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Preface

Fuzzy logic has become an important mathematical tool of the soft
computing domain, which has vastly been applied to the field of computer
science as well. The fuzzy-based decision structure has been used in many
computer science domains with excellent results due to its tracking ability
of vagueness. The fuzzy logic concept is versatile and can seek application
in the allied engineering domains such as electrical, mechanical, electronics,
civil, etc. The other social and economical fields are also being touched upon
by the fuzzy concept with valuable outcomes.

This current edited book caters to the fuzzy application to many
interconnected and versatile domains with fruitful outcomes. The electric
machine performance can be measured and estimated with the help of
a fuzzy system. The tracking of the current path can be determined with
great certainty. The concept of fuzzy logic has been substantiated in the
present book on tuning of machines. The electrical machine extends to the
mechanical attachment through the gear-box system where the fuzzy concept
can be applied to enhance the performance mechanism of the device.

The machine learning approach is also another category where the
concept of fuzzy can be successfully applied. The bedrock of machine
learning has been enhanced further with application of the soft computing
aspect. The fuzzy system has become the altering tool for classification and
categorization.

Health science is also another promising field where a number of
research works are going on. The concept of fuzzy has been applied with
great success to produce more accuracy in the classification of medical data.
The diagnosis operation of any patient can be carried out with the help of
precision approaches of task selection and proper categorization of it. Fuzzy
logic plays a major role in performing such operations.

The current edited book also focuses on the variation of fuzzy logic
schemes. The intuitionistic fuzzy logic concept has also played a major role
in the field of mathematics. The main demerits of the fuzzy theory concept
can better be understood by the concept of extension of fuzzy range and
its utilization. The multicriteria decision-making aspect is also strongly
connected to the fuzzy concept and has become the main focus area of this
book.



xviii Preface

Another important aspect of the fuzzy logic concept is its unique
application of the concept to the industrial IoT for enhancing the smart
manufacturing concept. The financial analysis is the main essence of share
market or insurance data. The scientific and intelligent analysis of data
can be easily done by the concept of fuzzy logic. Its financial impacts can
also be seen in the giant companies. Control capability enhancement is a
rudimentary part of any organization in its strategy making. The data is the
basic component of the organization, can have a good impact on its overall
transaction activities.

The security aspect can also be included to some extent to the model.
The application of fuzzy logic can help in the strategy making for any
organization involving the data as an essential part. The tourism portal and
its implementation strategies have also been implicated by the fuzzy means.

Another crucial aspect of the fuzzy logic concerns the fuzzy controller-
based greenhouse automation using sensor networks. The sensor is engaged
in gathering data and information from the environment, which also provides
responses to its variation.

The fuzzy logic concept in the automotive industry is also prominent to
provide the application of intelligence to the industries.

Overall the present volume of the book, based on the fuzzy concept
application, provides unique ideas about the rudimentary foundation of the
subject and its versatile application to diversified fields of engineering. The
presentation of the chapters with lucidity of the subject and smooth under-
standing is the key feature of this book. The in-depth research trends in the
domain of fuzzy logic has become the main hotspot of such a book, which
also renders much insights and knowledge to the readers comprising students,
researchers, academicians, etc. This edited book also provides extra mileage
in the fuzzy application in the near future for the engineering, medical, and
even legal fields help to produce good and effective results.

—Editors



CHAPTER 1

Enhancing Electrical Machine Performance
Through Fuzzy Logic Control

FEZAZI OMAR!, AYAD AHMED NOUR EL ISLAM?, and
BISWADIP BASU MALLIK?

Laboratory (Intelligent Control & Electrical Power Systems),
Djillali Liabes University, Sidi Bel-Abbes, Algeria

2Kasdi Merbah University Ouargla, Ouargla, Algeria

3Department of Basic Science and Humanities, Institute of Engineering
& Management (School of University of Engineering and Management),
Kolkata, West Bengal, India

ABSTRACT

This chapter explores the application of fuzzy logic in improving the
performance and control of electrical machines, particularly direct current
motors and single-phase asynchronous motors. Traditional crisp logic
methods, often limited by their binary nature, struggle with the uncertainties
inherent in real-world industrial applications. In contrast, fuzzy logic
accommodates degrees of truth, offering a nuanced and flexible approach
to motor control. This chapter details the design and implementation of
fuzzy logic controllers using MATLAB SimPower Systems, highlighting
their ability to manage complex motor behaviors and ensure precise speed
regulation. Case studies demonstrate the superior adaptability and disturbance
rejection capabilities of fuzzy logic compared to conventional methods. The
integration of components like four-quadrant choppers and advanced control
techniques emphasizes the robustness of this approach in addressing dynamic
industrial requirements. The findings underscore fuzzy logic’s potential to

Fuzzy Logic Concepts in Computer Science and Mathematics. Rahul Kar, Aryan Chaudhary,
Gunjan Mukherjee, Biswadip Basu Mallik, & Rashmi Singh(Eds.)

© 2026 Apple Academic Press, Inc. Co-published with CRC Press (Taylor & Francis)
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enhance efficiency, stability, and reliability in motor-driven systems across
diverse applications.

1.1 INTRODUCTION

Logic is a fundamental concept in modern computer science and mathematics
that facilitates decision-making, problem solving, and complex system
modeling conventional logic, sometimes referred to as crisp or boolean logic,
functions in a binary environment where variables can only be true or false,
zero or one. While crisp logic has been indispensable in many applications, it
often falls short when faced with the nuances of real-world scenarios, where
absolutes are scarce, and uncertainty prevails [1, 2].

It was in this context that the pioneering work of Lotfi Zadeh in 1965 at
the University of California, Berkeley, gave birth to a groundbreaking idea—
fuzzy logic. Driven by the recognition that the real world seldom adheres to
the rigid binary distinctions of crisp logic, Zadeh introduced a revolutionary
concept that would change the landscape of reasoning and decision-making.
He proposed a form of logic that allowed for degrees of truth, enabling a
more human-like approach to addressing ambiguity and imprecision [1, 2].

Fuzzy logic acknowledges that not every question has a simple “yes”
or “no” answer and instead embraces the complexity of partial truths and
partial falsehoods. It operates in a world of shades of gray, where variables
can take on values between 0 and 1, representing degrees of membership
or truth. This paradigm shift laid the foundation for a new era in computing
and mathematics—one where uncertainty is not tolerated but embraced as an
inherent aspect of our interactions with the world.

In this chapter, the application of fuzzy logic to regulate the speed of
electrical machines, including direct current motors (DCMs) and single-
phase asynchronous motors, is explored. The complexities of industrial
applications necessitate a suitable approach, which fuzzy logic provides.
This study focuses on the complex fuzzy logic controller design and
implementation procedures for these particular electrical machines. Detailed
case studies, examining the application of fuzzy logic in speed regulation,
are presented. The passive observer is guided through these applications,
gaining insight into the precise control achieved through the integration
of fuzzy logic within the MATLAB SimPower Systems framework. The
role of MATLAB SimPower Systems as a robust simulation platform is
emphasized, showcasing its ability to test and explore the efficacy of fuzzy
logic controllers.
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1.2 FUZZY LOGIC VERSUS CRISP LOGIC EXAMPLE: SPEED
CONTROL OF A MOTOR

Consider the scenario of controlling the speed of a motor in an industrial
setting. The goal is to modify the motor’s speed in response to the received
input signals.

1.2.1 CRISP LOGIC APPROACH

The approach of expressing motor speed using crisp values, as shown in
Figure 1.1, has its limitations. Classifying speed into discrete ranges, such
as less than 50 rad/s, between 50 and 100 rad/s, and so on, can lead to
ambiguities and problems, especially when the speed falls in between these
defined crisp values. This method proves weak when dealing with industrial
applications where precision and fuzziness are crucial. Instances where motor
speeds turn around critical points like 50 or 100 rad/s might pose challenges,
potentially causing issues in industrial operations. Consequently, Because
of this approach’s lack of precision in representing speeds within these
ranges, more complex and exact control strategies—like fuzzy logic—are
required to address these complexities and guarantee optimal performance
in industrial settings.

12
1e <
08 |
—&— Slow
0,6 —8— Medium
—&— Fast
04 | Very fast
0,2
0 L 2 L 2 €
0 50 100 150 200 250

FIGURE 1.1 Crisp logic A motor speed control. ]
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1.2.2 FUZZY LOGIC APPROACH

The fuzzy logic approach provides a more natural and realistic representa-
tion of motor speed. By defining linguistic fuzzy variables like “low speed,”
“medium speed,” and “high speed” based on specific speed ranges, such as
0 to 50 rad/s, 50 to 100 rad/s, and 100 to 150 rad/s shown in Figure 1.2, the
system gains a complex understanding of motor behavior. Each linguistic
variable involves a percentage value calculated from the given speed range.
For example, a speed of 75 rad/s can be interpreted as 50% medium speed
and 50% slow. This approach enables more precise and nuanced control
decisions by capturing the inherent imprecision and uncertainty in real-
world scenarios. Using fuzzy logic to represent ranges of variables provides
a flexible and adaptable configuration, ensuring a more natural and reliable
control mechanism for industrial applications [3, 4].

1,2
16
0,8
—&— Slow
0,6 —@— Medium
—&— Fast
04 Very fast
0,2
0
0 50 100 150 200 250 300

FIGURE 1.2 Fuzzy logic DC motor speed control. 1

More than this is the fuzzy logic approach, the system considers partial
truths. Since the input signal is not just “low” or "“high,” but can have degrees
of membership in multiple categories. So, the motor speed adjusts smoothly
and continuously, representing a more realistic response to varying input
conditions [2, 5, 6]. This example highlights the key difference: crisp logic
operates in strict, discrete levels, while fuzzy logic allows for a smoother,
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more nuanced response, flexible the imprecise and uncertain nature of real-
world input signals. This flexibility is vital in applications where precise
boundaries are hard to define or where systems need to respond to a wide
range of input conditions.

1.3 FUZZY LOGIC DCM CONTROL
1.3.1 DCM

In the vast landscape of industry, DCMs play a pivotal role, weaving
their presence across diverse applications with exceptional precision and
efficiency [7]. The intricate tasks of manufacturing are evidence of their
silent but significant operation. where they master the synchronized favor
of manufacturing processes in motion. In the textile sector, DCMs create
complex patterns so that each pattern appears on the fabric precisely [5, 8].
These motors find their way into the heart of medical technology, empowering
surgical tools with the finesse needed for intricate procedures and lending
their reliability to life-saving medical devices [9-11].

Beyond these applications, DCMs are the driving force behind auto-
mation, coordinating the quick sorting in warehouses and the careful
choreography of packing lines. Their adaptability shines in every industry,
demonstrating their abilities to transform mechanical energy into purposeful
movement, from the precise strokes of a robotic arm to the rhythmic motions
of conveyor belts. Each rotation signifies the seamless fusion of technology
and industry, a proof of the accuracy and dependability that DCMs provide
to the foundation of industrial operations [12—15].

1.3.2 USING SIMPOWERSYSTEMS IN CONTROL SYSTEMS

Utilizing SimPowerSystems in the design and simulation of control systems
for electrical motors offers a multitude of advantages, bringing simulations
remarkably close to real-world scenarios, far beyond the reach of simplistic
theoretical models. This powerful tool enables engineers and researchers
to create complex virtual models of electrical power systems, for example,
DC, asynchronous motors, and their corresponding control systems. These
models function as dynamic replicas, emulating the behavior of the system
in a range of scenarios with different loads and speeds [16—18].



6 Fuzzy Logic Concepts in Computer Science and Mathematics

What sets SimPowerSystems apart is its utilization of advanced math-
ematical models, capturing the intricacies of electrical, magnetic, and
mechanical interactions within the system. These simulations take into
account real-world elements like voltage drops in the stator and rotor circuits,
rotor resistance, and magnetic saturation. As a result, SimPowerSystems
offers a highly accurate visual representation of the behavior of the system,
outperforming even the accuracy of more basic theoretical models.

Additionally, SimPowerSystems offers support for hardware-in-the-loop
simulation and controller in the loop, allowing engineers to use physical
components like motor drives and controllers to thoroughly test their control
systems. Through the identification of possible problems or constraints in the
control system prior to its implementation in a real-world application, this
methodological approach further improves simulation accuracy.

1.3.3 DCMS IN MATLAB SIMSCAPE (SIMPOWERSYSTEMS)

The process of modeling a DCM in SI units using SimPowerSystems
involves creating a new Simulink model. Engineers initiate this process by
crafting a Simulink model tailored to their specific requirements. Within this
model, the essential step involves selecting the suitable DCM block from
the SimPowerSystems library. This pivotal block acts as the foundation of
the model, enabling engineers to define crucial parameters, such as armature
resistance (R ) and inductance (L,) in ohms and henries, respectively [16-18].

The choice to work in SI units is deliberate, aligning with international
standards and ensuring consistency and accuracy in the modeling process.
The DC machine, meticulously defined in SI units, is visually represented in
Figure 1.3, providing engineers with a clear, graphical reference point.

In Figure 1.3, MATLAB Simscape presents a versatile platform for
modeling DCMs. Engineers are offered a range of motor choices, exempli-
fied by “choice 1,” featuring 5 HP, a 240 V armature voltage, a rated speed
of 1750 RPM, and a 300 V field voltage. Notably, the parameters adjust
automatically based on the selected motor, streamlining the configuration
process. Engineers benefit from this automated precision while retaining
the flexibility to make manual adjustments, granting full control over the
modeling process. This dynamic interface embodies MATLAB’s user-
friendly approach, empowering engineers to seamlessly transition from
theory to practical application, enhancing modeling efficiency, and accom-
modating diverse motor configurations.
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d

E] Block Parameters: DC Machine X

DC machine (mask) (link)

Implements a (wound-field or permanent magnet) DC machine.

. For the wound-field DC machine, access is provided to the field connections so that
DC Machine the machine can be used as a separately excited, shunt-connected or a series-
connected DC machine.

Configuration Parameters
O p $=m
Preset model: 01: SHP 240V 1750RPM Field:300V <

Mechanical input: Torque TL %
A- —{] —A+ _
Field type: Wound %

Measurement output

< m TL ( [] use signal names to identify bus labels

[ ok | concel Help Apply

FIGURE 1.3 DC motor. ]

1.3.3 FOUR-QUADRANT CHOPPER DRIVE DCM

Within the intricate domain of power electronics, the four-quadrant chopper
emerges as a linchpin, offering unparalleled bidirectional control over DCMs
[19]. Operating seamlessly across all quadrants of the voltage—current plane,
this electronic marvel facilitates dynamic reversals and meticulous speed
adjustments in applications demanding rapid transitions. In this exploration,
the theoretical underpinnings and practical applications of the four-quadrant
chopper are dissected, shedding light on its pivotal role in modern power
systems. Particularly noteworthy is its utilization as a driving force for DCMs,
a strategic choice made to guarantee precise speed control in both forward
and reverse directions. This deliberate selection not only underscores the
chopper’s versatility but also exemplifies its significance in ensuring effi-
cient and controlled motor performance, making it a cornerstone in diverse
industrial and commercial settings [15, 19-22].

InFigure 1.4, acomprehensive representation unveils a DCM controlled
by a four-quadrant chopper in the power section. This intricate system
is constructed using four insulated-gate bipolar transistor (IGBT)/diode
components, where each pair of IGBTs (IGBT 1 and 2; IGBT 3 and 4) forms
a distinct arm, strategically designed to avoid short circuits. The control
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mechanism ensures symmetrical operation, where IGBT 1 and 4, as well
as IGBT 2 and 3, are synchronously controlled to maintain balance. The
block denoted as “Bloc” is pivotal, providing the essential four-quadrant
control. Here, DC voltage 1 regulates the field voltage, while DC voltage
2 governs the armature voltage. The bus selector, a critical component,
facilitates the selection of the DCM’s output, orchestrating the seamless
operation of this complex system. Through this visual representation,
engineers gain valuable insights into the intricate components and control
mechanisms of a four-quadrant chopper, illuminating the path for precise
and bidirectional control of DCMs. The series RLC branch is used to add
an inductance that has a value of le-4 [Henry] to improve the quality of
the current. A further step involves applying torque resistance through a
defined procedure. This step spans a duration of six units, commencing
with an initial value of 5 and gradually reaching the final value of 20.35.
The objective is to achieve the rated torque, which equals the power
divided by the speed (Figure 1.5).

(o] (o]
Goto
o o % T >
DC Voltage Sourcel |GBT: <Speed wm (rad/s)>
IGBT — 3 —
£ | W E

DC Volta J— <Armature current ia (A)>
oltage = -
Source2 T —Fep—
.[ qA- A+ ISR il <Field curent f (A)>
| I ]

) m LS Series RLC Branch S 4@

<Electrical torque Te (n m)>
IGBT 2 ZEF/‘}— . IGBT 4 th - ,

us
= w_E Selector

FIGURE 1.4 DC motor drived by a four-quadrant chopper and power part.

Select the bus selector to select the output of the machine

In Figure 1.6, the control segment of a DCM operated by a four-quadrant
chopper is depicted. A pivotal component in this control system is as follows.

“Powergui” block: playing a vital role in regulating simulation time
and type. This essential module not only facilitates precise control over the
simulation duration but also offers an array of tools, enabling engineers to
adjust various simulation parameters according to specific requirements set
the: Simulation type to discrete, and Sample time (s) to 50e—5.

The speed reference is generated by the step function set: Step time: 3,
Initial value: —150 *30/pi, Final value: 170* 30/pi.
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E] Block Parameters: Bus Selector X
BusSelector

This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block that defines its output
using a bus object. The left listbox shows the elements in the input bus. Use the Select button to select the output
elements. The right listbox shows the selections. Use the Up, Down, or Remove button to reorder the selections. Check
'Output as virtual bus' to output a single bus.

Parameters <Speed wm (rad/s)>
Filter by name @ R Scect=d clements _
1 |Speed wm (rad/s)
Elements in the bus Select>> | A‘r’mature cflrre{\() ia (A) “ <Armature current ia (A)>
Speed wm (rad/s) Refresh | |Field current if () [ Remove | P
Armature current ia (A) Electrical torque Te (n m)
Field current if (A) <Field current if (A)>

Electrical torque Te (n m)

<Electrical torque Te (n m)> g

Bus
elector
[ output as virtual bus
o [ oc ][ cs [[ wep | [hew |
FIGURE 1.5 Bus selector output.
[A]
Discrete Uref P Goto
0.0005 s.
q PWM Generator
powergui (2-Level)

Demux

10— ==

o | A\

w1 ¢
» Fuzzy Logic
From4 > Controller
with Ruleviewer1

u WA

& =

Saturation

FIGURE 1.6 DC motor drived by a four-quadrant chopper, control part. ]

The speed produced by the “From” block must be assigned, similar to
the “Goto” block, which records the output speed of the DCM. This ensures
consistent data flow and synchronization between the generated speed data
and the recorded motor speed output.

There are three gains in the system: the first is set to /1750 to ensure error
normalization, the second is set to *%/,; to convert speed from RPM to radians
per second, and the third gain is adjusted to transform the speed from radians
per second back to RPM.
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The pulsewidth modulation (PWM) generator (two-level) block is config-
ured with a frequency of 100*50, highlighting its crucial role in the control
system. Its function is pivotal, emphasizing its significance in regulating the
system’s operations.

The fuzzy logic controller with Ruleviewer plays a key role in the fuzzy
logic control of the DCM with two inputs: the error and its derivative.

1.3.4 FUZZY LOGIC CONTROLLER WITH RULEVIEWER

In this section, a comprehensive step-by-step guide on how to effectively
utilize the fuzzy logic controller with Ruleviewer is provided. This powerful
tool plays a pivotal role in the control system, enabling intelligent decision-
making based on fuzzy logic principles.

Type “fuzzy” in the MATLAB command window.

Click on “file,” then select “export,” and save the file with the name
“fuzzy controller.” The file should be saved with the extension “.fis.” Next,
use the “edit* option to add variables. Use the cursor to modify the input and
output names as demonstrated in Figure 1.7.

[4] Fuzzy Logic Designer: Untitled . O X
File Edit View

Untitled

(mamdani)

input1 output1

FIGURE 1.7 Fuzzy logic designer. ¢
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(4] Fuzzy Logic Designer: fuzzy_DCM — O X
File Edit View
error fuzzy_DCM
/ (mamdani)
ﬁ output

Der_error

FIGURE 1.8 Fuzzy logic designer: Input and output naming. ]

Within the input section, modify all input parameters as demonstrated in
Figure 1.8. Enter the names for each membership function plot and select the
function type as “gaussmf.” This choice is made because it aligns with natural
data patterns. Adjust the range, display range, and parameters according to
the details outlined in Figure 1.8.

Figure 1.9 illustrates the modifications made to the output. Select the
function type as “trimf,” as it is more suited to the nature of the output. Follow
the other specified changes outlined in the figure for optimal configuration.

Figure 1.10 illustrates the speed response of the DCM using fuzzy control,
where the motor accurately tracks the specified reference speed. The system
exhibits a rapid response time of less than 1 second without overshooting
or steady-state errors. The motor operates bidirectionally, effectively
responding to speeds of —1432 and 1623 RPM. These responses are achieved
under a resistive torque of 5 Nm. Upon applying a relative torque disturbance
of 20.35 Nm at 6 s, the motor swiftly rejects the disturbance, experiencing
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minor oscillations. Figure 1.11 provides a detailed close-up view of the
DCM Speed Response, highlighting slight oscillations introduced by the

fuzzy control mode.

Q Mer.nbuship Function Editor: fuzzy DCM - o = & Membership Function Editor: fuzzy_ DCM = = X
File Edit View | File Edit View
o oot oo 181 s | 181
hight o low
= . decreasing not_changing increasing
o Xy

FIGURE 1.9 Fuzzy Logic Designer: Input parameters ]

[4] Membership Function Editor: fuzzy_DCM
File Edit View

Membership function plots  *' ™' 181

close_fast close_slow no_change open_slow open_fast

FIS Variables
I
level valve

-1 -0.8 -06 -04 -0.2 0 0.2 04 0.6 0.8 1
output variable "valve"

FIGURE 1.10 Fuzzy logic designer: Output parameters. ]
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FIGURE 1.11 DC motor speed response. <l

Figure 1.11 depicts the responses of the DCM’s armature current and
torque. A notable similarity is observed between the profiles of armature
current and electromagnetic torque, indicating the direct influence of current
on torque changes. Even with an increase in resistive torque, resulting in a
higher current, the starting current initiates an initial torque to commence
motor operation. Changing the motor’s direction requires another starting
current to generate an additional starting torque. Figure 1.12 reveals oscil-
lations in both torque and current responses, which directly influence the
oscillations observed in the speed response.

1.4 FUZZY LOGIC SINGLE-PHASE ASYNCHRONOUS MOTORS
CONTROL

1.4.1 SINGLE-PHASE ASYNCHRONOUS MOTORS

The single-phase asynchronous motor, also known as the single-phase induc-
tion motor, serves as a cornerstone in numerous applications owing to its
simplicity, reliability, and adaptability. These motors power an array of essential
devices, from household appliances like fans and air conditioners to industrial
tools, water pumps, and heating, ventilation, and air conditioning systems [23,
24]. One of its primary advantages lies in its uncomplicated yet robust design,
ensuring dependable performance and minimal maintenance requirements.
Moreover, these motors are remarkably cost-effective to manufacture, making
them economically viable for various applications [25]. Their ease of control,
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operating efficiently on a single-phase ac power supply, simplifies installation
and reduces complexity in electrical systems. In addition to their versatility,
single-phase asynchronous motors are characterized by their quiet operation
and the ability to deliver substantial starting torque, enhancing their suitability
for environments requiring both efficiency and minimal noise. Overall, these
motors stand as a testament to practical engineering, offering reliable solutions
for diverse industrial and domestic needs [26, 27].
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FIGURE 1.12 Close-up view of DC motor speed response. 1]
1.4.2 SINGLE-PHASE ASYNCHRONOUS MOTORS IN MATLAB

SIMSCAPE (SIMPOWERSYSTEMS)

Figures 1.13—1.15 illustrate single-phase asynchronous motors controlled by
fuzzy logic within the MATLAB Simscape (SimPowerSystems) environment.
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In Figure 1.13, the power section is depicted, where the single-phase
asynchronous motors are linked to an inverter comprising two legs. Each leg
consists of two IGBTs, resembling the structure of a four-quadrant chopper.
The inverter is powered by a DC set at \/27, [26, 28].

<Amature current ia (A)>

<Electrical torque Te (n m)>
T

Wﬂw i

1 | 1 1 | 1 |
o 1 2 3 4 5 6 7 8

FIGURE 1.13 DC motor armature current and torque responses.

Figure 1.14 displays the essential parameters for configuring the single-
phase asynchronous motor. Similar to the DCM [29, 30], the asynchronous
motor allows for flexible adjustments, including the ability to change motor
types. The parameters, including V, _(root-mean-square voltage), are clearly
visible, offering a comprehensive overview of the motor’s settings [17].

Figure 1.15 showcases a single-phase asynchronous motor driven by an
inverter chopper in the control section. Within this segment, several blocks
are utilized, including the following.
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FIGURE 1.14 Single-phase asynchronous drived by an inerter chopper, power part. (]
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FIGURE 1.15 Single-phase asynchronous parameters. ]

Repeating Sequence Stair: This block represents the speed reference
vector of output values: [400 800]. Sample time: 4.

Fen: This block represents the function of the reference that composes
the PWMcontrolling the inverter.

The inputs of the “Fcn” block consist of the amplitude and frequency,
both sourced from the multiplexer (mux) component. These parameters are
essential in controlling the reference PWM function, enabling precise modu-
lation of the output signals that drive the single-phase asynchronous motor.

Repeating Sequence: This block represents the carrier signal that consti-
tutes the other part of the PWM controlling the inverter. Time values: [0 .25
.5.75 1]/5000 and output values: [0 =1 0 1 0].
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The relational operator is utilized to generate the PWM signal, working
in conjunction with logical operations. The inverter operates with two PWM
signals. The “Not” operator is employed to negate and generate the comple-
mentary PWM signal.

O}
=L'® « I et

Integrator
. H

Repeating

:I |§| Sequence

FIGURE 1.16 Single-phase asynchronous drived by an inverter chopper, control part.

A

u(1)'sin(u(2))
Fen

Relational
Operator

Logical
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After implementing the same fuzzy controller used for the DCM, the
speed response of the single-phase asynchronous motor is depicted in
Figure 1.17, demonstrating the motor’s precise tracking of the specified
reference speed. The system exhibits an impressive response time of just
0.5 s, displaying no overshooting or steady-state errors. The motor operates
effectively, responding to speeds of 400 and 800 RPM. These responses are
achieved under a resistive torque of 2 Nm. Upon the application of a torque
disturbance of 5 Nm at 6 seconds, the motor promptly rejects the disturbance,
with only minor oscillations observed.

FIGURE 1.17 Single-phase asynchronous motor speed response. ¢
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Figure 1.18 illustrates the response of a single-phase asynchronous motor,
showcasing current, speed, and torque. The current waveform exhibits a sinu-
soidal pattern. However, the relationship between current and torque is more
intricate compared to the DCM.Similarly, the correlation between current and
speed is notable, although not straightforward. In the case of the single-phase
asynchronous motor, frequency plays a crucial role in determining the speed,
adding complexity to the relationship between current and motor speed.

<Main winding current Ia (A or pu)>

20~ f f T

_13; Wwwmwwmwwwwwwmwww

<Rotor speed(ad/so pu)>
T T T T T T T

| 1 | 1 | 1 1 1 1

torque Te (N*m or pu)>
|

FIGURE 1.18 Single-phase asynchronous motor current, speed, and torque response. (]

1.5 CONCLUSION

Fuzzy logic control is a reliable and adaptable method for controlling the
inherent uncertainties and complexities of real-world operations in motor
systems. This study has emphasized several important points through thor-
ough simulations and analyses.

1. Fuzzy logic precision: Fuzzy logic control allows precise motor
speed regulation Taking into account the imprecision and uncertain-
ties inherent in industrial applications. The use of linguistic variables
and fuzzy sets allows for nuanced control decisions, enhancing the
accuracy of motor responses.

2. Flexibility and adaptability: Fuzzy logic offers an adaptable system
for motor control because of its capacity to deal with linguistic vari-
ables and define precise speed ranges. This flexibility is essential
in industrial settings where fluctuating operating conditions and
unpredictability are typical.
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3. Disturbance rejection: Fuzzy logic control demonstrates excellent
disturbance rejection capabilities. The motors swiftly recover from
disturbances, ensuring stable performance even in challenging
conditions.

4. Realism in speed representation: Fuzzy logic represents motor speeds
as linguistic variables within defined ranges, which is more realistic
and applicable to industrial scenarios than crisp value approaches.
A more accurate representation of motor behavior is ensured by this
complex approach, which captures the subtleties of speed variations.

5. Industrial applicability: For industrial motor applications, fuzzy
logic control shows promise. Its capacity to manage imprecise inputs,
adjust to changing situations, and offer steady and accurate control
makes it a competitive option for use in actual manufacturing and
automation processes.

Finally, this study demonstrates the significance of fuzzy logic control in
enhancing the efficiency, stability, and adaptability of motor-driven systems
in industrial settings. By bridging the gap between theoretical models and
practical applications, fuzzy logic proves to be a valuable tool for engi-
neers and researchers seeking reliable solutions for complex motor control
challenges.
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ABSTRACT

Fuzzylogic system is widely applied to many versatile engineering disciplines.
The fuzzy inference system is the rule-based system, which can be applied
to many types of control system where control capacity and mechanism are
fully governed by the inference rule sets. The traditional system of power
transmission is carried out either manually or automatically. The application
of fuzzy logic systems helps in enhancement and smoothening of the
transmission system. Continuously variable gearbox (CVT) is providing
the number of gear ratios for the smooth and efficient delivery of power.
Different application procedures toward the enhancement of transmission
capability involve adaptive processes, shift control processes, load balancing
processes, optimized energy recovery processes, etc. The concerned system
is used to find the best and optimized parametric values represented by
two variables K and 7, , needed to set up a special controller called the
proportional-integral controller (or PI controller). This PI controller is used
in mechanical systems to control the transmission of energy through CVT for
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smooth functioning. The fuzzy controller possesses several extra features,
all of which are geared toward improving the machine’s overall operational
efficiency. This chapter provides a detailed overview of such optimization
process based on the fuzzy logic concept.

2.1 INTRODUCTION

A continuously variable gearbox (CVT) is a type of gearbox that is
specifically employed in conventional internal combustion engine vehicles.
The power consumption of the engine can be the important factor on
which the engine efficiency depends a lot. Optimization of the engine’s
power utilization can be minimized by means of the CVT. In contrast to
conventional gearboxes that operate through discrete gear ratios (such
as first gear and second gear), a continuously variable gearbox (CVT)
possesses the ability to adjust the engine speed seamlessly and continuously
in direct proportion to the rotational speed of the wheels. This facilitates the
optimization of the engine’s power utilization. When one desires to drive in
an inexpensive manner, it is possible to conserve fuel and mitigate pollution.
Conversely, if one seeks to engage in sporty driving, it is feasible to optimize
power output. A continuously variable gearbox (CVT) operates by the use
of a belt that connects two pulleys, each having a cone-shaped structure.
The dimensions of these pulleys exhibit variability, expanding as the cones
approach one other and contracting as they move apart. The figure presented
in Figure 2.1 elucidates the operational mechanisms of the subject matter.
The appropriate amount of pressure must be exerted on the pulleys (Pp and
Ps) in order to ensure the optimal functioning of the belt. In the event that
the tension exceeds the recommended threshold, the belt may experience
failure as a result of excessive friction and stress. Insufficient tension in the
engine might impede power transmission to the wheels, perhaps resulting
in belt disengagement from the pulleys and subsequent complications. The
normal range of revolutions per minute (r.p.m.) for the engine is 1000 to
4000. In order to regulate the pressures within the cylinders, a valve system
is employed, which functions akin to a hydraulic amplifier. Additionally, a
third pressure is employed in the context of a wet-plate clutch. The system
is responsible for controlling three distinct components. This implies that
the signals employed for the regulation of the continuously variable gearbox
(CVT) exclusively rely on electrical means. The pressure levels for the 3nos.
added valves are obtained from the central control system. The master control
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system adjusts the pressure levels by considering several factors, such as
road conditions, target speeds, and the degree of throttle input, as depicted in
Figure 2.2. The management of continuously variable transmissions (CVTs)
presents a complex task due to the multitude of factors that must be taken
into account. These factors include speed, temperature, oil viscosity, and
the design of the valves. These various components all interact, resulting
in a highly intricate system. Controlling a continuously variable gearbox
(CVT) using conventional methods intended for less complex systems has
inherent challenges. The main objective of this chapter is to throw light on
the minimization of complexities of such gearbox and enhancement if speed
of the engine concerned. The reduction of delay time of interaction among
all the different parts of the system can bring down the load and help in
gaining the good performance of the whole system. The design of the control
system for obtaining pully pressure is demonstrated in Figure 2.1.

Gear « Clutch Variator
pump
P
SNe ANy P
Engine |1 Q| .
PRy
: N
i — 1
' -
\
N LJ .
ps )S — Iq
(\
= Wheels
FD

FIGURE 2.1 Vehicle’s power train is equipped with a continuously variable gearbox (CVT)
and a wet-plate clutch. FD is an acronym that stands for final reduction. I

2.2 SPECIFICATIONS OF PERFORMANCE

The objective is to achieve the desired pressure at a reasonable timeframe,
ideally between 60 to 70 ms, without exceeding the specified limits. The
objective is to mitigate significant overshoots (O.S.) as they have the poten-
tial to induce excessive slackness in the belt, resulting in disengagement
from the pulleys and potential damage to the system.
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FIGURE 2.2 Schematic representation of the system, encompassing the high-level controller,
is depicted in the diagram. ]

2.3 PHYSICAL MODEL OF THE CONTINUOUSLY VARIABLE
TRANSMISSION (CVT)

Minten and Vanvuchelen developed an elaborate physical model of the system.
The complexity of the topic arises from its comprehensive coverage of the
activities of the continuously variable gearbox (CVT). The utilization of this
method proves advantageous in replicating real-world phenomena; nonetheless,
its protracted execution duration renders it impractical for the purpose of devising
control mechanisms. Additionally, a more streamlined model was devised
for the purpose of control. The system offers a single controllable parameter,
namely the voltage supplied to the pulsewidth modulation servo valve, denoted
as V.. The measurement encompasses two variables, namely temperature (7)
and engine speed (N pgine)- This study focused on a single outcome variable,
namely the magnitude of pressure exerted on the pulley. Figure 2.3 illustrates
the relationship between the nonlinearity (f) and the engine speed (N, ),
indicating a significant dependence of the former on the latter.

The process is represented through the utilization of a static nonlinearity
function, denoted as f(V, , N, gine)> 88 well as a dynamic linear system G(s)
that possesses changeable parameters. Figure 2.4 provides the correlation
between the variable f'and engine speed. The graphs are plotted for different

engine speeds.
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FIGURE 2.3 Relationship between the nonlinearity and engine speed. ]
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FIGURE 2.4 Distinct correlations between the variable fand the rotational speed of the engine. 1

The static nonlinearity, denoted as f, and is examined across various
values of engine speed (V_ . ) while maintaining a constant temperature.
engine

The fuzzy inference systems (FISs) [3—5] determine how the parameters P
and 7i are generated.
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2.4 DESIGN OF CONTROLLER

The initial stage in the construction of the controller is the compensation of
the nonlinearity, f(V, , Nengme), using its inverse function, f Ve, Nengme). It
can be observed that this technique is applicable as a result of the monotonic
nature of the function f(., .). After obtaining the local linear models for
various values of Tand N, gine, 35 well as the function f(., .), an optimization
approach is employed to compute a suboptimal proportional-integral (PI)
controller for the given operating point (Figure 2.5). The optimization’s cost
function is specified as

J(K,,T)=2M,+(1- 1) j:t(é (t)dt)% (2.1

where Kp and T represent the proportional gain and integral time of the
PI controller, respectively. The value of A is equal to 0.5 and is utilized to
quantify the significance of the O.S. in the cost function.
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FIGURE 2.5 Generated parameters P and 7. o1
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The tracking error is denoted as
e(t) = Prcf(t) - Pscc(t) (22)

represents the discrepancy between the preferred value and the secondary
value at time ¢. The O.S., M characterizes the maximum deviation of the
output, y(?). Mathematlcally, M is defined as

M = max {max(y(t) — 1), 0}. (2.3)

The use of the quasi-Newton approach to unconstrained multivariable
optimization was demonstrated. The PI controller, which incorporates
a collection of local PI controllers, can be mathematically expressed in
continuous time as

1
C(s)=K (T, Nengme)[l W] 2.4

engine

In the context of discrete time, the expression can be written as

1
C(Z) - Kp (T’ Ncnginc ) {1 + ]: (T, Ncngmc )(l _ 271 ] (25)

By employing this approach, all quantization effects are accounted for,
resulting in enhanced precision of the controller. The values of K (T engme)
I(T, Ne“gme) andf (V. iR englne) are restricted to certain operating pomts A method
of interpolation is required in order to facilitate smooth transitions between various
operational locations. The utilization of an interpolation approach is required.
It has been determined that an effective approach would involve the utilization
of an FIS [6-9] to approximate the lookup table. The primary attributes of this
FIS [10-13] consist of Gaussian membership functions, employing the center of
gravity method. The controller is depicted in Figure 2.6.

2.5 ANALYSIS FOR STABILITY

The stability of the gearbox has been achieved in terms of the stability of
multiple interactive components of the gearbox. The shaft of the gearbox
sometimes shows some problem toward the stabilization action, but the
overall components and their interactions can be made stabilized by means of
the fuzzy logic system [14—17]. Different fuzzy logic-based models [18-22]
have been appointed in assessing the stability already in many reported
works. We can portray the closed-loop system by employing a “Takagi—
Sugeno fuzzy model,” assuming that the nonlinearity labeled as f (., .) has
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been entirely removed. To illustrate this, consider one rule, Rulei, where we
have ai representing the temperature and i representing the engine. In this
context, the equation for the rate of change of variable x can be expressed as

X=A%+Bi. (2.6)

N engine Temperature

...........................

.......................................
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'
'
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) i (3, (TNpsa ((TN)Je ! Prec
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'
'

FIGURE 2.6 Fuzzy controllers in comparison to the linear planned controller. <1

The requirement for stability in this context is satisfied when there is a
shared positive definite matrix P that fulfills the following inequalities:

P>0 2.7
A"P+P4.<0 (2.8)
Viie {1,...N_,} (2.9)

The determination of the P matrix can be achieved through the resolution
of the feasibility linear matrix inequality (LMI) problem. A viable solution
has been identified for this problem, ensuring stability. Figure 2.6 provides
the model for fuzzy controller linear planned controller [23-27].

This study examines the enhancements achieved through the implementa-
tion of a fuzzy controller [28—30] in comparison to a linear planned controller.
It is crucial to note that there exists not only an enhancement in performance,
but also a facilitation in the implementation of design modifications, owing
to the further information offered by the rule base explanation.

2.6 CONCLUSION

This section elucidates the process of designing a control system for a continuous
variable transmission. The control system employs a fuzzy inference method to
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dynamically modify the parameters of the controller in response to measure-
ments of disturbances. The following actions were undertaken.

3

Pressure (Bar)
- N N w
(6] o (6] o
T

-
o

1. Linear controllers were computed through the process of optimiza-
tion for various scenarios.

2. Nonlinear compensators were developed to accommodate different
engine speed values (Nengine).

In order to establish stability, a mathematical problem known as LMI

was successfully resolved.

4. The controller that has been built also offers a comprehensive
elucidation of the scheduling mechanism, hence facilitating the
process of optimizing the system within an industrial context. The
evaluation of the control system has been shown in Figure 2.7 in
comparative fashion.
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The diagram depicts a continuous line representing a reference, a dashed
line representing a linear controller with feed-forward action, and a dotted
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line
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representing a fuzzy controller. It is evident that the fuzzy controller

effectively reduces both the O.S. and settling time of the system.
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CHAPTER 3

Fuzzy Logics in Machine Learning and
Al: A Comprehensive Review

S. LINGESWARI and T. REVATHI
PK.R. Arts College for Women, Erode, Tamil Nadu, India

ABSTRACT

Fuzzy logic, a mathematical framework introduced by Lotfi Zadeh in the
1960s, has found profound applications in various domains of artificial
intelligence (Al) and machine learning (ML). This abstract explores the role
of fuzzy logic in enhancing the capabilities and addressing the challenges
of Al and ML applications. Fuzzy logic, which deals with uncertainty
and imprecision, offers a valuable approach to model complex real-world
phenomena, human reasoning, and decision-making processes [1]. In this
context, we discuss key applications, methodologies, and advantages of
incorporating fuzzy logic into Al and ML systems. One of the primary areas
where fuzzy logic shines is in handling uncertainty and vagueness in data.
In Al and ML, data is often incomplete or imprecise, making traditional
binary logic inadequate. Fuzzy logic provides a framework to represent and
reason with vague information, allowing Al systems to make more nuanced
decisions [4]. This is particularly useful in applications such as natural
language processing, sentiment analysis, and expert systems. Furthermore,
fuzzy logic is integral in the development of fuzzy inference systems (FIS),
which are widely employed in Al and ML applications. FIS can model
complex relationships between inputs and outputs, making them suitable
for tasks, such as control systems, prediction, and pattern recognition.
They are especially useful in applications like autonomous vehicles, where
real-time decision-making relies on interpreting diverse and dynamic
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sensor data [10]. In the context of machine learning, fuzzy clustering, and
fuzzy classification algorithms have been developed to handle datasets
with overlapping or uncertain boundaries. These algorithms, such as fuzzy
c-means and fuzzy decision trees, have been applied in areas such as image
segmentation, medical diagnosis, and recommendation systems. They allow
for a more granular classification of data points, improving the accuracy
and interpretability of ML models. Fuzzy logic also plays a pivotal role in
rule-based systems, which are crucial for expert systems and knowledge
representation in Al. Fuzzy rules capture human expertise and can be used
to build systems that emulate human decision-making. These systems are
valuable in applications like medical diagnosis, financial risk assessment,
and industrial process control. In conclusion, fuzzy logic continues to be
a valuable tool in Al and ML applications, providing a means to handle
uncertainty, imprecision, and complex relationships in data and decision-
making. By embracing fuzzy logic, Al and ML systems can achieve greater
robustness, adaptability, and human-like reasoning capabilities, opening
doors to a wide range of real-world applications across various industries.
This abstract provides a glimpse into the multifaceted landscape of fuzzy
logic’s contributions to the advancement of Al and ML.

3.1 INTRODUCTION TO FUZZY LOGIC

Fuzzy logic is a mathematical framework and a form of multivalued logic
that deals with uncertainty, imprecision, and vagueness in data and decision-
making [1]. Unlike classical binary logic, which is based on “true” or “false”
values (0 or 1), fuzzy logic allows for the representation of partial truths and
degrees of membership in a set, making it a valuable tool in various fields,
including artificial intelligence (Al), control systems, and decision-making.
It was developed by Lotfi Zadeh in the 1960s as a way to model and represent
human-like reasoning under uncertainty.

3.2 COMPONENTS OF FUZZY LOGIC
3.2.1 FUZZY SETS
Fuzzy sets are a fundamental concept in fuzzy logic that allows us to represent

and work with uncertainty and imprecision. Unlike classical sets, where an
element is either a member (with a membership degree of 1) or not a member
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(with a membership degree of 0), fuzzy sets allow elements to have partial
membership degrees between 0 and 1. Some of the real-time examples are
as follows.

3.2.1.1 TEMPERATURE CLASSIFICATION

Imagine you want to categorize temperatures as “cold,” “warm,” and “hot.”
In classical set theory, you might set a crisp boundary, such as temperatures
below 50°F are “cold,” temperatures between 50°F and 70°F are “Warm,”
and temperatures above 70°F are “hot.” However, in fuzzy sets, you can
assign degrees of membership to each category. For instance, a temperature
of 60°F might belong 0.6 to “warm* and 0.4 to “cold,” indicating that it is
partially warm and partially cold.

3.2.1.2 IMAGE SEGMENTATION

In image processing, fuzzy sets can be applied to image segmentation, where
you classify each pixel’s membership to different regions. This is useful when
an object’s boundary is not well-defined, and pixels can belong to multiple
regions simultaneously, with varying degrees of membership.

3.2.1.3 CONTROL SYSTEMS

Fuzzy sets are widely used in control systems. For instance, in an air condi-
tioning system, you can define fuzzy sets for “cool,” “comfortable,” and
“warm” to determine how the system adjusts the temperature based on the
user’s preferences. These sets allow the system to make gradual and smooth
adjustments.

3.2.2 MEMBERSHIP FUNCTIONS

Membership functions are a crucial component of fuzzy logic, used to
determine the degree to which an element belongs to a fuzzy set. These
functions map the input values to membership degrees on a continuous scale
between 0 and 1. These functions can take various shapes, such as triangular,
trapezoidal, or sigmoidal, depending on the nature of the problem and the
desired representation of uncertainty.
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3.2.2.1 TRIANGULAR MEMBERSHIP FUNCTION

The triangular membership function is defined by three parameters: the left
boundary, the peak, and the right boundary.

Example: Let us define a triangular membership function for the fuzzy
set “tall” based on a person’s height in centimeters.

Left boundary = 150 cm, peak = 165 cm, and right boundary = 175 cm.

In this case, if a person’s height is 165 cm, their membership degree in
the “tall” set would be 1. If their height is 150 cm, then the membership

degree would be 0. If their height is 175 cm, then the membership degree
would be 0.5.

3.2.2.2 TRAPEZOIDAL MEMBERSHIP FUNCTION

A trapezoidal membership function has four parameters: the minimum, left
shoulder, right shoulder, and maximum values. It represents a more gradual
transition with a flat region in the middle.

Example: Air conditioning control.

In an air conditioning system, you might have a “comfortable temperature”
fuzzy set. The trapezoidal membership function could have a minimum value
of 20°C, a left shoulder at 22°C, a right shoulder at 26°C, and a maximum
value of 28°C. A room temperature of 24°C would have a moderate member-
ship degree.

3.2.2.3 GAUSSIAN MEMBERSHIP FUNCTION

The Gaussian membership function has a bell-shaped curve and is charac-
terized by parameters for the mean (p) and the standard deviation (o). It is
often used when there is uncertainty around a central value.

Example: Height classification.

“Tall” fuzzy set with a Gaussian membership function:
p =180 cm (mean height).

o = 10 cm (standard deviation).

This membership function represents the degree of “tallness” for indi-
viduals, with a peak at 180 cm and decreasing membership as heights deviate
from the mean.
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3.2.24 SIGMOIDAL (S-SHAPED) MEMBERSHIP FUNCTION

The sigmoidal membership function resembles an “S” shape and is often
used for variables with gradual transitions between membership degrees.

Example: In the context of “customer satisfaction,” you might use a
sigmoidal membership function to capture the transition from “dissatisfied” to
“satisfied.” As satisfaction ratings increase, the membership degree gradually
increases.

3.2.3 FUZZY LOGIC OPERATORS

Fuzzy logic operators are fundamental components of fuzzy logic that allow
for the manipulation of fuzzy sets and reasoning with uncertain or imprecise
information. Fuzzy logic operators are analogous to the logical operators
(AND, OR, NOT) in classical (Boolean) logic but are adapted to handle
degrees of membership rather than binary true/false values.

3.2.3.1 FUZZY AND (MIN OPERATOR)

The fuzzy AND operator computes the minimum of the membership degrees
of two or more fuzzy sets. It represents the degree to which all conditions are
simultaneously true.

Example: If you have two fuzzy sets, “tall” with a membership degree of
0.6 and “slim” with a membership degree of 0.7, then the fuzzy AND opera-
tion yields a membership degree of 0.6 [min(0.6, 0.7)] for the intersection of
“tall” and “slim.”

3.2.3.2 FUZZY OR (MAX OPERATOR)

The fuzzy OR operator computes the maximum of the membership degrees
of two or more fuzzy sets. It represents the degree to which any one of the
conditions is true.

Example: If you have two fuzzy sets, “high” with a membership degree of
0.8 and “Medium” with a membership degree of 0.6, the fuzzy OR operation
yields a membership degree of 0.8 [max(0.8, 0.6)] for the union of “high”
and “medium.”
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3.2.3.3 FUZZY NOT (COMPLEMENT OPERATOR)

The fuzzy NOT operator computes the complement of the membership
degree of a fuzzy set. It represents the degree to which a condition is not true.

Example: If you have a fuzzy set “not very hot” with a membership
degree of 0.3, the fuzzy NOT operation yields a membership degree of 0.7
(1-0.3) for the condition “not very hot.”

3.2.3.4 FUZZY IMPLICATION OPERATORS

Fuzzy implication operators are used in fuzzy rule-based systems to deter-
mine the strength of an implication (consequent) based on the truth value of
an antecedent condition.

Examples of fuzzy implication operators include the Mamdani implica-
tion and the Larsen implication.

3.2.3.5 FUZZY AGGREGATION OPERATORS

Fuzzy aggregation operators are used to combine the outputs of multiple
fuzzy rules in a FIS. Common aggregation operators include the max
(maximum), sum, and weighted average operators.

3.2.3.6 FUZZY T-NORM AND T-CONORM OPERATORS

T-norm (t-normative) and t-conorm (t-conormative) operators are used to
compute the intersection and union of fuzzy sets, respectively. Popular
t-norm operators include the min and product operators, while common
t-conorm operators include the max and probabilistic sum operators.

3.2.3.7 FUZZY COMPARISON OPERATORS

Fuzzy comparison operators are used to compare two fuzzy numbers or sets
and determine their relationship, such as equality, dominance, or intersection.

These fuzzy logic operators allow for a more flexible and nuanced repre-
sentation of uncertainty and imprecision in decision-making and modeling.
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They are essential components in FISs, which are used in various fields,
including control systems, pattern recognition, and Al, where traditional
binary logic may not adequately capture the complexity of real-world data.

3.2.4 FUZZY INFERENCE SYSTEMS

FISs are computational models based on fuzzy logic that mimic human
decision-making processes by incorporating uncertainty and imprecision.
These systems use fuzzy sets, rules, and membership functions to make
decisions or perform tasks in a way that is more flexible and human-like than
traditional binary logic. FISs are widely used in control systems, decision
support, pattern recognition, and Al

3.2.4.1 COMPONENTS OF A FUZZY INFERENCE SYSTEM
3.2.4.1.1 Fuzzification

In the fuzzification stage, crisp inputs are converted into fuzzy sets using
membership functions. This step transforms quantitative input values into
linguistic terms, such as “low,” “medium,” or “high.”

