b = oo cannot be prescribed 
arbitrarily, but rather is replaced by a condition whose formulation in 
concrete situations usually presents no special difficulties (most often, the 
condition consists in the requirement that the solution remain bounded as 
the singular point is approached). In the case where the interval {a, b) is 
finite and only one end point is singular, the eigenfunctions are found as the 
nontrivial solutions of equation (6) satisfying some condition of the type 
just mentioned at the singular point and a condition like (3) at the other 
end point. The same approach can be used to find the eigenfunctions for a 
finite interval with two singular end points, for an infinite interval, and so on. 
The essential difference between these cases and the case analyzed above is 
that the spectrum may now be either discrete or not, depending on the 
structure of the differential equation and the nature of the boundary con­
ditions. If the spectrum is still discrete, despite the presence of an infinite 
interval or of a singular end point, the Fourier method can be applied with 
no essential changes. On the other hand, if the spectrum is no longer discrete, 
the character of the solution changes. In the case of a continuous spectrum,6

4 If the equation is of parabolic type, the general solution is of the form

5 For rigorous justification of the application of the Fourier method to problems of 
mathematical physics of this or more complicated types, see LI, T l, T7, etc. In many 
cases, however, it is an easy matter to verify directly the validity o f the solution found 
formally by the procedure just described.

6 Chapters 4-5 are devoted exclusively to problems with discrete spectra. Problems 
with continuous spectra will be considered in Chapter 6.

OO

Y(y) =  cn Y„(y).
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the solution is constructed from particular solutions by integrating instead 
of summing with respect to the parameter X, and the unknown functions 
appearing in the integrand are determined by using the theory of integral 
transforms instead of the theory of expansions in series of eigenfunctions.7

The problems in the present chapter can all be solved by the Fourier 
method (in most cases by the method just described), and are grouped into 
five sections, two devoted to mechanics, two to heat conduction (including 
a few problems on diffusion), and one to electricity and magnetism. We also 
include a few problems involving inhomogeneous equations and inhomo­
geneous boundary conditions, which can be solved by the Fourier method 
after being reduced to homogeneous problems by the use of appropriate 
tricks. However, inhomogeneous problems will for the most part be con­
sidered in Chap. 5, where they are studied systematically. Since an entire 
chapter (Chap. 7) will be devoted to the less familiar special coordinate 
systems, we confine ourselves here to rectangular and polar coordinates 
(both cylindrical and spherical). To illustrate further extensions of the 
Fourier method, we include a few problems of a more complicated type, 
e.g., problems involving three variables, elasticity theory, fourth-order differ­
ential equations, etc.

I. Mechanics: Vibrating Systems, Acoustics

*96. At the time t =  0, a string with ends fastened at the points x = 0 
and jc =  / is plucked at the point x  =  c, and then released without initial 
velocity. Find the displacement u(x, t) of an arbitrary point of the string if 
«(c, 0) =  h.

Ans.

u(x, t) = 2h 12 v  sin (nizcil) . nnx rmvt—----------  > -----  ' - sin----- cos------
7u2 c(l ~  c) ^  n I I

where v = \Jt)p, T is the tension and p is the linear density.

u

h
0

F ig u r e  16

97. Find the vibrations of a 
string if the initial displacement 
has the form shown in Figure 
16, while the initial velocity is 
zero at every point of the 
string.

7 For information concerning such integral expansions and Sturm-Liouville theory in 
general (especially the singular case), see A l, LI 3, S6, Vol. V and T6.



p r o b . 101 THE FOURIER METHOD 61

Ans.

u(x, o = m
(/ — a)n2

V  cos [(2n +  l)7ta/2/] (2n +  1)toc (2n +  l)7tuf> --------------   cos-------------- cos---------------
n=o (2 n +  l)2 21 21

98. Solve the preceding problem, assuming that the initial form of the 
string is a parabola symmetric with respect to the center of the string and 
that the maximum initial displacement from equilibrium is h.

Ans.

, , 32/j ^
«(*• o = — 2 ( - i r

*3 (2b +  l)3
(2 n +  1)tux (2/t +  l)7ri;f cos-------------- cos

21 21

99. At the time t = 0, the center of a string of length 21 fastened at the 
points x = —I and x = I receives an impulse P. Find the subsequent 
vibrations of the string

, , 2 P ^
w(x, o =  —  2,

7 1 = 0

cos [(2n +  i)nx/2l] . (2n +  1)7wt 
2 n +  1 Sm 21

Hint. Consider the vibrations of the string subject to the initial conditions

I _  n du
4 = ° - ° .  dt

Uo =
2p e

and then take the limit as e —► 0.

|x| <  e, 

e <  |x| < Z,

100. Study the vibrations of a string fastened at the points x = 0 and 
x = I due to a suddenly applied load distributed along the string with 
constant density q which subsequently remains constant. The string is 
assumed to be at rest at the time / =  0.

Ans.

U(X, o = ^ (£ (i -  -  s sin[(2w ± .y f] cos(2n+i)tH
T l2/\ I!  tt3^  ( 2 n + l ) 3 / I

Hint. Before applying the Fourier method, make the problem homo­
geneous by subtracting out the static deflection of the string under the 
uniform load.

101. Find the vibrations of a string — / < x < / of mass m loaded at the 
point x =  0 by a concentrated mass m0. In solving the problem, assume 
that the load is initially displaced by a small amount h, and that the initial 
velocity of the string is zero.
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Ans.

uu
u(x, t) =  2 /ia^ cos Yn

sin y„(l -  y )
L '  ̂ '

71—1 Yn 1 +

Y nVt----------  cos J-2—,
sin 2y„ /

2y«

where a =  w/m0 and the yn are consecutive positive roots of the equation 
tan y =f= a/y.

102. A rod of length /, density p and cross-sectional area S is clamped 
at the end x = 0 and stretched by a force F applied at the other end x = I. 
Study the longitudinal oscillations of the rod if the force is suddenly dis­
continued at the time t =  0.

Ans.

u(x, 0 = 8 FI ou

2 ( - D n
n2ES (2n +  l)2

. (2rt +  1)tcx (In +  1)7ivt sin -------------- cos —
21 21

where v ~  y/E/p and E is Young’s modulus.

103. Find the general solution of the problem of longitudinal oscillations 
of a rod of length / with arbitrary initial conditions

4 -o  = /(* ) , -Ot = g(x)

if the end x = 0 is clamped and the end x = I is free. 
Ans.

n oo
«(*, o =  7 I

(2 n +  \)nvt
cos  -----:— -—  f /({;) sin 1 d\  +

21 Jo 21 ( 2  n  +  1 ) t o

(2 n +  lfrg 21

x sm +  sin (2w t . 1̂
2/ 21

. (2 n +  l)7ixsin ---------  — .
21

104. Investigate the longitudinal oscillations of a cantilever of length / 
and mass M  if the end x =  0 is clamped while the end x = I is loaded by a 
concentrated mass M0) which at the time t = 0 experiences a displacement 8 
without acquiring any initial velocity.

Ans.
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where the yn are consecutive positive roots of the equation

f My tan y =  —  .
M0

105. Find the longitudinal oscillations of a rod of length I if the end 
x =  0 is clamped while the end x = I receives an impulse P at the time 
t =  0. The rod is assumed to be at rest before the impulse acts.

Arts. In the notation of the preceding problem,

(—l)71 . (2n +  1)tux . (2n +  l ) n v t,   — sin    — sin   ,
nvM n=0 2n +  1 21 21

Hint. Solve the problem of oscillations with the initial conditions

0, 0 < x < /  — e,
P

v 0 -------- , / — e <  x <  /,
p eS

where S is the cross-sectional area of the rod, and then take the 
limit as e —► 0.

u\t=o ~~ 0,
d u

d t

106. Find the displacement of the points of a rod of length / clamped 
at the end x =  0, which undergoes longitudinal oscillations under the action 
of a pulsating force A sin co/ applied to the free end x =  /. The rod is assumed 
to be at rest before the force begins to act.

Ans.

w(x, 0 =

I . (OX| sin —
v

£Sg)| colcos —
\ v

sin cot

rc\VI  r r f

. (2n +  l)7rx . (2n +  l)nvt\sm ---------  — sin  1
( - l ) n 21___________21

n = o  2n + 1 (2 n +  1)tc 
2 T- (")’

Hint. To make the problem homogeneous, represent the displacement as 
a sum of free and forced oscillations (see Prob. 78). Another method of 
solution is given in Chap. 5 (see Prob. 211).

107. A conical cantilever with the dimensions shown in Figure 17 is 
stretched by a force F applied at the end x = I. Study the longitudinal 
oscillations which result when the force is suddenly discontinued.

Ans.
2F cot a v* cos ynu(x, t) = . ynx Y„vt— sm -UL- cos -UL— . 

7t£(fl -  x tan a) n=1 Y„[(sin 2yJ2yn) -  1] / I2
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where the yn are consecutive positive roots of the equation

tan y =  1̂ — j  cot aj y.

*108. Solve the problem of the longitudinal oscillations of the pyramid- 
shaped cantilever of rectangular cross section and constant thickness shown 
in Figure 18, subject to a given initial deformation u\t=0 =  f(x).

Arts.
, , N 2 tan a ^

«(*. 0 =  —7̂ — z
Xyn (a — x tan a) • cos vtyn tan a

where

b2 nty (4 a * ln y y )  -  X l(b)

~  Z t3n *)XY»(a — Z tan °0J 0

xy{y) =  n (Y )-/o (-) -  M r ) r o ( f ) ,

J0(x) and 70(jv) are cylinder functions of order zero), and the yw are con­
secutive positive roots of the equation 
X'y(b) = 0.

*109. Find the general solution 
of the problem of longitudinal oscil­
lations of a rod consisting of two 

F ig u r e  19 rigidly fastened sections with different

i °
5 rJ
$

1------  Q\------ - -— o? *■!
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dimensions and elastic properties (see Figure 19). It is assumed that the ends 
of the rods are clamped and that the initial state of the rod is characterized 
by the conditions

Ans
«|(=0 =/(*)>

du
dt

=  0.
t=o

a  Sipi f° dt  +  s2P2 j y ( t ) u (: \ t )  d t y  v <
u(x, o =  2 l ------± ------------------------------------------------ «.(*) cos Y" 1

1 sin2 .j a2s 2p2 sin2 y„
d iV 2

where

sin

u n(x )  =
a,v2

K W - s i n ^ ^ f a sinv,
a iUo

—at < x < 0,

0 < x <  a2i

the Yn are consecutive positive roots of the equation

S2\/E2P2 tan Y +  S j E l9l tan =  0,
axv2

the two sections have Young’s moduli Eiy cross-sectional areas and 
densities pi (i =  1, 2), and =  %/is/p*.

110. A pointer is fastened to the free end of a rod of length / clamped at 
the end x = 0. Study the torsional oscillations which result if at the time 
t = 0 the pointer is twisted through an angle a and then released without 
initial velocity, given that the moment of inertia of the pointer with respect 
to the axis of rotation is J0.

Ans.

n/ x ~ J V C0S Y7i 
0(x, 0 =  2 a -  2 ,— r *

• 'O  n — l  Y n

sin Yn*
I

1 + sin_2
2r«

C O S
Y n»t

where the yn are consecutive positive roots of the equation

, JY t a n  y  =  7  ,
• 'O

J  is the moment of inertia, G the shear modulus and p the density of the rod,
and v = yjGjp.
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111. Solve the preceding problem with arbitrary initial conditions

90 
dte|i-o = /(* ) , =  g(x).

Ans.

0(x, t) = 2%
sin J-2-  

I

X cos cos Sin cos —  i/c.

with the previous notation.

*112. A disk with moment of inertia J0 is fastened to the point * =  c of 
a cylindrical shaft with clamped ends x = 0 and x = I. Find the torsional 
oscillations of the shaft if the disk is twisted through the angle a at the time 
t =  0 and then released without initial velocity.

Ans.

e(*> 0 =  ———>l 2  sin y i l -  - )  sin ^  0„(x) cos —^
a (1 — - F =1 ------- L------ll ------J ---------------- —

where
\  1/ D

n _ v 2/r~  I sin(2Yra /̂0
" “ M L /

sin2y,• H )

sin

0nO) =

2y„
+ [i _£ + s^T.<i-WO)Jsin.a ; | |

^ Y  sin Tn(l — . 0 < x < a,

Y n a  / ,  x \  ,sin —  sin — ~J, a < x < 1,

the Yn are consecutive positive roots of the equation

J0y  . ya . I a\sin y = ----sin — sin y 1 — - 1,
J  / \ / /

and J  is the moment of inertia of the shaft.

113. A disk with moment of inertia JQ is fastened to one end x =  0 of a 
circular shaft, and another disk with moment of inertia Jt is fastened to the 
other end x = I. Find the torsional oscillations of the shaft if the relative 
angle of rotation of the disks equals a.
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Arts.

Q(x, t) = 2a y  2 Jo
(1 -  C O S  Yn) +  Yn sin Yn

+  -  ( - - r : )  — k  +  y ( 1 - c o s 2 y j l
_Wq ' '■'0 ' ^Yn «̂0 -

x [ i - ( c o s y  -  Y«y  sin‘y )  c o s -y^]-

where the yn are consecutive positive roots of the equation

M -tan y
Y

h i i  Ys _  l
J J

and J  is the moment of inertia of the shaft.

*114. Find the general solution of the problem of transverse oscillations 
of a beam of length /, simply supported at its ends x =  0 and x =  /, with 
arbitrary initial conditions

“|(=o = /(* ) . ôt =  g(x).
Ans.

, ^ 2 ^  n2n a  t [ 1 r/r  ̂ . nnZ, jr
u(x9 0 =  72 , cos — 7— /(£) sm —  f t

‘ n=l L * *
/2 . n2n2a2t [ l ,21 . htcx

T T l  s,n — s i l )  sin —  dU Sin —-  , n V a  / Jo I J I+

where a2 =  \! EJjpS, E is Young’s modulus, J  the moment of inertia of a 
cross section, p the density and S the cross-sectional area of the beam.

115. Investigate the transverse oscillations of a beam of length /, simply 
supported at its ends x =  0 and x =  /, under the action of an impulse P 
applied to the point x = c at the time / =  0.

Ans.

u(x, t) = 2IP sin (nncll) . mzx . n27z2a2t0 , > ------  „ sin  sm ----- -— ,
n2<jEJpSn=1 n I 12

Hint. Solve the problem of the oscillations of the beam with the initial 
conditions

P
I n du

“I-  -  “• ir 2pSe

0,

e <  x < c +  e,

and then take the limit as e —► 0.
otherwise,
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116. A beam of length 2/, clamped at its ends x = ±1, undergoes 
transverse oscillations with initial conditions

“|f=0 =/(*)>
du
dt t=o

-  0.

Find the oscillations of the beam, assuming that the initial deflection of the 
beam is symmetric with respect to the center of the beam and that there is no 
initial velocity.

, l v  cos {y\a2tjl2) (
“(*. 0 =  7 Z  — 2 ---- 7J—  I cosh Yn cos ■/ n=1cos v„cosh y„\

: J /(£) (cosh y„ cos - — cos y„ cosh — j di,

where the yn are consecutive positive roots of the equation tan y +  tanh y =  0.

117. A beam simply supported at the points x = 0 and jc =  / is in 
equilibrium under the action of a concentrated force F applied at the point 
x = c. Find the transverse oscillations which result if the force is suddenly 
removed.

Ans.

u(x, 0 2FI3 y  sin (nnc/l) 
n*EJ n4 i n*

sin mzx---- cos
/

n2n2a2t
I2

*118. Find the transverse oscillations of a cantilever of length / if the 
initial deflection is due to a concentrated force F applied to the free end 
x = I and is suddenly removed at the time t =  0.

Ans.
___x»(s) cos (yW tl?). . 2 Fl3̂

“(*> o =  — 2
where

EJ (cos Yn sinh Y„ -  sin y„ cosh yn)y*

Xn(x) = (sin Y„ +  sinh y„) (cos —  -  cosh —- j

— (cos Yn +  cosh y J  (sin ^  — sinh ,

and the yn are consecutive positive roots of the equation cos y cosh y +  1 =  0.

119. A beam of length / is simply supported at the end x  =  0 and clamped 
at the end x = I. Find the transverse oscillations of the beam under the 
action of a suddenly applied uniformly distributed load q.



PROB. 121 THE FOURIER METHOD 69

Ans.

»(*.0 =  44 ^ - ) <i, +  '* - 2 * 1)

, <ll vS'nh Yn -  2 cosh yn sin yn +  sin y„ ^  Y*« <
“r ~  Z, 6 • U2 • 2 A n\X) COS ~ 5

E J  n= i Y^sinh Ynsin y n r

X n(x) =  sinh Yn sin ^ y  — sin yn sinh ^ y  ,

where the yn are consecutive positive roots of the equation tan y =  tanh y.
Hint. Make the problem homogeneous by subtracting out the static 

deflection of the beam.

*120. Study the axially symmetric vibrations of a circular membrane of 
radius a due to an impulse P applied at the time / =  0 and distributed over 
a disk of radius e.

Ans.

u(r, t) = 2Pv &
™t  nt i

A(Y«e/a) , (y„r\
ylA(yn) 9\ a )

where y0(x) and are Bessel functions, the yw are consecutive positive roots
of the equation yo(y) =  0, T  is the tension per unit length of the boundary, 
p is the surface density of the membrane, and v = y/Tj p,

Hint. The initial conditions have the form

«|(=o =  0,
du
dt t= 0

p
7te2p

,0

0 < r <  e, 

e <  r < a.

121. Find the general solution of the problem of vibrations of a ring- 
shaped membrane fastened to the circles r =  a and r = b, and subject to 
arbitrary initial conditions

w|i=0 = /W . y |  '=  g(r).
at l<=o

Ans.

u(r, t) = yX M
(4/tt2) -  a’R'/Ja)

cos XnVtf
b Ja

+

p/(p)RJ p )  d p

—  Pg(p)RySP) dP »ynv b Ja J
where

Ry(r) =  1MyVo(-) -  Jo(y)Yo (~ )
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is a linear combination of Bessel functions of the first and second kinds, and 
the yn are consecutive positive roots of the equation Ry(a) = 0.

122. Determine the axially symmetric vibrations of a circular membrane 
of radius a due to a pulsating load q sin o*t which is uniformly distributed 
over the whole membrane and begins to act at the time t =  0.

Ans.

u(r, t) = fj _  ^oPr/t/Tl sjn 2vaq Jo(ywr/a) sin (ynvtla)
pw2L 7 0((oa/v)J coT “ i Y * A (y J  1 ~  ( v y ja a ?  ’

where the yn are consecutive positive roots of the equation / 0(y) =  0.
Hint. Make the problem homogeneous by subtracting out the forced 

oscillations (see Prob. 82).

123. Find the vibrations of a rectangular membrane —a < x < a, 
~b  < y  < b with initial conditions

Ot
=  0,

where / i s  a given function which is even in each of the variables. 
Ans.

( a V  a  (2m +  l)7rx (2n +  l)7ryU(x,y,t) =  2, Z Amn COS *-----" COS =>----
2 a 2b

x cos

where
4 f rt [ b r,  N (2m +  l)7ux (2n +  1>7Ty  j  j= — \ y) cos 1------— -— cos  ---- — ax ay.

ab Jo Jo 2 a 2b

*124. Study the transverse oscillations of a circular plate of radius a 
with a clamped edge, for arbitrary initial conditions

Ans.

u(r, t) = -  2

4=o = /('■).

1 ^  Ry .(r) r

—
dt li=o

=  g(r).

a2 ll(yn)J f o n)
p/(p)Ry„(p) d p

+
a2 Y 2b2t f a 1

- ^ s i n ^ -  ?g(p)Ry„(P)dp , b y n a6 Jo J

Ry{r) =  /„(y);0( - )  -  io (r)/o (^ )

where



PROB. 127 THE FOURIER METHOD 71

is a linear combination of cylinder functions, the yn are consecutive roots of 
the equation R'y(a) = 0, b2 =  %/D/ph, and D is the flexural rigidity, h the 
thickness and p the density of the plate.

125. Solve the preceding problem for the case where the oscillations are 
due to an impulse P applied at the center of the plate at the time t =  0.

Ans.
Pb2 f
Z7T D n=l

[/o(Yn) U y J ] R ,n(r) . Ynbhsin ——
YWCY-VKyJ

Hint. Solve the problem with the initial conditions

I _  n ^u
m|(=o — 0, dt t-o

and then take the limit a se -^ 0 .

ne2ph
0 < r <  e, 

e <  r < a.

126. Investigate the transverse oscillations of a circular plate of radius a 
with a clamped edge under the action of a concentrated force F applied to 
the center of the plate. The plate is assumed to be at rest at the time / =  0.

Ans.

Fa2 f  Iq(Y n )~ - /o (Y n )n  , s 
2nD £  yU K yJJhn)

cos-Y\b 't

with the notation of Prob. 124.
Hint. Make the problem homogeneous by subtracting out the static 

deflection of the plate.

127. Study the radial oscillations of a gas confined in a spherical reso­
nator,8 assuming that the initial values of the velocity potential and its time 
derivative are

“ |(=0= /W ,
du
J t

=  0.
t=o

8 The velocity potential of an oscillating gas satisfies the wave equation

A 1 WuAw---------v2 dt2
(see T l, p. 25). In Probs. 127-130 it is assumed that the walls are perfectly reflecting, i.e. 
that

du
Tn — 0.

3
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Ans.

u(r, 0 =  -  2
2 sin (yn>ja) cos (ynvtla) fp /(p ) sin dp +  -  f p 2/(p) dp, 

Jo a a Jo
where the yn are consecutive positive roots of the equation tan y =  y, a is the 
radius of the sphere and v is the velocity of wave propagation in the gas.

128. Investigate the steady-state acoustic oscillations in a semi-infinite 
cylindrical pipe of radius a, assuming that the distribution of the normal 
component of the velocity of the air particles in the plane z = 0 is a given 
function

O v ) * U o  = / W  s i n  cor.
Consider the special cases

a) f(r) =  d0, b) f(r)  = v0J0^ j ,  

where y is the smallest positive root of the equation J^y) =  0.
Ans. The velocity potential is given by the formula

{J itot GO

“ 2
n=0

e- iV k*-(ynW )z  j 0(Ynr/fl)

s/k2 - ( y 2J a 2) A M
where k =  cojv, the yn are consecutive nonnegative roots of the equation 
JiCy) =  0 (Yo =  0), and J0(x), Jx(x) are Bessel functions. In the special cases,

u(z, t) = — — cos (cot — kz), 
k

w(r, z, 0 =  Im
I / v r \  g-tVk2-(y2/a2)*
V o  - 1 ^ 7 ----------—

I \ a /  i \ J k 2 —  (y 2j a 2)

129. Find the steady-state harmonic oscillations of sound inside a conical 
horn a < r <  oo, 0 < 6 < a ,  assuming that the velocity distribution along 
the base of the horn is given by

(«v)r|r=a = /(0 )  sin a>r.

Consider the special case /(0) =  v0.
Ans.

w(r, 0, 0 =  Im {—
6  2vn +  l < > +,4fcr)
2

X

k sin2 a Pv„(cos a) H ^ A(ka)

p v„(cos 6)
dP’vJcos a) I

- j  /(0)PVn(cos 0) sin 0 d0 
Jo

/c(l — cos a) HW2(ka) Jo I
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where the vn are consecutive roots of the equation P'Jcos a) =  0, Pv(x) is the 
Legendre function and X/i (*) the second Hankel function. In the special 
case,

, v ~ la sin [cor — k(r — a)]— 2ka cos [cot — k(r — a)]u(r, t) =  2v0a l ----- *--------- -̂------  ~ r  2 ---------*-------— •
'V r 1 +  4k a

130. Solve the problem of diffraction of a plane sound wave u0ei{ait~kz) 
by a spherical obstacle of radius a.

Ans.

" -  -  ‘h j —  I'

2 <2"+n— 0

where Jn+A(x) is the Bessel function of the first kind, H(x)i2l lA the second 
Hankel function, and Pn(x) the Legendre polynomial.

Hint, If the velocity potential is written as a sum

k =  (u0e-ikz +  uje™,

then solving the problem reduces to integrating Helmholtz’s equation

A ux +  k2ux = 0
with the boundary condition

dr r=a
U .

where ux must satisfy the radiation condition at infinity.

2. Mechanics: Statics of Deformable Media, Fluid Dynamics

131. Find the equilibrium shape of a rectangular membrane with sides 
2a and 2b under the action of a uniformly distributed load q, choosing the 
origin at the center of the membrane. Calculate the deflection of the center 
of the membrane, assuming that the ratio bja takes the values 1, 2 and 3.

Ans.

«(*> y)
=  , 16 f  ( - l ) n+1 cosh [(2n +  l)ny/2a] (2n +  1)tix

T  l2 \ a2/  +  7t3 ~ 0(2n +  l)3cosh [(2n +  l)nb/2a}C0S 2 a
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where T is the tension per unit length of the boundary. Numerical calcula­
tions show that w(0, 0) =  kQ/T, where Q = qab is the total load, and

^|b/a=i — 0.295, /c|bya=2 — 0.228, /c|^a=3 — 0.164.

Hint. Make the problem homogeneous by subtracting out the particular 
solution of the equation for equilibrium of the membrane which depends 
only on the coordinate x and satisfies the boundary conditions on the sides
x  =  ±flf.

*132. Find the equilibrium shape of a semicircular membrane of radius a 
(see Figure 20) under a uniformly distributed load q.

Ans.

- i ( ( f i  + ? ) cos2’p
2ar sin 9

.  ̂ , a2 +  r2 — 2ar cossin 29 In —----- ---------------
a2 +  r2 +  2ar cos

where T is the tension per unit length of the boundary.

9I r2 sii
9J a

sin2 9

Hint. To apply the Fourier method, sub­
tract out the particular solution

qr2 . 2 
“1 =  -  ^  sin 9

of the equilibrium equation. To write the 
solution in closed form, it is necessary to sum a 
series (this has been done in the answer).

133. Study the twisting of a rod whose cross section is a rectangle with 
sides a and b. Find the torsion function and the torsional rigidity.

Ans. The torsion function is

U(x, y) =  x(a -  x) - sin [(In +  l)7tx/a]cosh[(2n + l)(|fr — y)nja] 
( (2n +  l)3 cosh [(In +  \)nbj2a]

and the torsional rigidity is
(0 < x < a, 0 < y < b).

b_ 64 y  tanh [(2n f  l)nb/2a]) 
~  tt5 £  (2n +  l)5 1

where G is the shear modulus.



PROB. 136 THE FOURIER METHOD 75

Hint. Make the problem homogeneous by subtracting out the particular 
solution of the differential equation for the torsion function which depends 
only on the coordinate x  and satisfies the boundary conditions for x  =  0 and
x = a.

134. A rectangular plate with sides 2a and 2b, simply supported on its 
edges, is acted upon by a uniformly distributed load q. Find the deformation 
of the plate, choosing the origin at the center of the plate. Derive an ex­
pression for the deflection of the plate.

Ans.

2 +  O fL + JM  tanh{2n +  iy* *b
_5 _  64 ^  ( ~ l) n__________ 2a___________ 2a
24 tu\4o(2« +  1)b 2 cosh (2” +  1)nb

2 a
where D is the flexural rigidity of the plate.

Hint. Subtract out the particular solution of the deflection equation 
which depends only on the coordinate x  and satisfies the boundary conditions 
for x =  ±a.

135. Solve the preceding problem, assuming that the boundaries x  = ±a  
are simply supported, while the boundaries y  =  ±b  are free. Calculate the 
deflection at the center of the plate.

Ans.

U(o, 0 ) = ^

«(0, 0) = 2 , 64v y  (-1 )"
24 tt5 „t'0(2n+  l )6

X

i ± ^ sinh(2» + J ) ^ _
1 -  V_______ 2a

(3 +  v) sinh cosh
2 a

(2n +  l)Tzb (2ft +  l)nb
2 a____________ 2a_______

(2ft +  1)7zb _  _  x (2ft +  l)nb
2 a ~  ( ~  2 a

where v is Poisson’s ratio.
*136. A semicircular plate of radius a is clamped along the semicircular 

arc and simply supported along its rectilinear edge. Find the deflection of 
the plate under a uniform load. Write a formula for the deflection of the 
axis of symmetry of the plate, and represent the result in the form of a graph.

Ans.

u qaA f r 4 1 I t  , ^  r* . r r4 A a2 , a*\ 2ar- —  — ------6 +  12 — +  5 — — 4 — — 3 — ) arc tan —------- -
24DLn4 87r\ a2 aA r2 rAJ a2 — r2

- - ( 5 - - 1l -  +  3 - + 3 ~ ) l  
47t \  a3 a r r3/ J

(see Figure 21).
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Hint. Make the problem homogeneous by subtracting out the particular 
solution

11 4 - 4r sin cp, 
24 D r

0 <  9 <  k

of the deflection equation satisfying the boundary conditions on the rectilinear 
edge.

137. An infinite cylinder of radius a is placed in a plane-parallel flow of
an ideal fluid. Find the velocity potential, 
choosing 
cylinder 
opposite 
ure 22).

Ans.

the origin at the center of the 
and the direction of the x-axis 
to the direction of flow (see Fig-

u(r, cp) =  v„ j cos cp +  const,

F ig u r e  22 where vw is the value of the flow velocity 
far from the cylinder.

138. Find the velocity potential for flow of an ideal fluid emanating from 
a source of strength m and flowing past an infinite cylinder of radius a, where 
the configuration of the cylinder and the source is shown in Figure 23.

Ans.

u(r, cp) =  — In — +  const,
2k  pp

where bb =  a2 and the meaning of the var­
ious symbols is indicated in the figure.

Hint. Subtract the source potential

ux = — — In p +  const 
2n

from the solution. F ig u r e  23

139. Solve the problem of plane-parallel flow of an ideal fluid past a 
sphere of radius a, choosing the origin of a system of spherical coordinates
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r9 0, cp at the center of the sphere, with the direction of the z-axis opposite 
to that of the flow.

Ans.

cos 0 +  const,

where v„ is the value of the flow velocity far from the sphere.

*140. Solve the problem of flow past a sphere of radius a due to a source 
of strength m at a distance b from the center.

Ans.

«(r,6) =  -  
4n

1 , a 1 .-  +  — ---- In
Lp op a

r(l +  cos 0) 
p +  r cos 0 — bJ ’

with the same notation as in Figure 23, except that the x-axis now becomes 
the z-axis.

3. Heat Conduction: Nonstationary Problems

141. A slab of thickness 2a, thermal conductivity k , specific heat c and 
density p is heated to temperature T0, and its faces are then held at tem­
perature T0, starting from the time t = 0 (see 
Figure 24). Find the temperature distribution 
T(x, 0  in the slab.

Ans.

n * .  o -  S  - 4 = ^K £ , 2 . +  1
X £- | ! ”+ l l V l , 4 “!  c o s  +  ^ n x  , 

2 a

-a +a

|j j j l
V////7////

F ig u r e  24where t  =  ktjcp.

142. Describe the equalization of a given initial temperature distribution 
T(x, 0) =  f (x )  in a slab whose faces x  =  0 and x =  a do not transmit heat.

Ans.

T(x, 0 =  -  dl + - %  e-n W cos —  fV(5) COS — '
n Jo a ^  a Jo a 143

143. Starting from the time t =  0, a slab —a < x < a of thickness 2a 
with a given initial temperature distribution T(x, 0) =  f (x )  radiates heat into
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the surrounding medium, whose temperature is taken to be zero. Assuming 
that the radiation obeys Newton’s law, find the temperature distribution in 
the slab for arbitrary time t.

Arts.
cos ■. Yu'*

T(x, t) = -  21 y  a ,-(>!>>■
A n=l , , sin 2 V" }

2Y?>

'Tf / © c o s ^ d 5J—a a

s i n ^

+  2a —! sin 2y„
2ri2)

(,r  " >la)S\ a / © s i n ^ ^ ,
(2) J-a fl

f l  —(y------ ;e v

where t  =  ktjcp, the are consecutive positive roots of the equation

tan y(d =  
tan ^ yi> ’

h is the heat exchange coefficient, and the y«2) are the corresponding roots of 
the equation

*<2>
tan y(2) = X

ah

144. Starting from the time / =  0, heat is produced with constant density 
Q in a slab —a < x < a of thickness 2a. Find the temperature distribution 
in the slab, assuming that its faces are held at temperature zero and that the 
initial temperature is also zero.

Ans.
m a 2 V  ( -1 )” , - (W nW cn, (2n +  l)nx
n3k nt'o(2n +  l)3 2a

Hint. Make the problem homogeneous by subtracting out the solution 
of the corresponding stationary problem.

*145. An inhomogeneous slab consisting of two layers with different 
thermal properties is heated to a certain temperature T0, and then cooled 
by having its faces held at temperature zero starting from the time t =  0. 
Assuming that the faces of the slab are at x =  0 and x =  a1 +  a2 (where ax 
and a2 are the thicknesses of the two layers), find the temperature distribution 
in the slab.
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Ans.

r(x, o =  2T02  -----a^ b] , ---------------------------   XJx),
Y n

azy/bzYn , ci2b2k2 . 2 1

Sin -----7r~ +  “ T 7" Sin YnfliVOi a\bik1 J

0 < x < flj,
Xnix) =

, . a2y/b2Yn . ynx | sin----- sin J— ,
fliV&i fli

. ^Jb2yn(a1 + a2 — x)[ sin yn s in ---------- j=----------- , ^  < x < ax +  a2,
V M i

where the yn are consecutive positive roots of the equation

y/b2k2 tan y +  V^i^i tanfl2̂ l T  =  0,
a 1V&1

the two layers have specific heats densities pt- and thermal conductivities 
( i = l ,  2), and 6* =

146. The ends of a thin rod of length / are held at different temperatures, 
while the lateral surface of the rod gives off heat into the surrounding medium 
according to Newton’s law. Find the temperature distribution along the rod, 
assuming that the ends of the rod x =  0 and x = I have temperatures zero 
and T0, respectively, and that the initial temperature equals zero.

Ans. 

T(x, 0 T0 sinh V[xx 2 e- n r y  ( - l ) nn
_sinh >J\l I tc n=1 n2 +  (p/2/7r2)

sin nnx

where p and S are the perimeter and cross-sectional area of the rod, h is 
the heat exchange coefficient figuring in Newton’s law, and p =  phjS.

Hint. The problem reduces to integration of the differential equation

(see C3, p. 134).

92T dT 
dxz dx

147. A cylinder of radius a is heated to temperature T0 and then cooled 
by having its surface held at temperature zero starting from the time / =  0. 
Find the subsequent temperature distribution in the cylinder, assuming that 
all cross sections have the same temperature distribution.9

Ans.

T{r, t) =  2T02 ^ ( T / /« )  -yl T / o a

n=l T 71*̂1 (Y n)
9 This corresponds to a long cylinder (theoretically, infinitely long).
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where r is the distance from the axis of the cylinder, JQ(x) and Ji(x) are 
Bessel functions, the yn are consecutive roots of the equation / 0(y) =  0, 
t  =  kt/c p where k is the thermal conductivity, c the specific heat and p the 
density of the cylinder.

*148. Describe the equalization of a given axially symmetric initial 
temperature distribution T(r> 0) =  f(r)  in an infinite cylinder of radius a, 
whose lateral surface does not transmit heat.

Ans.

n r ,  o =  - d?+2  n  )7i=l J 0U n)
J^nrla)  -y^/a'

where the y„ are consecutive positive roots of the equation J±(y) =  0.
149. An infinite cylinder of radius a, initially heated to the temperature 

T0, subsequently cools off by radiating heat into the surrounding medium 
according to Newton’s law. Describe the cooling process.

Ans.

T(r, 0 =  2T02
7 1 = 1

Ji(YnVo(Yn>-/a) e y"T/g 
•/o(Yn) +  Yn

where the yn are consecutive positive roots of the equation
Y/i(y) =  ahJ„( y ) .

150. Starting from the time t = 0, Joule heat is produced with density Q 
in a cylindrical conductor of radius a. Find the temperature distribution 
over a cross section, assuming that both the initial temperature and the 
surface temperature equal zero.

Ans.

4/c
1 - rV 8y  -A)(Ynr/a) ~yh/«*"

a'  n=l Y^l(Yn) j
where the yw are consecutive positive roots of the equation / 0(y) =  0.

Hint. Make the problem homogeneous by subtracting out the particular 
solution corresponding to the stationary distribution of temperature in the 
cylinder.

151. A cylindrical conductor of radius a is heated for a long time by an 
electric current producing heat in the conductor with density Q. Study the 
process of cooling that ensues after the current is turned off, assuming that 
the cooling from the surface always obeys Newton’s law and that the tem­
perature of the surrounding medium equals zero.

Ans.
T(r t) = 2Q a °h f  J0(ynrla)e~^/at

k t x  Yn^»(Yn)[l +  W Y J 2] ’
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where the yn are consecutive positive roots of the equation

yA(y) =  ahJ0(y),
and h is the heat exchange coefficient.

Hint. To determine the initial condition for the cooling problem, find 
the stationary distribution of temperature during the period of heating.

152. Find the temperature distribution in a cylindrical pipe a < r < b if 
there is a constant heat current of density q through the inner surface r = a, 
while the outer surface r =  b is held at temperature zero. The initial tem­
perature of the pipe is assumed to be zero.

Ans.

where
n r ,  0  -  f  {m b~ -  . y f y / M l  * - < * 'k \  r a B_i YnWYn) -  -ACyW^)]

K,(r) = -  JJY) > ; ( - ) ,

')■

where J0(x) and y0(x) are Bessel functions, and the yn are consecutive 
positive roots of the equation R'y(a) =  0.

Hint. Subtract out the particular solution corresponding to the stationary 
distribution of temperature in the pipe.

*153. Find the general solution of the problem of the cooling of a sphere 
of radius a, given that the initial temperature distribution of the sphere is 
T(r, 0) =  /(r), while the surface temperature equals zero.

Ans.

T(r, t) = ~  22 ^ V nVTA,: sm 
ar

• W7rrf w \ • nn9 j i n —  / ( p ) s i n —  p d  p,
a Jo a

where k is the thermal conductivity, c the specific heat and p the density of 
the sphere, and t  =  ktjcp.

154. Find the temperature distribution in a sphere of radius a whose 
surface radiates heat starting from the time t =  0 according to Newton’s 
law, if the initial temperature is T0.

Ans.
T (r t\ =  IZo? ah y cos Yn sin (ynr/a) - y W

r 1 -  ah n=1 Yn 1 -  (sin 2yJ2yn)
where h is the heat exchange coefficient, and the yn are consecutive positive 
roots of the equation

tan y = T
1 — ah
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155. A spherical object of radius a is heated for a long time by a source 
producing heat with volume density Q. Study the process of cooling that 
ensues after the heating is stopped, assuming that the cooling is due to 
radiation from the surface and that the temperature of the air in the chamber 
where the heating occurred is T0.

Ans.

T(r, /) =  T0 +
2Qa4h ^  ___

(I -  ah)kr ^ l [ \
C O S  Y n  - V n T / a 2 . y  J----- —---------e sm ,
(sin 2yn/2yB)] a

where the yn are consecutive positive roots of the equation

tan y = Y
1 — ah

Hint. To determine the initial temperature distribution in the sphere, 
solve the corresponding stationary problem.

156. The region between two parallel planes x =  0 and x  =  a is occupied 
by a solution with a given initial concentration C(x, 0) =  /(*). Describe the 
subsequent equalization of concentration, assuming that the walls are 
impermeable. Examine the special case

/(* )

Ans. In the special case,

where D is the diffusion coefficient.

o, 0 < x < c,

Co, c < x < a.

2 ^ysin (rmc/a)
n

nnxcos----  ,
a J

157. Find the concentration in a solution inside a cylindrical pipe 
a < r < b with impermeable walls, if the initial concentration distribution is

Ans.

4 = o  = / ( r )  =
Q,

0,

a < r < c, 

c < r < b.

c  =  c  (c2 -  q2 , V R'yn(c)Ryn(r) i D t l a 2'

°lb2 — a2 2 £ l - l A ( y M y nbla)]e
where

W  =  A<Y»-„(f) -  W . ( ^ ) ,

where Jn(x) and Yn(x) are Bessel functions, and the Yn are consecutive 
positive roots of the equation R'y(b) = 0.
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158. Find the concentration of a gas inside a cylindrical metal object of 
radius a, assuming that the initial concentration of the gas is C(t, 0) =  /(r)  
and that the object is surrounded by a medium in which the gas is maintained 
at constant concentration Cx. Consider the special case/(r) =  C0.

where a and are the coefficients characterizing the emission and re- 
absorption of the gas by the surface of the metal (see G3).

159. Find the stationary temperature distribution T(x, y) in an infinite 
bar of rectangular cross section (see Figure 25) if three faces are held at 
temperature zero, while a given temperature distribution T(jc, b) =  / ( jc) is 
maintained on the fourth side. Apply the 
resulting general formulas to the special

Ans. — V n D t l a 2-Y n U f / a  T f  . v

where the yn are consecutive positive roots of the equation

In the special case,

Hint. The problem reduces to solving the differential equation

with initial condition
c  U  = / ( r )

and boundary condition

- D —  =  aC|r=„ -  a ^ ,
d r  r = a

4. Heat Conduction: Stationary Problems

F i g u r e  25
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In the special case,

Trx =  y  sinh [(2n +  l)wj>/a] sin [(2n +  l)7tx/a]
 ̂ ’ y> n ~ 0 sinh [(2n +  l)nb/a] 2n +  1

160. Find the distribution of temperature in a bar of rectangular cross 
section if the two opposite faces y  =  0 and y  — b are held at temperatures 
zero and T0, respectively, while the other two faces x = ± a  radiate heat into 
the surrounding medium (assumed to have temperature zero) according to 
Newton’s law.

Ans.

n x . y )  = 2 T , $  , sinY" sinh (y„yla) cqs T^x
Yn +  sin Yn cos Yn sinh (y„b/a) a

where the y„ are consecutive positive roots of the equation

ahtan y =  — 
Y

and h is the heat exchange coefficient.

161. Find the stationary temperature distribution in a conductor of 
rectangular cross section —a < x < a> —b < y  < b, heated by an electric 
current producing Joule heat Q per unit volume, if the faces of the conductor 
are held at temperature zero.

Ans.

I x\2 32 ^  ( - l ) n+1
V + 7 r * , t i ( 2 n  +  l ) 3

y cosh [(2h +  l)7uy/2a]^ s {In +  l)7rx1 
cosh [(2n +  \)-Kbj2a] 2a _T

where k is the thermal conductivity of the conductor.

Hint. Subtract out the particular solution of the inhomogeneous heat 
conduction equation which depends only on the coordinate x and satisfies the 
boundary conditions for x =  ±a.

162. Solve the preceding problem, assuming that all faces of the

T (x , , )  =  e2!
2k
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conductor radiate heat into the surrounding medium (assumed to have 
temperature zero) according to Newton’s law.

Ans.

QU

-  2a/»2
sin y„ cos (ynx/a) cosh (ynyla)

n^i Ynt1 +  (sin 2yJ2y n)][y n sinh (ynbja) +  ah cosh (y„b/a)]J’ 

where the yn are consecutive positive roots of the equation

ah
tan y =  —

Y '

163. A bar of rectangular cross section 0 < x < a, 0 < ;; < 6 is heated 
by a constant thermal current of density q incident on one face = b of the 
bar. Find the stationary temperature distribution over a cross section of the 
bar, assuming that heat is lost by radiation into the surrounding medium 
according to Newton’s law.

Ans.

T( V) = ± y  Y„ sin y„ +  ah(l -  cos y J  
K ’ kh £  2ah + t l  + {ah?

x
coshM  +  2 * sinl, M

A Y n
eoshl ^  +  f si nhJJr

a I ynx ah . ynx\-----1 cos H------sin J— I,
: „ u l nb' a yn a !

a 2a/i’Yn a

where the yn are consecutive positive roots of the equation

tan y = 2ahy 
Y2 -  (ah)2

164. A rectangular bar consists of two 
sections with different thermal conductiv­
ities and k2i respectively (see Figure 
26). Find the temperature distribution in 
the bar, assuming that two opposite faces 
y = ±b  are at temperature TQ, while the 
other two sides are at temperature zero.
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Ans.

T(x, y) =  2T„2
tan yn ̂ cos — cos j cosh y ny

Yn
• 2 Yna2 , a2 ■ 27" sin J------ h — sin yn

,/c2 fli
cosh

—  U x ) ,

Tn(x) =

• Yn* . Yn«2 sin J—■ sin .

I • Ynfai + a2 — x) . sin J------------------- sin y„,

0 < x < ai.

ax < x < ax +  a2,

where the yn are consecutive positive roots of the equation

tan y +  ~  tan =  0.
k2 Qi

165. Determine the stationary temperature 
distribution in a bar whose cross section is a 
“curvilinear rectangle,” with two faces consisting 
of arcs of concentric circles and the other two 
faces of segments of radii of the larger circle 
(see Figure 27). It is assumed that one of the 
curved faces r = b has temperature To, while 
the other faces are held at temperature zero.

Ans.

r z b

F ig u r e  27

n r . c p) =  ^ 2
(3(2n+l)rc/a

Tt / b p +1,n/a

^  (2n +  1)tup 

^Jln+l)n/a 2 n +  1

166. Solve the preceding problem, assuming that one of the plane faces 
<p =  a is held at temperature T0, while the other faces are held at temperature 
zero.

Ans.
. (2n +  l)n In (rja) . , (2n +  l)n<psin ----------    — sinh-------------- I

T( 4T0^  In (b/a)__________ in (b/a)
9 ^ 7i n=o 2n +  1 : u (2n +  l)7tasinh

In (b/a)
167. Find the stationary temperature distribution in a cylinder of radius 

a and length / (see Figure 28) with ends held at temperature zero and lateral 
surface held at temperature T0. Calculate the temperature distribution along 
the axis of the cylinder, assuming that the ratio a/1 equals 0.5, 1, 2.
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Z\

/

F i g u r e  28

Ans.
T(r z) = t l o f  /p[(2n +  1)7T>•//] sin [(2n +  1)ttz/l]

* t o  / 0[(2b +  1W /] 2» +  1
where /0(x) is the Bessel function of imaginary argument. 
The results of numerical calculations of the quantity

T\r=o
T„

are given in the following table:

\  z 
\  7

a \
7 \

0.1 0.2 0.3 0.4 0.5

0.5 0.246 0.458 0.611 0.698 0.726
1 0.072 0.134 0.188 0.221 0.232
2 0.005 0.009 0.012 0.014 0.015

168. Solve the preceding problem, assuming that the ends of the cylinder 
do not transmit heat, while a given temperature distribution

= /(* )
is maintained along the lateral surface of the cylinder. 

Ans.
1 H 2 'sr*

T(r, z) =  i  \ m c r t  + - 2  I Jo I „=1
Ip(nnrll)
I0(nnajl)

nnK .vcos----aQ.
I

*169. Solve Prob. 167, assuming that the ends of the cylinder cool off 
according to Newton’s law and choosing the origin at the center of the 
cylinder.

Ans.

T(r, Z) -  2T . f  --------cos ^  ,
«-i Yn +  sm yn cos y„ l 0{2ynajl) I

where the yn are consecutive positive roots of the equation

and h is the heat exchange coefficient.

170. The walls of a cylindrical hole drilled in an infinite slab of thickness h 
(see Figure 29) are held at a given temperature T0. Find the stationary tem­
perature distribution in the slab, if its plane faces have temperature zero.
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Ans.
T( z\ =  4To y sin t(2n +

(r' Z) 7T £  2k +  1
x Kol(2n +  1)7zr/h] 

Ka[(2n + lyna/h]' 
where # 0(x) is Macdonald’s function.

171. Find the stationary temperature 
distribution in a cylinder 0 < /• < ay 
0 < z < / if the upper end is at tem­
perature T0 while the rest of the surface is at temperature zero (cf. Prob. 167).

Ans.

n r ,  z) -  2T . f  B M m Z i)
S'nh f r . i / a )

where the yn are consecutive positive roots of the equation J0(y) =  0.

172. Heat is produced with constant density Q in a cylinder of radius a, 
length / and thermal conductivity k . Find the stationary temperature distri­
bution if heat leaves the cylinder through the part of the upper end bounded 
by the circle r = b < a, but not through the rest of the surface of the cylinder. 
It is assumed that the flow of heat out of the cylinder is uniformly distributed 
over the disk r < b.

Ans.

T ( r , z ^ - S f
k

— b — y
2a8 Z'

2/ v  Ji(Ynbla)Jo(Y„rla) cosh (ynz/fl)' 
Yn̂ o(Yn) s in h  ( y j / a )  J

+  const,

where the yn are consecutive positive roots of the equation y2(y) =  0.

Hint. Subtract out a particular solution of the 
inhomogeneous heat conduction problem which 
depends only on the coordinate z.

173. A cylinder standing on a thermally in­
sulating slab is heated from above by a uniformly 
distributed thermal current (see Figure 30), and 
radiates heat from its lateral surface into the sur­
rounding medium (assumed to be at temperature 
zero) according to Newton’s law. Find the station­
ary distribution of heat in the cylinder.
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Ans.
f ( r z) = 2qa2h y  Jo(.Ynrla) cosh (ynz/g)

k nt ' 1YnV0(Yn)[l+(«/«/YJ2] sinh(YJ/«) ’ 
where the y n are consecutive positive roots of the equation

Y-A(y) =  ahJ0(y),
h is the heat exchange coefficient and q is the density of the incident heat 
current.

174. A semi-infinite cylindrical pipe a < r < 6, 0 < z <  oois heated at 
the end z =  0 held at temperature T0i and cooled at its lateral surfaces r = a 
and r =  b held at temperature zero. Find the stationary temperature distri­
bution in the pipe.

Ans.

T(r, z) =  7tT02 ---------------   (a < r <  b, 0 < z <  oo),
71=1 _|_ J q ( Y  7 l)

Jo(ynbla)
where

Z„(K ) -

is a linear combination of Bessel functions, and the yn are consecutive positive 
roots of the equation

*175. An inhomogeneous cylinder formed of two sections with different 
thermal conductivities kx and lc2 (see Figure 31) is heated at its lateral surface 
held at temperature T0 and cooled at its ends held at temperature zero. 
Find the stationary temperature distribution T(r, z) in the cylinder.

F i g u r e  31

Ans.

T(r, z) =  2To2

where

tan yn (cos yn -  cos I0 (— )

7t = l  ( k i  . 2  I h 2 . 2 \  r  ( Y n a \
Zn(z),

Z n( 2 )  =

[ Y A  yn(z +  K)sm -----sin-------------- .
h  h,

sin yn sin Yw(̂ 2 ~  Z)
K

A  < z <  0, 

0 < z <  to2,
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and the yn are consecutive positive roots of the equation

/ci yh2
tan y +  — tan -— =  0. 

k2 h,

*176. Find the stationary temperature distribution in a sphere of radius 
a, if one part of its surface Sx is held at constant 
temperature T0, while the remaining part S2 is held at 
temperature zero (see Figure 32).

Ans.

T(r, 9) =  —(1 ~  cos oc — 2  [^«+i(cos a)
2 v n=i

- P 1_1(cos«)](-)V,(cos 0)},

in terms of the Legendre polynomials Pn(x).

177. Solve the preceding problem, assuming that 
heat is produced in the sphere with volume density Q, and that heat leaves 
the sphere through the surface Sx flowing in the normal direction with 
constant density (the surface S2 does not transmit heat).

Ans.

3k L 2a 1 — cos a

* 2
71=1

P„+1(cos a) -  P„_j(cos a)
(cos 0) +  const,

where k is the thermal conductivity of the sphere.
Hint. Subtract out a particular solution of the inhomogeneous heat 

conduction equation which depends only on the variable r.

178. A sphere of radius a is heated by a plane-parallel thermal current 
of density q incident on its surface, and gives off heat into the surrounding 
medium according to Newton’s law. Find the stationary temperature dis­
tribution in the sphere.

Ans.

T(r< 0) =  ^ r _ L  + 1
2kl2ah a 1 +  ah

f  P2n(0) 4 H +  1
2n +  ah (2n -  1)(2n +  2)

Pinicos 0)
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in terms of the Legendre polynomials Pn(x). Note that

i>o(0) = l ,  p„(0) =  ( - 1  r 1 ' 3 ' 5 " . {2n ~  3)(2” ~  1}, " =  1,2, . . .
2 • 4 • 6 • • * (2n — 2)2n

Hint. Here the boundary condition takes the form

( r=<

-  cos 0,
k

0,

0 < 6 <  =
2

7U n  
-  <  0  <  7 T .  

2

5. Electricity and Magnetism

179. Find the electrostatic potential u(x, y) inside an elongated box of rec­
tangular cross section (see Figure 33), if two 
opposite sides are at potential V and the 
other two sides are grounded.

't
u~-  0

n  - V
0

u - v

u  ■
i
' 0  
i

A ns.
47

u(x, y) =  — V ( - l ) n
7T cosh [(2n +  l)7za/b]

uzV\-----------------u-V x / x 4 7 ^ ,  ^ wcosh [(2n +  l)nx/b]
cosh [(2n 

cos [(In +  1 )ny/b]
2 n + l

F ig u r e  33 180. Find the electrostatic potential
u(x, y) inside a semi-infinite rectangular 

box (see Figure 34), if the vertical wall is held at potential 7  and the horizon­
tal walls are held at potential zero.

Ans.
/ x 27 sin (ny/b)uuc, y) =  —  arc tan -----—  .

7r sinh (nx/b)

Hint. To represent the solution in closed form, use the expansion

® e  (27I+U® 1 s in  y
> —-------— sin (2n +  l)v  =  -  arc tan — — ,

nt t  2n +  1 v 2 sinh x
x >  0.

181. Find the electrostatic potential u(x,y) 
between two infinite parallel sheets if one 
sheet y  =  0 is at potential zero, while a given

b
U - - V

0

u z 0

u~~ 0 x

F ig u r e  34
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periodic potential
« | v = 6  =  f i x )

is maintained on the other sheet (where/ is a function with a given period 2a). 
Ans.

«(*, y) =  ~ t
sinh (nnyja) 
sinh (nnb/a)

[ wttx f 2® . n7r£cos----  /  (y  cos-----dt,
L a Jo a

, . nnx f 2® _ . . "+  sin----  /(Q sin  —  ^
a Jo a

182. A thin charged wire with linear charge density q is placed inside
and parallel to a conducting cylinder of 
radius a held at potential zero. Use the 
familiar method of images to solve the cor­
responding electrostatic problem, assuming 
that the wire is a distance b from the axis 
of the cylinder.

Ans.

w(r, cp) =  —2q In — +  2q In -  ,
R a

where R and R are the distances shown in 
Figure 35, and a2 =  bb.

183. Solve the preceding problem if the wire is placed outside the cylinder, 
and if the cylinder has total charge Q per unit length.

Ans.

u(r, cp) = —2q In — — 2(q +  Q) In r +  const,
R

where R and R are the distances shown in Figure 36, and a2 =  bb.

F ig u r e  36 F ig u r e  37
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184. Find the electrostatic potential «(/*, cp) in the space between two 
conducting infinite half-cylinders, one of which is held at potential V and the 
other at potential zero (see Figure 37). It is assumed that the half-cylinders 
are separated by thin layers of insulating material along the lines where they 
meet.

Ans.

«0> <p) =  j
\  , 2 2ar1 +  -  arc tan

7T

\ar cos <p~| 
a2 - r 2 I

Hint. To solve the problem in closed form, use the expansion

v  (-1 )"  (r \2n+1 /  I I c
wt i 2 n +  1 V

cos (2n +  1)9 =  -  arc tan 2a r  cos <p r < a.

185. A cylinder of radius a made from material with dielectric constant e 
is introduced into a plane-parallel electric field with components Ex = - E 0i 
Ey =  Et — 0. Find the resulting potential distribution, and show that the 
field inside the cylinder is homogeneous.

Ans, The potential distribution is

u  =  E 2x  |~1 — ----- -
L £ ~f- 1

+  const outside the cylinder,

u  = ------ E qx  +  const
e +  1

inside the cylinder.

The field inside the cylinder is

E = - ^ .  
£ +  1

186. Find the electrostatic potential «(/*, z) inside a closed cylindrical* 
surface of length / and radius a, if the base and lateral surface are held at 
potential K, while the upper surface is held at potential zero.

Ans.

w(r, z) = V \  _  2 y  Jo(Ynrla) sinh (ynz /a )]  

£  T ^ i( y J  s in h (Yn/ /u ) J ’

where the yn are consecutive positive roots of the equation J0(y) =  0.
Hint.

dr = qVi(T7.)
Yn

187. Two metallic hemispheres of radius a, separated by a thin insulating 
washer, are held at potential V and zero, respectively, corresponding to the
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boundary condition

|̂r=a
v , o < e <  -

0 ,  ^  <  0  <  7 T .

Find the electrostatic potential w(/-, 0) in the space between the hemispheres. 
Ans.

4n +  3
H(r, 0) =  x ‘ + 2 ^ e>2 L n_0 2n + 2 

in terms of the Legendre polynomials Pn(x), where

P0(0) =  1, PtB(0) =  ( - ! ) "
1 • 3 • 5 - - • (2n — 1)

2 - 4 - 6 2 n
, n = 1, 2,.  . .

188. Find the electrostatic field of a point charge q placed at distance b 
from the center of a conducting sphere of radius a (a < b) held at potential 
zero.10

Ans. The electrostatic potential is

where

u(r, 0) =  |  + f
R ’

R = 'Jb2 +  r2 — 2br cos 0, R =  V +  r2 — cos 0,

i r 2 - *7̂bb = a , q ---------- .

189. Solve the preceding problem, assuming that the sphere is made from 
material of dielectric constant e.

Ans. The potential is

«(r, 0) =  I  2
2n -f-

b n=0 (e +  l)n +
(cos 0)

inside the sphere and

w(r, 0) =  — — — (e — l ) ^ --------------- (—) Pn(cos 0)
R br Ĵ 0(e + l)n  + l\b r)

outside the sphere, in terms of the Legendre polynomials Pn{x).

10 This problem can either be solved by the method of images or by the method of 
inversion (starting from the familiar solution of the problem of a point charge placed over 
a conducting plane).
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*190. Find the distribution of d-c current in a thin rectangular sheet, 
if the current is applied by electrodes at the points x = —a, y  =  0 and x = a, 
y  =  0 (see Figure 38).

Ans. The potential of the current distribution in the sheet is

"<*• y ) ~  S i ,
x 2 XT' sinh (nnx/b) nny' -  +  “ > -------  ' - t -  cos —-
.b n n=1 n cosh (mza/b) b _

+  const,

where ct is the conductivity and h the thickness 
of the sheet, and J is the total current flowing 
through the sheet.

Hint. The differential equation for the 
potential of the current distribution in a thin 
conducting shell is given in Prob. 21.

x

191. Find the distribution of d-c current F i g u r e  39
in a thin disk of radius a, if the current is
applied by electrodes at th~ points r = a, cp =  0 and r = a, y — it (see 
Figure 39).

Ans.

u(r, <p) =
lizoh

In

2r r
1 ------cos cp +  —

a a , L---------------------   +  const.
2 r r21 H-----cos cp +  —
a a

*192. Find the distribution of d-c current in a cylindrical shell of radius 
a, height 21 and thickness h, if the current is applied by electrodes at the 
points r = a, <p = 0, z = ±7.

Ans.

u(<p, z) =
Inch

sinh (nz/a) cos «cp~ 
cosh (nl/a) n _

+  const.

193. Find the distribution of d-c current in a hemispherical cap of radius 
a, if the current is applied by electrodes at the points r = a, 0 =  n/2, cp =  0 
and r = a, 0 =  7t/ 2 ,  cp =  t c  (see Figure 40).
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Ans.

0 20 1 +  2 tan -  cos cp +  tan -
In---- ---------------------------t +  const.

lizah . - , 0 - a 61 — 2 tan -  cos cp +  tan -  
2 2

194. A d-c current J enters one end of a cylindrical conductor of radius a 
made from material of conductivity <r and leaves the other end, via electrodes 
in the shape of disks of radius r < a (see Figure 41). Find the current 
distribution inside the conductor, assuming 
that the current is uniformly distributed over 
the electrodes.

Ans.
Jz 2J sinh (ywz/a)u(r, z) = +  — 2  na2a nba ^  cosh (ynh/a)

Ji(ynbla)Jo(Ynrla)
Tn^(Tn)

+  const,

where the y* are consecutive positive roots of 
the equation J^y) =  0.

Hint.

Jo \ a / yn \ a /

195. Find the current distribution in a homogeneous conductor in the 
form of a rectangular parallelepiped —a < x < a, — b < y  < b, —c < z < c,
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assuming that current enters and leaves via rectangular electrodes of dimen­
sions 28 X 2e applied at the boundaries z — ±c. The current distribution 
is assumed to be uniform over the area of the electrodes.

Ans,

u(x, y, z) = Jz
+

Ja
4aab 2ir2a8e

. mn$ . , muzsin-----sinh------
V a a mux
2 , ----- 2--------------- cos------mnc acosh ■

a

. nne . , h t c zsin----sinh —
. Jb ^  b b KiTty

+  r i —  Z — i---------------cos —271 aea w_, n , mzc b71-1 cosh-----

+

m7r8 . rmzsin---- sin —
J ^  ^  a b

2 2m-1 n-1 mn / - 2 +  H-
V ^  f,2

sinh / —  + -M _2 1 i 27 U Z

cosh lm* ^
V ,2 +  , 2

/>z frmx M7rv ,cos-----cos — - +  const,
a b

nc

where J  is the current and a the conductivity.

*196. A cylindrical pipe a < r < 6 made from material of magnetic 
permeability [x is placed in a homogeneous magnetic field H0. Find the 
resulting distribution of magnetic potential. Plot the lines of force for the 
values (x =  5 and b/a =  1.5.

Ans.

=  H0x ĵ l (fx2 -  1 )(fr2 -  a2)
f c f y + l ) a - « * G x - l ) 2\ r

+  const,

Uo =  HnX

u 3 =  / /0x

26?[(fx +  1) +  ((x -  l ) ( a /r ) 2] 

h2((x +  l ) 2 -  a 2((x -  l ) 2

_________ 4 (xfr2

+  const,

h2((x +  l)2 -  a2((x -  l)2
+  const,

b < r <  oo, 

a < r <  b,

0 < r <  a.

The lines of force are plotted in Figure 42.
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197. Find the magnetic field due to a current J  flowing in a wire placed 
inside a cylindrical hole of radius a drilled in iron of magnetic permeability 
j j l , if the wire is at distance b from the axis of the hole. Plot the lines of 
force for the values fx =  3, bja = 0.5.

Ans.

Ax = — — In R — — ------   In R +  const, 0 < r < a,
C  C  (X +  1

2 J(jl [ A - l  2 Jix 2 .A2 = ---------  In r ----------------In R +  const, a <  r < co,
C  (I +  1 C  |JL +  1

where Ax and A2 are the values of the z-component of the vector potential 
of the magnetic field in the air and in the iron, and

R — Vr2 +  b2 — 2br cos cp, R =  Vr2 +  52 — 2br cos <p, bb =  a2. 
The lines of force are shown in Figure 43.

198. Solve the preceding problem for the limiting case p =  oo. Find the 
equation of the lines of force in the air and in the iron.

Ans.
2 j

A1 = — — In RR -h const, 
c 1

1 . 2J.-  Az = — — In r +  const.
(X c
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The lines of force are ovals of Cassini

in the air, and circles 

in the iron.

RR =  const 

r =  const

199, A sphere of radius a made from material of magnetic permeability 
p is introduced into a homogeneous magnetic field with components 
Hx = Hv = 0, Hz =  — H0. Show that the field inside the sphere is homo­
geneous, and find its value.

Arts.

(i. +  2
200. A hollow sphere a < r < b of magnetic permeability p is placed in 

a homogeneous magnetic field Hx = Hy = 0, Hz = —HQ. Solve the corre­
sponding problem of magnetostatics.

Ans.

9b3p / /0z—---------------- - -------- 1--------- r +  const,
b \ |x +  2X2(1 +  1) -  2«3(h -  l)2

3t>3[(2(i +  l)/-3 +  ((i -  1 )a3]H02  

r3[b% + 2)(2(a +  1) -  2a3((i -  l)2] +  COnSt'

bs(a3 -  b3)(n -  l)(2(x +  1 )HpZ
Hqz -\~ r3[b\\i +  2)(2p +  1) -  2a3([i -  l)2

+  const,

0 < r < a.

a < r < b, 

b < r < oo.

*201. Find the magnetic field due to a d-c 
current J flowing in a circular loop of radius 
r0 inside a hollow spherical shield made from 
material of magnetic permeability p. (see Figure 
44).

Ans. The components of the vector potential 
of the magnetic field are
Ar — An — 0 

Av =  A(r, 0) =
c

oo
I

(4 n +  3)2
(2n +  1X2/1 +  2)

___________________________ (>'o//-)2"+2P L +i(cqs 6)

[(2/i +  l)(x+ (2/i +  2)][(2n -|- 2)(x +  (2/i +  1)]

-  (alb)in '3(2n + l)(2n +  2)((x -  l)2
r > b,
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in terms of the associated Legendre functions Pln+1(x). Note that

P \ n + l ( 0 )  =  ( - l ) n+1
1 • 3 • 5 - • • (2n +  1) 

2 • 4 • 6 • • • 2n

202. A lossless open-ended transmission line of length / with parameters 
L and C is charged to a constant potential E (cf. Prob. 23). Determine the 
current distribution along the line, assuming that a coil of self-inductance L0 
is connected across the end x = I at the time t =  0.

A ns.
ux A =  Sin (y^/Q sin  (y„x/Q
(X Z ~xCOSYn[Y£ +  a ( l + a ) ] ’

where the yn are consecutive positive roots of the equation

. atan y =  -  ,
Y

a =  L//L0, v = 1/VLC is the velocity of wave propagation along the line, 
and Z = Lv is the wave resistance of the line.

203. A transmission line with parameters L, C and R is short-circuited 
at one end x =  / and connected at the other end x =  0 to a source of constant 
e.m.f. E. Find the voltage distribution along the line, for the case of zero 
initial conditions.

Ans.

u(x, t) =  E^l -  yj e-RtlZL\^ 
7C -n —1

where

X
nnv*t

I
+

Rl . nnv*t\sin (nnxll)------- sin-------  --------- —
2nnZ* I 1 n

_  1 / R2Cl2
sjLC *  4n V L  ’

Z* =  Lv*.

Hint. Make the boundary conditions homogeneous by subtracting out 
a particular solution of the differential equation depending only on the 
coordinate x.

204. A plane electromagnetic wave with electric field components Ex =  
Ey = 0, Ez =  E0eiioit~kx) (where k = w/c is the wave number) is incident on 
an infinite perfectly conducting cylinder of radius a. Find the resulting 
diffracted electric field.
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Ans.

E. =  £„[e- ^ cos - -  H«\kr)

inn / 2  * /

»=1 W'nXfca)

cu

2 2 cos «9

where Jn(x) and H {*](x) are Bessel functions of the first and third kinds.

205. Solve the preceding problem, assuming that the cylinder is made 
from material of conductivity a and dielectric constant e.

Ans.

EZ = E0

+

—ifcir  cos <p +
k2H ^ \k xa)J'0{k2a) -

2 f e-„ .„  M . I W W  -  w m(t|f)co s„ J , - .
. . .  K H ' . 'X t ,oV'.(V) -  J

r > a.

Et = E0- Jo(k2r)
n a lkxJ0(k2a)H ^’(kxa) -  k2H f \k xa)J’0{k2a) 

+ 2 2  e~inK/2__________ Jn(k2r) cos n<p
kxJn(k2a)H™'(kxa) -  k2H™(kxa)J'n(k2a).

0 <  r < a,

ki = ko = co2£ — 47uiaco

*206. Find the electromagnetic oscillations in a spherical resonator of 
radius a excited by a dipole of moment P located at the center of the sphere, 
assuming that the direction of the dipole coincides with the direction of the 
z-axis.

Ans. The complex amplitudes of the field components are 

Hr = H0 = 0,

H,  =  H(r# 0) =  ~cr
1 +  U<r rikT

+  ke 1 +  ika -  k2a2
ka cos ka +  (k2a2 — 1) sin ka \ kr 

i d

/sin kr . V I  . 0------ — cos kr I sin 0,
\ kr ) A

Er =  ■—
kr sin 0 30

E6 = - - ( r H v), 
kr or

Ev =  0,

(H , sin 6),
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in terms of the spherical coordinates #*, 0 and cp, where a) is the frequency of 
the oscillations and k = w/c is the wave number.

References

Bateman (B2), Frank and von Mises (F6), Franklin (F7), Gray and 
Mathews (G2), Grinberg (G5), Jackson (Jl), Jeffreys and Jeffreys (J4), 
Lebedev (L9, Chaps. 6 and 8), McLachlan (M5), Morse and Feshbach (M9), 
Tikhonov and Samarski (Tl), Tolstov (T7), Webster (W5). For further 
problems, see Budak, Samarski and Tikhonov (B6), Gyunter and Kuzmin 
(G7, Chap. 15), Smirnov (S5).



