
Foundations of Applied Mathematics
Volume 2

Algorithms, Approximation, Optimization

Foundations of Applied Mathematics
Volume 2

Algorithms, Approximation, Optimization

JEFFREY HUMPHERYS

UNIVERSITY OF UTAH

TYLER J. JARVIS

BRIGHAM YOUNG UNIVERSITY

5iajn_.
SOCIETY FOR INDUSTRIAL

AND APPLIED MATHEMATICS

PHILADELPHIA

Copyright © 2020 by the Society for Industrial and Applied Mathematics

10987654321

All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored,
or transmitted in any manner without the written permission of the publisher. For information, write to the
Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688
USA.

No warranties, express or implied, are made by the publisher, authors, and their employers that the programs
contained in this volume are free of error. They should not be relied on as the sole basis to solve a problem
whose incorrect solution could result in injury to person or property. If the programs are employed in such
a manner, it is at the user's own risk and the publisher, authors, and their employers disclaim all liability for
such misuse.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These names
are used in an editorial context only; no infringement of trademark is intended.

Python is a registered trademark of Python Software Foundation.

PUBLICATIONS DIRECTOR
EXECUTIVE EDITOR
DEVELOPMENTAL EDITOR
MANAGING EDITOR
PRODUCTION EDITOR
COPY EDITOR
PRODUCTION MANAGER
PRODUCTION COORDINATOR
COMPOSITOR
GRAPHIC DESIGNER
COVER DESIGNER

Kivmars H. Bowling
Elizabeth Greenspan
Mellisa Pascale
Kelly Thomas
Louis R. Primus
Susan Fleshman
Donna Witzleben
Gaily Shrader
Cheryl Hufnagle
Doug Smock
Sarah Kay Miller

Library of Congress Cataloging-in-Publication Data

Names: Humpherys, Jeffrey, author. | Jarvis, Tyler Jamison, author.
Title: Foundations of applied mathematics / Jeffrey Humpherys, Univerisity of Utah / Tyler J.

Jarvis, Brigham Young University.
Description: Philadelphia : Society for Industrial and Applied Mathematics,

[2017]-1 Series: Other titles in applied mathematics ; 152 | Includes
bibliographical references and index.

Identifiers: LCCN 2017012783 | ISBN 9781611974898 (v. 1)
Subjects: LCSH: Calculus. | Mathematical analysis. | Matrices.
Classification: LCC QA303.2 .H86 2017 | DDC 515--dc23 LC record available at
https://lccn. loc. gov/2017012783

41A m. is a registered trademark.

https://lccn

Contents

List of Notation ix

Preface xiii

I Algorithms 1

1 Introduction to Algorithms and Analysis 3
1.1 Complexity.. 6
1.2 Leading-Order Behavior ... 14
1.3 Summation.. 19
1.4 Reindexing and Changing Order of Summation 24
1.5 Nested Loops .. 30
1.6 * Additional Techniques of Summation.. 37
1.7 Products and Counting.. 44
1.8 Division and Divisors... 49
1.9 Primes and Remainders.. 55
1.10 Divide and Conquer... 61
1.11 Proof of the Master Theorem... 70
Exer cises... 74

2 Asymptotic Integrals 85
2.1 The Gamma Function and Stirling’s Approximation................... 85
2.2 *The Beta Function and Laplace’s Method.................................. 92
2.3 *Laplace’s Method and Stirling Improved...................................... 97
Exercises...103

3 Data Structures 107
3.1 Theory of Graphs... 108
3.2 Trees and Tree-Based Data Structures ..113
3.3 Search Trees.. 118
3.4 Priority Queues and Heaps..125
3.5 *B-Trees...131
Exercises...136

4 Combinatorial Optimization 141
4.1 Dynamic Programming..143

v

vi Contents

4.2 Graph Search Algorithms...148
4.3 Minimum Spanning Trees...157
4.4 Huffman Encoding .. 162
4.5 Hard Problems... 172
Exercises...180

5 Probability 185
5.1 Probability Theory.. 185
5.2 Conditional Probability and Bayes’ Rule...191
5.3 Independence, Paradoxes, and Pitfalls...198
5.4 Discrete Random Variables... 205
5.5 Discrete Distributions...212
5.6 Continuous Random Variables... 220
5.7 Multivariate Random Variables.. 228
Exercises.. 235

6 Probabilistic Sampling and Estimation 245
6.1 Estimation... 245
6.2 The Law of Large Numbers..252
6.3 The Central Limit Theorem.. 258
6.4 *Proof of the Central Limit Theorem... 264
6.5 Bayesian Statistics... 267
Exercises.. 275

7 Random Algorithms 281
7.1 Monte Carlo Methods...281
7.2 Importance, Inversion, and Rejection Sampling............................... 287
7.3 Hashing... 294
7.4 ^Simulated Annealing...300
7.5 * Genetic Algorithms ...307
Exercises.. 314

II Approximation 321

8 Harmonic Analysis 323
8.1 Complex Numbers...326
8.2 Fourier Series ... 331
8.3 ^Trigonometric Fourier Series ... 338
8.4 Convergence of Fourier Series ... 342
8.5 The Discrete Fourier Transform.. 346
8.6 Convolution.. 354
8.7 Periodic Sampling Theorem.. 360
8.8 Haar Wavelets... 366
8.9 Discrete Haar Wavelet Transform... 374
8.10 ^General Wavelets... 379
8.11 * General Fast Wavelet Transform and Examples............................ 386
Exercises.. 393

Contents vii

9 Polynomial Approximation and Interpolation 405
9.1 Polynomial Approximation..406
9.2 Interpolation.. 410
9.3 Orthogonal Polynomials for Approximation......................................419
9.4 Interpolation and Approximation Error..426
9.5 Fast Chebyshev Interpolation ... 434
9.6 Integration by Interpolation.. 441
9.7 Clenshaw-Curtis and Gaussian Quadrature......................................447
Exercises.. 454

III Interlude 461

10 Review of Multivariate Differentiation 463
10.1 Directional, Partial, and Total Derivatives..................................... 463
10.2 Properties of Derivatives.. 468
10.3 Implicit Function Theorem and Taylor’s Theorem......................... 474
Exercises.. 479

11 Fundamentals of Numerical Computation 483
11.1 Floating-Point Arithmetic... 483
11.2 A Brief Review of Conditioning.. 491
11.3 Stability of Numerical Algorithms...497
11.4 Computing Derivatives..503
Exercises.. 511

IV Optimization 517

12 Unconstrained Optimization 519
12.1 Fundamentals of Unconstrained Optimization............................... 519
12.2 One-Dimensional Numerical Optimization......................................528
12.3 Gradient Descent...535
12.4 Newton and Quasi-Newton Methods..541
12.5 The BFGS Method..549
12.6 Conjugate-Gradient Methods.. 556
12.7 ^Convergence of the Conjugate-Gradient Method...........................563
Exercises.. 567

13 Linear Optimization 575
13.1 Convex and Affine Sets..575
13.2 Projection, Support, and Separation..580
13.3 Fundamentals of Linear Optimization...585
13.4 The Simplex Method I..593
13.5 The Simplex Method II..600
13.6 Duality... 607
Exercises.. 613

viii Contents

14 Nonlinear Constrained Optimization 621
14.1 Equality-Constrained Optimization.. 622
14.2 Lagrange’s First-Order Condition... 627
14.3 Lagrange’s Second-Order Conditions ... 633
14.4 Karush-Kuhn-Tucker First-Order Conditions638
14.5 *Second-Order KKT ... 645
14.6 Removing Affine Constraints...648
14.7 Numerical Methods for Constrained Optimization......................... 655
Exercises.. 659

15 Convex Analysis and Optimization 667
15.1 Convex Functions... 668
15.2 Jensen’s Inequality.. 673
15.3 Fundamentals of Convex Optimization.. 679
15.4 Weak Duality... 685
15.5 Strong Duality... 690
15.6 Interior Point Methods I: The Barrier Method................................697
15.7 Interior Point Methods II: The Primal-Dual Method........................702
Exercises.. 707

16 Dynamic Optimization 717
16.1 Finite-Horizon Cake Eating..718
16.2 Dynamic Optimization Problems and Value Iteration.....................725
16.3 Infinite-Horizon Dynamic Optimization.. 732
Exercises.. 741

17 Stochastic Dynamic Optimization 743
17.1 Markov Decision Processes..743
17.2 Bandit Problems.. 749
17.3 Thompson Sampling ... 755
Exercises.. 760

A The Greek Alphabet 765

Bibliography 767

Index 777

List of Notation

f indicates harder exercises xvi
* indicates optional material xvi

®_l orthogonal direct sum 371
0 floating-point version of the operation * 487
ф floating-point addition 487
© floating-point subtraction 487
0 floating-point multiplication 487
0 floating-point division 487
0 Hadamard product 358
~ asymptotic to 14, 96

= (mod n) congruent modulo n 56
C is a subset of (not necessarily a proper subset)

update value 703
—> converges to 9, 706

> 0 (for matrices) positive definite 523, 524
>- entrywise inequality 586

much greater than 511
(•, -)n discrete inner product 347

-L orthogonal complement 370, 371
x Cartesian product 44
* convolution operator 356

| divides 51
PI ceiling: the least succeeding integer 12

| • | absolute value or modulus of a number; entrywise modulus of a
matrix 326

| • | cardinality of a set
[[•]] an equivalence class 56
2s power set of S 186
Гf graph of f 473

Г (a;) gamma function 87
Д difference operator 20

6ij Kronecker delta 332, 357
dE boundary of the set E 580

ix

X List of Notation

^machine
К

K,

k(A)
En

fc=l Xk
Фп
Фх

(Q,
J

argmaxx /(ar)
argminx f(x)

Bj

C
C(n,r)

СП(Х;У)

conv(S)
£>/(x)

£/(x)T
£>2/(x)
Dif(x)
Dvf&

E°
Ec

E[X]
Gi

effd
F
F

F[z]
F[ar; n]

r1^)
fl(x)
gcd

st»
^fc(Ab)

k—
L

L₽([a,i»];F)
£(a, b)

machine epsilon or unit round-off 487
relative condition number 492
absolute condition number 492
matrix condition number of A 496
summation x± + • • • + xn 19
sampling operator 346
characteristic function of the random variable X 264
probability space 187
multinomial coefficient 47
value of x that maximizes /520
value of x that minimizes /520
Jth Bernstein polynomial of degree n 406
complex numbers
number of (unordered) combinations of r elements from a set of n
elements, also denoted 45
space of У-valued functions whose nth derivative is continuous
on X 467, 476, 477, 523
convex hull of S 576
total derivative of / at x 467
gradient of / : Rn —> R at x 467
Hessian (second derivative) of / at x 476, 477
zth partial derivative of / at x 466
directional derivative of / at x in the direction v 465
set of interior points of E 698
complement Q \ E of E 187
expected value of the random variable X 207
zth standard basis vector 349, 375
effective domain of a function to R±oo 668
a field, always either C or R 19
floating-point numbers 486
space of polynomials with coefficients in F 406
space of polynomials with coefficients in F of degree at most n 406,
424, 513
preimage {x | /(x) e U} of / 578
floating-point representative of x 486
greatest common divisor 51
imaginary part of z 326, 507
fcth Krylov subspace of A generated by b 563
rising Pochhammer symbol 39
falling Pochhammer symbol 39
number of bits to encode a convex optimization problem 607
space of p-integrable functions 332, 338
line segment from a to b 576

List of Notation xi

N natural numbers {0,1,2,...}, including 0 21, 50
<?(/) big-0 of/9
o(f) little-o of f 9

P(E\F) probability of E given F 191
P(E, F) probability of E and F; same as P(E П F) 187
F(n, r) number of permutations of r elements from a set of n elements 45

projc(v) projection of v onto the convex set C 581
projx(v) orthogonal projection of v onto span(x) 333

R real numbers
R±oo real numbers extended by ±oo 668

real part of z 326
sign(z) complex sign z]\z\ of г 329

T[f] translation operator applied to f 38
Wn nth Wallis integral 89, 94

Z integers {..., —2, —1,0,1,2,... }
Z+ positive integers {1,2,...} 21
Zn set of equivalence classes in Z modulo n 56

Preface

Overview
Why Algorithms, Approximation, and Optimization?
Moore’s Law1 has given us a half century of persistent and rapid innovation, where
technological devices have been continually getting smaller, cheaper, and faster. As
a result, our world today is stocked with computers. Not just desktops, laptops,
cell phones, and tablets, but also digital health and wearable devices, video game
consoles, smart appliances, and countless embedded systems.