3.2.4.1.2 Knowledge base (rule base)

The knowledge base consists of a set of linguistic rules that relate the fuzzy
input variables to the fuzzy output variables. These rules are often expressed
in the form of “IF-THEN” statements and capture expert knowledge or
domain-specific information. Each rule defines a relationship between input
and output fuzzy sets.

3.2.4.1.3 Inference engine

The inference engine is the core of the FIS. It uses the fuzzy input values
and the knowledge base to make inferences and determine the fuzzy output
values. It employs fuzzy logic operators (AND, OR, NOT) to evaluate the
rule antecedents and combine them to produce intermediate fuzzy values.
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3.2.4.1.4 Fuzzy rule evaluation

Each rule’s antecedent (IF part) is evaluated to determine its degree of truth
based on the degree of membership of input variables. The degree of truth
of a rule represents how strongly the rule applies to the current input values.

3.2.4.1.5 Aggregation

The results of multiple rules are aggregated to produce a combined output
fuzzy set. Common aggregation methods include the max (maximum)
operator, sum, and weighted average.

3.2.4.1.6 Defuzzification

In the defuzzification stage, the aggregated fuzzy output set is converted into
a crisp output value. Various defuzzification methods can be used, such as the
centroid method, which finds the center of mass of the aggregated output set.

3.2.5 OPERATION OF A FUZZY INFERENCE SYSTEM
3.2.5.1 INPUT FUZZIFICATION

Crisp input values are mapped to fuzzy sets using membership functions.
This step involves assigning membership degrees to each linguistic term
based on the input values.

3.2.5.2 RULE EVALUATION

The fuzzy input values are matched to the antecedents of the fuzzy rules.
Each rule’s degree of truth is calculated based on how well the input values
match the rule’s conditions.

3.2.5.3 INFERENCE

The inference engine combines the rule outputs to form a fuzzy output set.
This is done by applying fuzzy logic operators (AND, OR) to the rule conse-
quences (THEN part) based on the degrees of truth of the rules.
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3.2.54 AGGREGATION

Aggregation methods (e.g., max operator) combine the fuzzy outputs from
different rules to create a single aggregated output fuzzy set.

3.2.5.5 DEFUZZIFICATION

The aggregated output fuzzy set is transformed into a crisp output value using
defuzzification methods. This value represents the system’s final decision or
action.

FISs are particularly useful in applications where decision-making
involves uncertain or imprecise information, making them applicable in fields
such as control systems, expert systems, and pattern recognition. They allow
for the incorporation of human-like reasoning and are capable of handling
complex and ambiguous data effectively.

3.3 APPLICATIONS

Fuzzy logic has found applications in various fields, including control
systems, Al, pattern recognition, decision-making, robotics, and more. It
excels in situations where ambiguity and imprecision are inherent, such
as in natural language processing, temperature control, and financial
forecasting.

3.4 CONTROL SYSTEMS

Fuzzy logic control systems are widely used in various industries, including
automotive, industrial automation, and heating, ventilation, and air condi-
tioning. They can adapt to changing conditions and provide precise control
even when system dynamics are not well-defined.

3.4.1 AUTOMOTIVE INDUSTRY

Fuzzy logic is used in vehicle systems, such as antilock braking systems,
automatic transmissions, and engine control units, to optimize performance
and improve safety.
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3.4.2 CONSUMER ELECTRONICS

Fuzzy logic is applied in appliances like washing machines to adjust washing
cycles based on load size and dirt level, making them more energy-efficient
and user-friendly.

3.4.3 ROBOTICS

Fuzzy controllers are used in robotic systems for tasks, such as path plan-
ning, obstacle avoidance, and grasping objects. Fuzzy logic helps robots
make real-time decisions in uncertain environments.

3.4.4 MEDICAL DIAGNOSIS

FISs can assist medical professionals in diagnosing diseases and conditions
by combining imprecise medical data and expert knowledge to determine the
likelihood of different diagnoses.

3.4.5 TRAFFIC MANAGEMENT

Fuzzy logic is employed in intelligent traffic management systems to
control traffic lights, optimize traffic flow, and reduce congestion during
peak hours.

3.4.6 FINANCIAL MODELING

Fuzzy logic can be used in financial forecasting and portfolio optimization,
taking into account imprecise market data and economic indicators to make
investment decisions.

3.4.7 NATURAL LANGUAGE PROCESSING

Fuzzy logic aids in natural language processing tasks like sentiment analysis,

fuzzy search, and language translation, where words and meanings are often
imprecise.
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3.4.8 QUALITY CONTROL

Fuzzy logic can be used to improve quality control processes in manufac-
turing by making real-time adjustments to production parameters to maintain
product quality.

3.4.9 ECONOMICS AND PRICING

Fuzzy logic is applied in pricing strategies, particularly in e-commerce, to
adjust prices dynamically.

3.4.10 AGRICULTURE

Fuzzy logic is employed in precision agriculture for tasks like irrigation
scheduling, crop yield prediction, and pest control, taking into account varia-
tions in soil and weather conditions.

3.5 ADVANTAGES

Fuzzy logic offers advantages over classical logic in scenarios where precise,
binary decisions are not suitable. It can handle real-world problems with
inherent uncertainty and variability, making it a valuable tool for modeling
complex systems.

3.6 CHALLENGES

Fuzzy logic is not without its challenges. It can be computationally intensive,
and interpreting fuzzy rules and membership functions can be complex.
Additionally, determining the appropriate fuzzy sets and rules requires
domain expertise.

3.7 CONCLUSION

In summary, fuzzy logic provides a way to capture and work with uncer-
tainty in a systematic manner, allowing machines to make decisions and
control systems in a manner that resembles human reasoning. It has found
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wide-ranging applications in various fields and continues to be an important
tool in the realm of Al and control systems.
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CHAPTER 4

Applications of Fuzzy Logic in Allied
Health Sciences

GEETA ARORA

Department of Mathematics, Lovely Professional University, Phagwara,
Punjab, India

ABSTRACT

Fuzzy logic, a mathematical framework designed to address the challenges
posed by uncertainty and imprecision, has garnered considerable attention
across several disciplines owing to its capacity to effectively represent
intricate systems characterized by ambiguous or partial data. Fuzzy logic
has become a helpful tool in the domain of allied health sciences, where
decision-making frequently entails ambiguity and reliance on qualitative
input. The present work examines the various applications of fuzzy logic
in the field of allied health sciences, emphasizing its capacity to augment
diagnostic precision, optimize treatment approaches, and boost the quality
of patient care. The main subjects addressed encompass the underlying
principles of fuzzy logic, its significance in related fields of healthcare,
and concrete instances of its use in medical diagnostics, disease prognosis,
healthcare administration, and individualized treatment strategies.

4.1 INTRODUCTION TO FUZZY LOGIC

Fuzzy logic is a mathematical and computational framework for addressing
uncertainty and imprecision in problem-solving and decision-making. It
extends traditional binary (true/false) logic to manage ambiguous, incomplete,
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or unclear information. Instead of absolute distinctions (e.g., something is
either completely true or completely false), fuzzy logic [1] allows for the
representation of partial truths and partial falsehoods. This adaptability
makes fuzzy logic especially useful in scenarios involving human judgment
and natural language [2].

Fuzzy logic has applications in numerous disciplines, such as
engineering (particularly control systems), artificial intelligence, robotics,
healthcare, and decision support systems (DSSs), where handling
uncertainty and imprecision is crucial [3]. The fuzzy logic extends the
principles of classical logic to manage uncertain and ambiguous situations
by introducing fuzzy sets and linguistic variables. It is a useful instrument
for modeling and solving problems in situations where precise binary logic
may not be suitable [4]. Following are the fundamental key concepts of
fuzzy logic [5].

4.1.1 FUZZY SETS

Fuzzy logic is based on fuzzy sets, which are an extension of classical
sets. In classical sets, an element is either included (true) or excluded
(false). In contrast, in fuzzy sets, an element can be a member of the set
to a degree between 0 and 1, which reflects the degree of membership.
Membership functions characterize the level of membership for each
element.

4.1.2 LINGUISTIC VARIABLES

Fuzzy logic frequently deals with ambiguous linguistic variables, such as
“hot,” “cold,” “tall,” or “short.” Linguistic variables are represented as fuzzy
sets whose membership functions map linguistic terms to varying degrees of
membership.

4.1.3 RULES

Fuzzy logic employs a set of IF-THEN principles, typically expressed as
“if condition A is true, then action B is taken.” These principles connect
linguistic variables and their respective membership functions based on
fuzzy logic operators (AND, OR, NOT).
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4.1.4 FUZZY INFERENCE

Fuzzy inference is the process of using fuzzy principles to make deci-
sions or draw conclusions. It consists of three essential steps: fuzzification
(converting input values to fuzzy sets), rule evaluation (applying fuzzy rules
to determine the level of satisfaction), and defuzzification (converting the
hazy output to a crisp value).

4.1.5 FUZZY OPERATORS

Fuzzy logic operators include “AND,” “OR,” and “NOT,” which are modified
to function with fuzzy sets. These operators are employed to combine fuzzy
sets and determine the degree of membership in the resultant sets.

4.1.6 FUZZY CONTROL SYSTEMS

Fuzzy logic is widely employed in control systems, where it can model and
regulate nonlinear, complex systems. Fuzzy control systems use linguistic
principles and fuzzy sets to make decisions in real-time and to adapt to
fluctuating conditions.

4.2 RELEVANCE OF FUZZY LOGIC IN ALLIED HEALTH SCIENCES

The significance of fuzzy logic in the field of allied health sciences stems
from its distinctive capacity to tackle the inherent uncertainty, imprecision,
and ambiguity frequently encountered in decision-making processes within
healthcare. In the field under consideration, wherein clinical data may
exhibit characteristics of vagueness, subjectivity, or incompleteness, the
utilization of fuzzy logic offers a valuable framework for the purpose of
modeling and processing said information [6]. Fuzzy logic provides a solu-
tion for addressing the complexity of real-world healthcare scenarios and the
requirement for precise, data-driven decisions. This is achieved through the
utilization of fuzzy sets that represent varying degrees of symptom severity
for diagnosing medical conditions, considering multifactorial influences for
predicting disease outcomes, and incorporating patient-specific parameters
for personalizing treatment plans. Fuzzy logic plays a vital role in enhancing
diagnosis accuracy, treatment efficacy, and overall patient care within the



50 Fuzzy Logic Concepts in Computer Science and Mathematics

domain of allied health sciences by effectively accommodating the intricate
nature of medical data and human expertise [7].

Fuzzy logic exhibits a high degree of suitability for healthcare decision-
making owing to a number of significant factors.

4.2.1 MANAGEMENT OF UNCERTAINTY AND AMBIGUITY

The field of healthcare data is intrinsically characterized by uncertainty and
frequently encompasses diverse levels of ambiguity. Patients may express
their symptoms using vague or imprecise language, while diagnostic tests
may produce results that fall within ambiguous or uncertain ranges. Fuzzy
logic enables healthcare practitioners to effectively handle and analyze
uncertainty by employing membership functions to quantify the extent of
truth or falsehood, hence facilitating more sophisticated decision-making
processes.

4.2.2 HANDLING LINGUISTIC VARIATIONS

Fuzzy logic demonstrates proficiency in managing linguistic variations, a
common occurrence within the healthcare domain. In the medical field, it is
common for healthcare practitioners to employ terminology such as “mild,”
“moderate,” or “severe” when characterizing various medical illnesses or
symptoms. The utilization of fuzzy sets and linguistic variables enables the
integration of subjective descriptions into decision models, hence enhancing
their alignment with real-world clinical assessments.

4.2.3 INTEGRATING AND PRIORITIZING CRITERIA

Healthcare decisions often encompass a multitude of variables, including
but not limited to patient history, test results, and clinical competence, hence
necessitating the application of multicriteria decision-making techniques.
Fuzzy logic offers a theoretical framework for the integration and priori-
tization of criteria, taking into account their interrelationships. This holds
particular significance in tasks such as treatment planning, whereby the
achievement of a harmonious equilibrium between opposing objectives is
imperative.
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4.2.4 FACILITATING EXPERT KNOWLEDGE INCORPORATION AND
PATIENT-CENTERED CARE

The incorporation of expert knowledge into decision models in healthcare
systems is facilitated by the adaptability of fuzzy logic [8]. Clinicians have
the ability to articulate their expertise through the utilization of fuzzy rules,
which effectively encapsulate their cognitive processes and clinical discern-
ment. This guarantees that the system is in accordance with the knowledge
and expertise of healthcare professionals. The concept of patient-centered care
is enhanced by the application of fuzzy logic, which facilitates the customiza-
tion of healthcare decisions based on individual needs and preferences. The
consideration of unique patient features, preferences, and tolerances facilitates
the customization of treatment plans and procedures. The implementation of
a patient-centered strategy has been shown to improve the overall quality of
care and increase patient satisfaction.

4.2.5 COMPLEXITY MANAGEMENT

Complexity management is a common challenge encountered within
healthcare systems, as they frequently encounter intricate and nonlinear
interdependencies among many factors. The utilization of fuzzy logic in
the modeling and control of intricate systems proves to be advantageous in
several circumstances, such as optimizing drug dosages, predicting illness
progression, and monitoring patients. This is particularly significant as
conventional linear models may exhibit limitations in these contexts.

4.2.6 CONTINUOUS MONITORING AND FEEDBACK

Fuzzy logic demonstrates a high level of suitability for the purposes of
ongoing monitoring and adaptation. In the field of healthcare, it is common for
patients’ situations to undergo fast changes, necessitating the corresponding
adjustment of treatment regimens. Fuzzy logic possesses the capability to
effectively handle incoming data and promptly adjust judgments in real-time,
so guaranteeing the maintenance of up-to-date and efficient treatment. The
interpretability of fuzzy logic-based systems is frequently superior to that
of black-box machine learning algorithms. Healthcare professionals possess
the ability to comprehend and place confidence in the outcomes rendered by
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fuzzy logic systems due to their capacity to trace the underlying logic and
rules employed in order to reach a specific outcome.

In summary, the utilization of fuzzy logic in healthcare decision-making
is advantageous due to its capacity to effectively handle uncertainty, integrate
linguistic variables, address multicriteria decision-making scenarios, accom-
modate expert knowledge, personalize care, manage complexity, provide
ongoing feedback, and facilitate interpretability [9]. The utilization of this
approach not only improves the overall effectiveness of decision-making
processes, but also facilitates the provision of healthcare services that are
more patient-centered and adaptive in nature.

4.3 THE IMPORTANCE OF ACCOMMODATING UNCERTAINTY AND
IMPRECISION IN MEDICAL DATA

The accommodation of uncertainty and imprecision in medical data is crucial
due to its alignment with the intrinsically unpredictable nature of the healthcare
field [10]. The accuracy and certainty of medical data are sometimes limited,
leading healthcare professionals to frequently encounter challenges related to
diagnostic uncertainty, unpredictability in patient reactions, and insufficient
information. Failure to recognize and manage this ambiguity can result in
decision-making that is less than ideal, misdiagnoses, and treatment choices
that are ineffective. Healthcare workers can enhance their decision-making
process by embracing uncertainty, enabling them to make more informed and
nuanced judgments. This approach helps them avoid premature conclusions
and consider the inherent variety in patient circumstances. This methodology
promotes a perspective that is both realistic and centered on the patient, resulting
in enhanced safety, increased diagnostic accuracy, customized treatment strat-
egies, and eventually, improved healthcare results. Furthermore, in light of
the growing integration of medical data with new technologies and artificial
intelligence, it is imperative to place greater emphasis on comprehending and
quantifying uncertainty. This is essential to guarantee the dependability and
ethical use of automated DSSs within the healthcare domain.

4.3.1 FUZZY LOGIC IN MEDICAL DIAGNOSIS

Using fuzzy logic to diagnose patients more accurately is a useful application
of fuzzy logic. It can help with differential diagnosis and be utilized to create
systems that are more sensitive and accurate than conventional diagnostic
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techniques [11]. Fuzzy logic technology is expected to become even more
important in the future for medical diagnostics as it advances. When it comes
to medical diagnosis, fuzzy logic works especially well because symptoms
and results are frequently ambiguous and subjective.

Generally, fuzzy logic systems consist of three primary parts.

1. Fuzzifier: This part transforms numerical inputs into fuzzy member-
ship values, such as test results or patient symptoms.

2. Inference engine: Fuzzy rules are applied to the fuzzy membership
values by the inference engine, which produces a fuzzy output.

3. Defuzzifier: This part turns the fuzzy result into a numerical result
(such as diagnosis or recommended course of therapy).

Statements describing the relationship between inputs and outputs in
a fuzzy system are known as fuzzy rules. IF-THEN clauses, in which the
IF clause specifies the inputs and the THEN clause specifies the outcome,
are commonly used to express them. An imprecise guideline for identifying
diabetes, for instance, could be:

Diabetes is probably present if there is elevated blood sugar, increased
thirst, and frequent urination [12]. Numerous illnesses and medical issues
can be diagnosed using fuzzy logic systems, including cardiovascular condi-
tions (heart attacks, strokes, etc.), respiratory conditions (such as pneumonia
and asthma), neurological conditions (such as Parkinson’s and Alzheimer’s
illnesses), and infectious disorders (such as tuberculosis and malaria).

4.3.1.1 EXAMPLES AND CASE STUDIES

Here are a few instances of current medical diagnosis using fuzzy logic:

In order to identify cardiac disease, a fuzzy logic system has been
developed that takes into account the patient’s age, gender, blood pressure,
cholesterol, and smoking status. It has been demonstrated that the technology
is more accurate than conventional diagnostic techniques.

Based on mammography pictures, a new fuzzy logic system has been
developed to diagnose breast cancer. It has been demonstrated that the system
is more sensitive than conventional diagnostic techniques, which lowers the
possibility that a cancer diagnosis may be missed.

In addition, systems for diagnosing and tracking chronic illnesses like
diabetes and asthma are being developed using fuzzy logic. Patients can
lower their chances of problems and better control their diseases with the use
of these technologies.
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4.3.1.2 HOW DIFFERENTIAL DIAGNOSIS CAN BENEFIT FROM FUZZY
LOGIC

The practice of differentiating between two or more illnesses or medical
problems that have similar symptoms is known as differential diagnosis.
This can be a difficult undertaking, particularly if there is ambiguity or
subjectivity in the symptoms [13].

Using fuzzy logic, one may simulate the imprecision and ambiguity
related to symptoms and findings, which can help in differential diagnosis.
To differentiate between various kinds of headaches, for instance, a fuzzy
logic system might be created based on the patient’s description of the pain,
its location, and any additional symptoms that may be present.

Combining data from several sources, including the patient’s medical
history, physical examination, and test results, is another use for fuzzy logic
systems. In complex instances, in particular, this can help to increase the
accuracy of differential diagnosis.

In general, fuzzy logic shows great promise as a diagnostic tool for medi-
cine. It can be applied to create systems that surpass conventional diagnostic
techniques in terms of sensitivity and accuracy. Additionally, differential
diagnosis—which can be difficult, particularly in cases when symptoms are
ill-defined or subjective—might be aided by fuzzy logic.

4.3.2 HEALTHCARE MANAGEMENT WITH FUZZY LOGIC

The planning, organizing, directing, and controlling of an organization’s
resources is known as healthcare management. A wide range of stakeholders,
including patients, professionals, administrators, and policymakers, are
involved in this complex undertaking [14]. There are several ways that fuzzy
logic might be applied to enhance healthcare administration. Fuzzy logic, for
instance, can be applied to the following.

1. Boost decision-making: Models for decisions that take into consid-
eration the imprecision and uncertainty included in healthcare data
can be created using fuzzy logic. Making better and more informed
decisions may result from this.

2. Optimize resource allocation: Allocation of resources can be
made more efficient by using fuzzy logic, including personnel
and equipment. This may contribute to cost savings and increased
efficiency.
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3. Boost care quality: Systems for quality control that monitor and enhance
the caliber of medical services can be created using fuzzy logic.

4. Boost patient satisfaction: Systems that personalize healthcare services
and raise patient satisfaction can be created using fuzzy logic.

The following are some particular instances of fuzzy logic’s current
application in healthcare management.

Appointment and surgical scheduling systems are being developed with
fuzzy logic. Numerous variables, including patient preferences, physician
availability, and resource limitations, might be considered by these systems.
Patients’ wait times may be shortened and the healthcare system’s efficiency
increased as a result.

Technologies for forecasting patient demand for services are being
developed using fuzzy logic. By using this data, healthcare institutions may
guarantee that patients receive the care they require at the appropriate time
and with the right team.

Systems for tracking patient risk are being developed using fuzzy logic.
Patients who are most likely to experience difficulties or require readmission
can be identified by these systems. By using this knowledge, early interven-
tion can be done to stop these issues from happening.

Healthcare service quality assessment systems are being developed with
fuzzy logic. Numerous variables, including patient outcomes, patient satisfac-
tion, and adherence to clinical recommendations, can be considered by these
systems. You can use this data to pinpoint areas that require quality improvement.

Fuzzy logic is an effective tool for healthcare management overall. It can
be applied to raise patient satisfaction, optimize resource allocation, make
better decisions, and improve the quality of care. Future developments in
fuzzy logic technology should see it become increasingly important in the
administration of healthcare.

4.4 EXPLORING EMERGING TRENDS AND RESEARCH AREAS IN
FUZZY LOGIC APPLICATIONS IN ALLIED HEALTH SCIENCES

A mathematical framework known as fuzzy logic makes it possible to repre-
sent and process imprecise and uncertain data. It works especially well in the
allied health sciences, where it is common for symptoms, conclusions, and
available treatments to be ambiguous and subjective [15].

The following are some new directions and topics of study for applica-
tions of fuzzy logic in the allied health sciences:
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4.4.1 DECISION ASSISTANCE SYSTEMS FOR DIAGNOSIS AND
THERAPY BASED ON FUZZY LOGIC

DSSs with fuzzy logic as a foundation are being created to help allied health
practitioners diagnose illnesses and create treatment regimens. To provide
more precise and individualized diagnoses and treatment regimens, these
DSS might use a range of variables, including as the patient’s symptoms,
medical history, and test findings. One possible use of fuzzy logic DSS is in
the diagnosis and treatment of musculoskeletal problems by physical thera-
pists. The DSS might create a customized therapy plan based on the patient’s
pain threshold, range of motion, and other variables.

4.4.2 SYSTEMS FOR TRACKING AND CONTROLLING CHRONIC
ILLNESSES BASED ON FUZZY LOGIC

Systems based on fuzzy logic are also being developed to track and treat
long-term conditions, such as diabetes, asthma, and heart disease. In addition
to tracking patient data, such as blood pressure, blood sugar levels, and
respiratory function, these devices can send alerts and suggestions to patients
to help them manage their diseases. For instance, a system based on fuzzy
logic might be created to track diabetic patients’ blood sugar levels. The
patient’s blood sugar levels might be analyzed by the system to see trends
and get advice on how to change their diet or insulin dosage.

4.4.3 SYSTEMS BASED ON FUZZY LOGIC FOR INDIVIDUALIZED
HABILITATION AND REHABILITATION

Patients with impairments or injuries can benefit from customized rehabilita-
tion and habilitation programs thanks to fuzzy logic-based solutions. These
systems are able to create a program that is customized to each patient’s
unique demands by taking into consideration their goals and needs. For
instance, a system based on fuzzy logic could be created to tailor a stroke
patient’s rehabilitation regimen. To create a program that will assist the
patient with regaining as much function as possible, the system may consider
the patient’s strength, coordination, and range of motion.
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4.4.4 SYSTEMS BASED ON FUZZY LOGIC TO ENHANCE PATIENT
SAFETY AND CARE QUALITY

There are several ways in which fuzzy logic-based systems might raise the
standard of care and ensure patient safety. Fuzzy logic, for instance, can
be used to create healthcare guidelines, monitor patient infection risk, and
detect and avoid bad medication events.

One possible use of fuzzy logic is the detection and prevention of adverse
medication effects. In order to help doctors avoid prescribing drugs that
potentially have unfavorable side effects, the system might consider the
patient’s medical history, present medications, and allergies.

4.5 CONCLUSION

This chapter aims to provide a comprehensive overview of the applications
of fuzzy logic in allied health sciences, from diagnosis to treatment planning
and healthcare management, highlighting its potential to enhance DSSs and
ultimately improve patient outcomes. One extremely useful technique that
could completely change the way allied health services are provided is fuzzy
logic. Systems based on fuzzy logic can be used to make better decisions,
create individualized treatment program, track and manage chronic illnesses,
and enhance patient safety and care quality. As fuzzy logic technology
advances, many more ground-breaking and significant applications in the
allied health sciences should be anticipated.
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CHAPTER 5

Transversals and Its Properties
of Intuitionistic Fuzzy Threshold
Hypergraphs

K. K. MYITHILI and C. NANDHINI

Department of Mathematics, Vellalar College for Women, Erode,
Tamil Nadu, India

ABSTRACT

In intuitionistic fuzzy threshold hypergraphs (IFTHGs), a transversal is a
hyperedge that cuts more than two hyperedges instead of a line that intersects
two lines in geometry. The intuitionistic fuzzy transversal (IFT), minimum
IFT, locally minimal IFT, and intuitionistic fuzzy transversal core of IFTHG
are defined and it has been established that every IFTHG has a nonempty
IFT. Some of the characteristics of transversals of IFTHGs were additionally
examined. Also, this chapter explores the application of transversals in the
context of IFTHGs for optimizing drip irrigation practices in agriculture.

5.1 INTRODUCTION

Leonhard Euler’s [11] seminal paper on graph theory is titled as solution of
a problem in the geometry of position was published in 1736 in the Journal
Commentaries of the St. Petersburg Academy of Sciences. Graph theory
with applications by Bondy and Murty [2] covers fundamental concepts such
as graph representation, graph algorithms, network flows, and matchings. A
first course in graph theory by Choudum [3] covers some basic and various
topics in graph theory.
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The paper “Aggregation of Inequalities in Integer Programming,” was
authored by Chvatal and Hammer [4] and published in 1977. The book titled
as Threshold Graphs and Related Topics by N.V.R. Mahadev, Peled [13] has
numerous open questions and research proposals appealing.

Hypergraphs by Berge [6] is a seminal book in the field of combina-
torial mathematics and graph theory. Graphs and hypergraphs by Berge
[5] is a classic textbook that provides a comprehensive introduction to
the theory and applications of both graphs and hypergraphs. Hypergraph
Theory: An Introduction book by Bretto [1] provides an introduction to
hypergraphs and aims to overcome the lack of recent manuscripts on
this theory. Connection and separation in hypergraphs by Bahmanian
and Sajna [14] investigates different fundamental connectivity features
of hypergraphs from a graph-theoretical perspective, with a focus on cut
edges, cut vertices, and blocks.

Fuzzy sets by Zadeh [20] discussed the concepts of inclusion, union,
intersection, complement, relation, convexity, etc. and various features of
these concepts are established in the context of fuzzy sets in 1965. Fuzzy
Graph Theory by Mathew et al. [19] is a book that provides a thorough
exploration of fuzzy graph theory, offering a balanced mix of theoretical
foundations, methodologies, and practical applications. Fuzzy Graphs and
Fuzzy Hypergraphs book by Mordeson and Nair [7] provides a comprehen-
sive introduction to fuzzy graphs, covering basic concepts, properties, and
algorithms. Modern Trends in Fuzzy Graph Theory book by Pal et al. [12]
offers a comprehensive set of methods for applying graph theory and fuzzy
mathematics to practical issues.

One of the key strengths of the book named as on intuitionistic fuzzy
sets: Theory and Application by Atanassov [9] lies in its clear and rigorous
mathematical formalism. The book On Intuitionistic Fuzzy Set Theory
by Atanassov [8], consists of the concept of IFS, operations and relation
over IFS, and geometrical interpretations of IFS. The paper “Intuitionistic
Fuzzy Threshold Graphs” by Yang and Mao [10] provides three concepts
of intuitionistic fuzzy threshold graphs, intuitionistic fuzzy alternating four-
cycle, and threshold dimension of intuitionistic fuzzy graphs and provides an
extension of threshold graphs.

Parvathi et al. [18] were the first to introduce the intuitionistic fuzzy
hypergraph. Then Akram and Dudek [15] explained about intuitionistic
fuzzy hypergraphs with applications. Some types of intuitionistic fuzzy-
directed hypergraphs are discussed in [16]. In [17], properties of transversals
of intuitionistic fuzzy-directed hypergraphs were discussed.
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5.2 PRELIMINARIES

Definition 5.2.1. The intuitionistic fuzzy threshold hypergraph (IFTHG) is
denoted by H . = (U, ¢; 5, 5,) where,

U={u,u,...,u,} is finite set of intuitionistic fuzzy vertices,
= 1€, €,...,€,,} 18 a family of crisp subsets of U,
ej ={u, u, (”,)’ v, (u) |0< u (u)+v (u)< 1},j=1.2,...,m
ej;é Q,j=12,...,m
U, supp (¢) = U,j=12,....m
An independent set V' < U be set of all different combinations of a
nonadjacent Vertlces inH, < 35, &s,> 0 such that zu My () < sy

& le eV (1 V’/ )) < S2

Where the hyperedges of £ are crisp sets of intuitionistic fuzzy vertices,
(u) and v, (u,) represent the membershlp and nonmembership degrees of a
Vertex u, to an hyperedge €.

Definition 5.2.2. Let H = (U, & s,, 5,) be an IFTHG. If an independent
set V' < U, then the helght of H, is named as A(H_) = {max(min(x, )

max(max(v, ))} for which Zu M) <5 and Z v A-v, (u,) <, for
alli=12,...,mandj=12,..., n, where u; & v, is the membership and
nonmembership value of jth hyperedge in ith vertex, respectively.

Definition 5.2.3. Let H, = (U, &; 5, 5,) be an IFTHG and an independent
set V < U exist, if €6 € € and 0 < a, § < 1. Then, the (a, p) -level is
defined by (¢,,£,)“” = {u, e U |min(x; (,)) = o, max (v} (u,)) < B} for which

ZueV'ulj(u)<Sl and ZuEV(l Vlj)( )<S2
Definition 5.2.4. Let H, = (U, ¢, s,, 5,) be an IFTHG, there exists an

independent set ' < U such that H " =(U"*,€"*") be the (v, z)-level
of H,. The sequence of real numbers {y,, y,,..., ¥ ;2,, 2., 2,} € 0<y, < htﬂ
(H,) and 0 <z < A, (H,,), satisfying the following condltlons:

kv =

G

1. Ify <a<land0<p<z =P =g,
2. Ifyi+l S o Syl, Zi Sﬁ S Zf+l - g(aﬁ) = g(y,‘,zi); and

3. 8(}1,21) c g(."m »Zist)

for which Zu,ev 4 (u;) <5, and zuley (1-v, () <s, is known as fundamental
sequence of H, and is represented by F (H,,)

Definition 5.2.5. Let H =(U,¢;s,,5,) be an IFTHG, also an independent
set V' Uexist. Then, the coresetof H,isnotedas C(H,) for 0 <(y,,z,) < £,(Hy),
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and is defined by C(H,)= {HG”"Z‘),HG"’Z’Z“,...,HG”’"‘Z"’}. The corresponding
set of (v,z)-level hypergraphs is H/ " cH"* c..cH. " for
which 2, 4 (u)<s; and 2, (1-v, (1)) <5, called the H, -induced
fundamental sequence and is noted as /(H,). The (v , z )-level is said to be a
support level of H, and the H "»* is known as the support of H..

Definition 5.2.6. Suppose H; =(U,&;s,,s,) and Hg' =(U',5'231',S2') are
IFTHGs, H,, is called a partial IFTHG of H ;" and an independent set V' < U
such that

min(supp(,ul./. )) and Z,ul./. (u,)<s, |y, s
, u eV

‘o max(supp(vl.j)) andZ:(l—vl.j)(ul.)Ss2 v, €&’
eV

the partial [IFTHG generated by ¢’ and is represented by H, < H /. Then we
write H, < Hif H, < Hand H_ # H'.

Definition 5.2.7. Let H, = (U, &; s/, 5,) be an IFTHG, there exists an
independent set ¥ < U such that C(H,) = {HG‘Y"Z'),HG”’Z"”,...,]HIG(””Z"’} for
which 2, 4, (u)<s, and X, (1=v, () <s,. H_ is said to be ordered
if C(]I-]IG) is ordered. That is H cH">™ c..cH G‘WU for which
2oy () <5, and > (=v; () <s,. The IFTHG is known as simply
ordered if {H_"*|i=1,2,...,n} is simply ordered, (i.e,) if it is ordered and if
e eH ) \H,"*) then & € H 0+

5.3 NOTATIONS

H, = (U, & s,, 5,): IFTHG with hyperedge set ¢, vertex set U and s, s, are
threshold values.

#,(H,): Height of IFTHG

F (H,): Fundamental sequence of IFTHG.

C(H,): Core set of IFTHG.

I(H,): Induced fundamental sequence of IFTHG.

H,: (v, z)-level of H..

(v, z)): Hyperedge membership and nonmembership values.
Tw(H,): Minimal intuitionistic fuzzy transversal (IFT) of IFTHG.
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5.4 MAIN RESULTS

Definition 5.4.1. Assume an IFTHG H, = (U, ¢; 5, 5,). An IFT T of IFTHG is
an IF subset of U with T N A% % # ¢ V A € ¢ where g=N(u)ande, =V
(v,) for which 2., , 4 (1) <s and 22, , (1=v; () <5, Vi<i<ml<j<n.
Also 1 and v, is the membership and nonmembership value of i vertex of
j™ hyperedge.

Definition 5.4.2. A minimal IFT T for IFTHG is a transversal of H,,
which satisfies the condition that if T < T, then T is not an IFT of H..

Note: The set of all minimal IFT of IFTHG is represented by Tw(H,,).
Always Tw(H,) # ¢.

Example5.4.3. AnIFTHG H, with U = {u,,u,,uy,u,,us,us}, 6= {€,,6,,6,,¢,}
has been considered.

14(0.3,0.5)

1(0.3,0.4)

FIGURE 5.1 Intuitionistic fuzzy threshold hypergraph H . 1

Using Figure 5.1, we can construct an IFTHG H, withe = {¢ ,¢,¢,,¢,} is
denoted by the following incidence matrix as
g &, & &,
u, (03,05 (0,1 (0,1) (0,1)
u,| (0,1 (03,04  (0,1) (0,1
uy| 0,1y 0,1)  (0.2,0.6) (0.2,0.6) |-
w,| (0,1) (03,05  (0,1)  (0.3,0.6)
us| 0,1y (04,05 (0,1 (0,1)
1, (0.4,0.6) (0.4,0.6) (0.4,0.6) (0.4,0.6)
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The minimal IFT of IFTHG is represented as follows:

1 L

u | (0,1 (0,1)
u,| (0,1) (0,1)
u, | (0.2,0.6) (0,1
u,| (0,1) (0.3,0.5)
us|  (0,1) (0,1)
us\ (0.4,0.6) (0.4,0.6)

The correspondent IFTHG is shown in Figure 5.2.

u4(0.3,0.5)

----- Minimal transversal 7;

..... Minimal transversal 7,

12(0.3,0.4)

FIGURE 5.2 H and minimal IFT of H .. 1

Definition 5.4.4. If T is an IFS with T%% as a minimal IFT of H "+
V (,z) € (0,1) for which X, 4 (4)<s and X, ,(-v,(u))<s,
V1<i<m,1< j<n implies T is known by locally minimal IFT of IFTHG.
The set containing locally minimal IFT of IFTHG is denoted as T~"(H,).

Theorem 5.4.5. If T is an IFT of IFTHG Hj =(U,é¢;s,,s,) then
A (T) 2 #, (gj)for £ € & And, if T is a minimal IFT of IFTHG, implies
A,.(T)= {max(min(,uij )),max(max (V,-,- ))|y1.j,vq. € g} =A,(H,)-

Theorem 5.4.6. Each IFTHG has a nonempty IFT.

Note: Each IFT of IFTHG contains a minimal IFT. (i.e.,) Tx(H_) < T
(H,,).
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Theorem 5.4.7. If T € Tw(H,) and for each u € U, T' (H,) € F (H,),
then 7 Tw(H,,) c F (IH,).

Theorem 5.4.8. Tx(H,,) is sectionally elementary.

Proof: Let F (T¥(H)) = {y, Vys s V35 Zps Zpp -+05 2,51 Assume that T' e
T»(H,) and some a, B € (y, z,) such that TV < T“’ # . Since Tw(H ) =

Ty(H,“”) 3 some A € Tx(H,)) > A" =T, Then T < A= implies

the IFS U(u.) defined by
U(u,.)z{(a,ﬂ)ifui ecﬂ(.y,»,z,)\T(y”Zi)
C/q 0therW1se

isan IFT of IFTHG. Here U < A, = minimality of A, which is a contradiction.
Theorem 5.4.9. For each A € Tw(H,,), A% is a minimal IFT of H,*12.

Proof: For every IFTHG H, = (U, ¢; s,5,), consider a minimal IFT T of
(H %) such that T < A2, Deﬁne the intuitionistic fuzzy set U(u,) where

N CRTTE
. A Aotherwise :

By the above theorem, U is an IFT of IFTHG, contradicting the mini-
mality of A.

Definition 5.4.10. Let IFTHG be H_ = (U, ¢; s,,5,). The intuitionistic
fuzzy transversal core (IFTC) of H, is an IFTHG H | = (U’, &'; 5, 5,) then

1) ATw(H) = A Tw(H,),

2) UATx(H,)=H/

3) ¢le" is completely the set containing vertices of H, ¢ T¥(H,,), and
4) an independent set V' < U has a set of all different combinations of a

nonadjacent vertices in H_ <> 3 a threshold values s, & s, > 0 such
that Z eV'uU(u)_Sl and ZUEV(l V ))SST

Definition 5.4.11. Consider an IFTHG with U = {ul,uz,u3,u4,u5,u6},
€ = {€,6,,6,,6,,65; Where, &, = {1,(0.3,0.4), u0.4,0.6)}, &, = {1,(0.3,0.4), u,
(0.4,0.5), 1,0.3,0.6), u, (0. 4 0.6)},&,= {u, (O 3,0.4), u, (0. 2 ,0.6), 1, 0.3,0.6),
u; (0.2,0.7), u, (O.4,0.5>}, g, = {u3(0.2,0.6), u, (0.2,0.7), u,(0.4,0.6)}, and &,
{1,(0.4,0.5), u, (0.4,0.6)}, as shown in Figure 5.3.
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&

T

f——

FIGURE 5.3 IFTHG (H,).

The associated incidence matrix for H, is given as

& £, &, &, &
u, | (0.3,0.4) (0.3,04) (0.3,04) (0,)  (0,1)
w,| 0,1y (04,05  (0,1) 0,1)  (0.4,0.5)
uy| 0,1y 0,)  (0.2,0.6) (0.2,0.6) (0,1)
w,| (0,1)  (0.3,0.6) (03,06 (0,) (0,1
us| 0,1y 0, (02,07 (0,1) (0,1
1, (0.4,0.6) (0.4,0.6) (0.4,0.6) (0.4,0.6) (0.4,0.6)

The incidence matrix of IFTC H/ is given as

& &,

u,| (0.3,0.4)  (0.3,0.4)
u,| (0.4,0.5 (0,1

u,| (0,1 (0.2,0.6) |.
u,| (0.3,0.6) (0.3,0.6)
u;| (0,1 (0.2,0.7)
u | (0.4,0.6) (0.4,0.6)
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The transversal core of IFTHG is given in Figure 5.4.

0

FIGURE 5.4 Transversal core of IFTHG (H,)). I

Result:
1. The transversal core exists and is unique for any IFTHG no spike
hyperedges.
2. This definition also holds for IFTHGs among spike (a hyperedge
including one vertex) hyperedges.

Definition 5.4.12. The open neighborhood for the minimal transversal on
IFTHG of the vertex u, is the set containing nearest vertices of u, except itself
in a hyperedge and is represented as V, ().

Example 5.4.13. Consider an IFTHG with U = {u ,u,,u,u,usu,u.},
€ = {£,,6,,6,,€,,6,4 wWhere g, = {1,(0.3,0.4), u(0.4,0.6)}, &, = {1,(0.2,0.6), u,
(0.4,0.6)}, &, = {1,(0.2,0.6), u, €0.5,0.3)}, ¢, = {u,(0.4,0.3), u, (0.5,0.3), u,
(0.4,0.6)}, &, {u0.2,0.5), u, (0.3,0.6), u, (0.4,0.6)}.

Here, u, and u, are the open neighborhood of the vertex u, in T,.
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Definition 5.4.14. The closed neighborhood for the minimal transversal
on IFTHG of the vertex u, is the set containing nearest vertices of u, including
the vertex in a hyperedge and is represented as JV, (u).

Example 5.4.15. From the above example, it is shown that the closed
neighborhood of the vertex u, isu, u,and u_, inT,.

Theorem 5.4.16. If H, = (U, &; 5, 5,) be an IFTHG, then the given condi-
tions are similar
1) TisanIFT of IFTHG.

2) T N AYi# # g, for each IF hyperedge A € ¢ and each (y,z) with
O <yi S /l't;x (HG)’ 0< Zi < /Ltv (HG)
3) TU#isan IFT of H "+, for each (y,z) with0 <y <a, 0 <z <p.

Proof: By definition, “A minimal IFT T for IFTHG is a transversal of H ,
which satisfies the property that if T, < T, then T is not an IFT of H” the
proof is trivial.

Theorem 5.4.17. For a simple IFTHG H., T>(T»(H,,)) = H..

Theorem 5.4.18. For any IFTHG H, Tx(T»(H,)) < H,..

Proof: From Definition 5.4.10, 3 a partial IFTHG H of a simple IFTHG
H,, > Tw(H,) = T¥(H,). By Theorem 5.4.17, Tx(T»(H,)) = T¥(Tx(H,)) =
H, < H,.

Theorem 5.4.19. Let H, = (U, ¢; 5,, 5,) be an IFTHG and assume

T e Tx(H,). If H, < supp(T) < H, then 3 an IF threshold hyperedge
A, (,z)) € Arepresent the membership and nonmembership values of A >.

1) (,2)=#,(A) = A, (T:) >0,
2) T,nN A, =H

#t (A) fit (A) = G*

Proof: Assume 0 < £ (T%#)) < 1 & suppose &' be the set of IF
threshold hyperedges where £ (%)) > A (T#) for each 7 € &' for which
Zu[d/,uij(ui) <s, and ZuieV (I-v, (ul. )) <s,,VI<i<m,1< j<n.

Since Tt is an IFT of H_ "% and H < T is nonempty. Further,
for each 7 € &', A (1) = (T®#*) is true. In addition, suppose that T®+* is the
minimal IFT, then for each 7 € &', £ (7) > (T%*) and there exists H__# H
withH_ ez, ~NT

/"t([) ﬁz(f).
Define an IFTHG H@19
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He ( )%{ TW)ifw # Hg'
ST T AR (A e (A) < A (TO0)), V(A (A) /e A) < Ao (TOED)) W = Hg'
Clearly H is an IFT of IFTHG and 4, (H %)) < £ (T#), which
contradicts the minimality of T. Assume every 7 € ¢’ satisfies part (i) & also

contains H_ # H_ with H_ € 7, ® NT Py The process is repeated and the

argument of (1) reaches a contradlctlon which completes the proof.
Theorem 5.4.20. LetH . = (U, &; 5, 5,) be an IFTHG. Then, 3 T € Tx(H)
with H " < supp(T) < H_,, for A € ¢ then

D) 0p2)=A(A),

2) (v,z)-level cut of £ (A") is not a subhypergraph of the (y, z)-level
cut of £ (A), for each A’ € & with A (A') > £ (A), and

3) the (y,z)-level cut of £ (A) does not contain any other hyperedge

of H, o where (y,z,) represents membership and nonmembership
values of A.
Proof:

Necessary part:

1) LetT e Tx(H,) and 0 < £, (T®*)) < 1. Then by Theorem 5.4.19, the
result (1) follows.

2) Assume VA which meets the requirements of (i) 3A' € £ 5 £ (A')
>h(c/l)andc/lh(m A, qp then Ju, #H, with U e A’y ) N
lewg A, @ nt, & which contradicts Theorem 5.4.19.

3) Assume VA satlsfylng (1) and (2) then 3 A’ € e so that @ # ‘A,Mm c

Since A',  , # @ and by (2), implies £ (A") = A (A) = (v, z).

ht(ﬂ) AfA)

fQy,z)=A (A& A"ee>20+A", , A, A Continuing

Rl A) R A) Rl A
the procedure the chain must end 1nﬁn1tefy many steps so without loss of

abstraction suppose (y,z) <A (A). But, 3U#H_'> U e A’ ) N Tlt,(ﬂ) -
A A NnT i this contradicts to Theorem 5.4. 19

Sufficient Part:

Assume A € ¢ satisfies the conditions (1) and (2). From (1), A (A) = (v, z,)
for some member of F(H,). From (2) and 3)3 U e A', ,\A VA e

AfA) T T RY(A)

e3> A'# A& A(A') > h(A). Suppose V, be the set of all vertices of H
SV, NA, =0

Fi(A)
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Construct the initial sequence of transversals 7, U for each s, 1 <5 <i
andz < U, U U. Clearly, U, € 7, V. Repeating the procedure it goes to a

m1n1mal IFT with (y,z) = A (A) = fL[ (T7e=).

Theorem5.4.21. LetH = (U,é;s,,5,) be an IFTHG with F(H ) ={y,,, ...,
Vi 2122y ---» 2,4 SO that 0 <y, < /Lt#(HG),O =<z < A, (H)). Also, H{+ be
the elementary IFTHG repeating A" < A (A") = (v,2,) & supp(A') is a
hyperedge of H . So T~ (T (H,)) is a partial IFTHG of H (.

Proof: By Theorem 5.4.9 and from the construction of minimal IFT, the
(v, z)-level IFTHG of T (H,) is T (H %) which implies (T (IH))"*
= T (H ). Let r € Tx (T¥ (H,)). By Theorem 5.4.19, 4 (z (U) > 0, this
implies that 3 T € T (H,)) with 4 (z (U) = £ (T). By Theorem 5.4.5, £ (T)
= {max (min(yi/_)), max(max(vl_j)) | MV, € e} =, (H,), for each minimal IFT
T. Hence 7 is elementary with height (y,z,). Since supp(z) = 7%, Theorem
5.4.9 suggests that supp(z) is a minimal IFT of (T~ (H,))"#*. It is obvious
that supp(z) is a hyperedge of H "+*. Hence 7 is a hyperedge of H 0.

Theorem 5.4.22. Let H, = (U & s,,s,) be an IFTHG with H{+% is a
simple. Then T (T (H,)) = H 2%

Proof: By the above theorem, T (T (H,,)) < H . Let 7 be elementary
with £ (T) = (v,z) and supp(z) € H . By Theorem 5.4.21, supp(z) is a
minimal IFT of (T (H))"*. Since every minimal IFT of T (Hy) is
elementary by minimal IFT definition the procedure terminates at (y,
z)) -level & 7 € T (Tw (H,)). Hence H +% < T (T (H)) which implies
H Y% = Tw (T (H,)).

5.5 APPLICATION

Imagine a large agricultural farm that employs drip irrigation to water
its crops. Drip irrigation systems use a network of pipes and hoses to
deliver water directly to the root zone of plants, minimizing water wastage
compared to traditional irrigation methods. However, managing such a
system efficiently is challenging due to varying crop types, soil conditions,
and environmental factors that affect the water requirements of different
areas within the farm.

To address this challenge, the farm decides to utilize IFTHGs. These
mathematical structures provide a way to model and analyze the complex
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relationships between different factors that influence water distribution, such
as crop types, soil moisture levels, and weather conditions. Each factor is
denoted as a vertex in IFTHG, and hyperedges between vertices indicate
dependencies and interactions.

In this context, transversals come into play as a means to identify optimal
water distribution strategies. A transversal of the hypergraph represents
a selection of factors or areas that, when irrigated, ensure that all critical
dependencies are met. By finding the minimal transversals, the farm can
determine the most efficient way to distribute water while satisfying the
various constraints and requirements of different crops and soil conditions.
The farm’s irrigation system is equipped with sensors and actuators that can
adjust water flow rates and schedules in real-time. By employing transversals
in the hypergraph, the system can make intelligent decisions about, where
and when to allocate water resources.

For example:

* Resource Allocation: The hypergraph analysis can identify which
areas of the farm require water at a given time, taking into account
crop-specific needs and soil moisture levels.

* Fault Tolerance: If a section of the irrigation system experiences
a malfunction or blockage, then the system can use transversals to
quickly reroute to ensure that all essential areas receive adequate
irrigation.

* Adaptation to Weather Conditions: By considering weather fore-
casts as factors in the hypergraph, the system can adjust irrigation
plans to respond to anticipated rainfall or drought conditions.

5.6 CONCLUSION

In this chapter, some interesting concepts, such as, IFT, minimal IFT, locally
minimal IFT, and IFTC of IFTHGs were discussed. It is important to note
that IFTC exists for both spike and nonspike intuitionistic fuzzy threshold
hyperedges. Finally, the study of transversals and their properties of IFTHG
offers valuable insights for various applications, including drip irrigation. By
applying these concepts, we can optimize resource allocation and decision-
making processes in irrigation systems, leading to more efficient water usage
and improved crop yields.
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CHAPTER 6

Applications of Intuitionistic Fuzzy Sets
and Fuzzy Logic in Mathematics and
Allied Domains

JAHANVI and RASHMI SINGH

Amity Institute of Applied Science, Amity University, Noida, Uttar Pradesh,
India

ABSTRACT

The present chapter focuses on the theoretical and practical potential of
intuitionistic fuzzy set (IFS) and fuzzy logic in addressing uncertainty and
hesitation. An IFS proposed by Atanassov extends classical fuzzy sets by
incorporating degrees of membership, nonmembership, and hesitation; thus
providing a richer framework to handle uncertainty. Fundamental concepts
of IFS are introduced highlighting their significance in handling ambiguity
beyond classical fuzzy sets. The chapter examines the applications of IFS in
various domains. The significance of IFS in mathematical disciplines such
as algebraic structures and topological spaces is presented. This chapter
includes application of IFS in decision-making systems, where its ability
to model hesitations and uncertainties is illustrated through a case study on
supplier selection in manufacturing. In addition, it further provides integra-
tion of IFS with computer science, showcasing its contributions to expert
systems, pattern recognition, risk assessment, and control systems. This
chapter underscores the relevance of intuitionistic fuzzy set and fuzzy logic
in bridging mathematical theory with practical challenges. It invites readers
to explore the transformative potential of IFS in emerging fields, fostering
innovative solutions for complex problems.
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6.1 INTRODUCTION

6.1.1 BACKGROUND OF FUZZY LOGIC AND INTUITIONISTIC FUZZY
SETS (IFS)

Zadeh [46] introduced the concept of fuzzy sets (FS) in the 20th century
to deal with uncertain and imprecise data. The conventional logic
understood by the computer is strictly binary, whereas fuzzy logic is
multivalued logic taking intermediate values between [0,1] where 0 and
1 are extreme cases. Basically, the FS provides partial membership, that
is, the members of the set could have varying degrees of membership.
As a result, Zadeh considered classes of objects having relative concepts
that are expressed in natural languages, such as, weight, color, age, size,
height, and temperature.