5
THE EIGENFUNCTION METHOD FOR 

SOLVING INHOMOGENEOUS PROBLEMS

In this chapter we study various inhomogeneous problems of mathematical 
physics leading to integration of the equation

Hx) idx P̂  9x] ~~ ^ “j +  MyU =  F x̂' (a <  x <  b, c <  y  <  d),

( 1 )

which is the same as equation (1) of Chap. 4, except for the presence of the 
given function F(x,y) in the right-hand side.1 This time we require that the 
solution of (1) satisfy inhomogeneous boundary conditions

du
*adx Pa |̂*=a ./a(x)>

du
dx +  M*=6 =/»O0> (2)

where aa, <x.b, (3a, Pj, are constants and f a( y \ f b(y) are given functions. In the 
elliptic case,

+  — &i(x)> ( )̂
y = d

where again yc, yd, Sc, 8d are constants and gc(x), gd(x) are given functions. 
In the hyperbolic and parabolic cases, the boundary conditions (3) are 
replaced by the conditions (4') and (4"), p. 57.

It is sometimes possible to find a particular solution u* of equation (1)

du 
’ dv ^c^L=c £c(*). Y d

du
dv

1 In particular, the functions /?(*), q(x)y r(x) and the differential operator My have the 
same meaning as on p. 56.

103
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satisfying the conditions (2), and then the substitution u = u* +  v reduces 
the present problem to the homogeneous problem which can be solved by the 
Fourier method. The problem can also be solved easily in the case where only 
the differential equation (1) is inhomogeneous, but not the boundary 
conditions (2), so that f a =  f b = 0. Then we can look for a solution in the 
form of an expansion

00

« = 2 m»O0*»(x). a < x < b (4)
7 1 = 1

with respect to the eigenfunctions Xn(x) of the homogeneous problem, i.e., 
the nontrivial solutions of the equation

( p X j  +  (Xr - q ) X  =  0 (5)

satisfying the homogeneous boundary conditions

a aX\d) +  £aX(a) =  0, a bX\b) +  %X(b) =  0. (6)

Suppose the right-hand side of (1) can be expanded in a series with respect to 
the functions Xn(x), so that

where

Hx, y) = ~%Fn(y)Xn{x), a < x < b,
7 1 = 1

j brF(x, y)Xn(x) dx
J aFn(y) =

p r * ‘(x) dxJa
Then, after substituting (4) into (1), the problem reduces to the integration 
of the ordinary differential equation

MyUn >̂71̂71 Fn{y)>

where the Xn are the eigenvalues of the homogeneous problem. To determine 
the resulting constants of integration, we substitute (4) into (3) [or into 
equations (4;), (4,/), p. 57], expand the functions on the right in terms of the 
eigenfunctions Xn(x)f and then equate corresponding coefficients of the 
functions Xn(x).

The general case of inhomogeneous boundary conditions can be reduced 
to the problem just considered (an inhomogeneous differential equation 
and homogeneous boundary conditions) by looking for a solution of the 
form u =  w* +  v, where w* is a sufficiently smooth function which satisfies 
the boundary conditions (2) but, unlike the case mentioned above, is not 
necessarily a solution of the differential equation. For example, if the 
boundary conditions are of the first kind, i.e.,

|̂a=a fc&y)'* |̂x=b fbiy\
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we can choose w* to be the following linear function of x :

w* x — 
b - - M y )  + (7)

Similarly, if the boundary conditions are of the second kind, i.e.,

we can choose

du
dx = U y ).

du
dx =  My),

l(x
2 b -  a

xf
2 b -  a f a(y \ (8)

and so on. However, it should be noted that this method, involving as it does 
a function w* which is to a large extent arbitrary, is not always successful (for 
example, in cases where the boundary conditions are discontinuous). In fact, 
improper choice of m* [even such simple functions as (7) and (8)] can lead to 
great complication in later stages of the calculations.

A more adequate method of solving inhomogeneous problems has been 
proposed by Grinberg (G4),2 and is free from the need to choose the function 
u* in each particular case (which sometimes requires great ingenuity). In 
Grinberg’s method, we try to solve the inhomogeneous problem by again 
representing the solution as a series of the form (4), whose coefficients are 
given by the formula

un(y) =
fbruXn(x) dxJg_________
j brXl(x) dxJa j brX l(x)dx'Ja

(9)

in keeping with the general theory of expansion in series of orthogonal 
functions. Thus, to obtain a formal solution of the problem, we need only 
find the value of the integral un. This can be done by the following device: 
First we multiply equation (1) by Xn(x) and integrate the result from a to b. 
Then we integrate by parts twice, obtaining

(p -  Xn -  pX'nu) |' + j\(pX 'n )’ -  qXn]u dx

+  Mv \ r u X n dx = ] r F X n dx. (10)

2 In cases where the boundary conditions are homogeneous and only the differential 
equation is inhomogeneous, Grinberg’s method gives the same result as the classical method 
of solution.
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Taking account of equation (5) and the boundary conditions (2) and (6), we 
can write (10) in the form3

Myun -  \ nun = F „ - ^  X Jb )fb(y) +  ^  X n{a)fa(y) (11)
a6 aa

in terms of the eigenvalues Xn, where

Fn =  [VfAr„ dx .Ja
Equation (11) serves to determine un9 since its right-hand side involves only 
known functions. The resulting constants of integration are found from the 
equations which result when the same method [i.e., multiplication by rXn(x), 
followed by integration from a to b] is applied to equation (3) [or to equations 
(4'), (4"), p. 57].

The method just described can also be applied to problems of mathe­
matical physics involving the Sturm-Liouville problem with singular end 
points (see p. 59), provided that the eigenvalue spectrum is discrete. More­
over, the method can be extended to certain problems involving higher-order 
equations (see Probs. 236-241), or to problems where the solution depends on 
a larger number of variables.

It should be pointed out that for inhomogeneous boundary conditions of 
the first kind, the series representing the solution will not be uniformly 
convergent near the end points of the interval (a, b )4 To improve the con­
vergence, we can apply the methods ordinarily used in such cases.5 In the 
simplest problems, we can improve the convergence by separating out the 
slowly converging part of the series and summing it by using the tables given 
in Sec. 2 of the Mathematical Appendix (see p. 381).

The problems in this chapter, as in the preceding one, are grouped into 
five sections, two on mechanics, two on heat conduction (including a problem 
on diffusion), and one on electricity and magnetism. Problems involving 
coordinate systems more complicated than rectangular or polar coordi­
nates (both cylindrical and spherical) will be deferred until Chap. 7. 
Problems with concentrated sources are usually regarded as limiting cases

3 In the case of boundary conditions of the first kind (aa =  a6 =  0), the right-hand 
side of (11) should be replaced by

F„ + £ 9  K W dy) -  ^
Pb Pa

4 If the boundary conditions are inhomogeneous only at one end point x =  a, this 
statement applies only at a* =  a. In the case of boundary conditions of the second kind, 
the series representing the derivative dufdx exhibits similar behavior.

5 See K l, Chap. 1, Sec. 5. Another method, of a completely general character, is given 
by Grinberg (G5, Chap. 12).
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of the corresponding problems with distributed sources; this greatly simplifies 
the calculations, allowing us to write the solutions in compact and symmetric 
form. For example, the field due to a linear oscillator inside a cylindrical 
resonator can easily be solved in this way (see Prob. 256), whereas the usual 
method of solution (which involves subtracting out the singularity) leads to 
very complicated calculations.

In the case of problems with inhomogeneous boundary conditions, the 
choice of a method of solution is left to the reader, although we are of the 
opinion that in such cases, Grinberg’s method has indisputable methodolo­
gical advantages. Of course, by proper choice of w*, certain problems can be 
solved quite easily, without recourse to this method.

As a rule, the answers are given in the form of series, obtained after 
improving convergence, or in closed form. In some cases, the solution is 
given in two forms, corresponding to expansions in functions of each of the 
two independent variables.

I. Mechanics: Vibrating Systems

207. A string of length / with fastened ends vibrates under the action of a 
uniformly distributed pulsating load q sin a)/. Describe the vibrations, assum­
ing that the string is at rest at the time t = 0.

Ans.

u(x,t) =
7t6>T

. (2/i +  l)izvt (2/i +  1)™ . . (2/i +  1 ) 7 t j cm sin ----------------- ----------  — sin oof sin  --------- —
4qvl v _______ /__________ co/________  I

1 (2/1 +  1)70/1
. ^  J

(2n +  l)2

0 < x < /,

where v =  V^/p, T is the tension and p is the linear density of the string.

208. Solve the preceding problem, assuming that the pulsating load acts 
only on the section a < x < b of the string.

Ans.

u(x, t) 2 qvl
7i2(oT

V ( nna nnb\> | cos----— cos-----
■Ti' I I '

nnvt nnv . . nizxsin -----—----- sin a)/ s in -----
I co/ I

209. Study the vibrations of a string due to a concentrated pulsating 
load A sin oo/ applied at the time / =  0 to an arbitrary point x =  c of the 
string.
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Ans.
rnivt mzv . . . nnc . mixsin---------------sin oil sin-----sin-----

, A 2Av ^  / oil I Iu(x, t) =  — -  2,-
1 f e l '

n

//wf. Pass to the limit in the solution of Prob. 208.

*210. Find the general solution of the problem of a vibrating string 
under the action of an external load q(xy t)y assuming that the string is at 
rest at the time t =  0.

Ans.
/ 2d r  1 . mix Cl . nnv(t — r) , f 1 fr.u(xy t) = — 2, -  sin —  sin---- ^ ------ dr q(t»

tiT n=1 n I Jo I Jo
r) sin —  dt„

0 < x < L

211. Solve Prob. 106 on the longitudinal oscillations of a rod, which was 
.solved by another method in Chap. 4.

Ans.6

j  I 00
«(*, 0 =  — 2 ( - D n

E o  n= 0

2oil m (2n +  l)nvt 
sin oit -f- S*n 2/ . (In +  l)7rx
----------------------------     sin 1- —

(In +  l)rc
r  -  (?r

2/

212. Investigate the vertical longitudinal oscillations of a rod of length / 
suspended from the end x = 0 under the action of its own weight, subject to 
zero initial conditions.

Ans.

u(x> t) = 16g/2j ^ l — cos [(2n +  l)nvtl2l] ciri (2n +
(2n + l)3

sin
21

where g is the acceleration of gravity, E is Young’s modulus, p is the density, 
and v =  \JEl p.

213. Investigate the longitudinal oscillations of the pyramid-shaped 
cantilever of square cross section shown in Figure 45, due to a force A sin oit 
applied at the time / =  0 to its free end.

6 To verify that the two forms of the solution given in the answers to Probs. 106 and 
211 coincide, use the expansion

sin (2/7 4- 1)  ̂
" (2/7 +  l ) 2 -  a 2"

re sin a 
4a cos 7i(a/2) ’ 161 < n/2.
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Ans.

u(x, t)
Av au

2

. Y Y TnP • . . Y*Xsin -----— —  sin u>t sin-----
I a)/ sin I

2ao*E(b — x tan a) n=i
~  \Z i /

Y* { sin 2y„
2Yn

where the Yn are consecutive positive roots of the equation
. atan y =  — Y'b — a

214. An inhomogeneous rod con-
h------  Os-----H---■ 2̂ *

P f
/ 0/

F ig u r e  46

different materials is clamped at one 
end and is initially at rest. Find the 
longitudinal oscillations which result if
a constant force P is applied to the free end of the rod (see Figure 46). 

Ans.
(1 -  cos Y«0*«(x) _____, t\ OD0iv>s inT„

u(x, t) = 2P — 2 , — —
vi n=i Yn Pis i«i cos (Ynazvilaiv?) + p2S2a2 sin yn

XJtx) =

Yr.a2yl • Yn(«l +  *)I cos------- sin-------------- ,
ax

Yn«l(«2-jX)sin Yn cos
a î o

~d\ ^  x ^  0, 

0 < x < a2,

where the Yn are consecutive positive roots of the equation

Y ^ l
v1E2S2 tan y =  v2E1S1 cot

a ,Vo
the two sections have Young’s moduli E{, cross-sectional areas S7- and 
densities pi (i = 1, 2), and = yjEJ p*.
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215. A beam of length /, simply supported at its ends, is originally in a 
state of equilibrium. Investigate the transverse oscillations of the beam 
after applying an arbitrary load, uniformly distributed over the section 
Xi < x < x2.

Ans.

,  2 / 2a 2 /  n n x i  r m x 2\ s i n ( n n x l l )

"<*'0 -  TFj .? ,r s ~ T  - c“

x f . w s i . "W ( ; ~ T)f c  o < x < i ,
Jo I

where a2 =  V EJlpS, E is Young’s modulus, J the moment of inertia of 
a cross section, p the density and S the cross-sectional area of the 
beam.

216. Solve the preceding problem, assuming that a) the load is uniformly 
distributed over the whole length of the beam and is a periodic function of 
time q(t) =  q sin go/; b) a concentrated pulsating force A sin go/ is applied 
to the point x =  c of the beam.

Ans. a)

i/(x, t) = 412a2q
TC* 6)£J ri = 0

sin
ou

I -

(2n +  1 )W <  _  (2n +  1 ) W
/2______________ to/2

_  [~(2n +  1 ) W 12
L <o/2

sin go/ sin (2n +  l)7cx
/

(2n +  l)3 ;

b) u(x, 0 = 2Aa2l
n2a>EJ 7 1 = 0

n W /
/2

1 -

n2n2a2 . , . htcc . H7ix-----— sin go/ sin---- sin-----
<o/2 / /

*217. Find the transverse oscillations of a beam — / < x < / with 
clamped ends under the action of a pulsating* force q sin go/, uniformly 
distributed over the whole length of the beam, assuming that the beam is at 
rest before the load is applied.

Ans.

u(x, /) = tan y„
<*EJ Yn cosh cos yn

sin
2 2̂ Yt^ t 2 2 Ynfl

GO I2
sin go/

*„(*)>
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where a2 = \  EJjpS, in the notation of Prob. 215,
y  x  y  X

Xn(x) = cosh yn cos y j- — cos yn cosh —  ,

and the yn are consecutive positive roots of the equation tan y +  tanh y =  0.

218. Solve the preceding problem for the case where the external load 
is a concentrated force A sin at applied to the center of the beam.

Arts.

u(x, t) =
Ala2 a u

2
cosh yn — cos yn

2 2 a 2 2. * Yn« •sin — -  -  — - sin at
I2 a l2

2aEJ n=i y* cos yn cosh2 yn
1

V to/2/

*»(*)•

Hint. First replace the concentrated load by a load uniformly distributed 
over the section — e <  x  <  e of the beam, and then take the limit as e —► 0.

219. Solve Prob. 217 for a beam 0 < x < / if the end x =  0 is simply 
supported, while the end x = I is clamped.

Ans.

u(x, t) =
ql2a2 j^sinh yn — 2 cosh y„ sin yn +  sin yn
aEJ n=i Yn sinh2 Yn sin2

2 2  ̂ 2 2. Yn« < Yn« .sin —-----------   sin at
/* oiZ2 v ,X ------------- 7 -   X n(x),

~ (̂ J
where

A^x) =  sinh yn sin Yn* . . Yn* sin yn sinh —— ,

and the yn are consecutive positive roots of the equation tan y =  tanh y.

220. A concentrated force P is applied to the free end of a cantilever 
initially in equilibrium (see Figure 47). Investigate the resulting transverse 
oscillations, assuming that the force does
not change subsequently. iP

Ans. '/Q.----  . / |

EJ n=i Y»(s*nh Yn +  sm yn) F i g u r e  47
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where

*»(*) =  (cosh Yn +  cos Yn) (sinh —  -  sin

— (sinh Yn +  sin Yn) (cosh —  — cos —  j , 

and the yn are consecutive positive roots of the equation cosh y cos y =  —1.

221. Solve the preceding problem for the case where the force is a 
periodic function of time P = A sin cor.

Ans.

u(x, 0 =
sin —

2Ala2^  Xn(x)__________ P
a>EJ n=i Yn(s*nh Y„ +  Sin y„) 1

2 2 TnQ
(x>l2

sin cot

*222. Solve Prob. 220 for the case where the force P = P{t) is arbitrary.

, x M Xu(x, t) =  —  2, XJL*)
EJ n=i Yn(sinh y„ +  sin—  rin Yn) J o

P(t) sin rW O  -  t) 
i2

d t .

*223. Investigate the transverse oscillations of a beam of mass M clamped 
at the points x =  0 and x = l9 due to a concentrated pulsating load A sin of 
moving along the beam with constant velocity v. Assume that at the time 
t =  0, the beam is at rest and the moving load is at the point x  =  0.7

Ans.

flti

C O S
n W l

1 + ZIOTV

C O S
cor

sin M 7 T X

I

224. Investigate the vibrations of a circular membrane of radius a due 
to a load applied at the time / =  0, if the load is uniformly distributed with 
density q(i) over the circular ring rx < r  < r2. Consider the special case 
q(t) =  q sin cof.

7 This is the problem of a locomotive moving along a railway bridge (see T2, Sec. 59).
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Ans.

,  . x  2 y ^ r aJi(Y„r2/a) -  r ^ ^ r j a )
«(r. -  y Z  ^ 3 ------------ *j ( t )  sin Ynv0 ~  T) dr,

where the yn are consecutive positive roots of the equation J0(y) =  0, p is 
the surface density, T is the tension per unit length of the boundary of the 
membrane, and v = yjTj p. In the special case,

«(r, 0 = o>T £

sin Ynv* In”— ■*-=- sin cot
toa

*225. Investigate the vibrations of a circular membrane of radius a due 
to a pulsating load p sin tot applied at the time t =  0 along the circumference 
of a circle of radius b < a.

Ans.

u(r, t) = 2 vpb 
toaT

sin Y rP' Y
W

2 -

— J— sin cot J, 
toa

-  ( - ) ’\ toaI
YnAiln)

Hint. Replace the load by a load distributed with constant density over 
the area of the ring b — e < r < b + e, and then take the limit as e —► 0.

226. A circular elastic plate of radius a, clamped along its boundary, 
begins to oscillate under the action of a suddenly applied pulsating load 
q sin tot, uniformly distributed over the area of the plate. Find the resulting 
transverse oscillations.

Ans.
. y2nb2t Ynb2 .. _ sm -L— ~ — -La— sin tot

u(r ,) =  2 b v  a 0)0_______ Jl(Yn)Ry„(r)

where

<*D t k  j _  Yn'o(Yn)/o(Y*) ’
NCOfl2/

=  7o(yVo(~) -  ^o(Y)/o(-)

is a linear combination of cylinder functions, the yn are consecutive positive



I 14  THE EIGENFUNCTION METHOD P R O B .  227

roots of the equation R'(a) = 0, D is the flexural rigidity, h the thickness 
and p the density of the plate, and b2 ~  V D/ph.

*227. Solve the preceding problem, assuming that the oscillations are 
due to a concentrated pulsating force A sin co/ applied at the center of the 
plate (oscillations of the diaphragm of a loudspeaker).

Hint. Replace the concentrated load by a load distributed over a disk of 
small radius c, and then take the limit e -+ 0.

228. Find the deflection of a rectangular membrane — a < x  < a, 
—b < y  < b due to a load uniformly distributed with density q over the 
rectangle — c <  x  < c, —d < y  < d forming part of the membrane.

Ans.

rJo(Vn) -  Jo(yn))RAr)

2. Mechanics: Statics of Deformable Media

Arts.

X 1 — cosh

cosh( i! L ± i) ^
(2n +  l)n(b — d )________2a (2n +  l)nx

2a (2n +  1 )nb 2a
2 a

16qa2 ̂ sin [(2n +  l)7tc/2fl] sinh [(2n +  i)ndl2a]

X

where T is the tension per unit length of the boundary of the membrane.
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229. Find the deflection of a uniformly loaded rectangular membrane 
(this is a special case of the preceding problem), and compare the answer 
with that found earlier in Prob. 131.8

Ans.
u(x y) =  l6<la* y  ( - ! ) ” (j _  cosh [(2n +  l)ny!2a]\ ^  (2n +  l)*x 

7c3T nt ' 0( 2n+  l)31 cosh [ ( 2 m  +  l)nb/2a]l 2a

*230. Find the static deflection of a 
rectangular membrane under the action 
of a line load p uniformly distributed 
along an axis of symmetry (see Figure 48). 

Ans.
u(x y) =  'S' (l -  cosh [(2n+l)ny/2a]\
K n2T ~ 0\ cosh [(2n+l)nbl2a]i

cos [(2n +  l)7Tx/2a] 
(2 n +  l)2

(12) F ig u r e  48

Another form of the answer is

, , 4pb ^  ( - i r
sinh(2n +  1Ma ~  |X|)

cosh

21 (2n +  1)tzy------------------- cos     ,
(2w +  l)7ta 2b

2b

(13)

231. Find the deflection of a circular membrane of radius a due to the 
action of a line load p uniformly distributed along a diameter.

Ans.

u(r, 9) = 2 r2
C O S y h ^ - 2 j ^ ; - ^ )2

Q n=2 n 1

where the series can be summed easily.

Hint. To solve the problem, replace the line load by a load uniformly 
distributed over the sector — e < c p < e ,  7r —  e < < p < 7 r  +  e,  and then take 
the limit as e 0.

232. Investigate the twisting of a rod whose cross section is a semicircle 
of radius a. Calculate the tangential stresses t  on the surface of the rod.

8 To compare the two answers, use formula 16, p. 385.
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Ans,

tU  =  2aOG

I _  I a6G
|<p=»0 “ • T |< P = 7 t

where 0 is the angle of twist per unit length and G is the shear modulus.

Hint, The sum of the series needed to represent the solution in closed 
form is found in the solution to Prob. 132.

233. Find the torsion function w(r, 9) for the twisting of a circular shaft 
of radius a weakened by a radial crack going from the surface of the shaft to 
its axis. Calculate the torsional rigidity C of the shaft.

/ r\(2*+D/2 / r\2

32a2 ̂  W  ~  W  {In +  l)y
7T nt i ( 2 n  +  l ) [ 1 6 - ( 2 w  +  l ) 2] Sm 2

c  =  Gfl4(—  2 ---------------   ---------------- -  -
I it (2n +  l)2(2n +  5)[16 -  (2n +  l)2] 2

234. Investigate the twisting of a rod whose cross section is a circular 
sector of radius a and vertex angle a.

Ans. The torsion function is

=  0.878Ga4.

, , 8a2^
«(r, ?) =  — Z 0 - 0

k{2n+l)n/a

n 71=0( 2 n +  1)^ -— _  4 ]

•_(2« +  1><Psin-------------
a

(0 < r < a, 0 < cp < a).

235. Solve the preceding problem for a rod whose cross section is a 
“curvilinear rectangle” 0 < c p < a .
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Arts,

. 8 b2^
u(r, 9) =  —  2,

. (2n +  1)7C9sin 1-------- — L
a

(0

TC- » (2 n + l ) [ (2n +  1) V - 4 ]

(2n+l)rc/a

236. A rectangular elastic plate 0 < x < ay —bj2 < y  < b/2 is simply 
supported along its boundary and loaded by a concentrated force P applied 
at the center of the plate. Find the deflection along the midline y  =  0.

Ans.

sinh (2n +  1 )nb (2n +  1)7zb
| =  V  (-* )"  Sm a ~  a ■ {In +  l)nx

W|v=0 "  4tt3D £  (2n +  l)3 cosh2 (2n +  l)7ufc Sm a
2a

where D is the flexural rigidity of the plate.
Hint. Replace the concentrated load by a load uniformly distributed 

over the rectangle
a a .---- 8 <  x <  -  +  8, — e <  <  e,
2 2

and then take the limit as 8, e —► 0.

237. Solve Prob. 134, using the method of this chapter. 
Ans.9

«(0, 0) =
64gq4 y  (-1 )"
7r6D nt ' 0 ( 2 n +  l ) 6

2 +  (2W +  l)7th tanh(2n+l)7rb
2 a 2 a

2cosh(2n+1)7tb
2a

238. A rectangular elastic plate with sides a and Z? is simply supported 
along the edges x =  0 and x  = a and clamped along the edges y = ±b/2.

9 To reduce the solution to the form given in Prob. 134, use the formula

2
7l=®0

(-D"
(2/i + l)5

5tc5 
L536 ’
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Find the deflection of the plate under the action of a load p applied along the 
midline x =  a/2.

Ans.

n  & n = 0

\n sin [(2n +  l)7tjc/q]
(2b +  l)4

X  1 - 2
sinh(2-n+1)7lfc +  (2n +  1)TC-b cosh

2 a 2 a 2 a
CO shgg-+ -1)7tZ

sinh (2n +  0** +  (2" +  lfrft

(2 B 4 J W  s.nh (2Bj1 l)W_b sJnh [2n± t ) n y

+  2
2a

sinh (2n +  +  (2w +  l)rcb

239. A rectangular elastic plate, simply supported along its boundary,
is acted upon by bending moments 

J  m uniformly distributed along two
opposite edges (see Figure 49). Find the 

----------------------- * deflection of an arbitrary point of the
- A  J 7 -  I * .

- r
«(*> y) =

F ig u r e  49

4ma2] 7T3x /  _  x\ 
8a \ ~  a)

i 00
- i 29  ^^ «=<

"2 cosh (2n +  1)Ttb +  (2w- +  1)7rbsinh(2n ^  1)7lb~
2a 2a 2a

C08h& ± ^

12= 0  1 (2n +  l)3 cosh2 (2/i +  l)nb
~Ta

Q n + l f r y cosh (2n +  i)nb sinh (2n +  '
a____________2a___________ a |  . (2/i +  1)tcx I

( 2 n + l ) 3cosh2(2n-+ 1)TCb
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*240. Solve the preceding problem, assuming that the edges y  — ±6/2 
are clamped.

u(x, y) 4ma2j 7i3x A _  x\ 
7r3D 1 8a \ a/

W , 
- 22

n = 0  1

[sinh (2n +  l)nb + (gl + l ^ .cosh(2«_+LiM ]cosh ( 2 n ± i W  
L______ 2a_________ 2a___________2a J________ a

[sinh +  (2n ± _l)nbl (2n +  1)#
L a  a J

(■2n_ + J ^ y  sinh sinh (2* +  w
a 2a a

sinh v" ‘ ' 1)7tb1 (2» +  l)3
a a J

. (2n +  l)7cx sin 1--------- —
(2 n +  1 )nb (2 n +

*241. Find the deflection of the center of a circular plate of radius a 
with a clamped boundary under the action of a line load p uniformly dis­
tributed along one of its radii.

Ans.
_ 3

U\T==n = Pa
64nD

3. Heat Conduction: Nonstationary Problems

*242. A slab is heated by a thermal current of constant density q flowing 
through the face x = 0 starting from the time t =  0, while the face x  =  a is 
held at temperature T0. Find the subsequent temperature distribution in the 
slab, assuming that the initial temperature of the slab is zero.

Ans.

n , , , > , T 0 + f

Lk 2 a
e-(8n+uVt/412 C O S  [(2n +  l)nx/2a]

(2 n +  l)2

where k is the thermal conductivity, c the specific heat and p the density of 
the slab, and t  =  ktjcp.
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243. Solve the preceding problem, assuming that the face x = 0 is held 
at temperature T =  / ( t) ,  while the other face x =  a is held at temperature 
zero. Consider the special case/ ( t)  =  A t .

Ans.

T(x, t) =  ^ 2 "  sin‘
i

> —  f/(s )e -nV(T- >)/o2d5. 
a Jo

In the special case.
— e n n x

n  a  A

244. Find the temperature distribution in a slab if the face x =  0 radiates 
heat into the surrounding medium according to Newton’s law, while the 
other face x  =  a is held at the temperature TQ equal to the initial temperature 
of the slab.

Ans.
(1 +  hx „ cos y„ e—At/.2 sin Yn(« ~  x)T(x, 0 =  To - 2 2

F i g u r e  5 0

1 + ha y„[l -  (sin 2yJ2yn)] a
where h is the heat exchange coefficient figuring in 
Newton’s law, and the yn are consecutive positive roots 
of the equation

Y
tan y =  -  ~7 • ah

245. Find the temperature distribution in a con­
ductor with the cross section shown in Figure 50, 
heated from the time t = 0 by a d-c current producing 
Joule heat with density Q. It is assumed that the 
initial temperature is zero, and that the loss of heat 
into the surrounding medium is described by Newton’s 
law.

Ans.

I ( i  _  ^  , 2 _  _  y  sin Yn* 
■4 ' a*/ 2ah “ i y»[1 +  (si

,-y»T/ae ynx
■-------------------------------------C O S  —

(sin 2yJ2YJ]  a
where the yn are consecutive positive roots of the equation

ah
tan y =  — •

Y
Hint. Unless a particular solution of the inhomogeneous equation is 

subtracted out first, the expansion

1 / _1___^  ___
4 ' aV + 2ah ~ &  y*[

sin Yn cos Yn* -a < x < a
„[1 +  (sin 2y„/2yJ] a 

must be used to reduce the solution to the form given in the answer.
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246. Find the temperature distribution T(r, t) in a cylinder of radius a 
whose surface temperature varies according to the law

7’U = / W ,
where t  =  kt/cp, assuming that the initial temperature of the cylinder is 
zero. Consider the special cases a)/ ( t )  =  At; b ) / ( T )  =  A sin cot.

Ans.
2 ^

T{r, t) =  -  2 r M r n r /a )£ f ( s y * r - .> , . '^
a „_i Jiijn)

where the yn are consecutive positive roots of the equation J0(y) =  0. In the 
special cases,

a) T(r, f) = A ^ - 2 a ^  1 * J ° ( ~ ) ] ;
L n=i Y ^i(yJ v a / J

b )
YnT(r, 0  =  Aisin cot +  2 c — . . _

1 ^ ( r t  +  ^coV ^Y J

X e y”T/o — cos cot

T n J \ a n
Hint. Use formula 17, p. 385.

*247. Find the temperature distribution in a cylindrical conductor of 
radius a heated from the time / =  0 by a d-c current producing Joule heat 
with density Q. It is assumed that the initial temperature distribution is zero 
and that the loss of heat from the surface of the cylinder is described by 
Newton’s law.

Ans.

T(r, 0 = 2  Qa , - v i r / a ' JoiYn'Ia)
k (8 \ aV 4ah ^  YnU +  ( ^ / y J W y J  

where the yn are consecutive positive roots of the equation

rJi(r) =  ahJ0(y).
248. Solve Prob. 150, using the method of this chapter. 
Ans.10

T(r, 0 = 2Qa2-y 1 -  J  forX
k n=l Y^l(Yn) #V « /  ’

J o(Yn) =  0.

249. Find the temperature distribution in a cylinder of radius a in which 
heat is produced with volume density Q, assuming that the initial temperature

10 To reduce the answer to the form given in Prob. 150, use formula 18, p. 385.
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of the cylinder is zero and that heat flows out of the cylinder with surface 
density q.

Ans.

where the yn are consecutive positive roots of the equation Jx(y) = 0.
Hint. Use formula 19, p. 385.

250. The outer surface of a cylindrical pipe a < r < b is held at tem­
perature T\r=b — / ( t ) ,  while the inner surface is held at temperature zero. 
Find the temperature distribution, assuming that the initial temperature is 
zero.

Ans. 

T(r, t) =

where

In (r/a) 
In (b/a) /(T)

+  *».to[/(T ) -  A  f (T- ‘)/aa d s \
JliYnbla) ~  J l ( y n) L a2 Jo J

Ry(r) =  yo (Y V o(^ ) -  ^ Y ) n ( ~ )

is a linear combination of Bessel functions of the first and second kinds, and 
the yn are consecutive positive roots of the equation Rv(b) = 0.

251. Find the temperature distribution in a cylinder 0 < r < a, 0 < z < /, 
assuming that the initial temperature is zero, and that starting from the time 
t =  0, the face z = I of the cylinder is held at temperature T0, while the rest 
of the surface is held at temperature zero.

Ans.

T(r> 0 — T0 - + - S./ Tcir,
( - 1 ) ”* / 0(m7cr//) sjn mnz 

m I0(mnall) I

+ y  ( - i r «
t x  t x  {m nf + ( y j /a f

x exp (— (mw)s + i p 0(Y /W sinH ,  
i2) r M r J  ‘ J

where J0(x), J^x) and IQ(x) are Bessel functions, and the yn are consecutive 
positive roots of the equation J0(y) =  0.

Hint. Make the boundary conditions homogeneous by setting

T =  T0 7 +  w.
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252. Solve the preceding problem, assuming that the surface of the 
cylinder is held at temperature zero and that heat is produced inside the 
cylinder with density Q.

Ans.
„ t_ _ A 8Qa2 ^  ^  J0(ynr/a) 1 -  e -K m ’+e-W * sin (nrnz/l)
* V > Z, *) J 2-1 2* , / \ 2 I / / «\2 >

m=1 ,3 ,5 , . . .  » = 1  Tn̂ l(Yn) Yn +  ("W O  m

where the y„ are consecutive positive roots of the equation J0(y) =  0.

253. Find the temperature distribution in a sphere of radius a inside 
which heat is produced with density Qf starting from the time t =  0. It is 
assumed that the sphere is initially at temperature zero and that its surface is 
held at constant temperature zero.

Ans.

T (r ,t)= T 0 + % (a2- r * )  + ^  
6 k nr

Qa \  _n2n2T/aa . nnr ~— ] e  nnx/a sin —  . 
kn n I a

254. Solve the preceding problem if a) heat flows out of the sphere with 
surface density q; b) heat is radiated into the surrounding medium accord­
ing to Newton’s law.

Ans.

a) T(r, t) =
.fc ka! kr y„ sin yn a

where the y„ are consecutive positive roots of the equation tan y =  y;

b) T(r, 0 = 2Qha* ^  cosyn
kr{ 1 -  ah) £  y® [1 -  (sin 2y„/2yJ]

(1 — sin ,
a

where h is the heat exchange coefficient and the yn are consecutive positive 
roots of the equation 255

255. A diffusing substance enters a thin tube of length / with impermeable 
walls. Find the concentration distribution in the tube if the density with 
which the substance flows into the end x  — 0 is a given function of time q(t). 
It is assumed that the initial concentration in the tube is zero and that the 
other end of the tube is joined to a vessel in which a given concentration Cl 
is maintained.
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Ans.

C(x, t) = Cl -  2 2  r2-(~-1)nCt
£ 0Ln{2n  +  1 )

- i f *
I Jo

e-D(2n+lfn\t~~T)/Al2q^  ^
D

where D is the diffusion coefficient.

cos (2 n +  l)7tx 
21

4. Heat Conduction: Stationary 
Problems

256. Find the stationary tempera­
ture distribution in a bar of rectangular 
cross section, given the temperature 
distribution on its faces (see Figure 51).

T (x , [sinh —  f <p„(£)sin —  dZ,
a n=1l o Jo a

, • u n n (b  — y) f° . nn i,+ sinh----------- <p0(y sin----di,
a Jo a

where

GJv, y) =

+  [V oW  -  (-l)7aW ]G n(y), y) .Jo Jsinh (mzbja)

i . t. n m )  . L n n (b  —  y )I sinh-----sinh------------- , 7) < y,
a a

, . , r m y  . n n {b  —  yj)[ sinh-----sinh------------- , 7) > y.
a a

257. Study the special case of the preceding problem corresponding to 
the boundary conditions

fo(y) =  o, f a(y) =  r0, cp0(jc) -  r0, cpb(x) =  o.
Ans.

T(x, y) =  T0
!i„h 2!!(^l>L>+ ( _ 1). sinh!!!>:

x ( 2 ^  a a . nnx— 1—  > ------------------------------------------sin----
7C ,  / 1 7 t h  U7,-1 n sinh-----

Hint. Use formula 2, p. 384.
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258. A heat current Q flows into a bar of rectangular cross section 
through two opposite faces and leaves the bar through the other two faces 
(see Figure 52). Find the stationary temperature distribution in the bar, 
assuming that both the incoming and the out­
going currents are uniformly distributed over /  
the faces.

Ans.

t(x , ^  =  -  y ) ~  x(a -  x)i> -*2 abk —
where k  is the thermal conductivity. 1 I 1 I 1 I J

Hint. To obtain the solution in closed form, F i g u r e  52
use formula 9, p. 385.

259. Solve the preceding problem for an arbitrary distribution of current 
density on the face, i.e.,

?*U o=/oO ). 7sU «=/a0)>  ? , |* = 0  =  <Po(*)> <Ivl=i =  %<»>
where the functions on the right satisfy the condition

f W )  -  <Po(*)l dx +  f W )  ~M y)] dy =  0
Jo Jo

for the solvability of the Neumann problem.

l imn
b
_____ a

Ans. 

T(x, y)

where

7  f  O ' -  W a O l )  -  /o O ) ) l  dri -  —  \  <p0( 5 )  d l  ik Jo ak Jo

+ — 2 {cosh nn(b— ^  J  90(O
nk n=i I a Jo

— cosh f cpb(£) cos d\ 
a Jo a

nnZ, „cos---- at,
a

-  ("[(-IJVaW  -/oO))]G„(?), y) 7 ~ 7  +  const,
Jo )n sinh (wrb/a)

Gn0), .V) =

cosh cosh

. nny nn(b -
cosh---- cosh--------

a a
1)

?) <  y,

> y>

260. Two faces of a rectangular bar are thermally insulated, and the other 
two are held at temperature zero (see Figure 53). Find the stationary tem­
perature distribution, assuming that heat is produced with density Q inside 
the bar.
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Ans. 

T(X, y)
166a2 (—1)” L _  cosh [(2n +  l)nyl2a]\ ^  (2n +  1)tcx
n3k i 0(2n +  1)4 cosh [(2/j +  l)7th/2a]i 2a

F ig u r e  53 F ig u r e  54

*261. Heat is produced with density Q in the bar shown in Figure 54. 
Find the stationary temperature distribution, assuming that a heat current of 
constant density q leaves the bar through the section \x\ <  c of the upper 
face, while the rest of the surface of the bar is thermally insulated.

Ans.

T(x v) =  -  -I"— +  sin(rmc/q) cosh(nny/a) ^  nnx~\
’ k l 2 n*c ^~i n2 sinh (nnbja) a J

+  const, (14)

where k  is the thermal conductivity. Another form of the solution, suitable 
for a/b >  1, is

x Q (a — c 2 a 2
~ V

la b 2 v (— l)w sinh [mz(a — c)jb] 
n 2 n2 sinh (nna/b)

, mzx nny\ .cosh------ cos —-  +  const,
b b i

_  2ab2y (—l)n sinh (nncjb) rm(a -  |x|) co$ rmy 
7i2c n=el n2 sinh (nna/b) b b ,

\x\ <  c,

+  const,

|x| >  c.

262. Find the stationary temperature distribution in a conductor of 
rectangular cross section heated by a d-c current producing heat with density 
Q, if the surface of the conductor gives off heat according to Newton’s law.
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Ans.

T(x, y) = 4Qa*y sin yn
=̂1 Yn(2Yn +  sin 2yn)

ah 11 _____________________ cosh (yny/a)
Yn tanh (Ynh/a) +  (ahjyn) cosh (y„&A0-1

COS
Yn*

where h is the heat exchange coefficient, and the yn are consecutive positive 
roots of the equation

+ ahtan y =  — .
Y

263. Find the stationary temperature distribution in a rectangular 
parallelepiped 0 < x  < a, 0 < y  < b, 0 < z < c, if the faces x =  0, y  — 0, 
z =  0 are held at temperature zero, while the other faces have the temperature 
distribution

Ans. 

T(x, y, z)

T \ x = a  =  /.O'. z)> T \ v = *  =  /*(*. z)> =  /c(*> 7)-

a b , t - J s i n h  T„,c J . " a b

Ymn Jo L a Jo b

+  ( -  D" -  f M ,  0  sin ^  difl d d  sin ^  
b Jo a J ) a

mnx . nnysin----,
b

where

Y mn
Itn2 , n2

7W T  +  I i -

Gmn(C z) =  — 1
a bz

/sinh sinh ymn(c -  z), £ < z.
sinh Ymnc ^sinh ymnz sinh ym„(c -  Or S >  z-

264. A heat current Q enters a bar of semicircular cross section through 
its plane face and leaves through the curved face (see Figure 55). Find 
the stationary temperature distribution in the bar, assuming that the 
incoming and outgoing currents have constant 
density.

Ans.

T(r. =
nka

1 - 2 j ( - l ) »
1 — (1 /2n)(rla)2 

4 n2 — 1
cos 2n 9 +  const,

where k is the thermal conductivity.
I I I t  I 1

F ig u re  55
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265. Find the temperature distribution in a bar whose cross section is 
the “curvilinear rectangle” a < r < 6, 0 < cp < a, given the following 
temperature distribution on the faces of the bar:

Ans.

T(r, cp) =  T„

r U  =  o, T \ r = t, ~  T 0 , T \^ 0 =  0, T\v_a =  T0.

In (r/a) 2
In (b/a) Ti

x 2
71 =  1

(_ i r s in h ”J < l ^ )  +  sin h - E l _
__________ In (b/a)________In (fr/a) mz In (r/a)

n sinh * mien 
In (b/a)

In (b/a)

Another form of the solution is

cp) =  To 2 +  -  a Ti

* 2
7 1 = 1

[ - H n ( T H ^ M r W

n
[ ( r _  ( r ] sin HTtCp

266. Find the stationary temperature distribution T(r, z) in a cylinder 
0 < r < a, 0 < z <  / with an arbitrary axially symmetric temperature 
distribution along its surface:

Ans.
T\z=o =/oW , T\z=l = fSr), Tr=a =  <p(z).

T(r, z) =  -  J -----1 (/„(— ') P<p(0 sin —  dC,I^Uimall)\ \ l  /Jo  I
+  ~  -/o(p)]pGn(r, P )  rfp) sin ,

W t ) '  • (” ) - ' •  ( t  M t ) >  • ( ? ) •  > < *
G.(r. P) -

p > r,
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where I0(x) and are cylinder functions of imaginary argument. Another 
form of the solution is

T(r, z) =  — f --------------- -— (sinh ^  f 7 i ( p W — ) dp
^ s i n h  ( y J l a ) J l ( y n ) \  a  V * WP #\  a J

+  sinhI ^ ) [ V o(p)pJo( M ) rfp
a Jo \ a J

J J 0‘ <P(K)Gn(z, 0  d ^ J 0 .+

I; <  z .

G . M ) -
sinh M sinhi^ L z _ 2  ? >

where the yn are consecutive positive roots of the equation J0(y) =  0.

267. A heat current Q enters a cylinder 0 <  r < a, 0 < z <  / through its 
ends and leaves through the lateral surface. Find the temperature distribution 
in the cylinder, assuming that the incoming and outgoing currents have 
constant density.

Ans.

T(r, z) Q l
2na2k i l ‘

z
I

+  const,

where k is the thermal conductivity.

268. Find the temperature distribution in a cylinder 0 <  r < a, — / < z < / 
inside which heat is produced with density Q, if the surface radiates heat into 
the surrounding medium according to Newton’s law.

Ans.
tv*, w _  28 /2 V  sin Yn________

hi
Y«____  ô(Ynr/0

ACyWO +  M /o(Y»«/0
U Y »«//) Y»

cos Yn*

k YnU +  (sin 2yn/2yJ]

X 1
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where h is the heat exchange coefficient, 70(jc) and are Bessel functions 
of imaginary argument, and the yn are consecutive positive roots of the 
equation

hi
tan v =  —.

Y
Another form of the solution is

T(r, z) = 2 Qhct
1 (q /i/y j cosh (y„z/a)

HU

I
[tanh (yJ/a) +  (a/i/yn)] cosh (yJ/a)

k [1 +  {ah/yShU oirn)

where the yn are consecutive positive roots of the equation

yJi(y) =  ahJ0( y).

*269. A thin wire heated by a d-c current producing Joule heat Q per 
unit length is placed inside a cylindrical object (see Figure 56). Find the 

temperature distribution in the object, assuming that the lateral 
surface of the cylinder is held at temperature zero, while the 
ends radiate heat into the surrounding medium according to 
Newton’s law.

[0)

21

- I —

A ns.

T(r’ Z) nk S  y2nJ?(yn)

1 - ah cosh (Ynz/fl)
Yn sinh (yJ/a) + ah cosh (yJ/a)J ■(?)'

Figure 56 where the Yn are consecutive positive roots of the equation
J»(y) =  o.

Hint. Replace the line source by a source distributed over a cylinder of 
small radius e, and then take the limit as e -> 0.

270. Find the stationary temperature distribution T(r, 0) in a sphere of 
radius ay assuming that heat is produced with density Q inside the sphere, 
while the boundary condition

involving a given function /(0), is satisfied on the surface of the sphere.
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Ans.

T(r, 6) =  % («* -  r*) +  ^  “  f7 (0) sin 0 d%6k 3kh 2 h Jo

+  J 2  — —1 f-)7„(cos 0) f  7(0)P„(cos 0) sin 0 d0.
2  * = 1  an +  n \a/ Jo

5. Electricity and Magnetism

271. Calculate the two-dimensional electrostatic field due to the elec­
trodes shown in Figures 57(a) and 57(b).

Ans,

a) u{x,y) = ^ { x  + y) 
a

7t n=1l 2 a

+  sinh! l! £ j lV 2 ( y ^ x ) J
2 a

sin nn[a — yjl{y +  x)]
2a

n sinh niz

b) H(x> ) =  +  ? f  cosh (nny/a) sm(»?x/«)l
La n n=1 cosh (mzb/a) n J

where w(x, 7) is the electrostatic potential.

*272. Find the electrostatic field in the electron-optical device shown in 
Figure 58.11 What is the distribution of potential along the axis of symmetry?

11 By an electron-optical device (for example, a lens), we mean a system of conductors 
at given potentials producing an electrostatic field used to govern the trajectories o f charged 
particles.
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Ans.

« u < . = ^ i + - S !
L 71 n=0

( - D ,7 1 + 1

52n +  1

X e-(»"+»™/Msinh(2” *
26 J

|̂v=0,*>a k 2 < 2m +1

x cosh g " -+  *)"« e - V n + l ) n x / Z l > '  

2b
273. Find the electrostatic potential w(x, j )  inside a box of rectangular 

cross section 0 < x < a, 0 < y  < b with grounded walls, due to a charged 
wire along the line x =  x0, y  =  jv

. . «7r(a — x0) . n n y0 sinh —— ----   sin ——
/ x o V  b b . . H7TX . W7TVw(x, y) =  8<? > ----------------------------- sinh----- sin — -  , x  <  x0,

n==1 . , rma b b71 n sinh-----
b

WTCXn . W7rv0sinh----2 sin ——
,  x o ^  b b . , n7u(a -  x) . M7r>;

h(x, JO =  8g > ---------------------- sinh —-------- - sin — -  , x >  x0,
. , nna b b71 n sinh----

b

where q is the charge per unit length of the wire.
Hint. Solve Poisson’s equation, regarding the charge as uniformly dis­

tributed over the rectangle x0 — 8  <  X  <  x0 +  8 ,  y0 — e <  y < yo +  e> and 
then take the limit as 8,e -► 0.

274. Find the electrostatic field w(x, y , z) due to a charge at the point 
*o».yo>zoinside a rectangular parallelepiped 0 < x < at0 < y  < by0 < z < c 
with grounded walls.

Ans.

«(x, y, z) = 16nq v  v  Gmn(y, y0) . m7rx0 . nnz0 . nmx . tmz ----n 2  ̂ ^  Sln------2 sin---- 9 sin----- sin-----,

where
ac m=7 7 1 = 1  7 1 = 1  T  77171

Y 77171 =  *

Gmn(y, yo) =

H  + 7 -T a c 

sinh ymny0 sinh ymn(b -  y) 
sinh ymnb

sinh ymny sinh ymn(b -  y0) 
sinh ymnb

yo <

y0 >  y-
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Hint. First assume that the charge is uniformly distributed over a small 
volume, and then pass to the limit.

275. A charged wire, with charge q per unit length, is placed inside a 
grounded metal box whose cross section is a “curvilinear rectangle” a <  r < b, 
0 < 9 < a. Find the electrostatic potential w(r, 9) inside the box.

Ans.

r > r0,
where r0, 90 are the polar coordinates of the wire.

276. Examine the following special cases of the preceding problem:
a) a =  0, b =  00 (charged wire inside a wedge);
b) a = 0, b =  00 ,  a =  2n (charged wire near the edge of a conducting 

half-plane);
c) b =  00 ,  a =  71,  9 0  =  7 i / 2  (charged wire over a plane with a semi- 

cylindrical boss).
Ans.

a) u(r, <p)=q In

b) u(r, cp) =  q In

1 _ 2( i r c« ! !< 2 i± l>  +
W ________ a______

- ( 0

- ’ V -

f /a rc(<p0 -  cp)
cos +a

. . .  <Po +  <P cos--------
ro 2

r
r0

___ <Po- 9 , rcos-----------1—
2 r0

1 - r . / r \2 a2 . / a2\21 +  2 — sin 9 +  I —I 1 — 2 — sin 9 +  I — )
r0________u v ______ Tor_______\r 0r/

1 — 2 —sin 9 +  I — I 1 + 2  — sin 9 +  I —  1 
'‘o \r0J r0r \ r 0r/

c) «(r, 9) =  q In
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*277. Find the electrostatic field inside a grounded cylindrical shell 
0 < r < 0, 0 < z < / due to a charge q at the point r =  0, z =  c.

Ans. The electrostatic potential is

u(r, z) -  ^ 2 iinh lT-(' ~  C)M sinh M  . 2 < c ,
a n^i sinh (yJIa) a Yt.^i(yJ

„(r, ,)  -  si"h fr -c/ll) sinh , 2 > c ,
< i,- , 'i " h (Y,l/o) a r J f y J

where the yn are consecutive positive roots of the equation J0(y) “  0. 
Another form of the solution is

u ( r , z)
_  4 q ^ IQ(mzall)K0(mzrll) — KQ(mzall)I0(nnrll) ^  mzc nnz 

I n=i hin^a/l)
sin —  sin ■

I I
278. Find the electrostatic field inside a cylindrical shell 0 < r < 0, 

0 < z < / whose ends and lateral surface are at the potentials V0, Vx and K, 
respectively.

Ans. The electrostatic potential is

M( r , z ) = K „ ( l - ^  + V ^

/■) OO 

+ -2 [1 -  (—l)n]K +  (-1 )* ^  -  V0 h{nizr!l) . nizz
--------------------------------------------------sin----- .

7x ^  n I0(nnall) I
Another form of the solution is

„=1sinh(Y Jla) Y ^i(yJ

+  2(F0 -  V )2
sinh [y„(/ -  z)/a] J0(ynrla)

n=i sinh (y Jla) Y^i(Yn) ’
where J0W> AW  and AW are cylinder functions, and the yn are consecutive 
positive roots of the equation J0(y) =  0.

279. Find the electrostatic potential along the axis of a cylindrical shell 
0 < r < 4, 0 < z < / if the lateral surface is held at a given potential

“|r=o =/(*)>
while the ends are held at potentials V0 = 0 and Vx — V.
Ans.

I Vz , 2 ^ [ V l ( —l)n , ( lr/y  ̂ . rnz  ̂ jy~|sin (mzz/l)
u\r=o =  —  +  T Z  H  "  +  / ( 0  sm —  dK — ----- ~  ,

I l ^ L n  n Jo I J I 0(n n a ll)

where 70W  is the Bessel function of imaginary argument.
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280. Examine the special cases of the preceding problem which correspond 
to the following potential distributions on the lateral surface of the cylinder:

a) m  =  Va;

b) /(z) =  Vk for k̂ ~  ^  <  z <  ^  (k =  1, 2.........N);
N N

c) /(z) =
0,

y .

0 < z <  c, 

c < z < /.
Ans.

a) u|r_„ =  — +  - J [ ( - l ) n( K -  Va) + Va]
* 7 1  7 1 = 1

sin (nnzjl) # 
nl0(nna/l) ’

. x * Vz . 2 b) u|r=0 =  —  +  “
/  7T

X' \ , nnT/ .  ̂ . nn ^ T_ . (2/c — 1)/17T sin (nnz/l) # 
nl0(nna/l) ’

x i ¥J z  , 2 ^ c o s  (nncll) sin (w
c) «|r=0 =  k  -  +  -  2 ,— -— -  7 7 ^ -U n n=1 n I0(m7Ti

(nnz/t) 
«/0 '

Comment. Case b corresponds to a piecewise constant potential, pro­
duced in electronic practice by the use of a voltage divider. Case c is the 
problem of the distribution of electrostatic potential between two conducting 
cylindrical caps separated by a negligibly small space.

281. What potential distribution must be maintained along the lateral 
surface of the cylinder of Prob. 279 in order to obtain the distribution

«U  = y sin mczl
I J

along the axis, where the an are any given numbers ?
Ans.

« U  =  v
*282. Determine the electric field on the axis of the electron-optical lens 

shown in Figure 59, consisting of two cylinders at potentials K, if the potential 
distribution in the space between the cylinders is given approximately by 
the formula
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n

o ( u-v *

at ~ i " D r t i
------------ ---- 2 /----------------- -

Ans.
F ig u r e  59

4= o  =
a

1 +  2 ^
cos (nixS/l) cos (nizz/l) 
l-(2 « S //)2 I^niza/l) /

____

i
Vi_____

+-2<7 £/=0
U__ L

F ig u r e  60

283. Find the potential distribu­
tion in the electron-optical device 
shown in Figure 60.

Ans.

w(r, z) = sinh Ynz Jo(YWa)~l 
a YtACyJ-I’

Z  <  I,

» ( r , , ) - 2 F t c o sh ^ r > - » - ^ K W
n=l a Yn^l(Yn)

Z  >  I,

where the yn are consecutive positive roots of the equation J0(y) =  0.
Hint. Use formula 17, p. 385.

284. Find the potential distribution in the 
electron-optical device shown in Figure 61, con­
sisting of two semicylinders (with closed ends) 
at potentials u =  0 and u =  V, separated by a 
negligibly small space.

Ans.

, , V . 4K v  V
<r, 9 . 2 ) = -  + — Z  Z

AV
^  7 n = l  7 i = l

sin (nm/a) cos my 
m

m
1 -

!P - ( — ) -Jo \ a / r cosh Ymn(2z -  /) 
2a

Ym n^m  (Y wn) cosh Ymŵ
2a

Y ?nn)*^m(Y mnr/a)
win)

where Jm(x) is the Bessel function of order my a is the radius and / the length 
of the semicylinders, and the ymn are consecutive positive roots of the 
equation Jm(y) =  0.
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285. Find the distribution of d-c current in a thin conducting sheet, if a 
current J  enters and leaves via point electrodes applied at the points (±c, 0) 
[see Figure 62].12

F ig u r e  62

Ans. The potential of the current distribution is 

2J ^  sin [(2n +  l)7rc/2a]
u(x, y) = -  — - 2

7xch n=o (2n +  1) sinh [(2n +  l)7tb/2a]
(2n +  1)7i(b — \y\) . (2n +  l)7cx 

X cosh -—  ,  — sin 1 —  1- const,
2 a 2 a

where h is the thickness and a the conductivity of the sheet.
Hint. Regard the current as distributed over two small rectangles, and 

then pass to the limit.

286. Find the distribution of d-c current in a thin conducting disk of 
radius a, if a current J  enters and leaves via point electrodes applied at the 
points r = by (p = 0 and r =  b9 9 =  n (b < a).

Ans.

u(r, cp) =  :— - In
r i - 2 f c o , » + £ i r i - 2 ^ s <,+ ( ! f i

Hint. To represent the solution in closed form, use the expansion

1 p n
---- In (1 — 2p cos 9 +  p2) =  2  — cos n9, 0 <  p <  1.

2 n= 1 n
287. Find the distribution of d-c current in a thin cylindrical shell of 

radius a, if a current J  enters and leaves via point electrodes applied at the 
points (a, — 7t/2, 0) and (a, 7r/2, 0) [see Figure 63].

12 The differential equation for the potential of the current distribution in a thin 
conducting shell is given in Prob. 21.
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Ans.

«(<p, z) = izah n̂ o 2n +  1
(-1 )"  cosh [(2n +  !)(/ -  \z\)ja] sin (2n +  l)cp +  const,

sinh [(2n +  1 )lja]
where h is the thickness and a the conductivity 
of the shell.

288. Solve Prob. 287 for the limiting case 
of a cylinder of infinite length.

Ans.
, x J  , cosh (zja) — sin <pw(cp, z) ---------In---------------------   .

Inch cosh {zja) +  sin cp
*289. A thin conducting shell of hemispher­

ical shape lies on a plane base, made of a good 
conductor (see Figure 64). Find the distribu­
tion of d-c current in the shell, assuming that a 
current J enters the shell by an electrode 
applied to the hemisphere at the point r =  a, 

0 =  60, 9 =  0, while the current leaves through the rim of the hemisphere (in 
contact with the plane).

Ans.

m(0, cp) =
1 — 2 tan — tan ~ cos cp +  tan2 — tan2 -  

J . 2 2 Y 2 2In ■
4 7 T C J  h a

tan2---- 2 tan — tan -  cos cp +  tan2 —0o+ 0— tan -
2 2 2 

Hint. Introduce tan (0/2) as a new independent variable.

! 00 
2

F i g u r e  6 4

290. Suppose an infinite slab of conductivity cr contains a line current 
source (see Figure 65), from which a current J per unit length flows into the 
slab. Find the distribution of current in the slab, assuming that the slab is 
surrounded by a nonconducting medium.
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Ans. The potential of the current field is

u(x, y) = -  -—  In
4 7 I G

cosh COS ^ ± 1)1
a J*

X cosh — — cos 
L a

t z ( x  —  b ) ' +  const.

291. Find the voltage distribution in a lossless transmission line of length 
/, if the end x = 0 is connected at the time t  = 0 to a source of variable e.m.f. 
Ee~ai and the end x = I is kept open. It is assumed that the current and 
voltage in the line are initially zero.

Ans.

v 2 E v ^
«(*. 0 =  — 2 ,"

a * 71=0

( 2 n +  l ) 7 t t > f  (2n + l ) 7 t i ; f  _ a l

21 2/a
C O S

(2 n +  l)7n>ri
21 J

1 +
(2 n +  l)7rt>~j

2/a J
X sin (2n +  l)7rx 

2 /

where L and C are the self-inductance and capacitance of the line per unit 
length, and v =  1 jy/LC is the velocity of wave propagation along the line.

292. One end x = 0 of a transmission line of length / with parameters 
L, C and R is connected to a source of constant e.m.f. E, while the other end 
x =  / is connected to a resistance R0. Find the voltage in the line if the load 
R0 is suddenly disconnected.

Ans.

u(xt t) = E 8 E
7t2(1 +  a)

e - R t / 2 L

. .  V  r (2 n  +  1)™** R l  ( 2 n  +x 2 cos------------------- s in ----------------
*=0L 2/ (2 n +  l)7t Lvn 21 J

where

x
( - l ) n sin (2 n +  l)7rx 

21
{In +  l)2

h  v  = _ L _  A __ —
IR ’ n V LCV (2n +  l )V L '

293. Find the steady-state electromagnetic oscillations in a perfectly 
conducting waveguide whose cross section is a rectangle 0 < x  < a,
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0 <  y  <  by assuming that the oscillations are excited by an infinite line 
current source J =  J0 sin cot passing through the point (x0, y0)-

Ans. The complex amplitude of the vector potential of the electro­
magnetic field is

A =  AJLx, y) =
ca

nnx0 . , sin---- - sinh
J W

k * ( b - y , )

“  y ( ^  * ■ -y  (-/-*■*
. , /  /  M7c\2 . 2 . «TCXX sinh ^  y—J — k y sin---- 0 <  y <  y0,

A =  Az{x, y) = 8rc70y  
cfl *«■

. mzxQ . u sin---- - sinh V ( - J -

“Vi-i-i'-yi")'-
J WX sinh

/c2h

H 7 t Xk (b — y) sin---- ,
a

y<>< y < b ,

where 0 < * < a and k =  co/c is the wave number.
/Zmf. Integrate the inhomogeneous wave equation for A , assuming that 

the current J  is uniformly distributed over a rectangle whose dimensions are 
then made to approach zero.

294. Find the electromagnetic field due to an 
infinite linear current source J ~  JQ sin cof placed 
between two parallel perfectly conducting planes 
(see Figure 66).

Ans. The complex amplitude of the vector po­
tential of the electromagnetic field is

nn(x +  2b)l
a J

A =  A„(x, y) 2 t f nnxcos------- cos -
a

“ )■
295. Find the steady-state electromagnetic oscillations in a perfectly 

conducting waveguide whose cross section is a circular sector 0 < r < a, 
0 < cp < a, assuming that the oscillations are excited by an infinite line 
current source J  =  JQ sin cor passing through the point r =  r0, <p =  <p0.
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Ans. The vector potential of the electromagnetic field is A =  
where

Mr, 9) =  ^ ^ 2 [ Hn\ka)H ^(kr0) -  H «\kr0)H™(ka)] 
ca n=1

X Jn(kr) mc9o . nny“ ~ s i n  sin * j
Jn(ka) a a

M r, 9) =  2- ^ i [ H <n2\ka)H<?Xkr) -  H ^\kr)H ^\ka)}  
ca n=1

X Jn(kr0) . n7r(po . mzy--------sin------ sin----- ,
Jn(ka) a a

r <  r0,

r >  r„,

k =  co/c is the wave number, and Jn(x \  H ^ \x )y H (*\x) are cylinder functions.
*296. Find the electromagnetic oscillations in a cylindrical resonator 

0 < r < a, — / < z <  / excited by a dipole of moment P located at the origin 
of coordinates and directed along the z-axis.

Ans. The complex amplitude of the z-component of the vector potential 
is given by the Fourier expansion

A(r, z) =  — ^o(^) +  2% an(r) cos—  

where the coefficients an have the values

On =  T-; 1— Uo(*na)K0(<xnr) -  K0(<xna)I0(a.nr)], <xn = J  ( ^ )  -  k2, 
h («„a) w  /

k is the wave number, and I0(x), K0(x) are Bessel functions of imaginary
argument.

297. Find the electromagnetic field in an infinite cylindrical waveguide 
with perfectly conducting walls, assuming that the source of the oscillations 
is a current J  sin a)/ in a coil of given dimensions, with a single uniformly 
wound layer (see Figure 67).

Ans. The complex amplitudes of the compo­
nents of the electromagnetic field are

Er = Ez =  0,
8 n m b J N y J1(ynbla) , A v ;\ 

n t i « Y n )  ' \ a l
0 <  x <  hj2,

E„= -■
c a h
1 — e~a"hl2 cosh a„z.

sinh —  e~ant, 
2

Hr =~~
io) dz r or

z >  /i/2,

T
— a — 
b \-

F ig u r e  67
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where

J0(x) and /i(x) are Bessel functions, k  is the wave number, c the velocity of 
light, N  the number of turns in the coil, and the are consecutive 
positive roots of the equation J±(y) =  0.

References
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INTEGRAL TRANSFORMS

If application of the Fourier method to a given problem leads to a set of 
particular solutions depending continuously on some real or complex 
parameter, we say that the problem has a continuous spectrum}  Character­
istically, the solution of a problem of this kind is constructed from appropriate 
particular solutions by integrating with respect to the parameter, i.e., the 
solution takes the form of an integral expansion involving the eigenfunctions 
(the continuous analogue of the series expansions considered in Chaps. 4 
and 5).1 2 Problems with continuous spectra are encountered in all branches 
of mathematical physics, and can often be solved by the method of integral 
transforms, to which the present chapter is devoted. We begin by reminding 
the reader of the necessary background information.

By an integral transform of a function /(*), defined in an interval {a, oo), 
we mean an expression of the form

/CO = f ” /(x)X(x, T) d x ,  C <  T <  OO, (1)Ja

where a and c are real numbers (the value — oo is allowed), and K  is a function 
called the kernel of the transform. More generally, we allow K  to depend on 
a complex parameter p = a + h  varying over some region D of the complex

1 As a rule, such problems involve unbounded domains.
2 The theory o f integral expansions has undergone considerable development in recent 

years (see e.g., A l, LI3, L14, LI5, T6, T7 and S6, Vol. V. We also mention the classic 
paper by Weyl (W7).

143
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plane. Then (1) is replaced by

/(P) = J" /(x )K (x ) p) dx, p e D .  (2)Jo
Examples of transformations of type (1):

1. The Fourier transform

2C(x, t )  =  e<T®, a =  — oo, c =  — oo.
f i n

2. The Fourier cosine transform
piK(x, t )  =  / -  cos t x , a =  0, c =  0.

'V 7C
3. The Fourier sine transform

K(Xy t )  =  / -  sin t x , a =  0, c =  0.
-V 7T

4. The Hankel transform
K(x, t )  =  xJv( t x ) ,  a =  0, c =  0,

where Jv(x) is the Bessel function of the first kind of order v >  —

5. The transform

K(x, t) =  Kix(x) or , a =  0, c =  0,
V*

where tfv(x) is Macdonald’s cylinder function.3

6. The Mehler-Fock transform

K(x, t )  =  P_M+iT(x), a =  1, c =  0, 
where Pv(x) is the Legendre function of the first kind.

Examples of transformations of type (2):

7. The Laplace transform
K(x, p) =  e-px, a =  0,

where D is the half-plane lying to the right of some line a =  par­
allel to the imaginary axis.

8. The Mellin transform
K{x,p) =  xp~\ a =  0, 

where D is the strip between the parallel lines g = <s1 and ct =  o2.

3 The second expression for K(x, t )  leads to a more symmetric inversion formula 
[see formula (21), p. 195].
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Provided that the function /(x ) belongs to an appropriate class (depending 
on the integral transform in question), we can express / ( x) in terms of its 
integral transform by using a suitable inversion formula, which for transforms 
of type (1) takes the form

f ix )  =J°°/(t)M (x, t) dx..
J C (3)

Here M(x, t )  is a suitable function defined in the region a < x  <  oo, 
c <  t  <  oo and called the kernel of the inverse transform. In the case of the 
transforms 1-6 just enumerated, we have

_L_
’

/2
/  -  COS TX ,

1. Mix, x)

2. Mix, T )

3. M(x, x)

4. Mix, t )

5. Mix, x)

6. Mix, t )

2 t  sinh 7t t  KiT(x) or 2 t  sinh 7tt  ZfiT(x)
2 /“ *TZ y/X

In the case of transforms of type (2), the inversion formula takes the form

f ix )  =  ~  f  /(p)M(x, p) dp, (4)
2m  J ^

where M(x,p) is the kernel of the inverse transform, defined for all x in the 
interval (a, oo) and p in the region Z), while F is a suitable path of integration 
contained in D. For example,

M(x, p) =  evx 

for the Laplace transform, while

M(x,p) = x~v

for the Mellin transform. In both cases, F is a straight line parallel to the 
imaginary axis and lying in the region D.

We now turn to the integral transform method for solving partial differ­
ential equations. The basic idea is to look for some integral transform u of 
the solution, rather than for u itself, deferring the calculation of u until the 
end of the problem. In many cases, we can choose the kernel K in such a 
way that the original equation for u is transformed into a simpler equation
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for m, with one less independent variable. Of course, the extra conditions 
on the function u are transformed into corresponding conditions on its 
integral transform, but the conditions involving the behavior of u as x —► a, 
x -> oo are automatically taken into account when transforming the original 
equation for u. The integral transform method has many advantages, e.g., it 
is applicable to both homogeneous and inhomogeneous problems, it simplifies 
calculations and singles out the purely computational part of the solution, 
it allows us to construct an operational calculus for a given kernel by using 
tables of direct and inverse transforms of the functions most commonly 
encountered in the applications, and so on.4 5

The present chapter is devoted to the solution of problems with con­
tinuous spectra by writing the solutions as integral expansions involving 
suitable functions or by using the method of integral transforms.6 The 
problems are not classified by physical content, but rather by the particular 
transform used. There are five sections, the first on the Fourier integral and 
the Fourier transform, the second on Hankers expansion and the related 
transform, the third and fourth on the Laplace and Mellin transforms, and 
the fifth on expansions with respect to cylinder functions of imaginary 
argument.6 Many of the more difficult problems are equipped with solutions.

Given a real function/(x), defined in the interval ( — o o , o o ) ,  suppose that

1. /(x ) is piecewise continuous and of bounded variation in every finite 
subinterval [a, b]> where — oo < a <  b < oo;7

2. The integral

4 Although the literature on the application of integral transforms to physical problems 
emphasizes the Laplace and Fourier transforms, a number of works have appeared in 
recent years on the application of various other integral transforms (see e.g., G5, H3, 
K3, L8, L10, S8, S9, S10, T8).

5 As already noted, every integral expansion of the form (1) or (2) is accompanied by 
an inversion formula of the form (3) or (4), and conversely, and hence the distinction 
between the method of integral expansions and that of integral transforms is purely formal. 
Thus problems on the Fourier integral will be grouped with those on Fourier transforms, 
problems on Hankel’s integral formula with those on Hankel transforms, and so on.