1This refers to the observation that the number of transistors in computer chips has doubled
approximately every two years for several decades. Although the doubling rate has slowed in
recent years, there is still persistent growth in available computing power that is said to “extend”
Moore’s law in practical terms.

Taking a broad view, we see a computer as a machine or network of machines that
executes instructions in a systematic way to process and communicate information.
When organized formally, these instructions take the of form of algorithms that are
encoded into hardware or software. The process of executing algorithms is called
computing.

Beyond the many and assorted electronic computing devices, algorithms are
also found in biological systems. For example, the instructions for cell creation and
reproduction are genetically encoded in DNA, which gets transcribed into RNA
and then translated into rules for producing proteins—the building blocks of cells.
These transcription and translation processes are also a type of computing.

Algorithms are also found in collective behavior. Sports teams call and execute
plays with instructions so that every player knows what to do and how to adapt to
varying circumstances on the field. Honey bees communicate the location of nectar
to other bees through a waggle dance that encodes and transmits a recommended
flight plan. In financial markets, a market maker on a trading floor clears trades
and continuously reports prices for a variety of goods and securities being traded
through a type of auctioning process. Wandering ants leave trails of home-finding
pheromones when foraging so they can return the way they came, and when bringing
back food to the nest, they leave food-finding pheromones to communicate to other
ants where the food source is. As more ants follow the trail, they contribute to
an increasingly stronger scent, which results in large self-organized trails of ants

xiii

xiv Preface

devouring the food source. In all of these cases, the collective behavior is really just
collective computing of algorithms.

In each of the examples above, information is processed and communicated in
a systematic way that can be codified into an algorithm. This broad and holistic
view of algorithms encompasses electronic computing devices, biological systems,
and collective behavior under a common umbrella of computational science and
allows us to use the tools of mathematical and statistical analysis to explore the
performance, complexity, and accuracy of algorithms. Algorithms are the focus of
the first part of this book.

An important part of studying and using algorithms is the recognition that
the world is too complex to be represented exactly. And most problems are too
complex to be solved exactly. The way we make sense of the world is through
imperfect representations, that is, through approximation. Every representation
we make is an approximation that encodes some information without encoding all
information. Knowing what information to keep and what to lose is essential to
making an approximation useful.

For example, a map of a city is a very rough approximation of the reality it
represents, containing only the essential information about locations and spatial
relationships for key landmarks. But the very fact that it does not contain all the
details of reality is what makes it useful. When I am lost, a map allows me to
quickly identify where to go, whereas the full reality of all the buildings, streets,
cars, people, noise, and lights can actually overwhelm me with unnecessary infor­
mation and interfere with my ability to navigate. In this case the approximation
is much more suitable for computing than a perfect representation of reality would
be. The imperfection of the approximation is part of what allows it to be useful.
As Leonard Cohen sings in “Anthem,” “There is a crack in everything. That’s how
the light gets in.” The second part of this book is focused on approximation and
on using powerful mathematical tools for constructing, analyzing, and evaluating
approximations.

Finally, the end goal of all our computing and approximating is to make the world
better. Whether we want things to be faster, stronger, cheaper, smarter, easier,
healthier, or kinder, we are perpetually engaged in the process of optimization.
Nearly every problem in the world can be formulated as an optimization problem,
so algorithms for optimization are almost universal in their applicability.

Most optimization algorithms are iterative in nature. This means that they start
with an initial guess (or approximate solution) and compute incremental improve­
ments with each iteration giving increasingly more accurate approximate solutions,
repeating, again and again, until the solution is close enough that it is essentially
indistinguishable from the exact solution. Thus, optimization requires a solid un­
derstanding of approximation and, of course, algorithms.

These three topics of algorithms, approximation, and optimization form the core
of modern computational science, giving us a wide-angle lens to lift our attention
beyond the latest devices and platforms. And computational science allows us to
peer beyond the jargon-filled barriers of various disciplines and expose the funda­
mental ideas uniting and driving the world of science and technology. Our world is
one of algorithms, approximation, and optimization.

Preface xv

To the Instructor
About This Text
This text gives a modern approach to computational science, by which we mean the
fundamental mathematical ideas and tools of computing. The three main topics of
algorithms, approximation, and optimization form the core.

The intent of this text and the associated computer labs is to attract students
into the mathematical sciences and retain them by modernizing the curriculum and
connecting theory to application in a way that makes them want to understand the
theory, rather than just tolerate it. In short, a major goal of this text is to entice
them to hunger for more.

The content in this volume could be reasonably described as upper-division
undergraduate or first-year graduate-level mathematics. The mathematical prereq­
uisites are vector calculus and linear algebra. The computational prerequisite is
the equivalent of at least one semester of computer programming. Most of our stu­
dents also have had a semester of undergraduate-level, single-variable real analysis
as well.2 However, mastery of the details of the undergraduate analysis class is less
important than the mathematical maturity and mental discipline that comes from
a rigorous study of analysis.

2 Specifically, we assume the reader has had exposure to a rigorous treatment of continuity, con­
vergence, differentiation, and Riemann integration in one dimension, as covered, for example, in
[Abbl5|.

This volume can be taught as a stand-alone, two-semester sequence for advanced
undergraduates or beginning graduate students. But it can also be part of a larger
curriculum in applied and computational mathematics (for example, as currently
used at Brigham Young University), taught in conjunction with the first volume of
this series, Foundations of Applied Mathematics: Volume 1, Mathematical Analysis
[HJE17], as two parallel, year-long courses.

There is a supplementary computer lab manual, containing over 25 computer
labs to support this text. This text focuses more on the theory, while the labs
cover application and computation. Although we recommend that the manual be
used in a computer lab setting with a teaching assistant, it can be used without
instruction. The concepts are developed thoroughly, with numerous examples and
figures as pedagogical breadcrumbs, so that students can learn this material on their
own, verifying their progress along the way. The labs and other classroom resources
are open content and are available at

https://bookstore.siam.org/otl66/bonus.

Teaching from the Text
In our courses we teach each section in a 50-minute-long lecture. We require students
to read the section carefully before each class so that class time can focus on the
parts they find most confusing, rather than on just repeating to them the material
already written in the book.

There are roughly five to seven exercises per section. We believe that students
can realistically be expected to do all of the exercises in the text, but some are
difficult and will require time, effort, and perhaps an occasional hint. Exercises

https://bookstore.siam.org/otl66/bonus

xvi Preface

that are unusually hard are marked with the symbol f. Some of the exercises are
marked with * to indicate that they cover advanced material. Although these are
valuable, they are not essential for understanding the rest of the text, so they may
safely be skipped, if necessary. Exercises not marked with * should generally not
be skipped.

Throughout this book the exercises, examples, and concepts are tightly inte­
grated and build upon each other in a way that reinforces previous ideas and pre­
pares students for upcoming ideas. We find this helps students better retain and
understand the concepts learned and helps achieve greater depth. Students are en­
couraged to do all of the exercises, as they reinforce new ideas and also revisit the
core ideas taught earlier in the text.

Courses Taught from This Book
Full Year-Long Sequence

At BYU we teach a year-long advanced undergraduate-level course from this book,
proceeding straight through the book, skipping only the sections marked with *.
But this would also make a very good course at the beginning graduate level as well.
Graduate students who are well prepared could be further challenged by covering
advanced sections (marked with *) along the way.

One Semester: Algorithms with an Option of Approximation

The first seven chapters of the book make a good one-semester course on algorithms,
including probabilistic algorithms.

As an alternative to the full algorithms course, Chapters 1-4 with 8-9 give a good
one-semester course on classical algorithms and approximation without probability.
This could be supplemented, as time permits, with some of the fundamentals of
numerical computation from Chapter 11.

One Semester: Theory of Optimization

Chapters 11-17 (with a review of Chapter 10, as necessary, for those who are rusty
on multivariate differentiation) form a good one-semester course on optimization.
We have taught this course several times in various settings.

Advanced Sections

Some problems and sections are marked with the symbol * to indicate that they
cover more advanced topics. Although this material is valuable, it is not essential
for understanding the rest of the text, so it may safely be skipped, if necessary.

Instructors New to the Material
We’ve taken a tactical approach that combines professional development for faculty
with instruction for the students. Specifically, the class instruction is where the
theory lies and supporting media (labs, etc.) are provided so that faculty need not
be computer experts nor be familiar with the applications in order to run the course.

Preface xvii

Professors can teach the theoretical material in the text and use teaching assis­
tants, who may be better versed in the latest technology, to cover the applications
and computation in the labs, where the “hands-on” part of the course takes place.
In this way professors can gradually become acquainted with the applications and
technology over time, by working through the labs on their own time, without the
pressures of staying ahead of the students. This approach has worked well for fac­
ulty at BYU who were unfamiliar with the material before they were assigned to
teach from this book.

A more technologically experienced applied mathematician could flip the class
if they wanted to, or change it in other ways. But we feel the current format
is most versatile and allows instructors of all backgrounds to gracefully learn and
adapt to the program. Over time, instructors will become familiar enough with the
content that they can experiment with various pedagogical approaches and make
the program theirs.

To the Student
Each section of the book has several exercises, all collected at the end of each chap­
ter. Horizontal lines separate the exercises for each section from the exercises for
the other sections. We have carefully selected these exercises. You should work
them all (but your instructor may choose to let you skip some of the advanced exer­
cises marked with *) —each is important for your ability to understand subsequent
material.

Although the exercises are gathered together at the end of the chapter, we
strongly recommend that you do the exercises for each section as soon as you have
completed the section, rather than saving them until you have finished the entire
chapter. Learning mathematics is like developing physical strength. It is much
easier to improve, and improvement is greater, when exercises are done daily, in
measured amounts, rather than doing long, intense bouts of exercise separated by
long rests.

Origins
This curriculum evolved as an outgrowth of lecture notes and computer labs that
were developed for a six-credit summer course in computational mathematics and
statistics. This was designed to introduce groups of undergraduate researchers to
a number of core concepts in mathematics, statistics, and computation as part of
a National Science Foundation (NSF) funded mentoring program called CSUMS:
Computational Science Training for Undergraduates in the Mathematical Sciences.

This NSF program sought out new undergraduate mentoring models in the
mathematical sciences, with particular attention paid to computational science
training through genuine research experiences. Our answer was the Interdisciplinary
Mentoring Program in Analysis, Computation, and Theory (IMPACT), which took
cohorts of mathematics and statistics undergrads and inserted them into an in­
tense summer “boot camp” program designed to prepare them for interdisciplinary
research during the school year. This effort required a great deal of experimenta­
tion, and when the dust finally settled, the list of topics that we wanted to teach
blossomed into eight semesters of material—essentially an entire curriculum.

xviii Preface

After we explained the boot camp concept to one visitor, he quipped, “It’s the
minimum number of instructions needed to create an applied mathematician.” Our
goal, however, is much broader than this. We don’t want to train or create a
specific type of applied mathematician; we want a curriculum that supports all
types, simultaneously. In other words, our goal is to take in students with diverse
and evolving interests and backgrounds and provide them with a common corpus of
mathematical, statistical, and computational content so that they can emerge well
prepared to work in their own chosen areas of specialization. We also want to draw
their attention to the core ideas that are ubiquitous across various applications so
that they can navigate fluidly across fields.