The IFS proposed by Atanassov [7] in the 1980s is a generalization of
classical FS where each element of the set has degrees of membership,
nonmembership, and hesitation. It was designed to enhance the ability of
FSs to better capture uncertainty and vagueness in decision-making and
reasoning processes.

During the initial two decades of their establishment, Atanassov [8]
and a small group of researchers associated with him made advancements
in IFSs. Their work focused predominantly on the mathematical logic and
mathematics underlying the concept, particularly in the areas of analysis,
algebra, geometry, and related fields. Subsequently, there has been a notable
shift in the landscape due to advancements in information technology and
decision science. There has been a substantial surge in the utility of IFSs,
with many research papers being published each year in prestigious journals
and conferences across the disciplines of mathematics and other fields. The
community of theoretical researchers is expanding, along with the group of
practitioners applying the theoretically created notion in various fields such
as medicine, expert and control systems, industry, economics, artificial intel-
ligence, and others.

After the FSs were introduced, many researchers worked to advance the
sets arising from the extensions of FSs. The relationship among the FSs and
their extensions has been illustrated in Figure 6.1.

IFSs, a concept that emerged ahead of its time, now provide us with vital
tools to manage intrinsic uncertainty and impreciseness. Figure 6.2 shows
the development and expansion of the FSs.
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FIGURE 6.1 Relationship among fuzzy sets and other sets. ]
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FIGURE 6.2 Applications of IFS. (1

6.1.2 SIGNIFICANCE OF INTUITIONISTIC FUZZY LOGIC (IFL)

The IFL provides an adaptable model to manage the impreciseness in the
decision-making process. Operations on IFSs are useful for solving real-
life problems. These are suitable for situations when the existence of a
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membership function does not seem enough. IFS could be utilized as a tool
for demonstrating the hesitation degree, which is part of both the degree of
membership and nonmembership of an element in a set.

These sets have applications in various fields, such as, artificial intelligence,
sales analysis, new product marketing, career determination, financial services,
decision making, and negotiation processes. They are particularly relevant in
fields related to computer science where data may be incomplete or uncertain,
such as image processing, machine learning, and pattern recognition. Figure 6.2
shows applications in various fields.

6.2 FUNDAMENTALS OF IFS

An IFS is a type of FS defined in the discourse domain where each member
of the FS is denoted as a four tuple, consisting of the membership degree,
nonmembership degree, and hesitation degree. The hesitation degree is a
component of either the degree of membership or the nonmembership or both.

6.2.1 DEFINITION

IFS A4 in the domain of discourse, U is defined as a nonempty set of four-
tuple elements, that is,

Az{(e,,uA(e), 7 ,(e), VA(e)>|eeU},eeU

where the notation where the notation u ,, ,, and v, denote the membership
functiony : U— [0,1], hesitation functionz : U — [0,1], and nonmembership
function v : U — [0,1], respectively. Here, u (e), 7 (e), and v (e) represent
the membership degree, hesitation degree, and nonmembership degree of
e € U, respectively, to the IFS 4. We can represent 4, (membership), 7,
(nonmembership), and v, (hesitation) degrees with the help of the diagram
shown in Figure 6.3.

Foreverye e U, u, (e) + m,(e) v, (e)=1,and 0 <p (e), m, (e), v, (e) <
1. For example, if we know degrees of 1, (e) and v, (e), we can calculate the
degree of m, (e), that is, , (e) =1 p,(e) — v, (e) (e € U).

For our convenience, we may denote each element of the IFS 4 as a three-
tuple element, that is, (/JA (e), m (e), v, (e)>, and so the IFS A can be written
as: A={1,|t, = (u,(e), 7,(¢).v,(€)) & e, €U} or simply A= {t|t; = 7 vy}
where u, =u,(e), 7, =n,(e), 7, =x,(e), and v, =v,(¢,), Ve €U.
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FIGURE 6.3 Illustration of membership, nonmembership, and hesitation degrees. ]

6.2.2 PROPERTIES

Let 4 and B be two IFSs. We define some operations and relations on 4 and
B as follows:

1) Inclusion: Ac B> u,(e)< u,(e)andv,(e)2v,(e)VeeclU

2) Equality: A=B < u,(e)=py,(e)and v, (e)=v,(e)VeeclU

3) Negation: 4 = {(e, v,(e), u, (e)>|e € U}

4) Union: AU B ={(e, max(p,(e), 1(e)), min(v ,(e),v,(e)));ecU}

5) Intersection: AN B ={(e, min(u,(e), u(e)), max(v (e),v,(e)));ecU}

AN B ={emaxmin(u,, v, ), min(gy, v,

6) Symmetric difference: minmax(v., 1, ), max(v,, it,)]: e € U}

7) Cartesian Product: AxB={u,(e)u(e), v, (e)v,(e):eclU}

6.3 APPLICATIONS IN MATHEMATICS
6.3.1 ALGEBRAIC STRUCTURES

There has been research on the lattice and algebraic structures of the [FSs [44].
Additionally, there have been studies on the algebraic structures of IFSSs. One
paper discusses the algebraic structures of complex IFSSs linked with groups
and subgroups [33]. Another study demonstrates that the space of intuitionistic
fuzzy values (IFVs), when equipped with a linear order determined by a score
and accuracy function, exhibits a similar algebraic structure as the space
generated by a linear order based on a similarity function and an accuracy
function. Furthermore, this space is both a topological space and a lattice [41].
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6.3.2 TOPOLOGICAL SPACES

In the context of topological spaces, IFSs can be used to define Intuition-
istic fuzzy topological spaces, the generalized form of classical topological
spaces. Near sets have been used as a tool to study extensions of topological
spaces [26, 36]. Intuitionistic fuzzy topological spaces have uses in fields
like decision-making, image processing, and recognition.

6.4 APPLICATIONS IN DECISION-MAKING SYSTEMS

IFL and IFSs are often used in decision-making processes where decision-
makers are uncertain about the belongingness degree of an element in a
set. They provide a more flexible framework to represent and reason with
uncertain information.

6.4.1 MODELING HESITATIONS AND UNCERTAINTIES

IFSs are particularly suitable for situations where the decision-maker is not
certain of the development of a particular condition, and where uncertain
data needs to be modeled [29]. The nonmembership degree can be used to
represent hesitation or uncertainty in decision-making [25]. IFSs have various
applications in various fields, including multiattribute group decision-making
[31], multiobjective optimization problems [12], and decision-making based
on measure-based granular uncertainty [42].

6.4.2 CASE STUDY: DECISION-MAKING IN SUPPLIER SELECTION
FOR A MANUFACTURING COMPANY

Context

A manufacturing company must identify the best suppliers for its production
operations. The organization must consider different factors like price, quality,
reliability, and lead time. Management seeks to make a well-informed judg-
ment considering the inherent uncertainty in the supplier selection process.

Application of IFSs
1. Evaluation of criteria: The company’s procurement team assigns
intuitionistic fuzzy values to the different criteria for every possible
supplier.
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For example, they might assess the cost of Supplier A using a
degree of membership of 0.8 and a hesitation degree of 0.2.

2. Criteria for ranking suppliers: The procurement team establishes regu-
lations based on their expertise and the company’s objectives. These
guidelines consider the imprecise values supplied to each criterion.

A rule can be defined as follows: if the supplier’s cost is deemed
extremely acceptable (with a membership degree more than 0.7)
and the quality is considered moderately decent (with a membership
degree greater than 0.5), then the supplier is preferred.

3. Assessment of rules: By considering the membership and hesitation
degrees as per the conditions of the rules, the supplier ranking rules
are implemented for every possible provider.

4. Defuzzification: It refers to the process of converting FSs into crisp
values. The outcomes derived from the rules are de-fuzzified to
provide a precise supplier ranking that indicates the most appropriate
suppliers according to the specified criteria.

Results

By incorporating IFSs into the supplier selection process, the company can
generate a prioritized roster of potential suppliers. Supplier B may have the
highest ranking, with a confidence level of 0.75. The degree of reluctance
reflects the level of ambiguity that the management has regarding this deci-
sion, which may be 0.1 in this scenario.

Conclusion

This case study showcases the application of IFSs in the context of supplier
selection in manufacturing. It highlights the adaptability of IFS in decision-
making procedures. By factoring in ambiguity and incorporating specialized
expertise, the company may make more knowledgeable supplier selection
choices that align with its objectives and priorities. Implementing this strategy
can enhance the efficiency of the supply chain and the quality of the products
while reducing the potential risks linked to the process of choosing suppliers.

6.5 APPLICATIONS IN COMPUTER SCIENCE
6.5.1 EXPERT SYSTEMS

IFSs include not only a membership degree but also a nonmembership
and hesitation degree. This added information can be particularly useful in
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functioning expert systems [6] designed to emulate human expertise and
decision-making processes. Here are some applications of IFSs in expert
systems:

1.

Medical diagnosis: In medical expert systems, IFSs can be used
to represent the uncertainty associated with diagnosing a patient’s
condition. Dhiman et al. [19] describe the development of an intu-
itionistic fuzzy fractional knowledge-based expert system for medical
diagnosis. It allows experts to indicate their degree of confidence in a
diagnosis and the extent to which they believe it does not belong to a
particular category.

Financial decision support: In financial expert systems, IFS can
handle imprecise data and expert opinions when making investment
decisions. Intuitionistic fuzzy models are developed for time series
prediction related to finance [15] for simultaneously modeling the
linear and nonlinear relationships in financial time series, making
them useful for complex prediction problems.

Environmental management: IFSs can accommodate the vagueness
and hesitations when assessing environmental impact or risk. Adamu
[1] proposed an application of IFS in environmental management
to determine the type of erosion. A hybrid MCDM technique based
on the intuitionistic fuzzy EM-SWARA-TOPSIS approach given by
Alkan and Kahraman [2] has been used to analyze medical waste
treatment techniques concerning social, environmental, economic,
and technical criteria.

Natural language processing: IFS can be employed in natural
language understanding, such as, for text classification, representation
of linguistic variables and rules, sentiment analysis [20], etc., within
expert systems. Sidiropoulos et al. [35] represent text classification
using IFS measures such as distance and similarity measures. They
can help to handle the inherent uncertainty and ambiguity of human
language, improving the system’s ability to interpret and respond to
user queries.

Quality control: In manufacturing and quality control expert systems,
IFS can be used to assess and review product quality, considering
both the degree of conformity to quality standards and the degree of
nonconformity.

Supply chain management: In supply chain optimization and logistics
expert systems, [FS can be employed to handle uncertain demand,
lead times, and inventory levels.
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Human resources (HRs): In HR expert systems, IFS can help in the
recruitment and selection process by accommodating the imprecision
and hesitation associated with candidate evaluations. For example, a
method based on interval-valued IFSs known as the fuzzy analytic
hierarchy process [21] is used for the selection criteria of the people
enrolled for a position at some university.

In these applications, IFSs can provide a more realistic and nuanced
representation of uncertainty and expert knowledge, enabling expert systems
to make better-informed decisions in complex and uncertain environments.
These systems can use IFS to not only handle imprecision but also to capture
experts’ degrees of belief and disbelief in various possibilities.

6.5.2 PATTERN RECOGNITION

IFSs have found significant applications in pattern recognition due to their
ability to handle uncertainty, vagueness, and ambiguity in data. Given below
are some key applications of IFSs in pattern recognition:

1.

Image recognition: In image recognition tasks, objects, or patterns in
images are often subject to variations in size, orientation, and lighting.
Images in the intuitionistic fuzzy environment are comprised of
components that correspond to membership and hesitancy functions,
linked with image properties. These functions model the uncertainty of
images from various departure points. IFSs are particularly useful in
recognizing partially occluded objects or objects with unclear edges,
as they can capture the uncertainty associated with the presence or
absence of features [13, 16, 28]. IFSs are also used in digital image
classification [32].

Handwriting and character recognition: Handwriting and character
recognition systems benefit from IFS when dealing with handwritten
characters that vary in style and quality. IFS measures are used for
text classification and pattern recognition [35]. Many research studies
describe handwritten Arabic words for recognition using intuition-
istic fuzzy information [10, 11]. IFS represents the imprecision in
the shape of characters, making recognition more robust, particularly
where traditional FSs may not be sufficient.

Biometric recognition: Biometric systems, such as, facial recognition
and fingerprint identification, involve capturing biometric features
that may exhibit variations due to factors like aging, lighting, or
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pose. A process for evaluating the fingerprint equivalence of two
fingerprints uses intuitionistic fuzzy evaluations [14].

Object detection and tracking: In computer vision and object
detection, IFS can be applied to detect and track objects in video
sequences. In Giveki et al. [22], a novel and effective approach for
detecting moving objects by using IFS theory is introduced. IFL is
applied in [34] for the object detection method.

Texture recognition: Recognizing materials or patterns in images are a
common task in texture analysis. Tripathy et al. [37] present a texture
retrieval system that uses IFS theory. The authors use a combination
of color and texture features to represent images and apply the IFS
theory to measure the similarity between images. Method for texture
feature extraction using an intuitionistic fuzzy local binary pattern
(IFLBP) [4], shows that IFLBP is effective in texture recognition.
Emotion recognition: In affective computing, emotion recognition
from facial expressions, speech, or physiological signals can benefit
from IFS by handling the uncertainty and subtlety of emotional cues.
Yang et al. [43] introduced a novel speech-emotion recognition
scheme based on the IFS and discrimination information measures.
Emotions that are not expressed clearly or those affected by some
factors like cultural differences can be upgraded with approaches
based on IFS.

In all these applications, IFSs enable pattern recognition systems to
be more adaptive and robust, as they can handle imprecise and uncertain
data, making them suitable for real-world scenarios where exact and crisp
boundaries are often hard to define.

6.5.3 RISK ASSESSMENT

IFSs are valuable tools in risk assessment [9] due to their ability to handle and
represent various forms of uncertainty, including vagueness and ambiguity.
Figure 6.4 presents some applications of IFS in risk assessment.

Some other applications of IFS and IFL in risk assessment are as follows:

1) Environmental risk assessment: Intuitionistic fuzzy values are valuable

in environmental risk assessment to evaluate the impact of pollutants
[5], climate change, and defining risk factors including aggregation
operators for combining the opinions of multiple experts on the
severity of every risk factor [38].
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By using IFS, environmental scientists can better analyze and
communicate the uncertainties associated with potential risks to the
ecosystem.
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FIGURE 6.4

IFS and IFL in risk assessment. 1]

2) Medical and healthcare risk assessment: In healthcare, IFS can help

assess patientrisks by incorporating uncertain data related to diagnosis,
treatment outcomes, and patient conditions. For instance, Yousefnejad
et al. [45] integrated the hazard and operability (HAZOP) method
with IFSs to enhance decision-making under the inherent ambiguity
associated with traditional HAZOP. This approach provided a more
accurate assessment of risk levels, leading to a more realistic view
of the situation. Another study [18] used an interval-valued intu-
itionistic fuzzy method to assess the likelihood of resumption during
COVID-19 prevention, using decision-making trial and evaluation
laboratory. The proposed method yielded more precise results than
the usual method in a complex system.

Summarizing, the above applications, we could state that the IFS
approach gives a better insight into the level of risks in real-world
problems and can be used to evaluate risks in medical and healthcare
systems.

In all the above applications, IFSs model an adjustable framework for

risk assessment. They allow the decision-makers to deal with uncertain and
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imprecise data, leading to more comprehensive, realistic, and robust risk
assessment.

6.5.4 CONTROL SYSTEMS

IFL and IFSs are significantly useful in control systems for handling impre-
cise or uncertain data. Figure 6.5 presents some applications of IFS in control
systems.

Some other applications of IFS and IFL in risk assessment are as follows:

1)

Fuzzy logic control: TFSs can handle more complex uncertainty in
fuzzy logic control systems. A domain expert often provides the
inference rules employed in a fuzzy logic controller. However, in
systems that utilize IFSs, these rules are automatically induced as
fuzzy association rules based on a training set [24].

IFS & IFL in Control Systems ‘

[ l

Control System Modeling

3 Fault Detection and Diagnosis
Parameter Tuning

* IFSs model and represent
imprecise data in control
systems, such as sensor readings,
system parameters, or user
preferences.

This allows for more accurate
modeling of real-world systems.

+ In control system design, tuning
parameters like gains and
setpoints are crucial. IFSs can
model uncertainty in these
parameters.

They allow controllers to adapt
to changing conditions and

Control systems often need to
detect & diagnose faults in real
time like fault diagnosis in
rotators of induction motors.
IFL can be employed to model
the uncertainty in sensor
measurements, making it easier

provide a more robust and
reliable control system.

to identify abnormal system
behaviour and faults.

FIGURE 6.5

2)

IFS in control systems. ]

Optimization: Intuitionistic fuzzy optimization techniques can be
used to optimize control system parameters, considering both the
satisfaction of control objectives and the degree of uncertainty or
hesitancy in decision-making. The solution to intuitionistic fuzzy
optimization (IFO) problems can better fulfill the aim than the
equivalent fuzzy optimization problem and the crisp one [3].

IFSs provide a more comprehensive framework for dealing with
hesitancy in control systems, making them valuable in applications
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where classical FSs may not capture the full extent of uncertainty
and imprecision.

6.6 CONCLUSION

In conclusion, IFSs and IFL have found many diverse and valuable applica-
tions in Algebraic Structures, Topological Spaces, Decision-making Systems,
Expert Systems, Pattern Recognition, Risk Assessment, and Control Systems
across a wide spectrum of mathematics and allied domains These approaches
have extended traditional mathematical and logical frameworks to effectively
handle vagueness, uncertainty, and imprecision, making them essential tools
for solving various real-world problems.

6.7 RECOMMENDATIONS FOR FUTURE RESEARCH

1) The study can be extended to create a sophisticated mathematical
model using IFS to address the challenges in various domains.

2) Consider new algorithms and computational methods to use IFS for
enhanced data analysis and problem solving.

3) Conduct comprehensive case studies across different sectors like
healthcare, industry, and finance to demonstrate the practicality of IFS.
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Applications of MCDM Aggregation
Operator in the Selection of Suitable Site
for the Manufacturing Plant
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ABSTRACT

The development of multicriteria decision-making (MCDM) techniques
helps in the decision-making process and addresses many real-life
problems. In this chapter, an intuitionistic fuzzy-based MCDM decision-
making technique has been proposed for the selection of a suitable site for
a manufacturing plant. Dynamic intuitionistic fuzzy weighted averaging
operator has been used for decision-making under an intuitionistic fuzzy
environment. The method is demonstrated by the help of a case study,
comprised of the selection of suitable sites among the 11 sites on the
basis of 5 factors and the opinion of 3 domain experts. The proposed
model may help the decision makers to taking better decisions under
uncertainty.

7.1 INTRODUCTION

To run a successful enterprise, site selection is very critical and depends
on many factors including the type of plant, requirement of raw material,
supply of furnished goods, etc. It is a very complex task that needs critical
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thinking and some unforeseen things that may happen during and after the
establishment of a plant. Therefore, the factors that influence selection
need to be identified first and a thorough intervention of domain experts
is required for the suitable selection of a site. On the basis of the identified
factors, domain experts provide the foundation knowledge required to select
the optimal location. The generalization of fuzzy set (FS) theory helps in
the development of decision support systems that allow decision-makers
to tackle these problems. Real-life problems are uncertain in nature as
they contain incomplete information that could be overlooked by human
reasoning. These challenges attract researchers to do research in this
discipline to develop handheld support systems to tackle the problems of
vagueness. Generally, real-life situations are nondeterministic in nature
and many challenges have been faced in outcome such situations, as
these situations are not clearly defined. Zadeh [18] coined the concept of
FSs, which is the generalized version of the classical set theory and has
the potential to deal with uncertain situations. The intuitionistic fuzzy set
(IFS) was proposed by Atanassov [1], which is the generalization of fuzzy
theory, which is characterized by both membership and nonmembership
grades. IFSs are the special version of FSs that describe fuzziness more
comprehensively and have a variety of applications in real-life scenarios.
The complexity of many problems may not be discussed through traditional
methods unless uncertainty in these systems has been addressed precisely in
some measurable way. FSs and their generalizations provide computational
support to the problems at hand for dealing with the imprecision and
uncertainty of human reasoning. The main feature of fuzzy theory is that
it interprets verbal as well as linguistic information and describes them by
simple rules. This factor is very much beneficial to establish relationships.
Information can be gathered from various sources that contain some sort of
uncertainty in it. Therefore, multiple factors are involved in the decision-
making process to address real-life problems. Multicriteria decision-making
(MCDM) problem is a trade-off between the set of alternatives and the
evaluating factors in which a set of domain experts is involved in providing
domain knowledge to establish some decision mechanism on the basis
of certain performance indicators. Some approximation techniques have
been developed by Krassimir [8] to address MCDM problems with fuzzy
information. To deal with MCDM problems, Xu and Yager [14] developed
certain aggregation operators in the IFS environment. In this chapter, the
MCDM technique for the selection of a suitable site for the manufacturing
plant has been discussed.
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7.2 LITERATURE REVIEW

MCDM problems when taken up with fuzzy theory, provide strength to the
concept. These problems are interdisciplinary and capture the attention of
researchers to address the issue of multiple opinions under one situation. The
domains of fuzzy as well as IF sets are discrete for dealing with imperfect
and incomplete information. Wang and Zhang [9] explained MCDM
problems by defining the expected values of the fuzzy information in the
form of intuitionistic trapezoidal fuzzy number (ITrFN). Wang and Zhang
[10], Guorong [5], and Wan and Dong [11] established certain aggregation
operators by defining the expected values in ITrFN and investigated that
aggregation operators work well in MCDM problems. To aggregate the
information received from the domain experts , aggregation operators have
been deployed to understand the priority. Wei [ 12] presented the generalization
of aggregation operators proposed by Yager [16, 17] and developed some
hesitant fuzzy aggregation operators. Fuzzy as well as IF-based MCDM
models have been proposed by several researchers, such as, Chen and
Hwang [3], Kacprzyk [7], Herrera [6], and Bordogna [2]. Researchers, such
as, Chen and Hwang [3], Kacprzyk [7], Fodor and Runens [4], Herrera [6],
and Bordogna [2] proposed certain fuzzy MCDM techniques. In this chapter,
an aggregation operator DIFWG has been used for the selection of a suitable
site for a manufacturing plant. The main objective of the work is to establish
a decision support system that not only helps the decision-makers to take
optimal decision but also provides some logical solutions. The given system
gathered initial information from the three domain experts and performed
the decision-making with the help of an algorithm to rank the sites.

7.3 PRELIMINARIES

Let X = {x,x,,...,x,}be a discrete universe of discourse. The following
preliminaries are defined as

7.3.1 FSS

Zadeh [18] defined FSs as: A FS 4 is defined as: 4={<x,¢,(x)> : xe X}
where, ¢, : X —[0,1] and ¢ (x) be the membership function and membership

grade, respectively, of x € X'in 4.
It is the generalization of the classical notion of set.
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7.3.2 IFSS

Atanassov [1], IFS is a generalization of FSs and is defined as
A={<x4,().p,(x) >| xe X}

where, ¢, (x),¥,(x): X —[0,1] are the membership and nonmembership

function of x € X with z,(x) =1-4¢,(x) —w,(x) as the intuitionistic index or
hesitation index of 4 in A.

7.3.3 INTUITIONISTIC FUZZY VARIABLE

Foratime variable s, {(1)=(¢,,, y,,) is called the intuitionistic fuzzy variable.

In general, If 1 =1,z,, vty then £ (), . ... ,g“(tp); (¢m, l/lé(t)) €[0,1] be

the intuitionistic fuzzy numbers (IFNs) collected at different periods.
The concept was proposed by Xu and Yager [15].

7.3.4 ITrFN
Wang [13] applied the concept of ITrFN and defined as:

Let A be an IFS in R, whose membership and nonmembership functions
are defined as follows:

x=1)4 t,—x)+y, (x—t
O (T NCET D
L=t t, —t,
4 = P, t, <x <t - W4 t, <x<t,
4~ ~ sVu — -
w,¢3§x£t4 (x_%)ﬂ'//”‘(t”_x),gSszM
P Ly =1
0, otherwise 1, otherwise

where, 0 < ¢ +y, <1, ¢ and y, are maximum and minimum values,

respectively, and 7,,¢,,¢,,2,,t, ,t,, € R. Then 4 is called ITrFN and is denoted
by

A= <([twt2’t3’t4];¢/¢)s([tll’tzst3’t14];l///4 )>
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7.3.5 DYNAMIC INTUITIONISTIC FUZZY WEIGHTED AVERAGING
(DIFWA) OPERATOR

Xu and Yager [15], let a,),....) be a collection of IFNs collected at ¢
different periods and 7 be the weight vector of the periods #,, then DIFWA

(C(t),s St =7(t)S (1) D......... ®z7(t,)¢(t,) is called DIFWA

operator.

DIFWA, (£ ()....-{ 1))

q q q q
_ 7(t.) 7(t) 7(t;) 7(t)
—(I_H(l_%w) ' ’H‘//ari)’H(l_%m) ' _H‘/’ari)j
k=1 k=1 k=1 k=1

q
where, 7(t,)>0; Zr(tk) =1
P

In this chapter, information is taken in the form of ITrFN and decision-
making is taking with the help of DIFWA operator.

7.4 MAIN CONCEPT

The idea of MCDM has been used by many researchers to discuss real-life
situations encountered in day-to-day life. In this chapter, an algorithmic
approach of the DIFWA operator proposed by Xu and Yagar [15] has been
discussed by taking information as ITrFN for the selection of a suitable site
for the manufacturing plant under certain attributes. The attributes consid-
ered for the decision are given in the form of IFNs. A hypothetical case study
has been developed to explain the algorithm. In this study, five factors have
been considered that are responsible for the selection of a suitable site for the
manufacturing plant and are given in Figure 7.1.

7.4.1 ALGORITHM

Following hypothesis has been considered and are given as:
I: Let® = {0,,..., 0 } be the set of n alternatives.

II: Let MP = {MP,,..., MP } be the finite set of attributes articulated in
IFNs, with weight vector as © = (@,..., @ )"

m
where @, >0 Z;w/ =1
=
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Reach to Markets for raw material and
distribution

Transportation Facilities

Parameters Responsible for \

the Selection of Suitable site abili
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Quality of Land

J

FIGURE 7.1 Parameters responsible for the selection of suitable site for manufacturing Plant.

4
III: Let ¢, having ¢ periods with weight vector is {(¢) = ({(z),..., { (tq))T,
9
St 20,2 () =1
where k=l
IV: Let %(4)= (U (4, ))zm be an IF decision matrix of the period ¢,
where 7; (1) = ((15@ (tk),v/,.,,/ (4 ),ﬂ,” (4 )), (i,j =1,...,n) is the attribute value
defined in the form of IFN.

The steps of the algorithm are given as:
Step I: Using the DIFWA operator, defined in Section 7.3

ry = DIFWA ) (1, (1)1 (1,))

q q

c) c) c) c)

( H(l D) H'/’r<ri>’H(1_¢»;,(rk>) A_Hwn,(ti)j
k=1 k=1

k=

To aggregate all the IF decision matrix
R(1)=(5(2)),,
: o), £,
where, 7, =(¢,.v,.7, )1 ¢, =1- (1_ r,,(u)) Vi =£[V/nj(tk)’
Step II: Let Cf)i = ((I+)l,. . (Dm)T andff)l,, (®,,..., @ ) be the IF positive and

ideal solutions, respectively, where ® = (0,1,0) and &DI, = (0,1,0) be the m
largest and m smallest IFNs, respectively. Furthermore, let 6, = (r,,...r, )".
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_ Step III: Determine IF positive and negative ideals: IF PIS((f)l.) and IFNIS
(@ )from the alternatives 6, as

56,®)=Y. 0,50;,,9) =Y 0,(1-4,)

Jj=1

5(@@,):5:@/5(@@,):2@/ (I_V/z‘j)
=

j=1
where, ry= (¢ij, W, T,)

Step IV: Calculate the closeness coefficient of each alternative:

5(0,®,)
56,.D,)+5(6,®,)

()=

Since, 8(6,,®,)+5(6,,®,) =Y o,(1+7,)

=1
Z;a’j(l_%)
p=
ia)j (1+”i/)
=

Step V: On the basis of closeness coefficients C(6), rank the alternative
0. Greater the C(6)), better the alternative.

Step VI: End.

7.4.2 EVALUATION OF CASE STUDY

Let MP (i = 1,2,...,11) be the available set of sites for the manufacturing
plant. The selection of site for the plant can be identified on the basis of the
certain factors ® = (6,,...,0,) as shown in Figure 7.1. Also, the decision for
the final selection of site can be made by considering the inputs received
from the three decision-makers as D = (d,,d,.d,). Let () = (0.16, 0.33, 0.5)"
be the weight vector of the experts ¢ _and w(?) = (0.1,0.15,0.2,0.25, 0.3, 0.4)"
be the weight vector of the factors 0/.( j=1,...,5). The decision for the selec-
tion of site for manufacturing plant among the available sites has been made
on the basis of Algorithm 7.4.1. The opinion collected from various experts
has been articulated in the form of [FNs and are given in Tables 7.1-7.3.

The collective result received from the set of experts is presented in
Table 7.4.
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TABLE 7.1 IFN Information Provided by the Expert d, 1
Site/Factor 0, 6. (7] (7 0

2 3 4 5
MP, (0,8,0.1,0.1) (0.9,0.1,00) (0.7,0.2,0.1)  (0.7,02,0.1)  (0.2,0.4,0.4)
MP, (0.7,0.3,0.0) (0.6,0.2,0.2) (0.6,03,0.1)  (0.50.2,0.3)  (0.2,0.7,0.1)
MP, (0.5,04,0.1) (0.7,0.3,0.0) (0.6,0.1,0.3)  (0.4,0.6,0.2)  (0.1,0.8,0.1)
MP, (0.9,0.1,0.0) (0.7,0.1,0.2) (0.8,02,0.0)  (0.7,0.1,0.2)  (0.5,0.1,0.4)
MP, (0.6,0.1,0.3) (0.8,0.2,0.0) (0.5,0.1,04)  (0.2,04,04)  (0.4,0.5,0.1)
MP, (03,0.6,0.1) (0.504,0.1) (04,050.1) (0.2,07,0.1)  (0.5,0.5,0.0)
MP, (0.5,02,0.3) (0.4,0.6,0.0) (0.50.5,0.0) (0.1,0.8,0.1)  (0.8,0.2,0.0)
MP, (0,8,0.1,0.1) (0.9,0.1,0.0) (0.7,02,0.1)  (0.7,02,0.1)  (0.5,0.4,0.1)
MP, (0.7,0.3,0.0) (0.6,0.2,0.2) (0.6,03,0.1)  (0.50.2,0.3)  (0.4,0.6,0.0)
MP,, (0.5,04,0.1) (0.7,0.3,0.0) (0.6,0.1,0.3)  (0.4,0.6,0.0)  (0.6,0.1,0.3)
MP,, (0.9,0.1,0.0) (0.7,0.1,0.2) (0.8,02,0.0)  (0.7,0.1,0.2)  (0.3,0.6,0.1)

TABLE 7.2 IFN Information Provided by the Expert d, 1

Site/Factor 0, 0, 0, 0, 0,

MP, (0.9,0.1,0.0)  (0.8,0.2,0.0) (0.8,0.1,0.1) (0.6,0.3,0.1) (0.4,0.3,0.3)
MP, (0.8,0.2,0.0) (0.5,0.1,0.4) (0.7,0.2,0.1) (0.4,0.3,0.3) (0.7,0.1,0.2)
MP, (0.5,0.5,0.0) (0.7,0.2,0.1) (0.8,0.2,0.0) (0.7,0.1,0.2) (0.3,0.5,0.2)
MP, (0.9,0.1,0.0)  (0.9,0.1,0.0) (0.7,0.3,0.0) (0.3,0.5,0.2) (0.7,0.2,0.1)
MP, (0.5,0.2,0.3) (0.6,0.3,0.1) (0.6,0.2,0.2) (0.6,0.1,0.3) (0.8,0.2,0.0)
MP, (0.4,0.6,0.0) (0.3,0.4,0.3) (0.5,0.5,0.0) (0.2,0.3,0.5) (0.7,0.3,0.0)
MP, (0.3,0.5,0.2) (0.5,0.3,0.2) (0.6,0.4,0.0) (0.1,0.5,0.4) (0.5,0.1,0.4)
MP, (0.9,0.1,0.0) (0.8,0.2,0.0) (0.8,0.1,0.1) (0.6,0.3,0.1) (0.7,0.2,0.1)
MP, (0.8,0.2,0.0) (0.5,0.1,0.4) (0.7,0.2,0.1) (0.4,0.3,0.3) (0.9,0.1,0.0)
MP (0.5,0.5,0.0) (0.7,0.2,0.1) (0.8,0.2,0.0) (0.7,0.1,0.2) (0.5,0.5,0.0)
MP (0.9,0.1,0.0)  (0.9,0.1,0.0) (0.7,0.3,0.0) (0.3,0.5,0.2) (0.9,0.1,0.0)

TABLE 7.3 IFN Information Provided by the Expert 0, ]

Site/Factor 0, 0, 0, 0, 0,

MP, (0.7,0.1,0.2)  (0.9,0.1,0.0) (0.9,0.1,0.0) (0.6,0.1,0.3) (0.4,0.5,0.1)
MP, (0.9,0.1,0.0) (0.6,0.2,0.2) (0.5,0.2,0.3) (0.5,0.2,0.3) (0.7,0.1,0.2)
MP, (0.4,0.5,0.1) (0.8,0.1,0.1) (0.7,0.1,0.2) (0.3,0.3,0.4) (0.8,0.2,0.0)
MP, (0.8,0.1,0.1) (0.7,0.2,0.1)  (0.9,0.1,0.0) (0.4,0.4,0.2) (0.5,0.4,0.1)
MP, (0.6,0.3,0.1) (0.8,0.2,0.0) (0.7,0.2,0.1) (0.5,0.5,0.0) (0.9,0.1,0.0)
MP, (0.2,0.7,0.1) (0.5,0.1,0.4) (0.3,0.1,0.6) (0.1,0.4,0.5) (0.6,0.1,0.3)
MP, (0.4,0.6,0.0) (0.7,0.3,0.0) (0.5,0.5,0.0) (0.2,0.3,0.5) (0.3,0.6,0.1)
MP, (0.5,0.4,0.1) (0.7,0.3,0.0) (0.6,0.1,0.3) (0.4,0.6,0.2) (0.1,0.8,0.1)
MP, (0.9,0.1,0.0) (0.7,0.1,0.2)  (0.8,0.2,0.0) (0.7,0.1,0.2) (0.5,0.1,0.4)
MP (0.6,0.1,0.3) (0.8,0.2,0.0) (0.5,0.1,0.4) (0.2,0.4,0.4) (0.4,0.5,0.1)

MP (0.3,0.6,0.1) (0.5,0.4,0.1) (0.4,0.50.1) (0.2,0.7,0.1)  (0.5,0.5,0.0)

11




TABLE 7.4 Collective IFN Information Provided by the Experts D = (d,,d,,d,)

Site/Factor

[

1

[

2

6

3

6

4

(7

5

MP

1
MP,
MP
MP,
MP,
MP
MP,
MP,
MP
MPI 0
MP

3

6

9

11

0.806,0.1,0.094
0.849,0.151,0.0
0.452,0.482,0.066
0.859,0.1,0.041
0.569,0.218,0.213
0.289,0.648,0.063
0.387,0.470,0.143
0.749,0.200,0.051
0.849,0.151,0.0
0.553,0.215,0.232
0.735,0.245,0.020

0.874,0.126,0.0

0.569,0.159,0.272
0.755,0.151,0.094
0.792,0.141,0.067
0.748,0.229,0.023
0.441,0.2,0.359

0.601,0.337,0.063
0.782,0.218,0.0

0.627,0.112,0.261
0.755,0.214,0.031
0.731,0.200,0.069

0.849,0.112,0.039
0.594,0.214,0.192
0.725,0.126,0.149
0.838,0.162,0.0

0.640,0.178,0.181
0.390,0.224,0.386
0.536,0.464,0.0

0.697,0.112,0.190
0.743,0.214,0.043
0.645,0.126,0.229
0.603,0.362,0.035

0.619,0.162,0.219
0.469,0.229,0.302
0.486,0.233,0.281
0.437,0.342,0.221
0.498,0.282,0.220
0.151,0.399,0.450
0.151,0.419,0.430
0.533,0.397,0.070
0.588,0.162,0.250
0.450,0.270,0.280
0.350,0.452,0.197

0.371,0.406,0.223
0.647,0.138,0.215
0.610,0.342,0.048
0.578,0.252,0.170
0.830,0.165,0.005
0.623,0.189,0.189
0.492,0.275,0.233
0.434,0.449,0.117
0.699,0.135,0.167
0.472,0.382,0.145
0.691,0.301,0.008
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Using sections steps 2—5 of the Algorithm 7.4.1, the values of Closeness
Coefficients C(S,) against each kind of site for manufacturing plant is given
in Table 7.5.

TABLE 7.5 Closeness Coefficients of Various Type of Sites for Manufacturing Plant ]

Type of Site Closeness Coefficients C(MP)
MP, 0.690
MP, 0.672
MP, 0.654
MP, 0.692
MP, 0.705
MP, 0.539
MP, 0.518
MP, 0.630
MP, 0.727
MP, 0.622
MP 0.625

11

The largest value of the closeness coefficient C(MP)) represents the
preference to the type of the Site.

7.5 RESULT AND DISCUSSION

On the basis of the values of the closeness coefficient given in Table 7.5 are
presented graphically in Figure 7.2.

From Figure 7.2, it is observed that the site no. MP, is the most suitable
one and the ranking is given below as

MP, = MP, = MP, = MF, = MP, = MP, - MF, - MF, -~ ME, -~ MF, -~ MP,

The decision is made on the basis of the collective information received
from the decision-makers D = (d,,d,,d,). IF information used with the aggre-
gation operator gives promising results to develop support system for the
selection of suitable site for the manufacturing plant on the basis of the factors.

7.6 CONCLUSION

MCDM technique has been used in this chapter for the selection of
suitable site for the manufacturing as per the desired requirement.
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The information given is in the form of ITrFNs, which is aggregated
using DIFWA operator. Further, the opinion of three domain experts is
considered while taking the decision. Decision-making is made and the
alternatives are ranked on the basis of the calculated value of closeness
coefficient. More the value of closeness coefficient, more the preference
will be given to the alternative. This model can be utilized for other such
situations to avoid the unnecessary expenditure on surveys. The model
is more suitable to perform initial investigation of the problem in hand
under uncertainty.

Type of Site vs Closeness Coefficient

0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

M Closeness coefficient

FIGURE 7.2 Closeness coefficients for the sites.

KEYWORDS

* intuitionistic fuzzy number

e intuitionistic fuzzy sets

* aggregation operator

* dynamic intuitionistic fuzzy weighted averaging operator




102 Fuzzy Logic Concepts in Computer Science and Mathematics

REFERENCES

1. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.

2. Bordogna, G., Fedrizzi, M., & Pasi, G. (1997). A linguistic modeling of consensus in
group decision making based on OWA operators. [EEE Transactions on Systems Man
and Cybernetics, 27(1), 126-132.

3. Chen, S.J., & Hwang, C. L. (1992). Fuzzy Multiple Attribute Decision Making. Springer-
Verlag: New York.

4. Fodor, J. C., & Rubens, M. (1994). Fuzzy Preference Modelling and Multicriteria
Decision Support. Kluwer Academic Publisher: Dordrecht.

5. Guorong, X. (2011). Models for multiple attribute decision making with intuitionistic
trapezoidal information. International Journal of Advancement in Computing Technology,
3(6), 21-25.

6. Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1996). A linguistic decision process
in group decision making. Group Decision and Negotiation, 5, 165-176.

7. Kacprzyk, J., Fedrizzi, M., & Nurmi, H. (1992). Group decision making and consensus
under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems, 49, 21-31.

8. Krassimir, A., Gabriella, P., & Ronald, Y. (2005). Intuitionistic fuzzy interpretations of
multi-criteria multi-person and multi-measurement tool decision making. International
Journal of Systems Science, 36(14), 859-868

9. Wang, J. Q., & Zhang, Z. H. (2008). Programming method of multi-criteria decision-
making based on intuitionistic fuzzy number with incomplete certain information. Control
and Decision, 23, 1145-1148.

10. Wang, J. Q., & Zhang, Z. H. (2009). Aggregation operators on intuitionistic trapezoidal
fuzzy number and its application to multi-criteria decision-making problems. Journal of
Systems Engineering and Electronics, 20, 321-326.

11. Wan, S. P, & Dong, J. Y. (2010). Method of trapezoidal intuitionistic fuzzy number for
multi-attribute group decision. Control and Decision, 25(5), 773-776.

12. Wei, G. W. (2012). Hesitant fuzzy prioritized operators and their application to multiple
attribute decision making. Knowledge-Based Systems, 31, 176—182.

13. Wang, J. Q. (2008). Overview on fuzzy multi-criteria decision-making approach. Control
and Decision, 23, 601-606.

14. Xu, Z. S., & Yager, R. R. (2006). Some geometric aggregation operators based on
intuitionistic fuzzy sets. International Journal of General Systems, 35, 417-433.

15. Xu, Z., & Yager, R. R. (2008). Dynamic intuitionistic fuzzy multi-attribute decision
making. International Journal of Approximate Reasoning, 48, 246-262.

16. Yager, R. R. (2004). OWA aggregation over a continuous interval argument with
applications to decision making. /[EEE Transactions on Systems, Man, and Cybernetics
—Part B, 34, 1952-1963.

17. Yager, R. R. (2009). Prioritized OWA aggregation. Fuzzy Optimization and Decision
Making, 8, 245-262.

18. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.



CHAPTER 8

Fuzzy Logic in Industrial IoT for Smart
Manufacturing

ANITA MOHANTY?, AMBARISH G. MOHAPATRA?, and
SUBRAT KUMAR MOHANTY?

Electronic and Instrumentation Engineering, Silicon Institute of
Technology, Bhubaneswar, Odisha, India

2Electronic and Communication Engineering, Einstein Academy of
Technology and Management, Bhubaneswar, Odisha, India

ABSTRACT

The convergence of fuzzy logic and the Industrial Internet of Things
(ITIoT) has led to a new age of smart manufacturing, giving unprecedented
opportunities for efficiency, quality, and adaptability. This chapter analyses
the crucial role of fuzzy logic within the context of IloT in the quest for
smart manufacturing. Fuzzy Logic’s built-in capacity to hold uncertainty
and imprecise data makes it a valuable mechanism for decision-making in
complex and dynamic manufacturing situations. We delve into real-world
applications where fuzzy logic is engaged to optimize processes, improve
resource allocation, and enhance overall manufacturing performance.
Additionally, we analyze the integration of fuzzy logic with IloT sensors as
well as platforms, highlighting how it enables real time, adaptive decision-
making that is vital for achieving the objectives of smart manufacturing. By
shedding light on the collaboration between fuzzy logic and 10T, this chapter
contributes insights into the transformative potential of these technologies in
modern manufacturing and sets the stage for a more adaptive and responsive
industrial landscape.
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8.1 INTRODUCTION

In the realm of Industry 4.0, the marriage of fuzzy logic and the Industrial
Internet of Things (IIoT) is reshaping smart manufacturing paradigms. Fuzzy
logic, grounded in the concept of handling uncertainty and imprecision,
serves as a linchpin in navigating the complexities of modern industrial
processes. As manufacturing facilities become increasingly interconnected
through IloT, the sheer volume and diversity of data generated demand
intelligent solutions for decision-making. Fuzzy logic, with its capacity to
model and control nonlinear and uncertain systems, seamlessly integrates
with IloT frameworks, offering a nuanced understanding of dynamic
operational environments [1].

Figure 8.1 shows this integration empowers manufacturers to optimize
processes, predict maintenance needs, ensure quality control, and implement
adaptive automation. Real-world applications showcase the prowess of
fuzzy logic in providing actionable insights from disparate and ambiguous
data sources, thereby enhancing operational efficiency and responsiveness.
However, the implementation of fuzzy logic in industrial settings necessitates
a careful balance between precision and adaptability, acknowledging the
need for robust, context-aware decision-making [2]. As industries embrace
the symbiosis of fuzzy logic and IloT, the trajectory toward intelligent,
self-optimizing manufacturing systems in the Industry 4.0 era becomes
increasingly tangible.

Fuzzy logic:
Model and control

nonlinear and
uncertain systems

Advantages

seamlessly -
integrates FOOVIN * Optimize pr
® Predict maintenance
needs
® Ensure quality
control
IIoT frameworks: © Implement adaptive

Nuanced automation

understanding of
dynamic
operational
environments

Smart Manufacturing Systems

FIGURE 8.1 Concept of smart manufacturing systems. <1
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8.1.1 BACKGROUND AND SIGNIFICANCE OF II0T IN MANUFACTURING

The IIoT has emerged as a transformative force in the manufacturing sector,
redefining traditional processes, and contributing to the advent of Industry
4.0. The introduction of cutting-edge sensors, actuators, and communica-
tion technologies into industrial machinery to create a network of linked
devices is the foundation of [IoT in production [3]. The smooth interchange
of data made possible by this interconnection makes it possible to monitor,
analyze, and control production processes in real time. [1oT is significant in
manufacturing in a number of ways.

First off, by offering never-before-seen visibility into every aspect of the
production line, [IoT improves operational efficiency. Real-time data from
sensors and devices provide proactive detection of inefficiencies or bottle-
necks, improved workflow optimization, and improved decision-making.
Consequently, this leads to increased output and efficient use of resources.

Second, IIoT is essential to predictive maintenance since it minimizes
downtime and lowers the chance of equipment breakdowns. Machine sensors
can gather performance metrics data, allowing predictive analytics to identify
any problems early on and take appropriate action to prevent them from
getting worse.

Furthermore, IIoT facilitates the evolution toward smart manufacturing by
fostering connectivity not only within the factory floor but also across the entire
supply chain. This interconnected ecosystem enables seamless communica-
tion between suppliers, manufacturers, and distributors, optimizing logistics,
reducing lead times, and improving overall supply chain visibility.

In summary, the background and significance of [loT in manufacturing
lie in its capacity to revolutionize operational processes, improve efficiency,
enable predictive maintenance, and foster a holistic, interconnected approach
to smart manufacturing in the Industry 4.0 landscape. As industries increas-
ingly embrace this transformative technology, the potential for innovation
and competitiveness in the global market becomes ever more pronounced.

8.1.2 CHALLENGES IN HANDLING UNCERTAINTIES IN SMART
MANUFACTURING

Smart manufacturing, driven by technologies like the IIoT, faces inherent
challenges in handling uncertainties. These uncertainties stem from various
sources within the complex and dynamic manufacturing environment [4].
Several key challenges are included in Table 8.1.
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TABLE 8.1 Challenges in Smart Manufacturing ]

Challenges Description

Data Variability and The sheer volume and diversity of data generated by sensors and

Quality devices in smart manufacturing introduce challenges related to data
variability and quality. Inconsistencies, inaccuracies, or fluctuations
in data quality can compromise the reliability of decision-making

processes.
Environmental Manufacturing environments are subject to fluctuations in
Changes temperature, humidity, and other external factors. These

environmental changes can impact the performance and reliability of
sensors and devices, leading to uncertainties in the data they generate.

Complex System  In smart manufacturing, various interconnected systems and

Interactions components collaborate to execute processes. The intricate
interactions among these components introduce uncertainties,
especially when unexpected events or disruptions occur.

Cybersecurity Risks As manufacturing systems become more interconnected, the risk of
cybersecurity threats increases. Cyber-attacks can introduce uncer-
tainties by disrupting data integrity, system functionality, and overall
manufacturing processes.

Human Factors The involvement of human operators introduces a layer of uncertainty
due to factors such as decision-making variability, skill levels, and
response time. Human—machine interactions must be carefully
managed to minimize uncertainties in smart manufacturing.

Supply Chain Smart manufacturing often relies on an interconnected supply chain.

Dynamics Uncertainties in the supply chain, such as delays, fluctuations in
material availability, or unexpected demand spikes, can impact
production schedules and overall efficiency.

Adaptability to The dynamic nature of markets and technological advancements

Change necessitates continuous adaptation in smart manufacturing.
Uncertainties arise when systems struggle to keep pace with rapid
changes in technology, regulations, or customer demands.

Addressing these challenges requires a holistic approach, incorporating
advanced technologies such as machine learning, artificial intelligence (Al),
and, notably, fuzzy logic to model and manage uncertainties effectively.
Additionally, robust cybersecurity measures, data quality assurance protocols,
and human—machine collaboration frameworks are essential components of
aresilient smart manufacturing ecosystem. As industries struggle for greater
efficiency and flexibility, understanding and mitigating uncertainties become
crucial for the success of smart manufacturing initiatives.
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8.1.3 ROLE OF FUZZY LOGIC AS A DECISION-MAKING TOOL

Fuzzy logic is an essential tool for decision-making in the context of smart
manufacturing within Industry 4.0 [5]. It addresses the inherent complexities
and uncertainties of contemporary industrial processes. Figure 8.2 shows the
fuzzy logic’s contribution to smart manufacturing which can be summed up
as:

* Handling Uncertain and Vague Information: Sensors, machines,
and other networked equipment produce enormous volumes of data
in smart manufacturing settings. Fuzzy logic, which accepts degrees
of truth rather than strict binary distinctions, is skilled at handling this
ambiguous and frequently unclear data. This adaptability is necessary
when making decisions based on faulty or insufficient information.

* Adaptive Process Control: Adaptive process control, where manu-
facturing conditions can change dynamically, is an area where fuzzy
logic excels. It makes it possible to design control systems with the
ability to instantly modify parameters in response to shifting inputs
and external circumstances. This flexibility improves the robustness
and efficiency of production operations.