8 Other integral expansions and transforms will be found in Chap. 7, which is concerned 
with the method of curvilinear coordinates.

7 In particular, this condition is satisfied if f ix ) is piecewise smooth in [a, b], or if fix) 
satisfies so-called Dirichlet conditions in [ay £] (see W8, p. 161).

I. The Fourier Transform

is finite.
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Then /(x ) satisfies the Fourier integral theorem

f(x )  =  -  f  °° e - Xl f dl, -  00 <  x <  00, (5)
2TC J —oo J—oo

where, iff ( x ) has a jump discontinuity at the point x  =  c, the left-hand side 
should be replaced by the sum

i l f ( c  ~  0) + f(c  +  0)]

(see T5, p. 13). Formula (5) is valid under other conditions (see T5, Chap. 1), 
and can be written in the alternative form

/(*) =  -  J [cos Xx J /(£) cos X£ d£ +  sin Xx f  /(£) sin X£ d% \ d\,
n Jo L J-oo J-oo J

— oo <  x <  oo.
The Fourier transform of a function satisfying the above conditions is 

defined as

/O ) =  -4= f f(x)eAx dx, —co <  X <  co. (6)
y / T T  J - o o

Then, according to formula (5), the inverse of (6) is given by

f ix )  = —  f “ /(X)e-<x* dk, -  00 <  X <  00. (7)
yJ2n J- 00

Formulas (5)-(7) play an important role in solving a wide variety of physical 
problems, in particular, boundary value problems for the Laplace and 
Helmholtz equations involving infinite strips, infinite cylinders, etc. In 
general, the application of these formulas is called for in problems leading 
to integration of the equation

—  +  Lu =  /(x, . . .) — oo <  x <  oo,
ox

where L is a linear differential operator which does not contain x, and 
/(x , . ..) is a given function.

Besides the formulas already written, many problems of mathematical 
physics involve the application of the Fourier sine and cosine integrals

/(x) =  -  I sin Xx d\ | /(£) sin X£ 0 <  x <  oo, (8)
n Jo Jo

f(x) =  -  j cos Xx d\ ( /(5) cos X£ d%> 
n Jo Jo

0 <  x <  oo, (9)
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valid for functions obeying the obvious analogues of the above conditions, 
i.e., such that

1. /(x ) is piecewise continuous and of bounded variation in every finite 
subinterval [a, b], where 0 <  a < b <  oo;

2. The integral

j ;  i /m i dx
is finite.

The analogues of (6) and (7) are then

//X) /(x ) sin Xx dx,

m  Jo /(x)cos Xx dx>

/(*) - f l j  //X) sin Xx d \  

f(x )  = y ~  / C(X) cos Xx dX.

( 10)

(11)

Formulas (8)-(l 1) are encountered in solving boundary value problems for 
the Laplace and Helmholtz equations involving half-strips, semi-infinite 
cylinders, etc.

The problems which follow are taken from various branches of physics, 
and are all susceptible to solution by using expansions or transforms like 
formulas (5)-(ll).

298. Solve the problem of the temperature distribution in an infinite 
rod, with the following special initial temperature distributions T|<=0 =  /(x):

a)
„  . T0, |x| <  x0, 

(0, |x| >  x0;

b) /(x) =  T0<r“v .
Ans.

a)

where 3>(x) is the probability integral;

b) T(x, 0 =  ■ T°-----g-o^V/uW^
V l  +  4 a 2T

Here k is the thermal conductivity, c the specific heat and p the density of the 
rod, and t  =  k t / c p t

299. A semi-infinite body bounded by the plane x =  0 has a given 
initial temperature distribution

71t=0 =/(*)> 0 < x <  oo.



PROB. 302 INTEGRAL TRANSFORMS 149

Find the subsequent temperature distribution in the body, assuming that its 
boundary is held at temperature zero starting from the time t =  0. Apply 
the general result to the special case /(x ) =  T0.

Ans.
X

T(x, t) =  —  T f -  2^/t s )  ds -  f a e~V~(—x +  2yfi s) <fc],
\ f  T Z L J — c o  d

where

in the special case.
300. Find the stationary temperature distribution T(xyy) in a semi­

infinite body bounded by the plane y  =  0, if the part |x| < a is held at tem­
perature 7 ,̂ while the other part \x\ > a is held at temperature zero (see
Figure 68).

Ans.

T(x, y) =  %
7t

where ^ is the angle subtended by the 
segment —a < x  < a, y  =  0 at the 
point P = (x, y).

301. Find the stationary tempera- F ig u r e  68

ture distribution T(xyy) in a semi­
infinite slab 0 < x  <  oo, 0 < y  < b if the face y  — b is held at tempera­
ture 7 ,̂ while the other two faces are held at temperature zero.

Ans.

Hint. Use the formula 

1

T(Xy y) =  —  arc tan (tanh — tan —).
7T \ 2b 2 b)

la
=  2 f°°sir

7T J o

’ sin Xx d \  x >  0.

302. A heat current Q enters a semi-infinite body through the section 
|x| <  a of its plane boundary (see Figure 69). Find the stationary tem­
perature distribution in the body, assuming that the current is uniformly 
distributed and that the surface of the body radiates heat into the surrounding 
medium according to Newton’s law.

Ans.
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where k is the thermal conductivity of the body and h is its heat exchange 
coefficient. In particular, the temperature of the part of the surface |x| <  a 
has the representation in closed form

TL=0i|aj|<o=  ~ - T l  — cos ah cos xh + -  {Si [(a + x)h] cos (a + x)h 
2kahL n
+  Si [(a — x)h] cos (a — x)h

— Ci [(a +  x)h] sin (a + x)h — Ci [(a — x)h] sin (a — x)/i}J, 

where Si (x) and Ci (x) are the sine and cosine integrals.

*303. Solve the two-dimensional stationary heat conduction problem for 
a quadrant of thermal conductivity k (see Figure 70), if the facey  =  0 is held 
at temperature zero, while the other face is covered by a thermal insulator 
except for the section 0 <  y  <  b through which heat flows with constant 
density q. Find the distribution of heat current through the face y  =  0.

Ans,

T(x, y) = ^ {  ----- Xb e~Xac sin Xy d\, q(x,0) =  - In  ( l  +
nk Jo X2 7 t  \ x2/

304. Find the stationary temperature distribution in the quadrant x > 0, 
y  > 0 if the face y  =  0 is held at temperature T0, while the face x =  0 
radiates heat into the surrounding medium according to Newton’s law. 
Find the temperature distribution along the radiating face.

Ans.

y  _2Tq
1  | x = 0  —

7C

j l - S i w )

o X(X h) 

cos yh +  Ci (yh) sin

where Si (x) and Ci (x) are the sine and cosine integrals.
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Hint. Take the Fourier sine transform of the required function T(x, y), 
i.e., multiply the relevant differential equation by sin Xy and integrate with 
respect to y  from 0 to oo.

305. The end of a semi-infinite cylinder 0 < r < a, 0 < z <  oois held at 
constant temperature T0i while the lateral surface is held at temperature zero. 
Find the stationary temperature distribution in the cylinder, by expanding 
the required function in a Fourier sine integral with respect to z.

Ans.
2 f 00 70(Xr) sin Xz 
n Jo 70(Xa) X

where 70(x) is the Bessel function of imaginary argument.
Hint. Introduce a new unknown function u = T — T0) and use the 

integral
. 2 f°° sin Xx n1 =  -  -------d \  x >  0.

71 Jo X
306. Solve the preceding problem, assuming that a given temperature 

distribution T|,=0 =  f{r) is maintained on the end of the cylinder, while the 
lateral surface radiates heat into the surrounding medium according to 
Newton’s law.

Gx(p, r)p/(p) dpj dX, 
where

{[XK^ka) -  hK0(Xa)]I0(Xr)

+ [Xl^Xa) + hIo(Xa)]K0(Xr)} , p < r,
Dyh)

{[XKiiXc) -  hK0(Xa)]I0(Xp)

+ [Xl^Xa) +  hI0(Xa))UXp)} ^  , p > r,
D{a)

D(k) = X/^Xa) +  /iJo(Xa),
7n(z) and Kn(z) are Bessel functions of imaginary argument, and h is the heat 
exchange coefficient.

T(r, z) =  -  ( °°X sin Xzl" f  
7 t  Jo LJo

307. Find the stationary temperature distribution in a semi-infinite 
cylinder 0 < r < a ,  0 < z < o o i f  the lateral surface is maintained at the 
temperature T\r=a = /(z), while the end radiates heat into the surrounding 
medium.

Ans.

T(r, z) =  I  pcpx(z) ^  f 7(0<Px(0 dK,
n Jo 70(Xa) h + X Jo

9x(z) =  X cos Xz +  h sin Xz.



152 INTEGRAL TRANSFORMS PROB. 308

Hint. To solve the problem, use the following generalization of the 
Fourier integral theorem (see LI 3, p. 79):

/(*) =  -  f "  dX f 7 ( 0 ?x(5) dl, 0 < x <  00.
n  Jo h +  X Jo

308. Find the two-dimensional electrostatic potential in the half-space 
— oo <  x  <  oo, y  > 0, if the potential distribution u\yaQ —f(x )  is maintained 
on the plane y  =  0.

Arts.

w(*> y )  =  -
T Z

,+a> m
-co ($ -  X f  +  /

+  y tan 0) d0.

Hint. To reduce the solution to final form, use the integral

l. e ax cos bx dx =  7 ■ : ,
0 a + b2

a >  0.

309. Examine the special case of the preceding problem corresponding to 
the piecewise constant potential distribution in the plane y  =  0 shown in 
Figure 71.

Ans.

«(*> y) =  -  2
**=0

where Vk is the value of the potential in the interval (xk_lf xk) and is the 
angle subtended by ( x ^ ,  xk) at the point P =  (x, y).

310. Find the distribution of electrostatic potential in the planar electron- 
optical lens shown in Figure 72 (cf. Prob. 282).8 

Ans.

«(*, y) =
Vt+Vy V2 -  

2
— Vx f 00 cosh \y  sin Xx 
t z  Jo cosh \ h  X

8 Note that the integrals representing the solutions of Probs. 310-311 can be expressed 
in terms of elementary functions.
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Hint. Subtract out the particular solution \{V2 +  Kx) of Laplace’s 
equation, and then use the expansion

sin Ax1 =  2 r°
n  Jo

d\

y
u--V, u*Vz

" 1n l-Z h  Q

<r-V, u--Vz

F ig u r e  72

x >  0.

2h-

L II

Vi

%

F ig u r e  73

311. Find the distribution of electrostatic potential on the axis of the 
planar electron-optical lens shown in Figure 73.

Ans.

u(x, y) =  V2 +  2
iJ o

Vi — V2 j 00 sin A a cosh Ay 
A cosh A/z

cos Ax dA.

312. A thin charged wire of charge q per unit length is placed between 
two parallel conducting planes (see Fig­
ure 74). Find the resulting distribution 
of electrostatic potential, and also the 
density of charge on the planes y  =  0 
and y  = h.

Ans. The potential distribution is

, N . f 00 sinh A u(x, y) = 4q\ ——
Jo  A si

A(fc -  a)

y

u--0
t
h 7—
1 i

><?

0

0■I

F ig u r e  74
. sinh Ah 

X sinh Ay cos Ax d \  y < a,
where the corresponding formula for y  > a is obtained by permuting y  
and a. The charge density on the planes is

/x  q . na 
ct( x )  =  —  —  sm — X 

2h h

1
cosh (■Kx/h) — cos (na/h) 

1
cosh (7zx/h) +  cos (na/h)

y  =  0,

y  = h.

Hint. First assume that the charge is uniformly distributed over the 
rectangle ~ $ < x < & ,  a — t < y  < a z, and then take the limit as 8, 
e 0. To solve the corresponding Poisson equation, take the Fourier cosine
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transform of the unknown function, by multiplying the equation by cos Xx 
and integrating with respect to x  from 0 to oo.

*313. Find the electrostatic field of a thin charged wire of charge q per 
unit length located near the plane interface between two dielectric slabs (see

Figure 75).
Arts.

Ed) _  _£*_ 4 si -  s2 x
eqRi E! +  e2 R2 ’

En) _  q(y -  a) ■ <i £i -  g 2 q +  y
Ej R J  Et E-j +  ^2 R |

£l2) =

El
2q

Ex +  S2 Rx

ei ei “b e2 

£,(,2) = 2q y -  a 
el "I" £2

where
R l 2 =  * ’  +  O ' T  « ) 2.

7/m/. To avoid any difficulties associated with the behavior of the 
logarithmic potential at infinity, set up a system of equations for the com­
ponents of the electrostatic field.

314. Find the potential distribution in the electron-optical lens shown in 
Figure 76.

A ns.
u(r 2) =  ^ 1+ ^2  V2 - V 1 f “ /„(Xr) sin Xz

2 7T J 0  Iq(Xo) X
where I0(x) is the Bessel function of imaginary argument.

dX,

F i g u r e  76

-/

Hint. Reduce the problem to one with boundary conditions which are 
odd in the variable z, and then make a sine expansion, using the formula

1 2 f 00 sin Xz A1 =  -   dX, z >  0.
7T J o  X

315. Find the potential of the electrostatic field due to a point charge q 
placed on the axis of an infinite conducting cylinder of radius a.
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Ans.

u(r, z) - 2 q (m
7T Jo

/ 0(Xr) cos Xz dX,
I fra )

where /0(x) and K0(x) are Bessel functions of imaginary argument.
Hint. In the course of the calculations, use the following integral rep­

resentation of Macdonald’s function:
cos Xz 

yja2 + z ‘
dz.

316. Find the distribution of electrostatic potential inside a conducting 
cone 0 < r <  oo, O < 0 < 0 o due to a point charge q on its axis (see Figure 
77).

Ans.

u(r, 0) =
yfa2 — 2ar cos 0 +  r2

_ 4 =  f"
Jra  Jo

P-'A ht ( ~ c o s  60) P_)/i+<x(cos 6) cos
y/raJo P_,AHx(cos 0O) 

where Pv(x) is the Legendre function of the first kind. 
Hint. Introduce new variables

d'z 
cosh 7CT 5

*\

x =  In -  , u = r~1/2v. 
a

To expand the source, use the following integral representation 
of the Legendre function:

P-A+tJ.cos «) =  -  cosh 7tT f u°STX0 dx-tz Jo y/2 cosh x — 2 cos a
317. A point current source is placed on the axis of a 

cylindrical tube filled with a medium of conductivity and 
surrounded by a medium of conductivity a2. Find the potential 
of the current field in each medium.9

I
I

0
F ig u r e  77

Ans.

=  J f  1 2 , _  . f°° K0(ka)K1(Xa)I0(\r) cos’Kzd’k 1
47TCT1LN/ r2 -f z2 7 Z  1 2 Jo a1K0(\a)I1('Ka) +  ^ I fr r fK fr a )]  ’

u2(r, z) =
J

27r2n
f - _______ Xp(Xr) cos Xz________ dX

Jo djA^XflO/^Xa) +  cr2/0(Xfl)7C1(Xfl) X

9 This is the problem of “electrical coring” (see Fock’s paper F2).
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where In(x) and Kn{x) are Bessel functions of imaginary argument, J  is the 
current emanating from the electrode, and a is the radius of the tube.

318. A line current J  is placed between the boundary planes of two 
massive bodies made from iron of magnetic permeability [x (see Figure 78).

Find the magnetic field in the air space.
Ans.

(fi)
/ / / / / / / / / A / / / / / / / / Af

• 26-

H 2J\ y**X 2 -c lx  +  y (n -  1)

Xl> sinh Xj>
o cosh Xb +  (jl sinh Xb

h * = — r-i^—ii+ o* -  dc Lx +  y

cos Xx dX]•

e A° cosh \y

V77777777X777777777 
ifi)

F ig u r e  78
X  I

cosh Xb +  (x sinh \b  
Hint. Take the Fourier transform of the equations for the. components of 

the magnetic field.

J'J o
sin Xx dk

319. Solve the preceding problem, assuming that the iron ;has infinite 
magnetic permeability.

Ans.

HX
2J[ y 
c Lx2 +  y2

sinh Xy 
sinh Xb

cos Xx dX]■
2jr  x
c Lx2 +  y2

, r°°-Xb cosh Xy .  ̂ ^~|+  . e -------   sin Xx dX
Jo sinh Xb J

320. A current J flows in a circular loop placed on a cylindrical core 
made from material of magnetic permeability fx (see Figure 79). z 
Find the distribution of magnetic field on the axis of the core 
(see Lebedev’s paper L3).

Ans.

Hi =  -  -Ki(Xa) cos Xz________ ^
|r=0 c Jo J0(Xa)X1(Xa) +  |i./1(Xa)K0(Xa) ’

where In(x) and Kn(x) are Bessel functions of imaginary argu­
ment, and c is the velocity of light.

*321. Find the electromagnetic field radiated by a line cur­
rent JQeiUit placed inside an ideally conducting shield of rectangu­
lar cross section (see Figure 80). Investigate the limiting case 
b —► oo.

Iil
II

F ig u r e  79
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Ans.

it / n 4ikj rEz(x, y ) = --------
C Jo

4ik j r *  sin Xa sinh [Vx2 -  k2(b -  |y|)] . ,----- ■   sin Xx d\y
c vX2 — k2 cosh \/x2 — /c2 b

where k =  w/c is the wave number and Ez is the complex amplitude. For 
b —► oo, we have

£,(*, y) =  ^  [//<2)(W(x +  a)2 +  / )

-  H™(k-J(x -  a?  +  / ) ]  
in terms of the Hankel function //^2)(x), 
which gives the familiar law for reflection by 
a conducting plane of the radiation due to a 
line source.

y\

b
0

b

n uiwt 
__

F i g u r e  8 0

322. Find the electromagnetic field produced in a cylindrical waveguide 
by a dipole of moment P placed at the origin and directed along the axis of 
the cylinder. Find an expression for the longitudinal component of the 
electric field.

Ans. The complex amplitude of the z-component of the electric field is

2iP f “ (x* _  j 2)rW x 2 - /c2q)K,(Vx2 -  fc2 r) 
L / 0(Vx2 -  /c2 a)

K„(Vx2 -  k2 q)J0(Vx2 -  k2 r)~ 
/ 0(VX2 -  fc2a)

cos Xz d \

where a is the radius of the cylinder, and 70(x), 7£0(x) are Bessel functions of 
imaginary argument.

323. Find the steady-state oscillations produced by a point source of 
sound of frequency 6) placed on the axis of an infinite cylindrical tube with 
ideally reflecting walls.

Ans. The velocity potential is

u(r, z ,t)  = A sin (of — k-Jr2 +  z2)
Vr2 +  z2

+  Im ~2A
L e I  H

K ^ X 2 -  k2 a) , -I
( 7 x2 -  k2 a) 7° ^ X ~  k ^  cos Xz dXJ ’

where 70(x), 7x(x) and /^(x) are Bessel functions of imaginary argument.
Hint. Concerning the character of the singularity at the source point, 

see Prob. 85.
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*324. Study the stress distribution in an elastic half-plane due to arbitrary 
stresses

<*i,Uo 3̂]/|i/=o
applied to its boundary.

Arts.
2  f 00 y m  +  (X  -  l)g(& 

=  “n

r 2 j /  r \ 2 l 2  ( * - 5 ) ^ 5 .« [j> +  (x ~  5) ]
=  2 y fco tfG H - (*_- 5)g<5)
• J - ,

= 2 /  f " tffc) +  (X -  Qg©
7T J—-« [y' + i x - m

Hint. Take the Fourier transform of the system of equations
, ^TXy ___  dTXy _ /\

9x 9y 9x 9y
92aa d2ay d \ y _
9y2 9x2 9x 9y

from two-dimensional elasticity theory.

325. Examine the special case of the preceding problem obtained when 
a concentrated force P with components Px =  0 and Py =  P is applied at the 
origin.10

2Px2y 
tc(x2 +  y2)2

2Py3
n(x2 +  y2)2

2Pxy3
XV /  2  I 2 \ 2*(x +  y )

326. Study the stress distribution in an elastic half-plane y  > 0 due to a 
concentrated force P applied at the point x  =  0, y — a and directed along 
the y-axis.11 Find an expression for the shear stress t z v .

Ans.

A*\ \ y a a /a i \ * 2 — (y +  aY\-  4(1 -  v)y ----  4fl(l +  v)y-------—-----   ,
Ki J

10 This is Flamant’s problem, solved by inspection (without recourse to Fourier trans­
forms) in courses on elasticity.

11 Another way of solving this problem is given in M6,
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where
i?i,2 =  Vx2 +  O' ±  a f

and v is Poisson’s ratio.
Hint. Regard the force P as  a distributed body force with components 

X  and Y, and use the equations

, fcxv 
dx dy

+  X = 0, ^ + —v+  Y =  0, 
ox dy

^  (°x -  ™v) + (Pv -  =  2(1 +  v)

from two-dimensional elasticity theory.
dx dy

327. Study the two-dimensional stress distribution in an elastic strip 
compressed by two concentrated forces P applied at the points x  =  0, 
y  =  (see Figure 81). Find the normal stress cry along the axis of symmetry.

Ans.
Iav\v=o

7 Z  Jo
sinh \b  +  Xb cosh "kb 

2Xb -|- sinh 2Xb
cos Xx dX.

Hint. See Prob. 324.

*328. A semi-infinite thin elastic plate, clamped along the edge y  =  0, 
is loaded by a concentrated force P at the point (0, b). Find the bending 
moment M  and the shear force N  along the clamped edge (see Figure 82).

Ans.
P b2 | _ 2  P b2
n b 2 + x2 ’ l*-0 7i (b2 +  x2)8 '

Hint. Replace the concentrated force by a force uniformly distributed 
over the rectangle — 8 < x < S ,  b — e < y < b + e, and take the Fourier 
cosine transform with respect to the variable x  of the differential equation 
for deflection of the plate. Then pass to the limit 8, e —► 0.
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329. A thin elastic plate, in the form of an infinite strip — oo <  x  <  oo, 
0 < y  < b of width b, is clamped along its edges and loaded by a con­
centrated force P at the point (0, a), Find the bending moment along the 
edge y  =  0.

Ans,
M\y=Q

— — | [a sinh Xb sinh X(6 — a) — (b — a)Xb sinh Xa] — C° S Xx ^X ^
7C Jo sinh Xb — X b

330. Solve the preceding problem, assuming that the edges of the strip 
are simply supported and that the force is applied at the point (0, bj2). Find 
the deflection of the center of the strip due to the force.

Ans,
sinh (xu (0, bl 2) =

Pb2 f°°_si 
8 t cD J o (jl3 cosh2 (fx/2)

d\i.

where D is the flexural rigidity of the plate.

2. The Hankel Transform

Given a real function/(r), defined in the interval (0, oo), suppose that
1. /(r)  is piecewise continuous and of bounded variation in every finite 

subinterval [a, b], where 0 <  a <  b <  oo;
2. The integral

J0 y /r \f(r)\d r
is finite.

Then/(r) satisfies HankeVs integral theorem12

/ w  =  Jo dk Jo Z(p)Jv(Xp)p dp, 0 <  r <  0 0 , (12)
where / v(a:) is the Bessel function of the first kind of order v >  — If f(x )  
has a jump discontinuity at the point r =  c, the left-hand side should be 
replaced by the sum

H A c  -  0) + f(c  +  0)]
(see W4, p. 456 ff.). Formula (12) is one of the most important integral 
expansions encountered in mathematical physics.

The Hankel transform of a function satisfying the above conditions is 
defined as

/(X) =  J " / ( r ) / v(Xr)r dr, 0 <  X <  co. (13)

12 Sometimes called the Fourier-Bessel integral.
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Then, according to formula (12), the inverse of (13) is given by

/W  =  J# /(X)Jv(Xr)X d \  0 < r  < co. (14)

There is a generalization of formula (12), known as Weber's integral 
(see T6, p. 75)

/(r)  \  dp, a < r <  CO, (15)Jo J*(ka) +  Yv(Xa) Ja
involving the linear combination

<PxW =  Jv(Xa)Yv(Xr) -  yv(Xa)Jv(Xr)
of Bessel functions of the first and second kinds (v >  — J). A sufficient 
condition for validity of (15) is that f ( r ) be piecewise continuous and of 
bounded variation in every finite subinterval [a, (3], where a <  a <  (3 <  oo, 
and that the integral

ja y /r\f(r)\dr

be finite. It should be noted that Weber’s integral reduces to Hankel’s 
integral as a —> 0.

Hankel’s integral expansion and the Hankel transform can be used to 
solve a number of problems of mathematical physics, e.g., boundary value 
problems for the Laplace and Helmholtz equations involving half-spaces and 
regions bounded by parallel planes, certain problems of elasticity theory, etc.13 
The problems that follow can be solved quite readily, as soon as one has 
acquired the necessary experience in handling Bessel functions.

331. Find the stationary temperature distribution in the half-space z > 0, 
if a given temperature distribution T\z=0 = f(r)  is maintained on the boundary 
z = 0. Examine the special case

Ans.

f(r) =
rT0, 

P,

r < a, 

r >  a.

T(r, z) = J# e XzJ0(Xr)X dX Jo /(p )J0(Xp)p dp.

13 In general, application of these formulas is called for in problems leading to in­
tegration of the equation

1 9 /  du\
7 a ^ ( r Hr) - - «  + !.« =/(r, . . .), r2 0 <  r <  oo,

where L is a linear operator which does not contain r, a n d /(r , . .  .) is a given function. 
Weber’s expansion plays the same role for the interval a <  r <  oo (see Probs. 335-337).
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In the special case,

T(r, z) =  T0a J “ e- xV1(Xa)J0(Xr) d \

where J0(x) and Jt(x) are Bessel functions.
Hint. To evaluate the integral

J0 ^o(Xp)p dp, 

use the differential equation for the Bessel function.

332. Solve the preceding problem, assuming that the half-space is heated 
by a thermal current of constant density q, incident on the disk of radius a 
with center at the origin, while the rest of the boundary exchanges heat with 
the surrounding medium according to Newton’s law.

Ans.

T(r, z) =  2? f " - ~  •/1(Xa)J0(Xr) d\,
kJo X +  h

where h is the heat exchange coefficient.

333. A cylindrical rod of radius a, heated to temperature T0> is intro­
duced into an unbounded medium whose initial temperature is zero. 
Find the temperature distribution T(rt t), assuming that the medium 
and the rod have the same thermal conductivity k> specific heat c and 
density p.

Ans.

T =  T„a J "  d \
where t  =  kt/cp.

*334. Examine the process of temperature equalization (in unbounded 
space) of an arbitrary axially symmetric initial temperature distribution

r | , =o = / ( r ) ,  0 <  r <  00.
Ans.

T(r’ >) = i r  J V <r!+s!)/4T/° ( ^ ) / (s)s ds’

where /0(x) is the Bessel function of imaginary argument.
Hint. To calculate the coefficient in the Fourier-Bessel integral, use the 

formula

f V x\ j 0(Xsy0(Xr)X d \ =  f
Jo 2 t  \ 2 t /

(see W4, p. 395).
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*335. A cylindrical hole of radius a is drilled in an infinite body, and the 
walls of the hole are maintained at temperature r 0 starting from the time t =0. 
Examine the evolution of the temperature distribution in the body, assuming 
that its initial temperature is zero.

Ans.
T ( r  t )  _ 2 T » r  9 x ( r ) [ l  -  e - x V ] d \

’ n Jo Jo(Xa) +  Y20(Xa) X ’
where

<Px(r) =  J 0(Xa)yo(Xr) -  y0(Xa)J0(Xr),

and / 0W  and y0(*) are Bessel functions of the first and second kinds.

Hint. Set v =  0 in formula (15).

336. A cylindrical conductor of radius a heated by a d-c current passes 
through an infinite slab of width 2h (see Figure 83). Find +he stationary 
temperature distribution in the slab, assuming that the surface temperature 
of the conductor is To, while the faces of the slab have temperature zero.

Ans.

T(r z) =  T [" 1 -  -  f ” cosh Xz
1  it Jo Jo(Xa) +  Yo(Xa) cosh Xfc x j ’

where cp?(r) has the same meaning as in the preceding problem.

337. The walls of a cylindrical hole terminating at the plane surface of an 
infinite body (see Figure 84) are held at a given temperature T0. Find the 
stationary temperature distribution in the body, assuming that it radiates
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heat from its surface into the surrounding medium according to Newton’s 
law.

Arts. _ „ .
<Px(r)e x* d~k

T (r,z )  =  T0|"l -  —
L n Jo rro(Xa)]]>X(X +  h)[J20(Xa) +  Yl

where
9x(r) =  J0&a)YQ(kr) -  Y0(Xa)J0(Xr), 

and h is the heat exchange coefficient.
338. Find the distribution of electrostatic potential in the space between 

two grounded plane electrodes z =  a, due to a point charge q at the point 
r =  0, z =  0.

Ans.
«(r, z) =

V 7 T . - r
~\a cosh Xz f N j

<?  ;----- J 0(x )̂ <*X,
cosh <Xa

in terms of the Bessel function J0(x). 
Hint. Use the formula

,==== =  f V xV0(Ar) dX, z >  0. 
V r2 +  z2 Jo

339. Find the electrostatic field due to a point charge q located near the 
plane interface between two media with different dielectric constants (see 
Figure 85).

Ans.

«i(r»z) =  ~ 4 '  +  iE L T J- 4 -  -el R1 £1 el +  e2 R2

u2(r, z) = 2q
Rlt2 =  V?*2 +  (2 T  fl)2*

El +  2̂ ^1 ?
Hint. To represent the solution in closed form, use the hint to Prob. 338.

F ig u r e  85 F ig u r e  86
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340. Find the electrostatic field produced by two point charges +q and 
—qy between which there is a slab of material of dielectric constant e (see 
Figure 86). Calculate the field on the line joining the charges.

Ans.

0

- 2 ^ ^ o s h X z  ^
Jo sinh kb +  e cosh kb

9 , f  °° sinh X fr-s  cosh Xfe x rfx
,(|z| — a)2 Jo sinhXt +  e cosh Xb ’

1*1 <  *, 

|z| >  b.

341. A'd-c current J enters the ground through an electrode making 
contact with the earths surface (z =  0) over the area of a disk of radius a. 
Find the current distribution in the earth, and examine the limiting case of a 
point contact.

Ans. The potential of the current field is

w(r, z) =  ) e^J^ka^o ikr) —  , z >  0,
7ra o r  Jo X

where J0(x) and Jr1(x) are Bessel functions, and a is the conductivity of the
earth. In the limiting case,

“<r"z, =  W W T ? -
342. A point electrode carrying current /  is placed on terrain consisting 

of two layers of different conductivities (see Figure 87). Calculate the 
potential of the current field on the earth’s surface.

Ans.

+ ».) f — :
27rcr x r  2 t z g 1  J o  ^  si

Jo(*r)
sinh ka +  a2 cosh ka

■dk.

343. Determine the electromagnetic field of a vertical radiator (antenna) 
placed at height h over the plane surface of the earth, assumed to be perfectly 
conducting (see Figure 88).
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Ans. The z-component of the vector potential of the electromagnetic

(all other components vanish), where
R =  V(z -  h)2 +  r \ R = V(z +  h f  +  r \

6) is the frequency of the oscillations, c is the velocity of light, P is the 
moment of the radiating dipole, and k =  o>/c.

Hint. Use the expansion
g - i k V r ' + z *  ^  /•« e-VA»-fc2v „(Xr)X ^

"Jo  V x ^ f c 5
344. Solve the preceding problem, assuming that the earth has finite 

conductivity.
Ans. The vector potential of the electromagnetic field is

A™
Vx2 -  k \

X kl----- ;̂ x2._  fe* e - ^ Vx‘- kl‘j 0(Xr) dx],
fc jV x 2 —  k \  +  k l  7 x 2 —  /cj| J

where

/ 1<2 >
2Pk\ f«°
c J. +  **V5̂ T s  o( ) ’

J(eu  — 4tco7)co 
k\ =  > k2 — ,

c c
in terms of the earth’s dielectric constant e and conductivity o.14

345. Using the solution of Prob. 344, find an expression for the normal 
component of the electric field on the earth’s surface for the case where the 
dipole is placed directly on the surface itself (h —► 0).

Ans.
I =  2Po>i(k2\2 J t j k j J  / M i  _ i k 1 _ k *  i \  

*2 c2r Ik j  k{ — k\I Ifc* +  k\ r kt rV
__  /  k\kj    i k i  ki  J _ \  e_ik

\k\ +  k\ r k2 rV

-ikir

ir k\k\
(fcj +  fe2)3/2 ^VkS+kS,I

VkS+^ikt
a-iTkik2s/Vki‘+k2 ds

‘/k2 J s 2 -  1
14 Details on the transformation of these expressions into a form suitable for calculation 

as well as an analysis of the corresponding physical picture of wave propagation, can be 
found in the specialized literature (see e.g., F6, Chap. 23, Sec. 1 and S14, Secs. 31-32).
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Hint. Use the Van der Pol substitution

__________ 1__________
k^s/x2 — k\ +  k2\/x2 — k\

ktk2 r ^ W / * .  
k{ — k% j \ /kli+ks*/k2 /  t k\k\ 2

^  - W T H ’
346. Determine the electromagnetic field 

of a horizontal radiator located at height 
h above the plane surface of the earth, 
assumed to be a perfect conductor (see 
Figure 89).

Ans. The vector potential of the electro­
magnetic field has the components

Ay =  Az =  0.
347. Solve the preceding problem, assuming that the earth has finite 

conductivity.
Ans.

p (  - i le iR
A ?  = - r

c l R

- fJo
X Vx2 — fci — Vx2 — kl _Vxa- fcl2i+  | "---------  S ---- y  e~ v (̂ > J0(Xr) dk ,Vx2 -  kl Vx2 -  k* +  Vx2 -  kl '

2PA ^  =  — (k* — kl) cos <p

X fJo (k2Vx2 -  k\ +  k2Vx2 -  /c2)(VX2 -  k\ +  VX2 -  kl)

AW =  ^  r <oXc-Vx- fclVVx- ,ĉ J 0(Xr)
* c Jo Vx2̂ 2 +  Vx2̂

^(2) =  — (fc2 — fc2) cos cp

</X,

</X,

Jo

X2e-Vx»-tlW x » -t,»Vi(Xr)

(/cjVx2 -  k2 +  k2Vx2 -  fclxVx2 -  k? +  Vx2 -  kl)
For further details, see F6, Chap. 23, Sec. 2 and S14, Sec. 33.

dX.

348. Find the magnetic field of a horizontal radiator lying on the plane 
surface of the earth, assumed to have dielectric constant e and conductivity a.
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Show that the magnetic field on the earth’s surface can be expressed in terms 
of elementary functions.

Arts.
2P sin y d_i\ e_ikv
c k\ — kl drLr d r \r

1
r

e— i k \ r

)]■
349. Find the steady-state acoustic vibrations due to a disk-shaped 

piston of radius a inserted in an infinite screen and vibrating with velocity 
v0 sin co/.

Arts, The velocity potential is
J ifa )I . , f 00 J&a

u(r, z, t) = Im [ Jo J j T Z

where k  =  o/c and J0(x), Jx(x) are Bessel functions.

350. A concentrated normal force P is applied to the plane surface of a 
semi-infinite elastic body z > 0. Study the resulting stress distribution in the 
body, and find expressions for az and rrz.

Ans.

z V  +  z2r 5/2, t „  =  -  — r z \r2 +  z2)-*'2,
2 k  2 k

where the force P is assumed to be applied at the point r = z =  0.
Hint. Use the formulas

_a
dz

a v
dz2.

expressing the stresses oz and Trz in terms of the biharmonic stress function 
(v is Poisson’s ratio). Then expand the quantities Au and d2ujdz2 in Hankel 
integrals (see also the solution of Prob. 351). In the boundary conditions, 
first replace the concentrated force P by a force uniformly distributed over a 
small disk of radius e, and then take the limit a s e - ^ 0.

*351. Generalize the preceding problem to the case of a concentrated 
force P with components Px = Py =  0, Pz =  P, applied at an arbitrary 
interior point of the body (with coordinates r =  0, z =  a). Find an expression 
for the stress az.

Ans.

' ■ = ' i
, 3(z — a)! 

R\I R{

, 3(z + a)2 r , , ,  ,, N „ , , ^ri5(z +  a)2 9"H
+  —  [a +  (3 -  4v)z] +  2az(z +  fl)[̂ -------------- jj )•

where R12 =  Vr2 +  (z T  a)2.
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Hint. Use the stress function

P
871(1 — v)

Vr2 +  z2,

corresponding to a concentrated force P (with components Px = Pv = 0, 
pz =  P) applied to the point r =  z =  0 of an infinite elastic body (see T4, 
p. 355).

352. Study the transverse oscillations of an infinite elastic plate due to a 
concentrated force P(t) applied at the point r = z =  0 starting from the time 
/ =  0.

Ans.

u(r, t) = 1
47r^/Dp A / D/p(t  -  s)_

ds,

where D is the flexural rigidity and p the density of the plate, and Si(x) is the 
sine integral.

3. The Laplace Transform

The Laplace transform is acknowledged to be the most effective tool for 
dealing with the nonstationary problems of mathematical physics. Since the 
whole subject has been thoroughly treated in the literature,15 we shall confine 
ourselves to a few brief remarks, mainly for reference purposes.

Let/( /)  be a real function defined in the interval (0, oo) such that

1. f( t)  is piecewise continuous in every finite subinterval [a, T], where
0 <  a < T < oo;

2. The product f(t)e~°^ is absolutely integrable on (0, oo) for some 
suitable a1 > 0.

Then the Laplace transform off(t)  is defined by the formula

f(p)  (16)

where p =  a +  nr is any complex number in the half-plane Re/? >  Ox.16 If 
it is also assumed that f( t)  is of bounded variation in every finite subinterval

16 See the relevant books cited at the end of this chapter (p. 202).
16 Laplace transforms can also be defined for functions satisfying weaker conditions. 

Note that the function / is an analytic function o fp  in the domain Re/? >  ax. The values 
of / in the rest of the complex plane can be determined by analytic continuation.
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[a, n  ”
theorem

then formula (16) can be inverted by using the Fourier-Mellin

/ ( 0  =  f  f(p)e°‘dp, (17)
2m Jr

where T 
the line

Ti

is a straight line parallel to the imaginary axis lying to the right of 
Re/? =  ctj (see Figure 90). Conversely, (17) implies (16) if /(p) 

satisfies appropriate conditions.
The application of the Laplace transform 

p method is called for in nonstationary problems
leading to integration of the equation

1 32u , du .. v

where L is a linear differential operator which 
does not contain t, a and b are given constants, 
a n d /(f ,. ..) is a given function. Its use allows 

F ig u r e  90 us to eliminate the time t9 thereby reducing the
problem to the determination of a function u 

satisfying a simpler equation. In particular, if the unknown function u 
depends only on one spatial variable (in addition to the time), the equation 
for u will be an ordinary differential equation.

After finding u, the problem can be solved by using the inversion formula 
(17), where the path of integration T must be chosen in such a way that all 
the singular points of u lie to the left of T. The actual calculation of the 
complex integral (17) can be carried out by various methods, the most 
important of which involve the use of Cauchy’s theorem and residue theory, 
expansion in series, application of the convolution theorem, use of appropriate 
tables,17 18 etc. The variety of available methods makes it possible to obtain 
the solution of the problem quickly, in the form most suitable for understand­
ing the physics of the situation and making subsequent numerical calculations. 
This constitutes the great advantage of the Laplace transform method, which 
is particularly suitable for studying wave propagation along transmission 
lines, physical problems with boundary conditions involving time derivatives 
(see Probs. 365, 367, 370), and so on.

This section contains a variety of nonstationary problems, dealing first 
with heat conduction, then with electricity and magnetism, and finally with 
mechanics. Because of the abundance of specialized literature on Laplace 
transforms, we have omitted the simplest problems belonging to these 
categories. At the end of the section, we give a few problems of a more

17 In particular, this condition is satisfied if / ( / )  is piecewise smooth in [a, T]y or if f(t) 
satisfies Dirichlet conditions in [a, T].

18 The tables in E3 are particularly complete.
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complicated nature (e.g., Probs. 391, 405, 406), to be solved by combining 
the Laplace transform with some other integral transform (e.g., the Fourier 
transform or the Hankel transform).

353. Starting from the time t =  0, the plane boundary of a semi-infinite 
body of thermal conductivity k , specific heat c and density p is maintained 
at the temperatureT l^o =  / ( t ) ,  where t  =  ktjcp. Find the subsequent tem­
perature distribution in the body, assuming that the initial temperature is zero.

Ans.

T(x, t) =  A  f ( t  -  — ) du> x > °-
Jw ;  v 4u 1

354. Consider the following special cases of the preceding problem:
a) / ( t ) =  r 0 ; b) / ( t )  =  A t ;

(T0, 0  < T <  T 0,

T >  T0;
Ans.

d) f ( t)  =  To sin cot.o / w  =  {0r *

a) T (x , I) -  T0[ l  -< ! > ( — ) ] ;

T > v

d) T (x ,,) =  S  / % . [ » ( ,  -  - ) ] * - '

c) T(x, 0 =  T0

where 0(jc) is the probability integral.

*355. Solve Prob. 353 for a given density q of heat current incident on the 
boundary (instead of a given surface temperature distribution). Examine the 
special cases19

a) q =  q0; b) q = q0 sin cot .

Ans.

19 In Case b, consider only the surface temperature.
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where C(x) and ^(x) are the Fresnel integrals, and k is the thermal con­
ductivity.

356. Find the evolution in time of the temperature on the plane boundary 
of a semi-infinite body, if the density of heat current incident on the body is 
a given function of time q =  # ( t ) .  Consider the special case q =  const.

Ans.

In the special case,
TUo =

i r  , ,  ds—  q(s) —=  .
ks jn  Jo — s

kyjn

*357. A semi-infinite body, heated to the initial temperature T0, radiates 
heat from its plane boundary x =  0. Find the distribution of temperature in 
the body, assuming that the radiation obeys Newton’s law and that the 
temperature of the surrounding medium is zero.

Ans.

T(x, 0 =  7o(<J>(— =) +  eMx+ĥ

where h is the heat exchange coefficient.
Hint. To simplify the calculations, substitute the integral representation

1
•J~p+ h

e-s(Vj>+fc) ds

into the inversion formula, and then reverse the order of integration.

358. Starting from the time t =  0, a train of heat current pulses q = / ( t )  

such that

/ ( t ) =
9o .

10,
0 <  T <  T0,

T0 <  T <  T *,
/ ( T +  T * ) =  / ( T)

flows through the plane boundary of a semi-infinite body. Find the tem­
perature distribution in the body after a large number of cycles, assuming 
that the initial temperature is zero and neglecting heat exchange between the 
surface of the body and the surrounding medium.

Ans. For finite x,

T & /T a s  t  —► oo.
/cVttt* V

359. Two semi-infinite bodies made from different materials, one heated 
to temperature T0 and the other held at temperature zero, are put into
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contact starting from the time t = 0 (see Figure 91). Describe the subsequent 
equalization of temperature.

Ans.

* > 0 -

where <!>(*) is the probability integral, and

bi =
K

(i =  1, 2), / cipifej
'v C2p2/c2

Figure 91

360. The temperature distribution

T\x=0= f(y )

is maintained on the plane boundary of the half-space 0 < x  <  oo, 
— oo < y  < oo, starting from the time t =  0. Solve the corresponding 
problem of heat conduction, assuming that the initial temperature equals 
zero.

Ans.

T(x, y, 0 =  -  f 00
7C v —oc

m
x2 + ( y -  s)2

e~[x2+(vsfv* dSf to
cp *

Hint. Take Laplace and Fourier transforms in succession.

/
ZVf

361. Find the temperature distribution 
inside a body shaped like a quadrant 
(x > 0, y  > 0), whose surface is held at 
temperature T0 starting from the time / =  0 
(the initial temperature is assumed to be 
zero). Plot the corresponding isotherms.

Ans.

The result of the calculations is shown in 
Figure 92.

Hint. Look for a solution of the form 
T =  T0[l +  u{x, t)v(y, /)], and then reduce 
the problem to Prob. 354, Case a.

362. Find the temperature distribution inside a body shaped like an 
octant (x > 0, y  > 0, z > 0), whose surface is held at temperature T0
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starting from the time t =  0 (the initial temperature is assumed to be 
zero).

363. Find the temperature T(x, t) in a slab of finite thickness, if one 
face x  =  0 is held at temperature T0 starting from the time / =  0, while the 
other x =  a is held at temperature zero. It is assumed that the whole slab 
is initially at temperature zero. Give two forms of the solution, one suitable 
for large t, the other for small t.

x _ 2  y sin (nnx/a) r „v ,/a!

Hint. To obtain the second form of the solution, expand the Laplace 
transform of the desired function in ascending powers of the quantity e~x^ v,

364. Solve the preceding problem, assuming that a thermal current of 
constant density q is incident on the face x  =  a, while the face x  =  0 radiates 
heat according to Newton’s law.

Ans.

T(x, 0 =  T0[l

cos [yn(a — x)la] e Vn T/a
k 1ah a n=1 [ah( 1 +  ah) +  y jy n sin yn

where the yn are consecutive positive roots of the equation

ycot y =  — , 
ah

and h is the heat exchange coefficient.

365. Solve Prob. 363 assuming that the face x =  0 is held at constant 
temperature T0, while the face x — a is connected to a thermal capacitance.20 
Derive expressions for the density of heat current on the faces of the slab.

Ans.
Q | z=0

|̂®=a

2kTof 1 +  aVn - „ V
fl n=! 1 +  a +  a2y2n 

2akT0-y yn
a ^  (1 +  a +  a2y2) sin yn

20 By a “thermal capacitance” we mean a body in which any temperature drop can be 
neglected. In Probs. 365, 367, etc., C0 denotes the amount of heat needed to raise the 
temperature of the body by 1 degree, referred to unit area, unit length, etc.
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where the yn are consecutive positive roots of the equation

♦ c ocot y =  ay, a = ----- .
cpa

Hint. The boundary condition at jc = a has the form

c  21
c ° d t

=  -fc2z:
a dx

where C0 is the thermal capacitance per unit area and k is the thermal 
conductivity.

366. Find the temperature distribu- 
tion in a slab —a < x < a in which, 
starting from the time t ~  0, there is 
a process periodically producing heat 
according to the law shown in Figure 93.
The temperature of the faces of the 
slab and the initial temperature are 
assumed to be zero.

T0 2r0 3r0 4r0 5r0

F ig u r e  93

Ans.

T t  n  Qo (a2 ~  * 2 16a2 y  ( - l ) n cos(T0X^c/a) _
{X' °  k I 4 *3 £ ( 2 « +  1)3[1 +

_ 00 

- 2 3 2
i

* (2« +  1)

+  4 

where

/ j _  4 cosh X„(x +  a) cos XB(x — a) +  cosh X„(x — a) cos Xn(x + a)\ cqs 
\ cosh 2Xna +  cos Thna ) ”

"T])’
sinh \ n{x — a) sin Xn(x +  a) +  sinh Xn(x +  a) sin \ n(x — a) . _  2---------------------------------------------------------------------  sin 2a,

cosh 2Ana +  cos 2Ana

(2n -|- l)7c 
2ta

367. A thin cylindrical rod (probe), heated to temperature To, is inserted 
into the ground, in order to measure the ground’s thermal properties. 
Describe how the temperature of the probe varies with time, assuming that 
the temperature drop inside the rod can be neglected (see T10).

Ans.
d\

n Jo [X « J 0(X ) -  ^ ( X )]2 +  [ x « y 0( x )  -  y i ( x ) ] s X
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where Jn(x) and Yn{x) are Bessel functions of the first and second kinds, 
a =  C0/27Tfl2cp, C0 is the thermal capacitance of the probe per unit length, a 
is the radius of the probe, k is the thermal conductivity, c the specific heat 
and p the density of the ground, and t  =  kt/cp.

Hint. Solve the heat conduction problem for the domain r > a with the 
boundary condition

T \r=ait=o — T0, c  21
c °d t

=  2nak—
r=a dr

t>  0.

368. Use the Laplace transform to solve Prob. 335, and then show that 
the two answers are equivalent.

Ans.

where

T(r9 t) =  T0 2 r°° <px(r)e X*T d,\1

Jt Jo Jl(ka) +  y*(Xa) X J '

9x0) =  J0Q>a)Y0(kr) -  Y0(Xa)J0(Xr).

The equivalence of this result and the answer to Prob. 335 follows from the 
expansion

2 f00 ?a0) d \
7r Jo Jl(ka) +  Y20(ka) X ‘

369. Investigate the heating of a cylindrical cable if, starting from the 
time t =  0, heat is produced with density Q in the core of the cable, while 
its outer surface is held at temperature T0 (see Figure 94). Find the tem­
perature of the core, neglecting any temperature drop inside the core.

Ans.

X  ( i n  -  _  — y  J o(Yn)J l(Yn<tlb)

l a  a £ i yJ-^oCyJ -  Ji(Ynalb)]

where

Ry(r) = Y0(y)j0(yr/b) -  J0(y)Y0(yr/b)
is a linear combination of Bessel functions, and the yn are consecutive 
positive roots of the equation R'y{a) =  0.

370. Starting from the time t =  0, heat is produced with density Q in a 
cylindrical conductor of radius a. Find the temperature along the axis of the
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conductor, assuming that heat leaves its surface by way of a thermal capaci­
tance and the initial temperature is zero.

Ans.

r | - “ T +
a2q( 1 +  4a) +  2 a \% :______ )

f c l 2 a  +  1 4 ( 2 a  +  l ) 2 ' n t'i Y n (a V *  +  2 a  +

where the yn are consecutive positive roots of the equation

A(y) +  aY^o(r) =  °.
C0 is the thermal capacitance per unit length, and a =  C0j2-a2cp,

*371. At the time / =  0, a cold cylinder of radius a is encased in a thin 
heated cylindrical sleeve covered on the outside by a thermally insulating 
layer (see Figure 95). Find the temperature distri­
bution in the cylinder, assuming that the initial 
temperatures of the cylinder and the sleeve are 0 
and T0, respectively, and neglecting any tem­
perature drop inside the sleeve.

Ans.
T(r, 0

=  Tn

t + k
where the yn are consecutive positive roots of the equation

<A(y) +  ay/oM =  °>
C0 is the thermal capacitance of the sleeve per unit length, and a =  C0l2na2cp.

372. A diffusing substance is distributed in the half-space x > 0 with a 
given initial concentration

f (  v fCo, 0 < x <  ay

Find the density of the substance through the boundary x =  0, assuming 
that the concentration on the boundary is maintained at zero starting from 
the time t = 0.

Ans.

?u = ^ ( i - ^ n

where D is the diffusion coefficient.
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373. Find the concentration distribution of a diffusing substance in the 
half-space x >  0 bounded by an impermeable wall, assuming that the initial 
concentration equals zero and that the substance is released with constant 
density Q in the layer 0 <  x <  a during a finite time interval T. Derive an 
expression for the concentration of the substance on the wall x =  0.

Ans.

BM iTm ) 4 [> i -

( ( i +  ^ ) [ < . ( ^ - ® ( 27= f = ) ]

374. A substance diffuses outward through the lateral surface of an 
infinite cylinder of radius a into the surrounding medium, where the con­
centration of the substance equals zero at the time t = 0. Find the subsequent 
concentration distribution, assuming that the substance flows out of the 
cylinder with constant density q. Derive a formula for the concentration of 
the substance on the surface of the cylinder.

Ans.

cl « _ ! * **.(■"_____ 1_____
|r““ 7t2 D Jo Jf(x) +  Y‘(x)

X (1 0 x2JJt/a2\ dx
K / S’

in terms of the Bessel functions Jn(x) and

*375. A diffusing substance emanates 
from a thin cylindrical tube of length / 
closed at one end, and enters the half­
space z >  0 through an opening in the 

impermeable wall z = 0 (see Figure 96). Find the amount of substance 
inside the tube as a function of time, assuming that the flow of current 
is constant over a cross section of the tube and that the initial values of the 
concentration of the substance in the tube and in the half-space equal C0 
(per unit length) and 0, respectively.

Ar?s.
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where a is the radius of the tube and M 0 is the initial amount of substance 
inside the tube (M0 =  C0/).

376. The end x ~  0 of an infinite transmission line, with self-inductance 
L and capacitance C per unit length, is joined at the time t =  0 to a source of 
e.m.f. E = f(t). Find the voltage u(x, t) at every point of the line.

Arts.
(
0,

u(x, 0 =
l < * .

V

f R ) . t >  -  
V

where v =  1 j\JLC is the velocity of wave propagation along the line.
377. Solve the preceding problem for the case of self-inductance L, 

capacitance C, resistance R and leakage conductance G per unit length, 
chosen to satisfy the relation RC = LG (a distortionless line).

Arts.

0,
u(x, 0 =

t < :

* > 2 .

378. A condensor of capacitance C0, charged to the potential V, is 
discharged at the time t — 0 into an infinite line with parameters L and C. 
Find the distribution of current I(x, t) in the line.

Ans.
|o, t < ~ ,v

l(x, t) = | Y. g —«£(—(*/«)]
V

where Z = \JLjC is the wave resistance of the line, and a =  l/QZ.
379. The end x =  0 of an infinite line with self-inductance L, capacitance 

C and resistance R per unit length is connected at the time t =  0 to a source 
of constant e.m.f. Study the resulting process of propagation of a voltage 
wave along the line (see C2, p. 202).

Ans.

0,
u(x, t) =

-atx /v +
« x f ‘

V  J x l

: / i f o R  ~  (x/v f
X /V  V ^ 2  —  ( x / v ) 2

v
x

t > - 9
V
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where E is the size of the applied e.m.f., a =  
RjlL  and I^x) is the Bessel function of imag­
inary argument.

380. A line of length / with parameters L 
and C is terminated at the end x ~  I by a resist­
ance R0 (see Figure 97). Find the subsequent 
voltage in the load R0, assuming that the end 

x = 0 is suddenly connected at the time t = 0 to a source of constant e.m.f. 
E. Under what conditions is there no reflection of waves from the end of 
the line?

Arts.
0 < t < T ,

(In -  1 )T < t <  (2 n +  1)T,

n = 1,2, . . . ,
where Z  = y/L/C is the wave resistance of the line, and T = llv is the time 
it takes a wave to go from one end of the line to the other. There is no 
wave reflection if the resistance R0 equals the wave resistance Z.

381. Solve the preceding problem, assuming that the line is terminated 
by a lumped capacitance C0 rather than by a resistance RQ. Derive an 
expression for the voltage across the capacitance in two forms: a) as a trigono­
metric series; b) in closed form for the first few reflections.

A ns.

a) «Lu =  E
ou

1 - 4 2
Sin Tn

-----------------------COS
“ i 2y„ +  sin 2yw T

w l
T  J’

where the yn are consecutive positive roots of the equation

b)

3 = 1  -----

and so on.

Y 1Ccot y =  7 . « =  — !« C0

0,
1 _  g-dtt/ZVH

0 <  t < T, 

T < t <3T,

3 « [ ( 1 / 3 T ) —u 3T < t <  5 T,

382. Solve Prob. 381 for the case where the line is terminated by a 
lumped inductance L0.

Ans.

a) ,=  E
Ll + «

sin Y«
-  sin 2y„
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where the yn are consecutive positive roots of the equation

b)

f0.
0 <  t < T,

1 e-a
r— / \ -i

T < t  <  3T,

1 e-a[(t/T)-l] _
i -  ^ ( -  -  ’ )

„-a[(f/r)-3] e > 3T < t  < 5T,

and so on.

383. Write the general expression for the reflected waves in Prob. 382.21 

A ns.

«U« =  2 £ 2  ( _ 1)n-le-a[((/rH(2n-l),Ln ij2a ( 'i  _  (2n _  j  j,

where (2N -  1 )T  < t < {IN  +  1 )T, N  =  1, 2, 3, . .. , and Ln(x) is the 
Laguerre polynomial, defined by

ex dnLn(x) = - . ~ ( e - V ) .  
n \ dxn

Hint. Note that the Laplace transform of the Laguerre polynomial is

Ln{x) =  - ( l  -  !)". 
p \  pJ

384. Using the residue theorem, give the solution of Prob. 380 in the 
form of a Fourier series.

Ans.

_i 1 R 0 e  a v t / l f 1  ̂ V /  1Nn n n  s i n  ( n n v t  11) — a. c o s  ( m v
u \x = i  1 / —«-----------;  1 U  2 , 2 2aVZ2 -  fljL „Ti a +  « *

vt/l)~ 

Rq <C Z j
1 I 2R0e~®vt/l

, -sS 1v,/0* — £)*cos [(« — i)7Tt>(//] (3 sin [(n -  ^ ~
p- +  ( . - « v  + ? ■  +  ( „ -  j , v  )• R° > z '

21 The details are given in L9, Sec. 4.25.
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where
Z ~h Rp 
Z - R 09

Rp +  Z
r q — z ’

=  1
~  J L C '

Z =  Lv.

x = 0 Zy X j l Zz

F ig u r e  98

at the junction, assuming that at 
is applied at the end x = 0.

385. Study the propagation of waves 
along an inhomogeneous transmission 
line consisting of a finite section of 
length / with wave resistance Zl9 fol­
lowed by an infinite section with wave 
resistance Z2 (see Figure 98). Find the 
reflected and refracted waves appearing 

the time / =  0 an arbitrary e.m.f. E =f ( t )

Ans.

0 < f <

Vi
21 — x

>

21 — x <  t < 21 -f- x
j

'0, 0 <  t <  T + x - l
Vi

u2(x, t) =<

T + - ---- 1 < t < 3T +    l ,
-j- Z2 ' V2 ' 2̂ 2̂

Z1 + Z2l J \  vt /  Zi +  Z, \ o, / J

3T + - ---- 1 < t < ST +    -/ ,

where =  l/\ /A Q  and v 2 =  l/V L2C2 are the velocities of wave propagation 
along the two parts of the line, and T — ljvv

*386. A voltage wave E =  Ê e-** produced by a lightning discharge at 
the end x  =  0 of a transmission line activates a lightning rod at the point 
x = I. Find the voltage in the section of the line after the lightning rod, 
assuming that the rod behaves like an ohmic resistance R0 during its time 
of operation.
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Ans.

o, o <  t < - ,
V

1 - H -\2R0 +  Z>

k
| e * x k l / v

- o tlt -(xfv)]c Jz e2al/v
2jR0 +  Z

x +  (2/c — 2)1 (k = 1, 2, . . . ) ,

where v is the velocity of wave propagation along the line, and Z is the wave 
resistance.

387. A constant e.m.f. E is applied at the time t =  0 to the end x  =  0 
of a semi-infinite cable (a line with parameters R and C). Find the voltage 
at every point of the cable.

where 0(x) is the probability integral.

388. Find the voltage in a cable of length / if a source of constant e.m.f. 
E is applied to the end x  =  0, while the end x =  / is terminated by an ohmic 
load R0.

C and R are the capacitance and resistance of the cable per unit length, and
a =  Rl/R0.

389. Solve Prob. 387 for a cable with leakage conductance 0  per unit

Ans.

where the yn are consecutive positive roots of the equation

Ytan y ---------,
a

length.
Ans.
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390. Study the propagation of voltage waves in the compound line with 
equivalent circuit shown in Figure 99, caused by switching on a constant 
e.m.f. E at the end x =  0.

Ans.
r 2 c n/z iu(x, t) = E |^1---- J sin (ax tan 9) cos (p* sin cp) cot 9 d9 I,

where L , C and K  are the self-inductance and capacitances per unit length of 
the line, a =  VC/A^and p =  l/v'LA'.

L L L

F i g u r e  99

Hint. The equations governing the current and voltage in the line are

— =  L —  
dx d t K

3/ _  r
dx dt I = Il + I k ,

in terms of the voltage w(x, t), the total current /(x, t)> and the currents 
IL(xt t) and IK(x, t) flowing through the self-inductance and capacitances 
L and K.

391. Near the plane interface between two slabs of material with dielectric 
constants ^  and e2, there is a source of electromagnetic oscillations radiating 
a spherical wave whose Hertz vector has components

UX = UV =  0,

where/(£) =  0 if 5 <  0, R is the distance from the source to the observation 
point, and v1 = c/\Jex is the velocity of propagation of electromagnetic 
waves. Find the Hertz vector on the interface for the limiting case where the 
source is located on the interface itself.

Ans.
n |2=0 =  rij — n 2,
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where

f 0,

n ,=  <j 2 v lv 2 rs \ d  *
-  v>  ■! ^  v Vt>? + V2J Vs2- i ’

( 0 ,

n 2 — ^
r v ' i H v i / v i f  /
I /1 f rs \ d  *

1,0? -  v \ ) r  ,J ( v z t / r ) V  l + ( v i f v 2)2 X Vw? + v 2] Vsa- l ’

t < L ,

t > L ,

t < L , 
*>2

and v{ =  c/Vet (/ =  1, 2) are the velocities of propagation of electromagnetic 
waves in the two media.

Hint. Take Laplace and Hankel transforms in succession.

392. Consider the special case of the preceding problem corresponding 
to a wave with the steep front described by the function

S < 0 ,
£ > 0 .

Ans.

0,
n 1 =

2  p  p ,  1 1

J  -  O2M)4 Lr t»i s jt\v \ +  vl) -  r2-1 ’

n .=
2(uaM)2

J  -  O2O1)4
1 1

t < L ,
V ,

r 
v1

r
t < ~ ,

v*

t > -  .
v2-r v ^ t\v \ + v \ ) - r 2J

393. A force F(t) is applied at the time / =  0 to the end x  — 0 of a semi­
infinite rod. Study the resulting propagation of elastic waves in the rod.

Ans. The displacement of an arbitrary point of the rod is
x0,

u(x, t) =

I -  pIES Jo

'—( x /v )

F(t) dr,

0 <  t <

-  < t <  00,
V

where E is Young’s modulus, p the density and S  the cross-sectional area of 
the rod, and v =  \AE/p.
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394. Suppose one end x =  0 of a 
rod of length / is clamped, while a 
compressive force F(t) with the saw­
tooth wave form shown in Figure 100 
is applied to the other end x  =  /, 
starting from the time t = 0. Investi­
gate the resulting longitudinal oscil­
lations, and find the reaction at the 

fastened end, assuming that the period t  equals the time T  =  Ijv it takes an 
elastic wave to traverse the rod (v is the velocity of wave propagation).

Ans.
0, 0 <  t <  T, (2n +  1 )T < t <{2n + 3 )T, n = 1, 3, 5, ,

F igure 100

J.

2 A — — n, nT < t < (n + 1 )T, n = 1 ,2 , 5, 6, 9, 10, . . .  . 
{T

395. A cantilever clamped at the end x = 0 begins to oscillate under the 
action of an impulse delivered to a concentrated mass M0 fastened to the 
free end x = /. Find the dynamic reaction at the clamped end, assuming 
that a velocity vQ is imparted to the mass M0 by the impulse.

Ans.
K |_ o =  — ESf(t),

V
where

0, 0 <  t < T,

K t) =
-<x(t—T )

I e-a (i-T )  +  [1 _  2a(f -  3 T)]e-a(l- 3T\
T <  t < 3T, 

3T < t <  5T,

in terms of the velocity of wave propagation v and the constants a =  ESjM0u, 
T  =  l/v.

Hint. The boundary conditions for the displacement u(x, t) at the end 
x =  / are

,> 0 .

du
aT = - y#’

t = o.

396. Use the Laplace transform to solve Prob. 106.
Ans.

, .x Av fsin(fc>x/tO .u(x, t) = -----{----- — — sin cot
co£Slcos (col/v)

4 sin [(2n +  l)7cx/2i] sin [(2n +  l)OTf/2f] |
+ 7T ^  } I n  + 1 1 -  [{In + l)7n;/2/co]T
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397. A constant force Q is applied to the end x  =  0 of a semi-infinite 
beam, starting from the time / =  0. Find the deflection at any point of the 
beam, assuming that the beam is initially at rest.22

Ans. x
u(x, 0 =  x tf ,

2 EJ xlayjtf
where

/(*> - (l + f ) g - c{Jl *)] - (. - f )  g - s(Jl,)]
3y/2nL x x J

E is Young’s modulus, J the moment of inertia of a cross section, p the density 
and S the cross-sectional area, a2 =  v EJjpS, and C(y), S(x) are the Fresnel 
integrals.

398. Solve the preceding problem, assuming that a constant bending 
moment (rather than a constant force) is applied to the end x  =  0. Find the 
bending moment along the beam at any time t.

Ans.

399. Find the displacement of the end x  =  0 of a semi-infinite beam 
struck at the time / =  0 by a mass M 0 moving with velocity v0.

Ans.
=  V p i l c L y J t

oc2l y/n
where a =  2\Jl paS/M  and O(x) is the probability integral.

400. Find the transverse oscillations of a beam — / < x  < /, simply 
supported at both ends, due to an impulse P acting at the center of the beam. 
Write an expression for the deflection of the center of the beam.

Ans.
>sin [(2n +  l ) W f /4 /2]

(2 n +  l)2

13 = 0 l + eat[l -  f lW o i) ,

u l d0 = 4 Pla2f  
n2E J Zn=0

401. Find the deflection of an infinite elastic plate, if at the time t =  0 
a constant force Q is applied to the point x  =  y  =  0 (see LI6, p. 424).

Ans.

4nDl2  W  4t 4 t  \4 t/J

** Problems 397-399 are treated in Lurye’s book LI 6.
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where D is the flexural rigidity and p the surface density of the plate, t  =  

ty/DIp and Si(x), Ci(x) are the sine and cosine integrals.
Hint, At the point where the force is applied, w|r=0 must be bounded, 

and moreover

r Q
2nD

*402. Solve the preceding problem, assuming that an impulse P (rather 
than a force Q) is applied to the point x  =  y  =  0.

Ans.

<r, 0 =
4 KyfpD

n c . -  — Si L2
403. At the time t =  0 an impulse with components Px =  0, Py = P is 

applied to the point x  =  y  =  0 of an infinite elastic plate. Describe the 
resulting process of wave propagation.

Ans. The elastic potentials are given by the formulas

0,

<p(r, 0 =

+(r, t) =

Py J
0,

where

Px
2npr‘

J t2 -  ^v  fci»

t < -  , 
a

rt > - 9
a
r

1 < V

r
l > l '

a = J
X +  2(x

- 7 ?p > p

are the velocities of propagation of the longitudinal and transverse oscillations, 
X and fi are Lame’s constants, and p is the density.

404. Solve the preceding problem, assuming that the source of the 
oscillations is a concentrated force with components Qx = 0, Qy = Q.

Ans.

^ 0 U , = _ ^ [ J , - L ; _ L ; l n ( ^ + 7 ^ - 1) ] ,
47rpr

where the elastic potentials are zero for smaller values of the time.
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405. Show that the solution of the two-dimensional wave equation

d2u dhi _  1 d2u 
d ?  +  dy2 ”  v2 dt2

in the domain x  >  0, subject to zero initial conditions and the boundary 
condition u\x=0 = f(y), can be written in the form

_
u(x,y, t)  j XVt fV+^vY-a:2 f(yj) Jyj

\  7r x2 +  (y ~  r\Y\lv2t2 — x2 — (y — y])1
Hint. Take Laplace and Fourier transforms in succession. 

*406. Show that the solution of the wave equation

xt >  -  .
v

d2u . cPu _  J_ , du
dx2 + dy2 ~  v2dt2 +  dt

(0 < x  <  oo, — oo <  y  <  oo)

for a medium with attenuation, subject to zero initial conditions and the 
boundary condition u\x=0 =  /O'), can be written in the form

u(x, y, t)

0,

xe v2bt/2 f v+v/l,2<2 ®2 vbr vt cosh (vb r /2)~| /(•/)) dy\

7T

sinh +  
2

V

, * > - ,

where
r =  V u2/2 — x2 — O' — y])2.

Deduce the solutions of Probs. 308, 360 and 405 as special cases.

4. The Mellin Transform

Let f ( r ) be a real function defined in the interval (0, oo) such that

1. /(r)  is piecewise continuous and of bounded variation in every finite 
subinterval [a, b], where 0 <  a <  b <  oo;

2. Both integrals

JV *-1 l/to l dr, J V - 1 \f (r ) \  d r  

are finite for suitably chosen real numbers and <r2.

(18)
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Then the Mellin transform of f(r) is defined by the 
formula

/(p ) =  dr, (19)
where p =  cr +  h  is any complex number in the strip 

a <  Rep < (j2 (see Figure 101). The inversion of 
(18) is given by the formula

f(r)  =  f  Ap>~v dp, (20)2ni Jr
F ig u r e  101 where T is a straight line parallel to the imaginary

axis lying inside the strip.23
The Mellin transform is related to the Laplace and Fourier transforms, 

and is the appropriate tool to use for solving problems of two-dimensional 
elasticity theory and potential theory involving angular regions. The required 
technique can easily be acquired by working through the following small set 
of problems.24

*407. Find the stationary temperature distribution inside the dihedral 
angle 0 < r <  oo, 0 < cp < a <  7r, if one boundary is held at temperature 
zero, while the temperature distribution

0 < r <  a, 
r > a

is maintained on the other boundary. 
Ans.