Python and Pseudocode
Throughout the book we give examples of algorithms. We generally use Python
instead of pseudocode because it gives a certain degree of precision that pseudocode
lacks, because it is useful for students to learn, and because it reads a lot like most
pseudocode anyway. Most of the Python syntax we use should be clear to someone
who has learned another programming language. When unusual syntax is used, we
give a brief explanation.

Acknowledgments
We thank the National Science Foundation for their support through TUES grant
DUE-1323785. We especially thank Ron Buckmire at the NSF for taking a chance
on us and providing much-needed advice and guidance along the way. Without
the NSF, this book would not have been possible. We also thank the Department
of Mathematics at Brigham Young University for their generous support and for
providing a stimulating environment in which to work.

Many colleagues and friends have helped shape the ideas that led to this text,
especially Randy Beard, Rick Evans, Shane Reese, Dennis Tolley, and Sean War­
nick, as well as Bryant Angelos, Jonathan Baker, Blake Barker, Mylan Cook, Casey
Dougal, Abe Frandsen, Ryan Grout, McKay Heasley, Amelia Henricksen, Ian Hen-
ricksen, Rebecca Jones, Brent Kerby, Steven Lutz, Shane McQuarrie, Ryan Murray,
Spencer Patty, Jared Webb, Matthew Webb, Jeremy West, and Alexander Zaitzeff,
who were all instrumental in helping to organize this material.

We also thank the students of the BYU Applied and Computational Mathemat­
ics Emphasis (ACME) cohorts who suffered through our mistakes, corrected many
errors, and never hesitated to tell us what they thought of our work.

We are deeply grateful to Emily Evans, Chris Grant, Paul Jenkins, Rachel Jenk­
ins, and Robbie Snellman, who read various drafts of this volume very carefully,
corrected many errors, and gave us a tremendous amount of helpful feedback. Of
course, all remaining errors are entirely our fault. We thank Michael Hansen and
Sierra Horst for their help with illustrations and Sarah Kay Miller for her out­
standing graphic design work, including her beautifully designed covers. We also
appreciate the patience, support, and expert editorial work of Elizabeth Greenspan
and the other editors and staff at SIAM.

Finally, we thank the folks at Savvysherpa, Inc., for corporate sponsorship that
greatly helped make the transition from IMPACT to ACME and for their help
nourishing and strengthening the ACME development team.

Part I

Algorithms

Introduction to
Algorithms and
Analysis

The fundamental law of computer science: As machines become more powerful, the
efficiency of algorithms grows more important, not less.
—Nick Trefethen

Before the advent of the modern computer, many mathematicians focused on find­
ing closed-form solutions to highly idealized problems arising from such fields as
classical mechanics, electromagnetism, quantum theory, thermodynamics, and fluid
dynamics. Today, university libraries are still littered with dusty old volumes of
encyclopedic texts of special functions and general solutions to these kinds of prob­
lems.

Over the last several decades, it has become increasingly clear that most of the
important problems of modern science, technology, and even mathematics have no
hope of a closed-form solution. In some cases this is because real-world problems
are too messy or complex, but there are surprisingly many problems that are simple
to state and yet it has been proved that no closed-form solution can exist.

As an example, recall that the quadratic equation

ax2 + bx + c = 0

has the closed-form solution

—b ± y/b2 — 4ac
x =-------- 2a-------- ’ (L1)

Similar, but more complicated, formulas exist for the cubic and quartic equations;
however, Abel’s theorem guarantees that no general algebraic solution exists for the
quintic or for any higher-order polynomial equations [Art91, Theorem 9.9]. Thus,
for example, there is no closed-form algebraic solution for solving the equation

ж5 + 2rr4 — x3 — 3rr2 + x — 6 = 0, (1.2)

but the intermediate value theorem easily shows that a root exists in the interval
[0,2] because the polynomial gives a negative value when evaluated at x = 0 and a
positive value when evaluated at x = 2.

3

4 Chapter 1. Introduction to Algorithms and Analysis

Newton’s method is an algorithm that accurately approximates a zero of a
smooth function. It is an iterative procedure that, under fairly general conditions,
converges to the zero and is terminated when the desired accuracy is met. Given
an estimate xn of the zero, the algorithm returns a new estimate ^n+i given by

_ tl o\^n+1 -- ХП /»/ / \ •
J \xn)

With f(x) as the left-hand side of (1.2) and using the initial guess = 1-0, the
algorithm (1.3) produces the following sequence, computed to 15 digits of accuracy:

Xv = 1.000000000000000,
X1 = 2.200000000000000,
x2 = 1.804654426169757,
xz = 1.549707343960059,
x± = 1.431481800966775,
хь = 1.406763770052249,
xg = 1.405779606478647,
x7 = 1.405778093756038,
x% = 1.405778093752469,
xv = 1.405778093752469.

Notice that the ninth iterate is the same as the eighth because the difference between
the two is smaller than the 15 decimals of accuracy provided. This gives us a
natural stopping rule, since we cannot improve the approximate solution without
first increasing the decimal length. In other words, to 15 decimal places, x% is the
best approximate solution of this zero of the polynomial.

The point of this example is to demonstrate that there are situations where an
iterative algorithm can provide an arbitrarily close approximation to the solution of
a problem even when there is no formula or closed-form expression. This situation
is actually very common; thus we should adjust our thinking to accept an algorithm,
even an iterative algorithm such as (1.3), as a “solution” to a problem.

What Is an Algorithm?
An algorithm is an unambiguous set of instructions for solving a problem or accom­
plishing a task. The set of rules taught to elementary school children for adding
two integers is an algorithm, as is Newton’s method for finding zeros of a function,
as described above.

There are often many different algorithms for accomplishing the same task. For
example, to compute the value of the polynomial x2 + 3x + 5 at a given point x, one
naive algorithm is to compute x2 and then compute 3x and then sum the results
and add 5. A faster algorithm that accomplishes the same task is to compute 3 + x,
multiply that by x, and add 5. The result3 is the same, because (x + 3)x + 5 =
x2 + 3x + 5, but the algorithms are different.

3This other algorithm is called Homer’s method. In this case Horner’s method requires only three
arithmetic operations, while the naive method requires four.

5

Any closed-form solution to a problem defines an algorithm in the sense that a
formula gives a sequence of operations. For example, the quadratic formula (1.1) can
be interpreted as the algorithm: compute 62, subtract 4ac, take both the positive
and negative square roots, subtract b from each, and divide the results by 2a. This
illustrates a fundamental, but often underappreciated, idea of modern mathematics:

An algorithm is the natural extension of a formula.

Closed-form solutions are rare, since the limited vocabulary of polynomial and
basic transcendental functions is woefully inadequate to reasonably describe the
many functional relationships that exist in the world. Since so few problems have
closed-form solutions, we suggest that the notion of a “solution” should be gen­
eralized to include more general algorithms, including iterative procedures, like
Newton’s method.

There is a caveat, however. For us to accept an algorithm as a solution, we
must analyze it and prove that it will return the correct solution to the problem at
hand. We may also want to know that the algorithm is computationally feasible,
given the resources available. To prove such things, one must access the arsenal of
mathematical analysis and leverage the theory of algorithms, approximation, and
optimization. That is what this text is about.

What Do We Want from an Algorithm?
When adopting this algorithmic view, we should not consider a problem to be
“solved” until we can rigorously demonstrate that the algorithm is both correct and
feasible to employ. If an approximate solution isn’t sufficiently close to the exact
solution, or if the resources required to execute the algorithm are too great, then the
algorithm is of little use and a better algorithm is needed. Until a better algorithm
is found, we should think of the problem as unsolved.

Moreover, we don’t just want algorithms that work—we want the best algo­
rithms. Speaking broadly, the performance of an algorithm is usually characterized
in terms of its accuracy and its efficiency. We want algorithms that are both accu­
rate and efficient.

Accuracy

A high-quality algorithm should give a good approximation to the correct answer.
Although solutions to some problems can be computed exactly, many cannot. Many
important and useful algorithms instead compute numerical approximations, by
which we mean finite-precision approximations (such as 0.666667 as an approxi­
mation for | or 3.14159 as an approximation of тг). Finite-precision arithmetic
introduces small errors, called round-off errors, into almost every step of every com­
putation. In some algorithms, these errors can compound into large, catastrophic
errors in the final results. Such algorithms are said to be numerically unstable.
We discuss floating-point arithmetic and stability in Chapter 11. A high-quality
algorithm should be resistant to such errors and consistently give answers that are
sufficiently close to the correct answer.

6 Chapter 1. Introduction to Algorithms and Analysis

Example 1.0.1. One can show by hand that

450 x 4054.54 - 50 x 7022.64 + 7022.62 = 0.005.

4 Our definition of primitive operations here is similar but not identical to some of the other
standard models, such as the RAM model of [CLRS01, Section 2.2]. Our goal here is primarily
pedagogical rather than computing the precise run time of an algorithm on a specific machine,
so we don’t want to get too bogged down in technical details.

5Note that this does not include all the primitive operations required by the method itself—just
the cost of finding the method in memory and starting to execute it.

But executing this on most computers gives a result of —33.24. This is an
example of catastrophic round-off error. This is discussed in more depth in
Section 11.3.

Efficiency

The cost of an algorithm could be measured in many ways, such as money, time,
computer memory, labor, etc. We are generally most interested in how long an
algorithm takes to run and its memory requirements. An algorithm is of no use
if it takes too long to run or requires more memory than we have available. How
long the algorithm takes to run depends on the specific computer being used, so
instead of talking about run time, we often use as a proxy the number of primitive
operations that must be executed. We call this the temporal complexity, and we
call the amount of memory required the spatial complexity. Temporal and spatial
complexity are discussed in more detail in Section 1.1 and are a major theme of this
and the next several chapters.

1.1 Complexity
The complexity of a given algorithm is a measure of the resources required for it
to execute. This could refer to execution time, memory requirements, the cost in
dollars to pay for the equipment, the time or cost of programming labor necessary
to develop the algorithms into software, or even the amount of electricity required.
Generally speaking, however, complexity focuses on two main issues: the number
of primitive operations required and the amount of memory required.

We define primitive operations4 to be basic operations such as assigning a value
to a variable (like x = 5), basic integer arithmetic (like x+y, but not log(x) or
cos(x)), comparisons (like x<y) and basic Boolean operations (like and, and or),
looking up an indexed value in an array (like A [3]), calling a method (like myFunc
(x,y)),5 returning from a method, and so forth. We treat accessing the values of
scalar variables as having no cost (so if x=5 and y=6, then computing x+y costs only
one operation—the addition). We assume all primitive operations take approxi­
mately the same time to execute. Of course this is not true, but it gives a useful
approximation.

1.1. Complexity 7

We define the temporal complexity of an algorithm to be the number of primitive
operations needed for it to execute. This is a proxy for the execution time, but since
execution time varies so much across platforms and hardware specifications, it is
generally preferable to use this definition. We define spatial complexity to be the
amount of memory required to execute the algorithm.

Example 1.1.1. If L is a list, then the number of primitive operations in­
volved in the command a = L[5] + 7 is three, corresponding to one lookup
L [5], one addition, and one assignment.

Example 1.1.2. Algorithm 1.1 is a simple implementation of a method for
finding the largest element in a list L of integers. Because of the if-statement
on Line 12, we cannot determine the exact number of primitive operations
this algorithm will use without knowing more about the input list L, but we
can compute the best- and worst-case complexity.

Setting the initial value of max_val on Line 7 requires two primitive opera­
tions, namely one lookup L [0] and one assignment. Line 8 involves computing
len(L), which we assume is one primitive operation, and one assignment. Ini­
tializing the counter i on Line 9 is one more primitive operation.