Role of Fuzzy Logic as a Decision-Making Tool
in Smart Manufacturing
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FIGURE 8.2 Role of fuzzy logic as a decision-making tool in smart manufacturing. <1

* Quality Control and Fault Detection: Smart manufacturing uses
fuzzy logic to achieve fault detection and quality control. It makes it
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possible to create intelligent algorithms that can evaluate the quality
of a product by taking into account multiple elements at once. To
maintain product quality, fuzzy logic can also identify abnormalities
or departures from expected parameters and initiate remedial action.

* Optimizing Resource Allocation: Smart manufacturing involves the
optimization of resources such as energy, materials, and equipment.
Fuzzy logic aids in decision-making by considering multiple factors
and trade-offs simultaneously. This is mainly precious for allocating
resources efficiently while considering changing production demands
and operational constraints.

* Predictive Maintenance: Predictive maintenance solutions in smart
manufacturing use fuzzy logic. Fuzzy logic models are able to anticipate
possible malfunctions or maintenance requirements by evaluating both
historical and current data from machinery and equipment. By being
proactive, this strategy reduces downtime and increases the longevity
of industrial assets.

* Human—Machine Collaboration: Fuzzy logic enables human—
machine collaboration in smart manufacturing settings where human
operators communicate with automated systems. It makes it possible
to incorporate human judgment and experience into automated proce-
dures, ensuring that choices are supported by both qualitative and
quantitative information.

» Flexible Decision Rules: Decision rules that are more adaptable to
various contexts can be created with fuzzy logic. This is essential
in smart production since circumstances might change quickly
and preset rules must be flexible enough to not require frequent
reprogramming.

* Optimizing Production Scheduling: Fuzzy logic aids in production
scheduling optimization by accounting for several factors, including
equipment availability, production deadlines, and resource constraints.
As a result, production schedules become more adaptable and effec-
tive, enabling businesses to quickly adapt to changing demand.

To sum up, fuzzy logic is a powerful tool for decision-making in smart
manufacturing because it provides a framework for handling uncertainty,
adapting to changing conditions, and streamlining processes for improved
efficacy, quality, and resource efficiency. The incorporation of intelligent
and self-optimizing manufacturing systems into Industry 4.0 considerably
facilitates their realization.
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8.2 FOUNDATIONS OF I10T IN SMART MANUFACTURING

The IIoT in smart manufacturing is based on a combination of interrelated
technologies that work together to drive industries into Industry 4.0. To
create a complex network where machines can communicate, analyze,
and react in real time, [IoT fundamentally depends on the smooth
integration of smart sensors, actuators, and communication devices into
the production ecosystem as shown in Figure 8.3. It also shows the idea
of data-driven decision-making, which leverages the constant flow of
data from many sources to get insights into operational effectiveness,
predictive maintenance, and quality control, is fundamental to this
foundation. Scalability and accessibility are made possible by the
infrastructure that cloud computing and edge computing platforms
offer to handle and process this flood of data. Another essential pillar
that protects the confidentiality and integrity of sensitive data traveling
over the IIoT network is security protocols. The integration of advanced
analytics, Al, and ML strengthens the foundations of I1oT as it develops,
enabling intelligent, self-optimizing, and adaptive industrial processes
that characterize smart manufacturing [6].

Data-driven
decision-making

Communication
Protocols

Data Analytics
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FIGURE 8.3 Concept of IIoT in smart manufacturing.
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8.2.1 SENSOR NETWORKS AND DATA COLLECTION

In the context of smart manufacturing, sensor networks and data gathering
are the foundation of the IIoT. These technologies are essential to the
transformation of manual production processes into data-driven, flexible
ecosystems. Sensor networks are made up of many intelligent sensors that
are placed strategically throughout the production environment to gather
data in real time on a variety of parameters, including vibration, temperature,
pressure, humidity, and machine status. By gathering a thorough picture of
the operational environment, these sensors act as the IloT’s eyes and ears.

In the context of the IloT, data collection refers to the methodical
acquisition and transfer of data from these sensors to centralized platforms
for analysis. Manufacturers can measure production indicators, keep an eye
on the condition of their equipment, and evaluate the overall effectiveness of
the manufacturing process thanks to this deluge of data. In addition, the use
of edge computing facilitates on-site data processing, which lowers latency
and speeds up decision-making.

Sensor networks and data collecting are important because they can yield
insights that can be put to use. By using this data, manufacturers may put
predictive maintenance plans into place, preventing downtime by anticipating
possible equipment breakdowns. Continuous monitoring improves quality
control by guaranteeing that goods fulfill strict requirements. Additionally,
the data makes it easier to optimize production schedules, energy efficiency,
and resource utilization, all of which increase overall efficiency.

Security and privacy are critical considerations in the context of sensor
networks and data collection. Robust cybersecurity measures are imple-
mented to safeguard sensitive data, preventing unauthorized access and
ensuring the integrity of the manufacturing process.

In conclusion, sensor networks and data collection in IIoT for smart
manufacturing epitomize the transition from conventional to intelligent
production systems. By harnessing real-time data from diverse sources,
manufacturers gain unprecedented visibility and control over their opera-
tions, paving the way for enhanced efficiency, predictive capabilities, and
adaptive decision-making in the Industry 4.0 landscape.

8.2.2 COMMUNICATION PROTOCOLS AND DATA ANALYTICS

In the domain of smart manufacturing within the IloT, effective communi-
cation protocols and advanced data analytics are integral components that
drive connectivity, collaboration, and informed decision-making.
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82.2.1 COMMUNICATION PROTOCOLS

Communication protocols serve as the foundation for the seamless exchange of
data among the myriad devices and systems in smart manufacturing. Protocols
such as MQTT (Message Queuing Telemetry Transport), Constrained
Application Protocol, and OPC UA (Open Platform Communications Unified
Architecture) facilitate efficient, low-latency communication between sensors,
machines, and control systems [7]. These protocols support the real-time
transmission of data, ensuring that critical information is delivered promptly
for analysis and decision-making. The standardized communication enabled
by these protocols promotes interoperability, allowing diverse devices from
different manufacturers to communicate effectively within the IIoT ecosystem.

8222 COMMUNICATION PROTOCOLS

Data analytics is the driving force behind the transformative potential of IIoT
in smart manufacturing. Advanced analytics techniques, including machine
learning and Al, process the vast volumes of data generated by sensors and
devices to extract meaningful insights. Predictive analytics is applied to antici-
pate equipment failures and schedule maintenance proactively, minimizing
downtime. Prescriptive analytics provides actionable recommendations for
optimizing production processes, resource allocation, and energy efficiency.
Descriptive analytics offers historical perspectives, aiding in performance
analysis and continuous improvement. Edge analytics, performed closer to the
data source, reduces latency and allows for real-time decision-making. The
synergy of communication protocols and data analytics empowers manufac-
turers to create intelligent, adaptive systems that optimize efficiency, enhance
quality, and respond dynamically to changing operational conditions.

In conclusion, the effective integration of communication protocols and
data analytics in IloT for smart manufacturing forms a symbiotic relation-
ship that underpins the evolution toward Industry 4.0. These technologies
collectively enable the creation of connected, intelligent ecosystems, where
data-driven insights propel manufacturing processes to new heights of effi-
ciency, resilience, and innovation.

8.2.3 THE NEED FOR REAL-TIME DECISION-MAKING

The need for real-time decision-making in the IloT within smart manufac-
turing is paramount, shaping a paradigm shift in the way industries operate
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and optimize their processes. Several factors underscore the significance of
real-time decision-making in this context:

Dynamic Operational Environment: Smart manufacturing environ-
ments are dynamic and subject to constant changes. Real-time deci-
sion-making allows for swift adaptations to fluctuations in demand,
equipment conditions, and unforeseen events. It ensures that responses
are immediate, enhancing the agility of the manufacturing process.
Optimizing Efficiency and Productivity: A live image of the
production line is provided by real-time data coming from sensors and
gadgets. Manufacturers can find bottlenecks, streamline processes, and
improve overall operational efficiency by real-time data analysis. Lead
times are shortened and productivity is raised as a result of this agility.
Predictive Maintenance: Predictive maintenance plans are made
possible by timely insights into the health of the equipment. With the
use of real-time data analytics, manufacturers may plan maintenance
before problems get worse by identifying anomalies or trends sugges-
tive of impending failures. This lowers maintenance costs, increases
equipment lifespan, and minimizes downtime.

Quality Control: It is critical to maintain product quality in smart
manufacturing. The ability to monitor and analyze production data in
real time facilitates the prompt detection of deviations from quality
requirements. This guarantees that remedial measures can be imple-
mented without delay, averting the manufacturing of faulty products
and reducing wastage.

Supply Chain Coordination: Throughout the whole supply chain,
decisions are made in real time, not only on the manufacturing floor.
Manufacturers may better respond to market demands, optimize
supply chain efficiency, and cut lead times by regularly evaluating
data pertaining to inventory levels, demand predictions, and logistics.
Customer Responsiveness: Demands from customers and the market
might shift quickly. Making decisions in real time enables producers
to react quickly to changes in consumer preferences or industry trends.
Retaining competitiveness and satisfying customer expectations require
this flexibility.

Emergency Response: Unexpected incidents that call for quick
action, like supply chain interruptions or equipment failures, must
be addressed right away. Making decisions in real time reduces the
impact of emergencies on production schedules by facilitating quick
responses and the execution of backup plans.
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* Reducing Information Latency: Decision-making that is not well-
informed can be impeded by information delay. By lowering this
latency, real-time processing makes sure that decision-makers have
access to the most recent and pertinent data. This is especially impor-
tant in manufacturing settings that move quickly.

In conclusion, the need for real-time decision-making in IloT-driven
smart manufacturing arises from the dynamic nature of industrial processes,
the quest for operational excellence, and the imperative to respond promptly
to changing conditions. By harnessing the power of real-time data analytics,
manufacturers can not only optimize their current operations but also position
themselves for agility and competitiveness in the rapidly evolving landscape
of Industry 4.0.

8.3 FUZZY LOGIC BASICS

Fuzzy logic, conceived by Lotfi A. Zadeh in the 1960s, revolutionizes tradi-
tional binary logic by introducing a nuanced approach to decision-making
and system control. At its core are fuzzy sets, allowing for partial member-
ship and degrees of truth between 0 and 1. Membership functions define the
extent of belonging to a set, portraying the inherent uncertainty in real-world
data. Fuzzy logic operations, including AND, OR, and NOT, manipulate
these fuzzy sets to handle imprecision and uncertainty. Expressed through
if-then rules, fuzzy logic enables the incorporation of expert knowledge
and human-like reasoning [8]. The inference mechanism combines rules to
derive conclusions, and defuzzification converts fuzzy outputs into action-
able results. With applications ranging from control systems to Al, fuzzy
logic stands as a powerful tool for modeling complex, uncertain systems,
providing a bridge between crisp, deterministic logic and the intricacies of
the real world.

8.3.1 FUZZY SETS AND MEMBERSHIP FUNCTIONS

Basic ideas in fuzzy logic, a mathematical framework that enables the repre-
sentation of uncertainty and imprecision in decision-making and system
control, including fuzzy sets and membership functions. An extension of a
classical set, a fuzzy set has items that have a degree of membership between
0 and 1, indicating how much they belong to the set, as opposed to strictly
belonging or not belonging.
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These degrees of membership are defined in large part by membership
functions. These functions indicate how much a particular element belongs
to the fuzzy set by mapping the input values to a range between 0 and 1. The
fuzzy set’s properties are determined by the membership function’s form,
and it can take a variety of forms such as triangular, trapezoidal, Gaussian,
or more complex shapes as shown in Figure 8.4.
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FIGURE 8.4 Examples of four classes of parameterized MFs: (a) triangular; (b) trapezoidal;
(c) Gaussian; and (d) bell. 1

For example, in modeling the linguistic variable “temperature” in a fuzzy
set “warm,” the membership function might assign a high degree of member-
ship (close to 1) to temperatures around 25°C, and this degree gradually
decreases as the temperature deviates from this central value. This allows
fuzzy logic to represent and manipulate linguistic terms and human-like
reasoning in decision-making processes where precise, binary distinctions
are inadequate. Fuzzy sets and membership functions are crucial components
in constructing rule-based systems that emulate human decision-making in
complex and uncertain environments.
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8.3.2 FUZZY INFERENCE SYSTEMS (FIS)

A FIS shown in Figure 8.5 is a computational model in fuzzy logic that
mimics the human decision-making process by using fuzzy set theory. FIS
involves a set of rules and a reasoning mechanism that makes decisions
based on fuzzy logic principles. The key components and concepts of FISs
are given in below section.

Small Average Large

rpu Fuzzy Inference P
(Crisp) Fuzzy Engine (Crisp)

output Input

FIGURE 8.5 Fuzzy inference system. (]

83.2.1 FUZZIFICATION

Fuzzification is the first step of FIS when membership functions are used to
convert crisp input values into fuzzy sets. In this step, the degree to which the
input values fall into different language categories is determined.

83.2.2 RULE BASE

The relationship between the fuzzy input and fuzzy output values is defined
by a collection of IF-THEN rules. Every rule usually prescribes a fuzzy
output action and relates to a certain set of input conditions.

83.2.3 INFERENCE ENGINE

The central element of FIS is the inference engine, which combines fuzzy
input values in accordance with the rule basis to produce fuzzy output values.
Typical inference techniques are Sugeno and Mamdani. Sugeno inference
generates a sharp output based on a certain input, whereas Mamdani infer-
ence yields fuzzy results.
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83.24 AGGREGATION

To create a comprehensive fuzzy output, aggregation is the process of
integrating the fuzzy outputs produced by various rules. To aggregate the
fuzzy sets, a variety of techniques can be applied, including maximum and
average.

8325 DEFUZZIFICATION

The final step is defuzzification, where the fuzzy output is transformed into
a crisp output. This process involves converting the fuzzy output sets into a
single, actionable value. Common defuzzification methods include centroid,
mean of maximum, and weighted average.

FISs find applications in diverse fields, including control systems, decision
support systems, and pattern recognition. They excel in scenarios where
precise mathematical models are challenging to define, and human expertise
and linguistic reasoning play a crucial role. FIS gives a flexible and intuitive
technique for modeling complex systems in the existence of uncertainty and
imprecision, providing the achievement of fuzzy logic applications in real-
world problems.

8.3.3 RULE-BASED REASONING WITH FUZZY LOGIC

FISs are built on the foundation of rule-based reasoning with fuzzy logic,
which entails drawing inferences from a set of if—then rules using the ideas of
fuzzy logic. Fuzzy logic excels at modeling and managing complex systems
with uncertainty and imprecision because these rules capture expert knowl-
edge and human-like reasoning. Rule-based reasoning proceeds through a
number of crucial steps:

* Fuzzification: Using membership functions, the input variables are
converted from sharp, numerical values into fuzzy sets. This stage
makes it possible to depict the uncertainty and imprecision contained
in real-world data.

* Rule Base: The rule base consists of a set of if—then rules that relate
fuzzy input variables to fuzzy output variables. Each rule articulates
a linguistic relationship between certain input conditions and the
resulting output action. For example, a rule might state “IF tempera-
ture is high THEN air conditioning is strong.”
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* Inference Engine: The inference engine evaluates the fuzzy rules
based on the current fuzzy input values. The degree to which each
rule is satisfied is determined by the membership functions associated
with the input variables. The inference engine combines these rule
strengths to generate fuzzy output values.

* Aggregation: To create a thorough fuzzy output, the fuzzy output
values from several rules are combined. This entails merging the
distinct fuzzy sets that each rule generates, frequently utilizing methods
like maximum or average aggregation.

* Defuzzification: Defuzzification, the last stage, transforms the fuzzy
output into a clear, useful outcome. In this process, the combined fuzzy
output set is usually summarized into a single numerical number. The
centroid, mean of maximum, and weighted average defuzzification
are popular techniques.

Fuzzy logic is a valuable tool for control systems, expert systems, smart
manufacturing, robotics, and decision-making because it uses a rule-based
reasoning process to account for the inherent uncertainties in real-world
systems. Because fuzzy logic can capture the complexity of human-like
decision-making due to rule-based reasoning’s flexibility, it is especially
useful in scenarios when more exact and deterministic approaches are
insufficient.

8.4 INTEGRATION OF FUZZY LOGICIN IloT

Fuzzy logic’s incorporation into the I1oT is a major development for control
systems and smart manufacturing. Because fuzzy logic can deal with
uncertainty and imprecision, it fits very well with the dynamic nature of
IIoT contexts. Fuzzy logic principles can be integrated into IIoT frameworks
[9] to improve decision-making capabilities for industries confronting real-
world complexity. By allowing for a more sophisticated interpretation of the
massive volumes of data produced by networked devices and sensors, fuzzy
logic advances data analytics. Manufacturing systems may now respond
instantly to changing conditions, streamlining workflows and boosting
overall effectiveness thanks to this integration. Whether applied to predic-
tive maintenance, quality control, or adaptive automation, the marriage of
fuzzy logic and IoT fosters intelligent, self-optimizing systems that define
the essence of smart manufacturing in the Industry 4.0 era. This synergy not
only augments the robustness of control systems but also underscores the
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transformative potential of integrating human-like reasoning into the fabric
of interconnected industrial ecosystems.

8.4.1 FUZZY LOGIC CONTROLLERS (FLCS) FOR MANUFACTURING
PROCESSES

FLCs have emerged as instrumental tools in optimizing manufacturing
processes, providing a flexible and adaptive approach to control systems in
the industrial landscape. Unlike traditional control systems, FLCs excel in
managing complex, nonlinear, and uncertain manufacturing environments.
These controllers leverage linguistic rules and human-like reasoning to make
decisions based on imprecise or incomplete information, characteristics
often inherent in industrial processes. In manufacturing, FLCs find applica-
tion in various domains such as temperature control, pressure regulation, and
quality assurance [10].

FLCs operate by translating expert knowledge into a rule-based system.
For instance, in a temperature control system, rules may dictate that “IF the
temperature is high AND the pressure is increasing, THEN decrease the heat
input.” FLCs continuously evaluate these rules in real time, adjusting control
parameters based on the current state of the system. This adaptability enables
FLCs to respond dynamically to fluctuations, enhancing process stability
and efficiency.

The integration of FLCs with sensors and actuators in the manufacturing
environment as shown in Figure 8.6 contributes to improved precision and
reliability. FLCs are particularly valuable in scenarios where mathematical
models are difficult to establish due to the complexity or variability of the
manufacturing process. Their ability to handle imprecise inputs and adapt
to changing conditions positions FLCs as key components in the pursuit of
intelligent, self-optimizing manufacturing systems within the Industry 4.0
framework. As industries continue to embrace advanced technologies, the
role of FLCs in enhancing control and decision-making processes remains
integral to the evolution of smart manufacturing.

8.4.2 FUZZY CONTROL IN PREDICTIVE MAINTENANCE

Predictive maintenance for manufacturing processes using fuzzy control is
a novel way to maximize equipment dependability and reduce unscheduled
downtime. Fuzzy logic is used in this situation to deal with the uncertainty
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and imprecision that come with foretelling and averting equipment failures.
The process starts with sensors built into manufacturing equipment continu-
ously measuring a variety of characteristics.
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FIGURE 8.6 Integration of fuzzy logic controller (FLC) in manufacturing processes. «1

In the context of predictive maintenance, fuzzy control refers to the
development of fuzzy rules that identify the connections between sensor data
and possible equipment faults. Frequently, historical data, expert knowledge,
or a mix of the two are used to create these rules. Fuzzy logic makes use
of language variables like “high,” “medium,” and “low” to describe the
likelihood and seriousness of prospective problems in a way that is more
reminiscent of human speech.

The fuzzy control system determines the danger or possibility of a future
failure by evaluating the real-time sensor data and applying the fuzzy rules
while the manufacturing equipment is in operation. Because the statistics are
ambiguous, this assessment takes membership degrees into account rather
than a binary approach. Fuzzy inference mechanisms combine these degrees
of membership to generate a comprehensive evaluation of the equipment’s
health status.

Based on the fuzzy logic analysis, the predictive maintenance system
can then make decisions regarding the optimal timing for maintenance
activities [11]. If the fuzzy control system indicates a high risk of failure,
it may recommend immediate maintenance to prevent critical issues.
Conversely, if the risk is deemed low, the system may schedule maintenance
during a planned downtime window, optimizing resource utilization.
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The integration of fuzzy control in predictive maintenance enhances the
adaptability and responsiveness of manufacturing processes. It enables a more
nuanced and context-aware approach to maintenance scheduling, aligning
with the dynamic nature of modern industrial environments. Ultimately,
fuzzy control in predictive maintenance contributes to increased operational
efficiency, reduced downtime, and improved overall equipment effective-
ness in smart manufacturing systems. As Industry 4.0 principles continue to
evolve, the application of fuzzy control in predictive maintenance stands as
a key enabler of intelligent, self-optimizing manufacturing processes.

8.4.3 QUALITY CONTROL WITH FUZZY LOGIC

Quality control using fuzzy logic in manufacturing processes is a sophisticated
and adaptive approach to ensure product quality in the face of uncertainties and
variations. Fuzzy logic provides a framework that accommodates imprecise
and ambiguous information, making it particularly suitable for modeling and
improving complex manufacturing systems. In quality control applications,
fuzzy logic is employed to handle the inherent variability in raw materials,
production conditions, and environmental factors. Here is how fuzzy logic
enhances quality control in manufacturing:

* Fuzzy Rule-Based Systems: Fuzzy logic utilizes rule-based systems
that encapsulate expert knowledge and operational experience.
These rules define the relationships between input variables (such as
dimensions, temperatures, or material properties) and the corresponding
quality output. To indicate the levels of adherence to quality standards,
linguistic variables such as “high,” “medium,” and “low” are used.

» Fuzzification of Data: The first step in fuzzy logic is to fuzz clean
input data, which transforms numerical measurements into linguistic
variables with corresponding membership functions. In this step,
information that is imprecise and uncertain can be represented in a
format that fuzzy logic systems can process.

» Inference Mechanism: Fuzzy logic uses an inference engine to
assess fuzzy rules by using fuzzified input data. By combining these
guidelines, it produces fuzzy output values that indicate the product’s
quality level. A complex and context-aware evaluation of product
quality is made possible by this procedure.

» Aggregation and Defuzzification: The process of combining fuzzy
output values and then de-fuzzifying them yields a clear, practical
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decision from the fuzzy quality assessment. The product’s quality
level is clearly indicated in this last step, enabling the proper course
of action to be followed.

* Adaptive Decision-Making: In dynamic production contexts, quality
control relies heavily on fuzzy logic’s capacity to adjust to changing
situations. It ensures consistent product quality even in the face of
uncertainty by enabling real-time modifications in reaction to fluctua-
tions in production parameters.

* Integration with Sensors and Automation: Automation systems
and sensor data are easily integrated with fuzzy logic. Key quality
indicators are continuously monitored by sensors, and fuzzy logic
analyses this data to make decisions about the quality state of the
product. Automation systems can then use these imprecise data to
make correctional decisions.

* Multicriteria Decision-Making: Fuzzy logic is mainly good at
handling several criteria at once. Fuzzy logic allows for a comprehen-
sive evaluation of quality control when multiple factors influence the
final product quality. This is achieved by considering the interdepen-
dencies of various quality parameters.

Manufacturing processes can attain greater levels of precision, adapt-
ability, and robustness by utilizing fuzzy logic for quality control. This
method is especially useful for producing consistently high-quality products
in industries where fluctuation is a given.

8.5 FUZZY LOGIC APPLICATIONS IN ADAPTIVE MANUFACTURING

Applications of fuzzy logic in adaptive manufacturing are a prime example
of how this mathematical framework has revolutionized the contemporary
industrial scene. Fuzzy logic is essential to control systems and decision-
making in adaptive manufacturing, where the capacity to react quickly to
changing circumstances is critical. Adaptive processes that easily adapt to
changes in production parameters, demand fluctuations, and unanticipated
events are made possible by fuzzy logic’s capacity to handle imprecise infor-
mation and uncertainty [12]. Applications are numerous and include dynamic
scheduling based on shifting priorities, real-time quality assurance, adaptive
control of manufacturing gear, and more. Manufacturing systems can mimic
human-like reasoning by using fuzzy logic to incorporate linguistic variables
and expert knowledge to make sophisticated judgments. Within the larger
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context of Industry 4.0, this adaptability improves operational efficiency,
reduces downtime, and helps to realize intelligent, self-optimizing manufac-
turing environments [ 13]. The adoption of adaptive manufacturing by various
industries has led to the growing significance of fuzzy logic applications in
establishing production ecosystems that are sensitive, agile, and efficient.

8.5.1 ADAPTIVE PRODUCTION SCHEDULING

Taking into account uncertainties, changing priorities, and real-time adjust-
ments, adaptive production scheduling is a flexible and adaptable method
of planning and arranging manufacturing operations. Adaptive production
scheduling, in contrast to conventional static scheduling techniques, makes
use of cutting-edge technologies and clever algorithms to continuously
optimize production plans in response to changes in the industrial environ-
ment [14]. The notion of adaptive production scheduling is defined by many
essential components:

* Real-Time Data Integration: Throughout the manufacturing ecosystem,
real-time data from several sources must be seamlessly integrated in order
for adaptive production scheduling to work. Information from sensors,
manufacturing equipment, inventory levels, and outside variables like
consumer demand are all included in this.

» Predictive Analytics: By predicting future interruptions or modifica-
tions to the production environment, predictive analytics is essential
to adaptive scheduling. Predicting future events and trends entails
using data analytics, machine learning, and other predictive modeling
techniques.

* Dynamic Rescheduling: Adaptive production scheduling refers to
the capacity to modify production schedules dynamically in reaction
to evolving conditions. This could involve unforeseen equipment fail-
ures, shifts in demand, or adjustments to the availability of resources.

* Machine Learning and Al Algorithms: Algorithms for Al and
machine learning are used to examine past data, spot trends, and
enhance the adaptive scheduling model over time. These algorithms
improve the system’s capacity for deliberative decision-making by
adapting to and learning from fresh inputs.

* Optimization Objectives: Production plans are optimized by adaptive
scheduling based on predetermined objectives, such as maximizing
resource utilization, minimizing production costs, meeting delivery
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deadlines, or maximizing energy efficiency. These goals can be
adjusted to fit the particular aims of the production process.

*  Human-Machine Collaboration: A certain amount of human—
machine collaboration is frequently involved in adaptive production
scheduling. Although algorithms manage the data analysis and
decision-making process, human operators provide subject knowl-
edge, deal with unforeseen difficulties, and make strategic choices
that support overarching company objectives.

* Integration with Industry 4.0 Principles: Adaptive production
scheduling emphasizes the use of interconnected technologies,
Internet of Things (IoT) devices, and cyber-physical systems, which
is in line with the principles of Industry 4.0. An automated, adapt-
able, and intelligent manufacturing environment is promoted by this
integration.

* Agile Manufacturing Concepts: A key component of adaptive
production scheduling is the idea of agility. Because of the system’s
quick response time to changes, producers can stay adaptable in the
face of shifting market dynamics and operational difficulties.

One of the main components of smart manufacturing is adaptive produc-
tion scheduling, which opens the door to higher productivity, shorter lead
times, and improved responsiveness to market fluctuations. In the end, it
helps to achieve the main objective of creating a robust and competitive
manufacturing environment. It symbolizes a change from strict, preset time-
tables to more flexible and adaptive production processes.

8.5.2 DYNAMIC RESOURCE ALLOCATION

A planned and flexible method for effectively managing and optimizing
resources in real time inside a system or environment is dynamic resource
allocation. This idea is especially important in environments that are dynamic
and change quickly, like manufacturing, cloud computing, or project manage-
ment, where the supply and demand for resources might change regularly.
Table 8.2 shows the essential features of dynamic resource allocation:

In contexts marked by unpredictability and variability, dynamic resource
allocation is essential to strike a balance between resource efficiency and
flexibility. In the context of Industry 4.0 and beyond, this flexibility aligns
with the principles of agility by making systems more resilient, responsive,
and economical.
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TABLE 8.2 Characteristics of Dynamic Resource Allocation ]

Dynamic Resources

Characteristics

Real-Time
Adaptability

Data-Driven
Decision-Making

Optimization
Objectives

Automation and
Algorithms

Scalability

Integration with IoT
and Sensors

Task Prioritization

Adaptation to
Uncertainty

Application in Various

Fields

Human-In-The-Loop

Flexibility to real-time reallocation of resources in response to
shifting demands, priorities, or situations.

Leveraging real-time information and analytics to make informed
choices about resource allocation.

To enhance efficiency, reduce costs, and meet specific operational or
business objectives.

To evaluate data, forecast future resource requirements, and make
allocation choices.

To change resource requirements, workload variations, and shifts in
the size of activities.

To collect data in real time on resource utilization, environmental
conditions, and other pertinent elements, dynamic resource
allocation frequently interacts with sensor technologies and the
Internet of Things (IoT).

Depending on the urgency, significance, and dependencies of
various activities or processes, resources are assigned based on task
prioritization.

To deal with unforeseen circumstances and uncertainties by
constantly evaluating the system’s present state and adjusting
resource allocation accordingly.

Used in a variety of contexts where effective and flexible resource
allocation is required, like manufacturing, cloud computing, project
management, traffic control, and other settings.

Human decision-makers are frequently involved in dynamic
resource allocation to set parameters, provide strategic advice, and
make important judgments.

8.5.3 SUPPLY CHAIN OPTIMIZATION

The goal of supply chain optimization is to improve the supply chain’s
overall performance, flexibility, and efficiency using a strategic and data-
driven strategy. In order to optimize value and save expenses, supply chain
activities must be systematically analyzed, planned, and carried out. Supply
chain optimization is characterized by a few essential elements:

* Demand Forecasting: The basis of supply chain optimization is
precise demand forecasting. Organizations can anticipate future
demand and allocate resources proactively by utilizing market trends,
historical data, and predictive analytics.
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* Inventory Management: Proper inventory control guarantees that
the appropriate quantity of items is accessible at the appropriate time
and place. Optimizing the supply chain attempts to achieve a balance
between reducing holding costs and averting stockouts.

* Logistics and Transportation Optimization: Simplifying transpor-
tation routes, choosing the most economical carriers, and cutting down
on transit times are all examples of logistics optimization. Real-time
tracking, the use of route optimization technologies, and cooperation
with logistics partners can all be part of this.

* Supplier Relationship Management: Resilient and effective supply
chains depend on having strong connections with their suppliers. In
this case, optimization entails working with dependable suppliers,
negotiating advantageous conditions, and cooperating on projects
aimed at ongoing improvement.

* Technology Integration: Utilizing cutting-edge technologies like
Al blockchain, and the IoT may automate procedures, give real-time
supply chain visibility, and facilitate data-driven decision-making for
optimization.

* Risk Management: Identifying and reducing risks that could impair
operations is a key component of supply chain optimization. This
entails assessing externalities that can affect the supply chain, such as
natural disasters and geopolitical events.

*  Multi-Echelon Optimization: When optimizing a supply chain,
suppliers, manufacturers, distributors, and retailers are just a few
of the organizations that are taken into account. The goal of multi-
echelon optimization is to maximize information and material flow
throughout the whole supply chain.

* Sustainability Considerations: A key component of contemporary
supply chain optimization is sustainability. This entails cutting waste,
implementing eco-friendly practices, and minimizing the negative
effects of supply chain operations on the environment.

* Collaborative Planning: For optimization, cooperation and commu-
nication between supply chain participants are essential. Information
sharing is facilitated by collaborative planning platforms and tools,
which assist all stakeholders in coordinating their efforts with the
overall objectives of the supply chain.

* Continuous Improvement: Monitoring, analysis, and improvement
are all part of the continuous process that is supply chain optimiza-
tion. Organizations can pinpoint areas for improvement by routinely
evaluating key performance indicators and performance metrics.
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Organizations may improve their supply chain optimization and become
more resilient, efficient, and responsive by taking a comprehensive and
integrated strategy. This is especially important in the fast-paced business
climate of today, when supply chain strategies must be flexible and optimized
due to the influence of global markets, shifting consumer expectations, and
technology breakthroughs.

8.6 CASE STUDIES IN SMART MANUFACTURING

Smart manufacturing case studies provide insightful examples of how
Industry 4.0 technologies are being applied in real-world settings and how
they are changing the industry. These studies frequently show how busi-
nesses use cutting-edge technologies to transform their industrial processes,
including robotics, Al, machine learning, and the IloT. They demonstrate
the use of smart devices to build intelligent and networked industrial
ecosystems, the integration of sensors for real-time data collecting, and
predictive analytics for preventive maintenance. Case studies also show
how smart manufacturing increases overall operating efficiency, decreases
downtime, maximizes resource utilization, and promotes agility. These real-
world examples offer insightful information to other businesses considering
Industry 4.0, providing concrete proof of the advantages and difficulties
related to the implementation of smart manufacturing practices.

8.6.1 CASE STUDY 1: FUZZY LOGIC IN PREDICTIVE MAINTENANCE

In a case study that shows how fuzzy logic is used in predictive maintenance,
a manufacturing facility wanted to increase the production machinery’s
dependability and efficiency. Reactive maintenance and unscheduled down-
time presented difficulties for the business, which raised operating expenses
[16]. To solve these problems, the development of a fuzzy logic predictive
maintenance system was started.

Numerous sensors were integrated into the predictive maintenance
system to track vital indicators including vibration, temperature, and equip-
ment performance in real time. The sensor data was analyzed using fuzzy
logic, which took into consideration the uncertainty and imprecision present
in the equipment circumstances. Based on past data and expert knowledge,
fuzzy rules were developed to evaluate the machinery’s health as shown in
Figure 8.7.
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For example, different equipment conditions were described using
linguistic variables like “normal,” “warning,” and “critical.” These linguistic
factors were taken into account by FISs, which combined them to predict the
probability of an upcoming failure. Comparing this complex evaluation to
conventional binary procedures, a more accurate forecast was possible.

Because of this, the fuzzy logic predictive maintenance system could spot
minute changes in the behavior of the machinery and provide early alerts for
possible problems. Because fuzzy logic is adaptable, the system was able
to modify its analysis in response to changing circumstances, resulting in a
more precise and context-aware forecast of maintenance requirements.

Because maintenance tasks could be proactively scheduled during scheduled
downtimes, the installation led to a significant decrease in unscheduled down-
time. This decreased overall maintenance costs, prolonged the equipment’s
lifespan, and minimized production disruptions. The predictive maintenance
system using fuzzy logic exhibited its efficacy in managing the intricacy and
fluctuations of actual industrial settings, highlighting the pragmatic advantages
of fuzzy logic in enhancing equipment dependability and refining maintenance
approaches.

8.6.2 CASE STUDY 2: ADAPTIVE PRODUCTION CONTROL WITH
FUZZY LOGIC

A manufacturing facility sought to improve its production processes by
implementing a system that could dynamically adapt to changing conditions
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and optimize production in real time, as demonstrated in a case study
showcasing the use of fuzzy logic in adaptive production control. Enhancing
productivity, cutting lead times, and accounting for changes in demand and
resource availability were the objectives [16].

Fuzzy logic was used by the adaptive production control system to manage
the complexity and inherent uncertainties of the manufacturing environment.
Based on historical data and expert knowledge, fuzzy rules were developed
to define correlations between desired production outputs and input variables
including machine speeds, production rates, and inventory levels.

To illustrate, terms such as “high,” “medium,” and “low” were employed
to characterize the rates of production and the consumption of resources.
These linguistic factors were integrated by fuzzy inference methods to help
them decide how to change production parameters like machine speeds or
the order in which to complete specific tasks.

The industrial machinery’s embedded sensors provide real-time data to
the system, which utilized fuzzy logic as shown in Figure 8.8 to dynamically
modify production schedules. The production plan might be quickly and
intelligently adjusted by the fuzzy logic adaptive control system to maximize
throughput and resource utilization, for instance, if demand unexpectedly
surged or a machine temporarily slowed down.
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Significant gains in responsiveness, flexibility, and production efficiency
were shown in the case study. The adaptive production control system,
which utilized fuzzy logic, successfully mitigated the effects of unantici-
pated disruptions, minimized idle hours, and optimized resource allocation.
Because of its flexibility, the manufacturing plant was able to respond more
quickly to changing production needs, which improved overall operational
efficiency.

Fuzzy logic was successfully incorporated into adaptive production
control, demonstrating this method’s capacity to offer a clever and adapt-
able response to the dynamic character of contemporary manufacturing
environments. The case study demonstrated how fuzzy logic-based control
systems can help realize manufacturing processes that are both Industry 4.0
compliant and flexible.

8.6.3 CASE STUDY 3: QUALITY ASSURANCE IN SMART
MANUFACTURING

In an Industry 4.0 case study showcasing smart manufacturing’s incorpora-
tion of quality assurance, an innovative automotive manufacturing facility
aimed to improve its production processes through the application of state-
of-the-art technologies [17]. Enhancing product quality, lowering faults,
and guaranteeing a more streamlined and effective production line were the
main goals.

Using AL, computer vision, and machine learning, among other technologies,
the smart manufacturing solution integrated sophisticated quality assurance
methods. This system allows for the strategic placement of sensors throughout
the manufacturing line to gather data in real time on a variety of quality charac-
teristics, such as assembly precision, surface finish, and dimensions.

One important part of the quality assurance system that was used to
address the inherent imprecision and unpredictability of manufacturing
processes was fuzzy logic. Fuzzy rules that established correlations between
input variables (sensor data) and intended quality outcomes were developed
using expert knowledge and historical data.

To describe the quality of particular components, for example, linguistic
variables such as “acceptable,” “borderline,” and “defective” were employed.
The sensor data was processed by fuzzy inference algorithms, which then
calculated the level of quality standard conformance as shown in Figure 8.9.
An assessment of product quality that was more precise and contextually
aware was made possible by this nuanced review.
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The quality assurance system’s ability to adapt allowed it to change in
response to changes in the production environment. For instance, if a sensor
finds a difference between the intended and actual quality requirements,
the fuzzy logic system may make real-time modifications to the production
process to address the problem.

The implementation resulted in a significant reduction in defects,
improved overall product quality, and minimized the need for postproduc-
tion inspections. The smart manufacturing quality assurance system not only
enhanced the reliability of the manufacturing process but also contributed to
cost savings by reducing rework and waste.

This case study demonstrated the practical benefits of integrating fuzzy
logic and smart technologies into quality assurance processes. It showcased
how a holistic approach to quality control, combining real-time data analytics,
adaptive decision-making, and fuzzy logic, can revolutionize manufacturing
practices, aligning with the goals of Industry 4.0.

8.7 CHALLENGES AND CONSIDERATIONS

Smart manufacturing, while promising enhanced efficiency and innovation,
confronts a spectrum of challenges that demand thoughtful consideration.
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Interoperability issues stemming from diverse technologies, data security
concerns, and privacy considerations necessitate robust strategies [18].
Bridging skill gaps and training a workforce adept in data analytics and auto-
mation is pivotal, as is addressing the substantial upfront costs associated with
deploying smart technologies. Integrating legacy systems and establishing
standardized frameworks for seamless collaboration pose additional hurdles.
Efficient data management, change management strategies to navigate
organizational shifts, and ensuring the reliability and resilience of digital
systems are critical considerations. Regulatory compliance within evolving
frameworks adds complexity to the implementation process. Navigating
these challenges requires a holistic and adaptive approach, emphasizing the
importance of investing in both technology and human capital to unlock the
full potential of smart manufacturing.

8.7.1 SCALABILITY AND REAL-TIME PERFORMANCE

Scalability and real-time performance are critical considerations in the
realm of smart manufacturing, reflecting the ability of systems to handle
increasing workloads and deliver timely responses. A smart manufacturing
infrastructure must be scalable in order to adapt to changes in demand or the
addition of new equipment and procedures. This flexibility is necessary to
meet the changing demands of a production setting. Conversely, real-time
performance is essential to guarantee minimal delay in data processing and
decision-making, enabling prompt responses to changing conditions on
the factory floor. Real-time performance and scalability go hand in hand
because a scalable system needs to continue operating at peak efficiency
even as it expands. Utilizing cutting-edge technology like edge computing,
which processes data closer to the source to minimize latency and improve
real-time capabilities, is necessary to achieve this balance [19]. Establishing
resilient communication networks, data analytics platforms, and flexible
control systems helps smart manufacturing achieve the scalability and real-
time performance required in the Industry 4.0 environment.

8.7.2 DATA INTEGRATION AND INTEROPERABILITY

Fundamental concepts of smart manufacturing, data integration, and interop-
erability are necessary to build an effective ecosystem inside the Industry 4.0
framework. Throughout the manufacturing process, data integration refers
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to the smooth transfer and aggregation of information from many sources.
This comprises information produced by devices such as machines, sensors,
and enterprise resource planning systems, among other things. Conversely,
interoperability makes sure that these different systems can coexist peace-
fully by following common guidelines and conventions.

A comprehensive understanding of the production process is made
possible by efficient data integration in smart manufacturing, which makes it
easier to monitor, analyze, and make decisions in real time. Process optimiza-
tion in general, quality assurance, and predictive maintenance can all benefit
from this integrated data. However, due to the variety of devices, protocols,
and standards, ensuring smooth interoperability is frequently difficult.

Organizations use data-sharing formats like MQTT, communication
standards like OPC UA, and IloT protocols to overcome these issues. These
standards give systems and devices a common language, guaranteeing
compatibility and promoting easy data sharing.

Moreover, by processing data closer to the source, lowering latency,
and facilitating faster replies, edge computing significantly improves data
integration and interoperability. By enabling centralized platforms for data
sharing and communication between heterogeneous systems, cloud-based
solutions also aid with interoperability.

Strategic planning, investment in compatible technology, and cooperation
with industry partners are necessary for the successful implementation of data
integration and interoperability in smart manufacturing. By establishing stan-
dardized communication protocols and adopting technologies that support
seamless data exchange, manufacturers can unlock the full potential of smart
manufacturing, driving efficiency, innovation, and agility in their operations.

8.7.3 SECURITY AND PRIVACY CONCERNS

Security and privacy concerns are paramount considerations in the imple-
mentation of smart manufacturing, as the increased connectivity and data
exchange introduce new vulnerabilities and risks [20]. Several key challenges
in this regard include:

* Cybersecurity Threats: The interconnected nature of smart manufac-
turing systems makes them susceptible to cyber threats such as hacking,
malware, and ransomware attacks. Securing industrial control systems
and preventing unauthorized access to critical infrastructure are critical
priorities.
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* Data Integrity and Confidentiality: Ensuring the integrity and
confidentiality of sensitive data is crucial. Unauthorized access or
tampering with production data, intellectual property, or trade secrets
can have severe consequences.

* Supply Chain Risks: Smart manufacturing often involves global
supply chains, introducing security risks at various points. Securing
the digital supply chain, from design to production, is essential to
prevent compromises or counterfeiting.

* Interoperability Challenges: Integrating diverse technologies and
systems may lead to interoperability challenges, potentially creating
security gaps. Ensuring that all components adhere to robust security
standards is essential to prevent vulnerabilities.

*  Employee Awareness and Training: Human factors play a significant
role in security. Insufficient awareness and training among employees
can lead to unintentional security breaches. Educating the workforce
about cybersecurity best practices is crucial.

* Regulatory Compliance: Compliance with data protection and
privacy regulations is a complex challenge, particularly in regions
with stringent laws. Navigating diverse regulatory landscapes while
maintaining operational efficiency requires careful attention.

* Legacy System Vulnerabilities: Many manufacturing facilities still
operate with legacy systems that may lack modern security features.
Retrofitting or securing these systems is crucial to prevent exploita-
tion of vulnerabilities.

* Physical Security: Protecting the physical infrastructure, including
machinery and data storage facilities, is vital. Unauthorized physical
access to critical components can compromise the entire manufac-
turing process.

* Data Ownership and Sharing: Establishing clear policies regarding
data ownership and sharing is essential. Balancing the need for
collaboration with the protection of proprietary information is crucial
for smart manufacturing ecosystems.

* Continuous Monitoring and Incident Response: Implementing
continuous monitoring and incident response mechanisms is vital for
identifying and mitigating security threats promptly. Timely response
to security incidents minimizes the potential impact on operations.

Addressing these security and privacy concerns requires a comprehensive

cybersecurity strategy. This includes regular risk assessments, the imple-
mentation of robust encryption protocols, continuous employee training, and



134 Fuzzy Logic Concepts in Computer Science and Mathematics

collaboration with cybersecurity experts. Manufacturers must stay vigilant,
adapt to evolving threats, and prioritize security to fully realize the benefits
of smart manufacturing while safeguarding their operations and sensitive
information.

8.8 FUTURE TRENDS IN FUZZY LOGIC AND IIOT

The future trends in the integration of fuzzy logic and the IIoT promise to
redefine decision-making processes and enhance operational efficiency
across industrial landscapes. Fuzzy logic, with its ability to handle uncertainty
and imprecision, is poised to play a pivotal role in optimizing IloT applica-
tions. Advanced fuzzy logic systems will evolve to incorporate more sophis-
ticated machine learning algorithms, enabling adaptive decision-making in
dynamic manufacturing environments. The synergy between fuzzy logic
and IloT will extend beyond predictive maintenance and quality control,
encompassing broader aspects of production, supply chain management, and
human—machine interactions. The utilization of edge computing in conjunc-
tion with fuzzy logic will facilitate real-time analysis and decision-making
at the source, reducing latency and enhancing responsiveness. Additionally,
the future holds a shift toward more explainable Al, where fuzzy logic’s
inherently interpretable nature will contribute to building trust in autono-
mous decision-making systems [21]. As industries embrace the next wave of
industrial transformation, the integration of fuzzy logic and IloT is poised to
unlock new dimensions of intelligence, adaptability, and resilience in smart
manufacturing ecosystems.

8.8.1 EDGE COMPUTING AND DECENTRALIZED CONTROL

Edge computing and decentralized control are pivotal trends shaping the
future of smart manufacturing, particularly in the context of Industry 4.0.
Edge computing involves processing data closer to the source of generation,
reducing latency, and enabling real-time analysis. In smart manufacturing,
this means that data from sensors, devices, and machines can be processed
at the edge of the network, allowing for quicker decision-making and more
efficient use of resources [22]. Decentralized control, on the other hand,
distributes decision-making authority across various components within
the manufacturing system, enabling devices to make autonomous decisions
based on local information.
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The synergy between edge computing and decentralized control is
transformative for smart manufacturing. By leveraging edge computing, the
massive amounts of data generated in real time can be processed locally,
reducing the need to transmit large volumes of data to centralized cloud
servers. This not only minimizes network congestion but also enhances
the system’s responsiveness. Decentralized control complements edge
computing by allowing devices and sensors to make independent decisions
based on local data, fostering agility and adaptability in the manufacturing
process.

Together, these trends enhance the efficiency, reliability, and scalability of
smart manufacturing systems. They contribute to a more robust and resilient
manufacturing ecosystem by reducing dependence on centralized processing,
improving real-time decision-making, and facilitating the rapid deployment
of adaptive and autonomous manufacturing processes. As Industry 4.0
continues to evolve, the integration of edge computing and decentralized
control stands out as a key enabler for the future of smart manufacturing.

8.8.2 MACHINE LEARNING-FUZZY LOGIC HYBRID APPROACHES

The fusion of machine learning and fuzzy logic represents a cutting-edge
approach to smart manufacturing, offering a powerful hybrid paradigm that
combines the strengths of both methodologies. Machine learning excels in
pattern recognition, data analytics, and complex modeling, while fuzzy logic
provides a framework for handling imprecise and uncertain information
through linguistic variables and rule-based reasoning [23]. In smart manu-
facturing, this hybridization manifests in several key applications:

* Predictive Maintenance: Machine learning models can analyze
historical data to predict equipment failures, while fuzzy logic can
interpret these predictions and make decisions based on the degree of
certainty, allowing for more nuanced maintenance planning.

*  Quality Control: Machine learning algorithms can learn from vast
datasets to identify patterns associated with high-quality products, and
fuzzy logic can then assess the quality of current products, considering
imprecise factors and uncertainties in the manufacturing process.

* Optimization of Processes: Hybrid approaches can optimize manu-
facturing processes by leveraging machine learning to identify patterns
in data and fuzzy logic to adaptively adjust control parameters based
on real-time conditions, ensuring efficiency and quality.
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* Supply Chain Management: Machine learning can analyze data
to predict demand and optimize inventory levels, while fuzzy logic
can handle uncertainties in supply chain variables, enabling adaptive
decision-making in dynamic environments.

* Energy Management: Hybrid approaches can optimize energy
consumption by using machine learning to identify energy-efficient
patterns and fuzzy logic to adapt energy usage in response to varying
production demands and environmental factors.

* Human—Machine Interaction: Machine learning models can be
trained to understand human behavior and preferences, while fuzzy
logic can interpret linguistic variables related to user satisfaction,
leading to more intuitive and adaptive human—machine interfaces.

The integration of machine learning and fuzzy logic offers a synergistic
solution that addresses the challenges of uncertainty and complexity in smart
manufacturing. This hybrid approach leverages the learning capabilities of
machine learning alongside the interpretability and rule-based reasoning of
fuzzy logic, resulting in more robust, adaptive, and context-aware systems
that contribute to the advancement of Industry 4.0.

8.8.3 INDUSTRY 4.0 AND THE FUTURE OF SMART MANUFACTURING

Industry 4.0 [24] signifies a paradigm shift in the manufacturing landscape,
ushering in the era of smart manufacturing characterized by integrating
digital technologies, automation, and data-driven decision-making [25].
Several transformative trends mark the future of smart manufacturing within
the context of Industry 4.0:

* Interconnectivity: Industry 4.0 envisions a highly interconnected
ecosystem where machines, devices, and systems communicate
seamlessly. The IIoT facilitates real-time data exchange, enabling a
holistic view of the entire production process.

» Data Analytics and Al: The future of smart manufacturing depends
seriously on advanced data analytics and Al. Machine learning
algorithms analyze large datasets to extract insights, improve processes,
and permit predictive maintenance, contributing to improved efficiency
and reduced downtime.

* Edge Computing: Edge computing is developing as an important
enabler in smart manufacturing. Processing data closer to the source, at
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the edge of the network, decreases latency, improves real-time decision-
making, and enhances the burden on centralized cloud systems.

» Digital Twins: Digital twins, virtual duplications of physical assets
and processes, play a vital role in smart manufacturing. They enable
simulation, monitoring, and optimization of production processes,
permitting proactive adjustments, and minimizing risks.

* Decentralized Decision-Making: Decentralized control mechanisms
allow individual devices and components to make autonomous deci-
sions based on local data, raising agility, adaptability, and flexibility
in the face of dynamic manufacturing environments.