TT(r, cp) =  — arc tan
7T

r -
7 tC p

i _i_ ( aY a n(p 1 +  1 — 1 cos —
\ r /  a

408. Solve the preceding problem, assuming that a given distribution of 
heat current

_  (q0, a ~  z < r <  fl +  e,
4<p|<p=a I o otherwise

83 See e.g., T5, Secs. 1.5 and 1.29. The conditions imposed on fir)  can be weakened.
24 A few remarks are in order concerning the choice of the path of integration T in 

the inversion formula (20). If the behavior of the function /as r -► 0 and r -► oo is known 
in advance (e.g., from physical considerations), then the boundaries of the strip (<r1( ct2) 
can be found from the requirement that both integrals (18) be finite. If the behavior of 
the fun ction /is known only at one end point of the interval (0, oo), say as r -► 0, we can 
first determine the left-hand boundary alf and the line T must then lie to ihe right of T 
and to the left of the nearest singular point of the function /figuring in the integral (20).
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is maintained on the boundary 9  =  a. Consider the case o f  a concentrated 
current Q entering the boundary along the line r =  a, 9  =  a.

Arts.

T (r , 9 ) = — In
2nk cosh

7r In (r/a) 

2 a

t 7t In (r/a) , . 7U9
c o sh ------ —------h sin —

2 a 2 a
, tc In (rla) . tzo 

c o sh ------------------sin -
2 a 2 a

where k is the thermal conductivity.

409. Use the Mellin transform to solve Prob. 303.
Arts.

q b  f 00 cos [t In (r / b )] +  t  sin [t In (r / b )] sinh T9  ^
* ^ nk Jo t(1 +  t 2) cosh (t7t/2)

410. A thin charged wire, with charge q per unit length, is placed along 
the line r — r0, 9  =  90 inside the dihedral angle 0 < r < o o ,  0 < 9 < a ,  
whose boundaries are held at potential zero. Find the potential of the 
resulting electrostatic field.

Arts.

u (r . .p )U . -  2-« f “ "
i Jo-iao p sin pen \ r /

D U  -  2J r0 1 Ja—ico p sin pa \ r l

where |a| <  7r/a. In particular, the imaginary axis can be chosen as the path 
of integration.

411. Calculate the following special cases of the preceding problem:
a) a =  27t, r0 =  a, 9 0  =  7t (line charge opposite the edge of a conducting 

half plane);
b) a =  3tc/2, r0 = a, (p0 = n (line charge near a conducting right-angular 

corner);
c) a =  7t/2 (line charge inside a dihedral angle).
Arts.
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b)

c)

«(>*, <P) =  <1 ln

- ’ 0
1

1 -  2

V* 2 (7 1 - 9 ) , cos —------— + r

u( r ,  <p) =  q  In
^7) cos 2(cp +  <p0) +  (^-)

1 - 2 ^ ) cos 2(<p -  cp0)  +  ^

412. The common boundary of two media of dielectric constants ex and 
e2 consists of two planes intersecting at the angle 2a (see Figure 102). Find 
the electrostatic field due to a charged wire lying in the plane of symmetry.

Arts.

Ed) = 2q(r + a cos 9 ( p
£l I

X
r i + i

J l-io

+  2,V
sin 2a(p — 1) cos (tc — 9)(p — 1)

zoo sin n(p — l)[sin7t(p — 1) — p sin (tc — 2a)(p — 1)] \ r

1p—1
dpi

£ ,2) =  _2qi_
£ 9. +  £ l  J l - i a o  S i

cos 9(p — 1)
e2 +  ei -i® sin n(p — 1) — p sin (7c — 2a)(p — 1)

,,(i> 2q\a sin <p , (3
E’ + ~

(7) * ' dp-

1̂+too
: -J l—too si

2ir
sin 2a(p — 1) sin (n — 9)(p — 1)

too sin n(p — l)[sin 7r(p — 1) — p sin (7c — 2a)(p — 1)] \r<- V d p ] ,

= 2qi r i+i” _ 
"I" el •'l—loo si

sin 9(p — 1)

where
sin 7i(p — 1) — p sin (n — 2a)(p — 1)

p =  5 * ^ = 1

( f v

H +  ex
and R is the distance from the charge to the observation point (see G5, 
Chap. 14).
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413. Investigate the bending of a thin wedge-shaped elastic plate with 
simply supported edges, loaded by a concentrated force P applied at an 
arbitrary point of the axis of symmetry (see Figure 103).25

Ans. The deflection of an arbitrary point of the plate is given by the 
formula

u(r, cp) =  I {cos cp sinh (a — cp)x 
4nD Jo

+  x[sin cp cosh (a — <p)x — sin (a — cp) cosh cpx]}

cos (a — cp) sinh cpx 

cos [t  In (r/r0)] dx
cosh ax +  cos a t ( t 2 +  1)

where D is the flexural rigidity of the plate.
9 >  0,

414. Let a =  tc/2 in the preceding problem. Show that the deflection of 
the points on the axis of symmetry of the plate is given by the formula

«<r, 0) =  ^
4ttD 4- In

r

*415. A thin elastic plate 0 < r < o o ,  0 < c p < a i s  clamped along its 
edges and loaded at the point (r0, <p0) by a concentrated force P. Find the 
bending moment and shear force along the edge cp =  0.26

Ans.

n>fi f 00 Ts n̂  To s i n h  a T  s i n h  ( a  —  9 o ) TML=q   — “ 2 . n
nr Jo L sinh a x  —  t  sin a

sin a sin (a — 9 0)  • t  sinh cp0x ' 

sinh2 ax — t 2 sin2 a
cos dr,

N U  =
Pr r°°—- {cos 90 sinh ax sinh (a — cp0)x
nr Jo

+  x[sin a cos (a — 90) cosh ax sinh (a — 90)x — cos a sin (a — 90) sinh ax

X cosh (a — 90)x] — x2 sin a sin (a — cp0) cosh 90x} .CQS jP - dT.
sinh ax — x sin a

25 Problems 413, 414 and 417 are treated in Uflyand’s paper U3.
26 Another way of solving this problem is due to Sakharov (S2).
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416. Use the Mellin transform to solve Prob. 328 (a special case of the 
preceding problem).

A ns.

M U  =  -
rpSin cp0

n r +  — 2r0r cos cp0
Hint. Use the formula

sinh T c p

U  =
2 P rl sin3 cp0
* 0  +  rl — 2r0r cos cp0)!2 '

I
1 sin cpcos t dz = - - 

o sinh T7c 2 cosh ^ +  cos cp

417. Solve Prob. 415 assuming that one of the edges of the plate (cp =  a) 
is supported. Consider the special cases a) a =  7t/2 and b) a =  n (the 
quadrant and the half-plane).

Ans.
Pr f 00M l^o =  —- [sin cp0 sinh (2a — cp0)x — sin (2a — cp0) sinh cp0x]
7rr Jo

_  COS [ t  In  ( r / r o ) ]  

si
In the special cases, we have

a)

sinh 2ax — x sin 2a
d'z.

■ 2Pr0 sin cp0 sin 2cp0
M k=°— 2 2

7 tr  it  o  /% /\1  +  ~i — 2 cos 2<p0

b) M |,=0 =  -  -  '

. <Po sin cp0 sin —

r 2r1 +  -------- cos cp0

5. Integral Transforms Involving Cylinder Functions 
of Imaginary Order

Let f ( x ) be a real function defined in the interval (0, oo) such that

!• /(* ) *s P^cewise continuous and of bounded variation in every finite 
subinterval [a, b], where 0 <  a <  b <  oo;

2. Both integrals
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Then f (x)  satisfies the formula

/(*) =  -  [ " t  sinh TUT dx f  " /(©  o <  X <  00, (21)
71 Jo yjx Jo

where Kjjx) is Macdonald’s function. If we write

/(r )  =  f " /(* ) — ■ dx, 0 < x <  oo, (22)
Jo

it follows from (21) that

f (x) = \ \  / ( t )  —^  t  sinh 7ut dx, 0 < x < oo. (23)
7C2 Jo j x

Besides the more familiar transforms considered so far, formula (21), proved 
by one of the authors of this book (see L6, L8), plays a role in certain physical 
problems.

If we use the formulas

x = Xr, \  =  Xp, f{ x )J x  =  g(r) (X >  0) 

to introduce new variables, (21) takes the form

g(r) =  —2 f  Kix(Xr)r sinh tut dx f  g(p) dp, 0 <  r <  oo, (24)
7T Jo Jo p

which, although less symmetric than (21), is more suitable for solving the 
problems encountered in mathematical physics. Formula (24) holds provided 
the integrals

n/2 i r oo
ItfMI '•“1 In -  dr, |g(r)| r“1/2 dr (25)

Jo r J 1(2

are finite. The following expansion of this type is useful in the applications:27

e~Xr =  -  I lCfT(Xr) dx, 0 <  r <  oo. (26)
n Jo

In addition to the above formulas involving Macdonald’s function, there 
is an analogous expansion in Hankel functions and a corresponding inversion 
formula, which play a role in certain applications. These relations can be 
deduced formally from (24) by setting X equal to a pure imaginary (X =  ik),

27 However, note that the first of the integrals (25) is not finite for^(r) =  e~Xr.
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and then using the relation between the functions ATy(z) and /7*2)(z). In this 
way, we find the formulas28

9(t) =  f '°<p(r)e"T/2 H * ( k r )  dr, 0 <  t  <  oo, (27)
Jo r

<p(r) =  — -  I 9(T)enx/2 H\^\kr) r sinh nr dr, 0 <  r <  oo. (28) 
2 Jo

The integral expansion (24) can be used to solve the Dirichlet problem 
and other problems of potential theory for regions bounded by two inter­
secting planes (the three-dimensional problem), for wedge-shaped regions 
bounded by two parallel planes and two intersecting planes (perpendicular 
to the parallel planes), and so on. Formulas of the type (27) and (28) are 
encountered in solving problems involving the diffraction of acoustic and 
electromagnetic waves by an obstacle in the shape of a dihedral angle

or a cone. The following problems illustrate 
various physical applications of the above ex­
pansions.

*418. Find the stationary temperature distri­
bution in a wedge-shaped body of thickness / 
(see Figure 104), if the temperature distribution 

0
Figure 104 r|„_a =  /(r )  s i n - ,  n =  1 , 2, . . .

is maintained on the boundary cp =  a, while the other boundaries are held 
at temperature zero.

A ns.

T(r, cp, z) =  -  sin f |/(0) +  -  sinh nr 
n  I Jo I n

X f ' l / C ? )  -  (53!) * )  2 5 i i  k „ (52:) <h.
where Kv(z) is Macdonald’s function.

419. Solve the preceding problem for an arbitrary temperature dis­
tribution

Tb-a =f (r ,  z)
on the face <p =  a.

28 For conditions under which (28) implies (27), see the paper K3.
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Ans.

T(r, <p, z) =  -  2  Tn(r, tp) sin ^  ,
* n=l *

7 > ,  9 )  =  -  J o ” { / n ( ° )  +  -  s i n h  7 c t J # " [ / « ( p )  -  e - " " p / 7 n ( 0 ) ] ^ T ( — - }

sinh cot r_ / /mr\ ,
X — Z - K t o l — jd*, 

sinh < x t  \  I  /

fn(r) = f  f (r,  z) sin —  dz.
Jo I

Hint. Expand the function /(/*, z) in a Fourier series with respect to 
sin (zmz//), and then use the result of Prob. 418.

420. Find the stationary temperature distribution in the “quadrant­
shaped” slab 0 < x <  oo, 0 < j; <  oo, 0 < z < /, if the boundary x  =  0 is 
held at constant temperature T0, while the other boundaries are held at 
temperature zero.

Ans.

sin [(2n +  l)7rz//]T =  5 i ° J
" ,  2n +  1

By using the representation

KJ x )  =

fJo cosh 7tt sinh <pr 
2 sinh ( 7 t t / 2 )

K ix [(2n +  l)7cr//] dr.

1 I cos (x sinh t) cos t t dt
cosh (7ir/2)

of Macdonald’s function, this result can be brought into simpler form:

cos [(2 /i +  l ) 7rr sinh t/l]T  _  sin 2 m y 'sinh l(2n +  1)7Tz//] 
7t2 In +  1 T cosh 2t +  cos 2cp

dt.

421. Find the distribution of the electric charge density induced by a 
point charge q placed near the edge of 
a thin conducting half-plane (see Fig­
ure 105).

Ans. -
q  =  -  - -  _    .

2tt“n/x[(x +  a)2 + z2]
*422. Solve the preceding problem, as­

suming that the charge q is located at an 
arbitrary point r =  r0, 9 =  cp0, z =  0.
Find the distribution o f electrostatic 7
potential. F i g u r e  105
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Ans.
u(r. arc tan i k ------arc tan

*a
where

R l2 =  r2 +  z2 +  ro — 2r0r cos (9 =F 90),

cosh £oc +  cos £(<P =F 9o) - r2 +  rJ  +  z
-------------------------------, cosh a = --------------
cosh £a — cos i(9  T  9o) 2r0r

2

423. A point charge q is placed near the edge of a conductor of rectangular 
shape held at potential u =  0 (see Figure 106). Find the distribution of charge 
density on the boundaries of the conductor.29

Ans.

a(r, z) = q f2 cosh X +  n/2 — 1 
4nyj2a rLr(2 cosh X +  ^/S)372

where

16 r°°  xd x__________
3 ^  Jcosh !4\ (2x2 — l)2\/4x3 — 3x — cosh X.

cosh X = r2 +  z2 +  a2 
2a r

F ig u r e  106

424. Find the current distribution produced in the ground by a point 
electrode located near a wedge-shaped layer, assuming that the layer has 
conductivity cs1 while the rest of the ground has conductivity a2 (see Figure 
107). Write an expression for the potential distribution on the earth’s surface.

Ans.
1 2 J &  f ° °  f 00wL=0  ---- — cos Xz dX

7 t  d j  J O  J o

Kix(\a)Kir(Xr) sinh 2(n — oc) t
— :- - - - - - - - - - - - - - - :- - - - - - - - - - - - - - - - - - - - « t ,
sinh 7tt +  p sinh (7r — 2a)x

4J Too /* a
w|cp=K =  “  " I cos ẑ d"k I

7T {g1 +  d2) Jo Jo
1 KiT(ka)KiT(Xr) sinh tct 
sinh 7 t t  +  p sinh ( 7c — 2<x)t

dzy

29 This problem was first solved by Macdonald (M l).
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where

p =
CT1

CT 2 +  <TX

7 is the current and Kv(x) is Macdonald’s function (see S4).

425. Show that the solution of the preceding problem can be reduced to 
the form

p

MU=„ =

2™ W r2 +  a2 +  z2 V(r +  a)2 +  z2

_  1 ~  P2 f " _____ sinh 8? d l
sin 8 Jo sinh 7ci

J ( 1

’£ \/(r +  a)2 +  z2 +  Aar sinh2 Infy’

+  CT2)l >/(r +  a)2 +  z2

P f 00 sinh 8£ d£>
sin 8 Jo sisinh Tz%y/(r -f a)2 +  z2 +  Aar sinh2

8 =  arc cos

if a =  7t/4, and to the form

i •'Pf 1wL=0 =  — —  ,
r2 +  a2 +  z2 +  ar

1 +  P f 00____________ cosh Si; ____________ '
2 cos £8 Jo cosh 7r£>/(/* +  a)2 +  z2 +  4ar sinh2 ££7̂

f . =  3 / f 1
7v(ct! +  a2)\7(r +  o f  +  z2

P f 00____________sinh 8% d\____________ \
sin 8 Jo sinh nZ, ^/(r _|_ a )2 _|_ z 2 _j_ 4ar s in h 2

cv I +8 =  arc co s-----

if  a  =  7t/3.

2

CQ.|
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426. Solve the problem of diffraction of a 
plane electromagnetic wave

Ex = Ey = 0, Ez = E0e ^ kx)
(where k =  oo/c is the wave number) incident on 
a thin perfectly conducting sheet (see Figure 
108) making an angle a with the direction of 
wave propagation (Sommerfeld’s problem).

Ans. The complex amplitude of the z-component of the total field is

j g**/4 f ̂  2fer 3,11 lA<f>
1. 2 ^  J tJ o

+  E0e

ds

-ikr  c o s  (cp — 2 a )
1 [* V ^ f c r s i n  W ( c p — 2 a )  . ;

(see K3).

[~ l ein/Ar
L 2 + VkJ0 ds\

427. Using the result of the preceding problem, find the current dis­
tribution on each side of the sheet. Consider the special cases where a) a =  0; 
b) a =  7u/2.

Ans. The required densities are determined by the system of linear 
equations

r  *fcr l p i n l 4 /* ^  2k* s i n  1A cl

___- cos - H-----— sin ag-t7crC08a
Ly/ikr 2 y/it

. . .  . E0c /2 [  e~“ p6a

Jo
dsj,

j i — j 2 = —  sin ae ikrCOSa 
2n

where j \  and j 2 are the densities on the upper and lower sides of the sheet, 
respectively. In the special cases,

a) . E0c e~ikr m 
I-Kyjln yjikr  ’

. E0c [ l  e~ikr . 2ei7t/4f V*r , , J

428. A line source of a-c current J = JQeiUit is placed parallel to the edge 
of a thin conducting sheet 0 < x <  oo, -o o  < j ; <  oo. Find the distribution 
of induced currents if the source lies in the plane of the sheet at a distance a 
from its edge.

Ans. The complex amplitude of the current density is

Zo
2n

la e~iHx+a) 
V x x +  a
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429. Find the electromagnetic field of a dipole of moment P located on 
the axis of a perfectly conducting conical reflector of vertex angle 2a, if the 
dipole lies at a distance a from the vertex of the cone (see L10).

Ans. If r < a, the complex amplitude of the magnetic field is given by the 
series

H(r, 6) =  —  J ( v B +  I) 
ica n=1

H ^ A(ka) JVn+A(kr)

>  V r

Pvji~cos a)Pj„(cos 6)

where the vn are consecutive positive roots of the equation Fv(cos a) =  0 
involving the Legendre function Py(jt), and Jv(x), H™ are cylinder functions. 
The corresponding formula for r >  a is obtained by permuting the symbols 
r and a in the general term of the series.

430. A plane acoustic wave u0eiiuit~kx) is incident on a screen in the form 
of a half-plane r > 0, 9 =  a. Find the wave reflected from the screen.

Ans. The complex amplitude of the velocity potential at an arbitrary 
point is

r-i pijr/4  /* V  2kr sin xA(q ”1
u = Uoe~ikr coa * -  +  —  ds

[2 y/nJo J

[ i in f  4 r  V z k r  Sin p - 2a) 2 "I
—  e~is ds\.

2 y/nJo J

431. A point source of sound, radiating a spherical wave 

__ sin (tor — kR)

is placed on the axis of a conical resonator 0 < 0 < a with perfectly reflecting 
walls. Find the velocity potential inside the cone.

Ans. The complex amplitude of the velocity potential is

«|r<a =  “o* 2'2 , (V« +  i)
n+'J.ka) +'A(kr) P;„(-cos a)Pv„(cos 6)
yja J r Sin 7TV(

pPy(cos a)1
71L 9v Jv=

where the vn are consecutive positive roots of the equation Py(cos a) =  0, 
and a is the distance from the source to the vertex of the cone. The corre­
sponding formula for r >  a is obtained by permuting the symbols r and a.
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7
CURVILINEAR COORDINATES

A physical problem can often be greatly simplified by the introduction of 
a suitable system of orthogonal curvilinear coordinates, facilitating the 
formulation of the boundary conditions and making it possible to solve the 
problem by using the techniques of Chaps. 4-6. These earlier chapters 
contain an abundance of examples illustrating the simplest systems of curvi­
linear coordinates, i.e., polar, cylindrical and spherical coordinates. We now 
turn to more complicated coordinate systems, whose effective use will allow 
the reader to solve a much larger class of problems.

Perhaps the most important use of curvilinear coordinates is to solve 
boundary value problems for the Laplace and Helmholtz equations. How­
ever, neither the three-dimensional Laplace equation nor the Helmholtz 
equation permits separation of variables when written in arbitrary orthogonal 
curvilinear coordinates, a fact which prevents us from applying the methods 
developed in the preceding three chapters. Therefore a problem of great 
theoretical and practical interest is to find all coordinate systems which 
actually lead to separation of variables in these equations. Some special 
results pertaining to this problem, which has not yet been solved completely, 
will be found in concise form in Sec. 8, p. 247.1

The material given here is organized as follows: All problems involving a 
given coordinate system are grouped together, regardless of their physical 
content or spectral character (the latter determines whether the solution 
takes the form of a series or an integral). In the case of two-dimensional 
systems, considered in Secs. 1-3, all the necessary preliminary material is 
presented in problem form. However, in the case of three-dimensional

1 See also the papers cited at the end of the chapter (p. 252).

203
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systems, considered in Secs. 4-7, more background information on differ­
ential equations, special functions, etc. is needed, and this material is 
summarized at the beginning of each section.

Besides problems of the simpler kind, this chapter contains some relatively 
difficult problems, whose solution requires the use of various integral trans­
forms, knowledge of the properties of certain special functions, and so on 
(see e.g., Probs. 483, 497, 502-504). These problems are intended for the 
adequately prepared reader, and can serve as practice material for those 
trying to deepen their understanding of the methods of mathematical physics. 
Finally, it should be kept in mind that some of the problems can be solved 
more simply by using other methods (e.g., conformal mapping or inversion).

I. Elliptic Coordinates

432. Study the system of elliptic coordinates a, (3 related to the rectangular 
coordinates x, y  by the formula

x +  iy = c cosh (a +  /(3) (0 < a <  oo, — t z  <  (3 <  n). (1)
Show that the curves a =  const, (3 =  const form an orthogonal system of 
confocal ellipses and hyperbolas (see Figure 109). What is the appropriate 
expression for ds2, the square of the element of arc length? Write Laplace’s 
equation in elliptic coordinates.

Ans.
ds2 =  c2(cosh2 a — cos2 (3)(da2 +  d(32),

Aw _______ 1_______ P “ +  ^ ) = a
c2(cosh2 a — cos2 (3) \9a2 9(32/

433. A conducting elliptic cylinder with semiaxes a and b is placed in a 
homogeneous electric field (see Figure 110). Find the distribution of electric 
charge density on the surface of the cylinder.
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Ans.

a =  - # (a + b) cos (P -  Y)
4n \la2 sin2 (3 +  b2 cos2 (3

where 2s0 is the external field.
Hint. Introduce elliptic coordinates a, (3 (see 

the preceding problem), where the parameter 
c equals the eccentricity of the given ellipse.

*434. A wire with charge q per unit length 
is placed inside a hollow conducting elliptic 
cylinder with semiaxes a and b. Find the poten­
tial distribution inside the cylinder, assuming that the wire is parallel to the 
axis of the cylinder (see Figure 111).

Ans.

u(a, (3) =  2q , ^x'sinh n(a0 — a) D‘a +  2 > ------------------cos n(3* cos
n=1 n cosh na0

in terms of the elliptic coordinates a and (3, where a0 and (3* are the parameters 
defined by the relations

tanh a0 =  -  , cos (3* =  -  (d < c). 
a c

Hint. Regard the charge q as uniformly distributed over the “curvilinear 
rectangle”

0 <  « <  8, p* -  ^ <  IPI <  p* +  ^ ,

and then take the limit as S, e -* 0.

435. Solve the preceding problem, assuming that the charged wire is 
placed outside the cylinder at the point x = d (d > a), y  — 0.

Ans.

cosh (a* +  a — 2a0) — cos p , * d /—2---- ^
H (a ,P )= $ ln --------— --------— ----— cosh a* =  -  , c = s/a2 -  b2.

cosh (a* — a) — cos p c

Hint. To sum the series, use the formula
CO ^

In (2 cosh y — 2 cos x) =  y — 2 2  - y > 0.
7 1 = 1
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436. Find the distribution of induced charge on an infinitely long con­
ducting strip, near which there is a wire with charge q per unit length, as 
shown in Figure 112.

Ans.
q
2n(d  -  x)sja2 -  x 2 '

-o +  a Q
0

F ig ure  112

*437. An elliptic cylinder of given dimensions, made from material of 
magnetic permeability |jl,  is introduced into a homogeneous magnetic field 
making angle y with the major axis (see Figure 110). Find the magnetic 
potential, and show that the field outside the cylinder is homogeneous.

Ans.
u = H0(x co s y  + y  sin y)

, r r  / I  \ L  a  + b /cos Y cos p sin Y sin (3\+  H0( 1 -  n)ab -  .  1------ K + -----1------c ) e-«
v a2 — bu\  a +  ab b +  aa /[Lb b +  [La

+  const outside the cylinder,
( cos y sin y \------ — x H-------- — y I +  const inside the cylinder,
a +  [Lb b +  [La /

where H0 is the external field, and the ellipse has semiaxes a and b.
Hint. The choice of the particular solutions for the region outside the 

cylinder is dictated by the requirement that grad u be bounded.
438. A hollow elliptic cylinder, made from material of magnetic per­

meability (x, has a cross section bounded by the confocal ellipses

- 1 + S = i  ( V ^ = V ^ 1 = C ,a{ b[ a\ b\
Suppose the cylinder is introduced into a homogeneous magnetic field with 
components

Hx =  HV = HZ =  0.

Find the distribution of potential in the body of the cylinder.
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Ans.

u(«, (3)
rr sinh cq sinh (a — «x) +  u. cosh a, cosh (a — a,) a

=  Hqc --------------------------------r--------------------------------------e cos p,
sinh (a2 — axXsinh ax +  (x cosh +  (xeai cosh (a2 — a2)

where

tanh a, =  -* (i =  1, 2).
a.

439. A cavity in the shape of an elliptic cylinder with semiaxes a and & 
is hollowed out of iron of magnetic permeability [x, and contains a line 
current J whose direction is parallel to the axis of the cylinder. Find the 
vector potential of the magnetic field, assuming that the current passes 
through the point x0 < \Ja2 — b2, y 0 = 0 of the semimajor axis.

Ans.

Ax =  — —  In R H----- ((x 1)
c c

£ ~ n<X,° C O S  f t  B n
X y  ------------------------------ cosh fta cos ft(3 +  const, 0 < a <  a0,

^  ft(cosh fta0 +  (x sinh na0)

2 J[i 4 J[LA2= ------- In R -  —  (fx -  1)

^  sinh fta0 cos ftP0
x Z ft(cosh fta0 +  fx sinh no )̂

e na cos ft(3 +  const, a >  a0

where A1 and A2 are the values of the z-component of the vector potential in 
the air and in the iron, respectively, R is the distance from the point (jc0, 0) 
to the point (*, y), a and p are elliptic coordinates, c is the velocity of light, 
and

. , b n x0tanh a0 =  -  , cos po =  .
a Va2 -  b2

440. Solve the preceding problem for the limiting case fx =  oo. Find the 
tangential component of the magnetic field on the interface between the air 
and the iron.

Ans.
. 2 J , n , 4J ^ e  n“° cos «p0 u „ ,At = ------ In R -I------> --------------— cosh na cos np +  const,

c c n=1 n sinh na0 1
1 . X/a .-  A2= --------- b const.
(X c
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The tangential component of the magnetic field on the interface is

H  I _ _  2 J  1 =  2 J p _

c \Ia2 — b2 V cosh 2 a0 — cos2 (3 c ab ’

where p is the length of the perpendicular dropped from the origin of co­
ordinates onto the tangent to the ellipse at the point M  =  (a0, (3).

441. A d-c current flows in a conductor whose cross section is an ellipse 
with semiaxes a and b, producing heat with volume density Q, Find the 
temperature distribution inside the conductor, assuming that its surface is 
held at temperature zero.

Ans.

T(«, (3) =  £  (a2 -  b 2) ( l  -  ^ ^ ) ( c o s h  2a0 -  cos 2(3), 
ok \ cosh 2a0/

where k is the thermal conductivity and

tanh a0 =  -  .
a

Hint. Subtract out a particular solution u = P(x, y) of the inhomogeneous 
heat conduction equation, where P(x, y) is a polynomial in x  and y.

442. A thin sheet of width 2a is placed 
in a plane-parallel flow of an ideal fluid. 
Find the velocity potential, assuming that 
the direction of the flow makes angle y 
with the plane of the sheet (see Figure 
113).

Ans,
u =  v ^ x  cos y +  y sin y

+  a sin ye~a sin (3), 
where vw is the velocity of the flow far 
from the sheet.

*443. Solve the problem of the twisting of a rod of elliptical cross section 
with two cuts extending to its foci, as shown in Figure 114. Calculate the 
torsional rigidity C numerically for the cases where the ratio of the semiaxes 
is J, \  and | .

Ans, The torsion function is

n(oc, p) =  —c2 sinh2 a sin!
3 i cosh (2n +  l)a sin (2n +  1)(3
P +  * Mto  cosh (2n +  l)a0 (1 -  4n2)(2n +  3)'
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The torsional rigidity is

C_ =  1 +  ( f rV )p 2 /  _  _  b l
C0 b/a Ltt2\ a2/ 2a Y

g __ y  r (2n — 1) sinh (2n +  3)a0 +  {In +  3) sinh {In — l)a0
2(2n +  1)

— sinh (2n +  l)a
•]

_________________1_________________
(1 -  4n2)(2n -  l)(2n +  3)2 cosh (In +  W

where tanh a0 =  bja, and C0 is the tor­
sional rigidity of the ellipse without the 
cut. The result of the numerical calcula­
tions are

C_
C0 6 / a = l / 4

0.997, C_
Cq l > / a = l / 2

c_
Co b / a = 3 / 4

0.826.

0.970,

Hint. Subtract out the particular so­
lution —y 2.

444. Find the torsion function of a rod of semielliptic cross section. 
Ans.

u(a, P) =  — c2 sinh2 a sin2 (3 8b2y< sinh (2n +  l)a sin (2n +  l)ft 
"tT^q sinh (In +  l)a0 (An2 -  \)(2n +  3) '

where a and b are the semiaxes of the ellipse, and

tanh a0 =  -  , 
a

c2 = a2 — b2.

445. Find the stationary temperature distribution in a body whose surface 
is the hyperbolic cylinder

2 2 
X~ _  /  _  1

2 r 2a b
x >  0,

given the temperature distribution on the surface. 

Ans.

T(oc:• » = T [n Jo L
cosh Xp sinh X[3 .f c --------— cos Xa +  f s ...... r  sin Xa
cosh xp0 sinh X(30

d\,
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where
f  oo p co

f c =  /(a) cos Xa da, / s =  /(a) sin Aa da
»’ — ao ^ — oo

are the Fourier cosine and sine transforms of the function /(a ) figuring in the
boundary condition

F ig u r e  115

T|b_3,= / ( « )  (tanpo =  ^ .

Hint. In Probs. 445-447 use elliptic 
coordinates defined by
x  +  iy =  c cosh (a +  ip)

( —  oo <  a <  oo, 0 <  P  <  7 r ) ,  

instead of by formula (1), p. 204.

446. Find the density of electric 
charge on two perpendicular grounded planes between which there is a 
charged wire, as shown in Figure 115.

Ans.

Hp=o =  ~

G\fi=n/2 =  —

qd V l -  (djcf
7 t \ /  (x/c)2 — 1 x l  —  d 2

qd V l -  (djcf
W  (y/c)2 +  1 y* + d2

c < X < oo,

— oo < y < oo.

447. A charged wire with charge q per unit length is placed on the axis 
of symmetry of a slot of width 2a cut in a grounded conducting metal plane. 
Find the resulting electrostatic potential w. What is the charge density on the 
two parts of the plane?

Ans.

The charge density is

w(a, P) =  q In
cosh a +  sin P 
co$h a — sin P

x > a.
2nx V ?  — a2

Hint. In elliptic coordinates, the two parts of the plane have equations 
P =  0 and P =  7t.

2. Parabolic Coordinates

448. Study the system of parabolic coordinates a, p, related to the 
rectangular coordinates x, y  by the formula

x +  iy — -  (a +  iP)2 (— oo <  a <  oo, 0 < p <  oo). (2)
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Show that the curves a =  const, p =  const 
form two orthogonal families of parabolas 
(see Figure 116). What is the appropriate 
expression for the square of the element of 
arc length? Write Laplace’s equation in 
parabolic coordinates.

Ans.

ds2 =  c V  +  P W  +  dp),

a i /a2« , a2«\ .
" c V  +  (32) Ida2 +  dp)

*449. A charged wire with charge q 
per unit length is placed at the focus of a 
conducting screen in the form of a para­
bolic cylinder. Find the resulting electrostatic

Ans. The electrostatic potential is
field.

,  ̂ f 00 sinh X(po — p)  ̂ ^w(oc, P) =  4q\ ---------------— cos Xa aX.
Jo X cosh Xp0

in terms of po, the value of the coordinate p on the surface of the cylinder, 
given by

Po =  V/»/c,

where p is the focal distance of the parabola and c is the scale factor figuring 
in formula (2). Using formula 13, p. 385, we can write the solution in closed 
form:

w(a, P) =  2q In

noL tcP
00511 i~ , +  cos S ',

, 7ta 7tpcosh-------cos
2Po 2p0

(3)

450. Write a solution of the preceding problem in the form of a series of 
functions depending on the variable p.

Ans.
°°a ^ - ( 2 n + l ) 7 T |a | / 2Po

u(*,P) = % q2----------------
7 1 = 0

cos [(2n +  1)ttP/2Po] 
2 n +  1

Using the formula

y  p2n+1 cos (2n +  1)* _  1 jn 1 +  2p cos x +  p2 
n=o 2/1 +  1 4 1 —2p cos x +  p2 ’

to sum the series, we arrive at formula (3).

p2 < 1
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451. A charged wire with charge q 
per unit length is placed parallel to the 
edge of a thin conducting half-plane (see 
Figure 117). Find the resulting charge 
distribution on the half-plane.

Ans.
* =  — s—  k .2n(a +  x )^  x 

Hint. The equation of the half-plane 
in parabolic coordinates is (3 =  0. In 

solving the problem, regard the charge as uniformly distributed over the 
area of a curvilinear rectangle bounded by appropriate curves a =  const, 
P =  const, and then make the dimensions of the rectangle go to zero.

3. Two-Dimensional Bipolar Coordinates

452. Study the system of two-dimensional bipolar coordinates a, p, 
related to the rectangular coordinates x , y  by the formula

x +  iy = c tanh a ^  (— oo <  a <  oo, — n <  p <  7c). (4)

Show that the curves p =  const are circles

x2 + (y — c cot P)2 =

Figure 118
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going through the points x = while the curves a =  const are the 
orthogonal circles

(x — c coth a)2 +  /  =  . C — 
sinh a

(see Figure 118). What is the appropriate expression for the square of the 
element of arc length? Write Laplace’s equation in two-dimensional bipolar 
coordinates.

Ans.

— r — — ^ ( ^ 2 +  ^ 2).cosh a +  cos p)
~ i a\217̂ .. 22,, \

453. Find the electrostatic potential in the region between two parallel 
cylinders of radius a, held at potentials ±  V, respectively, if the axes of the 
cylinders are a distance 21 apart (see Figure 119). Calculate the capacitance 
per unit length between the pair of cylinders.

Ans. In terms of bipolar coordinates a, p with parameter c — v  I2 — a2,

where

i/ au =  V— , 
ao 4a0

cosh a0 =  -  
a

(the two cylinders have equations a =
±ao)-

454. A cylindrical pipe of radius a 
is buried in the ground at depth b 
(see Figure 120). Find the stationary
temperature distribution in the region surrounding the pipe, if the tempera­
ture of the ground is zero while a heat current Q, uniformly distributed with 
respect to angle, leaves the pipe’s surface.

Ans.

n * , p) = Q fa , ^ ( - l ) n e~n<Xo . u al---- —-----  -  > -----  sinh /ia cos up
/c7tsinha0L2 n=1 n cosh na0 J

where cosh a0 =  b/a and k  is the thermal conductivity.
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455. Two parallel cylinders of radius a with axes a distance 21 apart are 
placed in a plane-parallel flow of an ideal fluid, making angle a with the line 
joining the centers of the cylinders. Find the resulting velocity potential.

Ans.
w(a, p) =  v j l 2 -  a2

X jcos y 

+  sin

r  sinha , « na° . u nl--------------------b 2 > (—1) -----------sinh na cos «p
Lcosh a +  cos S cosh na0 J

. f  si
in Y ----r ~Lcosh a

sin p ^  € 
+  2 2 ( - i ) "  — ■ cosh hoc sinin npjj,

+  cos p n=1 sinh na0 
where cosh a0 =  Ija and i;*, is the velocity of the flow far from the cylinders.

456. Solve the problem of the twisting of a circular shaft weakened by 
an eccentrically drilled hole, as shown in Figure 121 (see W6).

Ans. The torsion function is

where ax and a2 are determined from the relations

a\ ~  <*\ +  d2.

u(oi9 p) =  a2 sinh2 ô  jcoth ô  +  coth a2

cosh a 
cosh a +  cos /?

+ 2f  ■ -
n=1 sinh n(oc2 — aO 

X [e~n>xi coth ax sinh n(a2 — a)

+  e~nctz coth a2 sinh n(a — ax)] cos nfi|,

cosh ax =
2dfli

i ai a2 'cosh a2 = ----------
2 da2
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*457. A narrow slot is cut in a circular shaft subject to twisting (see 
Figure 122). Find the torsion function and calculate the torsional rigidity. 
Calculate the rigidity numerically for the case hja =  J.

Arts.
The torsion function is

sin2pw(a, P) =  a2 sinh2a0
(cosh a +  cos P)2

+  -  §a„e-<"+l<>(- “ >sin(n +  i)(3 ,
77 = 0 '

where
a =  f 2K sin2 p sin (n +  t)P dn 

Jo (cosh a0 +  cos P)2

sinh a0 =  — ' ---- — (h < a).
2a(a - h )

The rigidity is

C =  Ga4 sinh4 a0 

where

-  sinh a,, -  — %(2n + l)a* -  , ^ 4
«=n ^  n=o 2 sinn aJ '

> , = r̂0
2k sin2 p sin (n +  £)P 

(cosh a +  cos P)3
jp.

In the case hja = it is found that C =  1.28Ca4 (compare with the result of 
Prob. 233).

Hint. Subtract out the particular solution — y 2. To calculate the rigidity, 
use the formula

fj(w A<]; —  ̂Au)da +  | \u — —  ̂— t/p = 0.
JJ  Jo L 3a 3aJa=a0
s

In the numerical calculation of the coefficients an and bni use the relations 

a -  2 n ~—  A -  2n +  3 A

A n = ~ - [ — r + (2n + !>S (-ire -" -, *sinh a0L2n +  1 m=l (n +  i)

h -  1[2n ~  1 b _  2n +  3 flbn 2[ 2 Bn-l 2 Bn+l J>

Bn =  . *8 ["'L  cosh a0 +  (2n +  1) 2  m(— l)m<
sinh a0L m=i

m

1
(n +  i )2 -  m*]•
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458. An eccentrically drilled tube, with the cross section shown in Figure 
121, is subjected to a pressure uniformly distributed over its interior surface. 
Find the resulting (two-dimensional) deformation of the tube, if no forces 
act on its outer surface. Calculate the normal stresses on the inner surface 
of the tube (see J3).

Ans.
op _  2fli (a\ — d2)2 — a\(a2 +  2d cos ft)2 
P ~  a\ + at [al -  (a2 -  df][a\ -  (a2 + d f) ~  ’

where p  is the pressure.

459. A charged wire with charge q per unit length is placed at height h 
inside a long tunnel of semicircular profile. Find the electrostatic field in 
the plane of symmetry, assuming that the walls of the tunnel constitute an 
equipotential surface.

Ans.
, 4q sin 2(3*(1 +  cos (3)
“J  a cos 2(3 — cos 2(3*

where a is the radius of the semicircle, and (3* is determined from the formula

h
a

Hint. In a system of bipolar coordinates, the region in question is bounded 
by the coordinate surfaces (3 =  0 and (3 =  n/2. Expand the solution in a

Fourier integral with respect to the 
variable a.

460. A conducting plane has a 
semicylindrical boss of radius a, as 
shown in Figure 123. Find the distri­
bution of electric charge induced on 
the surface of the conductor by a wire 
carrying charge q per unit length 
placed in the plane of symmetry (see 
Figure 123). Calculate the maximum

value of the electric field on the surface. 
Ans. The charge density is

a(x) =
q sin 2(3*(cosh a — 1) 

2na sinh2 a +  sin2 (3*
x = a coth -  

2
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on the plane, and
q sin 2(3* cosh a 

2na cosh2 a — sin2 (3* *
1

sin cp = -------
cosh a

on the boss, where (3* is determined from the formula

The maximum field is

h
a

%qh
i 2 2 *h — a

Hint. Use formula 15, p. 385.

461. Solve the preceding problem, assuming that there is a semicylindrical 
groove in the plane (rather than a boss).

Ans. The charge density is

ct( x ) = x = a coth -  
2

on the plane, and

a ( c p )  =

. 2(n -  (3*) L sin-------- 1— cosh a
A ____________ 3______________
3 na 2a 2(n — p*)cosh — +  cos------------

3 3

1sin 9 ==-------
cosh a

on the surface of the groove.

462. A cylindrical body with cross section in the shape of a symmetrical 
circular lune is placed in a homogeneous plane-parallel flow of an ideal fluid, 
with velocity components vx =  —v^, 
vv =  vz = 0 (see Figure 124). Find the 
resulting velocity potential.

Ans. 

u(oc, p)

=  ”ooVa2-

+ 2JJo

sinh a
.cosh a +  cos (3

00 sinh X k c o s h X f r - J ) s.nXa</x 
sinh 7rX sinh (71 — po)^ F ig u r e  124
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where
b
a

and is the velocity of the flow far from the body.
Hint. Use the system of bipolar co­

ordinates

, . . , a +  /px +  /y =  c tanh------ -

( — oo <  a  <  oo, (30 < P <  2 tu — po),

instead of the system given by formula 
(4), p. 212.

463. Find the torsion function for a 
cylinder whose cross section is a circular 
lune bounded by the curves (3 =  (3X and 

P =  p2 in bipolar coordinates, as shown in Figure 125 (see Ul).
A ns.

u(a, P) =  c‘
cos P

cosh a +  cos p
2 cot p. f - s i

Vo si
sinh Xp2 sinh X(P — pt)
sinh X7r sinh X(p2

— 2 cot p f 60 sinh Xpx sinh X(p2
'Jo

P i )

p)

cos Xa dk

sinh Xtc sinh X(p2 — px) 

where the parameters pt and p2 are determined from the relations

cos Xa dXl,

COt Pjj 1% sin p2

O Q T5
5 U' sin Pj

c =  \ /a\ — l\ =  yja\ — /2.

Hint. To make the problem homogeneous, subtract out the particular 
solution \{c2 — x2 — y 2) from the equation for the torsion function, where c 
is the scale factor of the system of bipolar coordinates.

464. A semicircular elastic plate of radius a is clamped along its edges 
and loaded by a concentrated force P applied at an arbitrary point of its 
axis of symmetry. Find the distribution of bending moments along the edges 
of the plate.2

2 Problems 464-466 are treated in Uflyand's book U2.
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Ans.

M |p=0 =  ~~ (cosh a +  1) I [sinh — sinh X 
2n  J o  L 2

-  X cot p* sinh X(J*"|---- ^ofXa d \ — _
J sinh2 (X7r/2) — X‘

p  r°° r X7c— cosh a sinh — sinh X(3* cot (3*
2n  Jo L 2

— X sinh X

where (3* is determined from the relation

cos Xa d\ 
sinh2 (X7t/2) — X2 ’

b
»a

b is the distance from the point of application of the force to the rectilinear 
edge of the plate, and a, (3 is a system of bipolar coordinates.

465. Solve the preceding problem for the case of a uniformly distributed 
external load q. Write an expression for the deflection along the axis of 
symmetry.

Ans.

«|«=0 =
q a

32»cosI(P/2> (I lSinhlf“ Ŝ XSin?(C<,ShXP" Whf SinhXP)]
. cos B tan2 -J, 2 r 2)x X dX

sinh2(X7r/2) — X2
where D is the flexural rigidity of the plate.

466. Find the distribution of bending moments along the edges of an 
elastic plate in the form of a symmetric circular lune — (30 < (3 < (30, due to a 
concentrated load P applied at the center of the plate.

Ans.
%M\ P sm po LM NPo  ------ — -  (cosh a +  cos

2tz w f%Jo> SI
sinh X(30 cos Xa

sinh 2X(30 +  X sin 2(30
dl.

4. Spheroidal Coordinates

Turning to three-dimensional coordinate systems, we first consider the 
case where the region of interest is an ellipsoid. If all three semiaxes of the 
ellipsoid are different, it is necessary to deal with Lame functions, whose
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theory lies beyond the scope of this book.3 However, in most cases of 
practical interest, two of the semiaxes of the ellipsoid are equal. Then the 
ellipsoid reduces to a spheroid, i.e., an ellipsoid of revolution, the corre­
sponding coordinate systems are called spheroidal coordinates, and the 
appropriate particular solutions of Laplace’s equation can be written in 
terms of elementary functions and spherical harmonics, whose theory, unlike 
that of Lame functions, has been fully developed. Moreover, these particular 
solutions can be used to solve boundary value problems for the region

bounded by a hyperboloid of revolution 
(see Probs. 483-485).4

By prolate spheroidal coordinates we 
mean coordinates a, (3, 9 related to the 
rectangular coordinates x y y , z by the 
formulas

x = c sinh a sin (3 cos 9,
y  = c sinh a sin (3 sin 9,
z =  c cosh a cos (3,

where

0 < a < o o ,  0 < ( 3 < 7t, —7t <  9  < 71,

and c > 0 is a scale factor.5 6 Then every point of space is characterized by a 
unique triple of numbers a* (3, 9. The corresponding triply orthogonal 
system of surfaces consists of the prolate spheroids a =  const with foci at the 
points (0, 0, dbc), the double-sheeted hyperboloids of revolution (3 =  const, 
which are confocal with the spheroids, and the planes 9 =  const passing 
through the z-axis (see Figure 126). The square of the element of arc length 
and Laplace’s equation take the form

A u

ds2 = c2(sinh2 a +  sin2 (3)(da2 +  d$2) +  c2 sinh2 a sin2 (3 dy2, 

1 f  1 3  /  • L d u \  , 1 3  I  . Q d u \— ---- ------------— ------------ sinh a — I ~\-------- — I sin 8 I
c (sinh2 a +  sin2 (3)Lsinh a 3a \ da/ sin 3 30 \ 33/1 33 \ 3p/

+  ( - + — ) - !  = 0 .
\sinh2a sin2 3/89 J 

If there is no dependence on the angle 9, the appropriate particular solutions

3 For the general theory of ellipsoidal coordinates and Lame functions, see e.g., H4 
and W4. Some problems involving ellipsoidal coordinates, but not requiring knowledge of 
Lame functions, are given at the end of this section (see Probs. 486-489).

4 Spheroidal coordinates can also be used to solve boundary value problems for
Helmholtz’s equation, but then the particular solutions involve more complicated functions, 
called spheroidal wave functions (see SI8 , S19).

6 If a point has cylindrical coordinates r, 9 , z, then z +  ir — c cosh (a-F  /'3).
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of Laplace’s equation for dealing with boundary conditions specified on the 
surface of a prolate spheroid (a  =  a 0) are given by

w =  un =  MnPn(cosh a)Pn(cos P), n = 0, 1, 2, .. .

in the case of the interior problem (0 < a  <  a 0), and by

u = un = NnQn(cosh a)Pn(cos P), n =  0, 1, 2, . . .

in the case of the exterior problem (a 0 <  a  <  oo).6 Here Pn(z) is the Legendre 
polynomial of degree w, Qn{z) is the Legendre function of the second kind 
(of degree «), and M ni Nn are arbitrary constants.7

Similarly, if there is no dependence on the angle 9, the use of the super­
position method to solve boundary value problems for the region bounded by 
the hyperboloid of revolution P =  po starts from the following particular sol­
utions of Laplace’s equation, which depend continuously on the parameter t :

u =  ux =  MXP_i^+tT(cosh a)P_*+iT(±  cos P), t > 0. (5)

Here Pv(z) is the Legendre function of the first kind, and the plus sign pertains 
to the interior region 0 < p <  po and the minus sign to the exterior region 
p0 <  P < 7r. The general solution is now constructed by integrating (5) 
with respect to t . To determine M t , we use the Mehler-Fock theorem,8 
instead of the theory of expansions in series of spherical harmonics.

Next we consider oblate spheroidal coordinates a, p, 9 related to the 
rectangular coordinates x, y , z by the formulas

x = c cosh a  sin p cos 9, y  =  c cosh a  sin p sin 9, z =  c sinh a cos p, 

where
0<0C<OO, 0 < P < 7 T , — 7T <  9 < 7T,

and c >  0 is a scale factor.9 In this case, the triply orthogonal system of

6 For particular solutions in the more general case of dependence on 9 , see e.g., L9,
p. 218.

7 The functions Q„(z) can be expressed in terms of elementary functions by using the 
recurrence relation

(« +  l)Qn+i(z) -  (2n +  1 )zQn(z) +  wQ„_i(z) =  0, w =  1 , 2 , . . . ,

together with the formulas

eo(z) = i , „ i ± i Ci(z) =  Z-  In Z- ^ - j  -  1. 
2 z — 1

8 See L9, Sec. 8.9 and also Probs. 483-485.
' 9 If a point has cylindrical coordinates r, 9 , z, we now have z +  ir — c sinh (a 4- i’P).
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surfaces consists of the oblate spheroids a =  const, the single-sheeted 
hyperboloids of revolution (3 =  const and the planes 9 =  const (see Figure

127). The square of the element of arc 
length and Laplace’s equation now take 
the form

=  c2(cosh2 a — sin2 (3)(da2 +  d(32)
+  c2 cosh2 a sin2 (3 c/92,

1

ds2

Am =

d
X doc

c2(cosh2 a — sin2 (3)
r - i -
Lcosh a

/ , d u \ __ 1 3 /  . „ 3u\

+ P -------- U M
\sin2 (3 cosh2 a/ 392J

If there is no dependence on the angle 9, the appropriate particular solutions 
of Laplace’s equation for dealing with boundary conditions specified on the 
surface of an oblate spheroid (a =  a0) are given by

u = un = MnPn(i sinh a)Pn(cos (3), n = 0, 1, 2, . .. 

for the interior problem (0 < a <  a0), and by

U = un = NnQn(i sinh a)Pn(cos P)

for the exterior problem (a0 < a <  00 ) .  Here the boundedness of grad u 
plays a role (see L9, p. 217).

Having made these preliminary remarks, we now give a number of 
physical problems whose solution involves the use of spheroidal coordinates.

467. Find the charge density on the surface of a conductor in the form of 
a prolate spheroid with semiaxes a and 3, carrying total charge Q. What is 
the capacitance of the spheroid ?

Ans.
1 1

47rc2 sinh a0 Vcosh2 a0 — cos2 (3 4nab2 jz?_
* a4 +  b4

C =
In

_2c__
a +  c ‘
a — c

= \]a2 — b2, tanh a0 =  -  .

where
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Hint. Introduce a system of prolate spheroidal coordinates such that the 
surface of the ellipsoid has equation a =  a0.

468. A point charge q is placed at the center of a hollow conducting 
shield in the form of a prolate ellipsoid with semiaxes a and b. Find the 
potential distribution inside the shield, assuming that its surface is at zero 
potential.

Ans.
<1 1

a2 -  b2-Vsinh2 a +  cos2 (3

-  2(4/1 +  1)P2„(0) 6°»(cosh a°) p2n(cosh a)P2n(cos p )l, 
«=o ^2„(cosh a„) J

where Pn(x) and Qn(x) are the Legendre functions of the first and second 
kind, tanh a0 =  bja, and

Po( 0) =  1, p2n(0) =  (-1 )-  — ;-:f ' ' ~ (2V  1}, n = 1 , 2 . . . .
2 • 4 • 6 • • • 2 n

Hint. Subtract the potential of the point charge from the solution. To 
express the solution in series, use the integral

P  =  2P2n(0)Q2„(cosh a).
‘'- 1 V sinh2 a +  x2

469. Solve Prob. 467 for the case of an oblate spheroid.
Ans.

Q__________________ l __________________ Q  1

V a* +  bx

c =  Va2 — b29 tanh a0 =  -  .
a

47rc2 cosh a0 Vcosh2 a0 — sin2 (3

C =
. c arc sin -  

a
where

470. Find the charge density on the surface of a conducting disk of 
radius a, carrying total charge Q. What is the capacitance of the disk?

Ans.
Q  r _ 2 a

G  —    ,  C — ,
47tay a2 — r2 71

where r is the distance from the center of the disk.
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Zl

c s >

F ig u r e  128

*471. Find the surface charge density induced on a disk 
by a point charge q located at an arbitrary point of its axis 
of symmetry (see Figure 128).10

Arts.

<7 =
q

4na2 A,
a1 sin2 p\ - 3/2 | 21

d2 / y/n cos p

x S ( - l ) '
7 1 = 0

(4 n +  1)h!
r(n +  i)

in terms of the Legendre functions of the first and second kind Pn(z) and 
Qn(z), where p =  arc sin (r/fl), and r is the distance from the center of the 
disk to an arbitrary point on its surface.

Hint. Use the expansion

=  < 2 (4" +  sinh a)P2n{x).
%/ cosh2 a — x2 n=o 

472. A grounded plane screen with a circular aperture of radius a is 
placed in an electric field which is homogeneous at a great distance from the 
screen. Suppose the field has the value Ex to the left of the screen and the 
value E2 to the right of the screen (see Figure 129). Find the potential in 
the surrounding space, and calculate the field along the axis of symmetry 
(a problem of interest in electron optics).

Ans. The potential is

u z>o — (^i ^2)

(1 — sinh a arc tan —-— ) cos p — £2z,
\ sinh a/ ... -

w|z<0 = - (E 2
TZ ^l)

X 

while

( 1 — sinh a arc tan —-— ) cos p — Exz, 
sinh a/ F ig u r e  129

H r  , Ex — E2( x 1 sinh a \E | r = o . z > o  =  Ei H------------ 1 arc tan — ----------- —  I,
7r \ sinh a cosh a/

E2 — Ex[ 1 sinh a \------- I arc tan -------—------ — I
tc \ sinh a cosh a/

' | r = 0 , z < 0 — ^1 +
is the field along the axis.

10 This problem can be solved more easily by using integral equations (see Prob. 551b).
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Hint. Introduce spheroidal coordinates with parameter c equal to the 
radius of the aperture, and look for a solution of the form

«|*<o =  A i (a ) cos P — £ i z > 

w|2>0 =  A 2(<x) c o s  p  —  E2z.

473. An oblate dielectric spheroid, with semiaxes a and b and dielectric 
constant e, is placed in a homogeneous electric field E0 directed along its 
axis of symmetry (in the negative z-direction). Solve the resulting problem of 
electrostatics.

Ans. The potential is

u = _______________________ EqZ_______________________
e cosh2 a0 — sinh2 a0 — (e — 1) sinh a0 cosh2 a0 arc cot sinh a0

+  const

in the dielectric, and

U =  E qZ  —
E0c(e — 1) sinh a0 cosh2 a0(l — sinh a arc cot sinh a) cos ft 

e cosh2 a0 — sinh2 a0 — (e — 1) sinh a0 cosh2 a0 arc cot sinh a0

in the air, where

tanh a0 =

+  const

474. Find the resistance of a grounding rod inserted in ground of con­
ductivity a (see Figure 130), assuming that the rod is shaped like half of 
a prolate spheroid with semiaxes a and b, where a > b (see Ol).

Ans.

4™y/a2 -  b2
a +  V a8 — b2 
a ~  '

F i g u r e  131

475. A constant current J enters the ground through a point contact 
placed on the earth’s surface over a hole filled with material of conductivity 
CTj, different from the conductivity a2 of the rest of the ground (see Figure 131).
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Find the current distribution in the ground, assuming that the boundary 
between the two media is the prolate spheroid with equation

2 2 
5- +  H =  1
a2 +  fr2 ’

z >  0.

Ans. The potentials of the current field in the two media are given by

J
2 n ^R + J(G2 CTl) 

27rcr1\ /  a2 — b2
2 (4 /1  +  1)P ln(0)

7 1 = 0

g 2w(cosh «0)6 2n(cosh a0)/)2n(cosh oc)P2n(cos (3) 
<̂ iC2n(cosh a0)P2n(cosh a0) — a2P2n(cosh a0)Q2n(cosh a0) ’

u _______ I _______
2tvJ  a2 — b2 sinh2 a0

2 ( 4  n +  1)P2„(0)
71 =  0

v _____________ Q2n(cosh a)P2„(cos P)______________
aiQgTzCcosh cL0)P'2n(cosh a0) — a2P2n(cosh a0)G27i(cosh a0)

where R is the distance from the source to the field point, tanh a0 =  6/a, 
P„(x) and Qn(x) are Legendre functions, and

P o ( 0 ) = l ,  \ ( 0 )  =  ( - l ) * - — ^— n =  1 , 2 , . . .
2•4  • 6 ■ • • 2w

476. A d-c current enters ground of conductivity a through a grounding 
plate in the form of a disk of radius a (see Figure 132). Find the distribution

of current under the plate, and calculate 
the resistance of the plate. 

r Ans, The potential of the current 
field is

2V . uu =  —  arc cot sinh a,
7C

where V is the potential of the plate. 
The resistance is

/
jy 1

F i g u r e  132 & =  “ —  •
4 oa

Hint, Introduce a system of spheroidal coordinates (0 < a <  oo, 
0 < (3 < tc/2) .

477. A prolate spheroid made from material of magnetic permeability (x 
is introduced into a homogeneous magnetic field H0 directed along its axis 
of symmetry (in the negative z-direction). Solve the resulting problem of 
magnetostatics, and show that the field inside the spheroid is homogeneous.
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Arts. The field inside the spheroid is

H2 =  -

where

__________________ Ho______________________

cosh2 a0 — [x sinh2 a0 +  (p. — 1) sinh2 a0 cosh a0 In coth —

tanh a0 =  -  .
a

Substitution for a0 leads to the expression
H 0

c L 2c a — cj

: =  >Ja' -  b\

478. Find the stationary temperature distribution in a prolate spheroid 
a =  a0, if a given axially symmetric temperature distribution

n « , p)U«„ = m
is maintained on its surface. Consider the special case where one half of the 
surface of the spheroid (z <  0) is held at temperature zero, while the other 
half (z >  0) is held at temperature T0.

Ans.

T(*, P) =  -  2  —r - " /  ; ^(cosh a)P„(cos (S) f f(ii)Pn(cos •/)) sin y) d^,
2 n=0 ^ (c o sh  a0) Jo

in terms of the Legendre polynomials Pn(x). In the special case,

T(«, P) -?[«+s ̂ L- n=0
4n +  3 0)

n=o 2(n +  1) P2n+1(cosh a0) 
///«/. To calculate the integral

J’an+iCcos P)P2n+1(cosh a)J.

f1 P„(x) dx,Jo
use the recurrence relation

{In +  l)Pn(x) =  P'n+1{x) -  
479. Find the stationary temperature distribution in a prolate spheroid 

with semiaxes a and b, whose surface is held at temperature zero, if heat is 
produced inside the spheroid with constant density Q.

Ans,

T{a, P) =  - «£!
4fc

sinh2 a sin2 p
3c2

+  ^TTT---- £ (3 cos2 P “  JX3 cosh2 a ~  !)] *3(3 a — c)  J
in terms of the spheroidal coordinates a and (3, where c =  \Ja2 — b2 and k is 
the thermal conductivity.
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Hint. Make the problem homogeneous by subtracting out the particular 
solution — Qr2jAk of the inhomogeneous heat conduction equation.

480. A body in the shape of a prolate spheroid with semiaxes a and b is 
placed in a homogeneous flow of an ideal fluid, directed along its axis of 
symmetry (in the negative z-direction). Find the resulting velocity potential.

Ans.

w(a, (3) =  vx c cosh a -f
cosh a In coth -  — 1 

2
ac
T2 2 a — c

cos p + const,

where c =  Va2 — b2 and v^ is the velocity far from the body.

*481. Calculate the gravitational potential due to a homogeneous prolate 
spheroid with semiaxes a and b, and find an asymptotic expression for the 
potential in the case of small eccentricity c.

Ans. The potential outside the spheroid is 

7tp ab2 (
«(«. P) =  [cosh a(3 cos2 p -  1)

+  [2(sin2 p — sinh2 a) +  3 sin2 p sinh2 a] In coth -

where p is the density, and the gravitational constant is taken to be unity. 
For small c,

“ M [ k +  —  ^(cos 6)],
where

M  =  |7zpab2
is the mass of the ellipsoid, and

R = \!r2 -f z2, 0 =  arc tan -  , P2(x) =  —-----   .
z 2

Hint. Inside the spheroid, subtract out the particular solution —7ipr2 of 
the inhomogeneous equation.

482. Solve the preceding problem for the case of an oblate spheroid. 
Ans. Outside the spheroid the gravitational potential is

, 7Tfl2hp
M a’ ^  ^  yfa* -  b2 ^ 2 ĈOsh a +  sin ®

— 3 cosh2 a sin2 p] arc cot sinh a — sinh a(3 cos2 p — 1)}.
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For small c, 

u & M

where
L1 - s , ’(" 4

M  =  |7tp a2b.
Hint. Inside the spheroid subtract out 

the particular solution
~7rp(a2 — b2) cosh2 a sin2 p

of the inhomogeneous equation.

*483. A point charge q is placed at 
the focus of a grounded conducting screen
shaped like a hyperboloid of revolution (see Figure 133). Solve the resulting 
problem of electrostatics.

Ans. The electrostatic potential is

»(*, f*  P (cosh a)
C Jo cosh 7TT P_i/̂ +iT(COS Po)

x P^A+ix(COS P) dT, 0  <  p < Po,
where Fy(x) is the Legendre function of the first kind.

Hint. Introduce prolate spheroidal coordinates a, p, cp such that the 
hyperboloid has equation p and make use of the Mehler-Fock theorem

/(«) = J0 t tanh 7rrP_K+iT(cosh a) dn Jo /(5)P_^+IT(cosh £) sinh £ dZ, 
(see L9, p. 221).

484. A point charge q is placed near the vertex of an electrode shaped 
like a hyperboloid of revolution. Find the potential in the surrounding space,

assuming that the charge lies on the axis of 
the hyperboloid (see Figure 134).

Ans.

U =  q~ -
<Z

2c,/
— f t  tanh 7rr F f— ■ h —) 
'k J 0 \4 2/

x r / i  -  ix) p-^ + ^ ~ cos P)
V4 2 / P_ IT( cos po)

X P_>̂ +jT(cos p0)P_M+iT(cosh a) d-c,

P o  <  P  <  7 1 .

485. A d-c current /  flows into ground of conductivity a through an
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electrode placed at the bottom of a hollow shaped like a hyperboloid of 
revolution, with equation (3 =  p0 in spheroidal coordinates (see Figure 135).

Find the current distribution in the 
ground.

Ans. The potential of the current 
field is

J Ju =
2naR 2nac

■ sinh t u t  Pli^+<T(cos (30)f -x s i r  
Jo coshC O Sh2 7UT PLii+iJr-cos p 0)

X P_i^+iT(-co s  p0)P_^+iT(-cos P)
X P_i^+tT(cosh a) dx,

where R is the distance from the source to the field point, c is the eccentricity 
of the hyperbola p =  po, and Pv(x) is Legendre’s function.

486. Find the charge density on the surface of an ellipsoidal conductor 
with semiaxes a, b and c, carrying total charge Q. What is the capacitance 
of the ellipsoid ?

Ans.
a = 1

47u abc
V ^  u4 ^

c  =
b
2r ds

'/(a2 +  s)(b2 +  s)(c2 +  s)
Hint. Introduce ellipsoidal coordinates a, p, y» defined as the roots of 

the cubic equation
+  - i _  +  - 5 — =  1.

a2 +  X b2 +  X c2+  X 
Then look for a solution depending only on a.

487. Find the charge density on a thin elliptic plate with semiaxes a and by 
carrying total charge Q. What is the capacitance of the plate?

Af,S• Q 1
47u ab / i

c  =
K ( ^ r

where K(k) is the complete elliptic integral of the first kind.
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Hint. Take the limit c —► 0 in the solution of the preceding problem.

488. An ellipsoid with semiaxes a, b and c, made from material of 
magnetic permeability p,, is placed in a homogeneous magnetic field H0 
directed along its major axis. Find the resulting magnetic field inside the 
ellipsoid.

Ans. The direction of the field coincides with that of the external field. 
The magnitude of the field equals

H  = H0

i - 1) f  °
2 Jo

ds
(a2 +  s)yj(ci2 +  s)(b2 +  s)(c2 + s)

489. Calculate the gravitational potential of a homogeneous ellipsoid of 
density p (see SI6, p. 161).

Ans.

J V (a2
ds

+ s b2 +  s c2 +  s j\/(u 2 +  s)(b2 + s)(c2 +  s) 
where X is the positive root of the equation

+  7 ~ -  +  Za2 +  X b2 +  X c2 +  X 

and the gravitational constant is taken to be unity.

- 1 = 0 ,

5. Paraboloidal Coordinates

Physical problems involving a region bounded by a paraboloid of revolu­
tion can be solved by introducing paraboloidal coordinates a, (3, cp related to 
the rectangular coordinates x , y> z by the formulas

x =  ca(3 cos 9, y = cap sin cp, z =  -  (a2 — p2),

where
0 < a <  oo, 0 < p <  go, — 7u <  cp < 7T,

and c >  0 is a scale factor.11 In this case, the triply orthogonal system of 
coordinate surfaces consists of the two families of paraboloids of revolution

11 If a point has cylindrical coordinates r, cp, z, then
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d =const (3 = const
a =  const and (3 =  const, together with the 
planes cp =  const (see Figure 136). The square 
of the element of arc length and Laplace’s 
equation take the form

ds2 =  c V  +  p2)(<fa2 +  dp2) +  c V p 2 d<?\

A h =
1 ri_a /  9h\

2) La 9a I da/

+

c V  +  p2:

paprap/ v  pva9‘j
If there is no dependence on the angle cp,12 

the use of the superposition method to 
F i g u r e  136 solve boundary value problems for the region

bounded by a paraboloid of revolution 
P =  Po starts from the following particular solutions of Laplace’s equation, 
which depend continuously on the parameter X:13

u =  ux(a, P)J0(Xa) , X > 0. (6)
AotAp;

Here I0(x), J0(x) and Aq(x) are cylinder functions, the upper row pertains 
to the interior region (0 < p < po) and the lower row to the exterior region 
(Po < P <  oo). The general solution is now constructed by integrating (6) 
with respect to X, where, to determine Mx, we use Hankel’s integral theorem 
[see formula (12), p. 160]. Paraboloidal coordinates can also be used to solve 
boundary value problems for Helmholtz’s equation, but then the particular 
solutions involve confluent hypergeometric functions (see E2, Vol. 2, Secs. 
8.7-8.8).

490. Solve Prob. 483, assuming that the conducting screen is shaped like 
a paraboloid of revolution, with equation p =  p0 in paraboloidal coordinates.

Ans.

u(a, P) = 2 q
c(a2 +  p

r  -  ~  P  f —  /o(XP)J0(X«) X d \,  
) c Jo / 0(XPo)

in terms of the Bessel function of the first kind J0(x) and the Bessel functions 
of imaginary argument I0(x) and Note that

Po =

12 See Prob. 492 for the case where dependence on <p is present.
13 Formula (6) is an abbreviated way of writing two formulas, one involving the function 

70(XP), the other K0( \ P).
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where p is the focal distance and c is the scale factor figuring in the definition 
of the paraboloidal coordinates.

Hint. Use the integral

f"nr 2̂ dx = K°(aV  (« > o, b >  o).Jo x +  b
491. Find the stationary temperature distribution in a body shaped like a 

paraboloid of revolution (3 =  (30, if a given axially symmetric temperature 
distribution

T ( a - ,  P)|p=po = / ( « )
is maintained on its surface.

Ans.

T(a, p) =  J 0(X«)X dX PKf ( l ) U x m  dl.
Jo J0(X(3o) Jo

492. Solve the Dirichlet problem for the domain bounded by the parab­
oloid of revolution (3 =  (30, assuming that the boundary condition is of the 
form

, _  , cos n<? _
M P=3o frSŜ ) . >  ̂ 0, 1, 2, . . . ,

sin n 9
where f n(a) is a given function. Use the result to construct solutions for 
arbitrary boundary conditions depending on cp.