The while-statement on Line 11, involves just one comparison. But this
comparison happens n times (the condition is true n — 1 times and fails once,
when i = ri). Thus Line 11 contributes n primitive operations.

Inside the loop, we have an if-statement on Line 12 involving one lookup
and one comparison, and if the comparison is true, then Line 13 contributes
two more primitive operations (a lookup and an assignment). Thus if the
conditional is true, the if-statement contributes four primitive operations,
and otherwise it contributes two.

Finally, the incrementation of i on Line 14 requires two more operations
(an addition i + 1 and an assignment). Thus, the loop consists of either six
or four operations, repeated n — 1 times, for a total of 6n — 6 (worst case) or
4n — 4 (best case) from the loop.

The total number of operations, therefore, has temporal complexity of
either 5 + n + 6n — 6 = 7n — 1 (worst) or 5 -h n + 4n — 4 = 5n + 1 (best).

Note that spatial complexity influences the execution time, since it takes time to
move data into and out of the CPU registers, various memory caches, random access
memory (RAM), hard-disk space, and memory on other computers and storage de­
vices that are accessed over an internet connection or through some communication
port. To truly represent execution time, we would need to factor in the particu­
lar hardware and operating system specifications and understand how memory is
managed by the system. If the CPU is sitting idle because it is waiting for a hard
disk to retrieve a value, then time is being consumed even though no additional

8 Chapter 1. Introduction to Algorithms and Analysis

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

def find_max(L):
и и и

Find the largest element in a list L of integers.

Set initial values
max_val = L[0] # Max value.
n = len(L) # List length.
i = 1 # Counter to iterate through L.

while i < n:
if L[i] > max.val:

max_val = L[i]
i += 1 # Increment i.

return max_val

Algorithm 1.1. Python implementation of a routine for finding the largest value
in a list L of integers, as discussed in Example 1.1.2.

operations are being executed. Despite this (or because of it), we focus our study
on the temporal and spatial complexity as defined above.

Remark 1.1.3. It is important to recognize that temporal complexity can often
be traded for spatial complexity and vice versa; that is, we can often make an
algorithm use fewer primitive operations by having it store more values in memory.
This reduces the temporal complexity but increases the spatial complexity of the
algorithm.

1.1.1 Big-0 and Little-o Notation
Since many algorithms are too intricate to easily account for the exact number
of primitive operations or memory requirements, our primary interest is to give a
reasonably sharp upper bound on how the various complexities increase as a function
of the size of the inputs. This upper bound is what we need to understand how a
given algorithm scales temporally and spatially as the size of the inputs grows.

As a simple example, consider the usual grade school algorithms for arithmetic.
The standard long-addition algorithm (see Algorithm 1.2) has the property that
when the number of digits to be added is doubled, the memory required also doubles,
as does the number of primitive operations required. In contrast, doubling the
number of input digits in a multiplication problem (see Algorithm 1.5) quadruples
the number of primitive operations required. For small problems this quadrupling
is not a big deal, but as the length of the inputs increases, it can quickly become
significant.

It is often useful to think about the asymptotic growth of the temporal and
spatial complexity, that is, how fast the time and space requirements of a problem

1.1. Complexity 9

grow as the size of the inputs grow. We typically quantify asymptotic growth with
big-О and little-o notation.

Definition 1.1.4. Let f and g be real-valued functions on either the positive
real numbers or the positive integers. We say that f(x) is big-0 of g(x) as x co,
denoted f(x) G O(g(xf), if there exist M > 0 and N > 0 such that |/(rr) | < M\g(x) |
whenever x > N. Similarly, we say that f(x) is little-o of g(x) as x co, denoted
f(x) G o(g(xf), if for each e > 0 there exists N > 0 such that |/(ж)| < б|^(ж)|
whenever x > N.

Remark 1.1.5. When analyzing algorithms with discrete inputs, we typically use
/(n) instead of f(x) to denote the discrete nature of the function.

Example 1.1.6. If the complexity of an algorithm is T(n) = 3n2 + 2n + 100,
where n is the size of the input, then

T(ri) = 3n2 + 2n + 100 < 3.3n2

whenever n > 22. Thus T(n) G O(n2). There’s nothing special about 3.3. In
fact, given any e > 0 there exists an n > N so that T(n) < (3 + s)n2 whenever
n > N. The smaller the e, the sharper the bound, but the big-0 rate of T is
O(n2) regardless of the choice of e.

Unexample 1.1.7. In the previous example T\ri) O(ri) because for any
M > 0 we have

T(ri) = 3n2 + 2n + 100 > Mn

whenever n > ~.

Example 1.1.8. Since the total number of primitive operations needed for
Algorithm 1.1 is at most 7n — 1 (see Example 1.1.2), the temporal complexity
of this algorithm is O(n).

Remark 1.1.9. Many computer science texts use the convention f(ri) = O(g(ri))
instead of f(ri) e O(g(n)), but this is a problematic abuse of notation. For example,
it would imply that O(n) = O(n2), but O(n2) / O(n). Therefore, we use set
membership instead of the equal sign to signify membership in a class of functions.
Hence, we write O(ri) C O(n2) and O(n2) O(n), denoting that the class of linear
functions is properly contained in the class of quadratic functions.

10 Chapter 1. Introduction to Algorithms and Analysis

Example 1.1. 10. The leading coefficient of a polynomial doesn’t affect the
big-0 or little-o rate. For example:

(i) Let /(n) = an + b. Note that

|/(n)| = \an + b\ < (|a| + l)n

whenever n > |b|, and therefore f(n) E O(n). Moreover, f(n) E о(п1Л)
because for each e > 0, once n > (|a| + l)/e10 we have

| f(n)| = \an + b\ < (|a| + l)n < en1,1.

This argument can be extended to show that f(n) E o(n1+<5) for any
8 > 0.

(ii) Let /(n) = an2 + bn + c. Note that

|/(n)| = |an2 + bn 4- c| < (|a| + 2)n2

whenever n > max{|6|, x/T^T}- Thus, f(ri) E O(n2). Also, for every s > 0
as n gets large we also have n > |(a + 2)/б|10, at which point

|/(n)| = |an2 + bn + c| < |(a + 2)|n2 < sn21,

so f(n) E o(n21). This can be extended to show that /(n) E o(n2+<5)
for any 6 > 0.

Example 1.1. 11. It is straightforward to identify some additional properties
of the big-0 and little-o notation:

(i) Let /(n) = aknk + ак-1Пк~г + • • • + a±n + a^. Exercise 1.2 shows that
/(n) e O(nk).

(ii) If f(n) = k, then f(n) € O(n2) because

n n

f(n) = ^,k<^n = n2.
k=l k=l

More generally, Exercise 1.4 shows that if f(n) = then f(n) E
O(nm+1).

(iii) If f(x) E O(g(x\) as x —> oo, then /(ж) E o(x5g{x)} for every 8 > 0.

(iv) Clearly f(x) E о(д(хУ) implies f(x) E О(#(#)), but the converse is false;
that is, o{g) is a proper subclass of O(g).

1.1. Complexity 11

Common examples of big-0 and little-o notation include powers, exponentials,
and logs.

Definition 1.1.12. If a real-valued function f on Z+ (or is in

(i) O(logn), then we say it is logarithmic;

(ii) o(n), then we say it is sublinear;

(iii) O(n), then we say it is linear;

(iv) O(n2), then we say it is quadratic;

(v) O(n3), then we say it is cubic;

(vi) O(nc) for some c e N, then we say it is polynomial;

(vii) O(cn) for some c > 1, then we say it is exponential.

Proposition 1.1.13. Let f and g be real-valued functions on either the positive
real numbers or the positive integers. If there exists M > 0 such that

limж—>00
l/(x)|
|р(ж)| M,

then f(x) G O(g(xf). Also, we have

limx—>oc
I/WI = 0

if and only if f(x) G o(g(xf). Finally, if

lim

then f (x) £ O(g(xf).

Proof, The proof is Exercise 1.3. □

Example 1.1.14. Let f(n) = an2 + bn + c with a > 0. To see that f O(n),
we observe that

/(n) c
----- = an+ b-\-------- >oo

n n
as n —> oo. Thus, for large n there is no M such that f(ri) < Mn. But it is
straightforward to verify that f(n) G O(n2).

12 Chapter 1. Introduction to Algorithms and Analysis

1.1.2 Example: Complexity of Long Addition
One of the first algorithms taught in grade school is the standard algorithm (long
addition) for adding two multidigit integers. It iterates through each column, from
right to left, adding the corresponding single-digit numbers together, carrying a 1 to
the next column as necessary. Algorithm 1.2 is an implementation of this algorithm
in Python. For illustrative purposes we treat each positive integer as a list of digits
so that we can manage arbitrarily long numbers. We assume that the rightmost
entry in each list represents the ones digit, the next the tens digit, and so on.

Assume the longer of the two lists has length n. The algorithm begins by
identifying which of the lists is shorter and prepending zeros to it so both lists are
the same length and the place value of each digit matches the corresponding digit
in the other list. Prepending d elements onto a list of length к requires O(d + k)
operations: first initializing a new list with d + к entries, and then copying all the
d-\-k elements into the new list. In our case, we have d + к < n, so this contributes
O(n) to the temporal complexity.

After some key variables are initialized (in constant time), the while-loop (Lines
22-26) adds each digit in the second list to the corresponding digit of the first and
accounts for the carrying digit as necessary. The number of primitive operations in­
side the loop is independent of the lengths of the lists, and therefore the n iterations
of the loop contribute O(n) to the temporal complexity of the algorithm. The final
step is to prepend the carried digit, if necessary, at the beginning of the list. This,
too, costs at most O(n) primitive operations. Therefore, the temporal complexity
of the algorithm is O(n).

The data that must be stored are the two inputs, each of length at most n,
the output list, of length at most n + 1 (in this algorithm the output is stored in
the same list as one of the inputs), one constant-length variable carry and two
other variables i and delta. The values of i and delta are no more than n, so
the memory required to store those values is bounded by the number of digits it
takes to represent n, that is, log10n in decimal notation or log2(n) in binary. In
either case, each of these contributes at most log2 n < n to the spatial complexity,
and thus the overall spatial complexity is no more than a constant times n, that is,
O(n).

Remark 1.1.15. As discussed above, if n G N is arbitrarily large, then storing an
integer (like the counter i) that is bounded by n requires |’log2(n)'| digits6 and hence
adds O(logn) to the spatial complexity. However, for calculating spatial complexity
of algorithms, we almost always assume that loop counters, array indices, and other
such integers have a fixed size. This is not an unreasonable simplification because
standard 64-bit integers (signed) can be as large as 263 — 1, which is not likely to
be very restrictive.

6The notation |\f| denotes the least integer greater than or equal to q, also known as the ceiling
function.

Remark 1.1.16. If your language of choice has a built-in data type for arbitrarily
long integers, the addition algorithm for that data type has probably been care­
fully optimized and, therefore, should be much more efficient than the algorithm

1.1. Complexity 13

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

def add(a, b):
и и и

Add two numbers, where each number is input as a list of
single-digit integers, e.g., [1,2,3] = 123.

Returns a list of single-digit integers,
и и и

Prepend zeros to the shorter list to
align with the longer list.
delta = abs(len(a)-len(b))
if len(a) <= len(b):

a = delta * [0] + a
else:

b = delta * [0] + b

Set initial values.
carry = 0
i = len(a) - 1

Add each pair of digits from right to left
while i >= 0:

a[i] = a[i] + b[i] + carry
carry = a[i] // 10
a[i] = a[i] % 10
i -= 1 # decrement i by 1

Prepend the final carry digit
if carry > 0:

a = [carry] + a

return a

Algorithm 1.2. Routine for adding two positive integers of arbitrary size. Here
the integers are represented as lists, where each entry is a single digit. For example,
add([l, 2, 3], [4, 5, 6]) returns [5,7,9]. Note that in Python, the addition
operator concatenates strings (that is, [0] + [1,2,3] returns [0,1,2,3] J and mul­
tiplication is repeated addition (thus, 3 * [0] produces [0,0,0]/ Also a//b is the
integer part of a divided by b and a%b is the remainder of a when divided by b.
Finally, note that Python indexing starts at 0, so the index of the last element of
list a is len(a) — 1 (see Line 19/

presented here. However, it will still have temporal complexity O(ri), since every
one of the n digits must be added to find the correct sum. An algorithm with an
input of length n can only have complexity less than O(n) if some input data can
be skipped.