* Cyber-Physical Systems: Cyber-physical systems incorporate
computational intelligence with physical processes, making intelligent,
self-monitoring systems. This integration increases the ability to sense,
adapt, and react to changes in real time.

* Customization and Flexibility: Smart manufacturing embraces
customization and flexibility, allowing for the efficient production
of smaller batches and even individualized products. This shift from
mass production to more flexible and adaptive manufacturing aligns
with changing consumer demands.

* Sustainability and Energy Efficiency: The future of smart
manufacturing emphasizes sustainability and energy efficiency.
Technologies such as smart grids, renewable energy integration, and
resource optimization contribute to eco-friendly and cost-effective
production.

*  Human-Machine Collaboration: Collaborative robots, augmented
reality interfaces, and intuitive human—machine interactions are
integral to the future of smart manufacturing. Workers and machines
collaborate synergistically, with automation handling routine tasks,
and humans contributing creativity and problem-solving skills.

* Security and Resilience: With increased connectivity comes a
heightened focus on cybersecurity. Future smart manufacturing
systems prioritize robust security measures to safeguard against cyber
threats, ensuring the resilience of critical industrial infrastructure.

As Industry 4.0 continues to evolve, the future of smart manufacturing
is characterized by an increasingly interconnected, intelligent, and adap-
tive industrial ecosystem. Embracing these technological trends not only
enhances operational efficiency but also positions manufacturing enterprises
to thrive in the era of digital transformation.
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8.9 CONCLUSION

In conclusion, the integration of fuzzy logic in [1oT for smart manufacturing
represents a paradigm shift toward more intelligent, adaptive, and efficient
industrial processes. Fuzzy logic’s ability to handle uncertainties, imprecise
data, and complex decision-making complements the dynamic and
interconnected nature of the IloT. Through real-time data analysis, predictive
maintenance, and decision support, fuzzy logic contributes to optimizing
manufacturing operations, reducing downtime, and enhancing overall
productivity. The synergy between fuzzy logic and IloT enables a nuanced
understanding of manufacturing variables, fostering adaptive responses
to changing conditions. Fuzzy logic integration is becoming increasingly
important as smart manufacturing develops within the larger context of
Industry 4.0 to handle the problems of unpredictability and variability in
industrial settings. This combination of technologies creates the groundwork
for manufacturing environments that are more robust, flexible, and intelligent
in addition to improving operational efficiency. The significance of fuzzy
logic in IIoT for navigating the details of contemporary industrial processes
is validated by its place in the ever-changing field of smart manufacturing.

8.9.1 RECAP OF KEY INSIGHTS

In recap, the integration of fuzzy logic in IIoT for smart manufacturing brings
forth key insights that shape the landscape of modern industrial processes:

* Handling Uncertainty: The power of fuzzy logic resides in its
capacity to deal with ambiguity and inaccurate data. Fuzzy logic offers
a strong framework for decision-making in an uncertain manufacturing
environment, where variables cannot have exact values.

* Real-time Decision Support: Real-time data analysis and decision
support are made possible by the combination of IloT with fuzzy
logic. This gives industrial systems the ability to adjust and decide
intelligently in response to the constantly changing conditions on the
factory floor.

* Predictive Maintenance: A key component of predictive maintenance
techniques is fuzzy logic. Fuzzy logic models can forecast equipment
failures and suggest preventive maintenance actions by evaluating both
previous and current data. This minimizes downtime and maximizes
operational efficiency.
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* Adaptive Manufacturing: The combination of IIoT with fuzzy logic
enhances manufacturing processes’ adaptability. Rule-based reasoning
in fuzzy logic enables adaptive reactions to shifting circumstances,
guaranteeing that industrial systems can dynamically adapt to unantici-
pated events.

* Nuanced Decision-making: By adding linguistic factors and rule-
based reasoning, fuzzy logic adds a degree of nuance to decision-
making. More complicated and context-aware responses to the many
and varied aspects influencing manufacturing are made possible by
this nuanced approach.

* Integration Challenges: Fuzzy logic has many advantages, but
there are drawbacks as well. These include issues with standardiza-
tion, interoperability, and the requirement for qualified personnel.
Unlocking the full potential of fuzzy logic in smart manufacturing
requires overcoming these obstacles.

* Future Trends: Future directions for fuzzy logic and IloT include
continuing development of adaptive decision-making systems, edge
computing, and decentralized control. These developments highlight
the need for localized and more effective data processing to improve
real-time performance and lower latency.

* Industry 4.0 Transformation: [IoT’s use of fuzzy logic is consistent
with Industry 4.0°s more general revolution. In order to develop more
intelligent and connected manufacturing ecosystems, this transforma-
tion places a strong emphasis on connectivity, data-driven insights,
and the convergence of digital technologies.

Fuzzy logic adoption in IloT for smart manufacturing is essentially a
proactive strategy to deal with the uncertainties and complexity prevalent in
contemporary industrial processes. It is evidence of the continuous evolution
toward greater adaptability, effectiveness, and resilience.

8.9.2 IMPLICATIONS FOR THE FUTURE OF MANUFACTURING

The integration of fuzzy logic in [IoT for smart manufacturing holds profound
implications for the future of the manufacturing industry. These implications
encompass technological advancements, operational enhancements, and
strategic considerations:

* Increased Efficiency and Productivity: Fuzzy logic’s ability to make
nuanced decisions based on imprecise data contributes to increased
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operational efficiency. This leads to optimized production processes,
reduced downtime, and enhanced overall productivity.

Predictive and Proactive Maintenance: The use of fuzzy logic
in predictive maintenance enables manufacturing facilities to shift
from reactive to proactive maintenance strategies. By predicting
equipment failures, organizations can schedule maintenance activi-
ties in advance, minimizing disruptions and extending the lifespan
of machinery.

Adaptive and Agile Manufacturing: Fuzzy logic’s adaptive
decision-making capabilities, especially when integrated with IIoT,
foster agile manufacturing processes. The ability to respond in real
time to changing conditions ensures that manufacturing systems
remain flexible and responsive to market demands and unforeseen
disruptions.

Quality Improvement and Defect Reduction: The application of
fuzzy logic in quality control leads to better product quality by taking
imprecise factors in the manufacturing process. This results in a reduc-
tion of defects and enhances the consistency and reliability of the end
products.

Human—Machine Collaboration and User-Friendly Interfaces:
Fuzzy logic contributes to the development of more intuitive human—
machine interfaces. This enables collaborative work environments
where workers can interact effortlessly with smart manufacturing
systems, enhancing the strengths of both human intuition and machine
precision.

Resource Optimization and Sustainability: The application of fuzzy
logic to process optimization encompasses resource management, hence
promoting sustainable industrial practices. Organizations can lower
waste and energy consumption by dynamically modifying resource
usage based on current conditions.

Technological Synergy and Industry 4.0 Integration: Fuzzy logic
and IloT together are a natural fit for Industry 4.0, which is based
on the idea that production may become intelligent, networked
systems through the convergence of digital technologies. An indus-
trial ecosystem that is more comprehensive and integrated is made
possible by this integration.

Challenges in Implementation and Skill Development: There are
additional difficulties associated with the use of fuzzy logic in produc-
tion, such as the requirement for standardization, interoperability, and
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skill development. In order for companies to completely profit from
fuzzy logic in smart manufacturing, these issues must be resolved.

The future of manufacturing will essentially be affected by a move toward
more intelligent, data-driven, and adaptable systems. A key component of
accomplishing these objectives is the integration of fuzzy logic with IloT,
which supports the continued development of the manufacturing sector in
the age of digital transformation.

8.9.3 FINAL THOUGHTS ON THE ROLE OF FUZZY LOGIC IN 1IOT FOR
SMART MANUFACTURING

In summary, fuzzy logic plays a critical and revolutionary role in IloT for
smart manufacturing. Fuzzy logic offers a comprehensive framework for
decision-making in dynamic situations, acting as a fulcrum in resolving
the complexities and uncertainties inherent in contemporary industrial
processes. Its capacity to process imprecise data, decipher linguistic nuances;
and provide nuanced answers paves the way for intelligent and adaptable
production systems.

Manufacturing processes become more than merely automated when
fuzzy logic and IloT are combined; they become responsive, nimble, and
able to make context-aware decisions instantly. New heights of efficiency
and efficacy are reached via predictive maintenance, quality control, and
adaptive manufacturing, which boost output and save operating expenses.

The ramifications for the future are extensive, as they promise improved
operational excellence as well as the advancement of resource-efficient and
sustainable manufacturing techniques. The manufacturing environment is
being significantly shaped by Industry 4.0, and one major facilitator of this
transformation is the interplay between fuzzy logic and IloT, which creates
an ecosystem in which humans, machines, and processes work together
harmoniously.

However, challenges such as interoperability and the need for skilled
professionals underscore the importance of strategic planning and ongoing
innovation. Overcoming these challenges will be instrumental in unlocking
the full potential of fuzzy logic in smart manufacturing, propelling the industry
toward a future characterized by resilience, adaptability, and intelligence. In
this era of digital transformation, the role of fuzzy logic in IloT stands as a
testament to its significance in navigating the complexities of the manufacturing
landscape and steering it toward a more efficient and intelligent future.
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ABSTRACT

Oil companies are assuming a crucial role in driving socioeconomic
development inside a nation. In India, the oil sector has experienced
significant growth in recent times. Oil companies have demonstrated
remarkable performance in terms of their services and availability.
Undoubtedly, the financial performance of an oil company constitutes
its primary component. In the current landscape of heightened market
competition, the accurate and precise assessment of financial performance
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holds significant significance for an oil company that seeks to effectively
sustain its market standing. This research aims to assess the financial
performance and provides a ranking of the six NIFTY oil companies listed
on August 16, 2023 in the National Stock Exchange (NSE), India, using
their financial indicators. The valuations of these six oil companies are
conducted based on nine financial indicators, which are then combined
to derive a financial performance score utilizing a multicriteria decision-
making (MCDM) methodology. In this study, triangular fuzzy number
(TFN) and the fuzzy graph theory and matrix approach (F-GTMA) are
utilized to rank the oil companies based on their financial performance.
The findings indicate that Reliance exhibits the highest level of financial
efficiency, with ONGC and IOC ranking second and third, respectively.

9.1 INTRODUCTION
9.1.1 OIL COMPANIES

India has a significant presence of oil companies that play a crucial role
in the country's energy sector. The major players in the Indian oil industry
include public-sector enterprises such as:

1. Bharat Petroleum Corporation Limited (BPCL): Another significant
state-owned oil firm in India is called BPCL. It works on petroleum
and petrochemical product exploration, production, refining, and
marketing. The government has declared its intention to privatize
BPCL, which could result in a substantial alteration to the company’s
ownership composition.

2. Hindustan Petroleum Corporation Limited (HPCL): A major partici-
pant in the Indian oil and gas sector is HPCL. It is engaged in several
facets of the oil and gas value chain, including as exploration, refining,
and marketing, just like Indian Oil Corporation (I0OC) and BPCL.

3. 10C: 10C, being the biggest oil business in India, engages in the
processes of refining, marketing, and distribution of petroleum prod-
ucts. It has a vast network of petrol stations and runs many refineries
all over the nation.

4. Oil India Limited (OIL): It is one of the top public sector companies
in India, working on natural gas and crude oil transportation, produc-
tion, and exploration. The company, which was founded in 1959, is
essential to supplying the nation’s energy demands.
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5. Oil and Natural Gas Corporation (ONGC): The main activities of
ONGC are natural gas and oil production and exploration. Although
it is not solely an oil firm, its operations provide a substantial contri-
bution to India’s energy security.

6. Reliance Industries Limited: Even though it is not a conventional state-
owned oil business, Mukesh Ambani’s Reliance Industries is a major
player in the Indian oil and gas industry. It has significantly aided in
the growth of India’s petrochemical sector and runs one of the biggest
refining complexes in the world, the Jamnagar Refinery in Gujarat.

These companies collectively contribute to meeting India’s energy needs,
ensuring the supply of petroleum products, and driving economic growth.
The sector is dynamic, with ongoing developments such as the government’s
initiatives to promote renewable energy sources and the evolving landscape
of private participation in the industry.

9.1.2 OIL COMPANIES SCENARIO IN INDIA

When oil was discovered close to Digboi, Assam, in 1889, the Indian oil
industry was born. In Maharashtra and Assam, the natural gas industry got
its start in the 1960s. India had reserves of 1339.57 billion cubic meters
of natural gas and 594.49 million metric tonnes of crude oil as of March
2018. By 2022, India wants to cut its 82% reliance on oil imports to 67%
by utilizing ethanol, renewable energy, and Indigenous exploration. With
205.3 Mt of crude oil imports in 2019, India ranked as the second-largest net
importer. Nonetheless, in FY21, domestic output of natural gas decreased by
8.1% and crude oil plummeted by 5.2%. August 2021 saw a 2.3% decline
in the production of crude oil and a 20.23% growth in domestic natural gas.

Oil businesses will contribute more to the socioeconomic structure of the
Indian economy in 2023. In India, the potential for credit penetration is still very
large. By collaborating with fin-techs and launching fresh business models with
customized solutions, oil firms have the opportunity to redefine the standard.

In Figure 9.1, it has been shown that the upcoming demand of oil is
increasing day by day.

9.1.3 CONTEXT

Conducting research on the financial performance of Indian oil companies is
relevant for several reasons:
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FIGURE 9.1 Demand of oil in India per day. I

1. Economic impact: Oil companies play a crucial role in the Indian
economy. Researching their financial performance provides insights
into their contribution to the GDP, employment generation, and
overall economic stability.

2. Investor decision-making: Investors, both domestic and international,
rely on financial performance metrics to make informed investment
decisions. Understanding the financial health of Indian oil companies
helps investors assess risks and potential returns.

3. Policy formulation: Government policies often depend on the perfor-
mance of key industries. Research on oil companies’ financial metrics
can inform policymakers about the industry’s challenges and strengths,
aiding in the formulation of effective regulations and incentives.

4. Energy security: Given the strategic importance of energy security,
monitoring the financial performance of oil companies is crucial. It
helps assess the country’s ability to meet its energy needs and reduces
dependency on external sources.

5. Environmental impact: The environmental sustainability of oil compa-
nies is a growing concern. Studying financial performance allows for
an assessment of investments in eco-friendly practices, compliance
with environmental regulations, and overall corporate responsibility.

So research on the financial performance of Indian oil companies is
relevant for making informed decisions, shaping policies, ensuring energy
security, addressing environmental concerns, and promoting overall economic
development.
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9.1.4 FINANCIAL INDICATORS

Because financial indicators offer important information about a company’s
overall performance, operational efficacy, and financial health, they are
essential for assessing a company’s financial efficiency. These indicators
assist stakeholders in making defensible decisions by providing a quantita-
tive means of evaluating several facets of a business’s financial manage-
ment. Because of performance evaluation, comparative analysis, identifying
strengths and weaknesses, risk assessment, resource allocation, investor
confidence, operational efficiency, decision-making, regulatory compliance,
and continuous improvement, financial indicators are crucial for gauging a
company’s financial efficiency.

Therefore, financial indicators provide a systematic and quantifiable way
to assess a company’s financial efficiency, enabling stakeholders to make
informed decisions, manage risks, allocate resources effectively, and drive
continuous improvement in financial performance.

9.1.5 MULTICRITERIA DECISION-MAKING (MCDM)

A methodical process called MCDM is applied when several criteria
or considerations must be taken into account at the same time. Making
decisions in real-world scenarios sometimes requires weighing a number of
criteria against one another rather than relying solely on one. A systematic
framework for analyzing, assessing, and ranking various options according
to how well they perform in light of these numerous criteria is offered by
MCDM techniques. Numerous disciplines, including business, engineering,
economics, environmental management, and public policy, frequently
employ MCDM techniques. There exist multiple MCDM techniques, each
possessing unique benefits and constraints. The Analytic Hierarchy Process
(AHP) and the Technique for Order of Preference by Similarity to Ideal
Solution are two well-liked MCDM techniques.

9.1.6 JUSTIFICATION OF FUZZY GRAPH THEORY AND MATRIX
APPROACH (F-GTMA)

F-GTMA are two decision-making methodologies that extend traditional
GTMA techniques to handle uncertainty and imprecision in decision-making
problems. Some justifications for using these techniques are uncertainty and
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fuzziness in decision-making, subjectivity and MCDM, inconsistent and
incomplete data, trade-offs and ranking, flexible modeling, complex decision
scenarios, project evaluation and selection, risk assessment, sensitivity
analysis, and applicability in various fields. In shorts, the justification
for using F-GTMA lies in their ability to handle uncertainty, subjective
preferences, MCDM, and complex decision scenarios, making them valuable
tools for making informed and robust decisions in real-world situations.

9.1.7 BENEFICIARIES

Research on the efficiency measurement of oil companies in India can have
several beneficiaries: Regulators and Policymakers, Investors, Oil companies
themselves, Academic Community, Financial Analysts and Consultants,
Borrowers and Consumers, Economic Analysts and Forecasters, Industry
Associations and Trade Groups, General Public, and many more.

9.1.8 NOVELTIES

Fuzzy numbers have been studied by numerous researchers using the MCDM
methodologies AHP, TOPSIS, MARCOS, and COPRAS. Under the GTMA
MCDM paradigm, hardly any study has been conducted with triangular fuzzy
numbers (TFNs). The equations for TFN defuzzification have been created
and applied. Additionally defined is the distance measured between two TFNSs.
To compute the triangular fuzzy weight of factors and sub-factors, formulas
have been created. A method for combining the opinions of multiple decision-
makers into a single complete value in terms of TFN has been created.

9.1.9 STRUCTURE OF THE STUDY

The rest portion of the paper is set for the following way as presented in
Figure 9.2.

9.2 REVIEW OF LITERATURE

After conducting an extensive literature review, this study has noted that
numerous research endeavors have been undertaken across diverse fields of
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finance and other industries, employing a range of MCDM techniques to
address MCDM challenges. Various MCDM approaches are available for
conducting comparative analyses and establishing rankings. Researchers
have adopted different combinations of these methods based on their specific
study’s requirements to determine the most suitable alternative (Table 9.1).

* Review of Literature
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FIGURE 9.2  Structure of the study. ]

9.3 OBJECTIVES

The objectives of this study are:

1. To find the financial efficiency score of the NIFTY oil companies in

India.
2. To find the ranking of the NIFTY oil companies in India.



TABLE 9.1 An Extensive Review of Literature

st

Reference Authors Application Area Methodology Applied
[1] Xidonas et al. (2009) Equities selection ELECTRE Tri
[2] Gallizo et al. (2002) Financial ratios analysis A hierarchical Bayesian model derived
from the partial adjustment model.
[3] Laitinen (2006) Evaluate Nokia’s future potential during the years Development procedure, income-
1990-2000 using the financial statement approach. generating method, financial progression.
[4] Wang and Lee (2008) To find the financial performance of a company Clustering method
[5] Ghosh et al. (2021) Assessing the financial efficiency and effectiveness of DEA & SEM
life insurance firms operating in India.
[6] Jana and Basu (2021) To find rank the pharmaceutical companies according to TOPSIS
their financial performance
[7] Saeed et al. (2018) Selecting a PET scan device for individuals with cancer. AHP with GTMA
[8] Rao et al. (2018) Examine the impact of various process parameters on the GTMA Approach

surface roughness (measured by Ra and Rq), tool wear,
and cutter vibration during the micro-milling of AISI304
stainless steel.

[9] Mohaghar et al. (2012) To find the Strategy Ranking Shannon’s Entropy and GTMA

[10] Geetha et al. (2016) To find the optimal combination of operating parameters Graph theory and matrix approach

[11] Jain and Raj (2015) To examine the strength or magnitude of factors Exploratory factor analysis and graph
influencing the flexible manufacturing system (FMS). theory and matrix approach

[12] Andhare et al. (2012) Examine the instances of malfunctions to pinpoint the GTMA
essential subsystems in machine tools.

[13] Tuljak-Suban and Bajec Selection of logistic provider (3PLP) ANP & GTMA

(2020)
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TABLE 9.1 (Continued)

Reference Authors Application Area

Methodology Applied

[14]

[15]
[16]
[17]
(18]
[19]

Mohaghar et al. (2013) Supplier selection

Yousufuddin et al. (2022)  Emission of diesel

Baluch (2022) Water resource
Zhuang et al. (2018) To select the best paper shredder
Gul et al. (2021) Total Knee Replacement (TKR)

MiorAbd Halim et al. (2022) Proper selection of solid waste

Logarithmic Fuzzy Preference
Programming and Fuzzy GTMA methods

GTMA
GTMA
AHP-GTMA
GTMA
AHPGTMA
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9.4 RESEARCH METHODOLOGY
9.4.1 SELECTION OF ALTERNATIVES

This chapter aims to present a proposal for a “MCDM” framework for
assessing and comparing the financial performance of six oil companies
listed on the National Stock Exchange (NSE) under the NIFTY index as
of 16th August, 2023. The evaluation involves assigning a financial perfor-
mance score and subsequent ranking to these oil companies. In Table 9.2, six
oil companies scrip information is provided.

TABLE 9.2 Oil Companies (Alternatives) Scrip Info ]

SL. No Oil Companies NSE BSE ISIN Code*

A01 BPCL BPCL 500547 IN E029401011
A02 HPCL HINDPETRO 5000104 IN E094401015
A03 10C 10C 530965 IN E242401010
A04 OIL OIL 533106 IN E274J01014
A0S ONGC ONGC 500312 IN E213401029
A06 Reliance RELIANCE 500325 IN E002401018

2An ISIN Code, or International Securities Identification Number, serves as a unique identifier
for a particular securities offering. It is assigned by the National Numbering Agency of a
given country to distinguish it from other financial instruments within that jurisdiction.

9.4.2 SELECTION OF CRITERIA

The nine financial ratios of six oil companies which have enlisted at NIFTY
on 16.08.2023 in NSE have been taken for six financial years, that is, FY
2017-2018, FY 2018-2019, FY 2019-2020, FY 2020-2021, FY 2021-2022,
and FY 2022-2023.

Sources of data: NSE website.

Type of data: Secondary data.

Period of study: 6 years (FY 2017-2018 to FY 2022-2023).
Technique used: F-GTMA.

b s

Nine financial ratios were analyzed in this study. Among these, seven
were identified as Beneficiary criteria, including Quick Ratio, Current Ratio,
Return on Capital Employed, Return on Net Worth, Return on Total Assets,
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Earnings per Share, and Dividend Yield. The remaining two, Debt—Equity
Ratio and Price-Earnings Ratio, were considered as nonbeneficiary criteria.
In Table 9.3, formulas for financial ratios are outlined and also beneficiary
and nonbeneficiary criteria are defined.’

TABLE 9.3 Formula for Financial Ratios (Criteria)

SL. Ratios Formula Criteria
No.
€01 Quick Ratio . . Current Assests — Inventories Beneficiary
Quick Ratio = PRTIY
Current Liabilities
C02 Current Ratio ) Current Assests Beneficiary
Cuurent Ratio = ——————
Current Liabilities
C03 Debt-to-Equity ] ] Total Debt Nonbeneficiary
Ratio Debt to Equity Ratio = > -
Total Shareholders’ Equity
C04 Return on Capital Return on Canital Emsloved — Net Profit Beneficiary
Employed P pioy Total Capital Employed
C05 Return on Net Beneficiary
Worth Return on Net Worth = Net Profit -
Total Shareholders’Equity
C06 Return on Total Return on Total Assests = Net Profit Beneficiary
Assests Total Assets
C07 Earnings Per ' Net Profit Beneficiary
Share Earnings Per Share = -
Number of Equity Share
C08 Price Earnigs ) ) ~ Market Price Per Share Nonbeneficiary
Ratio Price Earnigs Ratio = -
Earnings Per Share
C09 Dividend Yield Dividend Per Share Beneficiary

Dividend Yield =

Market Price Per Share

9.4.3 FUZZY SET THEORY

Fuzzy set theory was introduced by Zadeh [20] and it is an extension of the
classical crisp logic into a multivariate form.

Definition: 4 set 4 is defined as A = {(¥,1.,(¥): ¥ € 4, uu; ¥) € (0,1)}

where u ;(¥) represents the membership function of A
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9.4.4 TFN

Definition: Triangualar Fuzzy Number AVTFN =1{(a b, c), u; ()}
is defined as Triangualar Fuzzy Number if it satisfies the following properties:
a. p;(x)iszero when x < a
b.  u; (x) is strictly increasing continous function when a <x<b
C.  u;(x)has the maximum value, that is, 1 atx = b
d.  w;(x)is strictly decreasing continous function in b <x<c
e

u; (x) is again zero when x > ¢

9.4.5 THE MEMBERSHIP FUNCTION OF A SYMMETRIC AND LINEAR
TFN

u;(x) = I, x=b O.1)

9.4.6 GRAPH OF TFN

Figure 9.3 is the representation of the membership function of linear TFN.
In Figure 9.3, TFN diagrammed with a < b < ¢ where a, b, and c are all
real numbers.

9.4.7 ARITHMETIC OPERATIONS OF TFN

LetE = (e, e, e,) and F = (f,, f,, f;) be two different TFN.

1. Addition:
(E+F)=(e, *f,e,*f,e,+f) 9.2)

2. Subtraction:

E-F=(e +f,e,~f,e;+f) (9.3)
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3. Multiplication:

(ExF)=(e,f.efse[,) 94)
4. Scalar Multiplication:
OF = (Oe,, Oe,, Oe,) 9.5
5. Division:
(EIF)=(e,/f, e,/f,, e lf) (9.6)
6. Inverse:
1 11
E'=|——,—~
(63 o e}j 9.7
7. Distance measure:
- 1
d(Ed,Ed)=\/5[(e]—ﬁ>2+(e2—ﬁ>2+<e3—m2] (9:8)

9.4.8 F-GTMA

GTMA stands as a prominent method within the realm of MCDM, addressing
decision problems in the presence of multiple criteria. This research intro-
duces a F-GTMA model designed for the ranking of alternatives. Grounded
in the broader context of operations research models, this approach employs
a logical and systematic foundation.
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Rao [21] extensively outlines GTMA in his book, highlighting its
methodology and applications. The comprehensive nature of graph theory
and its diverse applications is well-documented. Graph and digraph model
representations have proven valuable for modeling and analyzing various
systems across science and technology fields. The matrix approach emerges
as a particularly effective tool for efficiently analyzing graph/digraph models,
enabling the derivation of system functions and indices aligned with specific
objectives.

The GTMA methodology comprises digraph representation, matrix
representation, and permanent function representation. The digraph visually
captures variables and their interdependencies, while the matrix transforms
this visual representation into a mathematical form [22]. The permanent
function, a mathematical representation, plays a crucial role in determining
the numerical index associated with the model [23].

The step-by-step explanation of the methodology is as follows:

Step 1: Determining the factors influencing equipment selection involves
identifying all the criteria that impact the decision. This can be achieved by
referring to pertinent criteria outlined in existing literature or obtaining input
from the decision maker.

Step 2: Identify all possible equipment alternatives and evaluate each option.

Step 3: A graphical depiction of criteria and their interdependencies is
illustrated through an equipment selection criteria graph. Criteria are defined
as factors that impact the choice of an alternative, and the equipment selection
criteria digraph visually represents the relationships among these criteria. This
digraph contains of a set of nodes N = {n }, with i — 1,2,3,...,M and a set of
directed edges E = {e +. A node n, represents ith alternative selection criterion
and edges denote the comparatlve importance among the criteria. The number
of nodes M reflected is equal to the number of alternative selection criteria
measured. If a node 7 has relative importance over another node j in the alterna-
tive selection, then a directed edge is drawn from node i to node (i.e., e,). If/ has
relative importance over i directed edge is drawn from node j to node i (e ) [21].

Step 4: Create a matrix that represents the selection criteria for equlpment
in a one-to-one relationship, derived from the alternative selection criteria
digraph. This matrix is referred to as the equipment selection criteria matrix.
This is a M matrix and taking all of the criteria (i.e. 4)) and their relative
importance (i.e., a, ) Where 4, is the value of the ith criteria represented
by node n, and a, 1s the relatlve importance of the ith criteria over the jth
denoted by the edge e, The value of 4, should preferably be gotten from
available data. When quantitative Values of the criteria are available,
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normalized values of a criterion allocated to the alternatives are calculated
by vl./vj, where v, is the measure of the criterion for the ith alternative and v, is
the measure of the criterion for the jth alternative which has a higher measure
of the criterion among the considered alternatives. This proportion holds
true exclusively for beneficial criteria. A beneficial criterion is one in which
greater measurements are preferable for the specified purpose. Conversely,
a nonbeneficial criterion is one in which lower measurements are favored
and the normalized values assigned to the alternatives are calculated by v./v.

4y G Gy

ay A4y Ay
CS Matrix = :

anl anZ amm

Step 5: Deriving an alternative selection criteria function for a matrix
involves utilizing the permanent of the matrix as the defined measure. The
concept of the permanent matrix, introduced by Cauchy in 1812 during the
development of determinant theory, pertains to a specific subset of symmetric
functions later coined as permanents by Muir [24]. The permanent matrix is
a conventional matrix function utilized in combinatorial mathematics. It is
derived similarly to the determinant, but with a distinctive feature—unlike
the determinant where negative signs are involved, the permanent replaces
these negatives with positive signs in its computation. Understanding the
permanent concept enhances the comprehension of selection attributes.
Furthermore, employing this approach ensures that no negative signs are
present in the expression, preserving all information without loss [21].
The PER (CS) covers terms arranged in (M + 1) groups, and classification
involves these groups corresponding to criteria measures and the significance
of relative importance loops. The initial group signifies measures of M
criteria, with the second group omitted due to the absence of self-loops in
the digraph. The third group encompasses 2-criterion relative importance
loops and measures of (M-2) criteria. Each term in the fourth group denotes a
set of a 3-criterion relative importance loop, or its counterpart, and measures
of (M-3) criteria. The fifth group is divided into two sub-groups. The first
sub-group comprises sets of two 2-criterion relative importance loops and
measures of (M-4) criteria. Meanwhile, each term in the second sub-group
represents a set of a 4-attribute relative importance loop, or its pair, and
measures of (M-4) criteria. The sixth group contains two sub-groups
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as well. The terms in the first sub-group are sets of a 3-criterion relative
importance loop, or its pair, along with a 2-criterion importance loop and
measures of (M-5) criteria. On the other hand, each term in the second
sub-group represents a set of a 5-criterion relative importance loop, or its
pair, and measures of (M-5) criteria. The remaining terms in the equation
follow a similar pattern. Therefore, the comprehensive structure of the CS
fully defines the alternative selection evaluation problem, encapsulating all
conceivable structural components of criteria and their relative importance.
It is worth noting that this equation is essentially the determinant of an M—M
matrix, with all terms considered positive.

M M-1 M M

PER(CS) ZA,+ZZ ...... > (a,a,) 4,4 4,4,4,...... 4.4,

t
i=1 j=i+l M=t+]

M-2 M-1 M

M
+3 > Z (a,a,a, +a,a,a,)A4,4,4, ... .44,

i=l j=i+l k=i+l

M-3 M M-1 M M

+YY > > (aya, +a,a,)A,4,4,...... 4,4,

i=1 j=i+l k=i+l [=i+2 M=t+1

M M
z ...... Z (ayaﬁak,a,, +aya,a,a ﬂ)AmAnAO ...... 4.4,

i=1 j=i+l k=i+l I=i+2 M=t+1

(9.9)

Step 6: Assessing and ranking the alternatives involves assigning posi-
tions based on the enduring values previously computed in the preceding
stage (Tables 9.4-9.10).

9.5 NUMERICAL CALCULATIONS

TABLE 9.4 Inter Criteria Comparison Matrix /]
C1 C2 C3 . Cc9
1 M u 1 m u 1 m u 1 m u

Cl 1.00 1.00 1.00 1.00 1.00 1.00 0.73 0.97 0.93 0.77 094 0.95
C2 073 097 093 1.00 1.00 1.00 0.77 0.94 0.95 1.00 1.00 1.00
C3 117 136 1.75 1.08 1.18 1.50 0.60 0.77 0.87 1.08 1.18 1.50
C4 0.60 077 0.87 0.77 094 095 1.00 1.00 1.00 0.50 0.65 0.80
C5 104 1.08 131 1.17 136 147 1.08 1.18 1.50 0.73 097 0.93
C6 1.08 1.18 1.50 1.06 1.18 145 1.00 1.00 1.00 1.17 136 1.75
C7 077 094 095 1.08 1.18 150 136 1.75 1.08 0.60 0.77 0.87
C8 0.60 0.77 0.87 0.50 0.65 0.80 0.77 0.87 0.77 1.04 1.08 131
Cc9 1.00 1.00 1.00 073 097 093 1.08 131 1.17 1.08 1.18 1.50
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TABLE 9.5 Decision Matrix with Fuzzy GTMA
C1 C2 C3 C9

1 M u 1 m u 1 m u 1 m u
Al 028 043 055 025 035 050 0.62 0.65 0.80 1.00 1.00 1.00
A2 0.14 025 035 0.50 0.50 0.60 0.71 0.81 0.88 0.25 035 0.50
A3  0.62 0.65 0.80 0.80 0.87 090 0.50 0.50 0.60 0.73 097 0.93
A4 1.00 1.00 1.00 0.62 0.65 0.80 0.14 0.25 0.35 0.80 0.87 0.90
A5 025 035 050 0.71 0.81 0.88 0.62 0.65 0.80 0.62 0.65 0.80
A6 0.14 025 035 0.50 0.50 0.60 1.00 1.00 1.00 0.71 0.81 0.88
TABLE 9.6 Pair-Wise Comparison Matrix <]

Cc1 C2 C3 C4 C5 C6 (oy) C8 C9
Cl1 0.27 0.11 0.08 0.08 0.06 0.22 0.18 0.19
C2 0.89 0.77 0.19 0.25 0.62 0.77 0.94 0.44
C3 0.93 0.78 0.35 0.74 0.27 0.43 0.67 0.67
Cc4  0.08 0.06 0.22 0.28 0.72 0.22 0.18 0.08
C5 0.25 0.22 0.18 0.08 0.37 0.77 0.94 0.26
Cé6 0.74 0.77 0.94 0.26 0.24 0.43 0.67 0.77
Cc7 0.77 0.43 0.67 0.77 0.78 0.46 0.12 0.38
C8 0.25 0.08 0.06 0.22 0.62 0.77 0.45 0.58
Cc9 0.74 0.25 0.62 0.77 0.27 0.43 0.11 0.49
TABLE 9.7 Pair-Wise Comparison Matrix w.r.t. Al (Lower Bound Fuzzy Decision Matrix) ]

C1 C2 C3 C4 C5 C6 Cc7 C8 C9
Cl1 0.92 0.81 0.59 0.87 0.11 0.08 0.42 0.28 0.38
C2 0.92 0.82 0.61 0.52 0.25 0.19 0.73 0.87 0.81
C3 0.93 0.85 0.66 0.58 0.28 0.42 0.88 0.33 0.54
C4 0.55 0.36 0.42 0.54 0.48 0.65 0.37 0.65 0.54
C5 0.38 0.38 0.73 0.98 0.36 0.28 0.42 0.80 0.11
C6 0.80 0.11 0.08 0.42 0.62 0.37 0.65 0.34 0.69
Cc7 0.48 0.69 0.27 0.87 0.87 0.25 0.19 0.73 0.76
C8 0.18 0.28 0.42 0.88 0.38 0.28 0.38 0.65 0.65
C9 0.58 0.39 0.54 0.88 0.11 0.87 0.81 0.28 0.42
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TABLE 9.8 Pair-Wise Comparison Matrix w.r.t. A1 (Mean Bound Fuzzy Decision Matrix) <1

C1 C2 C3 C4 C5 Co6 (o) C8 c9
Cl1 0.65 0.56 0.38 0.79 0.58 0.54 0.49 0.54 0.77
C2 0.38 0.76 0.86 0.55 0.36 0.42 0.67 0.11 0.55
C3 0.78 0.78 0.67 0.38 0.38 0.73 0.78 0.67 0.38
C4 0.67 0.81 0.57 0.80 0.11 0.08 0.81 0.54 0.67
C5 0.68 0.94 0.54 0.48 0.69 0.27 0.94 0.45 0.78
C6 0.25 0.74 087 0.36 0.28 0.42 0.33 0.36 0.87
Cc7 0.28 0.57 0.80 0.62 0.37 0.65 0.76 0.62 0.65
C8 0.48 0.54 0.48 0.87 0.25 0.19 0.54 0.87 0.38
Cc9 0.97 0.48 0.69 0.54 0.45 0.67 0.57 0.38 0.80

TABLE 9.9 Pair-Wise Comparison Matrix w.r.t. Al (Upper Bound Fuzzy Decision Matrix) 1

C1 C2 C3 C4 Cs Coé C7 C8 Cc9
Cl 0.67 0.38 0.69 0.27 0.65 0.48 0.08 0.81 0.46
C2 0.57 0.80 0.28 0.42 0.38 0.73 0.27 0.88 0.25
C3 0.54 0.38 0.73 0.80 0.11 0.08 0.39 0.37 0.65
C4 087 0.11 0.08 0.48 0.43 0.91 0.94 0.73 0.78
C5 0.80 0.77 0.80 0.76 0.28 0.42 0.27 0.08 0.81
Cé 0.48 0.69 0.27 0.74 087 0.73 0.80 0.27 0.94
Cc7 0.36 0.28 0.42 0.57 0.80 0.47 0.57 0.27 0.48
C8 0.62 0.37 0.65 0.54 0.48 0.71 0.54 0.61 0.76
C9 0.57 0.80 0.11 0.08 0.57 0.77 0.61 0.28 0.74

TABLE 9.10 The Fuzzy and Crisp Permanent Matrix <1

Alternatives Fuzzy Permanent Matrix Crisp Permanent Matrix
Al (7.8,7.9, 8.3) 0.05
A2 (7.2,75, 8.8) 0.11
A3 (5.5,5.6,7.7) 0.12
A4 (4.7,5.1,6.8) 0.04
A5 (6.1,6.7,7.9) 0.13
A6 (6.2,8.2,8.8) 0.34

9.6 FINDINGS

According the value of crisp permanent matrix, the ranking of the six oil
companies is represented in Table 9.11. Greater crisp permanent value indi-
cates more efficiency.
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TABLE 9.11 Ranks

Alternatives Crisp Permanent Matrix Ranks
Al (BPCL) 0.05 5
A2 (Hind Petro) 0.11 4
A3 (I0C) 0.12 3
A4 (Oil India) 0.04 6
A5 (ONGC) 0.13 2
A6 (Reliance) 0.34 1

Ranks are shown by line chart in Figure 9.4.

5 /\
4 /N
3 \

0 T T T T T 1

Al1(BPCL) A2 (Hind A3(I0C) A4 (Oilindia) AS(ONGC) A6 (Reliance)
Petro)

FIGURE 9.4 Ranks in line chart. ]

9.7 CONCLUSIONS

In this research, the financial ranking of prominent players in the Indian
petroleum and energy sector—Reliance, BPCL, Hind Petro, IOC, Oil India,
and ONGC—reveals interesting insights into their respective financial stand-
ings. Reliance emerges as the frontrunner, securing the top position with a
financial ranking of 1, indicating robust fiscal health and strategic positioning.
ONGC follows closely behind in second place, reinforcing its strength in the
industry. IOC secures the third position, showcasing its stability and finan-
cial resilience. HPCL and Oil India occupy the fourth and fifth positions,
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respectively, indicating a solid but slightly lower financial standing compared
with their counterparts. BPCL, positioned at sixth place, suggests room for
improvement in its financial performance. Overall, these rankings provide
valuable benchmarks for stakeholders and investors to assess and navigate
the dynamic landscape of the Indian petroleum and energy sector, facilitating
informed decision-making for future endeavors and investments.
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CHAPTER 10

Fuzzy Applications in the Decision
Models and Expert Systems for Control
Capability Enhancement
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ABSTRACT

Fuzzy logic has emerged as a powerful paradigm with an approach to handling
the inherent uncertainties and impressions of real-world data. In decision
models, this property enables the incorporation of qualitative and quantita-
tive data with varying degrees of certainty. Applications of fuzzy logic are
manifold. In medical diagnosis, it aids in interpreting vague symptoms and
assessing diagnostic probabilities, enhancing the accuracy of healthcare
decision support systems. In financial modeling, empowers risk assessment
by accommodating fluctuating market conditions and imprecise economic
data. This concept has been used in shaping the environmental models by
handling incomplete and uncertain ecological data. In control systems,
fuzzy logic controllers excel at managing complex, nonlinear processes,
and finding applications in robotics, manufacturing, and process control.
Fuzzy logic concept in the pattern recognition systems can be concerned to
the image recognition and natural language processing. The quality control
and fault detection systems employ fuzzy logic to evaluate product quality
using imprecise measurements. The optimization of traffic signal timing
using fuzzy logic system is another control instance. The proposed chapter
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will provide detailed anecdote over the applicability of fuzzy system into
various decision models and expert systems with consequent enhancement
of efficiency and accuracy.

10.1 INTRODUCTION

Control capability enhancement is a crucial concept that finds applications
in various domains, ranging from manufacturing and industrial processes to
robotics, healthcare, finance, and beyond. It represents a pivotal aspect of
improving efficiency, precision, and adaptability within complex systems.
In this introductory section, we will explore the overarching importance of
control capability enhancement in these diverse domains.

10.1.1 MANUFACTURING AND INDUSTRIAL PROCESSES

In manufacturing, precision and control are paramount. Control capability
enhancement enables manufacturers to optimize processes, reduce defects,
and ensure consistent product quality. Industries such as automotive, aero-
space, and electronics heavily rely on control enhancements to achieve
tighter tolerances and meet stringent regulatory requirements.

10.1.2 ROBOTICS AND AUTOMATION

In the realm of robotics, control capability enhancement translates into more
agile and responsive robots. These robots can perform tasks with greater
accuracy, improving productivity across industries [21]. Applications extend
to fields like surgery, where robotic surgical systems offer surgeons enhanced
control and precision during delicate procedures [1].

10.1.3 HEALTHCARE

Control capability enhancement in healthcare leads to advanced medical
devices and equipment. This includes wearable health monitors, drug
delivery systems, and diagnostic tools. Enhanced control ensures patient
safety, precise drug administration, and real-time monitoring, improving
healthcare outcomes [32].
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10.1.4 FINANCE AND TRADING

In financial markets, control capabilities are essential for algorithmic
trading systems. These systems make rapid decisions based on market
conditions, optimizing trading strategies, and minimizing risk. Control
enhancements enable financial institutions to respond to market fluctua-
tions with unparalleled speed and accuracy.

10.1.5 AEROSPACE AND AVIATION

Aircraft and spacecraft demand precise control to ensure passenger safety and
mission success. Control capability enhancements lead to better flight control
systems and navigation. These enhancements also enable more efficient fuel
consumption and contribute to environmental sustainability [31].

10.1.6 ENERGY AND ENVIRONMENTAL CONTROL

In the energy sector, control capability enhancement plays a role in smart
grids, optimizing energy distribution, and consumption. Environmental
control systems benefit from enhanced control to monitor and mitigate
pollution, reduce energy waste, and conserve resources [18].

10.1.7 RESEARCH AND SCIENTIFIC EXPLORATION

Scientific experiments and explorations, whether in physics, chemistry, or space
exploration, rely on precise control to collect accurate data. Control capability
enhancement facilitates groundbreaking discoveries and innovations.

In conclusion, control capability enhancement is a cross-cutting impera-
tive that drives advancements across various domains. It empowers indus-
tries, improves quality of life, and fosters innovation. As we delve deeper
into this chapter, we will explore the tools and methodologies that enable
control enhancement and examine their applications in detail.

10.2 THE ROLE OF DECISION MODELS AND EXPERT SYSTEMS

The role of decision models and expert systems in achieving control capability
enhancement is pivotal across various domains. Decision models and expert
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systems leverage advanced algorithms, data analysis, and domain-specific
knowledge to optimize control processes. Here is how these technologies
contribute to enhancing control capabilities.

10.2.1 DECISION MODELS

Decision models are mathematical representations of systems, processes,
or scenarios. They help in making informed choices by evaluating different
options based on predefined criteria. In the context of control capability
enhancement [7]:

» Optimization: Decision models can optimize control settings by
considering multiple variables and constraints. For example, in manu-
facturing, decision models can optimize production schedules, resource
allocation, and quality control parameters to enhance overall efficiency.

» Predictive analytics: Decision models can utilize historical data and
predictive analytics to anticipate system behavior. This allows for
proactive adjustments and fine-tuning of control parameters, reducing
the likelihood of errors or disruptions [22].

» Scenario analysis: Decision models can simulate various scenarios
and assess their impact on control processes. This capability helps in
risk management and contingency planning, ensuring system stability
even under adverse conditions.

10.2.2 EXPERT SYSTEMS

Expert systems are computer programs designed to mimic the decision-
making capabilities of human experts in specific domains. They rely on
knowledge bases, rules engines, and inference engines to provide expert-
level advice. In control capability enhancement [28]:

*  Domain-specific knowledge: Expert systems are built upon extensive
domain-specific knowledge. They capture the expertise of experienced
professionals, making it accessible to a broader audience. For instance,
in healthcare, expert systems can assist medical practitioners in
diagnosing complex conditions by providing recommendations based
on a vast knowledge base.

* Real-time decision support: Expert systems can offer real-time
decision support by continuously analyzing data and providing
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recommendations. In manufacturing, these systems can monitor
equipment performance and suggest maintenance actions to
prevent breakdowns [15].

» Consistency and accuracy: Expert systems ensure consistent and
accurate decision-making, eliminating human errors, and biases. In
finance, they assist in portfolio management by adhering to predefined
investment strategies consistently.

10.2.3 SYNERGY BETWEEN DECISION MODELS AND EXPERT SYSTEMS

Decision models and expert systems often work synergistically to achieve
control capability enhancement. Decision models can incorporate expert
system outputs as inputs for decision-making. For example, an expert system
monitoring an industrial process can feed data and recommendations into a
decision model that optimizes control settings [23].

The combination of decision models and expert systems enables adap-
tive control. Systems can learn from historical data and expert knowledge,
continuously improving their control strategies to adapt to changing condi-
tions and requirements.

The objectives of this chapter are to provide readers with a comprehen-
sive understanding of the applications of fuzzy logic, decision models, and
expert systems in enhancing control capabilities across diverse domains.

In summary, decision models and expert systems play a vital role in
enhancing control capabilities across various domains. They enable optimi-
zation, predictive analytics, scenario analysis, domain-specific knowledge
utilization, real-time decision support, and improved consistency and accu-
racy. By leveraging these technologies, industries and sectors can achieve
greater control, efficiency, and reliability in their operations.

10.3 CONTROL CAPABILITY ENHANCEMENT

Control capability enhancement refers to the process of improving and
strengthening the ability to regulate, manage, and optimize systems,
processes, or operations within various domains. It involves the integration
of advanced technologies, methodologies, and decision-making tools to
achieve better control, accuracy, and adaptability in a given context [35].
Control capability enhancement is significant for several reasons.
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Improved efficiency: Enhancing control capabilities leads to more
efficient operations. It allows organizations to streamline processes,
reduce waste, and achieve higher productivity levels.

Enhanced decision-making: With better control, decision-makers
have access to more accurate and real-time data. This empowers
them to make informed choices and respond quickly to changing
circumstances.

Error reduction: Control capability enhancement minimizes errors
and reduces the likelihood of costly mistakes. This is especially
crucial in fields where precision is critical, such as manufacturing,
healthcare, and finance.

Adaptability: Advanced control systems can adapt to changing
conditions and requirements. They are flexible and can handle varia-
tions, making them suitable for dynamic environments [20].

Cost savings: By optimizing processes and reducing errors, control
capability enhancement often leads to cost savings. It can result in
lower operational expenses and increased profitability.

Competitive advantage: Organizations that excel in control capa-
bility are often more competitive in their respective industries. They
can deliver higher quality products and services while maintaining
cost-effectiveness.

Risk mitigation: Enhanced control capabilities can help identify and
mitigate risks effectively. This is particularly important in industries
like aviation, healthcare, and energy, where safety is paramount [5].
Innovation: The pursuit of control capability enhancement often
drives innovation. It encourages the development of new technolo-
gies and approaches to achieve better control.

Cross-domain applications: Control capability enhancement is appli-
cable across various domains, including manufacturing, healthcare,
finance, transportation, and more. Its versatility makes it a valuable
concept in many fields.

10) Sustainability: In sectors like energy and environmental manage-

ment, control capability enhancement can contribute to sustainability
efforts by optimizing resource usage and reducing waste.

In summary, control capability enhancement is a vital concept that plays
a significant role in improving operational efficiency, reducing errors, and
driving innovation across diverse domains. It empowers organizations to
adapt to change, make informed decisions, and maintain a competitive edge
in today’s dynamic and complex world.
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10.3.1 REAL-LIFE APPLICATION: CONTROL CAPABILITY
ENHANCEMENT IN HEALTHCARE

One compelling real-life application of control capability enhancement is
in the healthcare industry, particularly in the management of critical care
units in hospitals. In these environments, precise control over patient care
and medical equipment is essential to ensure patient safety and optimize
treatment outcomes. Here is a case study illustrating the significance and
impact of control capability enhancement in healthcare:

Case Study: Control Capability Enhancement in Intensive Care Units (ICUs)

Introduction:

ICUs are high-stress environments where critically ill patients receive
specialized medical care. Timely and accurate decision-making, as well as
precise control over medical devices, are paramount to patient survival and
recovery. Control capability enhancement is vital to improving patient care
and outcomes in ICUs.

Objectives:

The primary objectives of implementing control capability enhancement in
ICUs are as follows:

1) Real-time monitoring: To enable real-time monitoring of patients’
vital signs, such as heart rate, blood pressure, and oxygen levels.

2) Precision medication delivery: To ensure precise administration of
medications, including dosage and timing.

3) Ventilator control: To optimize mechanical ventilation parameters
based on patient needs.

4) Alarm systems: To develop advanced alarm systems that alert medical
staff to critical changes in a patient’s condition.

5) Data analytics: To collect and analyze patient data for early detec-
tion of complications and predictive analytics.

Implementation:

*  Advanced monitoring systems: High-tech monitors are used to
continuously track patients’ vital signs and provide instant feedback
to healthcare providers.

*  Smart infusion pumps: These devices deliver medications at precise
rates, reducing the risk of medication errors.
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» Closed-loop ventilation: Advanced ventilators use closed-loop
control systems to adapt ventilation settings in response to a patient’s
respiratory status.

*  Machine-learning algorithms: Machine-learning algorithms analyze
patient data to predict deteriorations in real-time, allowing for early
intervention.