Ans. Inside the paraboloid,

«(«, p, <p) =  f7„(A) — dX C° S
Jo / n(X(3o) Sin ncp

where / n(X) is the Hankel transform o f /n(a):14

/nW  =  /„ <*«•

6. Toroidal Coordinates

Besides spherical and spheroidal coordinates, there are other coordinate 
systems whose use is intimately connected with Legendre functions. First 
we consider toroidal coordinates a, (3, cp related to the rectangular coordinates 
x , y , z by the formulas

c sinh a cos cp c sinh a sin 9 c sin (3
x = ---------------   , y = ---------------- — , z = -----------   , (7)

cosh a — cos (3 cosh a — cos (3 cosh a — cos (3

14 Cf. formula (13), p. 160.
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where
0 < a <  00, — TC <  p < 7C, — 7T <  9 < 7C,

and c >  0 is a scale factor.15,16 The corresponding triply orthogonal system 
of surfaces consists of the toroidal surfaces a =  const, satisfying the equation

(r — c coth a)2 +  z2 =  (—-—)
\sinh a/

where r = \! x2 + y2> the spheres p =  const, satisfying the equation

( r - c  cot (3) +  r* =  ( ~ r ) , (8)
\sin p/

F i g u r e  137

and the planes 9 =  const (see Figure 137). Note that all the spheres (8) 
intersect in the circle r =  c, z =  0. It is clear from (7) that x , y  and z are

16 In the next section, we shall consider a closely related coordinate system, i.e., three- 
dimensional bipolar coordinates.

16 If a point has cylindrical coordinates r, 9 , z, then

c sinh a c sin p
cosh a — cos p ’ cosh a — cos p ’

1 . . , u  a + fpz 4 - ir =  ic coth — -—  .

or more concisely,
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periodic in (3 and 9, with period 2rc. Therefore we can choose <  (3 < 
P i  +  27T, cp! <  cp <  cpx +  2n instead of — rc <  (3 <  k , —n <  cp <  iz (which 
corresponds to the particular choice (3X =  9^ =  —7t), and it is sometimes 
convenient to do so.

In toroidal coordinates, the square of the element of arc length is

d s 2
(cosh a — cos (3) 2

(d o t.2 +  d $ 2 +  sinh2 a dcp2),

and Laplace’s equation takes the form

9 I sinh a 
9oc \cosh a — cos

_ du\ _9_ / sinh a du
P 9a/ 9(3 \cosh a — cos (3 9(3-

+ sinh a(cosh a — cos (3) 9cp“ 1 =  0. (9)

Unlike the cases considered so far, equation (9) does not permit separation 
of variables directly. However, if we first introduce a new function v by 
making the substitution

u = \J2 cosh a — 2 cos (3 v,

(9) goes into a new equation belonging to the class which permits separation 
of variables (see L9, p. 223). If there is no dependence on the angle 9, it 
turns out that Laplace’s equation (9) has particular solutions of the form

u = uv = y/2 cosh a — 2 cos (3 [/lvPv-^(cosh a) +  PvQv-^(cosh a)]
X [Cv cos v(3 +  Dv sin v(3],

in terms of the Legendre functions of the first and second kinds, where v is a 
parameter and Av, . . ., Dv are arbitrary constants. In boundary value 
problems involving the region bounded by a torus, the parameter v is deter­
mined by the requirement that the solution be periodic in (3. This leads to 
the particular solutions

/----------------------- 6 ti-u(cosh a)u = un = v 2 cosh a — 2 cos (3 [Mn cos «(3 +  Nn sin «(3] ( . . ,
^n-^lCOSl1

where the upper row pertains to the interior problem (a0 <  a < 00) and the 
lower row to the exterior problem (0 < a <  a0). In problems involving the 
region bounded by two intersecting spheres (3 =  (3X and (3 =  (32. the appro­
priate particular solutions are obtained by choosing v =  it ( t > 0), and are 
of the form

T =  y / 2  cosh a — 2 cos (3 [MT cosh tP +  NT sinh T(3]P_^+iT(cosh a),
( 10)

U =  U.
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where px <  p <  02 for the interior problem and p2 <  P <  +  Pi for the
exterior problem. Then the solution of the problem is constructed by 
integrating (10) with respect to t ,  where the factors Mr and Nx are determined 
by using the Mehler-Fock theorem (see L9, Sec. 8.12).

This section contains a number of physical problems which can be solved 
by using toroidal coordinates. Most of the problems are rather difficult, and 
are intended for those with the necessary background in the theory of special 
functions.17

493. Find the electrostatic potential due to a charged toroidal conductor 
at potential V, with the dimensions shown in 
Figure 138. Calculate the capacitance of the 
conductor.

Ans. The potential is

w(a, P) =  — \ j l  cosh a — 2 cos p

(?-i/2(cQsh «0)
- F_i/2(cosh a0)

+  2 ^  Qn-w(cosh ftp)
tz 1 Pn-uicosh a0) 

and the capacitance is .

jP_i/2(cosh a)

C =

Pn- v$(cosh a) cos «p j, 

6n-w(c°sh a0)l^rQ^iMcoshao) 2y ___________ _
TC Lp_1/2(cosh a0) Pn-^(cosh a0)J ’

where Pv(x) and Qy(x) are the Legendre functions of the first and second kind, 
and

=  V / 2 -  a \ cosh a0 =  -  
a

Hint. Introduce toroidal coordinates a, p, cp with parameter c, such that 
the surface of the conductor has equation a =  a0. In the course of the 
solution, use the integral

cos «p dp ^  / u \
- /a— , -  % - = :  =  Qn-H(cosh a0).Jo yj2 cosh a0 — 2 cos P

*494. Find the distribution of electrostatic potential on the axis of a 
grounded conducting torus introduced into a homogeneous electric field E0 
directed along its axis of symmetry (in the negative z-direction).

17 Some of the problems can be solved more easily by using other methods (by inversion, 
say).
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Ans.

where
« | r = 0  =

IT  2  • P  V *Eqz ---- E0\f I — a sin -  2,
 ̂n=l

^6^-w(cosh a0) 
jPn-^(cosh a0)

sin n(3,

cosh a0 =  -  ,
a

and the dimensions / and a are the same as in Figure 138.
495. Solve the preceding problem, assuming that the external field is due 

to a point charge q at the center of the torus.
A ns.

„L_0 = q- - i i - sin*P re-1/.tcoshoco) +  2^ (_ i r e-H(cosh«0) cos -
z LP_1/2(cosh a0) n=1 Pn-y2(cosh a0)

496. A current J  flows in a ring-shaped conductor of circular cross section 
(see Figure 138). Find the resulting magnetic field along the z-axis, assuming 
that the current J  is uniformly distributed over the cross section of the ring.

Ans.

—  C O S  P ) 3 /2

x G-i/2(cosh a0)Qii/2(cosh a0) — Qi'1/2(cosh a0)Qi1/2(cosh a0)

+  2 2  [Q l-^ o sh  a0)G},-^(cosh a0) — Q2-^(cosh a0)gn-w(cosh a0)] cos n(3
71=1

where
cosh a0 =  -  ,

a
c is the velocity of light, and Q\(x), Q2{x) are associated Legendre functions 
of the second kind.

497. Find the distribution of a-c current along the surface of a perfect 
conductor shaped like a ring with circular cross section. Calculate the self­
inductance L of the ring.18

Ans.

i  =  1 R2 -i/2(cosh «„) _  1 Q«-H(cosh«0)~|
■L 2 7 tV I2 — a2Lpi1/2(cosh a0) „=i 4n2 — 1 Pi-^(cosh a0) J

where
cosh a0 =  -  , 

a

18 This is the skin effect problem (see FI).
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the dimensions / and a are the same as in Figure 138, and Pj(x), 2*(x) are 
associated Legendre functions of the first and second kind. The distribution 
of current density along the periphery of the ring is

=  _  U_ [2(cosh q0 — cos ft)]3/2j~ 1________2y  cos nft ~j
327ta sinh a0(i2 — a2) LP_,/2(cosh a0) n=1 Pi-i^cosh a0) J ’

where J is the total current.

*498. Suppose a d-c. current flows in a ring-shaped conductor with the 
dimensions shown in Figure 138, producing heat with density Q. Find the 
temperature distribution inside the conductor, assuming that its surface is 
held at temperature zero.

Ans.

T(a, P) = QO2 ~  a2) sinh2
k 1(2 cosh a — 2 cos (3)2 

sinh2 a0Q-i/2(cosh a0)

— y]2 cosh a — 2 cos (3

- 37c(2_vz(cosh a0)
Q_i/2(cosh a)

_l_ 2 sinh2 apy  Qn-v$(cosh a0)
Qn~lA(cosh a) cos n(3

3u ^ i  Qn-^(cosh a0)
in terms of the Legendre function of the second kind Q (z), where

cosh a0 =  -  , 
a

and k is the thermal conductivity.
Hint. Subtract out the particular solution — Qr2/4k of the inhomogeneous 

heat conduction equation. Use the integral

I
cos /ip d(3

o (2 cosh a — 2 cos (3)5/2
1
3

Qn-y*(cosh a).

499. Calculate the gravitational potential of a homogeneous torus of 
density p, with the dimensions shown in Figure 138, assuming that the 
gravitational constant equals unity.

Ans.

u(a, 3) =  — sinh2 a0>/2 cosh a — 2 cos p|[Q_-i/2(co$h a0)Q2 i/2(cosh a0)

— Q-i/2(cosh a0)(T 1/2(cosh a0)]P_1/2(cosh a)
ao

+  22[Qn-w(c°sh a0)Q2'-i^(cosh a0)
7 1 = 1

— Q2-^(cosh a0)Qn-i/*(cosh a0)]P„-i^cosh a) cos npl,
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where Pv(x) and Qy(x) are Legendre functions, Q2(x) is the associated 
Legendre function of the second kind, and

c = V/2 — a2, cosh a0 =  -  .
a

500. A torus with the dimensions shown in Figure 138 is introduced into 
a homogeneous flow of an ideal fluid, whose direction coincides with the 
axis of symmetry of the torus. Solve the resulting hydrodynamical problem, 
and find the velocity distribution along the axis.

Ans. The stream function is

, sinhav =  —---- h —_
2 yj 2 cosh a — 2 cos [3

X T— P i1/2(cosh a) +  2  cnP i- i^(cosh a) cos «pl, 
L2 w=i J

where Pj(x) and Q\(x) are associated Legendre functions,

Cn = 7rPi-i^(cosh a0)
u00(/8 — u2)Qn-^(cosh a0)

+
2 A

(4n — 1) sinh a0
[sinh a0Qj*-^(cosha0) — 1] ,

cosh a0 =  //a, and v is the velocity of the flow far from the torus. The 
constant A is determined from the condition

r*dv
Jo 9a

=  0.
a=a0

501. Find the surface density of free charge on a thin charged conductor 
shaped like a spherical bowl of radius a (see Figure 139). Calculate the 
capacitance of the bowl (see J2, p. 250).

Ans. The charged density is

47Ufl
V2 cosh a — 2 cos ft0 

2 cos

— arc tan V2 cosh a — 2 cos (3,
2 cos £p0

on the inner surface of the bowl, and

V

!]

°0 =  <*i +

r,

a = oo 
c

a=o
X X

0
h s '  )c

4 k c i F ig u r e  139
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on the outer surface, where V is the potential of the bowl and
c

Using the formula
sin p0 =  “ • 

a

4a2 — b2 cosh a — cos po 
b2 — p2 2 cos2 JPo

where the distances b and p are shown in Figure 139, we find that

A=
v__ 4 a2 — arc tan 14 a2 -  b*1

J  b2-  o2J'4vra b* — p!
The capacitance of the bowl is

C =  —  A4a2 -  b* +  arc tan -  L = = . 
2na 7r v 4a2 — b2

rJo

Hint. To calculate the density, use the integral
t  sinh 7tt cosh (71 — P0)t  ̂ , . T 2
--------------   —  cosh « )  d r  =  -

sin
cosh'' 7 T T

X f l  +
2 cos ip0 : arc tan

7c 2 cosh a — 2 cos p0 
2 cos £p0

V2 cosh a — 2 cos po V2 cosh a — 2 cos p0«;]•
*502. Find the surface density of induced charge on a thin conductor 

shaped like a spherical bowl of radius a, due to a point charge q located at
the point r =  z =  0 (see Figure 140).

Ans.
qb2V  4n2 — fr2

8tt za2R*

X arc tanr . R  \ b 2 ~ 2 a 2arc tan . . .—J  —----- -
L J 4 a 2 -  R 2 -  c2

R l b2 — 2a21
J ’

<T, =  (T„ —qb\4a2 -  b*) 
16na2R3

where <j0 and <rf are the charge densities on the outer and inner surfaces of 
the bowl.

Hint. Subtract out the potential of the point charge. To expand this 
potential in a Mehler-Fock integral, use the relation

1 f 00 cosh p0T
\J2 cosh a +  2 cos po cosh tct- rJo P_M+ix(cosh a) dx.
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503. Find the potential distribution in the space surrounding a charged 
conductor shaped like the “spherical zone” shown in Figure 141.
Arts.

w(a, P) =  V \/2 cosh a — 2 cos (3 

X j  [sinh (27t +  po — P)T — cosh (n — po)x 

P-'A+dcosh a)X sinh (7r — P)t] — dx,
sinh (tz +  p0)x cosh 7ux

where Py(x) is the Legendre function of the 
first kind, V is the potential of the conductor 
and sin po =  c/a.

504. Use the result of the preceding problem to calculate the capacitance 
of a hemisphere of radius a.

505. A lens-shaped conductor at zero potential is introduced into a 
homogeneous electric field E0 directed along its axis of symmetry (in the 
negative z-direction), as shown in Figure 142. Find the resulting potential

distribution.
Arts.

u ~  E0z — 2E0Cyj2 cosh a — 2 cos p

sinh ( n  — po)x
COSh 7 T X

sinh px „ , . v ,X K P_^+iT(cosh *) d x .  
sinh pox

506. Find the gravitational po- 
F ig u r e  142 tential of a homogeneous hemisphere

of density p and radius a.
Ans. The potential outside the hemisphere is

w(a, p) =  2 cosh a — 2 cos p

. J ^ f c O s h T t T - T 2 ^

L » “ h'(W2) sinh ®  ^  sinh ( j  -  <>)’ ]
P_W+iT(cosh a)

sinh (37tt/2) cosh tcx
dx
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Hint. Inside the hemisphere, subtract out the particular solution —27rpz2 
of the inhomogeneous equation. Use the integral

______3 sin2 p_____
(2 cosh a — 2 cos p)5/2

cot p
Jo

t  sinh ( tc — P ) t

0 COSh 7TT

00 t 2 cosh ( tx — (3)t+rJo COSh 7TT

P_i^+iT(cosh a) dx

P_i^+lT(cosh a) dr.

7. Three-Dimensional Bipolar Coordinates

By three-dimensional bipolar coordinates, we mean coordinates a, p, cp 
related to the rectangular coordinates x , z by the formulas

c sin a cos cp c sin a sin cpx = ---------------— , y — ----------------—
cosh p — cos a cosh p — cos a

where
0 < a < 7x, — oo <  p <  oo,

. — o ncosh p — cos a

— 7C <  Cp <  7T,

and c >  0 is a scale factor.19 The close resemblance between (11) and the 
formulas defining toroidal coordinates should be noted (see p. 233). The 
corresponding triply orthogonal system of surfaces consists of the spindle- 
shaped surfaces of revolution a =  const, satisfying the equation

(r — c cot a ) 2 +  z2 =  — \  ,
\sin a/

the spheres p =  const satisfying the equation

(z — c coth P)2 +  r2 =

and the planes cp =  const (see Figure 143). The square of the element of arc 
length is

ds2 =
(cosh p — cos a)2

(d a 2 +  d p 2 +  s in 2 a  dcp2),

19 If a point has cylindrical coordinates r, cp, z, then

c sin a c sinh Br ==---------------------- , z — ------------------------,
cosh p — cos a cosh p — cos a

z +  ir =  ic cot
a +  ip 

2

or more concisely



C U R V I L I N E A R  C O O R D IN A T E S  243

and hence Laplace’s equation takes the form

sin a du\_3I sin a 3u\  ̂ d /
3a \cosh p — cos a 3a/ 3p \cosh p — cos a 3p

+
32u

sin a(cosh p — cos a) 3cp2
=  0 . (12)

To separate variables in (12), we first introduce a new function v by making 
the substitution

u = yjl cosh p — 2 cos a r,

as in the case of toroidal coordinates. If there is no dependence on the angle 
<p, it turns out that Laplace’s equation (12) has particular solutions of the 
form

u = uv = yj2 cosh p — 2 cos a [/4vPv(cos a) +  Pv(cos a)]
X [Cv cosh (v +  i)p +  Dv sinh (v +  J)p],

in terms of the Legendre functions of the first and second kinds, where v is a 
parameter and Av).. . ,  Dv are arbitrary constants (see L9, p. 232). In 
boundary value problems involving a region px bounded by two
nonintersecting spheres p =  Pi and p =  p2, it is easy to see that the appro­
priate particular solutions are

u = un = yj2 cosh p — 2 cos a [Mn cosh (n +  J)p
+  Nn sinh (n +  i)p]Pn(cos a), n =  0, 1, 2, . . . ,

in terms of the Legendre polynomials Pn(x), and the general solution is 
constructed by summing these solutions. In problems involving the region
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bounded by the spindle-shaped surface a =  a0, the appropriate particular 
solutions are obtained by choosing v =  +  i t  ( t  > 0), and are of the
form
u =  wT =  yj2 cosh p — 2 cos a [MT cos t(3 +  NT sin tP]F_i^+<t(±cos a),

t > 0, (13)
where the plus sign corresponds to the exterior problem (0 < a <  a0) and 
the minus sign to the interior problem (a0 <  a < n). In this case, the 
general solution is obtained by integrating (13) with respect to t ,  and the 
factors AfT and NT are determined by taking Fourier cosine and sine trans­
forms with respect to p.

This section contains problems from various branches of mathematical 
physics which can be solved by using three-dimensional bipolar coordinates.

The last three problems (Probs. 512- 
514) involve limiting cases of bipolar 
and toroidal coordinates, and lead to 
elegant formulas for the capacitance 
of such objects as a pair of spheres 
in contact or the surface obtained by 
rotating a circle about a tangent line.

F i g u r e  144
507. Find the electrostatic field in 

a spark gap consisting of two con­
ducting spheres of radius a, with 

centers a distance 21 apart, if the spheres are at potentials V1 and V2 
respectively (see Figure 144).

Ans. The electrostatic potential is
~F2 +  Vr cosh (n +  £)P 

_ _ 2 cosh (n +  £)p0

j W l  sinh(^+j)Pl (̂ W)Bop a)
2 sinh (n +  i ) p j  

in terms of the Legendre polynomials Pn(x), where
/

u(a, P) =  y]2 cosh p — 2 cos

cosh p0 =  -  .
a

Hint. Use the expansion 
1 = ^ e ' {n+'A)*Pn(cos a).

y/2 cosh P — 2 cos a
*508. Find the capacitances Cll> ^12 and C22 of a system of conductors 

consisting of two spheres of radii ax and a2, with centers a distance 21 apart.20

20 Concerning the meaning of Clu C12 and C22, see the solution, p. 370.
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Assuming that the radii are equal (ax = a2 =  a), tabulate Ci2 as a function 
of the ratio l/a.

Ans.

Cn =  c(— —  + 2 le ~ (n+'A*' cosh (n +  i)(px +  W -  «"("+W)p*] 
12 sinh px nt i

X

C\2 =  C2  ~
_-(n+H)(pi+3a)

sinh (n +  +  p2)

*=o s i n h  ( n  +  i ) ( p x +  P2) ’

C22 =  c(— —  +  S  [ e -^ 'A*> cosh (« +  iXPx +  M  -  e-(n+‘̂ )Sl] 
12 sinh p2 ~ 0

.-(n+W)02
X

sinh (n +  iXPi +  p2) 
where (Jlf p2 and c are determined from the relations

L „ 4 /2 +  a\ — a\ u „ 4 /2 -  a? +  a\cosh px = ------    , cosh p2 = ------—i------ ,
4 Ict̂  4/^2

c =  ax sinh px =  a2 sinh p2.

/
a 1.2 1.4 1.6 1.8 2.0

Cl3
a 0.572 0.431 0.356 0.306 0.269

Hint. In three-dimensional bipolar coordinates a, p, cp, the surfaces of 
the conductors have equations p =  — px and p =  p2.

509. A conducting sphere of radius a is buried to a given depth in a 
liquid of dielectric constant e. Find the potential distribution outside the 
sphere, assuming that the sphere is at potential V (see Figure 145). Calculate 
the capacitance of the sphere.

Ans.

Ui =  Vzy/2 cosh p — 2 cos oc 2  t
e(n+K)(B-p0)pn(cos a)

n=o sinh (n +  £)po +  e cosh (n +  £)P„
— oo <  p <  0,

T, >------r-o---- s-------- v* sinh (n +  i)P +  e cosh (n +  i)Pu2 =  V J 2 cosh p -  2 cos a > ------ -—  — ^ ^
„ti sinh (n +  i)Po +  e cosh (n +  £)Po

X e-(n+'A^ P n{cos a), 0 <  p <  p»,
C =  V/2 -  a2

X [
1

2 sinh p0
_l_ y  £ sinh (n +  £)Po +  cosh (n +  £)P0 ^_(2n+i)p0 

sinh (n +  £)P„ +  e cosh (n +  £)po
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in terms of the Legendre polynomials Pn(x)y where

cosh p0 =  “ • 
a

I
in

F ig u r e  146

510. Find the potential distribution outside a charged spindle-shaped 
conductor at potential V (see Figure 146).

Ans.
u(a, P) =  V y j l  cosh p — 2 cos a

x f °° cos t P  f - W + < T ( - C O S  « o )  

Jo cosh -nr P_x+ir(cosa0) 
in terms of the Legendre function Py(x), where

P->A+«(c0S a) dr,

sin a0 =

Hint. In bipolar coordinates a, p, cp, the surface of the conductor has 
equation a =  a0. In the course of the solution, use the integral representation

2 COSh 7TT f 00 co s TPP— lA+ix( cos a0) =
Jo yjl cosh p — 2 cos a0

511. Solve the preceding problem, assuming that the conductor is placed 
in a homogeneous electric field E0 directed along the axis of rotation (in the 
negative z-direction).

Ans.

u = E0z — 2E0Cyj2 cosh P — 2 cos a I — -—
Jo cosh TUT

X
P—lA+j-X cos a0) 
P-W+fX008 ao)

P_^+iT(cos a) sin pT dx.
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*512. Calculate the capacitance of a conductor consisting of two touching 
spheres of equal radius (see Figure 147).

Ans. C =  2a In 2.
Hint. Introduce degenerate bipolar 

coordinates, defined by the formula

which can be obtained from the formula

z +  ir =  ic cot « +  «P
2

i
c tz const

(cf. footnote 19, p. 242) by replacing F i g u r e  147
a, p, c by ae, Pe, \cz and taking the
limit as s —► 0. Then the surfaces of the spheres have equations p =  ± P 0.

513. Calculate the capacitance of a conducting sphere of radius a lying 
on a plane with dielectric constant e (see Figure 148).

Ans.

C = e+  1a ------
e -  1

In e +  1 
2

514. Calculate the capacitance of a 
conductor in the shape of the surface 
obtained by rotating a circle of radius a 
about one of its tangents (a “doughnut 
without a hole”).

Ans.
C 4a f  °° * 0(x)

7T Jo I0(x)
where 70(x) and 7T0(jt) are Bessel functions of imaginary argument.

Hint. The surface of the conductor has the equation a =  a0 in degenerate 
bipolar coordinates (see the hint to Prob. 512).

8. Some General Problems on Separation of Variables

515. Show that a necessary and sufficient condition for being able to 
separate variables in Helmholtz’s equation Au +  k2u =  0 (where A is the 
two-dimensional Laplace operator) in a system of curvilinear coordinates a, p 
defined by the formula

x + iy = f(<x + /p) (14)
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(where/  is analytic) is that /  be the solution of the third-order linear differ­
ential equation

/'"(Q -  x /'(0  =  0

(X is an arbitrary constant).

516. Using the result of the preceding problem, show that apart from 
linear transformations (corresponding to translation and rotation of the 
coordinate axes or change of scale in the xy and a(3-planes) the only trans­
formations of the form (14) leading to separation of variables in Helmholtz’s 
equation are the following:

x +  iy =  ea+*p (polar coordinates), 
x +  iy =  cosh (a +  i‘P) (elliptic coordinates), 
x +  iy =  (a +  J*P)2 (parabolic coordinates).

517. Show that Laplace’s equation

d2u 1 du 1_ (Pu <Pu _  q
dr2 +  r dr r2 d<?2 +  dz2 ~

has infinitely many particular solutions of the form

u =  /-^ 2A(a)B(P)0(9),

where a, (3, cp are a system of orthogonal curvilinear coordinates defined by 
the formula

z + ir = / ( a  +  /p), 

and /(£) is a solution of the differential equation

f % )  = 2  h /% ) ,
*=o

where the Xfc are arbitrary real constants (see L2).

518. Show that all the three-dimensional coordinate systems considered 
in this chapter (as well as cylindrical and spherical coordinates) can be 
obtained as special cases of the coordinate system of the preceding problem.

Ans. Cylindrical coordinates:

/ ( 0  =  C \  =  1, X, =  X2 =  X3 =  X4 =  0, 

a =  z, p =  r,

u = [AJJyr) +  BYJyr)][C cosh vz +  D sinh vz] COS ^  ,L ^  7 ^  /JL sin [xcp
where J^x)  and y^x) are Bessel functions of the first and second kind.
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Spherical coordinates:

f  (0  =  d* 9 X2 =  1, X0 =  Xj =  X3 =  X4 =  0, 
a =  In r, (3 =  0,

u =  [Ar- +  cos 0) +  DQftcos 0 ) ] ° ? ^  ,

where />£(*) and Q^(x) are associated Legendre functions of the first and 
second kind for the interval (—1, l).21 

Prolate spheroidal coordinates:
f(C) = c cosh C X0 =  —c2, X2 = 1 , Xx =  X3 =  X4 =  0,

u =  [/IPftcosh a) +  BQ»{cosh a)][C^(cos p) +  Dfif(cos p)] “ “ jJJ. 
Oblate spheroidal coordinates:

/ ( 0  =  c sinh K, X0 =  c2, X2 = 1 , Xx =  X3 =  X4 =  0,

u =  [ ^ ^ ( i  sinh a) +  BQ*(< sinh a)][C^(cos p) +  DQftcos p)]COS ^  .sin [xcp
Paraboloidal coordinates:

m  =
C? X̂ — 2c, Xq — X2 — X3 — X4 — 0,

u = [AJJya) + B Y ^ m C I ^ )  +  DKJyp)] C°* JJJ ,

where IĴ pc) and are Bessel functions of imaginary argument.
Toroidal coordinates:

m  =  ci coth S X0 =  -  -  , X ,=  - | ,  X. =  -  7 1 , Xj =  X3 =  0,
2 4 2 4c

u = yj2 cosh a — 2 cos p ^ P ^ ^ c o s h  a) +  Bg^_i^(cosh a)]

X [C cos vfi +  D sin vS] C?S ^  .r  r  sm p.9
Three-dimensional bipolar coordinates:

/(£) =  c/ c°f > X0 =  ~  , X2 =  -  , X4 =  — —  , Xi =  X3 =  0,
2 4 2 4c

u = y/ 2  cosh p — 2 cos a[/4P£(cos a) +  BQ^(cos a)]

X [C cosh (v +  *)P +  D sinh (v +  J)p] JJ J  .

21 See e.g., L9, p. 193.
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519. Prove that besides the coordinate systems listed in Prob. 518, 
separation of variables in Laplace’s equation is also possible in coordinates 
defined by the formula

z + ir = / ( a  +  i(3),

where /(£) is one of the Jacobian elliptic functions sn cn dn £.22 Con­
struct particular solutions of the form

u =  r-1/2A(a)B(P)0(cp)

for each of these three functions.

Arts.

1. /(£) =  sn X0 =  1, Xx =  0, X2 =  — (1 +  k2), X3 =  0, X4 — k \

u =  r-1/2A(a)B(P) C.°S ^  , 
v vr/ sin jjicp

where A(a) and B(P) are solutions of the differential equations

and (jl, v are arbitrary parameters.

2 . / ( 0  =  cnC X0 =  lc'2, X1 =  0, X2 =  —(A:'2 — A:2), X3 =  0, X4 -  - k \

A" +  

B" -

, / 1 2x /  cn a \2v +  ( i - f i < )  -----  —L \sn a dn a/

v +  (}-!>■)( cnip - T
. ^' Isnipdnip/

A = 0 ,  

B =  0.

3. /(Q  =  dnC X0 =  —A:'2, Xx =  0, X2 =  1 +  A:'2, X3 =  0, X4 = - 1 ,

22 See L2, W2, W3, and also the paper L4, where a system of solutions of Laplace’s 
equation suitable for solving boundary value problems for a ring of oval cross section is 
constructed.
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520. Verify that the biharmonic equation A2u = 0 (where A is the two- 
dimensional Laplace operator) has infinitely many particular solutions of the 
form

„ =  !/•(« +  TOI A W  “ s$ ,

where a, (3 is a system of two-dimensional curvilinear coordinates defined by 
the formula

X +  * > = /(«  +  I'P),
where

and is the solution of the differential equation

no - - o
(X and (jl are arbitrary parameters).

521. Using the result of the preceding problem, show that the two- 
dimensional biharmonic equation permits separation of variables in rec­
tangular, polar, two-dimensional bipolar and degenerate bipolar coordinates, 
and construct the corresponding particular solutions.

Arts. The general transformation called for here is of the form

where a, b and d are arbitrary constants.

1. Rectangular coordinates:

f(K) = L a — \, b = d =  0,
a =  x, p =  y,

u — (A cosh Xx +  B sinh Xx +  Cx cosh Xx +  Dx sin Xx) °?S ̂  . v y sm \y

2. Polar coordinates:

f i t )  =  = h  a =  d =  1, b =  — i ,

a =  In r, p =  9,

u = (Arx +  Br x +  Crx+2 — Dr x+2)c° s ^v ' ctn A fr\



252 CURVILINEAR COORDINATES PROB. 521

3. Bipolar coordinates:

/(Q  =  c tanh ^ , !JL =  ~» a =  “ > b = d =  0,

w =
cosh a +  cos p

[/I cosh (X +  l)a +  B sinh (X +  l)a

+  C cosh (X — l)a +  D sinh (X — l)a] ^  , 
4. Degenerate bipolar coordinates:

f(K) =  ; ,  H —*■ 0, a = — — , f> =  - ,  d = - ,  
Z V- (a H

u = (a2 +  p2)! [A cosh Xa +  B sinh Xa +  Ca cosh Xa +  Da sinh Xa] cos Xp
sin Xp
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INTEGRAL EQUATIONS

The use of integral equations to prove existence theorems for problems 
of mathematical physics, or to find approximate solutions, is a classical 
subject, which lies outside the scope of this book but is treated in con­
siderable detail in the available literature. The purpose of this chapter is 
simply to show how integral equations can be used to find exact solutions of 
certain physical problems. The methods we have in mind are admittedly 
quite special, but very effective in the cases to which they apply, and their 
full possibilities do not yet seem to have been exploited. As an example of 
the successful application of integral equations to physical problems, we cite 
the work of Grinberg, summarized in his book G5, devoted to the solution 
of a number of interesting problems from the theory of electricity and 
magnetism.

This chapter consists of two sections. The first is devoted to some 
nonstationary problems of diffraction theory which can be reduced to the 
solution of familiar integral equations, e.g., Abel’s equation, Volterra’s 
equation with a difference kernel, etc. The second section, stemming from 
Grinberg’s work, is primarily concerned with stationary problems stated in 
terms of electrostatics, but with obvious analogues involving magneto­
statics, heat conduction or d-c current flow.

Because of their relatively greater difficulty, we omit problems whose 
solution requires the use of the Wiener-Hopf method, or problems which 
involve singular integral equations containing integrals of the Cauchy type. 
Concerning these topics, the reader should consult the relevant references 
cited at the end of the chapter (see p. 271).

253
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I. Diffraction Theory

*522. A plane electromagnetic wave with electric field components

Eg, -- Ey — 0, - ' H J
is incident on a perfectly conducting half-plane (screen) x  > 0, z =  0. 
Denoting the components of the resulting electric field (the sum of the 
incident and reflected waves) by 0, 0, E and setting

E - f {' - » ) - “ ■
show that the reflected wave u can be represented in the form

- rJ  —oo

<P(s )

v r
ds

(5 = , - £ ,  r = V*‘ + / ) ,

where the function <p(.s) satisfies Abel's integral equation

<p(s)£ d s = m .
J-OO y/Z — S

Hint. Look for a solution of the wave equation depending only on 5 and yj..

*523. Solve Prob. 522, assuming 
that the incident wave encounters the 
screen at the time t =  0, i.e.,

I  >  o,
10, $ <  0. 

Describe the diffraction process graph­
ically.

Ans>

/($> =

“ =  ( Jo VS -  S
where

to,
7 )  >  0, 

V) <  o,

- A * .n JoJo V® -  \
The diffraction process is illustrated in Figure 149.
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524. Solve Prob. 523 for the special case where
a) g(£) =  1 (a wave with a rectilinear front);
b) g(0  =  sin o>£.

Ans. In the notation of Prob. 523, the reflected wave u has the following 
representation in the excited zone:

a)

b)

2u — -  arc sin
7C

2 rv W -,) sin _  ($ _
TC Jo 1 +  T2 T'

525. By passing to the limit t —► oo in the formulas of Prob. 524, solve 
the well-known Sommerfeld problem on the steady-state sinusoidal electro­
magnetic oscillations due to a plane wave incident on the edge of a con­
ducting screen (see Prob. 426).

Ans.

where
u =  Im {«VW},

9 f 00 2
«* =  --= ein/Ae~ikx ___ ds,

V71 *V k ( r - x )

0)
V

526. A plane electromagnetic wave with components

Ex -- Ey — 0, x +  a 
v )

is incident on a perfectly conducting screen shaped like a parabolic cylinder 
r — x  +  2a. Setting

E = x +  a\ 
v /

— W,

where E is the z-component of the electric field, show that the reflected wave 
can be represented in the form

j —<
<p(s)

VS —s +  (2alv)
ds

(r , x +  a 4 r — a /-j~.— \\
U = f ----------- , r i = t ------------ , r =  V* +  y J >
\  V V 1

where <p(,y) is the solution of the integral equation 

^  <pQ)
rV —I

d s = m .
-oo V S - S  +  (2a/v)

Hint. Look for a solution of the wave equation depending only on !; and rj.
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527. Solve the preceding problem of diffraction theory, assuming that the 
wave makes contact with the screen at the time t =  0 and is continuous along 
its front,1 i.e.,

m  =
g(£),
o,

S > o ,
$ < 0,

*(0) =  0.

Describe the diffraction process graphically.
Ans.

where

u = a
<p(s)

0 y / Z  —  S  +  (2 afv)
ds.

to.

<p(s) =  r _. f ^ . eP°dP-2m Jr K

v) >  0.

7 )  <  0 ,

Here g and R  are the Laplace transforms of the functions #(!;) and

m  = ( ^ T -
so that

Quiescent

J p
where <£(*) is the probability integral and the path of integration T is a

straight line parallel to the imaginary axis 
lying to the right of the singular points of 
the integrand.

The diffraction process is indicated in 
Figure 150. The boundary of the excited 
zone is the envelope of the secondary waves 
reflected from points of the screen, in keep­
ing with Huygens’ principle.

528. Suppose the incident wave in Prob. 
547 has the equation

g<&) =  -  arc tan / — . n 'V 2a
Show that the reflected wave u can then be represented in the form

J  iw =  -  arc tan
TC

‘0
I -  *) +  (2a/v)

Y) >  0.

1 The case of a discontinuity on the wave front can be treated by passing to the limit.
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529. Consider the problem of diffraction of a plane sound wave

f - ) .
by an obstacle shaped like a parabolic cylinder. Show that the reflected wave 
has the representation2

- rV ---I

yQ) . ds
-co ,/£  — s +  (2a/v)

( k  ̂ x + a r — a / T l  a\U = < ----------- , ?! =  * ----------- , r =  V* + / I ,\ v v /
where <p(s) is the solution of the Volterra integral equation

<P(0 + i/=r —2V v J-oo VL -
y(s)

K -  a +  (2a/u)]3/2
ds -  V - r n

(see F8.)
530. Solve the preceding problem, assuming that the wave encounters the 

obstacle at the time / =  0:

m  =  (q® ’ \  ^  n m  =  o.

U = [£:

$ < 0 ,

y(s)
0 ,/£  — s +  (2a/v)

VO,

ds, 7) >  0, 

7) <  0.
where, in the notation of Prob. 527,

cp(s) =  1 / H  -L  f  -------   p§ _  evsdp.
2V v 2ni Jr 1 — ^ 2 a/v pR

*531. Consider the problem of diffraction of a plane sound wave

A - — )
by an obstacle shaped like a paraboloid of revolution r = z +  2a. Applying 
the technique of the preceding problems, show that the reflected wave has 
the representation

cp(s)
v  — 00

ds
-oo \  — s +  (2a/v)

lr  , z +  a , r — a — r~;—------------, 7) =  t ------------ , r =  v x  + /  +  z I,
\ 0 t? /

2 In problems on diffraction of acoustic waves (unlike the case of electromagnetic 
waves), we write the total solution in the form / ( 0  +  //.
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where cp(j) is the solution of the Volterra integral equation

+ -  f
V J -

’ --------
oo [£ — s +  (2a/v)]2 v

(see F8).

*532. Solve the preceding problem, assuming that the incident wave has 
the equation

isa ) ’ I  <  J  ,(0) =  0./« >  -  ( f

Ans. In the excited zone ( y) >  0),

u = JJ o
<p(s)

where
0^ — 5 +  (2 a/v)

ds,

9(s) =  -  —  f ----- ^ ----   e” dp.
v 2 -K iJ r l~ (a v )p R(a/v)pR

In the last formula, g and R  are the Laplace transforms of g(£) and the 
kernel

1
m  = $ + (2 a/v)

and the path of integration T is a straight line parallel to the imaginary axis 
lying to the right of the singular points of the integrand. Note that

R = e - ^ E i { - * ) ■
in terms of the exponential integral Ei(x).

533. Consider the problem of diffraction of a plane wave by a paraboloid 
of revolution r =  z +  2a with homogeneous boundary conditions of the 
first kind. Show that the reflected wave has the representation

« = r — 3
J-oo E — s

•p(s) ds,
-oo £ — s +  (2a/v) 

k = t - Z— , = r =  Vx2 +  /  +  z2) .
\  V V I

where <p($) is the solution of the integral equation

<P(s)Jl<d E — s +  (2a/v)
d s = m .
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534. Using the Laplace transform, solve the integral equation of Prob. 
533 for the case of a wave of the form

fetf), I  >  0,
l0, I  <  0, f(0) =  0.

Ans. In the notation of Prob. 532,

cp(s) = _L_
2ni

dp.

2. Electrostatics

535. A conductor of arbitrary shape, bounded by a surface E, is intro­
duced into a given external field E° (see Figure 151). Show that the density 
of charge induced on the conductor satisfies the 
integral equation

c(N) = E°n(N)
2iz + J L f -2n Jx\r

ct(M)

m n \ ‘

cos ( rMA,, n) dS (1)

where M  and N  are two arbitrary points of the 
surface E, dS is the element of area, tmn is the vector 
joining M  to A, n is the unit exterior normal to E 
at the point N, and EQn =  E° • n is the projection of 
E° onto n.

536. Show that in the special case where the surface of the conductor is 
an infinite plane, the solution of the integral equation (1) is given by3

E°n(N)
2n

Use this result to find the charge density induced on a conducting plane by a 
point charge q placed at height h above the plane.

Ans.

<N) =
qh_

2tlR3 ’

where R is the distance from the charge to the point N  of the plane.

3 Naturally, this result can be found in other ways. The present method is o f interest 
mainly because the final result is obtained practically without calculations.
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537. A metallic sphere of radius a at potential V is introduced into an 
external electric field E°. Starting from the integral equation (1), show that the 
density of charge induced on the surface of the sphere is given by

<*N) =
E°n(N)

2n
V -  u°(N) 

47za
where u° is the potential of the external field. Examine the special case where 
the source of the field E° is a point charge q at distance b (b >  a) from the 
center of the sphere.

Ans.
Vc(N) =  J -  

\na
g b2 -  a2 

4n aR3
where R is the distance from the charge to the given point N  of the surface 
of the sphere.

538. Solve the preceding problem, given the total charge Q of the sphere 
(rather than its potential). Use the formula so obtained to solve the problem 
of the charge distribution on the surface of an initially uncharged insulated 
sphere introduced into a homogeneous external field E°.

Ans.

c(N) E l m
In

J2.+  ~ I ~  +4na La
where u° is the average over the sphere of the potential of the external field:

In the special case

1
4no2

dS.

a(N) =  — cos 0,
471

where 0 is the angle between the direction of the external field E° and the 
radius vector drawn from the center of the sphere to the point N.

539. A cylindrical conductor with cross section bounded by an arbitrary 
contour T (see Figure 152) is introduced into a given plane-parallel field E°.

Show that the density of charge satisfies the integral 
equation

‘ g(M)o(/v)
2n

1 f o<
7i Jr |rlr ;wwl

cos (]rMN, n) ds, (2)

where M  and N  are two arbitrary points of the contour 
T, ds is the element of arc length, tmn is the vector 
joining M  to TV, n is the unit exterior normal to T at the 
point Nt and E„ = E° • n is the projection of E° onto n.F i g u r e  1 5 2
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540. Suppose a conductor shaped like an infinite circular cylinder of 
radius 0, carrying charge Q per unit length, is introduced into an external 
plane-parallel field E°. Show that the density of induced charge on the 
surface of the conductor is given by

a(N) = Q_
2nd

+

Consider the special case where

E°n(N)
2n

a) The external field is homogeneous;
b) The source of the external field is a line charge with charge q per unit 
length, placed outside the cylinder at the distance b from its axis.

Arts.

a) « m = : a -  + i j 2 1» ,
2na 2n

where 0 is the angle between the direction of the homogeneous field (of 
strength E) and the vector drawn from the center of the cylinder to the given 
point N  on the surface of the conductor;

b) a(N) = Q +  q
2nd

q b2 — d2 
2n dR2

where R is the distance from the line charge to N.
541. Find the distribution of charge density on the inner surface of a 

grounded cylindrical shell of radius a, assuming that the external field is 
produced by line charges parallel to the axis of the cylinder passing through 
the points Mk = (dk, cpk\  k = 1, 2, . . ., n.

Ans.

2nd k=i Rl
where qk is the charge per unit length of the line charge passing through the 
point Mki and Rk is the distance between the points Mk and N.

*542. The electrostatic field in the region 0 < y <  h between two 
grounded parallel planes is due to line sources whose free-space field is E°. 
Show that the densities C70(x) and oA(x) of induced charge on the planes y  — 0 
and y  =  h satisfy the system of integral equations

<*o(*) =  — £ v|v=o 2n
h r -  g>(g)
n J -o o  (E, — x)2 +  /i2 *

«*(*) = 2n
and then solve this system.

h f "  g(@ dp 
7C J -o o  (5 — x)2 +  h 2

(3)
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Ans.

=  J _  f 00
471* J-00 1 — , - 2 |X |A  '

- i X a dX,

=  — 7 -:    j^rrr « dX,47t* J-oo 1 — e'*1*1*
where/is the Fourier transform off ( x ) ,  i.e.,4

/ =
J — 00

and
/ o W  =  K \ v = o >  A W  =  K \ v = , r

Hint. Take the Fourier transform of each of the equations (3).

543, Solve the preceding problem for the special case where the field E° 
is due to a line source with charge q per unit length, passing through the 
point M0 = (0, b).

Ans.

=  -  f -

. 7C bsin — 
h<L

2  h  , t i x  T i bcosh------cos —
h  h

<*h(x) = —

.  T i b  sin — 
h

2h  , 7ix . 7i bcosh-----b cos —
h  h

Hint. To obtain the solution in closed form, use formula 15, p. 385.

544. Suppose a system of line sources, whose free-space field E° has 
components EJf, ££, 0 in cylindrical coordinates, is placed inside a dihedral 
angle 0 <  cp <  a with grounded conducting walls. Show that the charge 
densities o0M and aa(r) on the walls satisfy the system of integral equations

pgq(p)
27T T l  Jo

d p .
Jo p +  r — 2rp cos a

. . m = -  f  K u . .  -  ^  r  —  *>.
2 t i  7u Jo p +  r —  2rp cos a

and solve this system, using the Mellin transform.
Ans.

CTo(r) =  _ L  r i+,°°/o sin n(p - ! ) + / «  sin (tc -  «)(p -  1)
4 k 2 i'  Ji-too sin (2n — a)(p — 1) • sin a(p — 1)

X sin n(p — 1 )r~v dp,
a ,rs = ___ L  r i+<” / .  sin 7t(p -  1) +  /o sin (tc -  «)(p -  1)

“ 47c2r v i too sin ( 2 k  — a)(p — 1) • sin a(p — 1)
X sin n(p — 1 )r~v dp,

4 This definition of the Fourier transform differs from the customary one by a numerical 
factor.



p r o b . 546 IN T E G R A L  E Q U A T IO N S  263

where/is the Mellin transform of/(r), i.e.,

/ = J o / ( r y - 1 dr,
and

Mr)  =  o, fair) =  £ “|,=a.
Hint.

r t2
t 3 dt 

— 2t cos a +  1
n sin (tc — ops 

sin a sin ns
— 1 <  Re s <  1.

545. Solve the preceding problem, assuming that the field E° is due to a 
line source with charge q per unit length, passing through the point M0 =  
(r0, cp0)-  Use the formula so obtained to find the electrostatic field due to a 
charged line placed at distance a from the edge of a conducting half-plane 
(a =  2n, vq  =  a, <p0 =  or near a right-angular corner (a =  3ti/2, r0 =  a, 
<Po =  *)•

Ans.

sin Trcpo

=  - s_
car

( r + (? r— ? '
sin 7T9o

ar

546. A conductor shaped like an open surface of arbitrary form (see 
Figure 153) is placed in an external field E°. Show that the sum of the charge 
densities on opposite sides of the surface satisfies the integral equation of the 
first kind

I dS = V — u%N), (4)
lrATNl

where a(N) =  (*i(N) +  a2(A0, uo is the potential of the 
external field and V is the potential of the conductor, while 
the difference between the charge densities is given by the 
formula *
°i(N) ~  M N) =  —  +  -  f  cos (rMN, n) dS.2tc 2n Ji

(5)
Thus, to solve the electrostatic problem completely, it is sufficient to know 
the solution of the integral equation (4) [see G5, Chap. 20].
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547. Show that equation (5) takes the form

-  < n ) =
El(N)

2iz
for a plane surface, and the form

Zi 2n
V -  u\N)  

4nR

6-~cL 
F ig u r e  154

for a spherical surface of radius R , regardless of the form of 
the boundary curve.

548. Write the integral equation (4) for the case where the 
surface of the conductor is a disk of radius R or a thin spheri­
cal bowl r = R, 0 < 0 <  a (see Figure 154), assuming that the 
external field has rotational symmetry with respect to the 
z-axis.5

Ans.
pq(p) 

P +  r

X / V p r \ dp =  K _ „ o ( r ) >

\p  +  r1
0 < r < R

for the disk, and

2R  f g ct(#) sin & 

Jo sin £(# +  6)
R  /  Vsin ft sin 6\  

Isin +  0)/
d# = V -  m°(0). 0 < 0 < a

for the bowl, where K{k) is the complete elliptic integral of the first kind.

*549. Show that the integral equations of the preceding problem can be 
reduced to the integral equation

2 f fl/Q0
n Jo x +  y dy = g(x). 0 < x < a.

and solve this equation. 
Ans.

f(y) =
2 d_ Ca sds d C3 g(t)t dt 
tz dy *v s2 — y2 ds Jq yjs2 — t2

550. Using the results of Probs. 548 and 549, find the distribution of 
charge on a disk of radius R at potential V introduced into an arbitrary 
axially symmetric external field.

6 Problems 548-555 are considered in Lebedev’s paper L5.
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Ans.

+  <r2(r) =  -
1 d_ f R s ds d_ 

7z2r dr Jr y/s2 — r2 ds

~  <*&) =  ^  E°z(r%
2it

where E\{r) is the normal component of the external field on the surface of 
the disk.

551. Find the charge density on a thin conducting disk of radius R for 
the following cases:

a) The disk is charged to potential F, and there is no external field 
(freely charged disk);
b) A point charge q is placed on the axis of symmetry of the disk, at 
distance h from the disk.

Ans.

a) ffi (r) =  ct2'0) =
2n2 J r * -  r* ’

b) ffli2(r) = qh
2n +  r2)3/2

arc tan Ir 2 — r2 I h2 +  r2 7u 
V h2 + r2 +  R2 -  r2 ±  2.

where is the charge density on the side facing the charge.

552. Find the charge distribution on a thin spherical bowl r = R, 
0 < 0 < a at potential V placed in an arbitrary axially symmetric external 
field E°.

Ans.

CTi(0) +  <*2(6) —
1_____ d_ f« tan ds

2n2R sin £0 d0 Je Vtan2 — tan2 £0

£  f 3 [V -  u°(t)] tan j t  dt 
ds Jo ^/tan2 Is — tan2 cos £*

<ri(0) -  <ra(0) =  f  £? (0 )+— [K
27T 47CK

«°(0)],

where w°(0) and is°(0) are the values of the potential and the normal com­
ponent of the electric field on the surface of the bowl, while and a2 are the 
charge densities on the convex and concave sides of the surface.



266 IN T E G R A L  E Q U A T IO N S P R O B . 553

553. Solve the preceding problem for the following special cases:
a) There is no external field (free charge distribution);
b) The external field is homogeneous, and the potential V is zero (a thin 
conducting spherical shield with a circular hole, placed in a homo­
geneous field E°).

Arts. 

cti,2(G) = arc tan Vsin2 sin2 £0

CTi,2(6) —

AtZ*R

3£° cos 0
4tt2

cos £oc

+  arc tan

c o s  £ o c  ^  7 t

Vsin2 £a — sin2 £0 2.

Vsin2 £« — sin2 £0~1 
cos £a -I 

E° cos £a 3 cos 0 
4W*

2 cos2 £a
Vsin2 £a — sin2 £0 

554. Suppose a conducting plane at potential V, with a circular hole of 
radius R , is placed in an arbitrary axially symmetric external field (see 
Figure 155). Show that the problem of determining the charge distribution

on the plane reduces to solving the integral 
equation (4), and find the distribution.

Arts.

u-- 0

L
0 

2 R

0

J
, , , , v 1 d Cr rds

®i W +  = ~ T  T i— 1n‘ dr J r  J , - 2 —

X d_ f® su%t) dt 
ds I *>/»*

F i g u r e  1 5 5
°i(r)

1
27 T

where is the charge density on the upper surface of the plane, while u°(r) is 
the potential and £j(r) the normal component of the external field at the 
point r.

555. Solve the preceding problem, assuming that the external field is due 
to a point charge q on the axis of symmetry of the hole at distance h from the 
plane.

Arts.

CTi,ii(r) =  —
gh r h l r2 — R2 R l r2 +  h2 

2ti \h 2 +  r2)3/2LarC an R *  r2 +  h2 +  h *  r2 -  R2
556. Show that the problem of the charge density on a grounded thin 

conducting half-plane, introduced into a given plane-parallel external field 
E°, reduces to the solution of the integral equation of the first kind

J# <*(£) In |x - l \ d l  = f{x). 0 < x <  oo, (6)
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where ct(at) is the total charge per unit length, a(x) =  ^(jc) +  a2(x),e and 
f (x )  = £w°(x)> in terms of the potential u°(x) of the external field at the point 
x. Solve this integral equation.

Arts.

where

?(x) = -  [f(x)

iv* -  V5l 

- m i

Hint. Set x = 0 in (6) and subtract the result from the original equation. 
Then take the Mellin transform of the equation so obtained.

557. Use the result of the preceding problem to find the charge dis­
tribution on the surface of a thin conducting sheet x >  0, if there is a line 
source with charge q per unit length near the edge of the sheet.

Ans.

sin —
1̂,2 — “  I---27Vyjr0x

rn
/  x 9o */ — cos

* r0 2

where r0, cp0 are the polar coordinates of the 
point My and the upper sign pertains to the den­
sity on the side of the sheet facing the charge.

558. Two media with dielectric constants 
and e2 are separated by a surface S (see Figure 
156). Consider the electrostatic field in the
resulting inhomogeneous medium due to sources whose free-space field is E0. 
Show that the density of polarized charge on the surface £ , determining the 
secondary field,7 satisfies the integral equation

K W  +  f cos (rMN, n) dS

where M  and N  are two arbitrary points of the surface X), dS is the element 
of area, rMN is the vector joining M  to N, n is the unit exterior normal to

a(N) = El £o
2 t +  e2) ’]• (7)

6 The difference between the densities is given by the previous formula

CTiC*) -  a2(*) = --  £J(*).Ztc
7 The potential of the secondary field in each medium is given by

a ( M )1 f
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E at the point N, pointing from the medium with dielectric constant z1 to 
the medium with dielectric constant e2, and E* =  E° • n is the projection of 
the external field onto n (see G5, Chap. 14).

559. Using the integral equation (7), find the distribution of polarized 
charge for the case where the surface E is an infinite plane (this generalizes 
Prob. 536).

Ans.
a{N) = £l -  e2 El(N) 

+  e2 2 n
560. Derive the two-dimensional analogue of equation (7), corresponding 

to the plane-parallel electrostatic problem of an inhomogeneous medium 
made up of two homogeneous media with dielectric constants ex and e2.

Ans.
a{N) = — £2

27t(£i +  e2) E ° n ( N )  +  2 f — — cos (rMAr, n) ds
Jr r M\M

(8)

where n is the unit normal to the contour T representing the interface 
between the dielectrics.

*561. Consider a dihedral angle whose interior 0 <  cp <  a is filled with a 
medium of dielectric constant el9 and whose exterior a <  9 <  n is filled with 
a medium of dielectric constant e2 (see Figure 157). Show that the corre­
sponding two-dimensional electrostatic problem reduces to solving the

system of integral equations

®o(r) = e 2

2tc(£i +  e2) 

£«L_n +■P-0 T  2  s in  a J  2 , f P '̂
J 0  V 1 P  —

:(P)p dp
+  p2 — 2rp cos a_

ffaOO = 27t(£i +  E2)
~ F 0 1 . -  • f “ °o(p)P dP 1£<p <p=a +  2 sin a -5— 1 - .
 ̂ Jo r  +  p -  2rp cos aJ

where a0 and aa are the densities of polarized charge on the faces cp =  0 and 
9 =  a. Solve this system by using the Mellin transform.

Ans.
a ( r ) = JL r i+‘°°/«ft sin (n -  aXP — 0  -  fa sin rc(p -  !)

° 4tt2/ J  —iao sin27r(p — 1) — p2 sin2(K — a)(p — 1)
X r~ p sin 7r(p — 1) dp,

, v =  _P_ f 1+imA  sin 7z(p — 1) -  /oP sin (tt — a)(p -  1)
47t2/ J i - i o o  sin2 7i(p — 1) — (32 sin2 (n — a)(p — 1)

X r~v sin n(p — 1) dp,
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where /  is the Mellin transform

dr>
and

/ 0(r) =  £“|9=0) f a(r) — E°|9=0,
£1 I S2

562. Solve the preceding problem for the special case where a =  tc/2 and 
the external field E° is due to a line source with charge q per unit length, 
located in the medium with dielectric constant e2 at the point r =  a, 9 =  7r.

Ans.
a (r) =  ±_  | 1  r i+’“ _______ sin2 M P  ~  1)________ M * d

° ae2 27ri Ji-*® sin27i(p — 1) — (32 sin2 £tt(p — 1) \ r l

(r) =  X  J L  f 1+>0° sin H P  ~  1) sin n(p -  1) / a\v
n,Z a z 2 2 n i  Ji-i® sin2 7r(p — 1) — (3 2 sin2 \ n { p  — 1) \?v

563. A slab of dielectric constant elf bounded by the parallel planes 
y  =  0 and y  — h and surrounded by a medium of dielectric constant e2 (see 
Figure 158), is introduced into an arbitrary plane-parallel field E°. Show that 
the resulting electrostatic problem reduces to solving the following system 
of integral equations for the polarized charge densities <r0(.x;) and tf/X-*:):

<*;.(*) = el g2
27t(£i +  £2)

x +  2

(x -  Q* +  h2J 

1
-« (* -  +  h2

Solve this system of equations.
Ans.

®o(*) =

=

J _  f 00
4 n 2 J - 00

JL  f ”
4tz2 J-OO

Pe-|X|* /> - / .
1 _  p V 2|X|"

A  -  Pe-'x'y»
1 _  p V 2|x|*

e~iXx

e-a*

dX, 

dX,

where/is the Fourier transform off(x), i.e.,

f(x)eiXx dx.
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and

/„(x) =  E?|_o, f k(x) =  E°vl =h, M — 5"2 •
ei -r e2

564. Solve the preceding problem for the special case where the external 
field E° is due to a line source with charge q per unit length passing through 
the point x =  0, y  =  h\2.

Ans.
06 r°°

<*o(x) =  Oft(x) =  —    cos Xx dX.Jo 1 — (5e
*565. A perfectly conducting half-plane x > 0, y  =  0 is introduced into 

an external electromagnetic field with components

Ex = Ey = 0. £ 2 =  £ ° (x ^ y W.
Show that the sum j  = j\ +  j 2 of the current densities flowing in the upper 
and lower sides of the half-plane satisfy the integral equation

BW = !r r ^ 1>[fc I*-511/(5) di,
C  Jo

where

E M - E V O ) ,  Ic -  .
v c

and e, p. and a are the dielectric constant, the magnetic permeability and 
the conductivity of the medium, while the difference between the current 
densities is

=  c2e~tTt/2 dE°(x, y) 
27ra) dy y=0

(9)

Solve the integral equation by using the transform (27), p. 196. 
Ans.

= 27tO)X i t
[E(x) -  E{0)e~ikx] E( 0) 1

sinh 7ttJ
It sinh2 tct 
I cosher

enx/zHg\kx) dx.

where

f = e ^ [ Xf— H\*Xkx) dx 
Jo x

[it is assumed that /(x) approaches zero as x —► 0 in such a way that the 
integral converges at its lower limit].

*566. A plane electromagnetic wave with components

Ez =  E°ei(oit~kx)Ex =  Ey =  0,
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is incident on a perfectly conducting half-plane r > 0, 9 =  a. Using the 
result of the preceding problem, find the distribution of current density on 
the half-plane.

Arts.
. . . cE° le~in/* cos£a _ ikr . . <K/4-<*rcos«Ji +  Jz = —H ------;—  e +  sin a em'*e lKr cosa

TZyjTZ\ yj2kr
F°c

j x — j 2 = —  sin a e~tkrc0Si 
2n

r  V 2kr s i n  lA<x 2  \

I  4
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52. The solution of the problem reduces to the determination of the 
complex flow potential w = 9 +  ity, whose imaginary part is a harmonic 
function which equals zero on the axis of symmetry and takes the value 
<]; =  — vaa on the walls of the channel. To determine w, we need only find a 
conformal mapping of the region ABCDE onto the upper half-plane of the 
variable £ =  £ +  «). Suppose that in applying the Schwarz-Christoffel trans­
formation, we make the points of the z and ^-planes correspond in the way 
suggested in the hint to the problem. Then the relation between z and £ is 
obtained by integrating the equation

-  =  m  +  d 1/2(c +  x r n - \

where M  is a constant to be determined later. Bearing in mind that z =  ib 
if C =  — 1, we find that

where the integration is along any path joining the point =  - 1  to a given 
point £ in the upper half-plane.

It follows from the condition
I'm [z|c=_e -  z\K=c] = ia 
£-*0

that M  = aV^/Tt, and hence it only remains to determine the value of the 
parameter X. This is done by using the correspondence between the points 
z = ia and £ =  —X. Since in evaluating the integral with £ =  —X as its 
upper limit, we can integrate along the line segment joining the points 
£ =  — 1 and £ =  —X, on which

C +  1 =  1 “  s, S +  X =  ^ { s  -  X), C =  - 5
275

(X < 5 <  1),
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the last requirement leads to the formula

1 _  _  \/x r 1 / l — s\1/2 ds
a 7r Jx \$ — X/ s

which, after carrying out the integration, implies X =  (bja)2 and hence 
M = bjiz. As is easily verified, the complex potential in the £-plane is

V a d  1 yW = ---- - I n  Q,

which, together with the transformation z =  z(£) just derived, gives a para­
metric solution of the problem.

To calculate the velocity along the axis of symmetry (£ > 0, yj =  0), we 
use the formula

which implies

dwvx -  ivv = -  —  , 
dz

va \A   ̂ 1
where the relation between x  and £ must be established by using the trans­
formation z =  z(£). Choosing the path of integration to be a curve con­
sisting of the segment (—1, — R) of the real axis, an arc of a circle of radius 
R and the segment (R, £), and then taking the limit as R —► oo, we find that

x =
7C o o L J l \S  — X/ S  J Z  \ S  +  X/ S _

After some simple calculations, this leads to

5 =  -Tin  ̂ ~  +  !)/(% +  I |n V(£ +  !)/(£ +  X) +  1~|
a TC L 1 +  yj’ky/fe +  !)/(£ +  X) \/(£ +  !)/(£ +  ~  1-1

The final formulas, given in the answer to the problem, are obtained by 
introducing the new parameter

t = ±  / l ± 2 .
l  + 1

54. This problem belongs to a category which is both of considerable 
mathematical interest and of great importance in the applications, i.e., 
problems involving the formation of a jet at the boundary of an obstacle 
placed in a stationary plane-parallel flow of an ideal liquid. In such problems, 
the form of the jet is not known in advance, but must be determined from the 
condition that the velocity vector have a constant value on the free surface
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of the jet. For the case where the walls of the obstacle impeding the flow 
consist of line segments, an effective method of solving such problems is 
based on the possibility of establishing a connection between the complex 
potential w and the derivative dwjdz, starting from examination of the 
kinematic picture of the fluid motion.

Thus consider the part of the region occupied by the flow which is bounded 
by the axis of symmetry AB, the free boundary of the flow BC and the wall 
CD. The behavior of the velocity components vx and vy along the boundary 
of this region is determined by the following relations (where vb = Qj2b and 
2b is the width of the jet at a great distance from the slot AB):

On AB, vx =  0, —vb < vu < 0,
On BC, v\ + v2y = v2b,
On CD, —vb <  vx < 0, vy = 0.

Introducing the auxiliary complex variable £ =  dwjdz and taking account of 
the formula

dw
VX -  IVy = ~  —  , 

dz
we find on the basis of the above picture of the flow that the region ABCD is 
mapped conformally onto the interior of the circular sector

\ Z \  <  V b , -  -  < arg K < 0

in the £-plane, with the boundary of'the jet going into the arc of the circle 
Under the transformation1

K =  v b( y / t  —  y / t  —  1 ) ,

this sector is mapped into the upper half-plane of the complex variable t, 
with the curves AB, BC and CD in the original plane going into the negative 
real axis, the segment (0, 1) and the segment (1, oo). In the /-plane, the 
determination of the complex potential reduces to constructing a function 
analytic in the upper half-plane whose imaginary part takes the value zero 
on the negative real axis and the constant value — Q\2 on the positive real 
axis. It is easy to see that the solution of this problem is

Q i Qiw =  In / — — ,
2tt 2

1 To obtain this expression, it is convenient to first transform the sector into a half-strip 
by using the transformation

K •. Ss =  -  — i In — ,
2 vb

with the Schwarz-Christoffel transformation being applied afterwards.
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which, together with the results found earlier, gives

dz 1 dw Q yft +  y/t — 1
dt £ dt 2nvb t

Integrating (1) and bearing in mind that the point z = a must correspond to 
the point t =  1, we obtain

z =  —  [>Jt — 1 +  yjt — 1 +  arc tan \Jt — 1] +  a, (2)
T Z V h

where we choose the branch of the arc tangent which vanishes as t 1.
The functions w = w(z) and z =  z(t) establish the required connection 

between the complex variable w and the variable z in parametric form. To 
determine the form of the boundary of the jet, we need only separate real 
and imaginary parts in (2), assuming that the variable t belongs to the 
interval (0, 1). This gives the following parametric representation of the 
curve bounding the jet:

x — {y/t — 1) +  a, 
nvb y  = Q_

nvb V 1 -  < - 2 ln
i +  y i - n

(0 < t < 1).

The width 2b of the jet at a great distance from the slot, and the corre­
sponding value of the velocity vb =  Q\2b are found from the condition that 
* =  b for f =  0, which implies

b --------2— , r , _ ( l + 2U ,
1 +  (2/7t) \  7i/ 2a

and immediately leads to the formulas given in the answer.

59. Guided by the hint to the problem, we construct the function z =  z(£) 
mapping the interior of the rectangle onto the upper half-plane. Using the 
Schwarz-Christoffel transformation, we find that

d- i  = M j f f  -  i r i/2
dX,

which implies

( ? - • - )  1/2=  M —-------  1 -  —
\ kV V(l _  X2){1 -  k2C)

J o V ( l  -  0 ( 1  -  k % 2)

(0 <  k < 1),

since the symmetry requires that the point z = 0 correspond to the point 
£ =  0. The values of the constants M  and k are determined from the con­
dition that the points z =  a and z =  a +  ib correspond to the points £ =  1
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and Z =  1/&- This leads to the formulas

a — M f  ■ ^  =  MK(k),
Jo V(1 -  ^)(1 -  kX2)

b = M \ , ^  =  MK(k') (k' =  Vl -  k2),
V(1 -  0(1  -  k X 2)

where K(k) is the complete integral of the first kind.2 Eliminating M, we 
obtain the relations

k = m  £ K(k) =  *
a K(k) ’ a -  £*)(i _  /{2̂ )  ’

the first of which is an equation for determining the modulus k, while the 
second solves the given problem of conformal mapping.

According to the theory of elliptic functions, the inversion of the integral 
in the last expression is given by the formula

Kz
Z =  sn —  , 

a

where sn z is Jacobi’s elliptic function. Under the conformal mapping, the 
point z =  zQ = \ib goes into the point Z =  Zq = sn (iKb/2a) =  ij\Jk. The 
expression for the complex potential in the £-plane is

w =  —2q In----- — =  —2q In
C -  t

Kzsn ------
a

i
yjk

Kz , i
sn~  + ~ila y j k

To calculate the distribution of charge density on the walls of the box, we 
use the relations

• dw
lEv = ~  —  > dz 4 71

where En denotes the field normal to the surface of the conductor at the 
point where the value of the density a is being determined. Applying these 
formulas, we find that the charge distribution on the wall —a < x  < a, y  = 0 
is the expression given in the answer to the problem.

69. The displacement u(x, /) of any point of the midline of the beam 
satisfies the differential equation

* “ +  i ? “ =  o 
a** . ‘ a*

2 To reduce the second integral to canonical form, use the substitution V 1 — k%2 = k't.
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and the boundary conditions

du =  o ,
a2« =  o , „  d*u M0 ——

dx 3=0 dx2 3=1 °dt2 3=1 3x3M,a"° dx
To find the natural frequencies for transverse oscillations, we write

u(x, t) =  i>(x) sin (a)/ +  cp).
Then, after substituting this expression into the differential equation and the 
boundary conditions we find the following conditions determining the 
amplitude i>(x):

Vm  -  — D =  0,

«4=o =  y'Uo =  o, =  o, v"’\x=l =  - M0to2
EJ

The general solution of this equation is

/x  , v/o)X „ . x/tO X , , Jto  X . , Jto Xy(x) =  A1 cos-------- h sin --------h A2 cosh -------- \- B2 sinh   .
a a a a

The fact that the end x =  0 is clamped allows us the determine two of these 
constants, and leads to the expression

/X A  X , A G) x\ „ /  . A G) X . . x/g) x\v(x) =  A I cos ---------cosh —------ 1 +  B I sin —--------- sinh -- -----1.
\ a a / \ a a )

Then, imposing the remaining conditions at x =  /, we obtain the following 
homogeneous ̂ system of equations for the quantities A and B (for brevity, 
we set y =  V g) I fa) :

A (cos y +  cosh y) +  -#(sin y +  sinh y) =  0,

A ĵ Y (cos y — cosh y) +  (sin y — sinh y)J

+  B \y  —  (sin y — sinh y) — (cos y +  cosh y)1 =  0. 
L M J

The equation determining the natural frequencies is obtained by setting the 
determinant of this system equal to zero. The result is

1 +  cos y cosh y =  —  Y(sin y cosh y — cos y sinh y)- 
M

If the roots of this equation are denoted by yn (n = 1, 2, .. .), the natural 
frequencies are

_  fl2 2 
j2 Yn» « =  1,2, . . .
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83. The problem of finding the forced oscillations of the membrane 
under the action of a load q sin (o>t +  cp) distributed over a disk of radius 
b < a can be posed as follows: Find the solution of the differential equation

1 9 /  du\ 1 92u q(r, t) 
rdrX dr) ~  v* dt2 ~  T

governing the oscillations of the membrane, where

q(r, t) =  !(/■) sin (ut +  <p),

0 < r < b, 
b < r < a (3)

which satisfies the boundary condition

“ |  r = a  =  0

and has the same frequency as the perturbing force. Writing 

w( r ,  t) =  w(r) sin (cot +  cp),

and substituting this expression into the differential equation and boundary 
condition, we find that

1
r dr

+  - rw  = M
T 9

w(a) =  0.