14 Chapter 1. Introduction to Algorithms and Analysis

1.2 Leading-Order Behavior
In many situations we want to know more than just the big-0 growth rate—we also
want to know the leading coefficient of the growth rate. There’s a big difference
between an algorithm that requires 3n2 primitive operations and one that requires
3000n2 primitive operations. In this section we begin by defining leading-order
behavior and giving several examples of how to analyze an algorithm for its leading­
order complexity.

1.2.1 Leading-Order Behavior

Definition 1.2.1. Let f and g be real-valued functions defined on the positive real
numbers or the positive integers. We say that f(n) is asymptotically equivalent to
g(n), denoted f(ri) ~ g(n) as n co, if

Informally one often says, “/ grows like g,” or “/ is g to leading order,” to mean
f ~ g as n oo. Sometimes we drop the n oo designation when it is clear from
the context.

Example 1.2.2. The function T(n) given in Example 1.1.6 satisfies T(ri)
3n2 since

T(n) л 2 100v — = 14------- 1----- -
3n2 3n 3n2

as n —> oo.

Remark 1.2.3. It is straightforward to show that the relation ~ is an equivalence
relation; that is, it is reflexive, symmetric, and transitive (see Exercise 1.10). For
more about equivalence relations, see Volume 1, Appendix A. 1.2.

Example 1.2.4. Since the maximum number of operations needed for
Algorithm 1.1 is 7n — 1, the leading order of the temporal complexity of this
algorithm is ~ 7n.

1.2.2 Merging and Sorting
In this section we discuss how to merge two sorted lists and evaluate the complexity
of this algorithm to leading order. Then we use the merging algorithm as the basis
of a very naive and inefficient sorting algorithm. Despite the inefficiencies of this
sorting algorithm, it is an instructive example. In Section 1.10 we construct an
efficient sorting algorithm from a simple recursive variant of this algorithm.

1.2. Leading-Order Behavior 15

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

def merge(K, L):
"""Merge two sorted lists into a new sorted list.
For example, merge([1, 4], [2, 3]) returns [1, 2, 3, 4].

и и и

Initialization
merged = [None]*(len(K) + len(L)) # Preallocate output list
i = 0; j = 0 # Pointers to track location in each list

Iterate over the two lists, terminate when one is empty
while i < len(K) and j < len(L):

if K[i] <= L[j] :
merged [i+j] = K[i]
i += 1

else:
merged [i+j] = L[j]
j += 1

merged[i+j:] = К[i:] + L[j:] # One of these is empty
return merged

Algorithm 1.3. Routine for merging two sorted lists of numbers together into a
single sorted list. This algorithm fails if the lists К and L are not sorted. Note that
K[i:] refers to the list [K[i] ,K[i+l],...] of the elements of К starting from the
element indexed by i and proceeding to the end of K.

Merging

Merging combines two already sorted input lists into a single sorted output list.
Although we allow the length of the lists to be arbitrarily long, the entries in the
lists are assumed to be of a fixed size, so each takes the same, fixed, amount of
memory. The basic merging algorithm compares the leading entries in each input
list and extracts the smaller of the two entries, placing it into the resulting output
list. The process then repeats, extracting the smaller of the leading entries of what
remains of the two input lists into the output list, one at a time, until both input
lists are empty.

A Python implementation of this merging procedure is given in Algorithm 1.3.
Rather than actually extracting the smallest entry at each step, this implementation
simply maintains placeholders on each of the input lists to track the leading entries
in each remaining sublist; this is done with the variables i and j. At some point the
end of one of the lists is reached and we append the remainder of the other input
list to the final list. This is done in Line 19. Rather than trying to decide which of
the two remaining lists is empty, we append both to the final list, which works fine
because one of them is empty.

To evaluate the spatial complexity of this algorithm, note that the only data
that must be stored are the initial lists L and K, whose combined storage is assumed
to be n numbers; the merged list merged of length n; and the counters i and j. The

16 Chapter 1. Introduction to Algorithms and Analysis

counters have length no more than the number of digits required to represent i and
j, respectively, and these are O(logn) C o(n). Thus the total spatial complexity is
~ 2n e O(n).

The temporal complexity is also O(n). To analyze the algorithm to leading
order, first consider the loop. In Line 11, the while-loop computes two list lengths,
makes two comparisons, and performs a conjunction for each iteration. Since one
of i and j is incremented each iteration, the maximum number of iterations for
which the condition could hold is n — 1, after which the condition must fail, which
terminates the loop. Hence Line 11 could cost as many as 5n primitive operations.
Line 12 has two lookups and a comparison. That’s three primitive operations in the
loop, which iterates up to n — 1 times. When the conditional is successful, the loop
executes Lines 13-14; otherwise it executes Lines 16-17. In either case the first line
is a sum, a lookup, and an assignment, while the next line is an incrementation,
which is a sum and an assignment. Thus, after the conditional on Line 12, there
are 5(n — 1) ~ 5n more primitive operations. Adding these to the 3(n — 1) ~ 3n
from Line 12, and the 5n from Line 11, gives ~ 13n.

The operations outside of the loop that depend on n are the initial construction
of merged, which costs n + 1 ~ n primitive operations (initialize the list, and make
n assignments), and putting the lists К [i:] and L [j :] into the end of merged, which
takes at most n lookups and n assignments. Thus the total temporal complexity of
this algorithm is ~ 16n.

Naive Sorting (Insertion Sort)

Sorting rearranges the entries of a list to produce a list that is arranged in order from
least to greatest. Using the merging algorithm, we can design a sorting algorithm
whose temporal complexity is O(n2) when the original list has length n.

We start with a list sorted.list consisting of just the first element L[0] of the
input list L. For each successive entry of L, make a new list of length one (which
is trivially sorted) and merge the new single-element list with sorted.list. The
algorithm repeats until it runs out of new entries to merge; see Algorithm 1.4. This
is a slight modification of the algorithm often called insertion sort.

Since merging two lists of total length к has temporal complexity ~ 16A;, the
naive sorting method has temporal complexity 0(1 + 2 + • • • + n) = O(n2); see
Example l.l.ll(ii). More careful analysis (using the standard summation formula
(1.9)) shows that to leading order, this is

~ 16(1 + 2 + • • • + n) = 16~ 8n2.

The spatial complexity of this sorting algorithm is ~ 2n because we need only store
the lists L and sorted.list, each of length n, and one additional integer i whose
value is bounded by n (and hence whose size is O(logn) C o(n)).

Nota Bene 1.2.5. This naive sorting method is not a good algorithm. Other
sorting algorithms are much faster—for example, the merge sort algorithm,
which we discuss in Section 1.10, is O(nlogn).

1.2. Leading-Order Behavior 17

def naive_sort(L):
"""Sort a nonempty list L.
и и fi

Initialize values
sorted.list = [L [0]]
i = 1
n = len(L)

Merge in the rest, one at a time
while i < n:

sorted.list = merge(sorted.list, [L[i]])
i += i

return sorted.list

Algorithm 1.4. A naive routine for sorting a list L. The sorted list begins as a
single element and then is successively merged with single-element lists until every
element in L has been merged into the sorted list.

1.2.3 Leading Order for Long Addition and Multiplication
Long Addition

To analyze the leading-order temporal complexity of the addition problem in
Algorithm 1.2, assume again that the longest list has length n. First, the ini­
tial prepending of delta zeros onto the front of the shorter list requires defining a
new empty list of length n (one operation), putting the new zeros at the front of
that list (delta assignments) and putting the remaining elements of the old, shorter
list into the remaining positions in the new list (n — delta lookups and n — delta
assignments), for a total 2n + 1 — delta ~ 2n primitive operations.

The loop contained in Lines 22-26 executes 14 operations for each iteration.
Specifically, Line 22 has a conditional operation, and Line 23 performs two lookups,
adds three numbers together (two operations), and makes an assignment (one op­
eration). That’s six operations. Line 24 requires one lookup, computing an integer
part, and making an assignment. That’s three operations. One lookup, computing
the remainder, and making an assignment gives three operations on Line 25. Fi­
nally the decrement in Line 26 is a subtraction and an assignment and therefore
two operations. Hence, to leading order, the loop is ~ 14n primitive operations.

At the end of the algorithm, in the worst case, the carry is positive and the
carry digit is prepended to the list. This amounts to one conditional (Line 29)
and a prepend operation (Line 30). Prepending an element onto a list of length n
requires defining a new list of length n +1 (one operation), putting the new element
at the front of that list (one assignment), and then moving all elements of the old
list into the new list (n lookups and n assignments). Therefore, Lines 29-30 require
2n+3 ~ 2n additional operations. Combining this with the initial ~ 2n for padding
the short list, and the ~ 14n operations of the earlier loop, makes this algorithm
~ 18n primitive operations.

18 Chapter 1. Introduction to Algorithms and Analysis

Long Multiplication

Algorithm 1.5 (below) gives an algorithm for long multiplication that is similar to
the one taught in grade school, except that it has a small efficiency built in. To
analyze the leading-order behavior, we must count the operations in the double

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

def mult(a, b):
и и и

Multiply two numbers, where each number is input as a list
of single-digit integers, e.g., [1,2,3] = 123.

Returns a list of single-digit integers,
и и и

Set initial values
tens_shift = 0
product = []
j = len(b)-l

Iterate over digits of b from right to left
while j >= 0:

sumstep = [None]*len(a) #preallocate list of len a
carry = 0

Iterate over digits of a from right to left
i = len(a) - 1
while i >= 0:

temp = a[i] * b[j] + carry
sumstep[i] = temp % 10
carry = temp //10
i -= 1

if carry > 0:
sumstep = [carry] + sumstep

Shift sumstep by tens_shift places and add to
final product, using the previous algorithm
product = add(product, sumstep + ([0]tens_shift))
tens_shift += 1
j -= 1

*

return product

Algorithm 1.5. Routine for multiplying two positive integers of arbitrary length.
Numbers are represented as lists of single-digit integers. For example, 12 x 34 is
calculated as mult([l, 2], [3, 4]). Line 31 uses the previously defined function
add. Also in that line the Python syntax [0] *tens_shift constructs a list [0,0,...]
with tens.shift zeros in it, which is then appended to the list mult_a using +.

1.3. Summation 19

loop of Lines 15-33. The inner loop (Lines 21-25) consists of two parts. First, the
while-statement of Line 21 has one comparison that is evaluated n = len(a) times
(n — 1 successes and 1 failure). The second part (Lines 22-25) consists of 5 + 3 +
2 + 2 = 12 operations and is repeated n — 1 times. Thus, the inner loop contributes
12(n — 1) + n 13n operations for each iteration of the outer loop (Lines 15-33).

Preallocating the empty list sumstep in Line 16 requires initializing the list (one
operation) and making n assignments for the list entries. Prepending carry to
sumstep in Line 27 requires 2n + 2 operations, and the long addition of Line 31
requires ~ 16n operations (see the previous subsection). The other operations in
the outer loop contribute at most a constant number of operations. Therefore, the
total number of operations in each iteration of the outer loop, including the inner
loop, is ~ 32n.