Results:

The implementation of control capability enhancement in ICUs has yielded
significant results:

» Improved patient outcomes: Enhanced control over patient care has
led to improved survival rates and reduced complications.

* Reduced medication errors: Precise medication delivery has mini-
mized dosage errors, enhancing patient safety.

» Early warning systems: Advanced alarm systems provide timely alerts,
enabling faster responses to critical situations.

* Data-driven care: Data analytics have facilitated evidence-based
decision-making and better understanding of patient trends.

Conclusion:

Control capability enhancement in ICUs has revolutionized critical care by
providing healthcare providers with the tools and systems needed to deliver
more precise, timely, and effective care. This application demonstrates how
control capability enhancement can significantly impact patient outcomes
and safety in a real-world healthcare setting.

10.3.2 CHALLENGES AND COMPLEXITIES IN CONTROL SYSTEMS

Control systems play a pivotal role in various domains, including engineering,
manufacturing, healthcare, and more. However, they are not without their
challenges and complexities. Here, we discuss some of the key issues and
difficulties associated with control systems:

1) Nonlinearity: Many real-world systems exhibit nonlinear behavior,
making their control more complex. Traditional linear control
techniques may not be effective in handling nonlinear systems.
Nonlinearity can lead to unexpected behaviors and difficulties in
designing control strategies [27].
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Uncertainty: Uncertainty in system parameters, external distur-
bances, and noise can significantly impact control system perfor-
mance. Robust control techniques are required to handle uncertainty
and maintain stability and performance under varying conditions.
Complexity of models: Building accurate mathematical models of
complex systems can be challenging. In some cases, models may be
too complex to capture all relevant dynamics accurately. This can
lead to difficulties in designing controllers that work effectively with
the available models [33].

Time delays: Control systems often encounter time delays in
measurements, actuations, or communication. Time delays can lead
to instability or reduced performance, especially in systems requiring
rapid responses.

Multivariable systems: Systems with multiple interacting variables
can be challenging to control. The coupling between variables can
lead to difficulties in designing controllers that provide optimal
control while avoiding interactions [3].

Sensor and actuator limitations: Control systems rely on sensors to
measure system variables and actuators to apply control actions. Sensor
inaccuracies, limited measurement ranges, and actuator constraints
can pose significant challenges in control system design [37].

Human interaction: In some applications, control systems need to
interact with human operators. Designing user-friendly interfaces and
control strategies that are intuitive for human users can be complex.
Safety and reliability: Control systems in critical applications, such
as, automotive control or healthcare devices, must meet stringent
safety and reliability requirements. Ensuring fail-safe mechanisms
and redundancy can be complex and costly.

Adaptation and learning: Some control systems require adaptive or
learning capabilities to adjust to changing operating conditions or
improve performance over time. Designing adaptive control algo-
rithms that are robust and stable is a complex task.

10) Integration of control systems: In modern industries, control systems

often need to be integrated with other systems, such as data analytics,
Internet of Things (IoT) devices, and communication networks. Ensuring
seamless integration and interoperability can be challenging [24].

11) Regulatory compliance: Many control systems need to adhere to

regulatory standards and certifications, which can introduce addi-
tional complexity in terms of documentation, testing, and validation.
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12) Energy efficiency: With increasing emphasis on sustainability, control
systems are expected to optimize energy usage. Achieving energy-
efficient control without compromising performance can be complex.

In summary, control systems are essential for maintaining stability,
improving performance, and ensuring the safe operation of various processes
and devices. However, the challenges and complexities associated with
control systems require continuous research and innovation to develop effec-
tive solutions that meet the demands of modern applications.

10.3.3 THE NEED FOR ADVANCED DECISION-MAKING TOOLS

Advanced decision-making tools are critical in today’s complex and data-driven
world. These tools provide organizations and individuals with the means to
make informed, timely, and optimal decisions across various domains. Here are
some key reasons highlighting the need for advanced decision-making tools:

1) Complexity of decision environments: In many fields, decision
environments have become increasingly complex due to factors
like globalization, technological advancements, and interconnected-
ness. Simple, rule-of-thumb decision-making is often inadequate to
address the intricate interplay of variables and constraints in such
environments [16].

2) Big data and information overload: The digital age has ushered in
an era of massive data generation. Decision-makers are inundated
with vast amounts of data from various sources. Advanced tools
like data analytics, machine learning, and artificial intelligence (Al)
are necessary to sift through this data, extract valuable insights, and
support decision-making.

3) Rapidly changing markets: Business landscapes are highly dynamic,
with markets evolving rapidly. Organizations must make quick
decisions to stay competitive. Advanced tools provide real-time data
analysis and predictive capabilities, enabling businesses to respond
swiftly to market changes.

4) Risk management: Decision-making often involves assessing and
mitigating risks. Advanced decision tools, including risk modeling and
scenario analysis, help organizations identify potential risks, quantify
their impact, and develop strategies to manage or mitigate them.

5) Resource optimization: Efficient resource allocation is essential for
organizations to maximize their outcomes. Advanced optimization
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algorithms can help allocate resources such as finances, personnel, and
equipment optimally, reducing waste and improving overall efficiency.
Strategic planning: Organizations require sophisticated tools for
strategic planning and goal setting. Decision support systems can
assist in long-term strategic decision-making, aligning objectives
with available resources and market conditions.

Competitive advantage: Those who harness advanced decision-making
tools gain a competitive edge. These tools enable organizations to make
data-driven decisions that can lead to cost savings, increased revenue,
and improved customer satisfaction.

Personalized experiences: In fields like marketing and healthcare,
personalization is key. Advanced tools analyze individual preferences
and behaviors to tailor products, services, and recommendations,
enhancing customer experiences.

Scientific research and exploration: In scientific research, advanced
tools aid in data analysis, hypothesis testing, and simulations. They are
instrumental in fields like genomics, climate modeling, and particle
physics.

10) Healthcare: Clinical decision support systems assist healthcare

providers in diagnosing diseases, choosing treatment options, and
improving patient care. These tools integrate patient data, medical
knowledge, and best practices.

11) Government and public policy: Government agencies use advanced

decision-making tools to assess the impact of policies, allocate
resources, and respond to crises efficiently.

12) Environmental management: Environmental decisions, such as climate

change mitigation and natural resource conservation, require sophisti-
cated modeling and analysis tools to understand complex ecosystems
and predict outcomes.

In conclusion, the need for advanced decision-making tools arises from
the increasingly complex, data-rich, and fast-paced nature of our world.
These tools empower organizations and individuals to make informed, stra-
tegic, and effective decisions across a wide range of applications, ultimately
driving success and innovation.

10.4

FUZZY LOGIC FUNDAMENTALS

Fuzzy logic is a mathematical framework that extends classical Boolean logic
to handle uncertainty and imprecision in decision-making. It was introduced
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by Lotfi Zadeh in the 1960s and has since found applications in various
fields, including control systems, Al, and decision support [4].

10.4.1 LINGUISTIC VARIABLES AND FUZZY SETS

1) Linguistic variables: Fuzzy logic introduces the concept of linguistic
variables, which are variables whose values are expressed in linguistic
terms rather than precise numerical values. For example, in the context
of temperature control, a linguistic variable could be “temperature,”
and linguistic terms associated with it might include “cold,” “warm,”
and “hot.” Linguistic variables allow decision-makers to express their
knowledge and preferences in a more human-like manner [2].

2) Fuzzy sets: Fuzzy sets are a fundamental concept in fuzzy logic.
Unlike traditional sets where an element either belongs to a set
(membership = 1) or does not belong (membership = 0), fuzzy sets
allow for partial membership. Each element has a membership value
between 0 and 1, indicating the degree to which it belongs to the set.
This partial membership accommodates uncertainty and vagueness
in real-world data.

10.4.2 MEMBERSHIP FUNCTIONS

Membership functions define how elements relate to a fuzzy set. They assign
a membership value to each element based on its degree of membership in
the set. Membership functions can take various shapes, such as triangular,
trapezoidal, or sigmoidal, depending on the nature of the linguistic term
and the context. For example, a membership function for the linguistic term
“warm” might have a triangular shape, peaking at the point where something
is considered moderately warm [6].

10.4.3 FUZZY INFERENCE SYSTEMS (FISS)

FISs are the core of fuzzy logic-based decision-making. They consist of three
main components:

1) Fuzzification: In this step, crisp input values (numerical data) are
converted into fuzzy values using appropriate membership functions.
This process allows the model to handle imprecise input [30].
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2) Fuzzy rules: FISs rely on a set of IFF-THEN rules that relate the fuzzy

input variables to fuzzy output variables. These rules encode expert
knowledge or decision-making criteria. For example, a rule could be “IF
temperature is cold AND humidity is high, THEN turn on the heater.”

3) Defuzzification: After applying the fuzzy rules, the system produces

fuzzy output values. Defuzzification is the process of converting
these fuzzy outputs back into crisp values, making the final decision
or control action. Various defuzzification methods, such as centroid
or maximum membership, can be used [26].

Key Characteristics and Advantages of Fuzzy Logic:

Handling uncertainty: Fuzzy logic excels in situations where data is
imprecise or uncertain. It allows for a more nuanced representation of
knowledge.

Human centric: Fuzzy logic provides a framework that aligns well
with human thinking and natural language expressions, making it
suitable for expert systems and decision support.

Interpretability: Fuzzy logic models are often more interpretable than
complex mathematical models, making them valuable in situations
where transparency is crucial.

Robustness: Fuzzy logic systems can tolerate noisy data and variations,
making them robust in real-world applications.

Fuzzy logic is particularly valuable in applications such as control
systems (e.g., temperature control in heating, ventilation, and air conditioning
(HVAC) systems), decision support systems (e.g., medical diagnosis), and
expert systems (e.g., industrial automation), where decision-making is influ-
enced by qualitative and uncertain information.

10.5 DECISION MODELS AND EXPERT SYSTEMS

Decision models and expert systems play a crucial role in control applica-
tions by facilitating intelligent and data-driven decision-making. These tools
leverage advanced algorithms and domain expertise to enhance control capa-
bilities in various industries and fields. Here is an exploration of their use:

1) Process control: In manufacturing and industrial processes, decision

models and expert systems are employed to monitor and control variables
such as temperature, pressure, and flow rates. They use real-time data
to make decisions, optimize processes, and ensure product quality [10].
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Supply chain management: Decision models are used to optimize
supply chain operations, including inventory management, demand
forecasting, and logistics. Expert systems assist in route planning,
warehouse management, and order fulfillment to enhance control
over the supply chain.

Energy management: In energy-intensive industries and smart grid
systems, decision models are used to manage energy consumption
efficiently. They can optimize energy generation, distribution, and
consumption, leading to cost savings and reduced environmental
impact [19].

Financial control: Financial institutions use decision models to
assess risk, make investment decisions, and automate trading strate-
gies. Expert systems assist in fraud detection and credit risk analysis,
enhancing financial control.

Healthcare: Expert systems in healthcare assist in diagnosis and treat-
ment planning. They incorporate medical knowledge and patient data
to provide recommendations to healthcare professionals, enhancing
the accuracy and effectiveness of medical decisions [13].
Agriculture: Decision models are used in precision agriculture to
control irrigation, fertilization, and pest management. Expert systems
help farmers make data-driven decisions to optimize crop yields and
resource utilization [29].

Advantages of Using Decision Models and Expert Systems:

Data-driven decisions: These tools leverage data analytics to make
informed decisions, reducing reliance on intuition and guesswork.
Consistency: Expert systems ensure consistent decision-making
based on predefined rules and expert knowledge, reducing variability.
Automation: They can automate routine tasks and decisions, freeing
up human resources for more complex and strategic activities.
Scalability: Decision models and expert systems can handle large data-
sets and complex scenarios, making them suitable for various industries
and applications.

Continuous improvement: They can adapt and improve over time as they
learn from new data and experiences, enhancing control capabilities.

Examples of Industries and Fields

1)

Manufacturing: Decision models and expert systems are used in
manufacturing industries to control production processes, quality
assurance, and predictive maintenance.
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2) Finance: Financial institutions use these tools for risk management,
fraud detection, and algorithmic trading.

3) Healthcare: Medical expert systems assist in disease diagnosis, treat-
ment planning, and drug discovery.

4) Transportation: Airlines and logistics companies utilize decision
models for route optimization and fleet management.

5) Energy: Smart grid systems use decision models to control energy
distribution and consumption efficiently.

6) Agriculture: Precision agriculture relies on decision models to control
irrigation, fertilization, and pest management.

7) Retail: Retailers use these tools for inventory management, demand
forecasting, and pricing optimization.

In summary, decision models and expert systems are versatile tools that
enhance control capabilities across a wide range of industries, providing
data-driven, consistent, and automated decision-making processes. Their
adaptability and scalability make them valuable assets for achieving control
capability enhancement.

Example: Quality Control in Manufacturing

Imagine a manufacturing plant that produces electronic components such
as microchips. The quality of these components is critical to ensuring they
function correctly in various electronic devices. In this scenario, decision
models and expert systems are employed for quality control.

Problem: The manufacturing process involves multiple parameters such
as temperature, voltage, and production speed, which can affect the quality
of the microchips. The challenge is to maintain consistent product quality
and detect any deviations from the desired specifications.

Solution:

1) Data collection: Sensors are placed at various points along the
production line to collect data on parameters like temperature (7)),
voltage (V), and speed (S). For each microchip produced, a set of
measurements (7, V, S) is recorded.

2) Decision model: A decision model is created to evaluate the quality
of each microchip based on the collected data. The model uses a
mathematical formula to calculate a quality score (Q) for each chip.
This formula could be as simple as

0=2T+3V—-0.5S

This is a simplified example; in practice, the formula would be
more complex and based on domain expertise.
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3) Expert system: An expert system is developed to set the acceptable
quality threshold. It considers historical data, industry standards,
and expert knowledge to determine the acceptable range of quality
scores. If a chip’s quality score falls outside this range, it is flagged
as a potential issue.

4) Automation: The decision model and expert system work together in
real-time. As each microchip is produced, its quality score is calcu-
lated and compared to the acceptable threshold. If a chip’s quality
score is within the acceptable range, it continues through the produc-
tion process. If it falls outside the range, the system can automatically
make adjustments to the production parameters to correct the issue or
trigger an alert for manual inspection.

Mathematical example:
Suppose a microchip is produced with the following measurements:

*  Temperature (7) = 100°C
* Voltage (V)=52V
*  Speed (S) = 800 units

Using the quality formula:

0=2T+3V—-0.5S
0 = 2(100) + 3(5.2) — 0.5(800) = 200 + 15.6 — 400 = —184.4

The quality score for this microchip is —184.4. The expert system
compares this score to the acceptable range, and if it falls outside, corrective
actions are taken.

In this way, decision models and expert systems enhance control capa-
bilities by automating quality control processes, ensuring consistent product
quality, and minimizing defects in manufacturing.

10.6 INTEGRATION OF FUZZY LOGIC

Fuzzy logic can be effectively integrated into decision models and expert
systems to enhance their control capabilities in various domains. Here is how
this integration can be achieved:

1) Linguistic variables and fuzzy sets: Fuzzy logic allows for the
representation of linguistic variables and fuzzy sets, which capture
the imprecise nature of real-world data. Instead of binary values
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(true/false), fuzzy logic assigns degrees of membership to elements,
allowing for a more nuanced representation of data [25].
Membership functions: Membership functions define the shape of
fuzzy sets and determine the degree of membership of an element.
They can be tailored to specific application domains, enabling deci-
sion models to capture expert knowledge and imprecise information
effectively.

FISs: FISs are used to model the decision-making process based
on fuzzy logic rules. These systems involve fuzzy logic operators
(AND, OR, NOT) and fuzzy if-then rules that mimic human expert
reasoning. FIS combines linguistic variables and membership func-
tions to derive meaningful conclusions [34].

Control systems: Fuzzy logic-based control systems, such as fuzzy
controllers, are employed to manage complex and nonlinear processes.
These controllers can adapt to changing conditions and make decisions
based on linguistic rules, making them suitable for control applications.

Benefits of Integrating Fuzzy Logic:

The integration of fuzzy logic into decision models and expert systems offers
several advantages for control capability enhancement:

1)

Handling uncertainty: Fuzzy logic can effectively handle uncertainty
and imprecision in real-world data, making it suitable for decision-
making in domains where precise numerical values are challenging to
obtain.

2) Expert knowledge incorporation: Fuzzy logic allows for the incorpo-

ration of expert knowledge through linguistic rules and membership
functions. This enables systems to make decisions that align with
human expertise.

3) Adaptability: Fuzzy logic-based systems can adapt to changing

4)

conditions and adjust their decisions accordingly. This adaptability
is valuable in control systems where conditions may vary.

Complex systems: Fuzzy logic is well-suited for controlling complex
and nonlinear systems, making it applicable in various industries
such as automotive, robotics, and manufacturing.

Real-World Examples of Integration:

1) Automotive cruise control: Fuzzy logic is used in adaptive cruise

control systems, which adjust a vehicle’s speed based on distance
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and relative speed to the vehicle ahead. Fuzzy controllers make
smooth decisions in varying traffic conditions.

2) Air conditioning systems: Fuzzy logic-based controllers are used
in HVAC systems to optimize temperature and humidity control in
buildings. These systems adapt to changing environmental conditions.

3) Washing machines: Fuzzy logic is employed in washing machines to
determine the optimal washing cycle based on factors like load size,
fabric type, and dirt level.

4) Traffic signal control: Fuzzy logic-based traffic signal controllers
adjust signal timings based on traffic flow, reducing congestion and
improving traffic management.

Incorporating fuzzy logic into decision models and expert systems
enhances their control capabilities by addressing uncertainty, leveraging
expert knowledge, and enabling adaptability, making it a valuable tool across
various industries and applications.

Let us consider a real-world case study of how fuzzy logic can be applied
to enhance control capabilities in an HVAC system. In this case, we will
focus on optimizing temperature control in a building using a fuzzy logic-
based controller.

Case study: Fuzzy logic HVAC temperature control

Background:

Imagine a large office building with varying occupancy and external weather
conditions. The goal is to maintain a comfortable indoor temperature (IT)
while minimizing energy consumption. Traditional HVAC systems often
struggle to adapt to changing conditions efficiently.

Problem:

Design a fuzzy logic-based HVAC temperature control system that can adjust
the heating and cooling output based on occupancy, temperature setpoints,
and external weather conditions.

Solution:

A fuzzy logic controller (FLC) can effectively handle this complex problem
by incorporating linguistic rules and membership functions.

Variables:

1) IT: Represented as a linguistic variable with membership functions
for “Cold,” “Comfortable,” and “Warm.”
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2) Occupancy (O): Represented as a linguistic variable with member-
ship functions for “Low,” “Medium,” and “High.”

3) Outdoor temperature (OT): Represented as a linguistic variable with
membership functions for “Cold,” “Mild,” and “Hot.”

4) HVAC output: Represented as a linguistic variable with membership
functions for “Cooling,” “No Action,” and “Heating.”

Fuzzy Rules:
The FLC incorporates rules such as:

1. IFITis “Cold” AND O is “High” THEN HVAC is “Heating”

2. IFITis “Warm” AND O is “Low” THEN HVAC is “Cooling”

3. IF IT is “Comfortable” AND O is “Medium” THEN HVAC is “No
Action”

Membership Functions:

Membership functions are defined for each linguistic variable. For example,
“Cold” for IT might have a triangular membership function centered around
65°F, while “High” for O might have a trapezoidal membership function
centered around 80 occupants.

Fuzzy Inference:

The controller evaluates the fuzzy rules using the current values of IT, O, and
OT to determine the appropriate HVAC output. This process considers the
linguistic variables and their membership values.

Defuzzification:

The final fuzzy output is defuzzified to obtain a crisp value representing the
HVAC output. This crisp value determines whether the HVAC system should
cool, heat, or remain idle.

Calculations:
Suppose the current conditions are as follows:

 IT = 72°F (membership values: Cold = 0.2, Comfortable = 0.8,
Warm = 0.3)

* O = 60 occupants (membership values: Low = 0.3, Medium = 0.7,
High =0.2)

*  OT = 80°F (membership values: Cold = 0.1, Mild = 0.9, Hot = 0.3)

Using fuzzy logic, the controller evaluates the fuzzy rules and member-

ship functions to determine the HVAC output. Let us assume the output is
“Cooling” with a membership value of 0.6.
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Conclusion:

The fuzzy-logic-based HVAC controller efficiently adjusts the HVAC output
based on the complex interactions between IT, O, and OT. By considering
linguistic variables and membership functions, it provides adaptive and
energy-efficient temperature control in real-time.

This case study demonstrates the practical application of fuzzy logic
in enhancing control capabilities, especially in scenarios where traditional
control systems may struggle to adapt effectively.

10.7

1)

2)

3)

4)

5)

CHALLENGES AND FUTURE DIRECTIONS

Computational complexity: Fuzzy logic systems can become compu-
tationally intensive, especially in large-scale applications. Efficient
algorithms and hardware acceleration methods need to be developed
to handle complex FISs.

Data uncertainty: Fuzzy logic is effective at handling uncertainty, but
it can be challenging to model and quantify uncertainty accurately.
Improvements in uncertainty modeling and propagation are essential.
Interoperability: Integrating fuzzy logic-based controllers with
existing control systems or IoT platforms can be complex. Standards
and protocols for seamless integration are needed.

Tuning and optimization: Fuzzy systems often require manual tuning of
membership functions and rules, which can be time-consuming. Auto-
mated tuning methods, such as machine learning-based approaches,
are an ongoing research area.

Explainability: Fuzzy logic systems can be seen as “black boxes,”
making it difficult to explain their decisions. Developing methods
to enhance the transparency and interpretability of fuzzy models is
crucial, especially in critical applications.

Future Directions:

1)

2)

Hybrid systems: The integration of fuzzy logic with other Al techniques
like neural networks and reinforcement learning is a promising
direction. Hybrid systems can leverage the strengths of each approach
for improved control and decision-making [36].

Edge computing: Fuzzy logic is well-suited for edge computing
environments, where decisions need to be made locally and in real-
time. Future research should focus on optimizing fuzzy systems for
edge devices with limited resources [17].
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Explainable Al (XAI): Advancements in XAl will benefit fuzzy
logic by making its decision-making processes more transparent and
understandable to users and stakeholders [14].

Human—machine collaboration: Fuzzy logic can play a vital role
in collaborative decision-making between humans and autonomous
systems. Research in this area can enhance the effectiveness and
acceptance of autonomous systems in various domains [9].

Energy efficiency: Developing energy-efficient fuzzy controllers
is crucial, especially for applications in renewable energy, smart
buildings, and green technologies. Fuzzy systems can help optimize
energy usage in real-time.

Healthcare and biotechnology: Fuzzy logic-based expert systems
have substantial potential in healthcare for diagnostics, treatment
recommendation, and monitoring of chronic diseases. Further research
can improve the accuracy and reliability of such systems [12].

Emerging Trends:

1)

2)

3)

4)

5)

XAI: As Al ethics and transparency gain importance, XAl techniques
that work in conjunction with fuzzy logic will be a significant trend.
Al in autonomous systems: Fuzzy logic will continue to play a
role in autonomous vehicles, drones, and robotics, where real-time
decision-making under uncertainty is critical [8].

Industry 4.0: Fuzzy logic will be a key technology in the realization
of smart factories and industrial automation, enabling flexible and
adaptive manufacturing processes.

Health tech: Fuzzy logic will be applied in wearable devices and health-
care apps for personalized health monitoring and decision support [11].
Environmental control: Fuzzy logic will contribute to smart city initia-
tives and environmental monitoring by optimizing energy consump-
tion and resource allocation.

In summary, fuzzy logic remains a valuable tool for control capability
enhancement, and ongoing research will address challenges, drive innova-
tions, and expand its applications across diverse domains in the future.

10.8

CONCLUSION

In this chapter, we explored the fascinating world of control capability
enhancement through the lens of decision models, expert systems, and the
integration of fuzzy logic. Here are the key takeaways:
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Control capability enhancement: Control capability enhancement
is a vital aspect of various domains, including industrial automa-
tion, healthcare, environmental management, and more. It involves
improving the ability to make decisions, control processes, and
respond to dynamic situations effectively.

Role of decision models: Decision models provide structured frame-
works for making informed choices. They help in identifying optimal
decisions, considering various factors, and enhancing overall control
in complex systems.

Expert systems: Expert systems leverage human knowledge and
expertise to make decisions in specific domains. They excel in
capturing and replicating the decision-making processes of human
experts, thus enhancing control capabilities.

Significance of fuzzy logic: Fuzzy logic, with its ability to handle
uncertainty and imprecision, plays a crucial role in control capability
enhancement. It offers a powerful framework for decision-making,
particularly when dealing with vague or incomplete information.
Fuzzy logic integration: Integrating fuzzy logic into decision models
and expert systems enhances their adaptability and resilience. Fuzzy
logic enables systems to make decisions based on linguistic vari-
ables, which align well with human-like decision processes.
Real-life applications: We explored real-life applications across
various domains where these technologies have made a significant
impact. From industrial process control to healthcare diagnostics,
decision models, expert systems, and fuzzy logic have demonstrated
their effectiveness.

Challenges and future directions: We discussed the challenges asso-
ciated with these technologies, such as computational complexity and
explainability. Moreover, we highlighted future directions, including
hybrid systems, edge computing, and advancements in XAlI.
Emerging trends: The emerging trends in control systems point to
a future where decision models, expert systems, and fuzzy logic
continue to evolve and contribute to intelligent decision-making,
autonomous systems, and sustainability.

In conclusion, control capability enhancement is essential for addressing
the complexities of modern systems and industries. Decision models, expert
systems, and fuzzy logic are powerful tools that, when applied judiciously,
empower organizations and individuals to navigate uncertainty, optimize
processes, and make informed decisions. As technology advances and
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new
deci

challenges arise, these tools will remain at the forefront of intelligent
sion-making, shaping a more efficient, adaptive, and sustainable future.
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ABSTRACT

The research’s objective is pertaining toward fuzzy-set qualitative compara-
tive analysis (fsQCA) research on tourist attractiveness assessments in
Kolkata is to thoroughly assess and comprehend the complex aspects that
contribute toward the enticement and growth of tourism in this thriving and
culturally diverse city. Kolkata, additionally known as the “City of Joy,” is
a culturally important urban area with an established tourist sector. Through
the creative vision of fsQCA, this study seeks to highlight the numerous
factors that influence Kolkata’s attraction as a travel destination. The
research being conducted aims to pinpoint the main factors that influence
Kolkata’s tourist appeal. We may account for the inherent contradictions
and complexity involved with tourism assessment by using fSQCA, which
blends fuzzy-set logic and qualitative analysis. Through this research, we
determine the complex causal connections between the variables. Through
fsQCA, we may identify factors that are both essential and adequate to make
Kolkata a desirable travel destination. To conclude, the tourism attractiveness
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assessment utilizing fSQCA in Kolkata is a useful technique for separating the
myriad variables that affect the city’s tourism industry. It advances academic
understanding while also providing stakeholders with practical information
they can use to make educated choices, thereby promoting sustainable tourist
growth in Kolkata. Both the regional tourism industry as a whole and the
local economy are anticipated to gain from this study.

11.1 INTRODUCTION

A robust and virtually limitless reservoir of data, the Internet as a whole and
particularly one of its amenities, the World Wide Web [2]. The widespread
availability of Internet access has transformed the way people engage in
activities related to travel and tourism [20]. The ability to reserve transport
tickets, reserve lodging, arrange transfers to attractions, and other services
was previously only available through a mediator; but today, anyone can do
so on their own [39]. Everyone can work as their own travel agency by using
services like vehicle rental, hotel reservations, ticket counters at museums and
theme parks, and websites for airlines and railroads [43]. This has become
possible through a trend known as electronic tourism, or e-tourism [33].

The recent boom and expansion of the tourism industry has become a
key factor in the development and growth of economies around the world,
boosting job opportunities, foreign exchange profits, and infrastructural
growth [27]. The Indian government recognizes the value of the tourist
sector and its contribution to the country’s economic and cultural develop-
ment of the many wonderful locations in India [3]. E-tourism, or the use of
technological advances in the tourist sector, has fundamentally changed how
visitors discover and interact with their travel destinations [11]. Kolkata,
the vivacious “City of Joy,” remains no exemption to this widespread trend.
E-tourism has numerous advantages in Kolkata. It provides an exciting
framework for highlighting its unique heritage of culture, historical sites, and
variety of pleasures while allowing visitors to plan, schedule, and navigate
their journeys with unmatched simplicity. E-tourism also improves connec-
tivity because it reaches a worldwide audience, promotes local companies,
and helps the economy by drawing more tourists [6].

The need for stable facilities and safety precautions, a possible overde-
pendence on technological advances, plus the necessity of preserving the true
essence of the travel experience are a few of the difficulties that come with
this digital revolution [18]. Nonetheless, there are certain difficulties that the
Indian tourist industry must overcome, such as the requirement of greater
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advertising and promotional efforts, an absence of standardization as well
as quality regulation in certain regions, and limited facilities and services in
other locations [25]. Additionally, disputes have been raised regarding the
absence of customization and the decline of real human contacts in travel
experiences due to a heavy dependence on Internet booking services [7].

Besides these technological challenges, the creation and upkeep of the
infrastructure pose an important concern. Even though Kolkata is home to
many famous attractions, the city’s infrastructure, including its roadways,
transportation system, and lodging options, frequently needs to be upgraded
to keep up with the demands of visitors. The assessment and improvement
of the town’s travel experience appeal is one of the issues that this thriving
tourism business has brought about [15]. Therefore, to draw in a wide
variety of visitors, efficient tourism analysis is essential, both locally and
globally [31].

Despite the value of using classic methods to evaluate tourist attractions,
modern study increasingly depends on cutting-edge and novel methodologies
to comprehend the sophisticated dynamics of traveler choices along with
decision-making processes [1]. The use of fuzzy-set qualitative compara-
tive analysis (fsQCA), a technically advanced method for determining and
analyzing tourist appeal, constitutes a similar inventive approach [5].

With the use of a combination approach known as fSQCA, which inte-
grates fuzzy set theory and qualitative comparative analysis, complicated
and diverse factors can be understood in more detail [22]. It subsequently
presents an in-depth study that highlights the elusive and complex character
of individual desires and gives a more comprehensive viewpoint on the
elements shaping tourist attractions [46].

RQ1: What are the factors that influence tourist satisfaction in tourism
attractiveness assessment?

This approach takes into account how numerous factors interact, including
“perceived enjoyment,” “cultural heritage,” “trustworthiness,” “historical
significance,” “accommodation and hospitality,” and overall “tourist
satisfaction” by giving a thorough picture of how these factors influence
tourists’ decision to visit a particular location. Through the analysis, we can
obtain the factors that account for a necessary condition for providing tourist
satisfaction and hence [44], these findings can then be used to influence
strategic choices, policy creation, and marketing initiatives, ultimately
resulting in the sustained development and growth of Kolkata’s tourist
industry. It serves as a potent instrument that can direct the tourism sector
in Kolkata in favor of an improved and analytical approach to comprehend
and improve its visitor appeal [29]. This study aims to thoroughly evaluate

G
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Kolkata’s tourism appeal using the cutting-edge fsSQCA approach. By
developing the approach for evaluating tourism attractions in a wider context,
this study provides a crucial step toward maximizing Kolkata’s prospective
as an attraction for travelers.

11.2 LITERATURE REVIEW

Analysis of many aspects that affect tourists’ decisions and experiences is
necessary to gauge Kolkata’s tourist appeal, a city renowned for its dynamic
culture and historic importance.

11.2.1 PERCEIVED ENJOYMENT

A key consideration for evaluating Kolkata’s tourism appeal is perceived
enjoyment. The research draws attention to the ways that local food, cultural
events, and leisure pursuits affect how much visitors think they are having
fun [41]. The delicious eateries as well as authentic Bengali cuisine of the
city of Kolkata, along with its dynamic culinary scene, greatly contribute to
the culinary pleasure of visitors. Traveler contentment, return business, and
favorable word-of-mouth are all influenced by perceived enjoyment, which
is strongly linked to the whole experience [30]. In addition to influencing
visitors’ happiness, perceived enjoyment also affects their propensity to
return and refer other people to Kolkata [17]. Kolkata’s distinct fusion of
innovative and traditional elements, exemplified by its rich historic and
creative legacy, cultivates an atmosphere conducive to subjective pleasure
[4]. The vibrant dancing, literary, cultural, and artistic cultures of the city
are widely recognized. Such aspects of culture enhance every aspect of the
experience for tourists while also reflecting the cultural and intellectual
significance associated with the city [35].

Although tourists find great pleasure in Kolkata’s cultural and gastro-
nomic attractions, maintaining and expanding these facets presents constant
difficulties [47]. Likewise, overcommercialization of artistic performances
may compromise their true meaning and lessen tourists’ enjoyment of them
[12]. This method can uncover complicated combinations of factors that
contribute to significant or lower reported satisfaction in the city by taking
into account the inaccurate and convoluted character of tourists’ opinions and
inclinations [10]. Moreover, it facilitates the identification of certain blends
of situations and characteristics that are necessary to improve perceived
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satisfaction by policymakers allowing them to adapt their objectives and
efforts accordingly [21].

11.2.2 CULTURAL HERITAGE

The rich history and creative diversity of Kolkata are closely linked to its
cultural legacy [9]. An important factor in drawing tourists to the city is its
diverse array of cultural attractions, art, and literary works [13]. The town’s
intellectual and cultural past is exhibited by significant sites including the
Victoria Memorial, Tagore’s family house, the Marble Palace, and other
traditional temples and cathedrals [14]. It is a complex responsibility for
city officials and tourism organizations to maintain the equilibrium between
conserving the authenticity of history and responding to the changing
demands and desires of visitors [32]. This element, which is deeply inte-
grated into the historical foundation of the city, has a significant impact on
visitors’ experiences and level of enjoyment [8].

Although there are sustainability and authenticity issues that need to be
resolved, the use of fSQCA as a study methodology offers a more thorough
and nuanced knowledge of the interactions between the various elements that
affect how much cultural heritage is valued [24]. In conclusion, Kolkata’s
cultural legacy should be preserved and effectively promoted in order to
increase visitor pleasure and support the city’s sustained stability in tourism.

11.2.3 TRUSTWORTHINESS

From tourism’s framework, “trustworthiness” includes security, accuracy,
reliability, and integrity. It is a critical component that influences travelers’
decision-making and general level of satisfaction [37]. This aspect affects a lot of
people because travelers are looking for more reliable and safe travel experiences,
which greatly increases their trust in a place [19]. In Kolkata’s tourism industry,
perceptions of safety and reliability are strongly correlated [42]. The degree to
which a city can guarantee visitors’ individual hygiene and security affects how
confident travelers are in the location [23]. The dependability of services and
public transit networks are important factors in establishing the city’s overall
credibility [36]. When travelers believe Kolkata to be a reliable location, they are
more inclined to relax and have fun while there.

fsQCA offers a potential way to completely examine the significance
of trustworthiness in Kolkata’s popular tourist sites [26]. Because these
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impressions are ambiguous and multifaceted, fSQCA can identify complex
patterns of factors that contribute to varying degrees of trustworthiness
throughout the city [24]. This approach can be employed by policymakers
to ascertain specific pairings of characteristics and circumstances that are
imperative for augmenting trustworthiness, so serving as a roadmap for
their policies and initiatives. This factor—which includes trustworthiness,
security, honesty, and reliability—has an enormous effect on visitors’ overall
impressions of the city and their level of satisfaction [38].

11.2.4 HISTORICAL SIGNIFICANCE

Travelers are drawn to Kolkata by its historical significance, which is
intricately entwined with the story of India’s freedom movement and its
status as a hub for creative and artistic pursuits [45]. The town is dedicated
to several destinations that not merely represent historic importance but
additionally provide a comprehensive experience to visitors. This chapter
highlights the value of cultural excursions as ways for visitors to completely
engage themselves in the rich history of the city. This historical account
considerably boosts the city’s touristic attraction and generates a strong sense
of community [40]. Kolkata’s cultural importance attracts many tourists, but
maintaining and highlighting these historical features is a constant struggle
[34]. It is a challenging effort for city officials and tourism stakeholders
to strike a balance between maintaining the genuineness of the legacy and
adjusting to the changing demands and standards of tourists [16].

This element, which is intertwined with the city’s historical significance
as well as its societal and artistic remarks, has a significant impact on
visitors’ perceptions of the city as well as their overall pleasure with it [28].
The inclusion of fsSQCA as an investigation method has the possibility of
delivering a more complex and thorough understanding of the interaction of
elements impacting the appraisal of historical value, even though challenges
connected to conservation and integrity must be addressed [26].

11.2.5 HOSPITALITY AND ACCOMMODATION

The warmth and high standard of service that the locals and the tourism sector
provide to guests is referred to as hospitality [48]. It includes the warmth,
politeness, and welcoming disposition of the locals in a place. Restaurants,
bars, cafes, and other businesses that provide food and beverage services
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are included in the hospitality sector [49]. Travelers’ experiences can be
greatly improved by hospitable and friendly locals, who make them feel at
ease and appreciated [50]. Travelers’ experiences can be greatly improved by
hospitable and friendly locals, who make them feel at ease and appreciated
[51]. The availability of housing and rental options for travelers is referred to
as accommodation. These can include motels and resorts as well as cabins,
hostels, and other lodging options [52]. By providing a location for travelers
to relax and recharge, accommodations are essential in drawing in tourists
[53]. Because they accommodate a range of tastes, spending limits, and
vacation styles, the caliber and variety of lodging alternatives at a destination
play a big role in determining a tourist’s decision to come [54].

Together, lodging and hospitality contribute a vital part in the attraction of
aplace for tourists. They enhance visitors’ overall enjoyment and experience,
increasing the likelihood that they will return or refer others to the location
[55]. Superior amenities and an extensive selection of lodging choices can
increase a place’s allure and competitiveness within the travel sector.

11.3 RESEARCH METHODOLGY

An organized strategy is used in the research technique for data collection
in the context of tourism attractiveness using fSQCA. To start, this study
has been directed by well-defined research objectives. Important elements
influencing the allure of tourism are determined, and travel locations or areas
are chosen as Kolkata.

Online reviews and statistical records were collected from TripAdvisior
and MakemyTrip. A thorough framework for gathering data is created,
outlining the characteristics of every component and the techniques for
gathering data. To ensure accuracy, data is cleansed, checked, and calibrated
as needed. Using the fSQCA software, an fsSQCA is carried out, and the find-
ings are evaluated to determine the configurations of conditions impacting
the attractiveness of tourists. Results are presented with consideration for
limitations to provide clarity on the elements influencing tourism attraction
in the chosen locations.

11.4 FINDINGS AND ANALYSIS

The associations between two or more category variables can be better
understood by using cross-tabulation analysis using a Likert scale with a
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range of 1-5 (strongly disagree to strongly agree) Likert scales are frequently
used to evaluate thoughts, opinions, and views. Understanding how various
groups or categories of respondents interpret or react to various factors is
essentially what we are attempting to ascertain when we cross-tabulate data
from a Likert scale.

A cross-data tabulation analysis is carried out to comprehend the associa-
tion between different variables: “perceived enjoyment,” “trustworthiness,”
“cultural heritage,” “historical significance,” “hospitality and “accommoda-
tion,” and the independent construct “tourist satisfaction.” From Table 11.1,
the total count for each quantile in each row shows how ratings of visitor
satisfaction are distributed along the Likert scale can be observed. By
comparing the collected ratings, we can see that “perceived enjoyment” and
“historical significance” show comparatively homogeneous distributions,
whereas “cultural heritage” and “trustworthiness” possess a larger percentage
of effective ratings (4 and 5), and, finally, “accommodation and hospitality”
have moderate ratings.

TABLE 11.1 Brief Description of Factors Affecting Tourism Attractiveness Assessment ]

Constructs Definition

Perceived Enjoyment  The extent to which using an arrangement is regarded as
pleasurable unto itself, regardless of how it may affect efficiency.

Trustworthiness The level of trust in the information, analysis, and procedures
utilized to guarantee a study’s quality.

Cultural Heritage An artistic representation of a community’s ideals, rituals,practises,
locations, artefacts, and ways of life that have been passed down
through the generations.

Historical Significance An essential concept in historiography that looks into and attempts
to articulate how particular historic instances are selected for
memory by cultures worldwide.

Hospitality & The availability of lodging for those departing from home for the
Accommodation night as well as alternatives for eating out.

fsQCA is a research technique that examines and studies intricate connec-
tions between several elements that may result in a certain result. The condi-
tions and result data must be calibrated prior to running the QCA. To calibrate
a fuzzy set, a target set must be identified. This establishes the calibration of
the set and creates a clear link between theoretical discourse and empirical
research. The fSQCA was used in this study, and the associated factors and
results were calibrated as fuzzy set membership scores through the use of
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the direct calibration approach. The objective of fsSQCA is to calibrate set
membership in a way that the membership levels reflect meaningful groups.

The fSQCA 3 software was used to understand complex relationships
between factors affecting tourist attractiveness assessment. The collected
original data is calibrated into fuzzy membership score ranging from 0.00
to 1.00: where the nonmembership score represents 5%, cross-over anchors
are 50%, and the full-membership score represents 95% of the value our
measures and used the values obtained as the three thresholds while cali-
brating the variables in fSQCA 3 software. Next, the truth table was then
constructed. The truth table was then sorted by frequency using the column
“number* sorting method (Figure 11.1).

ENJOYMENT HISTORICAL HERITAGE HOSPITAUTY  RUSTWORTHINES number SATISFACTION cases. raw consist. PRI consist. SYM consist
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FIGURE 11.1 Solution scores distribution to the truth table (fsSQCA). ]

The truth table was ordered by “raw consistency” after being sorted
by frequency, with a frequency threshold of 0.8 applied. Three distinct
outcomes are obtained from standard analysis: complex, parsimonious, and
intermediate solutions. Further, we will discuss these solutions broadly.

A thorough examination of data patterns yields a sophisticated answer
through fsSQCA , which reveals a number of complex solutions and conditions
within a particular dataset. The solution has the ability to extract valuable
insights from the data, as seen by its remarkable metrics, which include raw
coverage, unique coverage, and consistency. Table 11.2 gives the complex
solutions generated through fsQCA analysis.

The three main focuses of the study in this instance are “perceived
enjoyment,” “cultural heritage,” and “trustworthiness.” Initially, the word
“perceived enjoyment” pertains regarding the pleasant and contented sensa-
tion that is essential in a tourist attractiveness. “Trustworthiness” indicates
the presence of dependability and confidence, whilst “Cultural Heritage”
indicates the presence of cultural and historical components. The intricate
answer is based on the interactions between these elements.



TABLE 11.2 Cross-Data Tabulation Analysis <]

CONSTRUCT/QUINTILE TOURIST SATISFACTION
2 3 4 Total Count

Percieved enjoyment 1 0 12 0 3 15
2 15 27 9 0 60
3 42 75 90 12 225
4 18 12 78 9 117
5 0 9 48 60 117

Total count 21 99 105 219 90 534

1 3 4

Historical significance 1 3 6 0 0 9
2 18 33 15 21 90
3 60 69 93 27 249
4 3 12 36 0 51
5 3 3 69 60 135

Total count 21 99 105 219 90 534

2 3 4

Cultural heritage 1 0 6 6 6 21
2 15 18 9 12 57
3 51 42 63 24 186
4 21 45 117 30 213
5 3 6 21 27 57

Total count 21 99 105 219 90 534
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TABLE 11.2 (Continued)

CONSTRUCT/QUINTILE TOURIST SATISFACTION
1 3 4 5 Total Count
1 3 4 5
Accommodation and hospitality 1 0 3 0 0 9
2 15 15 9 3 3 45
3 66 75 48 21 216
4 12 18 129 6 165
5 0 0 39 60 99
Total count 21 99 105 219 90 534
1 2 3 4 5
Trustworthiness 1 0 3 3 12
2 12 15 18 15 66
3 12 54 21 78 21 186
4 27 66 114 45 255
5 0 0 3 6 6 15
Total count 21 99 105 219 90 534
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The complex solution’s (Table 11.3) high coverage scores of 0.992757
indicates that it captures nearly all relevant occurrences in the dataset, as
it shows its capacity to catch a major fraction of the data patterns. This
broad coverage demonstrates how well fsQCA finds and captures important
relationships and conditions within the data. Furthermore, the strong and
consistent links within the complicated solution are shown by the high
consistency value of 0.997574. It implies that the links discovered are backed
by substantial evidence found in the data and are not just random events. This
degree of regularity makes it more probable that there are real relationships
between the three dominant factors than merely coincidental ones.

TABLE 11.3 Complex Solutions 1

Enjoyment*heritage*trust 0.765795  0.757344  0.996857
~Enjoyment*~historical*~heritage*~hospitality 0.0804829 0.0804829 1
~Enjoyment*historical*~hospitality*~trust 0.0828974 0.075654 1
~Enjoyment*~historical*~hospitality*trust 0.0828974 0.0378269 1
~Enjoyment*~historical*heritage*hospitality*~trust ~ 0.0462777 0.037827 1

Solution coverage: 0.992757
Solution consistency: 0.997574

A theoretical examination of this intricate solution provides numerous
insightful discoveries. It shows that in the dataset, “Enjoyment” is strongly
associated with “cultural heritage” and “trustworthiness” with a consistency
level of 0.996857. This implies that, given the evidence, heritage-related
experiences and the trust they generate have a substantial impact on tourist
satisfaction. This conclusion, which emphasizes the value of trust and
heritage in raising tourists’ overall experience, is especially pertinent to the
tourism sector.

Some components, such as “historical significance,” have negations (~)
in them, which suggests that comprehending the relationships within the
dataset also requires knowing the lack of certain aspects. For example, the
lack of historical components may significantly affect heritage, trust, and
enjoyment. A more thorough knowledge of the variables affecting these
qualities is provided by this nuanced understanding.

The intermediate solution (Table 11.4) produced by the fSQCA analysis
provides insightful information about determining tourist appeal. The
analysis looks at how “perceived enjoyment,” “cultural heritage,” and
“trustworthiness” relate to each other in the context of travel locations. The
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solution is an effective tool for determining and improving tourist attraction
because of its high coverage, originality, and consistency criteria.

TABLE 11.4 Intermediate Solutions ]

Raw Unique  Consistency

Coverage Coverage
Enjoyment*heritage*trust 0.765795  0.757344 0.996857
~Enjoyment*~historical *~heritage*~hospitality 0.0804829 0.037827 1
~Enjoyment*historical*~hospitality*~trust 0.0828974 0.075654 1
~Enjoyment*~historical *~hospitality *trust 0.0828974 0.0378269 1
~Enjoyment*~historical*heritage*hospitality*~trust 0.0462777 0.037827 1

Solution coverage: 0.992757
Solution consistency: 0.997574

“Perceived Enjoyment” is a very important part of traveling. When
traveling, tourists look for contentment, happiness, and special moments.
This component of the approach highlights how important it is to offer
pleasurable experiences in order to draw tourists. “Cultural heritage” refers
to a place’s historical and cultural features. In an effort to learn more about
and appreciate a region’s history, customs, and cultural diversity, many
travelers are drawn to locations with a rich cultural legacy. For travelers,
“trustworthiness” is crucial while selecting a location. Trust is correlated
with an establishment’s dependability, security, and good standing. Travelers
need to have faith in the place they have chosen and feel safe.

With a solution coverage value of 0.992757, the solution appears to fully
account for a number of elements influencing visitor attraction, as it catches a
significant amount of the data patterns. It highlights how crucial it is to look
at all pertinent factors in order to develop a comprehensive picture of tourism
locations. The dependability and strength of the detected relationships are
reinforced by the consistency value of 0.997574. The research strongly
suggests that the correlations between the necessary factors are not coinci-
dental, but rather that these factors are critical to the attractiveness of tourism.

The analysis reveals that the factors perceived enjoyment, cultural
heritage, and trustworthiness have a significant contribution in enhancing
Tourist Satisfaction with a consistency level of 0.996857. This implies that
in order to achieve the intended result, a blend of tradition, enjoyment, and
trust is necessary. There is a significant and constant association between
these three qualities and the maximum level of satisfaction associated with
heritage when they are present.
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To sum up, the fsSQCA study offers insightful information about the
variables influencing “enjoyment heritage trust” results. It makes clear the
crucial elements, how they work together, and what happens when these
elements are missing. Considering the intricate and varied nature of the
interactions involved, this analysis can help guide decision-making and
methods for reaching the intended result. In-depth case studies and additional
investigation may be necessary to fully investigate these results in particular
situations and offer more thorough insights.

The configurations of sufficient conditions for determining the outcome
(Table 11.5) above signifies the solution coverage of various factors affecting
tourist attractiveness assessment. Blank domains imply an insignificant
domain in which the result is independent of the existence or absence of
the causative factors, whereas When a circumstance is present, black circles
(®) show it, and when it is absent, white circles (©) show it. The findings
demonstrate if different configuration paths of conditions that are equally
effective lead to the same result, answering three significant characteristics
of causative intricacy: conjunction, asymmetry, and equality.

TABLE 11.5 Configurations of Sufficient Conditions for Determining the Outcome

Perceived Trustworthiness  Cultural Historical Hospitality and
Enjoyment Heritage Significance Accommodation
° ° °

° o o o o

o] [ ] [ ] [©] [ ]

o] ©] [ e]

(] ©] ©] [ [ ]

11.5 CONCLUSION

The tourism sector has expanded significantly in recent years, and places like
Kolkata are becoming more and more popular travel destinations. This research’s
aim is to evaluate Kolkata’s tourism appeal using the fsSQCA approach. This
research was intended to identify the complex interrelationships between many
factors that contribute to Kolkata’s appeal as a vacation destination. It provides
insightful information regarding the various features of the city’s tourism attrac-
tiveness through careful data gathering and fsQCA analysis.

The results of our study showed that Kolkata’s tourism attractiveness
is influenced by a number of interconnected elements instead of just one
dominant factor. Numerous significant factors were considered during the
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inquiry, including the vicinity’s environment, security, amenities as well
as culture. The importance of these components when assessing the town’s
general tourist attractiveness varied. To develop policies that successfully
boost Kolkata’s appeal to tourists, legislators, tourism developers, as well as
other partners must recognize this diversity.