The solution of this inhomogeneous equation, obtained by variation of con­
stants, has the form

w ="•(-) W t )
+

The constant B equals zero because of the requirement that the solution 
be bounded at the point r =  0. The constant A is determined from the 
condition w(a) =  0, which gives

After some manipulation, the desired expression for the amplitude takes the 
form

M.r) =  / 0°<Kp)G(p, r)p dp. (4)
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where

G(p, r)
n—  X

2 T

'./oOp/u)
J 0(toa/y)

Jo(<̂ rjv)
J0(ualv)

Substituting (3) and (5) into (4), and using the formulas

P < r, 

p > r.

(5)

r p j0(xp) d9 = z  u x p ) ,  f Ppy0(xP) d p  = £ ya(xP) +
Jo X Jo A 7CA

and the familiar expression

w n w  -  y0(x)Jo(x) =  —
TZX

for the Wronskian of the Bessel functions, we finally obtain the answer on 
p. 48.

91. If the z-axis is parallel to the generators of the wave guide, then the 
only component of the electric field of the TM-wave is

Ez =  Eei(oit' vz)

(co is the frequency of the oscillations and v is the propagation constant), 
whose amplitude satisfies Helmholtz’s equation

(k =  co/c =  27c/A, where A is the wavelength) and the homogeneous boundary 
conditions

^|r=a ~  |̂cp=0 == ĉp=a =

These equations have infinitely many nonzero solutions of the form

F   r  _  r (jmrA  . W7C<p m -  i OE Emn J mn/a\ / ^  * * * >
\ a / a

where the ymn are the roots of the equation

*A»71/<x(y)

and the value of the propagation constant corresponding to ymn is
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A wave with an imaginary value of vmn falls off exponentially in the ^-direc­
tion and is essentially unable to propagate in the wave guide, i.e., a wave 
can propagate in the guide only if vmn is real. This leads to the inequality

. 2na X <  ------.
Y m n

The maximum wavelength which can propagate in the guide is given by the 
formula

i _  2™Amax — j 
Yo

where Yo is the smallest positive root of the equations

U T )  =  °> m =  I - 2, . . .
96. The problem reduces to integration of the equation

<?u _  idh*
3x2 v*dt*

with initial conditions

4=o =  /(*)

hx

h(l -  x) 
l - c  '

0 < x < c,

c < x < /,

du
~dt

=  0,
t=o

and boundary conditions
w | x = 0  =  « | « = t  =  0 -

Setting u(xy t) =  X(x)T(t) and separating variables, we arrive at the equations
X" + XX = 0, T" +  Xv2T = 0.

Solving the first of these equations with the boundary conditions A"(0) =  
X(l) = 0, we find the corresponding eigenvalues and eigenfunctions

. n V  v v , x . mzx , 0 vX =  Xn =  —  , X = X n(x) = sin —  (n =  1, 2,. . .).

The solution of the second equation satisfying the conditions T'(0) = 0 is 
given by

T = Tn(t) = cn cos .

Therefore the set of particular solutions of the equation of the vibrating 
string satisfying all the homogeneous conditions is

. nnx nnvtu = un = cn sin---- cos------,n t t n = 1,2, . . .
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According to the basic idea of the Fourier method, we now look for a 
solution of the given problem in the form of a series

, x v  nnx nnvt
w(*, 0 =  2, cn sin —  cos —— ,

n= 1  * *

where the coefficients cn are determined from the condition we|=0 =  /(*), i.e., 
coincide with the coefficients of the expansion of the function f (x )  in a 
Fourier series

f ( x ) = % c n s i n 0 <  x <  /.
7 1 = 1  *

As is well known (see T7, p. 35),

2 f 1, ,  . . nnx ,
=  r  /(*) sin —  dx,

I Jo I

and hence in the present case

=
2hi2 . n7rc——---------- sin —

n2n2c(l — c) I

which leads to the answer on p. 60. It can be shown that this series represents 
a piecewise smooth function of the variables x and /, satisfying the equation 
of the vibrating string and all the initial and boundary conditions.

108. In the present case, the differential equation for longitudinal 
oscillations of a beam of variable cross section takes the form

where
y(x)3xL X 3xJ v2 dt2

y{x) =  a — x  tan a

is the variable height of the cross section at x measured from the axis of 
symmetry of the beam. Setting m(x, t) =  X(x)T(t) and separating variables, 
we find that the factors X  and T satisfy the equations

X" -  X' +  \ X  =  0, T" +  Xv2T — 0. (6)
y

The first of these equations reduces to Bessel’s equation in the variable y

, 1 * *  , /  Vx \ \  _  0
d / + ~ydy +  lta n ar  “

with general solution

x = / u i — ) +  B n ( — )•
\tan w \tan a/
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Using the boundary conditions

w|*-0 =  0»

which imply the conditions

du
dx

=  0,
x = l

x \v=a =  0,
we obtain the eigenvalues

m  = o ,
dy I y=b

X -  X, -  ( Z s i p J ,  

with corresponding eigenfunctions X(x) =  Xy (x), where

-  yo ( Y ) n ( - ) ,

and the yn are consecutive positive roots of the equation Xy(jb) =  0. Inte­
grating the second of the equations (6) and taking account of the condition 
T \ 0) =  0, we find that

^  vtyn tan a
T  =  cos—12------ .

a

It follows that the set of particular solutions satisfying the homogeneous 
conditions is

vtyn tan a
u = un = cnXy (y) cos « =  1,2, . . .

The solution of our problem is then constructed in the form of a series
oO

«(*> o =Z"*>
n = l

where the coefficients cn are determined from the condition

w|(=o =  f ( x ) =  2 X rJy), b < y  < a. 

Using the formulas
n=l

f'b X,m(y)Xr9(y)ydy =
0,

we find that

cn =
2 J’/(*)*r.OOr ^

m #  m,

m = n.

3 ^ . - * ? . ( * )7t ynb
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where the relation

7xa

has also been used. In this way we finally arrive at the answer on p. 64. 

109. The problem reduces to integration of the system of equations

d 2u x J_ d 2u x 

d x 2 v[ d t 2

d 2u 2 _  1 d 2u 2 

d x 2 v\ d t2

with initial conditions

4=<> =/(*)>
and boundary conditions

l̂|®=—Oj 2̂|x=a2

0,

=  0,

-a1 < x <  0, 

0 <  x < a2t

du
dt

= 0
£=0

ElS1 —  
dx ®=o ox

Ul\x= 0  ~  U2\x=0>

du2
®=0

Separation of variables leads to the expression for the displacement 

«(*> 0 =  %cnX n(x) cos ,
71=1 a i

satisfying all the conditions of the problem except the first initial condition. 
Here

*„(*) =

f X ^ \ x )  =  sin sin y j -  +  l ) ,
v2ax Nfli /

— a1 < x < 0,

(7)
0 < x < a2i

where the yn are consecutive positive roots of the equation

S2J E 2?2 tan y +  SiV^iPi tan = o.
axv2

It can be shown that the eigenfunctions Xn(x) of the problem are orthogonal 
on the interval — ax < x < a2 with weight

__ Pi> ~ ai < x <  0,
'4S>2P2» 0 <C X ^  Q2.
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Therefore the initial condition u\t=0 =  /(x) implies

Si Pi J_°a/(x )^ > (x )  dx +  S2p2 J*f(x)X™(x) dx 
S1P11° dx + s 2?2 J ;2 [X«>(x)T dx

Cn = (8)

Substituting the eigenfunctions (7) into (8), we find that the denominator 
becomes

“ (aiSiPi sin2 ^  +  a2S2?2 sin2 y„).
2 \ v2a1 /

Thus the solution finally takes the form given in the answer on p. 65.

112. To solve the problem, we have to integrate the differential equation

d2d 1 d2Q
dx2 v2 dt2

0

for torsional oscillation of the shaft, subject to the following initial and 
boundary conditions (Jp denotes the polar moment of inertia per unit length 
of the shaft)

fax ~0 < x < a, 
f a 90

0|t=o =  /(*) =
a(/ -  x)1 a < x < /,

dt
0,

_  5 0 .  9 20

x=a+0 d x II n 1 o

II o

I -  a

f i | x = 0  =  ® |® = l  =  ® | x = a - 0  =  ® |a = a + 0 >

GJt

Separating variables, and taking account of the fact that the ends are clamped 
and there is no initial velocity, we find the following particular solutions:

c(1) sin VX x cos yfk vt> 0 < x <  a,

c(2) sin ^/X^l — “j  cos y/\vt, a < x <  /.

Using the fact that the two sections of the shaft are joined at the point x =  a, 
we obtain the eigenvalues
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and the corresponding eigenfunctions

sin yŵ l — sin , 0 < x < a,

sin sin yn ̂ 1 — j j , a < x < /

(/i =  1,2, . . . ) ,  where the yn are consecutive positive roots of the equation

•Vy . Y« ■ /isin y =  —1 sm — sin y 11 ----- 1 •
1 J I \ / /

If the solution of the problem is written as a series

0(*> 0  = 2 CA O )  COS ,
71-1 *

then the coefficients cn must satisfy the relation

/ ( * ) = 2 CA W >  o <  x <  /.
7 1 = 1

In the present case, the functions ipn(x) =  0'n(x) are orthogonal, i.e.,

I '  i W i W  dx
0, m 7̂  n

+ [ l  -  2 +  » i " ^ . l l - W 0 ] j  sin. M ^ m = n.

It follows that

cn =
J0‘ / ' t o ’K M  dx

Jo +!(*)dx
which leads to the answer on p. 66.

114. The problem reduces to integrating the differential equation

^  +  i ^  =  0
dx* a1 dt2

for transverse oscillations of the beam, with initial conditions

«|(=« =/(*)> p-dt
= g(x)
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and boundary conditions
d \
dx2 x=o

Writing u(x, t) =  X(x)T(t) and separating variables, we find the differential 
equations

X M  -  \ X  -  0, T" +  aAXT = 0 

for the separate factors, with general solutions

X  — A cos +  B sin ^Xx +  C cosh *̂ Xx +  D sinh ^Xx,

T = M  cos \/Xfl2/ +  N sin 

Using the boundary conditions

X(0) = X"(0) =  X(l) = X \ l )  = 0, 

we arrive at the eigenvalues
4  4

X =  Xn =  —

and eigenfunctions

*  =  Xn(x) =  sin —  , n =  1, 2, . . .

Determination of the constants M n and Nn in the expansion

reduces to evaluation of the Fourier coefficients of the functions

118. We want the solution of the equation

satisfying the initial conditions

4=0 = /(*), T  = 0Ot t=o
and boundary conditions

du d2u d3u
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where the initial deflection f (x)  is the solution of the following static problem:3

f (iv\x)  =  0, /(0) = / '(0 )  = /" ( /)  =  o, /"'(/) =  ~  77 •
hJ

Writing u(x, t) =  and separating variables, we find that

X  = A cos ^X x +  B sin ^X x +  Ccosh ^X x +  D sinh x, 
T = M  cos Vx a2/ +  TV sin \/x a2f.

Using the boundary conditions

Z(0) -  X'(0) =  X \ l )  = X'"(l) =  0, 

we obtain the eigenvalues
. = Y»An j4

and eigenfunctions

* n(*) =  (sin yn +  sinh y„)(cos —  -  cosh —  j

— (cos Yn +  cosh Yn) (sin —  — sinh — j ,

where the yn are consecutive positive roots of the transcendental equation 
cos y cosh y +  1 =  0.

Next we show that the functions Xn(x) are orthogonal on the interval 
(0, /). Multiplying the first of the equations

X ™  -  xnx n =  o, X t v) -  xmx m =  0
by Xm and the second by Xni we subtract the results from each other and 
integrate with respect to x  from 0 to /. Taking account of the boundary 
conditions, we obtain

(K  -  XJ \ l x nx n dx =  (X IX m -  X I X n +  X”mX'n -  x :x 'm) 
J o

=  0

after integration by parts. This immediately implies the required ortho­
gonality of the functions Xn(x). Using the general theory of expansions in 
series of orthogonal functions, we can represent the solution of the problem in 
the form

u = 2 C0S
71 =  1

T > ‘t
X n(*)

j lom x n(?,)di

J > n («
(9)

3 An explicit expression for f(x ) is given in Prob. 7, but will not be used in our method 
of solution.
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The integral in the numerator is easily evaluated by replacing Xn by X^iv)l \n 
and integrating by parts, which gives

di = H ix 'u - x :r  + x'j" -  xnf") f
Jo Xnl lo

Jo ) Xn EJ
To evaluate the integral in the denominator, we use the formula

f x i a )  dt =  ~ [XKD +  X“n\i)  -  2X'n(i)x:(i)i
Jo 4

(see T2, p. 336), which in the present case takes the form

f x i a ) d ^  = ^x l( i ) .
Jo 4

Substituting these integrals into (9), we find that

= cosm X
E J t i  y M )  /2

The form of the solution given in the answer on p. 68 is obtained after 
making the substitution

*n(0 =  2(cos Yn sinh y„ -  sin y„ cosh y„).
120. The problem reduces to integration of the equation

l — (r — \ — — —  — o
r d r \  dr) vz dt2 ~  

for a vibrating membrane, with initial conditions

w|f=0 —
du
dt

and boundary condition

<=o
.0,

« | r = a  =  0 .

0 < r <  e, 

e <  r <  a,

Writing w(r, t) =  R(r)T(t) and separating variables, we arrive at the equations

-  — ( r — ) +  XR =  0, T" + \ v2T = 0. 
r d r \  dr I

The permissible values of the parameter X are obtained from the requirement 
that the first of these equations have solutions which are bounded in the 
region 0 < r <  a and satisfy the boundary condition R(a) =  0. This leads
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to the eigenvalues and eigenfunctions

X =  Xn =  4 »  R = Rn(r) = J„(— ) (n =  1,2,. . . ) ,a \ a 1
where the yn are consecutive positive roots of the equation / 0(y) =  0.

The solution of the equation for a vibrating membrane satisfying all the 
homogeneous conditions is

u(r, o  =  2  c n s i n  —  Jo ( — )  •
»-i a \ a 1

The constants cn are determined from the condition

du
dt =  / « ,

which, after substitution of the series for w(r, t), takes the form

f ( f )  =  ~ cnY»-/o (— '). 0 < r <  a.
\ a !

.According to the well-known formula for the coefficients of expansions in 
Fourier-Bessel series (see T7, p. 221), we have

vJ n  = _ 2 _  f a / Y ,  u  (V . _  2PJ1(v„e/a) 
cn 2 t2/ \ I J \r)^oI Jr dr -2/ \ *

a Vf(YJ Jo \ a /  7uepflYn î(Y«)
which implies the answer on p. 69.

124. We want the solution of the equation

r dn drlrdrX dr)J i b4 dt2
for transverse oscillations of a plate which satisfies the initial conditions

« |i=o= /M . d̂t =  g ( r ) .

and boundary conditions
I o 3“

“I™ =  °' s
Separating variables, we obtain

u(r, 0 =  R(r)T(t),

T" + b*\T = 0.
The functions R(r) remaining finite at the center of the plate are of the form 

R(r) =  AJa{</\r) +  BI0(V \r ) .
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It follows from the boundary conditions

that
R(a) = R \a ) =  0

x =  xn =  4 .  R =  R u (r),a
where

Ry(r) =  /o (y )^ o ( - )  -  ,o ( Y ) /o © ,

and the yn are consecutive positive roots of the equation R ‘y(a) = 0.
The eigenfunctions Ry (r) are orthogonal on the interval (0, a) with 

weight /*, since

where we introduce the abbreviation Ryk =  Rk and use the boundary con­
ditions for the function lfcn(r). The solution of the problem is given by the 
formula

«(»% 0 =  2  — [ cos J* p)p d?
"-1 [ * 2„(p)prfpL 0 J#Jo

a2 y2b2t Ca
+ TTi sin ^ 4 "  ^P)«n(p)P^P • r Yn « Jo J

The value of the integral

/ “ «*p rfp
can be found from the relation

which takes the form

f* i(p )p  </P =  y  K \ a )  =  a2/J(Y„)^(Yn) 
Jo 4

after some simple calculations.

132. The problem reduces to integration of the equation

1 d2“ _  q 
rdr \  dr) y23<p2 T ’
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with zero boundary conditions

w | r  =  o  =  W | < P = 0  ~  w | c p = 7 t  =  0 .

If we write u = ux +  u2) where

the function u2 must satisfy Laplace’s equation

with the boundary conditions

The substitution u2(r, X) =  i?(r)0(cp) leads to the equations

with general solutions

R =  Ar'/* +  B r~ ^ ,  O =  C cos >/X cp +  D sin /̂X cp.
By satisfying the homogeneous boundary conditions

0(0) =  0(tu) -  0,

we obtain the eigenvalues Xw =  n2 and the eigenfunctions

0>n(cp) =  sin «cp, n = 1,2, . . .

Because of the finiteness of the solution for r =  0, the constant B must be set 
equal to zero.

Thus the function u2 can be represented as the sum of the series

(10)

It follows from the boundary condition for r = a that

— sin2 cp =  ^ A n sin ncp, 0 <  cp <  n.

and hence, by the theory of Fourier series,

tcT (2k +  1)[4 — (2k +  l)2] ’

n = 2/c,

n = 2k +  1.
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Substituting the values of the coefficients An into (10), we obtain

___  X2w+1 sin (2n +  l)y
2T ^  tzT  nf 0\aJ (2n +  1)[4 -  (2n +  l)2]

This result can be written in closed form by using the expansions 

~2n+1 1 2p sin 9

2 .1  7T i  n _ o  \Q /

\  \  0  A

> -------- sin (2n +  l)<p =  -  arc tan :
£>2n + l 2 1 P2

2 n - f l2 P .-i\ 1 , 1 -j" 2p cos cp -f- p2
' t cos (2n +  1)<P =  -  In ----------    ,

n=0 2n +  1 4 l - 2 p  cos <p +  p2

where |p| < 1, |<p| <  n. After some manipulation, we obtain

1[\ 1/ 2 . 1 \  „ 1 4 2p sin 9
“ iL 1 - ^  + - . j  " s2<|>J  a re lan7 3 7

y  p2n+1 sin (2n +  l)<p 
nt i  (2n +  1)[4 -  (2n +  l)2]

, 1 / 1  „ , l +  2p c o s ( p + p 2 1/1 \  .
+  ~ ( " i -  P ) sm 2<p In ----- -=------“ -« -  -  -  -  p) sin 9,32\p / 1 — 2p cos 9 +  p 8 \p /

which immediately implies the form of the solution given in the answer on 
p. 74.

136. We want the solution of the equilibrium equation

A•«=■£
D

for a semicircular plate which satisfies the boundary conditions

Setting

Pu
d<p2 H<p=* a 2<p=0 d(p2 J cp=7T

q a 4 (  r4 . 4 u = - —  — sin4 
24 D\a*

Ur=a =
du
dr

=  0.

9 -

we find that the function v(r, 9) satisfies the homogeneous biharmonic 
equation A2v =  0 with the boundary conditions

I _  d*v tfi<p=° 9(p2
d2v

y|(p=K 3 2
<p = o  o 9

=  0, t>|r=a =  sin4 <p.

dv
dr

4 . 4 =  -  sin 9.
r=a CL

We can separate variables in the biharmonic equation by looking for par­
ticular solutions of the form

v = ^ (r, 9) =  (A cos [19 +  B sin (J.9)R(r),
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It follows from the boundary conditions for 9 =  0 and 9 =  n that 

A =  0, ( j l  =  n ( n = l , 2 , .. .) .

Moreover,
R(r) =  Cnrn + Dnrn+2,

since the deflection at the center of the plate is bounded. Therefore, summing 
particular solutions, we find that

v(r, <f>) = %  +  N”{~} *] sin ntP- (U)

The values of the constants M n and Nn are determined from the boundary 
conditions on the arc r = a:

00

sin4 <p =  +  Nn) sin n<p,
n = l

4 . 4 v  rnMn , (n +  2)ATn"| . ^- s i n  cp =  > ----- 2 H-----------------2 sin ncp, 0  <  cp <  n.
a ^ iL  a J

This gives the system
2 f7*Mn +  Nn =  -  sin4 cp sin ncp dcp,
7t Jo

nM„ +  (» +  2)tf„ =  ^ 
n

9 sin n9 ^9.

After some simple calculations, we find that 

Jn = J  sin4 9 sin n9 ^9

1 — (—i r  
8

which implies
i ( r h + »“ b )  ~ 2( ; r h + r h ) + 3 -

_  n — 2 r KT _  4 — nJ n* Jn
Using the expansion

f  ( - l ) n

£ 2n + l
p 2n+1 -  arc tan 

2 Ipl <  1 ,

we can sum the series (11) for 9 =  7t/2, thereby expressing the deflection of 
the axis of symmetry of the plate in closed form in terms of elementary 
functions.

140. To reduce the problem to a special case of the Neumann problem, 
we subtract out the velocity potential of the source, by setting u =  u0 +  u1$
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where
mUq = ------ 1- const

4 n p
(p is the distance from the source to an arbitrary point of the flow). Then the 
function Wj must be a solution of the equation

which is regular outside the sphere, and satisfies the boundary condition

and the condition ux 1^*, ->0 at infinity. Setting t^r, 0) =  i?(r)©(0) and 
separating variables, we arrive at the equations

(r2R')’ -  X/? =  0, —  (sin 0 • 0 ') ' +  X0 =  0.
sin 0

This equation has finite solutions for 0 =  0 and 0 =  n if and only if
X =  Xn =  n(n +  1), n = 0, 1, 2 , . . . ,

which determines the eigenvalues of the problem. The corresponding eigen­
functions are

where Pn(x) is the Legendre polynomial of degree n. Similarly, for Rn(r) we 
obtain

+  Bnr~n~\
where An = 0, because of the condition at infinity.

Thus we find that

and to determine the constants Bn> we need only satisfy the boundary condi 
tion

In the present case, we can calculate the coefficients Bn in (12) by differentiat­
ing the expansion of the generating function

dui _  duo
dr Ir=o dr lr=a

0.(9) =  ^(cos 0),

«i(r, 0) = % B nr n ^ (c o s  0), (12)

— = | >  +  l)B„a~n~2Pn(cos 0), 0 < 0 < tv.
47V Or r=a n=Q

thereby obtaining

" 4tv n +  1 bn+1 '
B, (13)
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Substitution of (13) into (12) gives

This series can be summed by integrating the expansion

-  =  y —- V = 2  ( - )  Fn(cos e)> b = ^ - < a
P y/r2 — 2br cos 0 +  b2 n=o'r' b

with respect to the parameter b from 0 to b, which leads to the relation
^  bn+1 Pw(cos 6)

Jo -v /r2 — 7.h
db

y  ,
n=o n +  1 r?l+1 Jo \/r2 — 2br cos 0 +  b2

= In • r(l +  cos 0) 
p +  r cos 0 — 5

(15)
Writing (14) in the form

. = f p  + f  2 (-Tp-<“ s  ̂S  - 1; ̂ 147rLp br n=1 \r /  a n=1 n +  1 rn+ J
and using (15), we arrive at the expression given in the answer on p. 77.

145. The problem reduces to solving the system of equations 
d2Tx c±pi dT±—  =  - p - 0 < x < alt 
dx2 kt d t

d T2 Cgp2 dT2 ,
T T  =  i * a1 < x < a 1 + a2idx2 k2 dt

with initial condition
4= «  =  r 0

and boundary conditions

7\|z=0 =  ^21 x=ai+Q2 = l̂|a:=ai —

ki
d j \
dx i 2 9x

Application of the Fourier method leads to the expression 

T(x, t) = 5 c „ e- ^ ‘'‘>X„M>
n=l

for the required temperature distribution, satisfying the homogeneous 
boundary conditions for arbitrary values of the coefficients Cn, where

*n(x) =
* n ’(*) =  s'"

■ o2Jb2yn . ynxin  ___JL__ “—Lit e i n  J_lt—sin 0 < x < au

Xn\x)  =  sin Yn sin V^2 ^ < x <  ax +  a2,
yjbi «i

(16)
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and the yn are consecutive positive roots of the transcendental equation

s/b2 k2 tan y  +  %/b 1 kt tan =  0 ( b , = ^ ,  1 =  1,2) .

By the usual procedure, it can be shown that the eigenfunctions JJTn(jc) are 
orthogonal on the interval 0 < x < a2 + a2 with weight

=  piPi. o < x <  aly
lc2p2, aj <  x  < +  a2.

Therefore the coefficients C„ can be calculated by using the formula 

clPl j ao' m x « x t )  +  clP2 \ 2 +atm x ^ \ i )  di

ClPl J ;1 [ x ^ r  +  c2P2 J ;;+as w  ^

Substituting from (16), we find that the denominator of (17) equals

£ s a r jb lyI UjCxpj sin' -- +  a2c2p2 sin y,
2L <W»i 4

Then setting /(£) =  T0 in (17) and making some simple calculations, we 
arrive at the answer on p. 79.

148. We want the solution of the equation

1 ^ /  3T\ =  BT 
r dr I dr/ 9t

satisfying the initial condition
7’|x=o = fir)

and the boundary condition

Setting T(r, t )  =  i?(r)0(r) and

dT
dr

=  0.

separating variables, we obtain

-  (rRJ + XR =  0, 0 ' +  X© =  0.
r

Then
R = / 0(Vx r)

is the solution of the first equation which is finite on the axis of the cylinder. 
From the boundary condition R’(a) =  0, we find the eigenvalues
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and corresponding eigenfunctions

where y0 =  0> Yi> • • • > Yn> • • • are consecutive nonnegative roots of the 
equation Jfy) = 0. The general solution of the second equation is

0  =  c e~y”'K,a2
and the expression

T ( r ,T )= 2 v " y"W '/0(— )>
n = o  \ a /

obtained by summation of particular solutions, satisfies all the conditions of 
the problem, except the initial condition. Since the eigenfunctions are 
orthogonal with weight r on the interval (0, a), it follows from the initial 
condition that the coefficients cn are given by

153. The problem reduces to integration of the differential equation

1__9 /  2 dT\ = dT 
r2 dr I dr) dr ’

with initial condition
T U = / ( r )

and boundary condition
T  =  0 .

Setting T(ry t )  =  jR(r)0(T) and separating variables, we obtain the equations

(r2R')' +  Xit =  0, 0 ' +  X© =  0,
r

whose general solutions are

R
sin JXr cos J \ r  

=  A — ------ b B -----— 0  =  Ce~Xr.

From the condition that R be finite at the center of the sphere, we find that 
B =  0, while the boundary condition R(a) =  0 leads to the eigenvalues



PROB. 169 S O L U T I O N S 301

and corresponding eigenfunctions
n jy 1 . mzrR = Rn — -  sin---- .

r a

Summing particular solutions, we obtain

T(r,T) =  i y c ne-nVT/o% in—  . 
~ ar

The coefficients cn must be determined from the initial condition

T \ ^ = f ( r )  = ~ % c n sm —  , 0 < r < a,

which, by the theory of Fourier series, implies

This leads at once to the answer on p. 81.

169. This temperature distribution problem leads to integration of 
Laplace’s equation

with boundary conditions

T|r=0 =  T„ ( | -  ± h r ) \  = 0.
\dz  / \ z = ± l / 2

Writing T(r, z) =  R(r)Z(z) and separating variables, we obtain the ordinary 
differential equations

-  (rR'Y -  XR =  0, Z" +  XZ =  0, 
r

with general solutions

R = AI0(y/\ r) +  ZMT0(\/x /*)» Z = C cos \J\ z +  D sin vX

The constant 5  equals zero because of the requirements that the temperature 
be finite on the axis of the cylinder. The boundary conditions

(Z' ±  hZ)|I=±(/2 =  0
lead to the eigenvalues
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and eigenfunctions

Z =  =  cos 2YnZ

where the yn are consecutive positive roots of the equation

The expression

tan y =  — .
2y

r(r, z) = 2 c«/ o(^7 - ) cos
n=i \ I f I

(18)

satisfies Laplace’s equation and the boundary conditions on the ends of the 
cylinder. To determine the constants cni we use the boundary condition on 
the lateral surface

Because of the orthogonality of the eigenfunctions, this gives

r°JJo

1< z <  -
2

-

T j ^ c o s ^ z
'O / 2 T0 sin y„

/*•/*
Jo 'c o s ^ ^ d z  Y« +  « n Y«C0SY.
Jo  I

Substituting (19) into (18), we obtain the answer on p. 87.

175. We have to integrate the system of differential equations

r d r \  dr I dz2

1 d I 3T2\ , daT2 „ 
rd r \  dr)  +  dz2 ~  ’

— hx <  z <  0, 

0 <  z <  h2i

with boundary conditions

r̂'\r~a =  ^  ^ i|z=_;tl =  T2\ z=hi = 0,

T lU  =  T2|,=0 =  0, k M
dz

_ * 3
,-o dz 2 = 0

Application of the Fourier method leads to the expression

T{r, z) = t c nZ„(z)I0( Y )
71=1 \  /

(19)

(20)
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for the required temperature distribution, satisfying all the conditions of the 
problem except the boundary condition on the lateral surface, where

z r ( 2 ) _ sin3 i sinvs(£_M !) >
hi fci

Z(n2\z)  =  sin y„ sin ----— , 0 < z < h2,
h

and the yn are consecutive positive roots of the equation

tan y +  — tan —  =  0. 
k2 hx

The eigenfunctions Zn(z) are orthogonal on the interval (—h19 h2) with weight
~hx < z <  0 
0 <  z <  h2.

r(z) =  (*i. ~ h 1 < z <  0,
\k2.

To see this, we multiply the equations

z: +  ^ z B = o, z ;  +  ^  z m = o
a a

by r(z)Zm(z) and r(z)Zn(z), respectively, subtract the results from each other, 
and then integrate with respect to z from — hx to h2. This gives
v2 _  y2 rh rh2
ljL— \ ZmZnr dz =  I r[Z"mZn — Z"Zm] dz

C l J —h i  J — h i

=  u z ^ ' z ?  -  z ? ' z % )  |°_Ai +  u z ^ ' z ?  -  z<2>'z<?) f ;  =  o,
where we have used the boundary conditions

Zpl)(—/lj) =  z f ( h 2) =  0, Z^O) =  Z<,2)(0), k ^ X  0) =  ic2z '2)'(0).
The orthogonality of the functions Z„(z), together with the condition =  
T0, implies

-  r. + (21)
U i /  ^  +  fe2Jo a[z<2>(or dc

Evaluating the integrals in (21), we obtain

2T0 tan y„ (cos y„ -  cos

Substitution of these coefficients into (20) gives the answer on p. 89.
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176. The problem reduces to integration of Laplace’s equation

with boundary condition

4 -  = /(0 )

1 d ( • a 9 t \  n —  — I sin 0 — 1 =  0,
n 6 30 \ 30/

(T0> 0 < 0 <  a,
l0, a <  0 < n.

The required harmonic function is constructed as a series

T(r, 0) = J c n(-)np n(cos 0), (22)
n-0 W

where Pn(x) is the Legendre polynomial of degree n. Because of the boundary 
condition, the coefficients cn must coincide with the expansion coefficients of 
the function/(0) with respect to the Legendre polynomials, i.e.,

/(0) =  2  cfA(cos 0), o <  0 < 7t,
n*»l

which implies

cn = 2n- ̂ ~ - f  f(P)Pn(cos 6) sin 0 dd =  2w j --1 T0 f Pn(x) dx.
2 Jo 2 J coaa

For n =  0 we immediately find

| 1 PqC-x) dx =  1 — cos a.Jcosa uv '
For arbitrary n, we use the recurrence formula

{In +  l)Pn(x) =  P ;+1(x) -  P U 4
obtaining

f Pn(x) dx =  ■ —1 - [Pn_i(cos a) -  Pn+1(cos a)], n =  1, 2........
J cos a 2n +  1

Substituting the values of cn obtained in this way into (22), we find the 
answer on p. 90.

190. To solve the problem, we find it convenient to assume that the 
current J is uniformly distributed with density J/2zh over a small section 
\y\ <  e of the sheet (where h is the thickness of the sheet), afterwards taking 
the limit as £->0. Then the problem reduces to integration of the two- 
dimensional Laplace equation

d2u , d2u „
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with boundary conditions

du
dy

= 0,
v=±b

du
dx = / o o

x=‘± a
2tah ’

lo,

\yI <  

\y\ >  «■
Application of the Fourier method leads to an expansion of the form

. V  • i nizx mzy . u =  c0x +  > cn sinh------cos — - + const,
iZ'i b b

whose coefficients are calculated from the formulas

co =  ~ f /O ') dy, cn = --------  — f f{y) cos ^  dy
b Jo nn cosh (mzajb) Jo b

(n = 1, 2 , . .  .)•

Substituting for /(y), evaluating the integrals and taking the limit as e -► 0, 
we find the answer on p. 95.

192. The potential of the surface current must satisfy Laplace’s equation

l ^  +  ^  =  0
a2 d<p2 dz2

(  — 7 T  <  Cp <  7 T ,  —  I  <  Z <  I )

(cf. Prob. 21). To formulate boundary conditions for the problem, we first 
assume that the current J  is distributed with constant density over the section 
|cp| <  e, z =  ±7, so that

Writing

du
dz =  /(? )

z = ± l

' J 
lathes ’ 
<0,

M <  e.

|cp| >  e.

=  ®n(z)Z n(z)> « =  0, 1, 2, ,

and separating variables, we obtain

<Dn(9) =  An cos ny +  Bn sin nep,

Zn(z) =  Cn cosh — +  Dn sinh — , 
a a

Zq — C0 ~h D0z,

where we use the required periodicity of the solution in the angular variable 
9. Because of the symmetry with respect to the plane 9 =  0, the coefficients 
Bn vanish, and hence the solution of the problem can be written as a series

u(9, z ) = y  \ Mn cosh — +  Nn sinh — ) cos ny +  N0z +  const.
^  a a !
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The boundary conditions give

M „  =  0 ,  / ( < p )  = y ~ N n cosh — cos mp +  N0, 
" an = l &

i.e.,

No = ~ f /(<p) =
TC J o Inaha

nN n nl 2 f71 , 2 J  sin ne
-------- cosh — =  -  / ( cp) cos /icp acp = -.

a a tc Jo tc 2aeha n

Taking the limit as e —► 0, we obtain

Nn
J

Tcnho cosh (nl/a) ’
which leads to the answer on p. 95.

196. The problem reduces to integration of the system of differential 
equations

1 1  
r dr +

1 d \
3cp 2

=  0,
b < r <  o o , i  =  1,
a < r < b, i =  2, — tc <  cp < 7t
,0 < r < a, i =  3, ,

for the potential of the magnetic field, with boundary conditions

« l | r ^ o o  # 0 *  +  C 0 I 1 S t >

dui _  du2 dux
3 < P  r = 6  3 c p  r —b dr

du2 dua

du 5
r = b  dr

3cp 3<p

3u2
aT

3ua
3r

Bearing in mind that the required potentials are even periodic functions of the 
variable cp, we represent the functions wt* as series

ux = H0r cos cp + ^ A nr n cos n cp ,
n = l

m 2 =  C„ In r +  ]?(Bnrn +  Cnr~n) cos n<p,
71=1

to
w3 = ^ D nrn cos ncp

71=1

(where arbitrary additive constants have been omitted). Because of the 
boundary conditions, the constants C0 and Cn (n > 2) vanish. To determine
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the remaining constants, we use the system of equations

A1 -  b2Bx -  Cx =  - H 0b\ 
Ax +  y.b2Bx -  \lCx =  H0b\  
a2Bx +  Q  — a2Dx =  0,

(jl a2Bx — (xCx — a2Dx =  0.
It follows that

H0b V  ~  m 2 -  a2) „  2H aa%X\>. -  1)
A ’ Cl “  A

, 2H0b\y. +  1)
1 -  A

4HQb2\L
A

where
A =  b\[L +  l)2 — a\\L — l)2.

Substituting these coefficients into the series for the uif we obtain the answer 
on p. 97.

201. In this problem, it is convenient to characterize the magnetic field 
by a vector potential which in each of the media (air, magnetic material, air) 
has a single component

is the vector potential of the loop, we reduce the problem to determination of 
the functions Af satisfying the differential equations4

Setting
A f  =  0), i = I, 2, 3.

AM = A0 + Alt A M = A t, A™ = A,
where

(23)

0 <  r < a.

a < r  < b.

b <  r <  oo

* Note that
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and the boundary conditions

Am U  =  , -  M (1)) U  =  - f  >or (i, or

A™\r=b = A<%=b, ^ U - 0 ,  i |- ( M < 2))|r=b =  |;(r/l< 3>)U .

Looking for solutions of these equations of the form A =  ^(^©(0), we obtain 
the equations

(:r2R')' -  XR =  0, —  (sin0- 0 ') ' +  ( X -  
sin 0 \

- V ) e  =  o.
sin2 0/

(24)

The permissible values of the parameter X are determined from the condition 
that the second of the equations (24) have solutions which are regular in the 
closed interval 0 < 0 < tc. This requirement leads to the eigenvalues and 
corresponding eigenfunctions

X =  Xn = n(n +  1), © =  ©n =  Pi(cos 0) (n =  0,1, 2 , . . . ) ,

where the P*(x) are associated Legendre functions of the first kind. The 
general solution of the first of the equations (24) is

R =  Rn =  Mrn +  Nr~n- \

Taking account of the behavior of the functions A{ near r =  0 and r =  oo, 
we find that they can be represented as series of the form

A^r, 0) =  2  AnrnPl(cos 0),
7 1 = 0

At(r, 0) = f ( B Hr” +  Cnr-»-1)Pln(cos0),
7 1 = 0

A3(r, 0) =  2  Dnr~n~lp\(c°s 0)-
7 1 = 0

The vector potential of the source can also be represented as an expansion in 
terms of Legendre functions, by starting from the formula

1
- + 2  p«(sin 6 cos <p)(-) >r V r lVr2 — 2rr„ sin 0 cos 9 +  r\ r 71=1 

Using the addition formula for spherical harmonics

Pn(sin 0 cos cp) =  Pn(0)Pn(cos 0) +  2 f  ^
m = l  1 ( n  +  m  +

r > r 0. (25)

X P“(0)P™(cos 0) cos m<p,
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and substituting (25) into the integral (23) for A0, we find after some simple 
calculations that

=  — 2  « c o s  0) ( - T +1-c „tr» n(n + 1) v r!
Then the boundary conditions lead to the following system of equations for 
determining the coefficients A„, Bn, Cn and Z>„:

anAn -  anBn -  a~n- 1Cn = -
2nJ P

c n(n + 1)
a,(0) /  r„\n+1
:+  l ) \ a /  ’

(» +  1)«M . ~  —  anBn +  -  a~'n~1C n =  ™ ? M  h \ n+\  
|i. (i c n +  l ' a /

bnBn +  b-n~'Cn -  b~n~1Dn =  0, 

bnB„ -  -  b~n~1Cn +  nb~n~1Dn =  0.
H (A

Solving this system we obtain 

2tzJ\lDn =
cn(n +  1)

X (2 n +  W C 0K +1
[n ((x  +  1) +  1 ] [ m((x +  1 ) +  jjl] -  (alb)2n+1n(n +  lX f*  -  l ) 2 ’

which leads to the solution in the region outside the shield given on p. 99, 
if we bear in mind that P\k{0) =  0.

206. The magnetic field in the spherical resonator has only a 9-component 
with complex amplitude Hv =  H(r> 0). Writing H  — H0 +  Hl9 where5

« o  =  — ^  ( l  +  ik r)e-ikr 
cr*

is the magnetic field of the source, we find that satisfies the equation

+  (** -  =  °-\ r sin 0/

Next we introduce a new unknown function u = u(r, 0) such that

„ _ d u

5 This expression can be obtained from the relations

p  e — i k r  p  e — i k r

H0 =  (curl A(0))cp, /ti0) = ----------cos 0, A&) = ----------------sin 0.c r 0 c r
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Then u is the solution of Helmholtz’s equation

1 3  /  2du\ , 1 3 /  . Q 3u\ , l2 A----- 1 r — I +  —-1 sin 0 — I +  k u =  0
r2 3r \ 3r' r2 sin 0 30 \ 30/

which is regular inside the sphere. Since the tangential component of the 
electric field

JE» =  r r ( rH)kr or

must vanish on the surface of the sphere, it follows that 

3 /  3m\ I 3 ( rr \

Using the Fourier method to solve the differential equation for w, we find that

«(r, 6) =  —  J  cnJ„M kr)Pn(cos 0), (26)
V r  71=0

in terms of the Legendre polynomials Pn(x) and the Bessel functions of half- 
integral order Jn+̂ (x). Using the boundary condition and the familiar 
relation

A/ sso)= _  c°s z)* 

we find that the coefficients cn equal

c l  = 0  c =  F~k pk c~ika 1 +  ika ~  fcV
n n*X ’ 1 V 2 c (1 — k2a2) sin ka — /ca cos ka

Substituting these values of cn into (26) and differentiating with respect to 0, 
we arrive at the expression for Hv = H(r, 0) given on p. 101.

210. The problem reduces to solving the equation

32u 1_ 32u_ _  __ q(x, Q
3x2 ~~ v2 dt2~~~ T

of the vibrating string, with zero initial conditions

u\** = T t ==0at <=o

and homogeneous boundary conditions

W|as»0 — u\x=-l ~  0

(27)
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of the first kind. We look for a solution in the form of an expansion

«(*> 0 = 2  Tl---------- *nM>
n = l J 0 X l ( x ) d x

with respect to the eigenfunctions Xn(x) of the corresponding homogeneous 
problem, where the weight r equals 1 and

«» = | ^ n W  dx.

The functions Xn(x) are the nontrivial solutions of the equation

X" + \ X = 0  

satisfying the homogeneous boundary conditions

X(0) = X(l) =  0.
Such solutions exist for

X =  =
n*Tf
~W

« =  1, 2 . . . ,

and are of the form

X = X n(x) = sin mzx
I

To determine the coefficients wn, we multiply (27) by Xn(x) and integrate 
with respect to x  from 0 to /.6 Integrating by parts twice and taking account 
of the boundary conditions, we obtain

-// i / n n v f . v2 Cl ( . nnx ,un +  y— ) un = ~  ]q(x , t) sin —  dx.

The solution of this equation can be found by variation of constants:

vla nnvt . „ . mzvt .un = Ancos—  + Bnsm —  i
I I nnT \ 'Jo

mzv(t — t)
r [ q(Z,T)sin^— d .̂sin ■" —-----   dx. / J

To calculate the constants An and Bni we use the initial conditions for the 
function un, which are obtained by multiplying the original initial conditions 
by Xn(x) and integrating with respect to x  from 0 to /. The result is

U  0) =  K(0) =  0,
which implies An = Bn =  0. In this way, we arrive at the answer on p. 108.

6 In the interest of using a unified approach, we follow the general scheme on p. 105. 
For problems of the type under consideration, this method is entirely equivalent to that 
described on p. 104.
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217. We have to solve the inhomogeneous equation

dAu <Pu _  q sin ut  
9x4 u4 dt2 EJ 

for transverse oscillations of the beam, with zero initial conditions

« |i=0 =
du
dt

=  0
<=* o

and homogeneous boundary conditions

“ U-±i =
du
dx

=  0.
x = ± l

A feature of this problem is that it involves an expansion in terms of eigen­
functions of a fourth-order differential operator. Following the usual 
method, we represent the solution as an expansion

«(x> 0 = 2 x n(x)
n=i j^ rX l ix )  dx

with respect to the eigenfunctions Xn(x) of the homogeneous problem, where

K» = | ' 1™^nW dx.
In the present case, the weight r — 1, and the functions Xn(x) are the solutions 
of the equation

satisfying the boundary conditions
X(±l) = X \ ± l )  =  0. 

Simple calculations show that7

Yn\ \  — 12} 
A “  A« “  j4 ’ " =  1, 2,

Xn(x) =  cosh Yn cos y -  — cos yn cosh ,

where the yn are consecutive positive roots of the equation
tan y +  tanh y =  0.

To determine the functions wn, we multiply (28) by Xn(x) and integrate 
with respect to x from — / to /. Integrating by parts four times and taking 
account of the boundary conditions we obtain

-» +  Mn =  sin w iJ ( X n(x) dx. 1

1 Concerning the orthogonality of the functions Xn{x), see the solution of Prob. 118.
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The solution of this equation satisfying the zero initial conditions

*n(0) =  U'n(0) =  0
obtained by multiplying the original initial conditions by Xn(x) and integrat­
ing with respect to x  from —/to /, is given by

un = qa't
. a‘-fnt Yla ■to sm — ----- —  sin

Xn^  dx'

The final form of the solution, as given in the answer on p. 110, is found by 
taking account of the easily verified formulas

£
£l A - ,(» )^ = ,4 liinT - COI,h1' - ,

T »

XUx) dx = \  X l \ l )  = 21 cosh2 Y„ cos2 yn.^  X 2n(x) dx =
J-i 2

222. The problem reduces to integrating the equation

*a + L * a  = 0
dx* a4 d? (29)

for the oscillating beam, with zero initial conditions

I du n
=  — = odt

and inhomogeneous boundary conditions

du
UI <r=0 _dx

d \
dx2 =  o,

dx3
m
EJ ■

Applying Grinberg’s method, we look for a solution in the form of an expan­
sion

00

w(*> o =  2
n=1

_________

J / X l ( x ) dx
X n(x)

with respect to the eigenfunctions Xn(x) of the homogeneous problem, where

=J‘ruX„(x) dx.

Explicit expressions for the functions Xn(x) are obtained by solving the 
equation

x ^  - u  =  o,
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with homogeneous boundary conditions

X(0) = JT(0) =  X \ l )  = X'"(l) =  0.
This gives

X =  XW =  — , n ~  1 , 2 , . . . ,

X n(x) =  (sin yn +  sinh y*)(cos ^  -  cosh —  j

— (cos Yn +  cosh Yj^sin —  — sinh —  j ,

where the yn are consecutive positive roots of the equation cos y cosh y +  1 =  0. 
The functions Xn{x) are orthogonal on the interval (0, /) with weight r =  1 
(see the solution to Prob. 118), and the integral of X^(x) is

f X 2n(x) dx = -  Xl(l) =  /(sinh yn +  sin ynf .
Jo 4

To determine the coefficients un> we multiply (29) by Xn(x) and integrate 
with respect to x  from 0 to /. After a bit of manipulation, we arrive at the 
equation

K + ( — )i dn = - P ( t ) x n{i).

The solution of this equation satisfying the initial conditions

M„(0) =  ii’n( 0) =  0,
obtained by multiplying the original initial conditions by Xn(x) and 
integrating with respect to * from 0 to /, is given by

EJyn Jo I

and immediately leads to the answer on p. 112.

223. Clearly we can express the dependence of the external load on the 
coordinate x  and the time t in the form

(A sin cat 
2e

0

for vt — e <  x <  vt +  e 

otherwise,
where e >  0 is arbitrarily small. Let

u(x. A /  -e' . . mzx
0 =  T Z u«sm —  ,

1 n=1 *
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where
f l . rnzx ,un = I u sin----ax.

Jo I

Multiplying the equation for the oscillations by sin (mzx/l), integrating with 
respect to x  from 0 to /, and taking account of the boundary conditions, we 
obtain

/mwA4_ a4 f l , . . mzx ,

or
. (mzaY„ Aa4 . , . rnzvtun +  I ---- 1 un = -----sin ait sin------

n \ I 1 w EJ I
Aa4Y I «7rt;\ /  . mzv\ "1

=  ---------  COS I 6 ) --------------1 1  —  COS I 6) H------------1 1
2EJL \ I I \ I I  J

after passing to the limit e -► 0. The general solution of this equation is
>.2M2_2i -2U2 2i. a niz t , n . a n n tu„ — A„ cos —  -----1- B„ sin —- —

I2

where we introduce the abbreviation 

Hi,2 =
(  m cu\4 /  m z v f

Using the initial conditions

we find that

1 S u \ o M|«=o — - —01 l<=0

and hence
**n|<=0 =  “n|f=0 =  0,

Aa4
B„ =  0, A „ = - —  (H, 

2 EJ
Substituting these values of the coefficients into (30), and letting M  denote the 
mass of the beam, we obtain the answer on p. 112.

225. To solve the problem, we assume that the external load is distributed 
over the membrane with density

( p sin cof r , » ,—  ----  for b — e <  r < b +  e,

2e
0 otherwise,
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where e >  0 is arbitrarily small. The deflection w(r, 0  of an arbitrary point 
of the membrane is then the solution of the inhomogeneous equation

1 _9/ du\ __ J_ <Pu _  _  qjr, t) 
r dr\ dr/ v2 dt2 T

with homogeneous initial and boundary conditions

, du
u|-  “  a;

=  o, =  0.

The desired solution is constructed as an expansion

M =  2  Ta---------- Rn(r)
n=a jorRl(r) dr

with respect to the eigenfunctions Rn(r) of the homogeneous problem. The 
latter are the solutions of the equation

(rR')' + \rR = 0

which are unbounded in the closed interval [0, a] and satisfy the boundary 
condition R(a) =  0. As usual, un denotes the integral

“ » = j “ruRn(r) dr.

It is easily verified that the eigenvalues and eigenfunctions are given by

v2
X =  Xn =  ^ 2, * =  1,2, . . . ,

a

R = Rn(r) =

where J0(x) is the Bessel function and the yn are consecutive positive roots of 
the equation J0(y) =  0. Applying the usual method for determining the 
coeffipients wn, we obtain

after passing to the limit e -► 0. Integrating this equation with zero initial 
conditions

Un( 0) =  Un( 0) =  0,
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we find that

\ 0)0/
which leads to the answer on p. 113.

227. To solve the problem, we regard the concentrated load as the limiting 
case of a load distributed over a disk of small radius e. Then, to determine 
the transverse oscillations of the plate due to this load, we integrate the 
equation

1 8 fr 8 f 1 8 (r  8l^11 I 1 d2“ _  q r̂' 
r dr\ 3rl_r3r\ dr/ _ I b4 3f2 D

where
M sin oat 0 < r <  e,

q(r, t) =  Tte2
lo, e <  r < a,

subject to zero initial conditions and the boundary conditions

. 3m 
4= a -  fr =  0.

Let
A

« ( r , 0 = Z
/ #° rR*(r) dr

where the i?n(r) are the eigenfunctions of the homogeneous problem and

««=  J0° dr-
The functions Rn(r) are the solutions of the differential equation

which are bounded for r =  0 and satisfy the conditions

i*(a) =  *'(a) =  0.
Therefore

R = Ry„, Ry(r) = -  ^o(Y )/o(-),

where the are consecutive positive roots of the equation R'y(a) =  0. The 
corresponding eigenvalues are

1,2, . . . ,
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and the functions Ryn(r) are orthogonal on the interval (0, a) with weight r 
(see the solution to Prob. 124).

Multiplying the original differential equation by rRyn(r), integrating with 
respect to r from 0 to a, and then integrating by parts four times, we obtain

or
K  +

bA
D

A sin d r ,

A h 4

-----Ry (0) sin w/.
2nD n

after taking the limit as e -> 0. The solution of this equation satisfying the 
boundary conditions

Wn(o) =  «;co) =  o
is

«n = InoDyl Vn'

sin Y r  lb,2 i 2

sin 6)/
X0)-

oa

w /

Substituting these values of iin into the series for u(r, t) and using the formula

/o 1rRrSr) dr =  «2/S(T«)-/o(Tn).

we finally arrive at the form of the solution given in the answer on p. 114.

230. To solve the problem, we replace the line load p by a load uniformly 
distributed over the strip — e <  x  <  e, —b < y  <  b of width 2e, i.e., we 
reduce the problem to integration of Poisson’s equation

, 32u __ __ q(x, y) 
dx* dy2 T

1___P_
2eT ’

lo,
|x| <  e, 

|x| >  e.

with homogeneous boundary conditions of the first kind:

(31)

W| a r = i a  W|y = ± &

Two forms of the solution can be found. To obtain the first, we represent the 
displacement as a series with respect to the eigenfunctions of the correspond­
ing homogeneous problem which depend on the variable x :

2 ^  _ 
“ =  “ z  Un cos (2 n +  1 )^  

2 a
f a C2n +  1)ttx J«„ =  M cos i---- — dx.

Jo 2 a
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Multiplying (31) by cos [(2n +  \)Tzxj2a\ integrating with respect to x  from 0 
to a, and then integrating by parts twice, we obtain8

(2 rt +  \)n
-------------------------------  t 4 _  —  1

2a  J 2 eT Jo 2 a
or

t ! ! . p [ '-  u . =  — •*-£— (J 2 eT Jo

[~(2n +  1 H 2.

(2n +  l)7tx cos i---- :— -—  dx.

L 2a  J 2T
after taking the limit as 0 —► 0. The solution of this equation satisfying the 
conditions ww|y=±6 =  0 is

cosh(2n +  1)^ l  2 au„ = 2 pa*

n2T(2n +  l)2
1 -

cosh(2n +  1)7tb 2 a
which immediately implies formula (12), p. 115.

The second form of the solution is obtained by expanding u in a series 
with respect to eigenfunctions which depend on the variable y :

2 v  - (2n + l)7uyu =  -  > un cos ----------~
b t o  2b

This time the coefficients n„ are functions of the variable x  (rather than of y ) ,  
and are determined by the equation

n. ( pK - i)n+1(2n +  l lnTl 2. l ~ -------
u” oh 1

1*1 >  «•

’ - r  
’ u^ r

(2n +  \ )ny jcos --------- ■—*- dy.
2b

1*1 <  e>
«n = /(* )  =  UeT(2n +  1)

1°.
The solution of this equation satisfying the conditions un\x, ., a =  0 is 

bu„ = 7(5) sinh (2n +  1)7t(x----^  d5
tc(2/j+1)LJo 2b

cosh

cosh

(2 n +  l)?rx 
2b

(2n -|- 1)tca 
2b

J7 (5 ) sinh (2w +     d’i
2b

Substituting for /(£) and taking the limit as e —► 0, we obtain

sinh (2” + 1)7t(a~ |x|) 
2 p b \ - i r ____________ 2bu„ =

n*T(2n +  l)2 cosh (2n +  1)tza
2b

“We also take account of the boundary condition u\x__a 0 and the relation 
( dujdx) |I=0 =  0  implied by the symmetry of the problem.
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which implies formula (13), p. 115. Which form of the solution to use in 
making calculations depends on which series converges more rapidly (this 
depends primarily on the ratio a/b of the sides of the rectangle).

240. The problem reduces to solving the biharmonic equation

d*u d*u
dx4 dx2 dy2

+ j £ = 0,
3 /

with boundary conditions

*4=o =  «!*=. =  o, Pu
dx2

d \
d f

du
dy

=  0.
V = ± b / 2

It is easy to construct a function

w* mx(a — x) 
2D

m 
D *

satisfying both the differential equation and the boundary conditions at x  =  0 
and jc =  a. If we set

u =  w* -|- V,

then the new unknown function v must be a solution of the homogeneous 
biharmonic equation satisfying homogeneous boundary conditions in x:

VL=n =  Vl
d%
dx2

Pv
dx2

=  0.

This enables us to use the Fourier method, where the boundary conditions in 
the variables y  take the form

dv
4=±i,/2 =  «*(*). —̂ = 0 .

d y  u=±bi2

Taking account of the boundary conditions in the variable x , we look for 
particular solutions of the biharmonic equation A2u =  0 of the form

f \ • nnx i ov = »*OOsm---- , n =  1 ,2 ,. . .
a

The amplitude vn must then be a solution of the differential equation

°”v) ~  (“ J ^  +  (!f j v” = 0
which is even in y , and hence

vn =  An cosh +  Bny sinh .
a a
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Writing v as a series

t, =  f  U  cosh ^  sinh sin ^ ,
n=i\ a a l a

we determine the coefficients An and Bn from the remaining conditions

i-»/» =  «*(*)> dy
=  0.

l/»b/2
This requires expanding the known function w*(x) in a Fourier series with 
respect to sin (mzx/a). In this way, we eventually arrive at the answer on 
p. 119.

241. Suppose the line load p is replaced by a load uniformly distributed 
over the sector — e <  9 <  e, 0 <  r <  a with central angle 2e, where e >  0 
is arbitrarily small. Then the problem reduces to solving the inhomogeneous 
biharmonic equation

/
i<pi <  e > 

M >  e>
with homogeneous boundary conditions

U\
du
dr

= 0.
r=o

With our way of measuring angles, u is an even function of cp and hence can 
be written as a cosine series

where

1 2 ^
cp) =  -  u0 +  -  y  iin cos wcp, 

* 7Tn=l

un = Jo u cos n<p d9.

To find uni we multiply the equation for u by cos tup and integrate with respect 
to 9 from 0 to n. Then, integrating by parts four times, we find that

/  d2 1 d_ _  n*Y _ _  p sin m
\dr2 r dr r2/ n zaDn

where the right-hand side can be replaced by p/aD after taking the limit as 
s -► 0. We are interested in the solution of this equation which is regular for 
r =  0, i.e.,

un = Anr» + Bnr*” + u : 9

c aD (4 — n2)(16 — n2) ’

where
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except for the cases n = 2 and n =  4:

_* _  p r4 In r 
2 aD 48 ’

p r4 In rm4 = ---------------
aD 96

(32)

The constants 4̂n and 2?n are determined from the conditions

un(a) = u'n(a) = 0.
242. The problem reduces to integration of the heat conduction equation

d2T dT 
dx2 3t ’

with the zero initial condition
r|t-o  =  o

and inhomogeneous boundary conditions

=  T\*-a =  To-- k d-T
dx

It is easy to see that the linear function

T* =  T0 +  2 (a -  x) 
k

is a solution of (32) satisfying both inhomogeneous boundary conditions in 
the variable x . Therefore, writing

T = T *  -  M>

we find that u satisfies the differential equation

d2u _  
dx2 ~  3 t

with initial condition

m | t= o =  T*(x) =  T0 +  -- (a — x)

and homogeneous boundary conditions

du 
dx

Application of the Fourier method gives

=  0, « L .  =  o.

u = f c ne- ^ ) V W C0S,(2g +  l f r x t
n=o 2a

where the cn are the coefficients of the Fourier expansion of T*(x) with respect 
to the functions cos [(2n +  l)nx/2a].
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247. We have to solve the inhomogeneous equation

i 2 / r § I \  = ? L _ Q
r dr\ dr)  3t k 

with the zero initial condition
T U  =  0

and homogeneous boundary condition of the third kind:

(SH
Suppose the solution is of the form

(33)

=  0.

where

T = Z  Ta---- 2------ *n(r),
,=1 J# rR2n(r) dr 

?n = j°TR n(r)r dr,

in terms of the eigenfunctions Rn(r) of the homogeneous problem. The latter 
must satisfy the equation

the boundary condition

— (rRJ  +  XR =  0, 
r

R \a ) +  hR(a) =  0

(34)

and the requirement that i?(0) be bounded. Solutions of the required type 
exist if

Y a
X =  Xn =  I* w =  1, 2 ,.. .,

a

where the yn are consecutive positive roots of the equation

yA(y) =  ahJ0(y).

The corresponding solutions of (34) are

R =  Rn(r) =  J , ( Y ) .

These functions are orthogonal with weight r on the interval (0, a), and more­
over

J \ * * ( r )  dr = a-  [J&yJ +  J?(Yn)] =  -  J 20( Y „ ) [ l  +  (—J ] '
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To find the functions Tni we multiply (33) by Rn(r) and integrate from 0 
to a. Then, integrating by parts twice and taking account of the boundary 
conditions, we find that

r; +  feY r . =  ^
\ a /  k y*

(35)

The solution of (35) satisfying the condition Tn =  0 is

_  Qa î(Yn) j-j _g-yst/a’j
k Yn

Therefore the desired temperature distribution can be represented as a series

T(r, t )  =
2 Qa2 oo

2
Yi(Y„V0(Ynr/a)

fc nt'l YntWn) +
[1 _  e- w l *  ]

This form of the solution is suitable only for small values of t ,  i.e., during the 
initial stages of the heating. For large values of r, it is convenient to subtract 
out the terms of the series which are independent of time, by using the formula

! ( l  -  —\ + 1 _ f J^Yn) Jo(YWa) 
s l  W  4ah £  yl JX rJ  + JiCrJ'

Then T(r, t )  takes the form given in the answer on p. 121.

261. The problem reduces to finding the solution of the equation

P T  d2T Q
dxz dy2 k

which satisfies the boundary conditions of the second kind9

dT
dx x= ± a

dT
dy

=  0,
v=Q

dT
dy =  /(*) =

Qab
kc ’

\x\ <  c , 

1*1 >  c.
The solution can be obtained in two different forms, either as a series with 
respect to the eigenfunctions Xn(x) satisfying homogeneous boundary con­
ditions in the variable x , or as a series with respect to the eigenfunctions 
Yn(y) satisfying homogeneous boundary conditions at the end points of the 
interval 0 < y  < b. The first form of the solution is

T(x, y) =  -  f 0 +  -  2  Tn cos —  , (36)
^  ^  7 1 = 1  ^

9 The density q of the heat current through the section |*jc| < cf y  =  b can be expressed 
in terms of the density Q of heat produced inside the bar by using the condition qc =  Qab 
for solvability of the problem.
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where

Tn = f V  cos —  dx. 
Jo a

To determine Tn, we multiply the original inhomogeneous equation by 
cos (tinx/a) and integrate with respect to x from 0 to a. This gives

which implies

r ; - ( ^ ) r n =  [ - T ’ " ~ 0,
' a !  (0, n > \ ,

T0 = — + A0 + B0y,

, nnyTn = An cosh —  +  Bn sinh , n > 1. 
a a

Using the boundary conditions in y , we find that

dT„ d f n I f rt, ,  . nnx Qa% . rnzc=  0, — - =  f(x)  cos dx =  —   sin ,
v=o dy Iv=b Jo a nnkc ady

which leads to the following values of the constants:1

An — — Qa*b sin (riTzc/a) 
n2n2kc sinh (nnbja)

B n =  0.

Substituting An and Bn into (36), we obtain formula (14), p. 126. 
To obtain the other form of the solution, we set

T{x,y) = -  T 0 +  \  f T n c o s - 2 ,

where
' 7 1 = 1

f „  =  f T cos ^  dy.
J o  b

Then, by the same procedure as before, we obtain the differential equation 

r ;  -  ( j j T n =  (~1)"+1/(X) (37)

determining the coefficients Tn. The solution of (37) satisfying the conditions11

dTn 
dx

dfn
dx

=  0

10 T h e con stan t A 0 rem ains indeterm inate.
11 T h e desired so lu tion  T { x , y) is an even  fun ction  o f  x ,  and h en ce, from  n o w  on , we  

need on ly  con sid er the region 0 <  x  <  a.
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can be found by variation of constants, and turns out to be 

nnx
T Qab3 (—l)n+1
-* n  1 n  rc n2n2k

cosh ■

sinh

+

nna
b

nnx

(sinh sinh
\ b b I

1 — cosh

. nn(x — c) , nnx cosh —1------------ cosh

X  <  c ,

X  > c,
n =  1, 2, . . .

b b

Similar calculations for the case n =  0 lead to the following expression:

T0 =  const +
I ^  (a -  c)*2, x <  c, 
2fcc

[ ¥ ( - ! ) • x >  c.

After some manipulation, we find that 

(Qax3

Ox2 ' 2kcT(x, y)  = -  E L  +
2k I Qa |x|

|x| <  c,

+  const
|x| >  c.

+
2Qab2

(-D -cos-S V

n2kc 2 . , nra n 1 n sinh----

, . . nn(a — c) , nnx . « H7rasinh —--------   cosh------- sinh----- ,
b b b

. , nnc , nn(a — Ixl)— sinh---- cosh —-------L-Li,

\x\ < c>

M >  c.

The form of the solution given in the answer on p. 126 is obtained if we 
improve the convergence by using the formula

_l)n+1 2 2 n xn cos nx — ---------- j
2 12 4

to carry out partial summation of the series.

—n < x < n
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269. To solve the problem, we assume that heat is produced with uniform 
density Q\7re2 inside a cylinder of arbitrarily small radius e. Then the problem 
reduces to integrating Poisson’s equation

11 
r dr

+
dz2

with boundary conditions

t L .  =  o.

0 <  r <  e 

e <  r < a.

0.

Expanding the solution in a series of eigenfunctions of the corresponding 
homogeneous problem depending on the variable r, we find that

2 ^T(r, z) =  -  2

where the yn are consecutive positive roots of the equation J0(y) =  0. 
Multiplying the original equation by rJ0(ynr/a) and integrating with respect 
to r from 0 to a, we obtain

f "  _  (l?)V _  Q a  j i(yn*la)
n \ a )  n nek yn

after taking the limit as e -► 0. The solution of this equation satisfying the 
boundary conditions

( =  0
z~±l

IS

T  =J  n
Qa! ah cosh (ynz/a)

2nkyn L yn sinh (ynl/a) +  ah cosh (yj/a). 
which leads to the answer given on p. 130.

3-

272. This problem of electrostatics reduces to finding a solution of 
Laplace’s equation

dht 
dx2

+  ^  =  0 
dy*

satisfying the following inhomogeneous boundary conditions of the first 
kind:

«|*=0 =  v .
0 <  x < a, 
a <  x  <  oo.
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Following Grinberg’s method, we look for a solution in the form of an 
expansion with respect to the eigenfunctions of the corresponding homo­
geneous problem,12 i.e.,

where

/ x 2 v .  (2 n +  l)7ry
u(x, y )  =  ~ z u» cos -— rr------ .2 b

an f 6u cos
Jo

(2 n +  1 )ny 
2b

dy.

To determine the unknown quantities wn, we multiply Laplace’s equation by 
cos [(2m +  \)nyl2b] and integrate with respect to y  from 0 to b. Taking 
account of the boundary conditions, we obtain

"(2 n  +  l ) 7 i
_ 2b wn =  ( - l ) n+1

(2 n +  1)tc 
2b /(*)• (38)

We want the solution of (38) which is bounded at infinity and satisfies the 
condition

Jo
b (2n +  1)7xy ,V cos ------!— —  dy =

0 2b
2bV(—l)n
(2 n +  l)7r

It is easy to see that this solution can be written in the form

«n) =  Bn Smh
(2 n +  l)7ix

2b + 2 b V (- l )n
(2n +  l)7i ’

—(2n+l)rr®/26 7̂1̂  »

x < a, 

x >  a,
where the values of the constants Bn and Cn are determined from the “contact 
conditions”

n̂|x=*a—0 n̂|*=o+0> n̂|*=a—0 7̂i|*=a+0>
which imply

_  2bV( I)71"1-1 _(2n+l)no/2b
71 (2M +  1)7T C n

2 b V (- l )n 
(2 n +  l)7i

cosh ( 2 m +  l)7Tfl
2b

Substitution of these values of the coefficients into un leads to the following 
series solution of the problem:

I 4KVU\x<a = —  Z
^  71=0

= ~ trc w _ . n

i n l H f I _  g—(2n+i)jtb/2a sinh (2n +  0**1 cos (2n +  1 )ny
2n +  lL 2 a J 2b

J r zD l  cosh (2h +  1)im e- (2„+i,„/26 cos(2n +  l)ny 
2 m  +  1  2b 2b

12 Choosing the other form of the solution leads to an expansion in a Fourier sine 
integral over the integral (0 , oo).
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To obtain the final form of the solution, we improve the convergence by 
using the formula

^  l)n n  n n
m < 5

to sum the slowly convergent part of the first series. It would be noted that 
the solution can also be written in closed form.

277. To solve the problem, we first assume that the charge q is uniformly 
distributed with density p over an arbitrarily small cylinder 0 <  r <  8, 
c — <  z <  c +  Je, i.e., we reduce the problem to integration of
Poisson’s equation

1 3 /  du\ 
~rdr\ dr)

Pu
dz2

+  —  =  -47tpO , 2),

where

—p(r, z) =  (7u82e
lo

for 0 < r <  

otherwise,

c -  J e  <  z <  c +  Je,

subject to the boundary conditions

=  «|*=0 =  “1=1 =  0.