The outer loop is repeated at most n times, so the total number of operations
required by the outer loop is ~ 32n2. The remaining operations outside the loop
are repeated at most O(n) times, so they don’t contribute to the leading order.
Therefore, the overall temporal complexity of Algorithm 1.5 is ~ 32n2.

7We use F to denote a field that could be either R or C. For more about fields, see Volume 1,
Appendix B.2.

The spatial complexity of this algorithm is O(n). Recall that the standard grade
school algorithm constructs a stack of n summands that are summed at the end of
the algorithm. That would have a spatial complexity O(n2), but our little efficiency
is that we don’t build the long stack of addition problems. Instead, the addition
steps are done one at a time and thus don’t need to be stored separately—we can use
the same space in memory each time, as we add the running total. To analyze the
leading order of the spatial complexity, we note that the spatial complexity is dom­
inated by the inputs ~ 2n, the intermediate list sumstep, of size ~ n, and the result
product, of size ~ 2n (note that ten_shift can be as large as n), for a total of ~ 5n.

1.3 Summation
Analysis of the spatial and temporal complexity of an algorithm typically requires
breaking it up into parts and then summing the costs of each part. As algorithms
become increasingly sophisticated, it becomes increasingly important to have good
tools for managing complicated sums. This section and the next three sections after
it are dedicated to developing some of the most useful techniques of summation.

1.3.1 Basic Sums and Differences
Various types of sums occur in algorithm analysis, and the ability to work with
these sums, including the ability to identify simple, closed-form expressions for
many sums, is an important skill.

Definition 1.3.1. Let E = {ei,..., en}. The summation operator 22 maps any
function f : E F into7 F via the rule

n

/(e) = У2 = Ле1) + /(e2) 4-------h
eEE k—1

If E = 0, then the sum is defined to be 0.

20 Chapter 1. Introduction to Algorithms and Analysis

Remark 1.3.2. In the case that E = {к \ a < к <b} tor integer values of a
and 6, we also write this as /W or Ha<k<b

Remark 1.3.3. A sequence (^)^=1 of (not necessarily distinct) numbers also de­
fines a function by f(k) = xk for each к e E = {1,..., n}. The sum x± + • • • + xn
is equal to f(k) = xk.

Nota Bene 1.3.4. The notation 52 Xi + у is ambiguous, because it could
mean either (522= i %t) + y or 522=1 + у)- In this text, it means the former.
In other words, if the rightmost term does not have any dependence on the
index, we assume that it is not part of the sum. If we want it to be part of
the sum, then we use parentheses.

Proposition 1.3.5 (Summation Is Linear). If E = {ei,...,en} and f,g are
F-valued functions defined on E, then

52 A/(e) + sp(e)) = r 52 Ae) + « 52
eGE? eGE? e£E7

for any r,s e F.

Proof. The commutative, associative, and distributive laws give

52(r/(e) + s^(e)) = (r/(ei) + sp(ei)) + • • • + (r/(en) + sg(en))
eG E

= +------1- r/(en)) + (s5(ex) H-------1- sg(en))
= + ■■■ + f(en\) + s(p(ei) + • • • + p(en))

= r52 Ae)+ s52Ae)- □
eCE? e£E7

1.3.2 Difference Operator
Summation can be thought of as the finite analogue of the definite integral. There
is also a finite analogue of the derivative, namely the difference operator A, which
takes a function (or sequence) f and defines a new function that is the difference of
the consecutive terms.

Definition 1.3.6. Let E = {a, a +1,..., b} and let Ef = {a, a +1,..., b — 1}. The
difference operator A takes any function f : E F and maps it to a new function
A[/] : E' F by

Of course, this definition can also be modified in an obvious way to work for the
case when the domain E is infinite, like N or Z.

Remark 1.3.7. It is straightforward to show that the difference operator is linear;
see Exercise 1.16.

1.3. Summation 21

Example 1.3.8.

(i) If f(k) = rk for some fixed r, then

A[/](A?) = rfe+1 -rk = rk(r - 1). (1.4)

Notationally, we also write this as Arfc = rk(r — 1).

(ii) If g(k) = rk for fixed r, then

A[^](fc) = r^+1^2 — rk* = rfc2(r2/c+1 _ 1). (1.5)

Notationally, we also write this as Arfc = rk (r2fc+1 — 1).

Example 1.3.9. The derivative operator and the difference operator have
many similarities. If f is constant, so that f(k) = c for all /с, then A[/](A?) =
c — c = 0. So we have Ac = 0, just as = 0. Conversely, if A[/] = 0,
then for every A;, we have f(k + 1) — f(k) = 0, so f must be constant on
the whole domain (here the domain must be something likea N, Z, Z+, or a
single, connected, interval [a, b] AZ). This is analogous to the fact that when
-f- f = 0, then f is constant.

Similarly, if /(A;) = A;, then A[/](A;) = (A; + 1) — к = 1. Hence we have
AA; = 1. just as 4-x = 1.

“Note our convention that the natural numbers N = {0,1,2,...} include 0. We denote the
positive integers by Z+.

1.3.3 Fundamental Theorem of Finite Calculus
Taking summation as the analogue of definite integration and the difference operator
as the analogue of differentiation, the next theorem is an almost perfect match for
the usual fundamental theorem of calculus. Its proof, however, is much easier.

Theorem 1.3.10 (The Fundamental Theorem of Finite Calculus). Let
E = {a, a+1, ...,6} and letE' = {a, a+1,..., 6—1}. Given any function f : E
we have

b-l

£A[/](fc)=/(6)-/(a). (1.6)
к—a

Moreover, if we define

n—1
F(n) = ^f(k) forneE, (1.7)

k—a

then &[F](k) = f(Je) for all к e E'.

22 Chapter 1. Introduction to Algorithms and Analysis

Nota Bene 1.3.11. The sum in (1.6) runs only to b — 1 (not to 6) and the
sum in the definition of F runs only to n — 1 (not to n).

Proof. For (1.6) we have

b-l b-l
£ A[/](fc) = £(/(fc + 1) - /(£)) = (/(a + 1) - /(a)) + • • • + (/(&) - f(b - 1))
k—a k—a

= -Ж) + Ж,
where the last equality comes from the fact that all the internal terms cancel. Sums
like this are called telescoping series. To prove (1.7), note that for any n > a we
have

n n—1
A[F](n) = F(n + 1) - F(n) = £ /(fc) - £ /(fc) = /(n). □

k—a k—a

Example 1.3.12. Recall that if f(k) = k, then A [/](&) = 1. By (1.6) we
have b-l b-l

£ 1 = £ A/KM = /(b) - /(«) = b - a. (1.8)
k=a k=a

Of course this sum is easily computed without (1.6), but this illustrates how
to use the fundamental theorem.

Example 1.3.13. If f(k) — k2, then A[f](A;) = 2k + 1. By (1.6) we have

b-l b-l
£(2fe + 1) = £ A[/](fc) = /(b) - /(a) = b2 - a2.
k=a k—a

Since summation is linear, we have

b-l b-l b-l b-l
b2 — a2 = УУ (2A; + 1) = 2 к + УУ 1 = 2 У^ к + (6 — a).

k=a k=a k=a k=a

This gives

7 1 /l2 2 z, \ — 1) — 1)
E к = - (62 - a2 - b + a) = - 2 .
k—a

1.3. Summation 23

In the special case that a = 1 and b = n + 1, this gives the familiar sum

(1-9)
k=l

Example 1.3.14. If f(k) = k3, then Д[/] (A;) = ЗА;2 + ЗА + 1. By (1.6) we
have b-1

£(3fc2 +3fc + l) = b3 - a3.
k=a

An argument like the one in the previous example shows that

(1-Ю)

Remark 1.3.15. The method of the previous examples works in general, but the
result gets increasingly cumbersome as the order gets higher and higher. For
example,

n / (। i \ \ 2+ m (L11)

and
= + l)(2n + l)(3n2 + 3n - 1) 12)

k—1

There is no easily discernible pattern to these power sums. In Section 1.6.2 we
discuss a slight variation to this problem and show that there is a generalization
that does follow a nice pattern.

Corollary 1.3.16. For any functions g and h defined on E = {a, a +1,..., b} with
Д [<?] = Д [/z] on E' = {a, a + 1,..., b — 1}, the two functions differ by a constant:

g = h + c on E,

where c is constant on E.

Proof. Let f = g — h. Since Д[/] = Д[<? — h] = Д[д] — Д[Л] = 0, we have f(k) = c
for some constant c (see Example 1.3.9). Thus, g = h + c. □

Equation (1.6) also gives a slick proof of the geometric series formula.

24 Chapter 1. Introduction to Algorithms and Analysis

Corollary 1.3.17. For any fixed value r^l,we have the geometric series formula

6-i ь _ i
1 +r+ ••• +rb-1 = ^rk = r—p (1-13)

fc=0

Moreover, taking the limit as b oo for |r| < 1 gives the familiar equation

fc=0
r — 1 1 — r

Proof. Note that Arfc = rfe+1 — rk = rk(r — 1). Thus, by the fundamental theorem
we have

6-1 б-i 6-1
(r - 1) = y^rfc(r - 1) = Arfc = rb - 1,

k—Q k—Q k—Q

which gives (1.13). □

Example 1.3.18. Choosing r = 2 we have A[2fc] = 2k and (1.13) (or the
fundamental theorem) shows that

Remark 1.3.19. Example 1.3.18 shows that 2k plays a role for differences and
summation similar to that played by ex for differentiation and integration.

Just as with integration and differentiation, it is usually more difficult to find a
closed form for the summation of a function f than it is to find its first difference
A[/]. That means that even if it is difficult to write down a formula for /, it
is usually relatively easy to identify a g such that g = /.

Example 1.3.20. Equation (1.5) gives A[rfc2] = rfc2(r2fc+1 —1), which implies
that

6-1
У2 rfc2(r2fc+1 — 1) = rfe2 — r°2. (1-14)
k—a

1.4 Reindexing and Changing Order of Summation
Two fundamental tools for computing integrals are changing variables and changing
the order of integration. The natural analogues of these two techniques are also very
important tools for computing sums. In this section we describe these techniques
and give some examples.

1.4. Reindexing and Changing Order of Summation 25

1.4.1 Reindexing
When computing definite integrals in calculus, changing variables can change an
integral into a more workable form. We can also change variables when doing
summations. We focus here on the simplest change of variables, called reindexing.

Proposition 1.4.1 (Reindexing). For any finite set E C Z and for any с E Z,
let E + c denote the set

E + c={xEZ\x = e + c for some e E E}.

For any function f defined on E + c, we have

E № = c)-
xEE-\-c eEE

In particular,
b-\-c b

E /o) = E/(fc+c)- (115>
j—a-\-c k—a

Proof, This follows immediately from writing out the sum

E № = Я61 + c) + /(e2 + c) + • • • + /(en + с) = E /(e + c)- D
xEE-\-c eEE

Remark 1.4.2. Since j and к are dummy variables, it is common to reuse the
index к and write (1.15) as

b+c b

E = E^(fc+c)-
k—a-\-c k—a

Example 1.4.3. The sum 52^=5 (^ — 4) looks a lot like (1.9), but the sum­
mands are all shifted by —4. That suggests that reindexing might be useful.
Setting j = к — 4 means that j runs from 5 — 4 = 1 ton — 4, and we have

- 4) = £,-=<"-4+ D
fc=5 j=1

(n — 4)(n — 3)
2

As described in Remark 1.4.2, the name of the dummy variable doesn’t matter,
so people often write the second sum as k=i k-

Example 1.4.4. Using (1.10) and reindexing, we compute J2^=i(^ + 3)2 as

n n+3 n+3 3

E(* +з)2 = Efc2 = Efc2 - E= ё[(n+3)(n+4)(2n+7)1 _ 14
k=l k=4 k=l k—1

26 Chapter 1. Introduction to Algorithms and Analysis

Example 1.4.5. Using (1.13) and reindexing, we compute ^2™.=rn rk as

1.4.2 Changing Order of Summation
Just as multiple integrals are often simplified by changing the order of integration,
multiple sums are often simplified by changing the order of summation. The next
proposition is an immediate consequence of the commutativity and associativity of
addition.