Kolkata’s tourism appeal is largely attributed to its rich ancestral legacy.
The city’s fascinating past and multitude of cultures, which are demonstrated
in its historical sites, museums, and celebrations, are major attractions for
tourists. The way other things interact is also very important. In summary,
this study shows that Kolkata’s visitor appeal is the result of a complex
interaction between a number of variables, each of which adds to the city’s
overall allure. The city’s natural attractions, infrastructure, safety, warmth,
and historical and cultural legacy all have important roles to play. Improving
the allure of Kolkata for tourists necessitates a comprehensive strategy that
takes into account and makes use of these diverse circumstances. In order to
effectively increase tourism appeal, local governments, tourism boards, and
enterprises can use the foundation provided by this study to customize their
strategies and investments. By identifying and using these many yet inter-
related elements, Kolkata’s potential as a flourishing travel destination may
be further realized, eventually resulting in increased economic and cultural
advantages for the city and its citizens.
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ABSTRACT

The application of advanced control systems and sensor networks in green-
house automation has drawn an immense amount of attention recently due to
the pressing need for sustainable and efficient agricultural practices. This ok
chapter explores the integration of intelligent fuzzy logic controllers (FLCs)
with sensor networks to enhance the automation and management of green-
house environments. Sensor networks play a pivotal role, providing real-
time data on environmental variables including temperature, humidity, light
intensity, soil moisture, irrigation, and carbon dioxide levels. These sensors
feed data to the intelligent FLC, which serves as the decision-making hub of
the automation system. It uses fuzzy logic rules and membership functions
to adjust parameters, create an optimal microclimate for plant growth. It also
presents case studies and experimental results that demonstrate the system’s
effectiveness in maintaining a conducive environment for various plant
species. The environmental and economic benefits of the proposed system
are explored in-depth, emphasizing its potential to reduce energy consump-
tion, water usage, and the need for chemical inputs, thereby contributing
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to sustainable and eco-friendly agriculture practices; thereby ultimately
contributing to food security and environmental sustainability.

12.1 INTRODUCTION

Due to the rapid increase in population in India, plant-based food produc-
tion also needs to be significantly increased. As the climate changes,
conventional agricultural practices are currently facing difficulties. By
utilizing cutting-edge technology, agriculture has seen a tremendous transi-
tion recently. Greenhouse farming offers controlled conditions for the best
plant growth and is one of the most promising technologies. Crops can be
cultivated in greenhouses under controlled conditions, increasing yields and
better-quality produce. Implementing sophisticated automation systems that
can adapt to changing climatic conditions and optimize resource utilization
is crucial for maximizing the potential of greenhouse farming. Greenhouse
farming offers a climate-controlled environment that reduces the influence
of outside variables on crop growth. Although the idea of automation in
greenhouse farming is not new, incorporating intelligent systems, such as
fuzzy logic controllers (FLCs), can potentially transform the sector entirely.
The automation of greenhouses, where climatic conditions are dynamic and
frequently unpredictable, is a good application for FLCs that are excellent at
managing uncertainties and imprecise data.

Designing an intelligent FLC-based greenhouse automation system is the
primary goal of this research work. In real time, the system incorporates a
variety of sensors to collect data on environmental parameters, including
temperature, humidity, and soil moisture. The acquired data is processed
using fuzzy logic algorithms to make wise decisions regarding regulating
greenhouse components, including ventilation, irrigation, heating, and
cooling systems. The technology promises to achieve precision control,
energy efficiency, and resource optimization, improving agricultural yields
and saving operating costs. The proposed strategy has the ideals of sustain-
able agriculture because it optimizes energy use, consumes less water, and
depends less on chemical inputs. The study also investigates the usefulness
of FLCs in real-time agricultural automation, which contributes essential
knowledge to intelligent control systems.

The remaining parts are structured as follows: Section 12.2 thoroughly
analyzes related literature, highlighting earlier studies in fuzzy logic control
and greenhouse automation. The design and execution of the intelligent FLC-
based greenhouse automation system are covered in detail in Section 12.3.



Intelligent Fuzzy Logic Controller-Based Greenhouse Automation 213

Section 12.4 describes the experimental design and highlights the results.
Section 12.5 summarizes the results, discusses their implications, and makes
suggestions for further research to bring the paper to a conclusion.

12.2 LITERATURE REVIEW

The rapid growth of the human population worldwide has impacted the
environment, resulting in reduced greenery. This is necessitated for new
technologies and innovation in agriculture and plant cultivation [1]. Green-
houses are utilized to cultivate plants to enhance crop productivity and
guarantee optimal product quality. Greenhouse management and control are
a complex undertaking due to the interdependence of numerous variables.
The implementation of real-time monitoring and the utilization of intelligent
approaches for control play crucial roles in optimizing the environmental
conditions for plant growth [2]. The early consideration of subsystem interac-
tions, such as heating systems, and component interactions, such as actuators
and sensors, in the design phase of an autonomous greenhouse can facilitate
the product development process due to its mechatronic nature. Taking this
factor into account can undoubtedly expedite the design process, minimize
the need for iterative revisions, and enhance the overall performance of the
mechatronic system.

In recent years, there has been a growing interest in applying sophisticated
control techniques and associated tactics, including predictive control and
adaptive control [3]. The concepts of optimum and compatible control have been
proposed as potential approaches for controlling greenhouse environments.
These studies are essential in using engineering principles in greenhouse
production [4, 5]. Nevertheless, most of these methodologies are characterized
by either intricate theoretical frameworks or practical challenges regarding
their implementation in real-world greenhouse cultivation. Greenhouse
environmental control systems commonly employ standard proportional,
integral, and derivative (PID) controllers due to their straightforward design,
implementation, and exceptional performance [6]. The majority, approximately
95%, of the regulatory controllers utilized in various industries, such as
process control motor drives, automotive, flight control, and instrumentation,
are structured according to the PID control mechanism. Despite the prevalence
of their usage, the efficacy of PID controllers is frequently constrained due to
inadequate tuning,.

Consequently, the efficient tuning of PID controllers remains an area of
current investigation [7, 8]. The extant literature has introduced several tuning
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strategies, including “guess-and-check” approaches such as trial and error,
as well as methods rooted in linear control theory, such as Ziegler—Nichols
and Cohen—Coon methods. However, attaining the desired performance of a
controlled greenhouse via standard tuning methods poses challenges because
of the need for appropriate analytical approaches for determining the ideal
set of gain parameters [9-11].

Recently metaheuristic techniques and nonlinear control systems for
climate control in greenhouses have been implemented by engineers and
researchers [12]. These approaches utilize FLCs to regulate the environ-
mental parameters in greenhouses, such as temperature, humidity, and light
intensity. This makes it easy for ordinary greenhouse workers to interact
with the system because it could be more user-friendly, and it is simple to
implement an FLC system. The work done by [13] focuses on using a fuzzy
logic-based controller combined with a wireless communication system to
control the climate of a greenhouse [14]. The authors integrate temperature,
humidity, carbon dioxide levels, and illumination data into a fuzzy set,
external meteorological variables, and user-defined set points.

It is evident from the literature that wireless communication adds
complexity to the design of autonomous greenhouses. Integrating fuzzy logic-
based controllers with wireless communication systems based on platforms
like ZigBee presents both opportunities and challenges in climate control.
Implementing an FLC system can be complex and not user-friendly, as high-
lighted by the proposed intelligent variable control system for greenhouses,
utilizing fuzzy logic and wireless information monitoring and providing
real-time data access [15]. The proposed control system was experimentally
validated and proved efficient in conserving water and power.

The literature review also highlights the use of fuzzy logic in analyzing
data gathered from sensors for decision-making in irrigation systems [16].
Moreover, fuzzy logic in greenhouses is not limited to climate control.
Fuzzy logic has also been applied in various other aspects of greenhouse
management, including crop yield prediction, pest and disease detection,
and optimization of resource allocation. The literature review suggests that
fuzzy logic-based controllers and wireless communication systems have
been successfully implemented in greenhouse automation [17]. With the
continuous advancements in technology, the integration of fuzzy logic-based
controllers with wireless communication systems has significantly improved
the automation and efficiency of greenhouses. Not only has it facilitated
climate control, but it has also extended to various other aspects of green-
house management, such as crop yield prediction, pest and disease detection,
and resource allocation optimization.
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Wireless communication, mainly through implementing platforms
like ZigBee, enables real-time monitoring and control of environmental
factors, thus enhancing greenhouse operations’ overall productivity and
sustainability [18, 19].

12.3 PROPOSED METHOD
12.3.1 PID-BASED CONTROLLER FOR GREENHOUSE CONTROL

Figure 12.1 shows the greenhouse control system’s schematic diagram.

nput‘g Controller |
k< P
Pump . Humidity

Greenhouse
Controller

Temperature

Soil Moistur

e

Input

Input ' Controller

t
FIGURE 12.1 Block diagram of PID-based greenhouse control system. <l

The proposed scheme considers three factors, that is, temperature,
humidity, and soil moisture. The design of greenhouse control necessitates
a precise system model from the perspective of classical control theory.
Nevertheless, acquiring such a model is a considerable challenge. One of the
primary difficulties in greenhouse modeling lies in accurately representing
the internal dynamics. This is due to the complex nature of these dynamics,
which typically encompass many physical, chemical, and biological
processes. Examples of such techniques include heat transfer between
different components and the various physiological activities of crops, such
as photosynthesis, transpiration, and respiration. The complexity inherent
in these processes has resulted in a need for more understanding regarding
many of their mechanisms.
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Consequently, researchers often employ empirical or fitting formulas
derived from measured data from a specific greenhouse. However, this
approach needs to be revised in order to maintain the general applicability
of the resulting greenhouse climate model. On the other hand, determining
the controller gain is typically straightforward due to the prevalent linear
characteristics of most actuators. For instance, the heat flux generated by the
direct air heater exhibits a proportional relationship with the control signal.
Consequently, the input—output dynamics of the actuator can be effectively
captured by a linear model. Hence, in this particular scenario, ensuring the
control performance and universality of the control methods emerges as a
critical practical challenge. PID control has been identified as an effective
approach to attain the desired outcome.

To generate control signals for temperature, humidity, and soil moisture in
the considered greenhouse, it is necessary to introduce three PID controllers.
Each PID controller drives one output and generates one control signal. It is
evident that the typical PID control technique cannot be simply applied to a
system characterized by three inputs and three outputs. Hence, it is necessary
to convert the system under consideration into an equivalent system with
three outcomes.

Tuning of PID controllers is another challenge to obtain optimum outputs.
Traditional methods, such as the Ziegler—Nichols method, are widely employed,
but it suffers from certain limitations and fails to deliver optimum outcomes.
This work applies a meta-heuristic technique to obtain optimum controller
gains. Particle swarm optimization is employed to tune the controller, and
optimum gain parameters are obtained for temperature, soil moisture, and
relative humidity control. The results are presented in Section 12.4.

12.3.2 FUZZY LOGIC-BASED CONTROLLING MODEL

Sensor networks are the backbone of greenhouse automation, providing real-
time data on crucial parameters. Temperature, humidity, and soil moisture
are monitored using advanced sensors. These sensors facilitate data-driven
decision-making, enabling farmers to create ideal conditions for plant
growth. Challenges, such as sensor calibration, data integration, and network
reliability are addressed through robust sensor network architectures.

Fuzzy logic control systems offer a unique methodology for handling
imprecise and uncertain information. Fuzzy logic allows the representation of
human knowledge and reasoning, making it well-suited for agricultural appli-
cations where precise mathematical models are often elusive. The components
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of an FLC, including fuzzification, rule base, inference engine, and defuzzifi-
cation, are explained in detail. Fuzzy rules are derived from expert knowledge
and sensor inputs, enabling the controller to make intelligent decisions. The
block diagram of the proposed system is given in Figure 12.2.

Fuzzy Controller

Input ( . )
- Fuzzy Fuzzy ||Defuzzifi

Controller|[Controller| | ~ ation

Greenhouse

Sensors

Humidity Sensor Soil Moistu
Temperature Sensor Sensor

FIGURE 12.2 Block diagram of FLC-based greenhouse control system. <1

Fuzzy membership functions are used in fuzzy logic systems to represent
the degree of membership of a particular element in a fuzzy set. In green-
house measurement, fuzzy membership functions can be employed to handle
uncertainty and imprecision in sensor data. Greenhouse measurements often
involve temperature, humidity, and soil moisture levels. Fuzzy logic can be
applied to model these parameters and make decisions based on vague or
incomplete information.

To use the fuzzy Tsukamoto technique, a fuzzy set with a monotonous
membership function must be provided for each outcome of an IF-THEN
rule. Fuzzy logic by Tsukamoto was selected because it produces well-
defined individual rules. Consequently, each rule’s inference output is
provided crisply based on the a-predicate, and a weighted average is used to
get the conclusion. Phases of fuzzy operation are as follows.

1. Fuzzification: Membership functions recorded in the knowledge base
translate explicit values from the system into linguistic variables.

2. Formation of a fuzzy rule in the form of IF-THEN.

3. Fuzzy Interference System: Process of using the [F-THEN rules on
fuzzy knowledge to transform fuzzy input into fuzzy output.
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4. Aggregation: There are frequently situations where many rules
apply. This indicates that the implications have more than one
value. As a result, we must create a single fuzzy set from all of
these findings. The MIN method is the aggregating technique
applied here.

5. Defuzzification: The procedure for turning the fuzzy output from an
inference engine into an explicit value by applying the membership
function matching the time the fuzzification was completed.

12.3.2.1 TEMPERATURE CONTROLLER

Fuzzy logic is used to regulate the temperature of the greenhouse parameter
(Table 12.1). The temperature range for this design system is —10-50°C.
This temperature is classified as a membership function and is separated into
five sections (Figure 12.3).

FIS Variables k Membership function plots plot points 181
’V V‘ m | vC cool Norm hot VH
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Humidity

-10 0 10 20 30 m 50
Input variable “Temp”

FIGURE 12.3 Temperature as an input of fuzzy logic system. 1

TABLE 12.1 Membership Function of Current Temperature «1

Fuzzy Membership Function Temperature Range (°C)
vC —10to 2

Cool 1-12

Norm 10-30

Hot 28-42

VH 40-50

12.3.2.2 MOISTURE CONTROLLER

The proportion of moisture in the soil and its relationship to holding at a
specific temperature is used to maintain the greenhouse system (Figure 12.4).
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Temperatures affect humidity, which creates a comfortable environment;
these are shown below. Table 12.2 demonstrates the five designed member-
ship functions, spanning from 0% to 100% relative humidity.
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FIGURE 12.4 Soil as an input of fuzzy logic system.

TABLE 12.2 Membership Function of Current Soil Moisture 1]

Fuzzy Membership Function Range (Moisture Value)
Sat 0-12

Damp 624

Norm 18-30

Dry 30-50

12.3.2.3 HUMIDITY CONTROLLER

The soil’s moisture proportion and its relationship to holding at a specific
temperature are used to determine humidity (Figure 12.5). Temperatures
affect humidity, which creates a comfortable environment; these are shown
below. Table 12.3 illustrates the five membership functions that were
designed, spanning from 0% to 100% relative humidity.
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FIGURE 12.5 Humidity as an input of fuzzy logic system. ]
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TABLE 12.3 Membership Function of Current Humidity «1

Fuzzy Membership Function Range (% )
VL 0-20

LOW 10-40
NORM 30-55

High hum 50-70

VH hum 60-100

12.3.2.4 WATER PUMP CONTROLLER

The water pump motor is used to regulate the temperature and humidity
content (Figure 12.6). The motor has three settings: off, medium, and large.
The motor determines whether to turn on (large or medium amount) or off
this water pump. Table 12.4 focuses on the pump motor’s output membership
function.
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FIGURE 12.6 The output of watering through pump duration of fuzzy logic method. (1

TABLE 12.4 Membership Function of Water Pump ¢l

Fuzzy Membership Function Water Pump Range (Value)
Off 0-45
Med 25-80

Large 55-100
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12.3.2.5 HUMIDIFIER CONTROLLER

The humidifier will turn on and speed up when the humidity rises above the
predetermined humidity. There are three membership functions for humidi-
fiers: off, medium, and large. The fuzzy controller decides what action to
take to regulate the moisture (Table 12.5).

TABLE 12.5 Membership Function of Humidifier

Fuzzy Membership Function Humidifier Range (Value)
Off 0-45

Med 25-60

Large 55-100

12.3.2.6 HEATER CONTROLLER

The heater primarily regulates temperature. Fuzzy controllers aid in
speeding up the heating supply when the heater is in either an ON or OFF
state based on the room’s current temperature, whereas standard logic
consists of just two forms: ON and OFF. The output variable heater has three
membership functions: large, medium, and off.

Designing a rule-based fuzzy system for controlling temperature and
humidity in a greenhouse involves defining fuzzy membership functions,
fuzzy rules, and an inference mechanism.

12.3.2.6 FUZZY RULES

1. The rules stored in the database are the basis for the decisions made
by the fuzzy controller during operation. These choices are kept in
the form of a fixed rule. The rule, merely a linguistic assertion, is an
if—then statement that is intuitive and simple to comprehend.

2. The water pump’s duration is adjusted based on 27 rules at this green-
house. Figure 12.7 shows these rules are entered into the “rule editor.”

3. The same happens in humidifiers and heaters. The humidifier and
heater are adjusted based on 27 rules.

The rule option viewer, as depicted in Figure 12.8, allows users to view
rules included in the rule editor. The rule viewer determines how long the
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water pump is likely to run; the length of the condition can be set to off,
medium, or large, depending on the output temperature. The center red line
for each membership function can be moved to establish the trends.
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If (Tempis VC
If (Temp is VC
If (Temp is VC
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. and (Humidity is LOW) then (Pump is off) (1)
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FIGURE 12.7 Setting of fuzzy rule at fuzzy editor. (]

Sol \ Untitled
/ (mamdani)
XX Humidifier
Humidity
FIS Variabl Membership function plots Rlodpolnts 181
g off med large
Soil__ Humidifier
SO |
Humidity d
0 . . o T
0 10 20 30 a0 S0 60 70 80 90 100

FIGURE 12.8 The output of humidifier of fuzzy logic method. ]
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FIGURE 12.9 The output of controlling the heater of fuzzy logic method. ]

The outcomes of the rule viewer are displayed in Figure 12.9 as a three-
dimensional surface viewer. Plotting a graph of the data released during the
defuzzification process is called surface viewer (Figure 12.10).

12.4 RESULTS AND DISCUSSION

The fuzzy logic embedded in the Arduino microcontroller enhances system
accuracy and performance (Figure 12.11). The output of fuzzy inference
controls the Arduino microcontroller are as follows.

L.

2.

Fuzzy rule 1: The microcontroller automatically switches the pump
on, heater off, and humidifier off.
Fuzzy rule 2: The microcontroller automatically switches the pump
on, heater off, and humidifier off.
Fuzzy rule 3: The microcontroller automatically switches the pump
on, heater on, and humidifier off.
Fuzzy rule 4: The microcontroller automatically switches the pump
on, heater off, and humidifier off.
Fuzzy rule 5: The microcontroller automatically switches the pump
off, heater off, and humidifier off.
Fuzzy rule 6: The microcontroller automatically switches the pump
off, heater on, and humidifier off.
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7. Fuzzy rule 7: The microcontroller automatically switches the pump
on, heater off, and humidifier on.

8. Fuzzy rule 8: The microcontroller automatically switches the pump
off, heater off, and humidifier on.

9. Fuzzy rule 9: The microcontroller automatically switches the pump
off, heater on, and humidifier on.

Humidifier

% : \\‘; i 7
8

Soil o o Temp

FIGURE 12.11 Surace view of the rules base. (1
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At first, the system is tested with traditional PI controllers, then the PID
and FLC controllers are applied. In Figure 12.12, the performance varia-
tion with different controllers is shown. A sample set temperature of 25°C is
chosen to evaluate the performance parameters. It is observed that the system
exhibits the least overshoot with the application of FLC, and the maximum
overshoot is obtained for the PI controller. Correspondingly, FLC has given
better settling time as compared to other controllers.
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FIGURE 12.12 Temperature control with PI, PID, and FLC controllers. I

In Figure 12.13, the comparison of different controllers for relative
humidity control is presented. A sample humidity value of 60% is set to
evaluate the performance of the controllers. Like temperature control, it is
observed that FLC has the best performance in terms of less overshoot and
settling time over PI and PID controllers.

Similarly, in Figure 12.14, soil moisture content is depicted under the
three proposed controllers. Here, a sample preset value of 30% is set to
check the performance parameters of the three different controllers. Usually,
moisture content varies from time to time based on the type of crop, soil, and
weather conditions. It can be observed in previous cases. FLC has exhibited
the best performance over PI and PID controllers.

12.5 CONCLUSION

This design technique makes the system more efficient and has better
control. This analytical value explains in detail how fuzzy logic operates to
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address the issue of various smooth controls in challenging circumstances.
Fuzzy logic assisted the greenhouse system in resolving the problematic
issue without requiring physical variable interaction. It was sufficient to
intuitively understand input and output parameters to build the system for
maximum performance. This suggested system is being implemented in
the processing facility. It will assist with the construction of cutting-edge
controlling systems for various environmental monitoring and management
applications in the future. This system primarily monitors and maintains
the greenhouse’s environment, creating a sustainable plant growing space.
The results corroborated that the proposed FLC has exhibited better PI and
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performance parameters in terms of overshoot and settling time. This

approach can also be extended for other parameter evaluations of the green-
house to make a more holistic and elaborate scheme for the future.
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CHAPTER 13

Fuzzy Logic in the Automotive Industry:
A Review
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ABSTRACT

This chapter explores the transformative role of fuzzy logic in the evolving
automotive industry, emphasizing its technical significance in intelligent
system design. Fuzzy logic, with its ability to handle imprecision and uncer-
tainty, has become integral to key advancements in automotive technologies,
including control systems, autonomous vehicles, fuel optimization, and safety
applications. By processing ambiguous inputs, fuzzy logic enables real-time
decisions in adaptive cruise control, collision avoidance, and other dynamic
scenarios, enhancing vehicle reliability and performance. The chapter high-
lights its role in optimizing engine management, reducing emissions, and
promoting sustainable driving practices. Autonomous systems utilize fuzzy
logic to navigate complex urban environments with precision and safety.
Advanced driver-assistance technologies, such as blind-spot detection and
lane departure warnings, leverage fuzzy logic for context-aware responses,
while predictive maintenance systems improve operational efficiency by
minimizing unplanned downtimes. Furthermore, fuzzy logic enhances user-
centric design through personalized interfaces and adaptive infotainment
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systems. The chapter also examines the integration of fuzzy logic with
emerging technologies like artificial intelligence and 10T, addressing ethical
considerations and technical challenges. By illustrating the potential of
fuzzy logic in reshaping the automotive landscape, this chapter positions
it as a critical enabler of innovation, sustainability, and intelligent mobility
solutions.

13.1 FUNDAMENTALS OF FUZZY LOGIC

In the 1960s, Lotfi Zadeh created fuzzy logic, a computing paradigm
that leverages real-world uncertainty instead of binary reasoning. It has
several uses, especially in the automotive sector [1]. The mathematical
framework of fuzzy logic handles decision-making ambiguity and
imprecision. It uses fuzzy sets to represent confusing data. Fuzzy sets
are generalizations of classical sets having membership values between 0
and 1 [2, 3]. Membership functions convert input values to membership
degrees. Union, intersection, and complement use fuzzy sets to make
judgments. Fuzzy rules, if-then statements, establish input-output rela-
tionships utilizing language and fuzzy logic. Fuzzy inference uses fuzzy
rules to predict output from input variables [4, 5]. Fuzzy logic handles
partial or ambiguous data and makes qualitative conclusions. It simulates
uncertain and imprecise human thinking and decision-making. Managing
complicated and unpredictable systems using fuzzy logic is flexible and
intuitive.

Fuzzy logic is essential in automotive computers for imprecision and
unpredictability. The complexity of automotive systems has increased
the need for adaptive decision-making in dynamic contexts. Fuzzy logic
processes unclear inputs and makes real-time judgments with subtlety [6—8].
This chapter discusses fuzzy logic’s role in the automobile industry, its
capacity to manage uncertainties, optimize fuel economy, improve safety,
and promote sustainability as presented/briefed in Table 13.1.

The chapter explores how fuzzy logic affects control systems, autono-
mous automobiles, fuel efficiency, safety, and other automotive technolo-
gies. Fundamentals, applications, problems, and opportunities are covered.
Fuzzy logic enhances fuel efficiency, safety, and sustainability in car tech-
nology, according to key findings [9, 10]. We finish with an overview of key
findings and the need for further research and innovation in this dynamic
field.



TABLE 13.1 Applications of Fuzzy Logic in Automotive Control Systems ]

Category

Role

Description

Safety

Performance and
efficiency

Adaptive cruise control and
collision avoidance

Lane departure warning and
correction

Blind-spot detection and
intervention

Fuzzy-based safety systems for
occupant protection

Engine management and
optimization

Transmission control and gear
shifting

Fuzzy logic is used to improve adaptive cruise control (ACC) systems by considering
speed, distance, and traffic. This lets the system adapt to traffic flow in real-time,
making driving safe and enjoyable. Fuzzy logic also helps to prevent collisions by
generating sophisticated reactions based on vehicle speed, distance, and collision
likelihood.

Fuzzy logic is used to improve lane-keeping accuracy and reliability by analyzing
vehicle trajectory and warning of inadvertent lane departure in real time. Fuzzy logic
is also used to detect lane departures and guide the car back into its lane based on
departure risk, road conditions, and speed.

Fuzzy logic is used to notify drivers of cars in their blind spots using sensors, cameras,
and radar. Fuzzy logic is also used to proactively avoid collisions by evaluating
neighboring vehicle speed and trajectory and driver reaction.

Fuzzy logic is used to evaluate airbag deployment during crashes. This is done
by making real-time judgments based on impact intensity, occupant placements,
and accident type. Fuzzy logic is also used to optimize seatbelt tension based on
acceleration, deceleration, and posture. Additionally, fuzzy logic is used to build
occupant safety profiles based on size, age, and health.

Fuzzy logic is used to optimize fuel consumption by considering throttle position,
engine load, and environmental conditions. This ensures efficient engine operation
under varying driving conditions and improves fuel economy. Fuzzy logic is also used
to regulate fuel injection and exhaust recirculation to reduce emissions.

In order to dynamically adjust gear ratios in response to vehicle speed, loads, and
driver behavior, fuzzy logic is implemented. This adaptive methodology enhances the
performance and maneuvrability of the vehicle by efficiently navigating various driving
conditions. Additionally, fuzzy logic aids gear shifting by simultaneously evaluating
multiple factors, such as driver error and road conditions.
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TABLE 13.1 (Continued)

Category

Role

Description

Navigation and
decision-making

Comfort and
environment

Navigation and obstacle
detection

Decision-making in complex
traffic scenarios

Fuzzy logic in climate
control and cabin temperature
regulation

Eco-driving principles

Emission control and reduction
using fuzzy logic

The utilization of fuzzy logic in conjunction with real-time traffic, route architecture,
and vehicle capabilities serves to augment autonomous car navigation. This enhances
the safety and effectiveness of navigation in complex environments, such as urban areas
characterized by diverse traffic conditions. Fuzzy logic is also utilized by autonomous
vehicles to identify obstacles and make decisions based on sensors by applying rules
and fuzzy sets to interpret uncertain data.

Autonomous vehicles utilize fuzzy logic to assist them in making real-time traffic
decisions. In order to arrive at context-aware judgments, factors such as pedestrian
activity, traffic flow, and road indicators are taken into account. Also aiding in

the management of uncertain conditions, fuzzy logic represents the confidence or
uncertainty associated with decision-making. This proves to be advantageous in
ambiguous circumstances, such as divergent traffic signals or sudden road conditions.

In order to enhance interior comfort, adaptive temperature management is governed by
fuzzy logic. This is accomplished by considering factors such as climate, sunlight, and
occupant preferences. Additionally, occupant comfort is modeled using fuzzy logic, and
temperature profiles are personalized based on climate and seat occupancy.

Fuzzy logic is implemented in order to reduce environmental impact and enhance

fuel economy through the provision of real-time recommendations for fuel-efficient
driving, which are determined by factors such as vehicle speed, acceleration, and traffic
conditions. Also optimized using fuzzy logic are the acceleration and deceleration
patterns of a vehicle.

By dynamically adjusting parameters in response to engine temperature, load, and
exhaust gas composition, fuzzy logic reduces hazardous emissions and optimizes
combustion efficiency. In order to reduce nitrogen oxide emissions, fuzzy logic is also
utilized to optimize urea administration in selective catalytic reduction (SCR) systems.
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TABLE 13.1 (Continued)

Category Role

Description

Vehicle diagnostics Fuzzy logic for predictive
and maintenance maintenance and condition
monitoring

Predictive maintenance
strategies

Condition monitoring

Fuzzy reasoning in diagnostics

Fuzzy logic helps in predictive maintenance and condition monitoring of vehicles.

Predictive maintenance systems use fuzzy logic to anticipate problems based on engine
performance, sensor data, and maintenance history. This proactive strategy predicts
component failures or performance deterioration to decrease unexpected breakdowns
and maintenance expenses.

Fuzzy logic analyses sensor and diagnostic data to monitor vehicle components
continuously. It checks the engine, gearbox, and brake system health. Fuzzy sets
provide nuanced assessment and early anomaly identification, allowing timely
maintenance for optimum vehicle performance.

Fuzzy logic helps in diagnostic systems to identify and localize faults accurately, as
well as evaluate the severity of problems, enabling effective maintenance actions. This
adaptive reasoning analyses symptom membership to predetermined fault patterns to
identify and localize defects even with ambiguous or variable symptoms.
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13.2 APPLICATIONS OF FUZZY LOGIC IN AUTOMOTIVE CONTROL
SYSTEMS

Automotive control systems including adaptive cruise control (ACC),
collision avoidance, engine management, and gearbox control use fuzzy
logic to improve safety and economy [11, 12].

13.2.1 ACCAND COLLISION AVOIDANCE

1.

ACC: Fuzzy logic analyses sensor data to improve ACC systems by
considering speed, distance, and traffic [13—15]. This lets the system
adapt to traffic flow in real time, making driving safe and enjoyable.
Collision avoidance systems: By affecting decision-making, fuzzy
logic helps prevent collisions. It generates sophisticated reactions
based on vehicle speed, distance, and collision likelihood [16-18].
This lets collision avoidance systems stop or steer to avoid crashes.

13.2.2 ENGINE MANAGEMENT AND OPTIMIZATION

1.

Optimizing fuel consumption: Engine management systems use fuzzy
logic to optimize fuel consumption by considering throttle position,
engine load, and environmental conditions, ensuring efficient engine
operation under varying driving conditions and improving fuel
economy and reduced environmental impact.

Emission control and reduction: Fuzzy logic regulates fuel injec-
tion and exhaust recirculation using real-time data to improve fuel
economy and emissions. This fine-tuning reduces emissions, encour-
ages eco-friendly driving, and meets emission regulations.

13.2.3 TRANSMISSION CONTROL AND GEAR SHIFTING

1.

Optimizing transmission control: Fuzzy logic dynamically adjusts
gear ratios depending on vehicle speed, load, and driver behavior
to enhance gearbox control systems [19]. This adaptive technique
improves vehicle performance and drivability by effectively handling
different driving circumstances.
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Smooth gear shifting: Fuzzy logic improves gear changing by
assessing numerous factors at once, including driver error and road
circumstances [20]. This improves driving and extends the gearbox
system’s life.

13.3 FUZZY LOGIC IN AUTONOMOUS VEHICLES

The utilization of fuzzy logic in autonomous vehicles to facilitate obstacle
detection, navigation, and decision-making in intricate traffic situations
showcases its capacity to manage ambiguity [21] and adjust to practical
driving obstacles; this guarantees secure navigation and well-informed
choices that emulate the intuitiveness and responsiveness of human drivers
[22, 23].

13.3.1 NAVIGATION AND OBSTACLE DETECTION

1.

Navigation in dynamic environments: Fuzzy logic methods use
real-time traffic, route layout, and vehicle capabilities to enhance
autonomous car navigation [24, 25]. In complicated situations, such
as metropolitan locations with varied traffic conditions, adaptive
route planning improves navigation safety and efficiency.

Obstacle detection and avoidance: Fuzzy logic helps autonomous
cars recognize obstacles and makes sensor-based decisions [26, 27].
It interprets data uncertainty using fuzzy sets and rules to alter the
vehicle’s course or speed to prevent crashes, taking into account
various obstacles’ degrees of confidence [28].

13.3.2 DECISION-MAKING IN COMPLEX TRAFFIC SCENARIOS

1.

Real-time decision-making: Autonomous automobiles perform real-
time traffic choices using fuzzy logic [29, 30]. Considers traffic flow,
pedestrian activity, and road signs to make context-aware judgments.
This flexibility lets cars manage traffic situations intuitively, improving
safety and efficiency like human drivers [31, 32].

Handling uncertain conditions: Fuzzy logic in autonomous cars repre-
sents decision-making confidence or uncertainty to meet real-world
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imprecision [33]. This helps in unclear situations like conflicting
traffic lights or abrupt road conditions. Fuzzy sets and rules allow
educated judgments, improving autonomous driving system depend-
ability and vehicle reliability [34, 35].

13.4 OPTIMIZING FUEL EFFICIENCY AND EMISSIONS

Eco-driving systems employ fuzzy logic to optimize fuel economy and mini-
mize pollutants, showing its flexibility to dynamic driving situations. This
supports worldwide automobile transportation environmental initiatives.

13.4.1 FUZZY LOGIC-BASED STRATEGIES FOR ECO-DRIVING

1. Eco-driving principles: Eco driving uses fuzzy logic to improve fuel
economy and reduce environmental impact. Fuzzy logic algorithms
provide real-time fuel-efficient driving suggestions based on vehicle
speed, acceleration, and traffic circumstances [36, 37].

2. Adaptive speed control: Adaptive speed control systems optimize
vehicle speed using fuzzy logic and real-time inputs including
traffic density and road grade. This strategy optimizes speed for fuel
economy, reducing fuel consumption and improving driving [38, 39].

3. Optimizing acceleration and deceleration: Fuzzy logic optimizes
acceleration and deceleration patterns for eco-driving, according to
driver behavior, traffic flow, and road topography. Smoother transi-
tions improve eco-driving by minimizing fuel usage and environ-
mental effect [40].

13.4.2 EMISSION CONTROL AND REDUCTION USING FUZZY LOGIC

1. Adaptive engine control: Emission control systems use fuzzy
logic to dynamically adjust parameters based on engine tempera-
ture, load, and exhaust gas composition to optimize combustion
efficiency and reduce harmful emissions, ensuring environmental
compliance [41, 42].

2. Selective catalytic reduction (SCR) systems: Nitrogen oxide emissions
are reduced using SCR systems in diesel automobiles. These systems
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optimize urea injection using fuzzy logic and real-time sensor data.
Maximum NOx reduction without wasteful use guarantees optimum
urea injection [43, 44].

Continuous emission monitoring: Processing sensor data and
adapting control systems using fuzzy logic ensures consistent emis-
sion optimization under different situations. Responding to sensor
data imprecision reduces emissions effectively and reliably [45, 46].

13.5 ENHANCING INTERIOR COMFORT AND SAFETY

Fuzzy logic in car temperature control and safety systems improves interior
comfort and occupant protection by intuitively adjusting to dynamic situa-
tions, keeping passengers safe and comfortable [47-50].

13.5.1 FUZZY LOGIC IN CLIMATE CONTROL AND CABIN
TEMPERATURE REGULATION

1.

Adaptive climate control: Fuzzy logic controls adaptive tempera-
ture management to improve interior comfort. These systems
take weather, sunshine, and tenant preferences into account. The
vehicle’s climate management system intelligently adjusts airflow,
temperature, and fan speed using fuzzy logic algorithms to maximize
passenger comfort.

Occupant comfort modeling: Fuzzy logic is used in occupant comfort
modeling to determine passenger preferences and comfort. It custom-
izes temperature profiles depending on climate and seat occupancy to
make driving comfortable.

13.5.2 FUZZY-BASED SAFETY SYSTEMS FOR OCCUPANT PROTECTION

1.

Adaptive airbag deployment: Safety systems evaluate airbag deploy-
ment during crashes using fuzzy logic. It makes real-time judgments
based on impact intensity, occupant placements, and accident type to
safeguard occupants and reduce injury risk.

Dynamic seatbelt tensioning: Dynamic seatbelt tensioning systems
respond to driving circumstances and occupant behavior using fuzzy
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logic. It optimizes seatbelt tension based on acceleration, decelera-
tion, and posture for safety.

Personalized safety profiles: Fuzzy logic considers size, age, and health
to build occupant safety profiles. This method maximizes passenger
protection and reduces hazards by optimizing airbag deployment and
seatbelt tensioning.

13.6 FUZZY LOGIC APPLICATIONS IN ADVANCED DRIVER
ASSISTANCE SYSTEMS (ADAS)

Fuzzy logic in ADAS like lane departure warning (LDW) and correction
and blind-spot detection (BSD) and intervention improves driver safety and
experience [51]. Fuzzy logic’s versatility and ability to accept imprecise
inputs make it useful in intelligent, context-aware accident prevention and
road safety systems [52].

13.6.1 LDW AND LANE DEPARTURE CORRECTION (LDC)

1.

LDW: LDW systems use fuzzy logic to improve lane-keeping accu-
racy and reliability. Cameras and sensors analyze vehicle trajectory
and warn of inadvertent lane departure in real time, allowing for
complex decision-making based on road circumstances and driver
behavior.

LDC: LDC systems detect lane departures using fuzzy logic. Based
on departure risk, road conditions, and speed, algorithms guide the
car back into its lane. Safety and smooth driving are improved by this
adaptive adjustment.

13.6.2 BSD AND BLIND-SPOT INTERVENTION (BSI)

1.

BSD: BSD devices notify drivers to cars in their blind spots using
fuzzy logic [53]. It detects vehicle proximity and speed using sensors,
cameras, and radar. Alerts are timely and context-aware using this
adaptive technique.

BSI: BSI systems proactively avoid collisions using fuzzy logic. It
evaluates neighboring vehicle speed and trajectory and driver reaction
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to guide steering adjustments or targeted braking. The versatility of
fuzzy logic provides appropriate and contextual interventions.

13.7 VEHICLE DIAGNOSTICS AND MAINTENANCE

Vehicle diagnostics and maintenance employ fuzzy logic to manage complexity
and ambiguity in monitoring vehicle status and forecasting maintenance
requirements [54]. Adaptive reasoning in intelligent diagnostic systems ensures
vehicle dependability, safety, and durability via proactive maintenance [55].

13.7.1 FUZZY LOGIC FOR PREDICTIVE MAINTENANCE AND
CONDITION MONITORING

1. Predictive maintenance strategies: Predictive maintenance systems
use fuzzy logic to anticipate difficulties based on engine perfor-
mance, sensor data, and maintenance history. This proactive strategy
predicts component failures or performance deterioration to decrease
unexpected breakdowns and maintenance expenses.

2. Condition monitoring: Fuzzy logic analyses sensor and diagnostic
data to monitor vehicle components continuously. It checks engine,
gearbox, and brake system health. Fuzzy sets provide nuanced
assessment and early anomaly identification, allowing timely main-
tenance for optimum vehicle performance.

13.7.2 DIAGNOSTIC SYSTEMS BASED ON FUZZY REASONING

1. Fuzzy reasoning in diagnostics: Diagnostic systems employ fuzzy
logic to discover and diagnose faults, particularly with imprecise or
confusing sensor data [56]. This adaptive reasoning analyses symptom
membership to predetermined fault patterns to identify and localize
defects even with ambiguous or variable symptoms [57].

2. Fault localization and severity assessment. Fuzzy logic employs
sensor readings, historical data, and contextual knowledge to locate
and diagnose errors [58]. This adaptive technique locates faults accu-
rately and reveals problem severity, allowing effective maintenance
actions [59].
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13.8 HUMAN-CENTRIC DESIGN: FUZZY LOGIC AND USER
EXPERIENCE

Fuzzy logic is being used in human-centric infotainment and user interface
design to make driver-vehicle interactions more intuitive, adaptable, and
pleasurable. Its versatility helps create user-centric systems that meet current
car user expectations for safety and happiness.

13.8.1 FUZZY LOGIC IN INFOTAINMENT AND USER INTERFACE
DESIGN

1.

Adaptive infotainment systems: Infotainment systems employ fuzzy
logic to automatically alter material and layout depending on user
preferences, driving circumstances, and contextual information to make
the experience more pleasant [60]. Presenting context-appropriate
information, entertainment, and controls boosts user engagement [61].
Intuitive user interfaces: Fuzzy logic analyses user interactions,
driving behavior, and feedback to provide intuitive user interfaces.
This versatility reduces distractions, making driving safer and more
pleasurable.

13.8.2 PERSONALIZED DRIVING EXPERIENCE THROUGH FUZZY-
BASED SYSTEMS

1.

13.9

Adaptive driving profiles: Adjustable driving profiles using fuzzy logic
are tailored to individual tastes and behaviors. It automatically adjusts
vehicle characteristics based on driving style, seating position, and
temperature control settings to customize each driver’s experience.
Intelligent assistance and recommendations: Intelligent assistance
systems use fuzzy logic to provide context-aware suggestions based
on driver behavior, traffic, and history. This adaptive intelligence
makes the car a proactive aide, improving driving.

CHALLENGES AND FUTURE PROSPECTS

Fuzzy logic implementation in the automobile sector is complicated
by ethics, safety, integration with new technology, and electric and
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autonomous vehicle adaptation. These problems must be overcome to
maximize fuzzy logic’s potential and ensure appropriate use in automobile
technologies.

13.9.1 ETHICAL CONSIDERATIONS AND SAFETY CONCERNS

1. Ethical implications: In autonomous vehicle interventions, fuzzy
logic in the automobile sector creates ethical difficulties [62]. System
decisions raise questions of duty, accountability, and morality. Public
trust and acceptance need fuzzy logic systems to follow ethical and
social norms.

2. Safety challenges: Collision avoidance and ACC increase safety
using fuzzy logic, however, robustness and failure modes are issues
[63]. Fuzzy logic algorithms must be rigorously tested, validated,
and improved to avoid accidents and mistakes.

13.9.2 INTEGRATION OF FUZZY LOGIC WITH OTHER EMERGING
TECHNOLOGIES

1. Synergy with artificial intelligence (Al): Integration of fuzzy logic
with Al approaches may increase adaptability and learning, although
balancing interpretability with Al model complexity and opacity is
difficult and may not completely solve certain models [64].

2. Integration with connectivity and Internet of Things (loT): 1oT-
connected automobiles with fuzzy logic pose data security and
privacy problems. To retain user confidence and comply with data
protection laws, sensitive data must be handled properly [65].

The above can be explained with an example of an air conditioner which
is a device for producing human comfort and is also employed in modern
automobiles and vehicles [66—71]. Air conditioners may employ fuzzy logic
for adaptive temperature management. Fixed rules make typical air condi-
tioners inefficient in varied situations. Air conditioners use fuzzy logic to
adjust to individual comfort and environmental factors. Key characteristics
include adjustable control, energy efficiency, user-centric comfort, fault
tolerance, and IoT integration. Traditional air conditioners save energy and
money by following restrictions. Fuzzy logic strengthens systems against
sensor and equipment failures. Smart, sustainable living environments result
from this mix [72, 73].
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13.9.3 THE ROLE OF FUZZY LOGIC IN THE TRANSITION TO ELECTRIC
AND AUTONOMOUS VEHICLES

1. FElectric vehicle (EV) optimization: Fuzzy logic enhancing energy
usage, battery management, and charging procedures improves EV
fuel economy and emissions, extending their lifespan [74].

2. Autonomous vehicle challenges: Fuzzy logic is being used in
autonomous cars, but it must make complicated decisions and
withstand unexpected events [75]. Adaptability and safety need
ongoing study.

13.10 CONCLUSIONS AND FUTURE SCOPE

The automobile industry uses fuzzy logic to improve control systems,
autonomous cars, environmental impact reduction, interior comfort and
safety, human-centric design, and predictive maintenance. Its ability to
handle imprecision, adapt to dynamic surroundings, and provide context-
aware solutions matches automotive complexity. Fuzzy logic connects
rule-based systems to intelligent, adaptive, and autonomous vehicle
technology. From safety and economy to environmental sustainability,
fuzzy logic improves vehicle technology. As the automobile sector evolves
rapidly, research and innovation are needed. The following areas need
further study.

1. FEthical frameworks: Create ethical frameworks for fuzzy logic in
important decision-making to ensure morality.

2. Al integration: Use fuzzy logic with Al to create synergy and handle
interpretability and transparency issues.

3. Cybersecurity and connectivity: Improve fuzzy logic system cyber-
security, particularly for connected automobiles and the [oTs.

4. Adaptability in autonomous driving: Improve fuzzy logic’s adapt-
ability and decision-making in complicated traffic conditions.

5.  Human—-machine interaction: Keep fuzzy logic at the forefront of
intuitive and user-friendly automobile interfaces by innovating
in human-centric design, infotainment systems, and personalized
driving experiences. Fuzzy logic may drive innovation in the auto-
mobile sector, making mobility solutions safer, more efficient, and
more pleasant.
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ABSTRACT

Fuzzy logic is a problem-solving tool and a mathematical framework that
deals with the logical reasoning of approximation rather than precision. In the
last few years, classical image processing has faced difficulty dealing with
real-world images containing noise and distortions due to their vagueness
and uncertainty. So, this chapter explores the recent developments in image
processing and pattern recognition by applying fuzzy logic. Furthermore, the
integration of fuzzy logic along with machine learning algorithms and deep
learning algorithms is explored and reported as a significant development
in the field of image classification for target identification and classification
in defense, object detection, medical image analysis, scenario recognition
in video surveillance, and many other fields of applications. Finally, it
concludes with areas for further advancement and the future scope of interest
for research and development.

14.1 INTRODUCTION

An attempt to mimic human reasoning and decision-making ability becomes
essential to incorporate mathematically, resulting in a logic system called
fuzzy logic. Unlike Boolean logic, an infinite-valued logic was introduced
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to deal with the object’s belongingness in different classes at the same time.
To define belongingness, membership functions are introduced. It provides
the machine an extra provision to make a decision based upon partial
belongingness rather than complete belongingness. Especially for the image
processing tasks, different kinds of vagueness and ambiguity in the images
in the form of pixel value need to be processed in order to reach the final
decision. Filtering out those things sometimes leads to the loss of essential
information that is actually needed for the best decision-making. Fuzzy
image processing introduces the fuzzy version of an image and processes it
through the inference rule engine which has expert knowledge in the form
of rules. After that, perform defuzzification to get the actual result. Apart
from that, in the different steps of the image processing, the researchers use
fuzzy logic to get the precise output from that step which again becomes the
input for the next step. The neural network has incorporated fuzzy logic to
enhance the power to solve complex problems in lack of expert knowledge. A
hierarchical fuzzy logic system is organized into subsystems, each of which
is further divided into fuzzy logic units that are connected hierarchically.
Fuzzy logic is a mathematical tool dealing with uncertainty. It is the exten-
sion of the Boolean logic which only deals with 0 and 1 or true and false. It is the
more generalized form of the crisp set theory that contains those objects having
some properties for membership. On the other hand, a fuzzy set contains those
objects that are imprecisely defined in varying degrees. For example, suppose
I want to define a set of numbers between 16 to 19 either completely present
or partially present in a particular group. So, the fuzzy set a can be defined as

4,= {(16,0.2), (17,0.1), (18,0.7), (19,1.0) | x € X}

Here, X is the universe of discourse of all positive integers.

So, the fuzzy set is the set of ordered pairs of the element and its member-
ship in the set 4. The membership defines belongingness in a set. As opposed
to that if this set is defined in crisp set, then it will be 4 = {19}. Because
the crisp set contains the element with a hundred percent presence. In this
way, fuzzy logic gives the provision to represent more information than the
crisp set. Furthermore, suppose I ask a question: Is it cold today? The answer
could be very cold, moderately cold, a little cold, or not at all. The fuzzy
logic addresses the problem in a better way by representing it between 0
and 1 as opposed to only 0 or 1 in Boolean logic. This theory tries to mimic
human reasoning for decision-making. Due to the ambiguity and uncertainty,
real-world images containing noise and distortions have proven challenging
for classical image processing to handle. Thus, using fuzzy logic, the latest
advances in image processing and pattern recognition are investigated in the
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different domains of application like agriculture, biomedical image analysis,
and many more fields.

14.2 HISTORY

In the year 1920, fuzzy logic was studied by Lukasiewicz and Tarski as
infinite-valued logic. In the year 1965, Zadeh introduced the fuzzy theory
which allows partial membership [1]. In 1962, the decision-making process
in pattern recognition was published by McMillan Press. In the year 1970, the
fuzzy control system was developed. In the year 1973, a famous paper by Prof.
Zadeh was published introducing an outline of an approach that could be used
for decision-making and complex system analysis. In the year 1977, fuzzy
logic in pattern recognition was implemented in the speech recognition and
the speaker recognition problem. In the year 1980, the Fuzzy expert system
was developed. In the later years of 1982 and onwards, The development of
fuzzy (gray) image processing was introduced. In the year 1986, The fuzzy
syntactic recognition approach was developed for various skeletal maturity
identification from X-ray images of the radius and ulna of the wrist. In the late
1980s, neurofuzzy models were introduced for clustering, rule generation,
classification, and feature selection that enable linguistic input accepted by
the artificial neural network. During 1990-1994, rough sets and the genetic
algorithm are used for large data mining. Besides, fuzzy logic was first applied
in image processing tasks like noise reduction, edge detection, and image
segmentation. After that, in the year 2020, fuzzy logic techniques were further
developed and applied in medical image processing like brain disease predic-
tion. In the next few years, fuzzy logic works for quality improvement of the
images using fuzzy logic systems [2]. In accordance, effective unsupervised
feature selection models as well as certain application-specific models, such
as, fuzzy clustering networks for hardware realization and mixed category
perception, were also developed. In the year 2023, fuzzy neural networks
evolve and models to solve complex problems like cyber invasion and fraud
detection in auctions using binary pattern classification tests.

14.3 FUZZY LOGIC IN PATTERN RECOGNITION

Pattern recognition is a big spectrum for the understanding of the different
systems and working further in the application domain. Nowadays, all
types of advanced machine learning methods and data analysis techniques
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are busy understanding some sort of underlying hidden pattern that could
immensely help to deep dive into the research along with the development
of the new application domain for the betterment of mankind. Fuzzy logic in
pattern recognition just stimulates the urge to search along with some more
flexibility of belongingness.