One of the two possible forms of the solution is an expansion with respect to 
the functions J0(ynrla)y which are the eigenfunctions of the corresponding 
homogeneous problem, i.e.,

where the y« are consecutive positive roots of the equation / 0(y) =  0. 
Multiplying the original equation by rJ0(ynr/a) and integrating with respect 
to r from 0 to a> we arrive at the equation

K  -  ( - j u n  =  - 4 * f o°p(r, Z)J0( ^ )  t dt, (39)

which is to be solved with zero boundary conditions

n̂|«=0 ^n|z=i

The general solution of (39) satisfying the first of these conditions is

sinh (Y^/fl) 
n n sinh (ynl/a) Tn Jo a
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Using the other boundary condition to calculate An, and then passing to the 
limit 8, e -► 0, we obtain

r » «
Thus the coefficients un are equal to 

2 aq
sinhl!< izL i> sinhM

Un =
Yn si”*1 —  | si„h W sinhi !( L l i ) i

0 < z < c, 

c < z < /,

which immediately leads to the answer on p. 134.
The other form of the solution can be obtained by expanding w(r, z) in a 

series with respect to the eigenfunctions in the variable z, i.e.,

t  V 2 v  -  • W7TZ _ P  . H7TZ ,u(r, z) =  - 2 ,  Wn sin —  , « sin —  dz.
^ 7l=»l * J O  I

282. Since the potential distribution must be an odd function of the 
coordinate z, the problem reduces to solving Laplace’s equation

I d /  d u \ , F u _ n 
r d r \ d r ) + dz*

with boundary conditions

M|*=o =  0, u\,=l= V ,  «|r„0 = /(z ) ,
where

[V, 8 <  z <  /,

0 <  z <  8.

To obtain homogeneous boundary conditions in the variable z, we set

^ z) Ksin — , 0 <  z <  8.
I 28

w =  V-  — v.
/

Then the function v(r, z) will be the solution of Laplace’s equation satisfying 
the homogeneous conditions

»|.=o - =  o
and the following boundary condition on the lateral surface

0 <  z <  8.
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To find the function v, we can now use the Fourier method, which, after 
separation of variables and determination of eigenvalues and eigenfunctions, 
leads to the expansion

where the coefficients cn are found from the condition

»|r-« =  (P(Z)>

After determining the potential w(r, z), the electric field on the axis of the 
lens can be calculated from the formula

289. Suppose the current is distributed with uniform density over the 
arbitrarily small area

e0 - ? < e < e 0 +  ?, |9| < - .

Then the problem reduces to integration of the equation

0 < 0 < - , 
2
7T

—  7T <  <p <  7T (40)

(see Prob. 21, p. 14), where

/(0, 9) =  aha2 8e sin 0

0

for 0O —- <  0 <  e0 +  - ,  |9 | < - .
otherwise,

subject to the boundary condition

W | g = tt/ 2  —  0 .

If we introduce a new variable by writing

^ =  tan ® , /(0 , <p) =  F(<\i, <p),

then (40) takes the simpler form

0 < ^ < 1
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whose solution can be constructed as a Fourier series

1 . , 2
u = -  u0 +  -  2  “n cos

7T „ = l

where
un =  Jq u cos Hep dcp.

To determine the coefficients un) we follow the usual approach, obtaining the 
differential equation

1 d ( } dun\ n2 _ 4a2 f wn / , ,♦  7+ i  “  r “  <777?  J . ^ 808
whose general solution is

«n =  K V  +

+ (?) 1  ,) “ s ^
The constants An and Bn are determined from the boundary condition

w»|+-l =  0
and the condition that un be bounded for ^ =  0. Passing to the limit 8, 
e —► 0, we find that13

- J—  (<K? -  +0B). +0 =  tan ^  ,4 abn 2
Bn =  0, n =  1, 2, . . .  ,

which implies

s = __L . x f<« -  «*»*. «< + <+► , 2 ,
■ 4ahn V  -  4.—)+- +, <  + <  1, '  ............

For n — 0 we have
-q =  x jin +01 0 < ^ < +0,

2cth lln ^ < 1-
Therefore the desired solution has the following series representation:

u 10̂ 4, <4,0 — ~
n=1 n J

|4/0̂ 4̂ <1 i - L  + + S W- - + - ) W S21i * '
2kct/iL n J

13 The coefficients Bn vanish for arbitrary values of 8 and £.
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Using the formula

( | p |  <  1, 0 <  X  <  7 t )

to sum the series, we arrive at the answer given on p. 138.

296. In this problem it is convenient to characterize the electromagnetic 
field by the vector potential Aeibi\  whose complex amplitude has components 
Ax =  Av =  0, Az =  A(r, z). Suppose the current in the dipole is replaced by 
a current distributed over the volume of an arbitrarily small cylinder

The tangential component of the electric field must vanish on the surface of 
the resonator, and hence

We look for a solution of the problem in the form of a Fourier cosine series

0 <  r <  8, — -  <  z <  -  .
2 2

Then A(r, z) is determined by the differential equation

where

for 0 <  r <  &, — -  <  z <  -  ,
2 2

otherwise.

where

An = A cos —  dz.
o I

The usual argument implies

where the last condition is equivalent to

^7i|r=o 0,
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because of the differential equation for An. Using the method of variation 
of constants, we find that

A  = — 1
c / 0(ana)

f aGn(r,
Jo

p)p dp f  j(p, 0  cos ^  
Jo /

an

q  r r  \  =  [ / o (* n p ) [ / o (« n a ) ^ o ( « n '-)  -  ^ 0( a „ a ) / 0( a rl/-)]> p <  r ,

’ l / 0( « Br ) [ / 0( « na ) ^ 0( a Bp) -  U * na M * n p)],  p >  r .

Then, passing to the limit S , e ->0 and bearing in mind that lim Je =  0, we 
arrive at the expression 6~*°

r  nP 1An = ----------- [I0(<x.na)K0(<xnr) -  K0(<xna)I0(<xnr)l
c I0(<xna)

which immediately implies the answer on p. 141.

303. We want the solution of Laplace’s equation 

d2T d2T—  +  —  =  0 (0 < x <  co, 0 < y <  oo)

satisfying the boundary conditions

dT
= M  =

g 
k '

0 < y < b,

\0, b < y <  oo.

Application of the Fourier method leads to the particular solutions

T = Tx =  B^e Xx sin Xy, X > 0,
which are bounded in the quadrant 0 < x <  oo, 0 < y <  oo and vanish for 
y  =  0. Integrating with respect to the parameter X, we obtain

T(x, y) = J ” Bxe~Xx sin Xy dX, 

where the coefficient By, is determined from the boundary condition

=  /(y) = I Bx\  sin Xy dX, 0 < y <  oo.
®=o Jo

Because of the theorem on expansion in a Fourier sine integral, we have

dT
dx

B, 2 f 00, ,  x j 2q 1 — cos Xb=  -  — /OO sin Xydy = — ----- -------
T U X JO  ^Tlk X*

which is the same as the expression for r(x,y) given on p. 150.
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313. To avoid the difficulties associated with the fact that the logarithmic 
potential does not go to zero at infinity, we look for the components of the 
electric field in the two media:

Setting
Ex\> Evi, Ex1/ 2 -

E . , - c + i e . V  _  I7<°) . pC 1)
•E'ul '—  -^1/ ~T“ * ^ y  *

7 ( 2 )
Jx\ T  » ^ V l  I * J-Jx2 —  > 1 J 1/2 ■—  >

where E{0) is the field due to the charged wire in an unbounded medium of 
dielectric constant e 1 s with components

<j{y -  a)£S0) = qx
el[x2 +  (y -  af] ‘ £i0) =

ei[xa +  O' -  af]
we obtain the system of differential equations

dx +  dy
dE<° dE<°
dy

which, together with the boundary conditions
n r ( 0 )  __l  f ( 1 ) i  —  f ( Z ) I
1 & X  I & X  lv= 0  —  |v= 0i

( 2)1

dx
=  0,

c rF(0) F(1)1 — c- f (2)I
fcl L I  & y  J V= 0  ----  ^ 2 C j V  |v = 0 >

(41)

(42)
E ^ C U o o - O ,  E ^ E i 2,U - »  -  0, e S , ° ,4 V ±« - 0 ,

determine the functions E{yl) (i =  1, 2). A convenient way of solving (41) 
is to use the method of integral transforms, by taking the sine transform of 
E {J ] and the cosine transform of E™ (i =  1, 2).14 Thus we multiply the first 
of the equations (41) and the second of each pair of boundary conditions (42) 
by cos Xx, and the second of the equations (41) and the first of each pair of 
boundary conditions by sin Xx. Then, integrating from 0 to oo, we find that

=  0,
dy

2ej

dEw
dy

+  x£^  — 0,

[e2E f > -  c ^ V o  =  -  ^  ^  (43)

where
Ex \  ^ ’U+co -> o,

Ef  = J" Ei° sin Xx dx.
The solution of the system (43) is

ga) _  £(i) €i ”  e2

r(2) Jp(2)| 0
> * ^ y  \ y - + —oo

E =  Jo°° £J°cos Xx dx.

2 e !  E x +  E 2

^(2) =  = nq -------- (
£1 +  e2

- X (a + l/ )

-X(a-y)

14 Note that the cosine transform of E{vu and the sine transform of vanish, 
because of the symmetry of the problem.
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Using the inversion formulas

4 °  =  -  sin Xx dx, £<° =  -  f  °°£<<) cos Xx dk,
7Z JO 7T Jo

and making a few simple calculations, we arrive at the expressions for the 
components of the electric field given in the answer on p. 154.

321. The electric field has only a z-component, whose complex amplitude 
we denote by E(x, y). If we regard the current as distributed over an arbi­
trarily small rectangle a — 8 <  x < a +  8, |_y| <  e, then the solution of the 
problem reduces to integration of the inhomogeneous Helmholtz equation

where

AE +  k2E = 4niu>
j(,x, y),

j(x, y) =  48e
lo

with boundary conditions

for a — 8 <  x < a +  $, 

otherwise,

Lvl <  e.

(44)

E\x = 0   Ey=±b   0, 4 * — CD 0.

To solve the problem, we first make a Fourier sine transform, carrying (44) 
into the ordinary differential equation

E" -  (X2 -  k*)E = —  f "/G, y) sin X? d\  (45)
c Jo

for the quantity
E =  I £  sin Xx dx.

Jo

The solution of (45) satisfying the boundary conditions

E\y= ±b ~  0

can be obtained by variation of constants. Then, taking the limit as S, e 0, 
we find after some simple calculations that

2nikJ sinh \/x2 — k2 (b — |v|) .E ---------- ,  — --------------sin \a.
cv X2 — k2 cosh v X2 — k2 b

This immediately leads to the answer on p. 157, if we use the inversion 
formula

2 f 00 _
E = ~ £  sin Xx d\.

71 J o



p r o b . 324 S O L U T I O N S  337

324. We want the stresses a X9 t x v  and a v  satisfying the system of equations

^  = 0, +  —  =  0, (equilibrium equations)dx dy ^ ^

(compatibility equation)

d'T'cy | 
dx dy

d*°x 2 d \ y  d \  _
dy2 dx dy dx2

(46)

and the boundary conditions

CTvUo =  /(*)> T«|v-0 =  £(*)•
Introducing Fourier transforms

F =  f ” Fea*dxJ—00
of the unknown functions, we multiply each of the equations (46) by eiXx 
and integrate with respect to x from “ oo to oo, taking account of the 
behavior of the stresses as x -► ±  oo.1B This gives the system of ordinary 
differential equations

H”  ^ x v  ~I-  ° V  ( A H ' s

K  +  2iKv'xy -  X2cfv =  0, 

which must be solved with the boundary conditions

°v|v«=0 ~  f *  ^ajy |v=0 =  8

and the conditions at infinity.

x̂v> °v 0 as y  00 •
The solution of the system (47) satisfying all the conditions of the problem is 

%y = (A + BXy)e~Wv,

ax =  -[b (1  -  |X| y ) - A  ^ ] < r |x|v,

s , = Kx* i4+ B ( i + i x |  j')]eHxiv’
where the constants A and B have the form 

A =  g, B =
A 16

16 We assume that the stresses and their first derivatives approach zero at infinity. It 
should be noted that the problem cannot be solved in this way for the Airy stress function, 
since the latter cannot be expanded as a Fourier integral.
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The final form of the solution given on p. 158, involving various integrals, 
is found by using the inversion formula

1 f 00
F = — Fe~iXx d\

2n J-co
to go back from the quantities rxv, ax,, av to the stresses txv, ax, ay themselves.

328. Replacing the concentrated force P by a load uniformly distributed 
over the arbitrarily small rectangle

8 8
— - <  x < - ,  

2 2
b - \ < y < b + l

we reduce the problem to integration of the inhomogeneous biharmonic 
equation

d4w ,  ̂ dAu , 34u q(x, y)

where

<i (x , y) =

3x4 * dx2 dy2 ̂ dy* D

— for — - < x < - , b — - < y < b + - ,
Se 2 2 2 2

(48)

^0 otherwise, 
subject to the boundary conditions

ML=n —du
dy

= 0.
V = 0

Taking the Fourier transform of (48), where

u = Jq u cos Xx dx.

we obtain the following equation for w:18

uiiv) __ 2X2m" +  X4i7 =  ~  f qfe, y) cos X£ d!;. 
D Jo

(49)

The general solution of (49) can be obtained by variation of constants, and 
has the form

u(y) =  (4 +  B\y)e Xv +  (C +  E\y)eXv

+  f Kx(y, yj) dy] f  q & ,  y)) c o s  X £
2DX Jo Jo

where
K\(y, i l )  =  My —  yj) cosh X (y  — Y)) — sinh X (y  — yj). 16

16 It is assumed that u and its first three derivatives with respect to x go to zero as
-*■ 00.X
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At this stage, it is convenient to simplify the calculations by taking the 
limit as 8, e —► 0. The result is

= (A + BXy)e~Xv + (C +  Eky)^v,

* !* ,< . = (A + B\y)e~Xv +  (C +  EXy ) ^  +  —  Kx(y, b).
4 I / A

The constants C and E are determined from the condition

which gives

C =

0,

E = — X b

8DX3 ' " " "  ’ 8DX3
The other two constants are found from the boundary conditions

which implies
u\v=0 = u |l/=0 0,

A =  -C , B =  - 2 C - E .

The value of the deflection u(x, y) is obtained by using the inversion formula. 
To find the bending moment and the shear force

■M =  C ^
V v=0

- N  = D * ;
3 / v=0

on the clamped edge, we differentiate the expression 

Pe~Xbw|v<b =  “— r  [(1 +  Xb +  X2by) sinh Xy — Xy(l +  Xb) cosh Xy], 
4DX

obtaining
<N
dy2

Pbe-
v = 0 2D

d^u
dy3 v=o

(1 +  \b)Pe 
2D

, - X b

The values of M  and N are then found by substituting the corresponding 
values of M  and N  into the appropriate inversion formulas.

334. The problem reduces to integration of the heat conduction equation 

1 d ( dT \ dT
- r J r \ ' * ) = T r ’

with the initial condition
T|T=0= /( r ) .

Writing T = R(r)0(t) and separating variables, we obtain

-  ( rR J  +  XR =  0, 0 ' +  X0 =  0.
r
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Integrating these equations, and taking account of the boundedness of T as 
r —► 0, we find that

T =  Tx =  cxe ^ J 0( J l  r).
It follows from the boundedness of T as r -► oo that the parameter X can 
only take positive values X =  (jl2. This leads to the following set of particular 
solutions depending continuously on (jl:

T =  T[1' = 0((i.r), 0 < (i. <  oo.
The general solution is then constructed as an integral of the form

T(r, t) =  dy. (50)

The coefficients are determined from the initial condition, which gives

c,i =  (A J# f(r)J0(yr)r dr, (51)

if we take account of Hankel’s integral theorem. Substituting (51) into (50), 
reversing the order of integration and then integrating with respect to p., we 
find the form of the solution given in the answer on p. 162.

335. We want the solution of the equation

1 d I dT\ dT ^  ^
s l ' s - j ; ’ « < r < »  <52)

satisfying the initial condition Tjr=0 =  0 and the boundary conditions17

r | r=o =  r 0, — o.

9xW =  JoQ'a) 7„(Xr) -  Y0(ka)J0(hr),
Writing

we carry out a “Weber transform” by multiplying (52) by rcpxM and inte­
grating from a to oo. Taking account of the behavior of the various functions 
as r -> oo and the relations

we find that

where

<Px(«) =  0, 9x(«) =  ~ .7za

27i
7C

T = \ a Trc?i(r)dr.

(53)

17 It is assumed that Vr T and Vr(dT/dr) approach zero as r -*» oo, and that the integral

J°° V 7\T\dr
converges.
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The solution of (53) satisfying the condition T\r=„ is

*x2V '

To determine the solution T(ry t )  from its Weber transform, we use the 
inversion formula

T(r, t )  =  f "  
Jo

[cf. formula (15), p. 161].

T <px(r)X d\
+  Yl(ka)

351. As is well known (see T4, p. 343), in the case of axially symmetric 
problems of elasticity theory, the stresses can be expressed in terms of a 
solution «(r, z) of the biharmonic equation (it is assumed that there are no 
body forces). To subtract out the singularity at the point of application of 
the force, we write

« =  m0 +
where

«o =
P

87t(1 — v)
Vr2 +  (z -  a?

is the stress function corresponding to a concentrated force P applied to an 
infinite elastic body, and is a biharmonic function regular in the region 
z >  0. Since the unknown stress crz is related to the function u by the formula

—  v) A m
_ a v i

dz2J ’

to solve the problem we need only find the quantities Awt and d2u jdz2. The 
first quantity is harmonic in the region z > 0 and can be written as an 
integral

=  f  / l xe “ xV 0( ^ r ) ^  d k 9 ( 5 4 )
j o

while the second quantity is biharmonic in the region z >  0 and can be 
written in the form

—  =  J ”(S* +  Cxz K xV0(Xr)A d\  (55)

(note that the integrand is biharmonic). Comparing the result of differ­
entiating (54) twice with respect to z with the result of applying the operator
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to (55), we find that Cx =  — £X/4x. To determine the remaining constants, 
we have to use the boundary conditions

ẑ|z=0 Ŷzjẑ O 
which can be written as conditions on the function Mi!18

Performing the differentiations on the right, expanding the results in Hankel 
integrals and substituting from (54) and (55), we obtain a system of linear 
equations determining the constants Ax and Bx. The formula given in the 
answer on p. 168 is obtained after evaluating certain integrals of a familiar 
type.

355. The problem reduces to integration of the one-dimensional heat 
conduction equation

d2T dT 
dx2 ~  9 t  ’

with the initial condition

the boundary condition

and the condition at infinity

T  |T=o =  0

= q(?)
x = 0

T’U o o - O .

Introducing the Laplace transform

T = j^ T e ~ VTdx,

we multiply the differential equation and boundary conditions by e~VT and 
integrate with respect to t  from 0  to oo. If we take account of the initial 
condition, this gives

T " — P T =  0, - k T % ^  =  q ,  ? V *  -  0,
which implies

T = ~ 2 - e ~ V p x , Re J p  > 0.
k j p

18 The second of these equations follows from the formula

d2u~]d
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The problem is now solved by using the Fourier-Mellin inversion theorem

2 m k  Jr y j p  '
where T is a straight line parallel to the imaginary axis lying to the right of 
all the singular points of the integrand. In Case a, where q = q0 =  const, we 
have

T  _ L  f  pv-t— V px d p  /  C i f \

”  k  2 n i  J r  p j~ p  * ( )Ps/P
As the next step, we calculate the deriva- 
tive _ .

<H==_ th A -  f  *t- V vxdP
d x  k  2 n i  J r  p

Applying Cauchy’s integral theorem to the 
contour shown in Figure 159, and then tak­
ing the limit as e -► 0, R -► oo, we obtain19
dT q0[ 2 f 00 _rT . r  dr]—  =  — — 1 -----e  sin J r  x  —
d x  k  L 7c Jo r  J

where O(x) is the probability integral. It follows that

and the final form of the solution given in the answer on p. 171 is obtained 
from this formula by integrating by parts.

In Case b,

T = qoU J _  f  V p x ____ dp____
k  2 i z i J r  \ J p ( p 2 +  °>*)

The temperature of the surface of the body can be found by using the con* 
volution theorem, which gives

ri = « « _L f  M dp =
x 0 k  2 n i  Jr co2 +  p 2 ^ J p

and leads at once to the answer on p. 171.

19 Direct application of the method of contour integration to the integral (56) itself 
is impossible, since the corresponding integral along the circle o f radius e becomes 
infinite as e -+ 0 .
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357. Using the Laplace transform, we write the solution in the form of 
a contour integral

T h f eVT~ ^ vx 1T = Tg 1 ----— —-------—  dp
L 2ni Jr p(h + y/p) _

where T is a straight line parallel to and on the right of the imaginary axis,
and Vp denotes the branch of the square root whose real part is positive.20
A simple way of calculating the integral

r—V v x

= —  (*
2ni J r

is to make the substitution

—-------j=rdp
P(h +  y/p)

,-^Vv+h)
= /  eJoy/p +  h

and then reverse the order of integration. Together with the result obtained 
in the solution of Prob. 355, this gives

J =  f °°e-hads —  f ds.
Jo 2niJr p Jo L \ 2 /̂t /  J

Integrating by parts, we find that

h i  \2n/ t / J  h 
which leads at once to the answer on p. 172.

371. The problem reduces to finding a solution of the equation

r ?L) _  dT
dr) 3 t

(°, r <  a,
IT0, r = a.

i a r \
a dr) r=a, t>0

satisfying the initial conditions

=
and the boundary condition

Taking Laplace transforms and using the initial condition, we obtain the 
equation

i ± ( r d T \ _ p T = Q
rdr \  dr)

grand.
1 For this branch, Vp ^  —h, and hence p — 0 is the only singular point of the inte-
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(« 0 > f -  r0) +  i f ' ) =  o,

and the condition 

which together imply

T -  .
Jp[xaJp I0(Jp  a) +  I ^ p  a)]

The solution of the problem is given by the inversion formula

a-aTpl^pr)

T = ctaToC ______ W p  r)ePT dp_______
2ni Jr Jp[<x.â J~p l^yfp a) +  (x(Jp  a) ] '

The contour integral can be evaluated by residues, since the integrand is 
single-valued. The singular points of the integrand consist of poles at the 
points p = 0 and p = p n =  —y */a2, where the yn are consecutive positive 
roots of the equation

J i M +  a^o(r) =  0.
Calculating the residues at these points, we immediately find the answer on 
p. 177.21 As in other problems with boundary conditions involving time 
derivatives, the solution of this problem is greatly simplified by the use of 
Laplace transforms.

375. In the first region 0 < r <  oo, 0 <  z <  oo, the concentration 
Cx(r, z, t) satisfies the equation

1 d ( dCA , d2Ct 1 dCt 
r 3rV d r )  + dz2 D dt ’

the initial condition

the boundary condition
dCx
dz 2 = 0

/(0 , o < r <  a,
,0, a < r < oo

(57)

(58)

[where f (t )  is a function to be determined later], and the conditions at 
infinity

C l | r - * o o  0 ,  Q | z - > a o  ~ >  0 -

In the second region (the tube), the concentration C2(z, t) satisfies the one­
dimensional equation

d ^ 2 = ± d £ 2 .
dz2 D dt ’ ( }

21 It is easy to see that the integral along the large circle of radius R completing the 
contour of integration goes to zero as R -> oo.
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the initial condition
C2Uo =  C0#

and the boundary conditions

-  0. (60)
z = - l

ac,2
d z =  /(0 . ^

2 = 0  C7Z

Taking first the Laplace transform and then the Hankel transform of (57) 
and (58), and using the initial condition and the condition Cx ->0,  we 
obtain

dCx
dz

=  -{aJ1(Xa),
z=o A

C1; 0,

where a single overbar denotes the Laplace transform and a double overbar 
the Laplace transform followed by the Hankel transform. Integrating the 
equation for Cl9 we obtain

= _  _  fa J1(ka) 'V^+(P/d)»W i---------  L ,
X /  X2 +  —
V D

which implies

C1U - 0  =  f "c,X d'K =  - 4  [e-“V^  -  1]
Jo

after inverting the Hankel transform. Similarly, taking the Laplace transform 
of (59) and (60), we find that

c  =  Q  /cosh JpJPjz +  /)
P ~JplD sinh s/p/D I

In the present approximation, we can find the unknown quantity/by using 
the relation

which implies
Cil|r=z=0 =  C. Iz=0»

/  =
_  C„ _

VpD(e~aVplD -  1 -  coth sjpjD I) '

The amount of substance M  in the tube can now be calculated from the 
formula

M  =  J C2(z, t) dz = M0 + C o  f  ______________ e » d p _______________

2w J r  psJpfD[e~â pll) -  1 -  coth JpjD  I] ’
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where M0 — C0l is the initial amount of substance inside the tube. Integrating 
along the contour shown in Figure 159, we obtain the answer on p. 178.

386. We want the solution of the system
d Ix du, flu* dL

1 a7 +  f a - ° ’ c '57 +  a ; “ 0 « > < * < ' > •

r dl2 du2 ^ ^  du2 dL
i 8 7 + f e - 0 ’ C a7 +  S  =  0 ( ' < * < ” >

satisfying zero initial conditions and the boundary conditions 

«i|«~o =  Ee~xt, M2|a!-*co->-0>

u i | x = i =  u t\x=i>  =  ^ \ x = i  +

Eliminating the variable t by taking Laplace transforms, we obtain

(0 <  x <  /),Lph  +  —  =  0, Cpuj +  —1 =  0
dx dx
du> dLLph  +  ~  =  Cpu2 H---- - = 0 (/ <  x <  oo),
dx dx

«lUo £»
p + a.

■0,

Wilajw( ^2|x=>i> A |* = I  _

These equations can be solved for uu w2, h  and 72. In particular, for u2 we 
obtain the expression

w2 = E0 1)1 V

p +  a cosh p T +  [1 +  (Z/J*o)] sinh pT

where v = 1 jy/ LC is the propagation velocity, T  =• l/v is the time it takes a 
wave to traverse the part of the line going from x =  0 to x =  /, and Z =  
V Z/c is the wave resistance. Then the Fourier-Mellin inversion formula 
leads to the following representation of m2 as a contour integral:

elt-(xM+Tl___________dn
Ui(x, t) =  ^  f  ■

2 n iJ r<
x >  /.

' cosh pT +  [1 +  (Z/R0)] sinh pT p +  a
The most interesting form of the solution can be obtained by using the 
expansion

____________ 1_______________ 2R$e~*T ^  I Z
cosh p T +  [1 +  (Z/Rq)] sinh pT 2RQ +  Z ~ 0\2R0 + Z£« \2Rn + Z!

e~ 2 n v T



3 4 8  S O L U T IO N S P R O B . 402

and then integrating term by term. This gives

f, (x A =  2R0E0 V  / Z Y* 1 f evlt-(xlv)-2nT] _^P
2 ’ ; 2K0 +  Z nr 0V2i?0 +  z) 2 t h  Jr p +  a  ’

According to the formula

1 Ccvt dp ( 0 ,  T < 0 ,

2m Jr p +  a  l e ~ aT,  t  >  0,

all the terms of this series vanish for fixed x and t} starting from some value 
of n. In particular, we have

2̂(0 <t<x/v =

U2\xlv<t<2T+{xlv) IR qEq e-*lt-(x/v)]
2R0 + Z

2̂) 2T+(x/v) < t < 4T+(x/v) 2RqE0 L tt[(-(g/t,)] | _ Z c-<xlt-(x/v)-2Tl
2R0 +  Z l  2R0 +  Z

and so on. The general result given in the answer on p. 183 can easily be 
obtained by induction, with the help of the formula for summing a finite 
geometric series. The jumps in the voltage can be interpreted as the arrival 
at the point x of successive refracted waves.

402. The problem involves integration of the equation

A2w + ^  =  0 (T = y/D/pt, 0 < r <  oo),
OT

subject to the conditions

du
dr

i d  \
„ r 0' lo,

0  <  t  <  e ,

T  >  e ,
( e - 0)

at the point of application of the force, and to the condition at infinity

-0.

Going over to the Laplace transform w, we find that u satisfies the differential 
equation

A2m +  p2u =  0, (61)
the boundary conditions

du
dr

=  0,
r=0

P 
2nD ’

0
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and the condition at infinity

The solution of (61) vanishing at infinity is

u =  AK0(rVF einli) +  BK0(rJp e~inli),
where \jp  denotes the principal branch of the square root (|argp\ <  71). 
Taking account of the behavior of the Macdonald function near the point 
r =  0 and using the boundary conditions, we find that

B = - A  = -----£- = : .
Dp

Application of the convolution theorem gives

Pu(r, t )  = F(t) d'Zy

where
47riN/ l ) p .

F(x) =  —  f [K fr jp  e~inl*) -  K0(r jp  e ^ e ^ d p .  
2m Jr

Transforming this expression by integrating along the contour shown in 
Figure 159, we eventually obtain22

F(t) =  — : f V oO s/p  e3<7l/4) -  K0(r J p e ^ 4)
2m Jo
-  Ka(rJ~pe~mli) +  K0(r jp  e“3i7l/4)]e“pT d9

=  i  p e- pT[/,(rVp e ^ )  -  70(rVp e '^ ) )  dp.
2 Jo

Using the formula
f c o  2  2  c - t W

e ax J0(bx)x dx =  -  ,
Jo 2a

to evaluate the integral, we find that

1 r2F(x)=  - 7 - s i n -  ,
IT 4 t

which immediately leads to the answer on p. 188, after integrating with respect
to T.

22 N o te  that th e  function  K 0(z)  is an a lytic  in the z -p lane cut a lo n g  the lin e  ( — o o ,0 ), 
and use the form u la

Ko(eiKy)  =  Ko(y) ~  Moiy)-
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406. Taking first the Laplace transform of the original differential 
equation and boundary conditions, and then the Fourier transform with 
respect to the variable y , we find that

* U  =  -  F> “ I; 0,

where
u =  f * eav dy f ue vi dt, F =  f f{y\)ea ^dy\.

J — c o  JQ v — oo

It follows that

u = -  Fe~^ (Wv)a+6j>+xa®

where the radical denotes the branch of the square , root which has positive 
real part. Using the inversion formula

U =  —  (  ept dp —  f "  ue~iXv dX 
2iziJr 2tz J - oo

and reversing the order of integration, after substituting for u and F> we 
obtain

u =  — f f(ri) dr) —  f evt — 1*°° e<Mrt- v'>e~V‘(vMi+bv+x’‘xd'X.
2lZ J - 00 27TI J r  P J-oo

The inner integral can be evaluated by using the formula23

/■Jo
,-«Vx*+ cos px d \  = az

%/«2 +  P!
+  P2z) (62)

involving Macdonald’s function Ki(x). Then the solution can be represented 
as the following double integral:

7T J -
f(y\) dy]

00 V x2 +  (y — 7))

x i  IV£ +  ^ W ^  +  bp ̂  +  ( y ~  eP' 7  ’ (63)

83 To deduce (62), substitute (jl = 1, v =  — £ into formula (5.15.6) on p. 134 of L9, 
recalling that

*L-i/z(z) - J h cosz'
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We now use Cauchy’s theorem to evaluate the contour integral

J(u I*) =  ^  dp,

bypassing the branch points p  =  —c and p = 0 both on the upper and lower 
branches of the cut. The result is

- c t / 2

: COSh c V ( 2 -  (X*
t >  (X,

J(t, (x) =  | \/f* — |X2
(O, t <  (x,

where in the course of the calculations, we use the formula

(64)

"/ 2 1 1  • \ l  / \ • j  sinh \lz \ — z\J0(z1 sin x) cosh (z2 cos x) sin x dx = ----— —4,
s!z\ -  z\

Zo >  z./Jo

[easily deduced from formula (4.455) of R2, p. 240 by setting p  =  0, 
q =  — It follows from (63) and (64) that

x / f t ) * ,  3 p „ _  ( J _
I /-------  /-------------- - - I *̂ (̂ > *̂) ^T,

7TV Jv- V v 2t2- x z J x 2 +  ( V  —  y O 2  SlL  J \ i

where
|<<®/v - 0 ,

(X =  -  V*2 +  (y — rif, c =  t>26.

The answer on p. 189 is easily obtained by evaluating the inner integral.

407. This problem can easily be solved by using the Mellin transform. 
Suppose the function T being sought is such that

T  =  0(1), r —  =  0(1) as r ->0,  
or
dT

(65)
T = 0(r s), r —  =  0(r s) as r oo, 

or
where s is some positive number.24 Multiplying Laplace’s equation A T  =  0 
by rp+1f wherep is a complex number such that 0 <  Re/> <  s> and integrating 
the result from 0 to oo, we obtain

{ ^ - p r ’T)
5 d2T
+  f t  +  —  =  0,dtp2

(66)

24 The existence of a solution with these properties can be anticipated from physical 
considerations. After the solution has been obtained, we can easily verify that it actually 
satisfies all the conditions of the problem.
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where
T  =  / "  7Y®-1 dr (67)

is the Mellin transform of the function T. It follows from (65) that the term

\ dr / lo
vanishes if 0 <  Re/? <  s,26 thereby reducing (66) to

together with the boundary conditions

r |,=0 =  o, T \ ^ a =  T0 a-
P

(implied by those obeyed by the function T), Thus we see at once that

^  ^  av sin p
-* — ■* o . >p sin pa

which, in particular, implies that s = 7t/a.
The temperature distribution T  is now determined by using the inversion 

formula

T =  2±  f a+ico sin
27ui Jo-too sin pa \ rl p

where 0 <  a- <  7r/a. The line integral can be evaluated by using residue 
theory, after completing the contour of integration by the arc of a circle of 
sufficiently large radius, lying to the left of the line Re p — a if r <  a and to 
the right of this line if r > a. After some simple calculations, we obtain

f  fr, 1 (_1\n / tAnn/x9 +  1 v ( - i ) nM n 
a n n=1 n W

i ^ ( - i r +i/ fl\n:
jr n \  rl

niz(Dsin — -  , 0 <  r <  a,
a

i ^ ( - i r v i « r /asin^

Using the formula

^ ( - l ) n+1 pn sin nx =  arc tan ; p sin x

a < r < oo.

P < 1 ,n=1 n 1 +  p cos x
to sum the series, we arrive at the single analytical expression for the function 
T(r, 9) given in the answer on p. 190.

2B Note that it also follows from (65) that the integral is analytic in the strip 0 <  
R ep <  s, being uniformly convergent in every closed subset of the strip.
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415. If we replace the concentrated load by a uniformly distributed load 
with density

q(r, <?) = £
0

8 8 for r0 -  -  <  r <  r0 +  - ;

otherwise,

? o - ~ <  <P< ?o +  ^»

where 8 and c are arbitrarily small positive numbers, then the problem 
reduces to solving the inhomogeneous biharmonic equation

A2u =  9SLl1P) (0 <  r <  oo, 0 <  9 <  a), (68)

subject to the boundary conditions

i _  ^u 
M|*=° ~  dcp

, du 
w|v=a T"<p=0 C79

=  0.

Multiplying (68) by rp+2 (wherep  is a suitably chosen complex number), and 
integrating from 0 to oo, we find that 26

(r*+2 — Au -  (p +  l)r*+1 Am +  (p +  1)V — -  (p ~  1 )(p +  l jV ^ u  
I dr dr

CO

0

+  (p -  D2(p +  i)2« +  Kp -  i)2 +  (p +  i)2] -  +  t tdtp dtp

=  7- f qir, cp)rp+2 Jr, (69) 
D Jo

where
5 =  Jj°ur®“2 dr. (70)

Suppose the function u is such that the quantities r-1u, 9u/9r, /* Au and 
r2(9Au/9r) are all 0(rSl) as r —► 0 and all 0(r~s2) as r —► oo, where s1 >  0, 
$2 >  0. Then the integrated term |{. ..}!” in (69) vanishes if —^  <  Rep < s2, 
thereby reducing (69) to the ordinary differential equation27

f ! + [ o > - 1 ) 2+ ( p + 1 )2] - + ( ? - d 2( p+ 1 f adtpdtp

- 1  f°q(r, <p)r*+2 dr. 
D Jo

26 In problems of elasticity theory involving integration of the biharmonic equation, 
it is best to use a modification of the Mellin transform, in which the exponent p  is replaced
by p -  i •

27 By the same token, the integral (70) is analytic in the strip —si <  Re/? <  s2, being 
uniformly convergent in every closed subset of the strip.
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Using the method of variation of constants, we find that

+  ■ ■] * / > t)?v+1d9,

u =  A cos (p — l)cp +  B sin (p — l)<p +  C cos (p +  l)<p +  E sin (p +  l)<p

1 f v "sin (p — l)(cp — t) _  sin (p +  l)(cp — t f \
4Dp Jo _ p — 1 p +  1

where the boundary conditions

du du
—  = w 9=a =  —
a 9 cp=o a 9W | c p = 0 =  0

serve to determine the coefficients Ay B> C and E. Passing to the limit 8, 
e -> 0 and solving for these coefficients, we find that u is a meromorphic 
function with poles at the points where the expression p2 sin2 a — sin2/>a 
vanishes, and moreover that the number sx = s2 is the smallest root of the 
equation

p 2 sin2 a — sin2/?a =  0.

•The bending moment M  and the shear stress N  along the edge 9 =  0 can be 
determined from the relations

Mr% =0 =  - O dFu
d(p2

N r\= 0 — —D f u
d(p3 < p = 0

Using the inversion formula for the Mellin transform, and choosing the 
imaginary axis as the path of integration, we find, after a certain amount of 
calculation, that M  and N  are the same as in the answer on p. 193.

418. Following the Fourier method, we look for particular solutions of 
Laplace’s equation of the form

T  =  KO)<D(<p) sin —  .

Separating variables and integrating the resulting equations, we find that

T = [AI^/~ (nrcr/X) +  BK^/~ (nnrjX)] [C cosh /̂X 9 +  D sinh y/% 9] sin ,

where Iv(x) and Kv(x) are cylinder functions of imaginary argument. Because 
of the behavior of Iv(x) and Kv(x) as r -> 0 and r —► 00, the boundedness of 
the solutions T requires that A =  0 and X >  0. Thus the particular solutions 
needed to solve the boundary value problem, which has a continuous spec­
trum (0, 00), are of the form

T  =  Tt =  (A/t cosh T9 +  NT sinh T9)Kix(^— j  sin -—  , 0 <  t  <  00.
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The general solution,is constructed by integrating with respect to the parameter 
t . Noting that = 0, we have

T =  sin ^ y J ” l V T sinh T < p  dr.

The coefficient AT is determined from the boundary condition

T\v=a= f{r) s i n - - ,

which gives

f(r) = j°°N T sinh t <x  ^ ( ^ y )  dr, 0 <  r <  oo. (71)

For a certain class of functions/(r), we can invert (71), obtaining28

.. . , 2 f 00 Kix(rmr/l)Nt sinh xa =  — x sinh m  / (r) —----- — dr.
7T Jo r

The conditions for using this formula are usually satisfied, except that /(r) 
may not go to zero sufficiently rapidly as r —► 0. If /(0) 7̂  0, then in most 
cases encountered in practice we can use the formula29

Nx sinh ra =  - /(0 )  +  t  sinh m  f  °°[/(r) -  /(0)e-n"r/1] dr (72)
7T 7TZ J o  r

to determine ATt (see L9, pp. 150-153). Assuming that the conditions imposed 
on f(r) are sufficient to guarantee the applicability of (72), we arrive at the 
result given in the answer on p. 196.

422. We subtract out the source potential, by writing

where R is the distance from the charge q to an arbitrary point of space. Then 
the problem reduces to integration of Laplace’s equation

- ~ ( r —\  _i_ i  d 2d q

r d r \  d r )  r2 d (p2 d z 2
(0 < r < o o ,  0 <  cp <  27c, — oo <  z <  oo), 

with boundary conditions

28 This follows from formula (24), p. 195.
29 Implied by formulas (24) and (26), p. 195.
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Expanding the function v in a Fourier cosine integral, i.e., setting

v = -  v cos az da,
71 Jo

we find that v satisfies the equation

1 d t  dv\ , 1 d2v 2_ A---- r — +  -  —; — (J v = 0
r dr \ drJ r2 9cp

and the boundary conditions

(73)

cos az dz,

 ̂m=2tt o R
C O S  CTZ ^ Z ,

<p—2n
which, after evaluating the integrals take the form

t5|9=0 =  v\v=2n =  qK0(o\ir2 +  r2 — 2rr0 cos tp0), 
in terms of Macdonald’s function K0{x). Using the Fourier method to integrate 
(73), we represent v as an integral

I*” , ,  cosh (tc — <p)x ^  , wv = q ]  Mar ■------- ---------Kix(ar) dx
Jo cosh 7TT

(see the solution to Prob. 418), where the coefficient AfO T is determined by 
the condition

K0(a\f r2 + r20 — 2rrB cos cp0) =  f MaTKiT(ar) dx, 0 <  r <  oo. (74)
J 0

To avoid the difficulties associated with direct application of the inversion 
theorem, we write the left-hand side of (74) in the form

K0(ayJr2 +  rl — 2rr0 cos <p0)

and use the formula

=  [AT0(ctVr2 +  r\ — 2rr0 cos <p0) — /C0(CT''o)]
+  A:0(ar0)[l -  e~ar] +  K0(ar0)e~°T

2 f “=  -  K ja r) dx.
n Jo

Then the inversion formula implies

M„.r =  “ K0(rjr0) +  — K0(ar0)x sinh 7tt f -----  — KiT(ar) dr
n  n  Jo r

+  A  X  sinh 7VT f [K0(o\/r2 +  — 2rr0 cos <p0) — K0(or0)]Kix(ar) — .
n Jo r

(75)



p r o b .  4 2 2 S O L U T I O N S  357

The integrals appearing in (75) can be calculated by using the formulas
r ° °  .-------------------------------------------

[K0(Vx2 + /  -  2x y  cos y) -  —
Jo X

r

:(y)
cosh (7t — y ) t  1 K0(y)

sinh 7tt 2 sinh im .
-*ur , x dx n tanh im(1 -  e xW ir(x) — =  --------S — :

X  2 t  cosh £7UT
which lead to the result

2
MCtT =  -  cosh (tt — 90)t Kix(Gr0).

7T

Thus the solution of the problem takes the form

4 4 f ”0 j  f 00 c o sh  (ji — 9 ) t  u ,  x ^  /  N ji? =  — cos crz da \  cosh (7c — cp0)x Kix(Gr0)Kix(ar) ax.
7r2 Jo Jo cosh 7TT

(76)
Substituting the known integral representation

Kix(x)Kix(y) =  I K0(Vx2 +  y2 +  2xy cosh s) cos ts c/s jo
into (76), reversing the order of integration and evaluating inner integrals,31 
we find that

v =
2n J2rr0M l -lrr0 J x u

1
+

.cosh is — cos $(<p +  9q) cosh is +  cos J(? — <Po)-
sinh isds

where
Vcosh . cosh X

, (77)

cosh X = z2 +  r2 +  rg 
2 rrn

To obtain the final form of the solution, given in the answer on p. 198, we 
evaluate the integral in (77) by making the substitution

cosh -  =  cosh - cosh t.
2 2

30 The formulas

f C O S T s ds
Vcosh X +  cosh s

= _ L _  f
sinh 7tt JA

sin t s ds

r cosh . , 1
sin TsdT —

x V cosh s — cosh X

sinh
Jo sinh 2tct ~ ~ 4 cosh is +  cos *

are used in the course of the calculation.

0 < 41 <



358 SOLUTIONS p r o b . 434

434. Introducing elliptic coordinates a and p, where

x =  c cosh a cos p, y  =  c sinh a sin p

and c is the eccentricity of the given ellipse, we assume that the charge q is 
uniformly distributed over the curvilinear rectangle

0 <  a <  8, p* -  ^ <  |p| <  p* -f ^ .

The problem then reduces to integration of Poisson’s equation

d2u <Pu 
9a2 +  dp2H  H  =  ~4*p/*2. (78)

where

p = p(«. p>=■ i f c  for < > < « < * , P * - ^ < I P K P * ^ ,
0 otherwise 

is the charge density inside the elliptic cylinder, and

h =  cs!cosh2 a — cos2 p

is the metric coefficient. Since u must be even in the variable p, we look for a 
solution of the form

1 2 00
U =  -  H0 +  -  2  COS «P,

^  71 71=1
where

«n =  / ”« COS «P </p.

Multiplying (78) by cos«p and integrating from 0 to 7r,. we obtain the 
equation

w" ~  rt2un =  —47tJo ph2 cos «p d$,

whose solution is easily found by variation of constants:

un = An cosh na +  Bn sinh n a ------cos «p d$ ph2 sinh n(a — 5) d
n Jo Jo

The condition that the components of the electric field be bounded at the 
foci of the ellipse implies Bn = 0. The value of the second constant An is 
determined from the boundary condition

^n|a=aQ =  0,

where a0 is the value of the coordinate a on the surface of the. cylinder.
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Taking the limit as 8, e -> 0, we find that

2 izq . .  sinh n(a0 - -a)  - , _un = —  cos n$*--------------    , n =  0, 1, 2, ,
n cosh na0

which immediately implies the answer on p. 205.

437. Since the regular solutions of the two-dimensional Laplace equation 
are of the form

u = un = An cosh noL cos n$ +  Bn sinh na. sin wp, n — 0, 1, 2, . . . 
inside the ellipse a =  a0,31 and of the form

u = un = e~1l<x(Cn cos +  Dn sin n(3), n — 0, 1, 2,. . .
outside the ellipse, we look for a magnetic potential of the form

00

t/(A) =  H 0(x  cos y +  y  sin y) +  ^ e ~ n% C n cos up +  D n sin nP)
n= 1

in the air, and
OO

u(Z) = ^  (An cosh nc/L cos np +  Bn sinh na sin nP)
71=1

in the magnetic medium (arbitrary additive constants are omitted). The 
values of the coefficients An, . . . ,  Dn are determined from the condition 
that the tangential component of the magnetic field and the normal com­
ponent of the magnetic induction be continuous on the boundary surface, 
i.e.,

This gives

a«(1) a»(2> 3»(1) a«(2>
ap a=ao 5p

>a=a0 9a a=ao 9a

Cx =  (1 — [i)H0c

Di =  (1 — \l)HqC

A ,=

ea° cosh a0 sinh a0 cos y 
cosh a0 +  [A sinh a0 

e*° cosh a0 sinh a0 sin y 
sinh a0 +  jjl cosh a0

H0ceao cos y
Bx = -

/ /0cea° sin y
cosh ao +  (x sinh a0 sinh a0 +  p, cosh a0

where all the other coefficients vanish. The final expressions for u(1) and 
u{2) given on p. 206 are obtained by using the relations

cosh a0 =  -  , 
c

sinh a0 =  -  .
c

31 The other combinations of products of hyperbolic and trigonometric functions lead 
to infinite values of grad u at the foci of the ellipse.
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443. To make the problem homogeneous, we write the torsion function 
as a sum

u =  —y 2 +  v.

Then v is a solution of Laplace’s equation regular inside the cut ellipse 
(i.e., in the region |a| <  a0, 0 <  (3 <  n) and satisfying the boundary con­
ditions

^0=0 =  =  0, t)|a=±a„ =  (c sinh a0 sin P)8.
Applying the Fourier method and using the evenness of v in the variable a, 
we construct a solution of the form

v  , cosh na . Q
v = Z An --------- S‘nwP-n=1 cosh n<x0

The constants An are determined from the boundary condition for a =  a0, 
which gives

(8c2 sinh2 a0 n =  1, 3, 5,. . .
An = | re n(4 -  n2)

lo n =  2, 4, 6, . . .
Thus the torsion function is given by the series

__ 2 8fr2y  cosh (2n +  l)a sin (2n +  1)P
y n “ i cosh (2n +  l)a0 (2n +  3)(1 — 4n2) 5 

while the torsional rigidity can be calculated from the formula

(79)

c  =  4Gfa° j \ h 2 dot. dp, (80)
where

h = c\/cosh2 a — cos2 (3

is the metric coefficient. Substituting (79) into (80) and evaluating the double 
integral, we arrive at the expression given in the answer on p. 209.

449. Choosing a system of parabolic coordinates a, (3 such that the 
surface of the cylinder has equation (3 =  (30, and regarding the charge q as 
uniformly distributed over the small area bounded by the curves |a| =  8, 
(3 =  e, we reduce the problem to integration of Poisson’s equation

where

92“ , 32“ , »2 (— o o < a < o o ,  0 < p <  p0),

P
—f— for |a| <  8, p <  e, 
2 / l 2 8 e  1 1  ^

,0 otherwise,
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and
h = c\/ a2 +  (32

is the metric coefficient. The problem is solved by taking the Fourier cosine 
transform. Writing

we multiply Poisson’s equation by cos Xa and integrate from 0 to oo. This 
gives the equation

The requirement that grad u be bounded at the focus of the parabola implies 
B =  0. The value of the constant A is determined from the boundary 
condition

The corresponding value of u is
_ _  2nq sinh X(po — (3)

X cosh Xpo
and the final answer (see p. 211) is obtained by using the inversion formula

2 f 00u =  -  ii cos Xa d'K.
7T JO

457. If we introduce bipolar coordinates a, (3 as shown in Figure 122, 
p. 215, and represent the torsion function u as a sum

u =  — y 2 + v,
the problem reduces to determining the function v which is harmonic in the 
domain a0 <  a <  oo, 0 <  (3 <  27r and satisfies the conditions

u =

whose solution is easily found by variation of constants:

u = A cosh Xp +  B sinh X(3 — ph2 sinh X((3 — */]) dr\.

“|p=0o —
which, in the limit S, e -> 0, gives

A =  tanh X0O. 
X

u | p = 0  —  t f | p = 2  n  —  0 ’

c2 sin2 p
(cosh a0 +  cos P)2 ’

The solution is constructed as a series
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whose coefficients, according to the theory of Fourier series, are given by

-2 r2n sin2 p sin jn ft
7U J O

dp.Jo (cosh a0 +  cos (3)

To calculate the torsional rigidity, we use the relation

L J S  JO \  OCX OCX/  a=<x0 J

implied by the formula given in the hint to the problem (see p. 215) after 
setting i|> =  — y 2.

471. Setting

where R is the distance from the source to an arbitrary point of space, we 
reduce the problem to integration of Laplace’s equation

=  0,
with the boundary condition

M1 a=0 — „ — /----------------------  >
R a=o cv sinh2 a0 +  sin2 P 

and the condition at infinity

sinh oc0 =  -
a

In keeping with the discussion on p. 222, we look for a secondary potential 
in the form of a series

oo

Ml =  2  A n Q n (‘  sinh a)P„(cos P),
n= 0

where the coefficients An are determined from the boundary condition. 
Using the theorem on expansion of an arbitrary function in a series of 
Legendre polynomials, we find that

A =  _  2n + l q T  Pn(x) dx
2Qn(0) c J-i yfcosh2 a0 — x2

for even n, while An =  0 for odd n. To evaluate (81) for even n, we use the 
integral

P  P* ,W  dx 
L  s / b 2 —  x2

J; b >  1,
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which can be evaluated by expanding (b2 — x 2)~l12 in a power series and 
then integrating term by term. Using well-known formulas, we find that

Jn
1 p  Pin(x) dx 
b J-i V l -  (x/b)2

i ^  r(m  + 1) j _  p  
b ~ 0 T(i)r(m +  1) bimL i

x ‘mP2n(x) dx

where

22n+1 ^  T(w +  i ) r ( 2 m  +  l)r(m +  n +  1 )  1

b i n  n m ™  +  l)r(m -  n +  l)r(2m  + 2 n  +  2) btm 

_ r 2(n +  I )  f  (n +  M n  +  i )*  ( i f

J n  bZn+1T(2n + 1 ) £  fc! (2n +  |) ,  \bV  ’

T(X ~h k)
r(x)

The result can be expressed in terms of the hypergeometric function

i.e.,

F(«)P ; Y; z ) = 2 £ » 2*,
*=o /c! (y)*

r 2(« + 1)

W i » , 6 »

+  i» n +  2m +  i ; •
" V 71 6 27!+1r ( 2 n  +  f )

Using the familiar formula

F(a, (3; y; z) =  (1 -  zr"F^a, Y — Pi T>
we find that

or

Jn
1_ r 2(n +  i) 1

T ( 2 m  +  |)  sinh2"+1a0Fi
n +  i, n +  1; 2n + 3 . - U ) ,

sinh2 a0/

Jn = 2 iP2n(0 )Q2n ( i^ h  a0),
because of the definition of the Legendre function of the second kind. Thus 
the required values of the coefficients An are

A2n =  — (4n + 1 )Q2n(i sinh a0),
7TC

which leads to the potential distribution

u = -  + - ~ y ( 4 n  + l)Q2„(i sinh a 0)Q2n(i sinh a)P2n(cos (3), 
R 7 tcn=0

if we note that
P 2 n ( 0 )  2 i

e 2n(0) ‘
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The distribution of charge on the surface of the disk is now found by 
differentiation, according to the formula

o =  -  —
47T\ c

1 du\
\c\J sinh2 a +  cos2 (3 9a/

481. The problem reduces to solving the system of equations 
Aw(1) =  —4np (0 < a <  a0), Au{2) =  0 (a0 <  a <  oo)

for the gravitational potentials w(1) and w(2>, with boundary conditions

,(U =  u{ 2)l
a = a 0 u  | a = a o »

Setting

where

9u(1)
9a

9m(2)
9a

iy(D =  U0 +  Wl, W(2) =  w2,

Uq = — npr2 = —npc2 sinh2 a sin2 (3,

and noting that ux is harmonic inside the spheroid (a <  a0), while w2 is 
•harmonic outside the spheroid (a >  a0), we have

"l =  2  '4nPn(C0Sh «)Pn(COS (3), «2 =  2  BnQn(«>sh <x)Pn(cOS (3).
7 1 = 0  7 1 = 0

Using the boundary conditions, we obtain the formulas

—fupc2 sinh2 a0[l — P2(cos (3)] + 2 / l nP„(cosh «0)Pn(cos (3)
7 1 = 0

=  2 B*<2„(cosh a0)Pn(cos P),
7 1 = 0

—|7tpc2 cosh a0[l — Pjj(cos P)] +  2  XnP;(cosh a0)P„(cos P)
7 1 = 0

=  2 Bn6«(COShao)Pn(cOS P)
7 1 = 0

determining the coefficients,32 which imply that
An = Bn =  0, n =  1, 3, 4, 5, . . .

Thus A0, B0, A2, B2 satisfy the system of equations

A0P0(cosh a0) — 50Q0(cosh a0) =  §7rpc2 sinh2 a0,
A0P'0(cosh a0) — B0Q'0(cosh a0) =  in  pc2 cosh a0, 
y42P2(cosh a0) — B2Q2(cosh a0) =  — §7rpc2 sinh2 a0,
/l2P2(cosh a0) — P2(22(cosh a0) =  — |7cpc2 cosh a0,

32 Note that



PROB. 481 S O L U T I O N S  365

whose solution is33

A0 = §7rpc2 sinh2 a0^l +  2 cosh a0 In coth —̂ ,

A2 =  f7rpc2 sinh2 a0̂ l — cosh a0 In coth >

Bq = 17rpc2 cosh a0 sinh2 a0, B2 = —%npc2 cosh a0 sinh2 a0.

Substituting for B0 and B2 in the formula for u2, we find that the gravitational 
potential outside the spheroid is

u2 =  7rp —  |[2(sin2 p — sinh2 a) +  3 sinh2 a sin2 p] In coth -  
c I 2

+  cosh a(3 cos2 p — l)j.

To obtain an asymptotic representation of the gravitational potential for 
small eccentricity c, we introduce spherical coordinates R and 0, and use the 
formulas

z = ~ (e<x ~h e a) cos p =  R cos 0, r = ^ (ea — e a) sin p =  R sin 0. 

Solving for a and p, we find that

cosh a =  -  — (J 1 +  — cos 0 +  
2 c lv  R

£ l +  A _ 2 c
R2 R COS0 +  P ’

Q lR l  L  , 2c , c2 L  2ccos p =  -  1 +  -  cos 0 +  -  -  ̂  1 -  -
2 c

It follows that as c 0,
R

cos 0 H— - 
R2

co‘l,* = * [1 + S i ’in,0] + 0 © -

C O S  P =  C O S  0 +  •

1 Here we use the expression

Pn(z)QUz) -  QnWPfc) =
1

1 -  z2

for the Wronskian of the Legendre functions, as well as the formulas 

PM  -  1, p m  = i(3*2 -  l),

SoOO =  ̂In - QM  = ^
3z» -  1 z +  1 ,
----- -----In--------------3 z

2 z — 1
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Using these formulas and the exact solution found previously, we obtain

where M  is the mass of the spheroid (cf. the answer on p. 228).

483. If we write
u = u0 + ul9

where u0 =  q/R is the source potential (R is the distance from the charge to 
an arbitrary point of space), and introduce spheroidal coordinates a, (3, such 
that the hyperbola has the equation P “  Po> then the problem reduces to 
finding the function u± which is harmonic in the region 0 < p <  po and 
satisfies the boundary condition

= _________g______
3=Po c(cosh a — cos po)

In prolate spheroidal coordinates, Laplace’s equation takes the form

_ i _  2 ( si0h. 8i )  +  _ t _  l ( si„ p =  o
sinh a 9a \ 9a/ s inp9p\  9p/

if we assume that ux is independent of <p. Setting

Wl =  A(a)B(P),
we obtain the equations

— — (sinh a • A')' +  XA =  0, (sin p • B')' -  XB =  0
sinh a sin p

for the separate factors. Therefore

=  [MPv(cosh a) +  NQv(cosh a)][CPv(cos p) +  DQv(cos P)], (82)

where Py(z) and Qv(z) are Legendre functions of the first and second kind, 
and v is an auxiliary parameter related to X by the formula

X =  —v(v +  1).

Taking account of the behavior of the Legendre functions near the points 
z =  1 and z =  o o , we see that in order for the solutions (82) to represent 
bounded real functions in the region 0 < a <  o o , 0 < p <  po, the parameter 
v must be chosen equal to — \  +  h  ( t  > 0), and the constants N  and D
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must be set equal to zero.34 Thus we arrive at the particular solutions

“i =  « i .t =  CTP_^+iT(cosh a)P_^+iT(cos (3), t  > 0.
To construct the general solution, we integrate over the parameter t, obtaining

Ui =  Jo CTP_v*+iT(cosh a)P_1/i+iT(cos £) d-v, 

where the coefficients CT must satisfy the boundary condition

ilp-Po c(cosh a — cos po)

=  CTP_i/i+iT(cos p0)P_i^+lT(cosh a) dr, a > 0.
Jo

Using the inversion formula implied by the Mehler-Fock theorem, we find 
that

^  cfTtanh7TT f 00 sinha _ , , . ,CT = ------ ----------------  P_i^+fT(cosh a) aa
cP_i^+iT(cos p0) Jo cosh a — cos po

= _ q  t  tanhttt f 00 P^A+dZ) ^
c P_i^+iT(cos p0) J i £ -  cos p0

Evaluating the integral, we arrive at the formula for the electrostatic 
potential given in the answer on p. 229.35

34 In particular, we use the formula

Pv(cosh a) =  — — —— ^-(v+1)a tan7rvF(v +  1, i ;  v +  f  ;e~2a)
Vn  T(v +  | )

+ .-(* + V) eva P(-v, i; i -  v; e-»“),
Vk T(1 + v)

which shows that a bounded solution in the interval (0, oo) exists only if —1 <  Re v <  0. 
The extra requirement that mx be real compels us to set v =  — \  +  i t .

35 To prove the formula

r  p w o
Jl 5 ~  C O S

K
cosh 7TT

P  — ! ^ + » t (  c o s  P o )

(see L7), use the integral representation
, , x 2 Pa cos t s ds

P-\4 + i t (cosh a) =  — I  ,
n Jo V 2 cosh a — 2 cosh s

and then reverse the order of integration with respect to a and s. After evaluating the inner 
integral, this gives

J = C O S  T s ds 
V 2 cosh s — 2 cos Po

7T

C O S h  7TT
P _ K h t ( - c O S  P o ) ,

where we have used another integral representation of i\_i^+lT(jt).
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494. Bearing in mind that the potential u can be represented in the form 
u = E0z +  «i, where ux is harmonic outside the torus and goes to zero at 
infinity, we look for a solution of the form

QO
u = E0z +  y/2 cosh a — 2 cos (3 2 Pn-'A(cosh a) .sin n(3.

«=i Pn- lA( cosh a0)
The coefficients An are found from the boundary condition and coincide with 
the coefficients of the function

—2E0c sin (3(2 cosh a0 — 2 cos p)-3/2
when expanded in a*Fourier sine series in the interval (0 ,7u). Thus we find 
that

sin p sin n$ dp
f ;7T Jo |(2 cosh a0 -  2 cos P)3/2 

Integrating by parts and using the formula given in the hint to Prob. 493, we 
arrive at the answer given on p. 237.

498. Setting

T =  -  ^  +  m ,  r2 = x2 + y \
4 k

we reduce the problem to finding the function w. This function is harmonic 
outside the torus (0 <  a <  a0) and goes to zero at infinity (i.e., as a -► 0, 
P -► 0). We look for a solution of the form

u = j 2 cosh a — 2 cos p T  An ^ W~ ^ C0—̂ — cos np, 
n̂ O Qn-x(cosh a0)

where the coefficients An are determined from the boundary condition

It follows from the theory of Fourier series that 
Qc2 sinh2

An =

A =

2Qc2 sinh2 a0
kn

s :

‘ n f71aQ
Jo (2 cosh a0 — 2 cos P)5/2 * 

cos np ^p_____ n =  1,2, .. .
kn Jo (2 cosh a0 — 2 cos p)B/2 ’

Evaluating these integrals, we eventually arrive at the answer on p. 238.

502. If we subtract out the singularity at the point r =  z =  0 by setting

<7
M =

\I r2 +  z‘
+  MX

the potential u1 of the secondary field is harmonic in the region 0 <  a <  oo, 
Po <  p <  2tt +  Po outside the conductor, and vanishes as a -► 0, p 27t.
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The function ux can be represented in the form o f an integral 

ux =  — -  \ / 2  cosh a — 2  cos p f  AfT cos  ̂ +  Po-----P) P_i^+tT(cosh a) dr.
C Jo COSh 7TT

It follows from the boundary condition

W|p=P<) =  M|p = 27T+Po =  0

that M x coincides with the coefficients o f the expansion o f the function

( 2  cosh a +  2  cos po) “ 1/2

in a Mehler-Fock integral with respect to the functions P_,^+tT(cosh a), 
i.e.,

(2  cosh a +  2  cos po) “ 1/2 =  J0 AfxP_ ̂  +lT(cosh a) dx, a >  0 .

In the present case, we cannot determine M r directly by using the inversion 
formula implied by the Mehler-Fock theorem, since the function being 
expanded does not belong to the class for which the theorem holds (see L9, 
p. 228). However, it can be shown without recourse to the Mehler-Fock 
theorem (ibid., p. 229) that

(2 cosh a +  2 cos po) “ 1/2 =  f cos  ̂ ^°T P_^+iT(cosh a) dx,
JO COSh 7TX

and hence
M _  co sher

COSh 7TX

Therefore the solution o f the problem is

= ------y/2 cosh a — 2 cos (3

Jo
cosh P0T cosh (7T +  Po — P)x 

cosh2 7TX
P _ ^ +iT(cosha)dx,

The charge density on the inner and outer surfaces of the spherical bowl are 
given by

cosh a — cos Po du
4nc ap

cosh a — cos Po du

P=Po 4 t z c P = 2 t i + P o

Performing the differentiation with respect to p and evaluating the resulting 
integrals by replacing the Legendre function by its integral representation

2  f  °° cos xiL d<b
P - 1 4 + d c°sh a) =  -  cosh m  J  —  .

7r Jo yJ2 cosh ip +  2 cosh a

we eventually arrive at the closed-form expressions for g 0  and < y{  given in 
the answer on p. 240.
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508. To calculate the capacitances, we must first solve the electrostatic 
problem, assuming that the spheres have arbitrary given potentials Vx and V2. 
Introducing a system of bipolar coordinates a, p, cp in which the spheres 
under consideration have equations (3 =  — px and (3 =  (32, we reduce the 
problem to determining a function u which is harmonic in the region 
— (3X <  (3 <  (32 and goes to zero as a —► 0, (3 —► 0. The desired solution can 
be constructed in the form of a series

______________  OO
w =  y/2 cosh p — 2 cos a ^  cosh (n +  |)(3 +  Bn sinh (n +  %)$]Pn(cos a),

7 1 = 0

where the coefficients An and Bn are found from the boundary conditions

M|p = H 3 l  = =  ^1» M |p =P 2  =  ^2»

which immediately lead to a system of linear equations for An and Bn if we 
use the familiar expansion

y/2 cosh p — 2 cos a
= = 2 e~(n+'A>tiPn(cos a), (3 >  0.

7 1 = 0

After determining u, the charges on each conductor can be calculated from 
the formulas

a  =  - !  r ( r ~ ) |  d«. a -
2 Jo I ap/lp=-p, 2 Jo \ dp/le=u.

To find the capacitances Cn , C12 and C22, we use the relations

Q i — Q i \v1=v2=ij ^ 12  — Qt\ v x=̂ tv  2=-i  — 2 2 |r 1= -i,ra=o> ^22  — Q ^ v ^ v ^ i -

512. In the new coordinate system, the problem reduces to solving the 
equation

d2u d2u «2 -  p2 du 2p du _  Q
da2 +  3p2 a(a2 +  p2) 3a a2 +  p2 ap ~  ’

with the boundary conditions
W|p = ± P o  =

Variables can be separated by setting

u = Voc2 +  p2 A(a)B(P).

Integrating the resulting equations for A(a) and B(P), and noting that u must 
be even in p and bounded at a =  0, we arrive at the following particular 
solutions:

rn =  M yJa2 +  P2 / 0({J-a) cosh p.p, \i>  0.
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The solution is then constructed in the form

Jo
Using the well-known formula

1 cosh fxpo

• 1 - =  f e d\L9 p >  0,
a2 +  B2 JoV a2 +  p!

and taking account of the boundary condition t/|p=Po =  V, we find that 
=  e~^°9 and hence

u =  V-J<x2 +  P2 f V ^ °  - - sh J 0(|xa) dp. (83)
Jo cosh fxpo

To calculate the total charge Q on the conductor, we start from the relation

Jo  \  9 3 / 1
doc. (84)

3 p /  lp=(5o

After substituting (83) into (84) and reversing the order of integration, we 
obtain the expression36

~ ' vl
°0 g-|xpo

d\L = 2 Va In 2.
cosh {jl(30

The capacitance C is now determined from the formula Q = VC. 

522-523. If we set

the problem reduces to finding a solution of the wave equation

^ u , ^ u  = l ^ u  
dx2 +  By2 v2 dt2

satisfying zero initial conditions, the boundary condition

« u = / ( * - 5 )\ v /  s

and the condition that u vanish at infinity. Introducing new variables 

— = t — -  (r =  > /* * + /) ,

36 Note that the parameter c is related to the radius a by the formula c = 2a%.
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and looking for a solution which is a function only of £ and v), we obtain the 
equation

+ ^ _ ^  =  o,

whose solution is
d-q 2(E, — q) dq

« = r
J —  c

ds +  <K5),
■ j Z - s

where <p and ij- are arbitrary functions. Moreover y(i;) =  0, since

=  0,
and therefore

- fJ — oc
<pQ) ds. (85)

On the screen v\ = u = /(£), and hence cp(j) must satisfy Abel’s integral 
equation

cp(s)

with solution37

d s = m ,

dt,.

P —
J-oo -JZ, — S

- M
7u ds J-oo ^/s — £

If j <  0, then the integrand vanishes identically by hypothesis, which implies
< p(j) =  0 .

It follows from (85) that
W|r,<0

i.e., the excited zone is bounded by the circle yj =  0 (see Figure 149, p. 254). 
Outside the excited zone,

and in particular, £  =  0 for x > vt. For 7) >  0, i.e., in the excited zone,

where
J o V S - s

<p(s) = —— P g^L dt
n ds Joy/s — %

37 See e.g., S6 , Vol. II, p. 220.
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531-532. In the present problem, considerations like those given in the 
solution of Probs. 522-523 show that the reflected wave can be represented 
in the form

u = <p(s)
 ̂— s +  (2a I v)

ds, (86)

where cp(s) satisfies the Volterra integral equation

<p($) +  - fv J-
<p(s)

K -  S +  (2«/”)]2
and the variables i; and y) are defined by

ds 2 a
m (87)

5 =  <-
Assuming that

z +  a 7) =  t r — a

m  = o,
S > o ,
l < 0 ,

(r =  %/x2 +  ys +  z2). 

g(0) =  0,

we find that cp(s) =  0 if s <  0, and hence u =  0 if yj <  0. Thus the boundary 
of the excited zone is determined by the equation yj =  0. The value of u 
inside the excited zone ( yj >  0) is given by (86) and (87) w i t h  /(£) replaced 
by g(E) and the intervals of integration (— oo, £,), (— oo, yj)  replaced by (0,!;), 
(0, 7)).