Proposition 1.4.6. If a, b,c,d e Z7 and / : Z x Z -> F, then

b d d b

52 52 = fa,fc)-
j—ak—c k—cj—a

(1-16)

Proof. Assume a < b and c < d; otherwise both sums are zero. Consider the set
E = {a, a +1,..., b — 1, b} x {c, c+ 1,..., d — 1, d}. We see that both sums in (1.16)
are equivalent to ^2(j k)eE ty. This is illustrated in Figure 1.1. □

Nota Bene 1.4.7. When the sums are infinite, then (1.16) is not necessarily
true. We need additional conditions on the convergence rate of the series
before we can interchange the order of summation.

Notation 1.4.8. Multiple sums can sometimes be written unambiguously with a
single summation sign. For example, we can write

52 /O’fc)= 52 52
0<j,fc<n 0<j<n0<k<n

The proposition justifies this notation. Since it does not matter which index we put
on the outside sum and which we put on the inside sum we can combine them.

Proposition 1.4.9. Consider the domain E = elxl\0<k<j<n}
and the function f : E —>¥. We have

n j n n

££./ш) = 52 ж/о = ££ж/о-
j—Ok—O (j,k)eE k—Oj—k

(1-17)

Proof. The proof follows from Figure 1.2. The inner sum of the left side of (1.17)
corresponds to summing over the Jth column, while the outer sum adds the columns

1.4. Reindexing and Changing Order of Summation 27

5252/ол) 5212я^)
j—ak—c k—cj—a

к

Figure 1.1. The terms involved in the summation of (1.16) are those in the green
rectangle. In the expression on the left, the inner sum runs over the terms in the
jth column (that is, (j, c), (J, c + 1),..., (j, d), for each j), and the outer sum adds
the results of the columns together. In the expression on the right the inner sum
runs over the terms in the kth row (that is, (a, k), (a + 1, k),..., (6, k), for each k)
and the outer sum adds the results of the rows together. In either case, the final
result is the same.

к

5252M’fc)
j—0 k—0 k—Qj—k

52 52/и, *)

Figure 1.2. The terms involved in the summation of (1.17) are those in the
shaded triangular region. In the sum on the left of (1.17), the inner sum runs over
the terms in the jth column, that is, (j, 0), (j, 1),..., (J, J), and the outer sum adds
the columns together. In the sum on the right of (1.17), the inner sum runs over
the terms in the kth row, (k,k),(k + 1, k),..., (n, k), and the outer sum adds the
rows together.

28 Chapter 1. Introduction to Algorithms and Analysis

together. The inner sum of the right side corresponds to summing the terms in the
&th row, while the outer sum adds the rows together. In either case, every term
corresponding to a shaded box appears exactly once in the full sum. □

Notation 1.4.10. Given E and f in the previous proposition, we can also write

52 52
(j,k)eE 0<k<j<n

Example 1.4.11. Using the identity in Exercise 1.21 (setting £ = n — /), the
double sum 1 can computed directly as

n—1 n n—1 n

E E i = E»-> = Ef =
j=0 fc=J+l j=0 £=1

n(n + 1)
2

But we can also compute it by changing the order of summation:

k=lk=lj=U

Example 1.4.12. Computing the double sum Y^=krk directly gives

n n n n n

E/Erk = 52 (n ~k+^rk = (n+i) 52rk - 52krk-
k=0 j=k k=0 k=0 k=0

This last sum can be computed using summation by parts (see Section 1.6.1),
but it is messy. However, interchanging the order of summation in the original
problem makes the double sum easy to compute:

There is nothing special about the particular shapes of the regions in Figure 1.1
or Figure 1.2. For any finite set E, the sum /(e) can be computed by summing
all the terms /(e) in any order—row first or column first or even some other pattern.
For example, the set E = {(J,k) | j, к > 0 and j + к < n} of Figure 1.3 can be
summed either rows first or columns first. This gives the equality

n n—j n n—k

52 /о^) = 52Е/о>м = 5212/о>м.
j—0 k—0 k—0 j—Q

(1-18)

1.4. Reindexing and Changing Order of Summation 29

к к

j—0 k—Q к—O j—0

Figure 1.3. Another example of changing the order of summation. Summing
over the green region vertically first (left panel) gives the same result as summing
horizontally first (right panel). This fact shows the two sums are equal, as given in
equation (1.18).

Example 1.4.13. To compute the double sum £7=o£X=o (n-fc+i)(n-fc+2)
initially appears difficult. But changing the order of summation gives

(n — к + l)(n — к + 2)

n i n—k

(n — к + l)(n — к + 2))
k=0 V 7V 7 j=0

Example 1.4.14. Here is a more general example of changing the order of
summation. To compute the sum 520<j<2n 52j/2<fc<n r^rk , begin by inter­
changing the order of summation. To do this, note that the smallest value
that к can ever take is 0 (when j = 0), and the largest value that к can take is
n. so the new outer sum will range over all values of к € {0,..., n}. The inner
variable j is bounded above by the constraints j < 2n (from the old outer
sum) and j/2 < к (from the old inner sum), so the new inner sum ranges over

1 (n — к + l)(n — к + 2)
fc + l)(n- A;+ 2) T~

30 Chapter 1. Introduction to Algorithms and Analysis

all values of j € {0,..., 2A;}. This gives

E E ^' = E E
0<J<2n j/2<k<n 0<k<n0<j<2k

,2
Notice that rK is independent of the index j, so it factors out of the sum to
give

E S E
0<fc<n 0<j<2A:

The inner sum is the geometric series (1.13), so the double sum reduces to

____ 9 r2fc+l _ i i __У rk - --------- -d = ^- У rk\r2k+1-l).
r — 1 r — 1

0<k<n 0<k<n

By (1.14) this sum becomes

1 v- л fc2 Hn+1>2-1
--------- > Ar = .
r — 1---------------------------------- r — 1

0<fc<n

8A bit is a single binary digit (taking only a value of 1 or 0). A group of eight bits is commonly
called a byte. Single-precision floating-point numbers are stored in 32-bit (4-byte) form, but
there is little benefit to using single precision on modern computers, which mostly have 64-bit
architectures. For that reason we focus on 64-bit (double-precision) floating-point arithmetic.

1.5 Nested Loops
One important application of the double sums of the previous section is the analysis
of nested loops, where one loop occurs within another. Nested loops occur frequently
in scientific computing, especially in the algorithms of numerical linear algebra.
We typically represent vectors and matrices as arrays of floating-point numbers,
and moving through these arrays to perform the operations of matrix-vector and
matrix-matrix multiplication uses nested loops. Thus, to analyze many algorithms
in numerical linear algebra, we must understand how to analyze nested loops.

1.5.1 Aside: Floating-Point Operations
The long addition and long multiplication algorithms (Algorithms 1.2 and 1.5) dealt
with integers of arbitrary size, but in most computational settings, including nu­
merical linear algebra, we use floating-point numbers. Floating-point numbers are
represented in a manner similar to scientific notation, except everything is carried
out in base 2 instead of base 10, and they are all rounded to fit into 64 bits8 (8
bytes) of memory; for details see Section 11.1.

Basic arithmetic operations for floating-point numbers are built into the hard­
ware and can be performed in one or two clock cycles each. These include the

1.5. Nested Loops 31

standard arithmetic operations -+, —, x, and 4- and are called floating-point opera­
tions (FLOPs).9

9The acronym FLOPs should not be confused with FLOPS, which means floating-point operations
per second. The latter is a measure of performance in hardware, namely, the number of floating­
point operations a given computer can perform each second.

When analyzing the temporal complexity of many numerical algorithms, it is
customary to count only the FLOPs, instead of using primitive operations. For
example, when adding two vectors x = (#i,..., xn) and у = (?/i,..., yn) of floating­
point numbers, the sum x + у = + ?/i,..., xn + yn) requires n FLOPs (addi­
tions), and we ignore the other primitive operations like variable assignments, array
lookups, and loop overhead. Similarly, scalar multiplication ax = (a#i,...,axn)
requires n FLOPs (multiplications), and the additional primitive operations of as­
signment, lookup, and loop overhead are likewise ignored. Generally each FLOP
requires roughly two array lookups (the inputs) and one variable assignment (for
the output), so those primitive operations are assumed to be part of the cost of
performing one FLOP, whereas loop overhead is generally very small compared to
the cost of all the FLOPs. Thus counting FLOPs can give a good measure of to­
tal complexity, at least to leading order, even without counting all the primitive
operations.

The spatial complexity of both vector addition and scalar multiplication is O(n)
because the size of each floating-point number is fixed, and there are n of these
numbers in each vector. The only other variables that depend on n are the indices
required to loop through the vectors, and these have size at most O(logn), the num­
ber of digits required to represent n. As in the case of temporal complexity, when
computing the spatial complexity of a numerical algorithm we usually track only
the memory needed for floating-point numbers but ignore the memory needed for
other aspects of the algorithm, like loop counters. These other, neglected, memory
requirements are usually much smaller than the number of floating-point numbers
used, so they rarely contribute anything to the leading order of the spatial com­
plexity.

1.5.2 Matrix-Vector and Matrix-Matrix Multiplication
The inner product (x, y) = хгуг of two vectors in Rn is one of the most widely
used operations in numerical linear algebra and scientific computing in general.
Calculating it requires n multiplications and n — 1 additions, for a total of 2n — 1
FLOPs.

Example 1.5.1. If x = (1,2, 3,4) and у = (5,6, 7,8), then the usual inner
product (x,y) = 1x5 + 2x6 + 3x74-4x8 requires four multiplications
and three additions, for a total of seven FLOPs. Spatially, the algorithm must
store the two vectors (eight values), and one more number for output (which
can also be used for the intermediate calculation of the running total), for a
total of nine floating-point numbers.

In matrix-vector multiplication, a matrix A G MmXn(^) and a vector x G
are multiplied together to form a new vector Ax G Rm. This can be thought of

32 Chapter 1. Introduction to Algorithms and Analysis

as m inner products between the rows of A and the vector x. Thus, its temporal
complexity is m(2n — 1) ~ 2mn FLOPs. Spatially, the inputs require (m + l)n
floating-point numbers, and the resulting vector requires m more. Thus the spatial
complexity of matrix-vector multiplication is ~ mn + n + m.

In matrix-matrix multiplication, two matrices A E Mpxrn and В E Mmxn are
multiplied together to create a new matrix AB E Mexn. This can be thought of
as Ln inner products between the rows of A and the columns of B. Thus, the
temporal complexity of this algorithm is £n(2m — 1) ~ 2Lmn. For the spatial
requirements, beyond the inputs (which have size ~ Lm + mn), we need only store
the output, which has spatial complexity ~ Ln. Thus the total spatial complexity
is ~ Lrn + Ln + mn.

Remark 1.5.2. The basic operations in numerical linear algebra, including matrix­
vector and matrix-matrix multiplication, are included in numerical libraries that are
highly optimized for performance and therefore run much faster than a naive im­
plementation of the algorithms mentioned above. For this reason, it is rarely a
good idea to code these algorithms yourself from scratch. One of the most famous
numerical libraries is Basic Linear Algebra Subprograms (BLAS), which is at the
core of nearly every computing environment for numerical linear algebra. Numer­
ical libraries like BLAS optimize the workflow of the algorithm by making clever
use of the cache and pipelining. This allows for vectorization, meaning that several
primitive and floating-point operations can be performed at once by different regis­
ters in the CPU. It also minimizes the latency, that is, the time wasted waiting for
memory calls.