A subtle difference exists between pattern recognition and clustering in
their goals. The clustering method aims to uncover the natural structures
within the data without predefined classes or labels whereas pattern recogni-
tion aims to focus on identifying and categorizing data based on the predefined
patterns or classes. So, clustering is all about exploring and grouping the data
rather than identifying and categorizing data based on known patterns or
classes. Pattern recognition in image processing is the process of identifying
the pattern and the regularities of the image data automatically through
the machine learning algorithm for data analysis. Through the process of
pattern recognition, a machine-learning algorithm can recognize familiar
and unfamiliar objects. So, pattern recognition plays a very crucial role in
image processing. A pattern recognition system consists of three blocks that
are feature space, measurement space, and decision space. As we know, a
deficiency of information creates uncertainties in the system that could arise
from contradictory, vague, unreliable, and ill-defined information in different
stages of the pattern recognition system. The different stages of pattern
recognition are varied from system to system to find useful patterns. The lack
of precision or ambiguity can occur due to experimental error or limitation
of the instrument or measurement can lead to vagueness in the measurement
space. In the same way, Occasionally, it could be suitable and convenient
to represent the input feature value in interval form, with one or both sides
of the interval being ambiguous. The corresponding classes in the decision
space might become unmanageable by becoming nonconvex, extended, and
overlapping. That is the decision space can be affected to decide the 100%
belongingness of a data point. However, in human perception, that could be
fine if the data point has 90% membership of a class which represents partial
belongingness. So, these all kinds of problems are addressed by the fuzzy
logic in pattern recognition. Fuzzy logic in pattern recognition provides the
capability to produce a classifier that can model overlapping class boundaries
and generate linear or nonlinear boundaries. Fuzzy logic in pattern recogni-
tion was applied to speaker recognition and speech recognition problems in
1977. The characteristics of the speech depend on the health, age, sex, mind,
and temperament of the speaker consisting certain amount of fuzziness and
overlapping classes. So, For vowel sound recognition, classification analysis
of the machine recognition using the fuzzy sets gives 82%accuracy based
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on the highest membership values. Furthermore, incorporating the linguistic
constraints-based supervisory learning improved the accuracy by 15%.

14.4 GRAY IMAGE PROCESSING

Another fuzzy set theory application is gray image processing. As the image
is gray, the segment, skeleton, edge and their relation have no precise defini-
tion makes it a suitable candidate for implementation of the fuzzy logic.

AscanbeseeninFigure 14.1, theuncertainty orimperfection of the image can
be represented in three ways. Grayness ambiguity is the uncertainty associated
with the gray level or the intensity value of the pixels in an image whether the
pixel value is considered as white or black. It is the kind of vagueness where
the intensity of a pixel in an image appears to have poor color contrast or has
imprecise boundaries. Geometric fuzziness in the images contains those images
where boundaries, edges, and shapes are not very prominent. That means both
the location of the pixels and the gray level characterize the geometry of the
image subset. The uncleared boundaries, blurriness, and the multiple objects’
presence in the images are considered complex and ill data. Different types of
operators like max and min operators, Zadeh’s contrast enhancement operator
(INT), S & © membership functions, index of fuzziness, and entropy of fuzzy
sets were used to develop an efficient algorithm to process the gray images and
reduce the difficulty to decide the pixel is white or black, in turn, decrease the
index of fuzziness and entropy. The best-segmented output of object extraction
can be obtained from the minimized index of entropy and fuzziness. The
degree of the fuzziness of an image can be defined using fuzziness measures
that could be linear index, quadratic index, logarithmic fuzzy entropy, fuzzy
entropy of r-order Yager’s measures, and hybrid entropy. The measure of
fuzziness is used in many applications like thresholding.

The whole task of image processing can also be visualized as low-level
image processing, medium-level image processing, and high-level image
processing. In low-level image processing, visualization of the images
has been improved by some basic techniques like contrast enhancement
[3], image smoothening, and edge detection. Apart from that, low light
enhancement is another significant process for some image processing tasks,
especially for color images. A significant study has shown that intuitionistic
fuzzy sets along with histogram equalization outperform all the existing
methods, such as, adaptive histogram equalization with limited contrast,
histogram equalization, histogram specification, dynamic fuzzy histogram
equalization preserving brightness, and discrete cosine transform (DCT)
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coefficient [4]. The main purpose of medium-level image processing is to
extract some features of the images. High-level image processing results in
the description of the content of the images.

Imperfect knowledge

v,
——————
»

Grayness ambiguity =~ Geometrical fuzziness  Complex/ill-defined data

‘ Segmentation ‘ Analysis_
Image =) Preprocessing m— Representation = Interpret'aFlon result
‘ Description ‘ Recognition

FIGURE 14.1 Imperfect knowledge in gray image processing. ]

The intention behind investigating fuzzy logic is to represent and process
expert knowledge and efficiently manage vagueness and ambiguity. In
the context of that, a scheme has been introduced earlier in fuzzy image
processing consisting of three applications that are fuzzy binarization,
definition of fuzzy edge, and measurement of fuzzy geometry [5]. Fuzzy
set-based image processing consists of many steps. First, the input image
gets into the process of fuzzification and then goes through the membership
function modification. The role of expert knowledge plays here a crucial role
and then goes through defuzzification [6].

14.5 FUZZIFICATION

In the process of fuzzification, image data has transformed from a gray-level
plane to a membership plane. So, the images can be represented in fuzzy
logic. The fuzzification of the image can be done in two ways. First, without
changing the pixel values, we represent an image as a collection of fuzzy
singletons. Second, represents the property of darkness by introducing a
fuzzy set that is determined by an appropriate membership function. The
suitable member function that converts an image to a fuzzy image is called
a fuzzifier. Suppose an image G of dimension (MxN) with L gray level is
defined as the array of fuzzy singletons that can be defined as
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G=UUm., (14.1)

Here, u, ~€[0,1] is the membership value and is the predefined image
property like homogeneity, noisiness, brightness, etc. [7, §].

14.6 MEMBERSHIP FUNCTION MODIFICATION

This is the most important step where appropriate fuzzy techniques can
modify the membership values. The degree to which an object satisfies
particular properties is indicated by its membership value. Additionally, the
membership values show how fuzzy a set is. Fuzzy clustering is the unsuper-
vised learning technique that induces rules by categorizing and organizing
data into partitions to form clusters. The fuzzy clustering method which is
the fuzzy c-means (FCMs) algorithm is widely used in many applications,
including pattern recognition, image segmentation, and data analysis. The
fuzzy clustering consists of the fuzzy partitioning of the input space and the
creation of the fuzzy set that consists of the data points along with the partial
membership of the multiple clusters.

That clustering algorithm is used to create rule-based classification
models where each rule is associated with a fuzzy cluster. Unlike fuzzy
image processing, a methodology has been developed for converting a
fuzzy logic model that is based on transparent linguistic rules from a fuzzy
clustering-based classification model. Furthermore, optimized algorithms
are established by combining the FCMs algorithm with genetic algorithms
and particle swarm optimization to improve the rule-based fuzzy clustering
process. The membership function for the image fuzzy processing is thresh-
olding by selecting an a-cut. A study shows that the fuzzy rule-based approach
for disease detection performs well over various methods and techniques,
such as, support vector machines (SVMs), artificial neural networks, fuzzy
logic, convolution neural networks, etc. Fuzzy rules are developed from the
values of the parameters obtained from the feature extraction method, that
is, blob analysis and then implemented using the membership function [9].

14.7 IMAGE DEFUZZIFICATION

As we do not have any fuzzy hardware, fuzzification of an image and
then defuzzification are required to process an image in fuzzy techniques.
Defuzzification means decoding the result by converting the fuzzy set to the
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crisp set again. It is observed that the defuzzification results in the loss of
information about the spatial characteristics of the images, such as, shape,
topology, and geometry. As opposed to the crisp segmentation, feature
distance minimization is proposed [10]. The Minkowski distance between
the fuzzy set and the crisp sets is defined through their selected feature-based
representation. Disease detection in Orchid plants is an application domain
of fuzzy image processing that consists of two parts, that is image processing
like gray-scaling, noise removal, and threshold segmentation. The fuzzy
logic system works on it through fuzzification, inference, and defuzzifica-
tion [11]. The classification of the unhealthy region in the leaf of the plant
has been done using the fuzzy inference system [12].

14.8 IMAGE PROCESSING

In image processing, image analysis requires cooperative operations and
image recognition can be performed through the formulation of complex
decision regions. Image acquisition involves capturing visual data from the
real world for digital processing and analysis. Cameras, scanners, satellites,
and medical imaging machines are used for image acquisition. Each device
employs specific sensors or technologies to capture visual information.
Image enhancement refers to techniques used to improve the quality, clarity,
and visual appearance of digital images. It involves altering an image to
make it more suitable foraspecific application or to improve its interpretability.
Several methods are employed in image enhancement. Spatial domain
technique directly manipulates pixel values to enhance contrast, brightness,
or sharpness. Operations like histogram equalization, contrast stretching,
and spatial filtering fall into this category. Frequency domain techniques are
transformations, such as, Fourier transforms are used to enhance images by
modifying their frequency components. Filters, such as, high-pass, low-pass,
or band-pass filters can sharpen or smooth images by accentuating or
suppressing certain frequencies. Histogram modification adjusting the
distribution of pixel intensities in the histogram can improve overall contrast
and brightness. Multiscale transformations are techniques like wavelet
transformation that enhance images by decomposing them into multiple
scales, allowing for localized enhancement. Image restoration involves the
process of recovering the original image from a degraded or corrupted
version. It aims to undo the effects of various factors that deteriorate image
quality, such as, blurring, noise, or compression artifacts. Several methods
are used in image restoration. Deconvolution is the technique that attempts
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to reverse the blurring caused by factors like motion or optical imperfections.
Algorithms, such as, Wiener deconvolution or Richardson—Lucy
deconvolution aim to restore sharpness and clarity. Noise reduction is a
method like median filtering, Gaussian smoothing, or wavelet denoising that
helps eliminate or reduce unwanted noise, enhancing image quality. Super-
resolution is the approach that reconstructs a higher-resolution image from
low-resolution versions, aiming to restore finer details. Inpainting is used to
fill in missing or damaged parts of an image, inpainting algorithms estimate
and reconstruct the missing information. Color image processing involves
manipulating and analyzing images that contain color information. It’s
crucial for various applications where color plays a vital role, such as, in
photography, medicine, art, and computer vision. The primary aspects of
color image processing include many steps. Color models are those various
color models, such as, red, green, blue; cyan, magenta, yellow, black; hue,
saturation, lightness; and hue, saturation, value that represent colors
differently, allowing for different manipulations and analyses based on their
properties. Color enhancement uses techniques, such as, color correction,
white balance adjustment, and histogram equalization to enhance the overall
appearance and quality of color images. Color segmentation involves
partitioning an image into regions or objects based on color information.
This technique is vital in object detection, tracking, and classification. Color
image compression methods for compressing color images without
significant loss of quality, considering the characteristics of human perception
and the redundancy in color data. Wavelet representation is a powerful
method used to analyze and represent images at multiple degrees of
resolution. It employs wavelet transforms to break down an image into
different frequency components, capturing both fine details and coarse
approximations. This representation facilitates a multi-resolution view of the
image, allowing for more efficient storage, analysis, and manipulation.
Wavelet transforms such as, the discrete wavelet transform or the continuous
wavelet transform, decompose the image into different levels or scales, each
representing a different degree of detail. Higher levels capture finer details
while lower levels or scales provide broader approximations of the image.
This multiresolution approach enables tasks such as, compression, denoising,
and analysis at various levels of detail, catering to specific requirements in
applications such as, image processing, data compression, and signal
analysis. Image compression is a technique used to reduce the size of digital
images, enabling efficient storage, transmission, and processing while
minimizing loss of image quality. There are two main types of image
compression. The lossless compression methods retain all original image
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information while reducing file size. It is commonly used for images where
maintaining pixel-perfect accuracy is crucial, like medical imaging or
technical drawings. Lossy compression achieves higher compression ratios
by discarding some image data. While it reduces file size significantly, there
is a tradeoff with image quality. Popular lossy compression methods include
joint photographic experts group, where users can adjust the compression
level to balance between file size and image quality. Image compression
algorithms leverage techniques like predictive coding, transform coding
(such as, DCT), and quantization to reduce redundant information and
compress the image efficiently. These methods are integral in digital
photography, web applications, and various industries where managing large
volumes of image data is essential. Image morphological processing involves
analyzing and manipulating the structure and shapes within an image using
mathematical operations based on set theory and geometry. It focuses on
extracting, enhancing, and modifying features such as, edges, shapes, and
patterns within images. Erosion shrinks or erodes the boundaries of objects
in an image, useful for removing small structures or fine details. Dilation is
the opposite of erosion, dilation enlarges or fattens the boundaries of objects,
enhancing or joining nearby structures. The opening combines erosion
followed by dilation helps in removing noise, small objects, or thin structures
from an image. Closing is dilation followed by erosion fills small gaps or
holes and joins nearby structures in an image. Image segmentation involves
dividing an image into meaningful and distinct regions or objects based on
certain characteristics such as, color, intensity, texture, or boundaries. It is a
critical step in image analysis and computer vision, enabling the extraction
of specific areas for further processing and interpretation. Various techniques
are employed for image segmentation. Thresholding separates regions based
on pixel intensity values, where pixels above or below a certain threshold are
grouped. Edge-based segmentation detects discontinuities or edges in an
image to separate different objects or regions based on abrupt changes in
pixel intensity. Region-based segmentation divides the image into regions
with similar properties, using algorithms such as, clustering or region growth.
Contour-based segmentation is identifying and delineating object boundaries
or contours for segmentation. Image segmentation finds applications in
medical imaging (tumor detection), object recognition, autonomous vehicles,
and scene understanding, providing crucial information for subsequent
analysis and decision-making in various fields. Feature extraction involves
identifying and selecting the most relevant and distinctive characteristics
from raw data, facilitating easier analysis, classification, and pattern
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recognition. In image processing, it involves capturing and representing
meaningful information from images that aid in subsequent tasks like object
detection, recognition, and analysis. Various methods are used for feature
extraction. Pixel-based features are basic features derived directly from pixel
values, such as, color, intensity, and texture. Edge detection is to identify
edges and contours within an image to extract information about object
boundaries. Shape Descriptors are extracting features related to shapes, such
as, area, perimeter, or circularity, crucial for object recognition. Histograms
and statistical features describe the distribution of pixel values or statistical
properties, such as, mean, variance, or skewness. Feature extraction is pivotal
in fields such as, computer vision, pattern recognition, and machine learning,
where these extracted features serve as inputs for algorithms to make
decisions, classify objects, or perform complex analyses on images or data.
Image pattern classification involves the categorization or labeling of images
into predefined classes or categories based on their features. Itis a fundamental
task in image processing and computer vision, aiming to identify patterns,
objects, or structures within images. The process typically involves many
steps. Feature extraction is performed to extract relevant features from
images such as, texture, color, edges, or shapes. Training a classifier using
machine learning algorithms (such as SVMs, neural networks, or decision
trees), a model is trained on a labeled dataset, learning to associate extracted
features with specific classes. Classification: The trained model is applied to
new, unlabeled images to predict or assign them to appropriate classes based
on the learned patterns.

The image processing steps consist of some substeps such as, noise
removal and distortion correction in the image preprocessing, object
boundary identification and object feature identification in the feature extrac-
tion phases, and false positive removal in the postprocessing phase. Although
all the steps are not necessarily required for a single image processing task
rather the steps are added or omitted depending upon the application.

A comparative study has been performed on the different classification and
pattern recognition algorithms and observed that the control chart approach
is the decision methodology that gives promising results but cannot detect
overlapping events. So, to overcome this problem fuzzy logic technique is
used and increases the accuracy from 95.6% to 97.2% [13]. However, in
image processing and pattern recognition, uncertainties can happen in any
phase of the image processing tasks like enhancement, noise reduction,
filtering, contour extraction, segmentation, and skeleton extraction to extract
the features from the image pattern.
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14.8.1 NOISE REMOVAL AND DISTORTION CORRECTION

Fuzzy logic can enhance the quality of images by reducing the noise in the
pre-processing phase. A fuzzy filter is used to remove the additive noise and
they use the member function corresponding to the fuzzy rule of the different
stages of the filter [14]. A recursive double-action fuzzy filter is introduced
which performs the fuzzy reasoning into two phases and strongly cancels the
noise without any degradation of the image structure [15]. Another adaptive
fuzzy filter is proposed by the researcher that can potentially enhance the
image quality by performing edge detection for the smeared images. That
fuzzy filter has two mechanisms: Adaptive weighted fuzzy mean and fuzzy
normed inference system. The member function of the fuzzy set used for
the filters is adaptively determined for the different images. This filter can
cancel the random impulse noise and Gaussian impulse noise effectively
[16]. The article proposes the use of fuzzy logic and an alpha-trimmed
mean-based filter to smooth out uniform impulse noise from grayscale
images that have been distorted. To prevent the outlier effect, the suggested
method combines fuzzy logic with the idea of an alpha-trimmed mean.
The alpha-trimmed mean and median values are used to develop a fuzzy
membership function, in turn, is used to find the noisy pixels estimated
value. The method described in [17] outperforms all the previous impulse
noise removal methods. The impulse noise of the sequence-based images
is also removed [18]. Furthermore, the impulse noise which is salt pepper
noise can be removed using an adaptive switching median filter [19]. In
recent studies of biomedical image analysis, Gaussian blur is applied to
remove unwanted noises from the optical coherence tomography B scan
images to identify diabetic macular edema [20].

14.8.2 OBJECT IDENTIFICATION AND SEGMENTATION

For reliable image segmentation, an automatic fuzzy algorithm has been
introduced in the study by the researcher and compared with the existing
method by various test images, noisy synthetic images, and simulated
magnetic resonance Image datasets [21]. Research work has been published
for skin cancer detection using fuzzy logic-based segmentation with an
advanced deep-learning model. Furthermore, to enhance the segmentation
results, the L-R fuzzy defuzzification method is used [22].

In computer vision, fuzzy logic can be incorporated with the image
segmentation process to detect damages in a traffic accident where a c-means
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fuzzy clustering algorithm is used with a particle optimization algorithm for
image segmentation [23]. A hybrid character recognition method is intro-
duced using fuzzy logic, SVMs, and the stroke Bayesian program learning
using naive Bayes in an industrial environment [24].

To automate some production chain in agriculture, intelligent systems
was developed that uses the intensification operator to enhance the contrast
of the image. To segment the images fuzzy divergence is used and fruit
identification is performed using the Hough transform [25].

14.8.3 FEATURE EXTRACTION

For the high-level image analysis, the objects are segmented and recognized
by some algorithm. However, clustered objects cannot be segmented
properly. So, multistage segmentation approaches are introduced. However,
the problem of multistage segmentation is that at each step a new structure
is detected which creates ambiguity. So, to propose an improved version
on top of this a metaheuristic optimization algorithm that is ant-colony
optimization and fuzzy logic-based technique is proposed to solve the
problem [26]. Many machine learning algorithms are used for the feature
extraction processes but fuzzy logic is used very rarely.

14.8.4 CLASSIFICATION

At the initial time or the early age of the image processing, classification
approaches are mainly pixel-based rather than utilizing the spatial and context
information of the object in the images and their surroundings. As time goes
on, approaches are modified and start incorporating spatial and context
information. The classification of the segmented object can be performed
by object feature tracking, and supervised segmentation [27] can be done
for the object-oriented classification. Tissue abnormality can be detected
using fuzzy-neuro logic by determining the suitable object parameters. The
medical images are classified and segmented perfectly [28].

14.8.4.1 FUZZY CLUSTERING ALGORITHM

The fuzzy clustering techniques are widely used to assign the degree of
membership of the data points that belong to one or more clusters. The
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grouping of the data is performed based on their proximity to each other. The
c-mean clustering algorithm provides the hard assignment in the data point
clustering. Although, the c-means clustering is computationally complex
and sensitive to initialization. It is very difficult to get an exact number
of clusters and get the suboptimal segmentation. By tuning the parameters
perfectly, the performance can be achieved up to a certain extent. Recent
advancements in fuzzy clustering algorithms like FCMs clustering algo-
rithms and their different variations like standard FCM, kernelized fuzzy
c-means (KFCMs) clustering, and wavelet fuzzy c-means clustering algo-
rithms [29] have improved the accuracy significantly by the assignment of
the partial membership to different clusters. The wavelet FCMs clustering
gives a satisfactory result over the standard FCM or KFCM [30]. The benefit
of this technique is that we can deal with overlapping regions of the images.
Fuzzy clustering enables better segmentation and categorization of image
data by allowing a pixel to belong to multiple clusters with varying degrees
of membership as opposed to the hard membership function. A fuzzy model
has been developed by integrating fuzzy clustering techniques along with
fuzzy neural network-based models for prediction. Rough fuzzy pattern
recognition techniques or rough fuzzy clustering algorithm was introduced
for clustering similar genes from microarray gene expression data and
segmenting the brain magnetic resonance images. This is the generalized
hybrid unsupervised learning algorithm called rough fuzzy possibilistic
c-means algorithm that can give a generalization of all combinations of
the c-means algorithm. The combined principle of the rough set and fuzzy
set incorporates the probabilistic and the possibilistic memberships simul-
taneously where uncertainty, vagueness, and approximation can be dealt
with in the rough set and the overlapping portion can be handled by the
membership function of the fuzzy sets [31]. Pattern recognition is improved
by modifying the objective function algorithm [32]. A fuzzy gravitational
search algorithm has been introduced for automatic segmentation using
brain magnetic resonance imaging (MRI) images [33, 34]. However, the
parallel algorithm is introduced in FCMs for brain tumor segmentation
on different MRI images which improves the computational time and is
twice as fast as the conventional FCM [35]. The performance of the fuzzy
clustering algorithm has been improved using the task pipeline concept in
using compute unified device architecture technology by parallelly imple-
menting the algorithm. The experimental results indicate 23.35 times boost
in performance. The final segmentation is then achieved by applying the
watershed algorithm [36, 37].
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14.8.5 REMOVAL OF FALSE POSITIVES

Removal of false positive features in the post-processing is performed in such
a manner that the true target features still remain. Removal of false positives
in mammographic images in postprocessing is an important problem. In
fuzzy logic-based false positive reduction, a fuzzy logic classifier assigns
each region of interest into two values: one for the probability of being a true
positive and another for the probability of being a false positive [38].

Nonmaximum suppression is a standard postprocessing algorithm for
merging all the detected objects in the same object. This algorithm is very
simple and follows greedy clustering having a fixed distance threshold. This
algorithm is used for making a tradeoff between the percentage of accurately
identified positive cases relative to all positive cases, in reality, that is, recall,
and the ratio of precisely categorized positive cases among all cases classified
as positives, that is, precision [39]. Another method is to filter out detection
below a certain level, that is, thresholding, geometric consistency checks
the relationship between detected objects, and re-ranking using machine
learning [40]. Two-stage postprocessing scheme which comprises the area-
thresholding sieving and the morphological closing for object detection in
wide-area aerial imagery is used [41].

14.9 FUZZY LOGIC WITH NEURAL NETWORKS

The neural network is a big interconnected network of simple processing
elements aligned parallelly and has the capability of performing cooperative
operations as well as making complex decisions. The huge connection
among the neurons ensures that the system is fault tolerant irrespective
of the presence of the noise and the component failure, but to handle the
uncertainty and incorporate human reasoning, the fuzzy set-theoretic model
is introduced along with them. As seen earlier, the design of the fuzzy
rule-based system is the mandatory thing to express human knowledge
in IF-THEN rules. The process consists of identifying and labeling the
input and output variables, specifying the value range of each input and
output variable, and specifying the member function to characterize the
fuzzy sets. To carry out this process there already exists a general-purpose
tool like fuzzy inference system professional that provides an interactive
environment for designing and optimizing the fuzzy inference systems. But
the flip side is that defining the rule-based system for image processing is
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difficult to define manually. Furthermore, it models a simple process based
on the qualitative model. For the complex process, defining and tuning the
parameters are very time-consuming results limiting the incorporation of
the fuzzy logic up to the field where domain expert knowledge is available.
But we are interested in those fuzzy logic-based models, that can learn
from the examples in case of lack of expert knowledge. Besides, a better
version of the neural network gets introduced that exploits the advantages
of linguistic information. So, neurofuzzy models are being proposed. It
eventually reduces time and cost and enhances efficiency. An automatic
microaneurysms detection method has been developed using deep learning
along with fuzzy image processing in the retinal images [42]. Nowadays,
neurofuzzy models have immense applications in the fields of agriculture,
biomedical, and many more fields [43—45].

14.10 HIERARCHICAL FUZZY LOGIC

The studies have shown that the conventional fuzzy system has several
limitations over the dimensionality of the data [46, 47]. This restricts it from
solving large complex problems having large dimensionality of the data. So,
hierarchical fuzzy systems have been introduced to solve the problem related
to those huge dimensional data [48, 49]. The hierarchical fuzzy system
can be classified into two categories: type 1 fuzzy hierarchical inference
system where crisp membership function is defined [50] and type 2 fuzzy
hierarchical inference system where fuzzy membership function is defined
[51-54]. The segmentation of the brain tumor in the magnetic resonance
images is performed by a hierarchical combination of fuzzy logic and cellular
automata [55].

The main difference between the hierarchical fuzzy logic and the neural
network is that in the hierarchical fuzzy system, the system is divided into
subsystems and each subsystem is divided into fuzzy logic units that are
connected in a hierarchy form in the hierarchical fuzzy logic. The output of
each subsystem is used as the input of the next subsystem and it reduces the
overall complexity of the system by the reduced rule base. However, in the
neurofuzzy modeling, the input set is used to design a fuzzy rule base for
the IF-THEN statements and then the neural network is used to learn and
optimize the fuzzy rule base with feedback connections. So, the application
of these techniques can be used in different places depending upon their
requirements where the tradeoff is made between cost and efficiency.
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14.11 SUMMARY

Fuzzy logic has its history dating back to 1920 and has been developed in
many systems specifically fuzzy control systems, fuzzy expert systems, and
fuzzy image processing. As we know, real-world images are ambiguous and
unpredictable, traditional image processing has had trouble handling them
when they contain noise and distortions. So, fuzzy set-based image processing
is introduced and that consists of several steps, including fuzzification,
membership function modification, and defuzzification. In this study, we
broadly describe the different kinds of ambiguity and the uncertainty of the
images. Different kinds of fuzzy filters are used for removing additive noise
and impulse noise. Furthermore, the different study shows that low light
enhancement and contrast enhancement can be performed through fuzzy
logic in image processing. To automate the production chain in agriculture, a
fuzzy system has been developed. The plant disease can be detected through
fuzzy image processing. Traffic accident detection and hybrid character
recognition model are proposed by the researcher by object identification
and segmentation using fuzzy logic. The problem of multistage segmentation
is removed by the improved version of the model following ant-colony
optimization and fuzzy logic-based technique. The FCMs clustering and its
different variations are efficiently deal with different overlapping regions
of the images and very popular in biomedical image processing. Fuzzy-
based postprocessing algorithm is developed that improves the efficiency.
Fuzzy neural networks are introduced for those complex applications that
are learned by themselves. Finally, the hierarchical fuzzy logic has been
discussed which significantly speeds up the research in the biomedical fields
using the type 1 and type 2 fuzzy logic. Fuzzy logic has immensely improved
the classification phase of image processing. So, the implementation of fuzzy
logic significantly advances image processing tasks.

14.12 FUTURE WORK

The research is open to developing the new algorithm or implementing
the existing technology to a suitable application that could be best fitted to
achieve a perfect tradeoff between cost and efficiency. Furthermore, new
technology could be developed for the existing problem domain or different
real-life applications to provide a better solution that could be more sustain-
able for the future.
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ABSTRACT

The idea of intuitionistic fuzzy sets (IFS) represents a valuable expansion of
the fuzzy set theory introduced by Atanassov, designed to effectively harness
uncertainty. The concept of similarity and distance measure proves to be the
best technique of dealing with modeling activities. While numerous measures
are theoretically available, they lack precision and require enhancement to
achieve improved results. In this chapter, we propose distance and its twin
similarity measure based on IFS. Also, application like medical diagnosis
and pattern recognition have been discussed and compared with existing
measures. Different attributes are analyzed, and practical numerical cases
are utilized to evaluate the measure's trustworthiness. Comparative analysis
show case the utility of the novel distance-similarity measure. The outcomes
illustrate that the suggested measure can be trusted, is adaptable, and handles
situations with uncertainty more effectively.
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15.1 INTRODUCTION

Decision-making is the skill of selecting the most favorable course of action
from a range of options, leading to success for either an individual or an
organization. It is not a one-step process and requires careful understanding
of the preferences which leads to the better functioning of the organiza-
tion. In our everyday experiences, we encounter situations that demand
effective decision-making. This skill finds application in diverse fields,
such as healthcare diagnostics, identifying patterns, business management,
and economics. Formulating a decision can often be a complex process,
entangled in uncertainties and scenarios that do not neatly fit into binary
“yes” or “no” resolutions. Zadeh [1] realizes this problem and extended
Cantor’s classical set theory to the theory of fuzzy sets. In this theory, Zadeh
highlighted that the extent of belongingness does not always fall strictly
into a “yes” or “no” category; rather, there exists considerable ambiguity or
fuzziness in between these definitive states. To simplify and take in account
the concerned problem, Zadeh formulated ¢ (a) where ¢ (a) € [0, 1] and
is known as degree of membership. It was realized later that the degree
of nonmembership is not always equal to 1—degree of membership as
sometimes vagueness is present. To overcome this problem Atanassov [2, 3]
proposed intuitionistic fuzzy sets in which hesitancy is also included and can
be stated as @ (a) + H(a) < 1, where $H(a) is degree of nonmembership and
also stated operations that are defined over IFS.

After its formulation it quickly seized the attention of many researchers
who used IFS as a tool in various fields like medical diagnosis, pattern
recognition, image segmentation, clustering, etc. De et al. [4] applied IFS to
medical diagnosis, Liand Cheng [5] used IFS as a tool for pattern recognition,
Xu [6] smeared it in multicriteria decision-making and Xu et al. [7] extended
its application in cluster analysis. Some correlation measures have also been
proposed with the help of IFS in diverse fields like Thao [8, 9] correlated it in
pattern recognition and later in medical diagnosis. Ejegwa and Oyenke [10]
applied it to various multi-criteria decision-making (MCDM) problems.

The concept of IFS was used extensively with distance and similarity
measures as it serves as a means to be a reasonable source of information.
Distance measures are used to find the distance between two fuzzy sets
whereas similarity measures are used to find the closeness among them.
Burillo and Bustince [11] coined the notion of distance with IFS. Szmidt
and Kacprzk [12] extended the work further by using all three parameters
constituting IFS for calculating distance. Wang and Xin [13] discussed



Novel Distance-Similarity Measures for Intuitionistic Fuzzy Sets 275

a weighted distance measure and applied it to pattern recognition. The
application in this field was also utilized by Park et al. [ 14], Hatzimichailidis
et al. [15], Solanki et al. [16], etc. Davaz and Sadrabadi [17] suggested a
distance measure and extended its application to diagnosis problems.
Dutta and Goala [18] formulated advanced distance measures in medical
diagnosis. Further, Goala and Bora [19] proposed multicriteria intuitionistic
fuzzy sets in medical diagnosis. Garg and Kaur [20] discovered a novel
distance measure with its applications in medical diagnosis and pattern
recognition. Further, Mahanta and Panda [21] introduced a distance measure
and studied its applications in medical diagnosis and pattern recognition.
Dutta et al. [22] suggested distance and similarity measure and discussed
its various applications. Ohlan [23] discussed novel distance measure for
interval-valued IFS with applications in multicriteria group decision-
making. Zeng et al. [24] suggested an exponential distance measure to study
pattern recognition. Szmidt and Kacprzk [25] and Chen and Radyanto [26]
proposed similarity measures based on IFS and extended its use in medicine.
Ye [27] formulated some similarity measures based on cosine function
and demonstrated its applications in mechanical design schemes. Luo and
Liang [28] proposed a similarity measure for interval-valued IFS with its
applications in pattern recognition. Further, Igbal and Rizwan [29] suggested
a similarity measure and discussed its significance in the field of medical
diagnosis and pattern recognition. Kumari and Mishra [30] discussed
multicriteria fuzzy techniques based on the principles of IFS and studied its
applications in supplier selection. Adamu [31] applied IFS to make better
decisions related to environmental management. Augustine [32] proposed
distance- similarity measure with its roots extending to demonstrating its
real-life use in medical diagnosis and pattern recognition. Gohain et al.
suggested two new similarity measures with cross evaluation factor as its
key feature. Thao and Chou [33] have proposed similarity measures and
studied decision-making in evaluation of software quality. Gupta and Kumar
[34] discussed IFS with applications in pattern recognition and clustering.
Further, Kumar and Kumar [35] proposed an article on IFS discussing its
possibility in pattern recognition. Patel et al. [36] suggested a similarity
measure based on IFS and discussed its utility in face recognition and
software quality assessment. Dutta et al. [37] formulated a measure based
on IFS with its roots extended to decision-making in scenarios related to
COVID-19. Bajaj et al. [38] proposed a correlation coefficient measure based
on IFS to streamline decision-making problems. Patel et al. [39] discussed a
measure based on IFS with applications in pattern recognition and medical
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diagnosis. Chakraborty et al. [40] recommended a similarity measure for
making a universal decision-making problem of selecting a smartphone
based on different criteria. Meanwhile, Panda et al. [41] proposed a measure
for identifying bugs in software based on IFS.

15.1.1 RESEARCH GAP

At the forefront are various similarity and distance measures rooted in IFS, yet
these methods confront inherent limitations demanding careful consideration
and improvement. The measures proposed by Li et al. [S] and Ye [27] take
into consideration only two parameters of IFS thus not utilizing its use fully.
Further, trigonometric measures help in further enhancing the decision-
making and overcoming the drawbacks. The cosine similarity measures in
vector space have some drawbacks which lead to unreasonable results. The
cotangent similarity measures help to overcome the drawbacks and show its
decision-making capability in various fields.

This chapter introduces a cosine similarity measure, akin to the cotangent
measure, demonstrating enhanced flexibility and efficiency in decision-making,
establishing itself as a valuable tool in this context. The chapter also shows the
applications of measures in pattern recognition and medical diagnosis, but not
limited to this to demonstrate its use in decision-making process.

To fulfill the purpose, the chapter is structured as: Section 15.2 takes
us through the fundamentals of the article. Section 15.3 is dedicated to
distance—similarity measure. Section 15.4 shows the numerical illustrations
of the measures and Section 15.5 studies its real-life applications. Section
15.6 compares it with work done by other authors to show the novelty of the
measure. Section 15.7 concludes the chapter with references.

15.2 PRELIMINARIES

Before going through the new measures we need to revisit some of the
existing definitions.

Definition 15.1. [1] Let Q be a fuzzy set in A then Q = {a, Poa)]ace
A} where p ol®): A — [0, 1] Where g o(@) is the degree of membership
of Q.

Definition 15.2. [2] Let Q be intuitionistic fuzzy set QQ in A then Q = {a,
£ (@), Hy(a) |a € A} where # (@) A — [0, 1] and H(a): A — 0, 1].
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Where @(a,) is the degree of membership and $),(a) is the degree of
nonmembership such that 0 > @ (a) + H(a) < 1.

Definition 15.3. [4] An IFS Q in universe of discourse A is defined as
Q = {a, py(a), Hy(a) | a € A} where @ (a): A — [0, 1] and §(a):
A — [0, 1].

Where @ (a) is the degree of membership and §)(a) is the degree of
nonmembership such that 0 < @ (a) + H,(a) = 1 and o (a) =1 — @ ()
— $)o(a) where o (a) is called hesitancy.

Then, the relation between the two IFSs can be stated as follows.

1. QcPiff Po(a)<p:(a) and H,(a)2H,(a) forany a € A.

2. Q=Piff py(a)=y(a) and Hy(a)=5:(a) forany a € A.

3. Q={<a,9y(a), 9 (a)>:aech}

4. QUP ={<a,max(pQ(a),ﬁ[p,(a )),min(.‘f’,)@(a )95 (a ))>:aeA}.
5. QNP ={<a,min(@y(a).@(a)).max(Hy(a). 9 (a))>:aecAl

Definition 15.4. Let Q and P be two IFS in A then similarity measure
S (Q,P) between them is defined as follows.

1. 0<S(QP)<I.

2. S(QP)=1=Q=P.

3. S(QP)=5(P.Q.

4. S(Q,0)<S(Q,P)+ S(P,0), where Q is an IFSin A.

Definition 15.5. Let Q and P be two IFS in A then distance measure D
(Q, P) between them is defined as follows.

1. 0<D(@Q,P)<1.

2. DQP)=0=Q=P.

3. D@@Q,P)=D(P, Q).

4. D(Q, 0) <D, P)+ D(P, Q), where O is an IFS in A.

15.3 DISTANCE-SIMILARITY MEASURES BASED ON IFS

In this section, we will discuss some existing and new distance—similarity
measures based on IFS.
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15.3.1 EXISTING DISTANCE AND SIMILARITY MEASURE

Definition 15.6. [Hong and Kim 1999] Let Q and P be two IFS in A then
similarity measure between them is defined as

S1<©3P>=1—§ZZ’,1 [0 (a,) =2 (a,)| +|9 (a,) = 92 (a,)]]

DUQP) =237 [[@a(0,) = (0] +[96 (a)9. (o)

Definition 15.7. [Szmidt and Kacprzyk 2000] Let Q and PP be two IFS
in A then similarity measure between them is defined as

§208)=1-3 X [0 (a.) =0 (8 ) 950 (8,) =52 (8, ) oo ()02 (s, ) ]

D2AQ.P)=— Zl 1“”@ (a0,)= % (a, )|+|53@ (a,)= 9 (a, )|+|a)© (a,) - (a, )”

5560 1T [l (o 30t o et oo ]

J
DA L2, [ ()= 0, 4192 (0.)-, (3, +fo ()0, (]
S4Q.P) = 1—% >0 o (a) =2 (3] + 9 (a,) = 90 ()] g (3, ) - @, (s, )]

DAQR) =537 [0 (@)= (0,)]+[96 () - 9 (0, )|+ (a)- . (0]

: 1 n 2 2
ss<@,m=1—sz,ﬂ[\p@( (0 419 (8)-9: 0, +fa (6,)- . (5|

D5(Q,P) = \/_ |ﬁ@ 23 (ai )|2 +|5§@ (ai )_ﬁP (ar' )|2 +|a)@ (ai )_0)1? (al )|2}

Definition 15.8. [Li 2007] Let Q and IP be two IFS in A then similarity
measure between them is defined as

. 1 " 2
S6(@,P>=1—\/Ezﬂ[lp@( ~ 2 (@) +[90(0)-9. (o) |

62113 [Josle) - o +Jac(a) 5.0
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Definition 15.9. [Sharma and Tripathi 2020] Suppose A be the universal
set then sine distance measure and cosine similarity measure between two
IFS Q and PP can be defined as

D7(Q,P) =ﬁ 2 {sin[L% (s, );“P (s, )qmsm['%(“i );m (s, )|H
DS (Q.P) :%ZLI {Sin[‘\/c@@(ai);\/fﬂp(ai) J”+Sin{‘\/f)@(ai);\/ﬁp (a,) J”J
S7(Q]P>)_ Z [C [L% zﬂm(“i)|Jﬂ+cos[|ﬁ@(a,);ﬁp(ai)q”j

$8Q.P)=o- le [COS{‘\/W@(%);\/%(%)JHCOS{‘\/%(%);\/%(%)}T}

Definition 15.10. [Ejegwa 2022] Suppose Q and P be two IFS in the
universe of discourse A then the distance similarity measure between them
can be defined as

$9(Q,P) =~ Z, NP0 (8) 2 (a,) /9 (a,) 9 (a,) +4f@ () @, (a,)

D9 (Q, P)-l——z, A2 (a) 20 (a) +4/9 (a,) 92 (a,) + o, (a,) @, (a,)

15.3.2 PROPOSED DISTANCE-SIMILARITY MEASURE

In the following section, the proposed distance measures are discussed. As
similarity measure is a twin concept of distance measure, we shall discuss
both in this section.

Let Q and IP be two IFS in the universe of discourse A then the distance
similarity measure between them can be defined as follows:

DlO(Q,IP’):l—f > {sm (\/f)Q ,)+\/YJQ(u,)ﬁP(a,)+\/wQ(ai)wp(a,)):‘

SIO(Q,IP): > [sm (\/pQ (ai)+\/5§@ (a,) 9 (a1)+\/(l)Q (a,)a, (ai))}
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DI1(Q,P)= 1—l oW {sm (\/[oQ )2 (a \/.9')@ i)+\/a)@(ai)wp(a,.))]

S11Q.P) = [sm (Ve )2 (0 )+ (0, 5 (a0 ) + o (3 ) s, ))}

15.4 NUMERICAL ILLUSTRATION

In this section, we offer numerical validation for the suggested measure. To
test the validity of the proposed measure we shall carry out calculations for
the proposed distance measure with the help of an example

Let Q, P and O be three [FSin A= {a,a,,...,a ,a } then
Q= {{a,,0.6,0.2), (a,, 0.4,0.6), (a,, 0.5,0.3)},
P = {{a,, 0.8,0.1), (a,, 0.7,0.3), (a,, 0.6,0.1)}
= {(a,,0.9,0.1), a,, 0.8,0.2), (a,, 0.7,0.3)}.
D@, P)_l—f > |:Sln (Ve () 2 (a,) + /95 (a i)+\/w@(ﬂf)%(al))}

-3 {sin%‘ ([(\/o.mo‘s #0201 +402x0.1 )+ (V0.4x0.7 +/0.6x03 +\/M)}

. (\/0_5X0.6 +|\/0.3><0.1|+x/0.2><0.3))u

=0.001614
DlO(]P’,@)zl—— :{sm (\/gop a,)+\/ﬁp(ai)5@(ui)+\/a>]p(a,)a)@(al))}

:§[sin%‘ ([(J0.8x0.9 +V0.1x0.1 +0.150) + (0.7x08+03x02 +0x0) |

+ (\/0.6><0.7 +|\/0.1x0.3|+J0-3X°))H

=0.014157
D10(Q,0)= 1—7 ‘l{sm (Voo (@) @0 (a, \/ﬁQ(ai)fJ@(a,)+\/a)Q(a,)wﬂ(ai))}

:g{sin%‘ ([(Jo.8xo.9 #0Tx 0T +40.1x0) + (V0.7x08 +03x02 +\/0><0)J

+(V0.6x0.7+[J0.1x03] +J0-3X0))H

=0.014268,
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Similarly, we can prove for D11(Q, ©), $10(Q, P), S11(Q, P).

Numerical Rationale: From the above computations, it can be concluded
as follows.

1. 0<D(Q,P)<1.

2. D@QP)=0=0Q=P.

3. D'(Q,P)=D'(P,Q)

4. D'(Q,0)<D'(Q,P)+Di (P, Q).

Table 15.1 shows the value of proposed distance measure and weighted
distance measure.

TABLE 15.1 Proposed Distance Measure for Q, P, and O <1

Distance Measure D10(Q, P) D10(P, O) D10(Q, 0)
DI10(Q, P) 0.001614 0.014157 0.014268
D10(Q, P) 0.667305 0.670701 0.670644

15.5 APPLICATIONS

Here, we have presented the applications related to the proposed distance
measure to show the reliability of the proposed measure.

15.5.1 PATTERN RECOGNITION

Suppose there are three patterns Q, P, and O and we wish to determine
which among the following is closest to Y where

el - )
enierin)
(L )

Let the weights w are 0.5, 0.3, and 0.2, respectively.

O
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Table 15.2 indicates that P exhibits the closest proximity to Y, as it show-
cases the least distance, suggesting that Y is the acknowledged and nearest
pattern.

TABLE 15.2 Distance Measure Between Q, P, and O &1

Distance Measure DI(Q, Y) Di(P, Y) Di(Q, Y)
DIO(Q, P) 0.07 0.02 0.04
D11(Q, P) 0.08 0.02 0.03

15.5.2 MEDICAL DIAGNOSIS

Suppose a patient has been examined by a medical consultant on the basis
of five symptoms like body temperature (a,), tiredness (a,), stomach issues
(a,), headache (a, ), and chest pain (a,) and set of diagnosis O = {Viral
Fever, Typhoid, Stomach problems, Malaria, and chest problem}. Using
the feedback provided by patients, we aim to identify the disease that most
closely aligns with their symptoms or conditions

o-fehe e e e
s )
e
{2
|

0.10.7\ 02,04 08,0\ /0.2,0.7\ /0.2,0.7
a4 , a, , a5
0,0. > <o 2,0. 8> <0.2,0.8> <0.8,0.1>}
3 ’ a4 ' a5
0.6,0.1\ /0.2,0.8\ /0.6,0.1\ /0.1,0.6
9 az 9 a3 b a4 b as

Let the weights w, are 0.15, 0.2, 0.1, 0.25, and 0.3, respectively.

/\/\/-\

0108>

and let © :{<0.8,0.1

4

—
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Table 15.3 gives that O is closest to Q, as it has the least distance, which
implies person is likely to be suffering from viral fever.

TABLE 15.3 Distance Measure Between Medical Diagnosis and Patient <[]

Distance Measure Di(Q, Q) Di(O, Q) DO, Q) D, Q) Di(O, Q)
D10(Q, P) 0.01 0.01 0.01 0.12 0.13

DI11(Q, P) 0.01 0.01 0.02 0.07 0.14

15.6 COMPARATIVE ANALYSIS

Comparative analysis serves as a valuable tool by allowing for the examina-
tion and assessment of similarities, differences, patterns, and relationships
between different variables, subjects, or phenomena. In this article, our
objective is to assess the dependability of the proposed measure by applying
it to real-world scenarios such as pattern recognition and medical diagnosis.

Comparison between proposed distance measures by some renowned
researchers has been done and the result obtained from them is unified for
pattern recognition and medical diagnosis. Tables 15.4 and 15.5 show the
result obtained for pattern recognition and medical diagnosis, respectively,
for all the distance measure listed in this article.

TABLE 15.4 Comparative Analysis of Distance Measure Between Q,P, O with G for
Pattern Recognition <]

Distance Measure DI(Q, G) Di(P, G) D'(0, G)
DI, P) 037 0.35 0.15
D2(Q, P) ! ! !
D3(Q. ) 0.56 0.56 0.25
DA, P) 0.5 0.5 0.22
D5(Q. P) 0.40 0.40 0.18
D6(Q. ) 0.37 0.35 0.15
DIQ. P) 0.5 0.52 0.23
DS(D. P) 039 1.07 0.53
D9(Q, ) 0.20 0.10 0.14
D10, P) 0.07 0.02 0.04

DI1(Q, P) 0.08 0.02 0.03
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Figure 15.1 shows the graphical representation of the result obtained for
comparative analysis for pattern recognition.
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FIGURE 15.1 Comparative analysis of distance measure for pattern recognition. 1

TABLE 15.5 Comparative Analysis of Distance Measure Between Patient and Symptoms /]
Distance Measure  D(0,Q) D'0,Q) D(0Q,Q) D(©,Q) DI(O,Q)

DI(Q, P) 0.19 0.18 0.20 0.46 0.50
D2(Q, P) 1.4 1.2 1.4 2.7 2.8

D3(Q, P) 0.64 0.56 0.70 1.17 1.29
D4(Q, P) 0.18 0.16 0.18 0.36 037
D5(Q, P) 0.23 0.20 0.25 0.43 0.40
D6(Q, P) 0.23 0.23 0.28 0.51 0.56
D7(Q, P) 0.28 0.26 0.29 0.62 0.65
D8(Q, P) 0.27 0.32 0.23 0.56 0.60
DI(Q, P) 0.30 0.30 0.29 0.24 0.23
DI10(Q, P) 0.01 0.01 0.01 0.12 0.13
DIQ, P) 0.01 0.01 0.02 0.07 0.14

Figure 15.2 shows the graphical representation of the result obtained for
comparative analysis for medical diagnosis.

Comparative analysis for pattern recognition and medical diagnosis
shows that the proposed distance measure is the best measure among the
existing measures and give more accurate results. The measure due to its
reliability and flexibility can be used in different MCDM situations to solve
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complex problems. Its reliability and adaptability make it a versatile tool
applicable across various scenarios in multiple-criteria decision-making, as
evidenced in both pattern classification and medical diagnosis.

25
2
1.5
1
0.5
0
2 N N 2 2 2 N 2 N N\ D
o”\og &\0‘} o"’@? o“\og 06\0‘3 o“’@? 0“\0? 0%\03 0‘5\08 0\9\0‘3 00\03

mDi(0,Q1) mWDi(0,Q2) ®Di(0,Q3) mWDI(0,Q4) mDi(0,Q5)

FIGURE 15.2 Comparative analysis of distance measure for medical diagnosis. «I

15.7 SENSITIVITY ANALYSIS

Initially, decision-makers were granted equal importance in ranking the
options. Yet, there might arise instances where the preferences attributed to
the opinions of decision-makers do not align. These kinds of situations have
been taken into consideration in this section.

We have taken six cases where priority has been given to each decision-
maker in first three cases and also in next three cases where equal priority has
been given to two decision-maker at a time.

Case I: If w, = 0.45, w, = 0.35, w, = 0.20, case II: If w, = 0.10, w, = 0.55,
w, = 0.35, case III: If w = 0.33, w, = 0.27, w, = 0.40, case IV: If w = 0.40,
w, = 0.40, w, = 0.20, case V: If w, = 0.30, w, = 0.35, w, = 0.35, and case VI:
If w, = 0.30, w, = 0.40, w, = 0.30.

The result of above six cases is tabulated in Table 15.6.
15.8 CONCLUSION
Distance measures serve as instrumental tools for analyzing numerous real-

life decision-making scenarios. This chapter explores both distance measures
and their corresponding similarity measures. The purpose of the measure is to
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provide a reliable and flexible tool for decision-making. The measure is applied
in situations related to pattern recognition and medical diagnosis in this article
but it can be combined with other decision-making situations as well. The
measure can be applied on MCDM problems to study other aspects of decision-
making as well. Numerical calculations are shown to prove capability of the
measure. Comparison with renowned authors has been to show the novelty of
the measure. Sensitivity analysis done demonstrates the effectiveness of the
measure even if priorities of decision-makers are changed. The limitation of the
study was restriction because of inadequacy in deliberating assessment from
individual decision-maker during decision result. From the results shown, we
can conclude that anticipated distance—similarity measures are good to manage
the real-life problem. We look forward for extensions and generalizations of the
proposed measures and their applications in MCDM problems.

TABLE 15.6 Sensitivity Analysis Using Six Different Weight Criteria </

Distance Measure  D11(Q, P) D11(Q, P) D11(Q, P)
Case | 0.70 0.30 0.81
Case II 0.78 0.30 0.80
Case 11T 0.73 0.30 0.75
Case IV 0.72 0.30 0.82
Case V 0.74 0.30 0.78
Case VI 0.74 0.30 0.79
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