The integral equation

<p(S) +  - f
v Jo

? ( s )

o f t - s +  (2a/v)J ds = - g ' ( 0 , 5 > o (88)

belongs to the class which can be solved readily by the use of the Laplace 
transform.38 Writing

/  =J“/e-*dl
multiplying (88) by e~p5 and integrating with respect to E, from 0 to oo, we 
find that

where

cp =

a „ 
~ PSv

1 - a- P K
v

R  =
f°° g-*5

Jo ? +  (2a Iv)
d l =  - e 2av/v Ei

38 In the applications, it is sometimes more convenient to construct the resolvent of the 
given equation, without recourse to the Laplace transform (see e.g., F 8).
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and Ei (2) is the exponential integral. The final answer can be obtained by 
using the inversion formula

?(?) =  f  ye* dp,
2m Jr

where the line T lies to the right of the singular points of the function 9.

542. To find integral equations for the charge densities, first let M  = x 
be a fixed point in the plane y  = 0. Then

cos (tm w, n) =  0

if the variable point N = % also belongs to the plane y  =  0, while

cos (rMNf n) — — h
lrMwl

lrA/Arl =  -  *)' +  h2

if N = £ belongs to the plane y = h. Therefore the integral equation (2) on 
p. 260 takes the form

<*o(*) =  7- E\2iz
h r -  »»«) _  ^
* <5 -  x f  +  k*

In just the same way, choosing M  =  x in the plane y — h, we obtain the 
integral equation

°h(x) =  -  —  E ° y \y = h  2n
h r» <r0(g)
71 J—00 ( 5  -  X )2 +  /I2

This system of integral equations can be solved by using Fourier transforms. 
Multiplying each equation by eax and integrating with respect to x from — 00 
to 00, we obtain

where

and

S, =  A _ *  — aSfi.
271 7T J -o o  J -0 0  (£ — x)2 -\

*  2k k  J-oo d J - .  a  -  x)2 +  h2

d%,

dt.

/  =  f(x)eax dx

/o(x) =  £°|v=o>  A(x) =  E%=h
(for brevity). Reversing the order of integration and using the well-known 
formula

f 00 cos Xy]
Jo rf +  h2

dri = 7C

2 h
e
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we obtain the following system of linear algebraic equations for <j0 and vh:

a0 + e =  ~  , e |X|" a +  csh =  — •
2tc 2 tc

It follows that
1 / ,  +  e-'x|*/» -  1 A  +  e-|x|*/»

fh

<*0 =
2tc 1 -  e - * ' Mh 9 2tc 1 -2|A|A ’

The answer on p. 262 is now an immediate consequence of the inversion 
formula

/(*) =  -  P  fe~ax dX.
2tc J —oo

549. The integral equation

-  dx = g(y), 0 < y < a
tc Jo x +  y \x  +  y!

can be solved as follows: Writing (89) in the form

2yJx/y

(89)

2 f V W  1 K \  2yjxly I 
nJo y 1 +  (x/y) Ll +  (x/y) J1 +  (*lyV

dx

2 f V t o  — l----- ^s/y /x_~| dx =  ( )
* J .  x 1 +  (y/x) l l  + (ylx)]

we make a Landen transformation

1 =  K(k),

obtaining
1 + k \1 +

-  I"—  * ( - )  dx + -  K W  dx =  g(y). (90)
7T Jo V \ y j  TC Jy X \ X /y  \ y

Because of the formulas

1 = f"__  ds
y \yj Jo V(x2 -  /) ( /  -  s2) ’

X W  Jo x
(90) becomes

-  f / ( x ) d x P  
TC Jo Jo

' V ( x 2 -  s 2) ( /  -  52)

ds
V(x2 -  s2X> 2 -  s2)

+  -  f / (x)  dx
7T Jy Jo

ds

V(*2 -  «*)(/ -  s2)
=  soo-
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The expression on the left can be represented as a double integral over the 
trapezoid bounded by the lines s = 0, s = x , s = y  and x  =  a. Changing 
the order of integration in this integral, we obtain

If we write

2
7Z

[v ds f° f(x )
*'° Vy2 — s2 \ fx 2 — s2

dx = g(y).

f
1 /(*)
s/x2- s 2

dx =  T(s), 0 < s < a,

(91)

(91) goes into Schlomilch’s integral equation 

2 f» Y(s) ,-  ... ds =  g(y), 0 <  y < a,
n Jo Jy* _  ,2

with solution

T (s) =  j -  f  - 
as Jo.

g(ot ■dt
Jo'Js2 — t2

(see W8, p. 229). To deduce f(x )  from a knowledge of T%y), we use the 
formula

m
= _  2 ±  r° T(s)s

71 dx J x j c2 _Vs
ds

(see Bl). Substituting for T%y), we arrive at the answer on p. 264.
561. To find integral equations for the virtual charge densities on the 

planes cp =  0 and 9 =  a, we note that if M  =  r is a fixed point in the first of 
these planes and if jY =  p is an arbitrary point of the interface between the 
two dielectrics, then

cos {tUN, n) =
______ p sin «______
Vr2 +  p2 — 2rp cos a 
, 0

if N belongs to the plane 9 =  a, 

if N belongs to the plane 9 = 0 .
Applying formula (7), p. 267, we find that

(r) =  -  £“|<p=o +  -  Sin a I -
27T 7r Jo r

where

<Tq(p)p 
+  p2 — 2?*p cos a

d p,

El +  2̂
By a similar argument, if we choose the fixed point M in the plane 9 =  a, 
then
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This system of integral equations can be solved by using Mellin transforms. 
Multiplying each equation by rv~x and integrating with respect to r from 0 
to oo, we eventually obtain the system of linear algebraic equations

^ 0 sin (tv -  a)(p — 1) ^ P f
CT0 P . .x aa — J 0»sin n(p — 1) 2n

n  Sin ~  °0(P -  1) ^ -  _  P fr . , 1 v r CTa ~  7asin n(p — 1) 2k
for a0 and <ja, where 

and
/  =  / " / M r ’"1 dr 

M r) =  /„(r) =  < | 9=

(92)

(for brevity). To guarantee the convergence of the integrals appearing in (92), 
we choose p to be a complex number of the form /> =  1 +  / t ( —o o < t <  oo).39 
Solving the system (92) for g0 and cra, we find the values of the charge densities 
by using the inversion formulas

J 1*1+100 J fl+ ia o
°o = —  onr~v dp, aa = —  5'ar~p dp.

2 n i  J l - i a o  27XI Jl-iao

565. The requirement that the tangential component of the electric field 
be zero on the surface of the conductor leads to the integral equation of the 
first kind

f H(02\k  |x — i;|)M ) d i = —  E(x), 0 < x <  oo, (93)
Jo 7TC0

where j(%) is the total density of current flowing on both sides of the half­
plane, and E(x) is the tangential component of the external field at the point 
x.40 This integral equation can be solved by using the integral transform (27), 
p. 196. To reduce (93) to a form suitable for application of this method, we 
multiply the equation

f°°tf <2>(fc5);($) dt = —  E{ 0)
Jo 7TC0

39 Each of the densities a0 and oa is 0(r~*i) as r —►O and 0(r~52) as r —► 00, where 
<  1 and >  1. The functions / 0 and / a are assumed to be 0(1) as r -►O and 0(r~s)

as r -*■ co, where s >  1.
40 Here we have

./© =j, |»=+o +y',|v_-o =J\ +jt, E(x) = £■“! v=0-
The difference between the current densities is given by formula (9), p. 270, implied by the 
conservation law for the circulation of the magnetic field around a closed contour.
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by e~ikx and subtract it from (93). The result is

\x -  l\) -  dz = —  [E(x) -  E(0)e~ik% (94)
J o  7 1 0 )

Multiplying both sides of (94) by

n-/2 H g\kx)e ---------
x

and integrating with respect to x from 0 to oo, we obtain

l “M )  dl  f  “  t f o2)(fc I* -  51) -  g ,kxHi2\kZ) e*T/2HW(kx) dx
Jo Jo X

^ f ^ ) - ^ ( Q ) ^ h ) r fx , (95)
7T 0) Jo X

{assuming that it is legitimate to reverse the order of integration. The inner 
integral in the left-hand side can be evaluated after making the preliminary 
transformation

f  * „«= < »  (tx) dx
J o  X

-  f * 4x
Jo x

+
Jo

e ^ 2H ^\dx) = I, +  7a.

It then follows from the addition theorem for Hankel functions, [see L9, 
formula (5.12.11), p. 126] that

/ j  =  tf<2>(/c£)( f  J °('k x )  ~  1 e*T,2H (2)( k x )  d x  -  f "  enTl2H‘ 2̂ k x )  d x  
U o  x  J e, x

+  Jy,(/cZ) \  a H^ kx) em/2H%Xkx) dx 
J e X

+  2 f  Ih UXIĉ ) p  ^ 2 ^  e^H^Xkx) dx 
,n=il Jo x

+  e ^H ^X k x )  </x).
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The integrals on the right can be evaluated in closed form, eventually leading 
to the expressions

h  =  , — - ■ -  — 2 e™/2H™(kZ,)\l +  2 J  - j — 1
it sinh £7tt tcit L m=1 nr +  t J

=  — -  -  enx/2 coth k t H ^ m ,
IT  s m h  $TCT IT

h  =  -------: , 1 .
L i t  s i n h  h t  n  s i n h  $ t c t _

Thus we finally have

f "  dx
Jo  X

=  — —  -  e"T/2coth7tT H £ X m
IT  S i n h  7TT

If we now introduce the integral transform 

J o  X

(95) takes the form 

2

0 < T <  0 0 ,

---£(0) — £/(£) cosh 7TT
■ 1 = -J 7TC0

[E(x) -  e~ikxE{0)],
it  sinh t t t Ltto) 

which implies

W )  = —  -  -  ITtaf  TCT [E(x) -  e-’**£(0)i).
7 T 6 )  ICOSh 7 T T  2  )

The final form of the solution given in the answer on p. 270 is obtained by 
using the formula41

<p(x) - - i f
2  Jo

cp(T)enr/2T sinh 7tt H{?\kx) J t, 0 <  x <  oo.

566. The problem reduces to solving the integral equation

c2E°
Jo K 2\ k \r -  pI)/'(p) dp = 0—ikr cos a 0  < r <  oo.

We assume that k is of the form k = \k\ e~iy(0 < y < 7r/2) as in Prob. 565,

41 The applicability of this formula is guaranteed by the requirement that k be a complex 
number of the form k =  |£| e~{y (0 <  y  <  7t/2), and that the external field be due to line 
sources located in the finite part of the xy-plane.
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and also that the angle between the half-plane and the direction of prop­
agation of the incident wave is less than y.42 Then the problem can be solved 
by using the general formulas obtained in Prob. 565, with

x =  /*, E, = p, E(x) = E°e~ikr cos a.

Bearing in mind that

[E(r) -  e~<kTE(0)] =  £° f (e~ikT cos “ -  e~i*’> " T/2 Hi^ kr  ̂dr 
Jo r
2iE° ■ (cosh TOC — 1 ),

we have
Tsinh 7tt

P / ( p )  =  — f  t  tanh 7ct eKT/2 cosh Ta H ^ \ k p )  dx .
J  2tcco J o

The last integral can be written in the form

P/(p) =  y  [>K  ̂ +  a) — iK tv -  «)],
J ztco) aa

where

m  =  -  “  f e” l2H™(kP) dr, |P| <  +  T-
2l Jo cosh 7TT 

In the paper K3, it is shown that

4»(P) =  eik9 cos 3 1 ein/A
2 J n J'V2kp  cos H  0 

0
Using this formula and performing the differentiation with respect to a, we 
obtain the expression for j  = j\  +  j 2 given in the answer on p .271.

42 These restrictions are needed to guarantee the convergence of the integrals and to 
justify using the inversion formula, but can be dropped in the final results. In particular, 
the expressions for the current densities j\  and y2 found here are also valid for real k , in 
which case they coincide with the corresponding formulas for the Sommerfeld problem 
(see Prob. 427).



MATHEMATICAL APPENDIX

I. Special Functions Appearing in the Text

Certain basic functions 
The gamma function

T(z) == f e~ltz~1 d t t Re z >  0.j o
The probability integral

<1>(z) =  f e dt.
V75,The Fresnel integrals

Jo

C(z) =  J cos ~~ dt.
Cz 7r/2

S(z) Jo sin 2

The exponential integral

Ei(z) =  p  - A ,
v—00 t

The sine integral

0 <  arg z <  2n.

Si (z) = a i * .
t

The cosine integral
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Orthogonal polynomials 
The Legendre polynomials

1 r.1nPn(x) = -L -  (*■ _  i)«
2nn \dxn

The Hermite polynomials

Hn(x) = ( - i r e x' £ ne~*\ 

The Laguerre polynomials

n = 0, 1, 2,. .. 

n =  0, 1, 2, . . .

L‘ (x) = ex ^ - f - (e -V * “), n =  0, 1, 2,. . . ,
n\ ax

L°n(x) = Ln(x).
Cylinder functions
The Bessel function of the first kind

= 2
k = 0

( -1  )*(z/2),+l*
r(fc +  i)r(fc +  v +  i) ’

The Bessel function of the second kind

|arg z| <  7T.

n w  =
J v(z) COS V7C — J__v(z) 

sin vie
| a r g  z |  <  7 t .

The Bessel function of the second kind of integral order (n =  0, 1, 2, . . .)

yn(z) =  lim yv(z) =  -  j„(z) In |  ± 2  —
v 7i 7C 2  7C l  a

i)
/c! '< r

-  1 S  [<K* +  1) +  +(* +  n +  1)], larg z| <  tt,
7T*=0 k! (n +  k)!

where ^(z) is the logarithmic derivative of the gamma function (the first sum 
is omitted if n =  0).

The first and second Hankel functions

Hi'Xz) =  J v(z) +  iTv(z), H[2)(z) = J v(z) -  iTv(z), |arg z| <  tc. 
The Bessel function of imaginary argument

_____ m u _____
vW £> r(k + i)r(k  +  v +  i ) ’ 

The Macdonald function

|arg z | <  7T.

_  7t /_v(z) -  / v(z) 
2 sin

|arg z| <  n.
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The Macdonald function of integral order (n = 0, 1, 2, . ..)

Kn(z) =  lim K„(z) =  (-1  )"+1/„(z) In -
V~* 71 2

i y -  -  k -  i)!/ z? k n
2 S  k\ \2 /
1 V (-l)*(w -  k -  1)

1 , (z/2)w+2*
2 V (fc +  n)! [«Kk +  1) +  +(fc +  « +  1)1,

|arg z| <  7t,
where ^(z) is the logarithmic derivative of the gamma function (the first sum 
is omitted if n =  0).

Spherical harmonics
The Legendre functions of the first and second kinds

P v( z) =  f ( - v , v + 1 ; 1 ; - - Z) ,  |z  -  1 | <  2 ,

/ v  V 1 3  1 \

F (2 +  1’ i  +  2 :V +  2 v ) ’Q v ( z )  =

^71 T(1 +  v)

r(v  +  -)(2  z r 1
|z| >  1, |arg z| <  7t,

where

F(a, P; y; z) =  2, |z | <  1 ,
*=o (r)fc^!

(‘A)o =  1 , (X), =  F(^ fc) =  X(X +  1) • • • (X +  k -  1)
1 (A)

is the hypergeometric series.1
For real x in the interval (—1, 1), the Legendre function of the second 

kind is defined by the formula

GvW =  MGv(* +  i0) +  Qv(x -  i0)].
Analytic expressions for the spherical harmonics appearing in this book 

can be found in H4, L9 and M2.
The associated Legendre functions

Pvm(z) =  (z2 -  1 )m/2 rfmPy(z).
dzm

Q?(z) =  (z2-  l)m/2 -
dz"

|arg (z -  1)| <  n  (w =  1 ,2 ,.. .)•

1 The functions Pv(z) and £ VU) are defined outside the indicated regions by using 
analytic continuation (see e.g., L9, Sec. 7.3).
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The associated Legendre functions for the interval (—1, 1)

pv(x) =  ( - i r d - x 2r /8—

e7(X) =  ( - i ) m(i -  x2r /2 rfmgv(x). 
vW  dxm

Elliptic integrals and functions
The elliptic integrals of the first and second kinds

F(<p, k) =  (* dl  —  , E(tp, k) = [ V l — k2 sin2 9 <f<p.
Jo f  i — k2 sin2 9

The complete elliptic integrals of the first and second kinds 

K(k) = F ^ , k ) ,  E(k) = E ^ - , k j .

The Jacobian elliptic functions
sn z =  sin 9, cn z =  cos 9, dn z =  V 1 — k2 sin2 9, 

where 9 is the inversion of the elliptic integral of the first kind, i.e.,

z =
-  /c2 sin2 9

Further information on special functions can be found in such books as 
Erdelyi et al. (E2), Gray and Mathews (G2), Hobson (H4), Jackson (Jl), 
Lebedev (L9), Lense (LI 1, L12), MacRobert (M2), Magnus and Oberhettinger 
(M3), McLachlan (M5), Ryshik and Gradstein (R2), Smirnov (S6, Vol. Ill, 
Pt. 2), Snow (SI2), Watson (W4), and Whittaker and Watson (W8).

2. Some Expansions in Series of Orthogonal Functions

, v  sin (nnx/a) n / ,  x\ _1. > ----   — =  -  1 ----, 0 <  x < a.
*-1 n 2 \ a!

_ cos (nnx/a) , /_ . 7rx\ „2. > ---- *---- ,—  = - In 2 sin— , 0 <  x < a.
n-i " V 2a)

3 | (_ i r i sin (n,x/a) = n x t 0 < x <  a. 
n 2a

4. f  , cos (nnx/a) = la ( 2cosh ) ,  0 < x <  a.
nt i  n \ 2a/
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 ̂ y  sin [{In +  1)7tx/2q] __

’ „To 2n +  1 ”  4
oo

6 - 2
cos [(2/i +  \)tzxI2o \ 1 . tzx
---------------- -— -— 1  =  -  In cot —

2n +  1 2 2 a

0 <  x < a.

0 < x < a.

7. | (_ iy. sin [(2̂  +  l W 2 al = l i ntanE | 0 <  x <  a.
n=0 2/1 +  1 2 2fl

g. | ( _ i ) n Cos[(2n +  lW 2 a ]  =  E) Q <  x <  fl> 
n=o 2/1 +  1 4

n2 \6 2a 4a2/

10. S c - i r 1 C0S (" + a) =  + -  -  0 < x < a.
n2 \12 4a2!

= + ( l  — 0 < x < a.
8 V a/

00
ii- 2

cos [(2/i +  1)7tx/2q]

n=o (2n +  l)2
12. |  sin [(2n + _ljTtx/2o] _  7t̂ x 0 < x < a  

n=o (2n +  l )2 8a

0 < x < a. 

0 < x < a. 

0 < x < a.

is. n3 \ 6 a 4a2 12a3/

M. 2 ( - , ). - - 5 i a l = w  =  ^ ; ( 1 _ £ ; ) ,
^  n2 12a \ a2!

15 y  s‘n [(^w +  l)7cx/2a] tc3x /   ̂ x \
“ 'o (2 n +  l ) 2 ~  16a I _  2 a / ’

|  cos [(2 « +  l W 2 a] =  * 7  x _ \
. . .  I2 .i +  1)' 32’ a' l

17. X r < a ,
n=l Yn̂ lvTn) 2

where the y n are the positive roots o f  the equation / 0(y) =  0 -

18. =  0  <  r <  a,
n=l Tn^l(T71) «' «*/

where the y n are the positive roots o f the equation / 0(y) =  0 .

=  1 \  0  <  r <  a,
n=l Yn^o(Yn) 4 \a 2 2 /

where the yn are the positive roots o f  the equation J fy ) = 0.
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20. X' Pp(x) 
2m +  1

m
+  2 (4 n +  1) 2 m ( 2 m  —  2 )  • • • ( 2 m  —  2 n  +  2 )  p  r  \  

(2m +  l)(2m +  3) • • • (2m +  2n +  1) 2n * *

21. x = 3Pi(x)
2m -f- 3

m
+  2 (4 n  +  3)

m =  1,2, . . .

2m(2m — 2) • • • (2m — 2n +  2) 
(2m +  3)(2m +  5) • • • (2m +  2n +  3)

p tn+i{x).

m =  1, 2, . . .

22. — 1 =  =  f  tnPn(x), — 1 < x < 1, |f| <  1.
V 1 — 2tx +  x2 7i=o

For various other expansions in orthogonal functions (and series of a 
different kind), we refer to the handbooks by Jolley (J5) and Ryshik and 
Gradstein (R2).

3. Some Definite Integrals Frequently Encountered 
in the Applications

r oo y»v i
1. —----dx = —^ ~ ,  0 <  Re v <  1.

Jo 1 +  x sin 7tv

 ̂ f°°_  xv dx 7r sin (tc — cp)v
' Jo 1 2x cos cp +  x- sin 7rv sin cp 

0 <  (d <  2tz,

o , sin ax J 7T  ̂„3. |  dx = — , a >  0.
x 2

, —1 <  Re v <  1,

Jo 

Jo

5- J " 5Jo a

A , cos ax — cos bx , . 6  ~ n4. |  dx =  In -  , a >  0, b >  0.

cos bx dx = — i 
+ x2 2a

a >  0, b >  0.

6. f e a*xv 1 dx = , a >  0, Re v >  0.
Jo av
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7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

I
l

s y

e ax cos b x  d x  =
a 2 +  b2 ' 

b
e ax sin bx d x  =  0 

Jo a2 +  b2

a > 0 .

a > 0 .

■'O 2a

f V V cos b x  a >  0.
Jo 2a

a > 0 .

<» I*’) d x  =  e~™, a > 0 , b >  0 .
2 a

p^aV -O -V ) _  V71
Jo

f °° . 2 , f °° 2 j 1 /*sin x ax = cos x  d x  ~  -  -  .
Jo Jo 2 -V'2

/■Jo
sinh dx  . .-----— sin rx  d x  =
cosh q x

n r  n p  
sinh r  sin ~  

n  2 a 2 a

 ̂ cosh — + cos —
0 <  ,

f °° cosh DX . , 7TI —----i— sin rx ax =  —
Jo sinhgx 2̂

7 i  r
sinh

_____q

2q cosh ^  +  COS ^

f 00 sinh d x  , n——— cos rx  d x  =  — 
Jo sinh <7 x 2^

sin
____4

2q , 7ir upcosh---- b cos —
0 <

f 00 cosh d x  , n----- — cos rx d x  =  -
Jo cosh gx g

n r  n p  
cosh _ cos « 

_____ 2q 2 q

^ cosh — + cos —

p  cosh p x  d x  = 2„_
Jo (cosh x ) q T(g)

0 <

0 <

< q .

p < q .

p < q .

p < q .

p < q .
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18. f  V aIJ 0(i>x) dx = ,   , a >  0.
J» Va2 +  6*

a >  0.

19. ('°e-°V JAbx)x',+1 dx = bl  e-b2/ia\  
Jo (2 a2Y+1

b >  0, Re v >  — 1.

a > 0, b >  0, — 1 <  Re v <  2Re (j. +  f.

a >  0, b > 0, >  0, Re v >  — 1.

Among the handbooks on definite integrals, we cite those by Dwight (D2) 
and Ryshik and Gradstein (R2), as well as the celebrated compendium of 
Bierens de Haan (B4).

4. Expansion of Some Differential Operators in Orthogonal 
Curvilinear Coordinates

General formulas
Let (qlf q2, q3) be a system of orthogonal curvilinear coordinates related 

to Cartesian coordinates (x, y , z) by the formula

Suppose the square of the element of arc length in the given system is

Then the differential operators (grad u)Qi, div A,-Aw, (curl A)0. [where u and 
A are given functions of the coordinates, and the index qt denotes the

x = 92. ?3), y = y(qi, ?2, q3\  z = z(qu qz, q3)-

ds2 =  h\ dq\ +  h\ dq\ + h\ dq\, 

where the are the metric coefficients
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corresponding vector component] take the form

, A v 1 du (grad u)Vi ,
hi dqi

div A =  T T r l - f  + - r  +  - f  ( M iA*hihih3\dqi oq2 oq 3

=  1 f 3 / h2h3 +  d / M i  3tA | d / M
M * M 3 g i' hx d q j dq2\ h2 d q j dq3\ h3

(curl A)8l =  - U / -  (M .,)  -  ( M 92)
h2h2\dq2 dq 3

(curl A)8a =  - U - -  (M .,)  -  —  ( M „ )
h3h3\dq3 dqx

(curl A)8j =  ( M ,a) -  ( M 81)
hih2\dqi dq2

Cylindrical coordinates

£))•

<fr2

r cos <p, j; =  r sin 9, z =  z,

(0 < r <  o o ,  —  n < 9 < 7 t ,  —  o o  <  z <  o o ) ,I <  7 t;

= </r2 +  r2

-n  <  < 

2 dcp2 +  dz2, hr = 1, hv r, A* =  1

(grad u)r =  ~  , (grad «)„ =  -  , (grad u)z = ~ ,
or r o 9 dz

.. A 1 3div A = ----
r or r oy dz

dz2’
A 1 3 /  d u \  1 3 2u 9 2u

* U = ^ r V T r ) + ? W  + -

, 1A, 1 3 ^  cM,(curl A)r =  -  ---------—
r dy dz

'curl A)v = ^  
dz

i 1 1 3 . .  1 dAr(curl A)a =  -  — (M „)---- —
ror r dtp

_ 2 r _  2d*L̂cp

9z

_L,
9r ’
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The coordinates of the vector AA =  grad div A — curl curl A are:

/ A  A \  \  A ^  A 2(AA)r A Ar Ar ,
r r 3 9

r r 3 9
(AA). =  AA,.

Spherical coordinates

x = r sin 0 cos 9, y  =  r sin 0 sin 9, z = r cos 0,

(0 < r < co, 0 < 0 < 7i, — tc <  9 < 7t),

3i2 =  d r 2 +  r2 302 +  r2 sin2 0 ^92, hr = 1, hQ = r ,  h^ = r  sin 0,

(grad u)r =  , (grad u)e =  i  — , (grad u), =  ——  — ,
or r 30 r sin 0 <79

div A =  ■̂ (r2Ar) H   — (A0 sin 0) H  — ,
r2 dr r sin 0 30 r sin 0 89

32m
sin2 0 dcp‘

Au = i  I h  M  + _ L _  A ( sin e ?a\ +  ^
r23r\ 3/7 r2sin 0 30\ 30/ r2 sii

/ 1 a\  ̂ 3 , . D 1 3A0(curl A)r =  — —  -  (A , sin 0 ) ------- —  ,
r sin 0 30 r sin 0 39

/ 1 an 1 3Ar 1 3 / ^(curl A)e =  ——  — ---- — (rA,),
r sin 0 39 r 3r

(curl A)v — ~ j~ (rA0) — ~ ~ ~  > 
r or r 30

(AA)r =  AAr - \ a t ---- - 4 ~  (/4e sin 0)

2 ’

r2 sin 0 30 r2 sin 0 89

(A A)q — A/4q

(AA)9 =  A A,

1 2  3Ar 2 cos 0 dAy
r2 sin2 0 6 r2 30 r2 sin2 0 89

1 2 3Ar 2 cos 0 3Ae
r2 sin2 0 v r2 sin 0 89 r2 sin2 0 89

Expressions for the above differential operators in other special orthog­
onal curvilinear coordinate systems can be found in Chapter 7 of this book, 
and in the handbook by Magnus and Oberhettinger (M3).



Supplement

VARIATIONAL AND RELATED 
METHODS1

Many, and perhaps most, mathematical problems encountered in science 
and engineering are difficult or impossible to solve by analytical methods. It 
is also found that explicitly obtained exact solutions are often too cumber­
some for interpretation and numerical evaluation. Therefore, in these in­
stances, it is either necessary or convenient to employ approximate methods 
which yield accurate numerical estimates of the solution. The recent develop­
ment of high speed electronic digital computers has made practical the success­
ful application of many of these methods to complex problems.

This supplement contains a collection of typical problems that illustrate 
a special class of approximate methods. They are related either directly or 
indirectly to the variational formulation of physical problems. Almost all 
of the examples are concerned with boundary value problems for ordinary or 
partial differential equations. However, with suitable and sometimes trivial 
modifications, the methods presented can often be applied to other situations, 
e.g., eigenvalue problems or problems involving integral equations or integro- 
differential equations.

The selection of problems was, in large measure, influenced by the amount 
of computational work necessary to obtain a solution. Hence, by necessity, 
they are essentially “simple.” However, the methods employed can usually be 
applied directly to more complicated problems, the only additional difficulty 
being that the calculations are more involved.

The supplement is independent of the main body of the book in the sense

1 This supplement was written by Edward L. Reiss, Courant Institute of Mathematical 
Sciences, New York University.

3 9 1
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that all equation and problem numbers refer only to those in the supplement. 
Literature references, indicated in brackets, are to items in the references 
section on p. 412.

I. Variational Methods

1.1. FORMULATION OF VARIATIONAL PROBLEMS2

Physical probleriis can frequently be formulated mathematically as 
minimum problems, as well as in terms of differential or integral equations. 
The solution is then a function, selected from a certain class called admissible 
functions, which minimizes a specified functional3 with respect to all admis­
sible functions. For example, Hamilton's principle is an alternative to New­
ton’s equations of motion as a formulation of the laws of mechanics. It 
states that if u(x, t) is a vector describing the motion of a mechanical system,4 
then between any two times t0 and tl9 the actual (stable) motion is an admis­
sible vector which coincides with the actual motion at t = t0 and t = t1 and 
makes the functional

/ > - " > ■ *

a minimum. Here T and U are the kinetic and potential energy functionals of 
the system. The admissibility conditions usually take the form of boundary 
conditions and of continuity requirements on u and its derivatives. If the 
mechanical system is in equilibrium, so that T=  0 and u is independent of t9 
then Hamilton’s principle becomes the principle of minimum potential energy: 
the actual (stable) displacement of the system is an admissible vector that 
minimizes the potential energy functional.

It is usually not difficult to show that the admissible function (or vector) 
that minimizes the functional is the solution of a system of differential 
equations (or sometimes integro-differential equations, or integral equations) 
called the Euler equations for the functional. Thus in mechanics we obtain

2 For a fuller discussion of the calculus of variations and its applications, see [3, 4, 8].
3 Here we use the general term functional to denote any mapping of a set of functions 

(e.g., admissible functions) into real numbers. Thus, for example,

F = ^ f ( x ) d x

is a functional, where f(x) is any piecewise continuous function on the unit interval. In 
our applications, the domain of the functional is the set of admissible functions.

4 We use bold face to indicate a vector, and x =  (jtj, x 2, . . . , xP) is the vector of p 
independent variables. The function u is a vector-valued function of p -f 1 variables.
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the equations of motion as the Euler equations for Hamilton’s principle and 
the equilibrium equations as the Euler equations for the principle of minimum 
potential energy.

To illustrate these remarks, consider the functional

I[u] = j*  [p(x)u'• 4- q(x)u2 +  2f(x)u] dx (1)

for the scalar function u(x) of the single variable x. Here a prime is used 
to denote differentiation. The admissibility conditions are the following: 
u(x), u\x) and u"(x) are continuous functions in the closed interval [a, b] 
which satisfy the boundary conditions

u(a) =  w0> u(b) =  ul9 (2)

where u0 and ux are prescribed numbers. The prescribed functionsp(x),p'(x), 
q(x) and f(x) are continuous in [a, b]. We shall now show that if the admis­
sible function u(x) minimizes /, i.e., I[u] < I[v] for all admissible functions v> 
then u is a solution of the Euler equation

Lu = (pu'y — qu =  / ,  a < x < b. (3)

To see this, we introduce u(x), the variation of m, namely a function defined in 
the interval [a, b\, which has a continuous second derivative and satisfies the 
homogeneous boundary conditions (2) [i.e., vanishes at the end points a and
b]y but is otherwise arbitrary. Consider the admissible function v =  u +  ew, 
where the real number e is a parameter. Then

/ ( e) =  J[V] =  l[u + ew]

is a quadratic function of e, given by

i(«) =  /[M] +  e/1[tt,fi] +  ^ /,[«], (4)

where
r dJ( 0) r d2J( 0)
h ~ ~ d T '

It is easy to show, by using integration by parts and the conditions u(a) =  
u(b) =  0, that

l x =  2j*(pu'u' +  quu +  fu) dx =  —lj*(Lu — f)u  dx. (5)

Since I[v] is minimized when e =  0 and hence /(e) is a minimum at e =  0, it 
follows from (4) that Ix[u, u] =  0 for all variations u(x). Thus we conclude 
from (5) that u satisfies the Euler equation (3).
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1.1.1. Determine the Euler equation corresponding to the functional (1) 
if u(a) =  u0 and no conditions are specified at x = b. Determine the bound­
ary conditions that u must satisfy at x  =  b in order to minimize /  (they are 
called natural boundary conditions.)

Ans. Lu = f 9 u\b ) =  0.
Hint. Let u{a) =  0 and u(b) be arbitrary.5

1.1.2. Let F(x, w, u') be a specified twice continuously differentiable 
function of its arguments x, u and u'. Determine the Euler equation of the 
functional

I[u] = I V(x, w, u') dx,
J a

assuming as admissibility conditions that w, u and w" are continuous in 
[(a, b] and satisfy (2).

Ans.

1.1.3. Let F(x, w, w',. . . ,  uin)) be a specified twice continuously differen­
tiable function of its arguments, where u{n) = dnujdxn. Determine the 
Euler equation of the functional

J[«] «<n)) dx,da
assuming as admissibility conditions that w, u\ . . . ,  uin) are continuous in 
[ia, b] and have prescribed values at x = a, b.

Ans.

1.1.4. Determine the Euler equation of the functional 

f[«] =J/[m* +  w* + '2 f(x, ^)u] dx dy
D

for the functions u(x, y ) defined on the domain D in the x^-plane bounded by
the contour C (the subscripts denote the corresponding partial derivatives,
e.g., ux = du/dx). The admissibility conditions are that u and its first and
second partial derivatives be continuous and that u satisfy the boundary
condition , \ n  tc\u = cp(̂ ) on C, (6)
where s is arc length along C and cp is a specified function on C. The function 
/  is prescribed and continuous on C.

Ans. Am =  uxx +  uvy =  f(x , y).

6 F or a d iscussion  o f  m ore general boundary con d ition s, see [1], pp. 2 0 3 -2 0 7 .
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1.1.5. In Prob. 1.1.4, alter the admissibility conditions so that (6) is 
satisfied on a subarc C\ of C. On C2 == C — Cl9 there are no specified 
boundary conditions. Determine the Euler equation and the natural bound­
ary condition that must be satisfied on C2 in order that u minimize /.

Ans. Am =  /(* , y), un =  0 on C2,

where the subscript n denotes differentiation with respect to the unit outward 
normal n to D.

1.1.6. Determine the Euler equation of the functional

1 = J J [a(x> J')M« +  b(x> y)ul +  c(x> y)u2 +  2/ ( x> j0« ]dx dy>
D

using the admissibility conditions of Prob. 1.1.4. Here a, b, c and /  are pre­
scribed continuous functions on D, and a and b have continuous first partial 
derivatives.

Ans.
(aux)x +  (buv)y — c u = f.

1.1.7. Determine the Euler equation and natural boundary condition for 
the functional

/ = / j[fl(x> y ) ( u l  +  u l) +  c(x> >,)“2 +  2/ ( x> y ) u ] d x  d y
D

+/0 a[x(s), y(s)]M(s)u2 -  2 9 (s)u] ds,
where C is the contour bounding D, the functions a, c and /  are prescribed 
and continuous on D, and a has continuous first partial derivatives. The 
prescribed functions A(s) and <p(.y) are continuous on C.

Ans.
(aux) x +  (auy)y — c u = f ) un + Au = cp.

1.1.8. Determine the Euler equation of the functional

f[u] =  JJ[(Au)2 — 2f(x , y)u] dx dy,
D

where/  is a prescribed continuous function on D. The admissible functions 
u(x,y) have continuous partial derivatives up to and including the fourth 
order, and satisfy the boundary conditions

u =  9(j), un =  <Kj) on C. (7)
Ans.

A M =  Uxxxx -|- 2.Uxxyy "b Uyyyy f  (,X9 •

Hint. Let u =  un =  0 for x, y  on C.
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1.1.9. Determine the Euler equation of the functional

/[«] = /J[(A «)2 -  2(1 -  v)(uxxuyy -  u2xy) -  2fu] dx dy,
D

where the admissible functions have the same continuity properties as in 
Prob. 1.1.8 and the condition (7) is satisfied on the subarc Cx of C. The 
remaining part of the boundary C2 =  C — Cx is “free,” i.e., no conditions 
are specified on C2. Determine the natural boundary conditions on C2. When 
C2 =  0, compare the results with those obtained in the previous problem. 
The constant v is a specified number in the range 0 < v <  £.

Ans.
A2u =  /, v Au +  (1 — v)(uxxn2 +  2uxyn1n2 +  uyynl) = 0,

(Au)„ +  (1 -  v)[(uvv -  uxx)n^2 +  uxy(nl -  nl)]„ 
where nx and n2 are the * and ̂ -components of the outward unit normal to Z), 
and the subscript s denotes differentiation with respect to arc length s along C.

Hint. On C2, u and un are arbitrary.

1.1.10. Determine admissibility conditions and a functional whose Euler 
equation and natural boundary condition 'yield the following boundary 
value problem for the region D in the xw-plane with contour C:

A2u = /(x .y )  for x, y  in D,
u = 0, v Au +  (1 — v)(uxxnl +  2uxynxn2 +  uyynl) = 0 for x, y on C.

Ans. The functional is given in the preceding problem. The admissible 
functions have the same continuity properties as in Prob. 1.1.8, and in addi­
tion, u — 0 on C.

1.2. THE RITZ METHOD [14]

The minimum property of the solutions of boundary value problems 
suggests a method for their approximate determination. Suppose that a 
sequence of admissible functions is constructed whose limit minimizes an 
appropriate functional. Then the function obtained by truncating the se­
quence after a finite number of terms may provide an approximation to the 
minimizing function. The approximation is presumably more accurate 
when more terms in the sequence are retained. Specifically, we select a 
family of admissible functions

u = U (x;  c) (8)
depending on n (unknown) parameters c =  (cx, c2i . . . , cn). Inserting these 
functions into the functional and performing the- necessary integrations, we 
obtain

7[t/(x;c)] =  <D(c), ( 9 )
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where 0  is a function of the n parameters c. Necessary conditions for O to be
a minimum are that „ 

d$>— =  0, i =  1, 2.........n. (10)

The m solutions c =  c\ j =  1, 2,. . . , m of the algebraic equations (10) give 
the stationary points of O. Let c =  c° be a stationary point which also fur­
nishes a minimum of O. Then we expect that the function u =  t/(x;c°), 
which is called a Ritz approximation and which minimizes I  with respect to 
all admissible functions of the form (8), is an approximation to an admissible 
function that minimizes /.6

In practice, the family of admissible functions is usually formed by taking 
a linear combination n

«(x; c) = u°(x) + 2  ci“*(x)> (n )
J=1

where u° is an admissible function and the uj (j =  1,2, . . . ,  n) are variations. 
We shall refer to U in the form (11) as a trial solution. For linear problems, 
the functional /  is quadratic in u and its derivatives. Then substitution of (11) 
into the equations (10) leads to a system of linear algebraic equations for c. 
Naturally, we should try to choose the functions u° and u3 so that they 
approximate the solution as closely as possible. However, there are several 
practical considerations governing their selection. First of all, they should be 
chosen so that the integrals necessary to obtain O are “easy” to evaluate. 
Furthermore, the u3 must be sufficiently different. If, for example, two of the 
functions are identical, then the resulting system of linear algebraic equations 
for c will have a zero determinant. If two or more of the functions it3' differ 
only slightly, then the determinant may be small and it will be difficult to 
solve the algebraic equations accurately. If natural boundary conditions are 
to be satisfied on some portion of the boundary, then, as we have seen in 
Sec. 1.1, it is not necessary to impose them as part of the admissibility con­
ditions, since the solution of the minimum problem automatically satisfies 
them. However, if it is easy to select u0 and ii3 which satisfy the natural 
boundary conditions, then it is advantageous to do so in the Ritz method.

To illustrate the application of the Ritz method, consider the boundary 
value problem consisting of the differential equation (3) and the boundary 
conditions (2), where the associated functional is (1). For simplicitly, we 
take u0 = Ui = 0, so that w° — 0.7 Then substituting (11) into (1) and

c Convergence properties and the sense of approximation afforded by the Ritz method 
have been established in special cases (see [5, 11]).

7 For the variations we may take, for example,
iV = {b — x){a — x)x\ j  =  1 , 2

iV =  sin
jn(x -  a) 

b — a j  = 1* 2, . . . .  «.
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performing the necessary differentiations, we obtain I[u] =  0(c). Applying 
the stationary conditions (10), we find that the parameters cj satisfy the system 
of algebraic equations

n

2  A(jc} +  Bt =  0, i=  1, 2 , ,  n, (12)

where
ASi =  Ai} = j\p u 'iu'j +  qUiUj) dx,

=  J V«t dx, i, j  =  1, 2, . . . ,  n.
1.2.1. Prove that if the uj are linearly independent functions and the 

coefficients p{x) and q(x) satisfy the conditions p{x) >  0, q{x) > 0 for all * in 
[a, b], then the system (12) has a unique solution.

Hint. Show by contradiction that the homogeneous form of the system 
(12), i.e., with B{ =  0 (/ =  1, 2,. . . ,  «), has only the solution c =  0.

1.2.2. Use the Ritz method to obtain an approximate solution of the 
boundary value problem

u" +  u +  x = 0, w(0) =  w(l) =  0
for each of the following trial solutions:

a) U =  cx( 1 — x); b) U — cxx{ 1 — x) +  c2x2(l — x);
c) U = cxx( 1 — x) + c2( 1 — x2).

Why are these legitimate trial solutions? Compare the approximations so 
obtained for u and u' with the exact solution.

Ans.

a ) c - S ; b )c ' = W r
7 OO 7
41 ; C) Cl 369 ’ °2 41

(see [11], p. 269 and [1], p. 220).
1.2.3. Use the Ritz method to obtain an approximate solution of Bessel’s 

equation
x2w" +  xu* +  (x2 — \)u =  0

in the interval 1 < x < 2, where w(l) =  1, u(2) =  2. Compare the result 
with the exact solution.

Hint. First write Bessel’s equation in the form (3).
1.2.4. Use the Ritz method to obtain an approximate solution of the 

boundary value problem
(xuf)f +  u = x, «(0) =  0, m(1) =  1,

of the form U = x +  x(l — x)(cx +  c2x).
Ans. 85

see [9]).)
35
13
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1.2.5. Use the Ritz method to obtain an approximate solution of the 
boundary value problem

u" +  (1 +  x2)u + 1 = 0 ,  w(— 1) =  w(l) =  0
of the form

a) U = cx( 1 - x 2) + c2( 1 - x 4);
b) U =  Cl(\ -  x2) +  c2( 1 -  x4) +  c3( 1 -  *6). 
Arts.

a) Ci =
1050------ , Ci
1063

231
4252

b) cx 0.966, c2 —0.00474, c3 & —0.0297.
(see [1], p. 209).

1.2.6. Obtain a Ritz approximation to the solution of the boundary value 
problem

[(2 -  *V T  +  40  ̂ =  2 -  / ( ±  1) =  /" (±  1) =  0,
of the form U = cx + c2x2 +  c3x4.

143363 953 189
Cl ~  40 • 79301 ’ C2 “  79301 ’ C3 ~  79301

(see [1], p. 219).
Hint. UseProb. 1.1.3 to formulate the functional. Note that the boundary 

conditions are natural boundary conditions. Determine how accurately the 
boundary conditions are satisfied by the approximate solution.

1.2.7. Use the Ritz method to obtain an approximate solution of the 
Poisson equation

Al/ Uxx +  U y y  2,
subject to the condition u = 0 on the boundary of the rectangle \x\ < a, 
I7I < b, where the trial solution is of the form

a) U =  c(x2 — a2)(y2 — b2) ;
b) U = (x2 — a2)(y2 — a2)[cxx +  c2(x2 +  j>2)] (for the square b = a). 
Ans.

a)
(see [11], p. 281).

4(a2 +  b2) b)
2 5 259fl Ci = - - - - - -

8 177
a4c2 15_35_ 

16 277

Hint. Use Prob. 1.1.4.
1.2.8. Solve Prob. 1.2.7, using the Ritz method with

ou

1
7 7 i = l , 3 , 5 » .  . . 7 1 = 1 , 3 , 6 , .  . .

mnx nny. cos-----cos —-  .
2a 2b
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Show that the constants cmn so obtained coincide with those found by the 
method of separation of variables.

Ans.
cmn =  128 tt-W (-- l)1A<m+n)-'[mn(b*m2 +  a2«2)]_1 

(see [11]. p. 282).
1.2.9. Apply the Ritz method to construct a solution of Am =  — 1 satis­

fying the boundary condition un +  u = 0 on the sides of the square \x\ < 1, 
\y\ <  1 (see Prob. 1.1.7), where the trial solution is of the form

a) U = c 1 + c2(x2 +  / ) ;  b) U = c1 + c2(x2 +  / )  +  c3x2y 2.
Note that the trial solutions need not satisfy the boundary conditions, 

since they are natural conditions.
Ans.

x 13 15 139 15 5
a ) C l “ T6 ’ C* ~  ~64 ’ Cl — 168 ’ Cz 16’ _  56

(see [1], p. 429).
1.2.10. Solve Prob. 1.2.9 by the Ritz method, selecting trial solutions that 

satisfy the natural boundary conditions. Make use of the symmetry of the 
solutions in x and y. Compare with the answer to Prob. 1.2.9.

1.2.11. Find Ritz approximations to the solution of

Au H----- -— uv +  1 =  0
5 -  y

on the rectangle \x\ < £, \y\ < 1, where M =  0on the edges of the rectangle. 
As trial solutions, use

a) U = c (  1 — y2)(l — 4x2)(5 — j>)3;
b) U =  {cx + c2y)( 1 -  /)(1  -  4x2)(5 -  y)*.
Ans.

a) c =  -j—  ; b) 10^  10.185, 104c2 «  4.84
7264

(see [1], p. 459).
Hint. Use Prob. 1.1.6.

1.2.12. Obtain a Ritz approximation to the solution of the biharmonic 
equation A2u =  0, satisfying the following boundary conditions on the edges 
of the square |x| < 1, |j | < 1:

uxv = 0 for x = ± l ,  J = ± l ,
uvy =  1 — y 2 for x ±  1,

uxx =  0 for j = ± l .
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As trial solutions, use
a) U =  iy z(\ — iy 2) +  c^x2 — 1 )2(y2 — 1);
b) U = iy 2( 1 — iy 2) + (x2 — 1 ) \ y 2 — 1)2(a  +  c2x2 + c3y 2).
Ans.

a) cx 0.0425; b) cx ^  0.0404, c2 = c3 & 0.0117 
(see [17], p. 167).

Hint. Transform the boundary conditions into the form (7), and then use 
Prob. 1.1.8.

1.2.13. Determine a Ritz approximation to the solution of A2« =  
in the rectangle 0 < x < a ,  0 < ^ < 6 ,  satisfying the boundary conditions 
of Prob. 1.1.10 on the edges of the rectangle. Use a trial solution of the form

Ans.

7 « 7 l A ,nab
(see [16], p. 345).

^  • nvrcx  . n n y
V = Z  Z  c™« Sln — sin ~ T  ■

m =1 n=l  ̂ ^

1.2.14. Use the Ritz method to obtain an approximate solution of the 
clamped rectangular plate problem A2w =  /  where /  is a constant (see 
Prob. 1.1.8), subject to the conditions u = un =  0 on the boundaries of the 
rectangle 0 < * < a ,  0 < y < b. Use a trial solution of the form

(see [18], p. 288).

1.3. KANTOROVICH’S METHOD8

Kantorovich’s method, which is sometimes called the mixed Ritz method 
or the method of reduction to ordinary differential equations, is essentially a 
generalization of the Ritz method. More “freedom” is permitted in the selec­
tion of the trial solutions (8) and (11) by allowing the parameters c to be 
functions of one of the independent variables x, say x. The functional /  then 
reduces to a functional

I[U(x;c(x))]=Y[c(x)] (13)
of n functions c;(x), which are determined so as to furnish a minimum ofY.

8 For a general description and analysis of this method, see [11].
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Thus the c^x) are solutions of a system of n ordinary differential equations 
which are the Euler equations ofT*. The solutions of these equations subject 
to appropriate boundary conditions yield the approximation f/(x; c(x)).

For simplicity, we shall consider Kantorovich’s method only for a 
rectangular region a0 < x < au bQ < y  < bx in the xy-plane. However, the 
method can be applied to regions of more general shape (see [11]). We shall 
employ trial solutions of the form

U(x, y; c(x)) =  u°(x, y) +  J  Cj(x)u\x, y), (14)
4=1

where u° satisfies inhomogeneous boundary conditions and the uj homo­
geneous boundary conditions ony = b0, bv The boundary conditions onx ~  
a0, ax yield the values of c5(a0) and c ^ a ^ j  = 1,2

As an example (see [11], p. 304), consider the problem of solving the 
equation Am =  — 1 for x, y  in the square \x\ < 1, \y\ < 1, subject to the 
boundary condition, u =  0 on the edges of the square. As a trial solution, we 
take U =  (1 — y 2)c(x), which satisfies the boundary conditions on y  =  ±1. 
To make the trial solution satisfy the conditions on x =  ±1, we require that 
c(— 1) =  c(l) =  0. Then the associated functional (see Prob. 1.1.4) reduces to

I[u] = Y[c(x)] =  -  c'2 +  c2 -  c) dx.

The Euler equation of T* is obtained by using (1) and (3), and is given by
5 5
2 C “  “ 4 ’

Solvingthisequationand applying the boundary conditions c(—1) =  c(l) =  0, 
weohlain w  cosh n

C(X) = 2 \ l ~ - ^ h  k = J -2 '

2 \ cosh/c/
1.3.1. Solve the above boundary value problem by Kantorovich’s method, 

using the trial solution
u  =  (1 -  /) [c iM  +  Cg(x)/].

Compare with the result of the Ritz approximation obtained in Prob. 1.2.7. 
Arts.

, x 1 i c\ c \ £ coshCi(x) ^ ------h 0.516----------
2 cosh a_

0.0156 cosh oc+x 
cosh a .

c2(x) & 0.114
( -

cosh a_x cosh a±x\
l a + / ’cosh a_ cosh <

where a± =  (14 zb \/133)1/2 are the roots of the characteristic equation 
£4 -  28£2 +  63 =  0 (see [11], p. 317).
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1.3.2. Solve the above boundary value problem by Kantorovich’s 
method, using the trial solution

A
v  =  2 ,  CX * ) c o s  O' +  l)*y-

j=0
Verify that this yields the infinite series representation of the exact solution. 

Ans.

(see [11], p. 320).

cosh (j — £)tcx~ 
COSh O ' —  £ ) tc J

7 =  1,2, . . .

1.3.3. Use Kantorovich’s method to solve the clamped rectangular plate 
problem, i.e., A2u =  1 in the rectangle \x\ < a, \y\ < b, with boundary con­
ditions u =  un =  0 on the edges of the rectangle. Use U = (y2 — b2)2c(x) 
as a trial solution.

Ans.
24c(x) =  A cosh <x£ cos p£ +  B sinh £ sin p£ +  1,

where £ =  x/b, A =  djd0i B =  djd^
d0 =  p sinh a/* cosh ar -f a sin (3r cos pr, 

— =  a cosh ar sin (3#- +  (3 sinh ar cos (3/\ 

d2 = a sinh ar cos pr — (3 cosh ar sin pr,

r =  a/b, a ~  2.075 and p ~  1.143 (see [11], p. 322).

1.3.4. Use Kantorovich’s method to obtain an approximate solution of 
A2u = 0 on the semi-infinite strip 0 < * <  oo, \y\ < 1, subject to the follow­
ing boundary conditions:

uxx(x, ±  1) =  uxu(x, ±  l) =  0, uyy(0, y) = y 2 — J, y) =  0,

lim uxy(x, y) =  lim uyiJ(x, y) =  0 uniformly in y.
oo x-*co

Use the trial solution

t/ =  ( i
2 \2  -  y )

12
c(x)

(note that U satisfies the boundary conditions on y  =  ±1). 
Ans.

c(x) =  <Tax' +  -  sin
p

where y =  a +  p/ ** 2.075 +  1.143/ is a root of y4 — 6y2 +  -2~ =  0(see [10]).
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2. Related Methods

The application of the Ritz method to the solution of boundary value 
problems requires a variational principle. However, in some problems there 
is no such principle, while in others, it is difficult to determine the proper 
functional or cumbersome to evaluate the integrals needed in the Ritz method. 
Thus, in this section, we shall discuss three procedures for obtaining approxi­
mate solutions which do not require a variational functional, although they 
lead to approximations related to those obtained by the Ritz method.

For simplicity, consider the following boundary value problem involving 
a single function w(x):

Lu = f  for x in Z>, Bu =  g for x on C. (15)

Here L is a differential operator defined in a domain D, B is a boundary 
operator defined only on the boundary C of Z), and /  and g are prescribed 
functions. Thus Bu = g is the boundary condition for the single differential 
equation Lu =  / .

As in the Ritz method, we seek an approximate solution of (15) of the form

u = U(x; c),

depending on n parameters c =  (cl9 c2, . . . , cn). We shall assume, unless it 
is otherwise specified, that c is independent of x. In general, the approximate 
solution U does not satisfy the differential equation and the boundary con­
dition, and in fact

LU — f  — e(x; c) for x in D,
J K ’ (16) 

BU — g = E(x; c) for x on C,

where e and E, called the interior error and the boundary error, are algebraic 
functions of x and c. If c is a function of one independent variable, then e will 
be an ordinary differential operator acting on c, and E will contain initial or 
boundary conditions for c. If the function U is selected so that E =  0 for all 
x on C, the procedure used to determine c is called an interior method, while 
if e =  0 for all x in D, the procedure is called a boundary method.

We wish to determine c so that the errors are, in some sense, as small as 
possible. Essentially, each of the methods described below amounts to 
ascribing a definite meaning to the term “small.”

2.1. GALERKIN’S METHOD [7]

In Galerkin’s method, the n parameters are chosen to make the errors 
orthogonal to a set of n independent functions vv^x), w2(x),. . . ,  wn(x),
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usually taken to be orthogonal. This gives n conditions of the form

where ds is an element of area on C. These are n algebraic equations for 
determining the n parameters c. In fact, the equations are linear if L and B are 
linear operators and U is chosen in the form

as is customary in practice. The interior Galerkin method9 corresponds to 
choosing u° and u \ j  =  1, 2, . . . , n to satisfy the inhomogeneous and homo­
geneous boundary conditions, respectively. In the applications, it is custom­
ary (but not essential) to set wj = u \ j  =  1, 2,. .. , w, and we shall do so in 
all the problems that follow. If, as n —► oo, the wj form a complete set of 
functions, then e->-0asn->oo (being orthogonal to every function of a com­
plete set). Some convergence properties of Galerkin’s method are discussed 
in [12].

Practical selection of the functions uj and wj is governed by the same 
considerations as in the Ritz method, i.e., they should make evaluation of 
the integrals in (17) easy and they should be sufficiently dissimilar (say 
orthogonal) to lead to a “well-conditioned” system of algebraic equations.

If the boundary value problem (15) can be derived from a variational 
principle, then, in many cases, it can be shown that Ritz’s method coincides 
with Galerkin’s. If the parameters in (18) are permitted to be functions of 
one variable, we obtain the Galerkin-Kantorovich method. The conditions 
(17) then give ordinary differential equations and boundary conditions for 
determining c.

2.1.1. Given the differential equation (3) and the boundary conditions 
(2), with u0 =  iq =  0, show that the Ritz and Galerkin methods lead to the 
same system of algebraic equations (12) for determining the coefficients c.

Hint. Use integration by parts.

2.1.2. Given the differential equation

(aux)x +  (bUy)y ~  cu = f

(see the answer to Prob. 1.1.6) and the boundary condition u =  0 on C, show 
that the Ritz and Galerkin methods lead to the same system of algebraic 
equations for the coefficients c.

9 The expression Galerkin's method conventionally denotes the interior Galerkin 
method.

U =  u° +  J  Cju\ (18)
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2.1.3. Solve Prob. 1.2.3 by Galerkin’s method without transforming 
Bessel’s equation into the form (3). Compare with the exact solution, and 
also with the Ritz approximation using the same number of parameters.

2.1.4. Use Galerkin’s method to obtain an approximate solution of the 
boundary value problem

w" +  xu +  u = 2x, w(0) =  1, w(l) =  0,
choosing a trial solution of the form

U = (1 — x)(l +  cxx +  c2x2 +  c3x3).
Ans.

cx ™ -0.209, c2 ^  -0.789, c3 0.209 
(see [13], p. 115).

2.1.5. Solve Prob. 1.2.4 by Galerkin’s method, using the same trial 
solution. Verify that cx and c2 satisfy the same algebraic equations as in the 
Ritz method.

2.1.6. Use Galerkin’s method to solve the boundary value problem
m(,'v> +  u =  1, w(0) =  w"(0) =  w(l) =  u \ \ )  =  0,

choosing a trial solution of the form
U = Ci sin t z x  +  c2 sin 37tx.

Ans.
Cl == 47r~1(7t4 +  I)"1, c2 =  4[3rc(817T4 +  l)]-1

(see [6], p. 233).
2.1.7. Solve Probs. 1.2.7 and 1.2.12 by Galerkin’s method, using the same 

trial solutions. Verify that the coefficients ci satisfy the same algebraic 
equations as in the Ritz method.

2.1.8. Use Galerkin’s method to solve Prob. 1.2.9, choosing the following 
trial solutions which satisfy the (natural) boundary conditions:

a) U =  c[9 -  3(*2 +  y 2) +  x2/ ] ;
b) U =  cx[9 — 3(x2 +  y2) +  x2̂ 2]

+  c2[30 — 5(x2 +  y 2) — 3(x4 +  j 4) +  x2j 2(x2 +  y 2)].
Ans.

5
a) c = — ; b) 103Cl ^  73.3, 103c2 ^  5.38

(see [1], p. 413).

2.1.9. Use the Galerkin-Kantorovich method to obtain an approximate 
solution of the heat equation uxx = ut in the semi-infinite strip 0 < x < 1, 
t >  0. The boundary and initial conditions are

w(0, 0 -  wa(0, 0  — wx(l, t) =  0, t >  0,
w(x, 0) =  1, 0 < x < 1,
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and u must remain bounded as t -* oo. Use a trial solution of the form 

v  =  C!(o|l +  JC -  ~ j  +  Ca( o |l  +  x -  j )  ,

which satisfies the boundary conditions but not the intial conditions.
Ans.

Cl{t) x* 0.586*?-0-740' +  2A5e~nm y c2(t) xx 0.144*r°-740‘ -  2.30e~11 86f 

(see [6], p. 372).
Hint. In applying (17), set the area integral over the strip and the boundary 

integral over the initial line separately equal to zero.

2.1.10. Use the Galerkin-Kantorovich method to obtain an approximate 
solution of the wave equation uxx =  utt in the semi-infinite strip 0 < x <  1, 
t > 0, where the boundary and initial conditions are

w(0, t) = u( 1, 0  =  0, t >  0,
u(x, 0) =  x(\ — x), wf(*> 0) =  0, 0 < x <  1.

Use a trial solution of the form

U = x(\ -  x)[cA(/) +  c2(t)x( 1 -  x)].
Ans.

cx & 0.804 cos a/ +  0.197 cos (3/,

C2 XX 0.91 1(C0S OLt — cos P0, 

where a xx n t p ax 10.11 (see [6], p. 375).

2.2. COLLOCATION

Of all the approximation procedures under consideration, the collocation 
method is perhaps the simplest to apply. In this method, the n parameters are 
determined by requiring the errors in (16) to vanish at n points x ly x2, . . . , xn 
in D +  C called the collocation points. Of course, these points must be chosen 
so that the resulting system of equations has a solution, say c°(x?). The ideal 
collocation points are those for which c°(x;) minimizes the maximum error 
for all x in D +  C. For example, if we define

<f(x,) =  max |e(x; c°(x,))| +  max |E(x; c^x,))!, (19)
x in D x on C

then as the collocation points we should take the values xjij =  1,2, . . . , «  
for which $  is a minimum. However, no general procedures are presently 
available for a priori selection of points satisfying this criterion; in fact, they
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are usually determined by intuition or by practical considerations such as 
computational simplicity. Only interior or boundary points need be con­
sidered as collocation points, depending on whether interior or boundary 
collocation is employed.

A disadvantage of collocation is that the approximate solution may vary 
considerably with the position of the collocation points. One way to minimize 
this is to take a sufficient number of points and distribute them over the 
domain and the boundary.

An obvious generalization of the collocation method is to allow the 
parameters to be functions of one variable, say x. Then the errors will 
depend on c(x) and its derivatives, and collocation may yield a system of 
differential equations and boundary conditions for determining the param­
eters.

2.2.1. Solving Prob. 1.2.2 by interior collocation, using U = cx{ 1 — x) 
as a trial solution and the following collocation points:

a) * =  J; b) x =  £; c) x =  J.
Compare with the Ritz approximation and the exact solution. In each ease, 
evaluate

<o = max \e\

[cf. (19)]. Does the approximation with smallest $  have the smallest deviation 
from the exact solution?

Ans.

a ) c - i ;  b) c  =  ? ;  c) c _ l ? .

2.2.2. Solve Prob. 1.2.5 by interior collocation, using
U  = (1 — *2)(ci + c2x2 + c3x4) 

as a trial solution and the following collocation points:
a) x =  i, i  (set c3 =  0); b) x =  i, i, i

Am.
a) c x fsa 0.929, c 2 ^  —0.0512; b) c x 0.932, c 2 ^  —0.0341, c s  ^  —0.0302 

(see [1], p. 182).

2.2.3. Solve Prob. 2.1.6 by interior collocation, using the same trial 
solution and x =  J, \  as collocation points. Compare with the approxima­
tion obtained by Galerkin’s method.

Ans.

Cl = ( V2 +  1)2-V +  l)-1,
(see [6], p. 233).

c2 =  (>/2 -  1)2-I(8l7f +  l)-1
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2.2.4. Solve Prob. 1.2.7 for the square b — a by interior collocation, using 
the same trial solutions. For the trial solution a, use x — y  = 0 as the 
collocation point, and for the trial solution b, use the points x  =  y  =  0 and 
x  =  y  =  a\2. Compare with the Ritz approximation and the infinite series 
solution.

Ans.

a)«*c =  I ;  b)a*fl =  | .  =  -

(see [15], p. 437).

2.2.5. Use boundary collocation to solve Prob. 1.2.7 for the square b =  a. 
To select trial solutions, it is convenient to introduce polar coordinates

r2 =  x2 +  j>2, 0 =  tan 1 -  .

Then the function
r2U ---------- b cx +  c2r4 cos 40 +  c3r8 cos 80
2

is a solution of the differential equation. Determine the parameters clt c2 
and c3, using the collocation points

r = a, 0 =  0, r =  J 5  -  , tan 0 =  -  , r = J2  a, 0 =  -  .
V 2 2 V 4

Compare with the solutions obtained by interior collocation (Prob. 2.2.4) 
and by the Ritz method (Prob. 1.2.7). Also compare with the infinite series 
solution (Prob. 1.2.8).

Ans.
cx 0.590a2, o2c2 —0.0924, asc3 & 0.00254

(see [2]).
2.2.6. Use boundary collocation to determine an approximate solution 

of At/ =  —2 where u =  0 on the boundary of a regular hexagon with sides 
of length 2a/yj3 whose vertical sides lie o n x =  ±a. As a trial solution, use 
the function

r2U = — ----b cx +  c2r* cos 60 +  c3r12 cos 120,
2

which solves the differential equation. Choose polar coordinates with respect 
to the center of the hexagon, and use the collocation points

r = a, 

Ans.

0 =  0,
2 a
7 r

1 113 . ft 1=  -  / — a, tan 0 =  —— . 
2V  2 2^3

(see [2]).
Ci & 0.541a2, a*c2 & -0.0445, a'°c3 f* 0.00363
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2.2.7. Solve Prob. 1.2.9 by interior collocation, using the trial solutions 
of Prob. 2.1.8. For the one-parameter approximation, use the collocation 
points

a ) * = j  =  0; b ) x = y = i ;  c) x =  y  =  f.

For the two-parameter approximation, use the collocation points

d )  x = £, y  =  h  x  =  I, y - = \ ,

e) * =  h y = h  x =  |  y  =  i
Compare these approximate solutions with those obtained by the Ritz and 
Galerkin methods.

Ans.

d) q  =
446
6057

0.074, r2 =
32

6057
0.00528;

e) 1 0 ^ ^ 7 4 ,  10^2^,5.15

(see [1], p. 411).

2.2.8. Solve Prob. 1.2.9 by boundary collocation, using the following trial 
solutions and collocation points:

a) U = - i ( x 2 +  / )  +  c, x =  1, y = \\

b) U =  -} (x 2 +  y2) +  cx +  c2{x* — 6x2y2 +  y4),
x  =  I,  y  =  h  x  =  1, y =  h

(Both trial functions are solutions of the differential equation.) Compare with 
the results of Prob. 2.2.7.

Ans.
a) c & 0.813; b) c1 ^  0.821, c2 ^  —0.0144 

(see [1], p. 413).

2.2.9. Use boundary collocation to solve Prob. 1.2.14 for the square 
b = a. Let r and 0 be polar coordinates with respect to the center of the 
square, and use the trial solution

fr4
U = ----- b c1 +  c2r2 +  (c3r4 +  c4r6) cos 40 +  (c5r8 +  c6r10) cos 80

64
and the collocation points

r =  -  . 0 =  0, J5ar = tan 0 =
1 r =
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Verify that U is a solution of the differential equation. Compare with the 
approximate solution obtained by the Ritz method in Prob. 1.2.14.

A ns.
c± ™ 1.296F, azc2 ^  -2 .256F, a*c3 -0.3603F,

a6c4 ^  0.3078F, agc5 w 0.01074F, a10cs ** 0.00207F, 

where F =  /a 4/64 (see [2]).

2.3. LEAST SQUARES

In the method of least squares we seek an approximate solution in the 
form u = U(x\ c), as before, but the parameters c are determined to minimize 
the “mean square error” of the errors e and E in (16), i.e.,

j D  w(x)e2(x; c) dx +  Q(x)F2(x; c) ds =  minimum, (20)

where the weighting functions <o(x) >  0 for x in D and ft(x) >  0 for x on C 
are at our disposal. Usually it is convenient to take o =  Q =  1, and we 
shall do so in the problems below. Necessary conditions for the mean square 
error (20) to be a minimum are obtained by differentiating (20) with respect 
to each cj :

I we —  dx +  I QF —  ds =  0, j  =  1, 2,. . . , n. (21)
Jd dcj Jc dcj

This gives n algebraic equations for determining the n parameters ci by the 
method of least squares.

The method of least squares is usually less convenient than collocation, 
since the additional integrals in (21) may be difficult to evaluate. On the other 
hand, the method of least squares is more systematic than collocation, since 
there is no arbitrariness corresponding to the selection of collocation points.

2.3.1. Solve Prob. 1.2.2 by interior least squares. As the trial solution, 
use the function

U =  — x) +  c2x( 1 — x2),

which satisfies the boundary conditions. Compare the results with the Ritz 
and collocation approximations (see Prob. 2.2.1).

Ans.
_  4448 413

Cl ~  101 • 2437 ’ C2 ~  2437
(see [1], p. 220).
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2.3.2. Use interior least squares and the trial solution
U = c(x2 — a2){y2 — a2)

to solve Prob. 1.2.7 for the square b = a. Compare the resulting approxima­
tion with those obtained by the Ritz and collocation methods (Probs. 1.2.7 
and 2.2.4). Also compare with the infinite series representation of the solu­
tion obtained by separation of variables.

A ns.
2 15crc =  —

22
(see [15], p. 436).

2.3.3. Solve Prob. 1.2.9 by interior least squares, using the trial solution 
U = c[9 — 3(x2 +  y 2) +  x2y 2] which satisfies the boundary conditions. 
Compare with the approximations obtained by the Ritz, Galerkin and 
collocation methods (Probs. 1.2.9, 2.1.8 and 2.2.7).

A ns.
15

C~ J 6 l
(see [1], p. 414).

2.3.4. Solve the equation Au = x2 — 1 in the rectangle |*| < 1, \y\ < \  
by the boundary least squares method, where u = 0 on the edges of the rec­
tangle. Use the trial solution

U = l ‘( H +  Ci(x2 — / )  +  c2(x“ — 6 * y  +  y4),

which is a solution of the differential equation. 
Ans.

16643c i =

(see [1], p. 417).
60 • 2443 C2

848
2443
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