Vista 1.5.3. There are asymptotically faster algorithms for matrix-matrix
multiplication than the one described here. For example, when £ = m = n
Strassen’s algorithm requires only O(nlog2 7) ~ O(n2,8074) FLOPs, whereas
the regular algorithm is ~ 2n3 E <9(n3). As a trade-off, Strassen’s algorithm
has greater spatial complexity and generally more round-off error than the
regular algorithm. Also, the overhead in Strassen’s algorithm is large enough
that the matrices must be rather large before it’s actually faster to use it; see
Section 1.10 for more details.

Row Reduction

Assume A E Mn(R) is an invertible matrix and b E Rn. The canonical approach to
solving a linear system of the form Ax = b is to use row reduction (see Volume 1,
Section 2.7). This process consists of first performing a series of row operations
to turn the augmented matrix [A|b] into an upper triangular matrix (row echelon
form), and then performing back substitution to get the solution. For example, the
row reduction step for solving the system

1
1
4

1 1 Xi

4 2 x2
7 8 x3

1
3
9

1.5. Nested Loops 33

looks like

1111 1
1 4 2 3 —> 0
4 7 8 9 4

1111
0 3 12
0 3 4 5

1111
0 3 12
0 0 3 3

1 1
3 1
7 8

1
2
9

Back substitution looks like

1 1
0 3
0 0

11 11
1 2 —> 0 3
11 0 0

1 0 0
0 1 0 I
0 0 1 1

1
1
0

0
0
1

0
0
1

1
0
0

0
1
з
1

Now we show that row reduction as given in Algorithm 1.6 has a FLOP count
of ~ |n3. Back substitution is O(n2) because it requires a multiplication and an
addition for each entry in the top half of the matrix, of which there are |n(n +
1). Thus, back substitution does not add to the leading-order behavior, and n-
dimensional linear systems can be solved in ~ |n3 FLOPs. It can be shown that
this is roughly a third the cost of inverting A and computing x = A-1b. For
this reason (and for numerical stability10 reasons) it is almost always preferable to
compute the row reduction of a matrix rather than compute its inverse.

10Stability of an algorithm has to do with round-off error. For more on this see the introduction
to Chapter 1 (page 5) and Section 11.3.

To add up all the FLOPs in Algorithm 1.6, we look at Lines 13-18. Inside
the two loops one FLOP is needed for computing c (Line 15), and then the row
operation on Line 17 is really another loop that repeats n — к times and requires
two FLOPs per iteration.

Summing the FLOPs over all the loops gives

n—2 n—1 / n \

EE 1+E4
k—Oj—k-\-l \ i—k-^-1 /

2 , 1 2 7
= 3П +2П ’б71’ (1-19)

The proof of the equality in (1.19) is Exercise 1.28. It is straightforward to see that
the remaining parts of the algorithm require only O(n2) FLOPs, so they do not
contribute to the leading order. Thus, row reduction costs ~ |n3.

Remark 1.5.4. The industrial-grade approach to solving the linear system is to
use the LU decomposition, which overwrites A with a lower triangular matrix L
(with all ones on the diagonal) and an upper triangular matrix U that satisfies
A = LU. Note that we can store the key parts of L and U in the space provided
by A, dovetailing the two matrices together. For example,

111
1 4 2
4 7 8

1 1
3 1
0 3

1
1
4

1 1
3 1
1 3

0 0
1 0
1 1

L = 1 and lu(A) =

The complexity of producing this factorization is the same as row reduction (~ |n3),
and since Ax = LUx = b, we can find x by solving Ly = b by forward substitution
(at a cost of O(n2)) and then solving Ux = у by back substitution (also costing
O(n2)). The total complexity is dominated by the factorization ~ |n3, but the

34 Chapter 1. Introduction to Algorithms and Analysis

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

import numpy as np # module for efficient linear algebra

def row_reduction(A):
и и и

Row-reduce an n x (n+1) matrix (without pivoting)
and perform back substitution.

Returns A in reduced row echelon form (RREF)
и и и

n = A.shape[0]

Row Reduction
for к in range(n-l): # Iterate over rows except the last

for j in range(k+1,n): # Iterate over rows below к
c = A[j,k] / A[k,k] # Scalar to multiply row(k) by
Subtract c * row(k) from row(j)
A[j,k+l:n+l] = A[j,k+l:n+l] - c * A[k,k+l:n+l]
A[j,k] = 0

Back Substitution
for j in range(1,n+1): # Iterate from the bottom right

Divide row by its leading term (assume nonzero)
A[n-j,n] = A[n-j,n] / A[n-j,n-j]
A[n-j ,n-j] =1 # leading term always becomes 1
for к in range(0,n-j): # Rows above row(n-j)

Adjust the n-j th and n th columns
A[k,n] = A[k,n] - A[k,n-j] * A[n-j,n]
A[k,n-j] = 0

return A

Algorithm 1.6. A row reduction algorithm for an nx (n+1) matrix. This simplified
method assumes the pivots (the diagonal elements) are nonzero so that the division
at Lines 15 and 23 is well defined. This algorithm uses NumPy, a module for
efficient linear algebra. The matrix A must be a NumPy array (for example, A =
np. array ([[1,1,1,1],[1,4,2,3], [4,7,8,9]])/ The syntax A [j , k] gives the j , к
element of k, and A [j , к: n] gives the elements of the j th row of A from к up to (but
not including) n. Note that range(n-1) iterates through the values {0,1,... ,n — 2},
while range(k+1 ,n) iterates through the values {fc + l,fc + 2,...,n — 1}.

main advantage is that we can get this factorization without needing additional
memory, which is vital when the size of the matrix is really big.

To improve numerical stability, most LU decomposition algorithms actually find
a permutation matrix P that reorders the rows of A before doing the row reduction,
so that PA = LU. Since a permutation matrix is equal to a reordering of the rows
of the identity matrix, it can be stored as an array of length n, and thus it does not
contribute to the leading-order spatial complexity of the LU decomposition.

1.5. Nested Loops 35

Remark 1.5.5. There is a decomposition called the QR decomposition (see Volume
1, Sections 3.3-3.4), which is more stable than the LU decomposition and has
complexity ~ |n3. This can be used when stability is critical, but usually the LU
decomposition is sufficient, at half the cost.

Example 1.5.7. In the loop

for j in range(n):
x += ham(j,k) + spam(k)

the function spam(k) is independent of the variables that change in the loop
(like the counter j), but it is recomputed n times because it is inside the loop.
A better approach would be to compute it only once, outside the loop, as
follows:

spam_val = spam(k)
for j in range(n):

x += ham(j,k) + spam_val

Vista 1.5.6. When the matrix A is sparse (that is, when most of the entries
are zero), or when the matrix has some other special structure, there are
some excellent iterative methods for solving the linear system Ax = b. The
asymptotic complexity of these algorithms is sometimes nearly as small as the
number of nonzero entries in A, which is much less than n2. Krylov subspace
methods provide several of these solvers (see Chapter 13 of Volume 1).

The solution of a linear system can also be transformed into a quadratic
optimization problem. This leads to some other powerful iterative methods
for solving linear systems. We discuss some of these methods in Chapter 12,
especially in Section 12.6.

1.5.3 *Loop Interchange
As shown in Section 1.4.2, changing the order of summation in a double sum can
make the sum easier to compute. Similarly, changing the order of a nested loop
(called loop interchange) can often reduce the complexity of the nested loop. To
see how this works, we first must understand loop-invariant code motion.

Loop-Invariant Code Motion

A fundamental principle for designing efficient code is that no operation should be
performed unnecessarily. In particular, no operation that can be performed outside
a loop should be performed inside the loop. Otherwise, it is executed many more
times than it needs to be.

36 Chapter 1. Introduction to Algorithms and Analysis

If computing spam(k) costs s(k) FLOPs, then moving the computation outside
the loop has reduced the temporal complexity by (n — l)s(fc) FLOPs. Even
better would be to recognize that we can replace the n additions of spam.val
inside the loop with one multiplication and one addition outside the loop:

x += n * spam(k)
for j in range(n):

x += ham(j,k)

This further reduces the complexity by n — 2 FLOPs.

Example 1.5.8. In the following loop, the value 3 * x**2 + 2 is computed
with each iteration.

while 3 * x**2 + 2 < N:
spam(x)
x += 1

But the condition 3 * x**2 + 2 < N is equivalent to x < ((N - 2) / 3)
0.5. Therefore, we can avoid computing 3 * x2 + 2 each time and, in­
stead, compute the value ((N - 2) / 3)**0.5 just once:

M = ((N - 2) / 3)**0.5
while x < M:

spam(x)
x += 1

This gives a savings of 3M — 3 FLOPs. Of course, if M is small, this is not
meaningful, but if M is large, this could be a significant improvement in the
temporal complexity of the algorithm.

Remark 1.5.9. In Example 1.5.8 we consider computing the square root of a
floating-point number to be a single FLOP. This is a common practice because
the square root function is often built into the hardware and can be computed in
about the same amount of time as a floating-point multiplication.

The process of moving code outside of loops, as described in Examples 1.5.7 and
1.5.8, is called loop-invariant code motion because the part of the code that is
independent of the loop (loop invariant) is moved out of the loop. In compiled
languages this is often performed automatically by an optimizing compiler, but it
does not happen automatically in interpreted languages like Python.

1.6. Additional Techniques of Summation 37

Loop Interchange

Loop interchange can allow us to move operations out of the inner loop or even
eliminate the inner loop entirely, thereby reducing the complexity of the nested
loop.

Example 1.5.10. In the double nested loop

for j in range(n):
for к in range (m):

x += ham(j,k) + spam(k)

the functions ham(j ,k) and spam(k) are computed nm times. Changing which
loop is inside and which is outside has no effect on the final result.

for к in range(m):
for j in range(n):

x += ham(j,k) + spam(k)

But now spam(k) does not depend on j, so spam(k) can be moved outside of
the inner loop, as in Example 1.5.7, and we get the final result more efficiently:

for к in range(m):
x += n * spam(k)
for j in range(n):

x += ham(j,k)

Changing the loop order and moving operations out of the inner loop has
saved — l)s(k) + n — 2) = m(n — 2) + (n — 1) s(k) FLOPs,
where s(k) is the number of FLOPs required by spam(k).

Remark 1.5.11. While good optimizing compilers automatically consider loop in­
terchange for the purpose of improving the efficiency of memory access, they do
not usually consider the other potential benefits of loop interchange, such as those
shown in Example 1.5.10.

1.6 Additional Techniques of Summation
In this section we discuss several additional techniques of summation. Many of these
are discrete versions of fundamental techniques in traditional calculus, including
discrete versions of the product rule and integration by parts. We also discuss
the Pochhammer symbols, which provide the identities needed to adapt the power
formulas in calculus to the difference and summation operators, as alluded to in
Remark 1.3.15. We conclude this section with a discussion of the inclusion-exclusion
principle, which generalizes the counting formula for unions of sets.

38 Chapter 1. Introduction to Algorithms and Analysis

1.6.1 Product Rule and Summation by Parts

Just as the derivative has a product rule, the difference operator Д also has a
product rule. But to write this in a clean way, we must first define the translation
operator T.

Definition 1.6.1. The translation operator T takes any function f : N —> F and
maps it to a new function T[f] : N —> F by T[f](&) = f(k + 1). The definition also
works if the domain is Z or Z+.

Remark 1.6.2. If I is the identity operator (that is, I[f] = f), then Д = T — I.

Theorem 1.6.3 (Finite Product Rule). For any F-valued functions f,g on N
(or on Z+ or Tj) we have

&[fg] = Д[/] • T[p] + f • Д[5] = T[f] • Д[р] + g • Д[/]. (1.20)

Proof. The proof uses the same trick used to prove the usual product rule—adding
a fancy form of zero (shown in red below):

A[f9]W = f(k + l)g(k + 1) - f(k)g(k)
= f(k + l)g(fc + 1) + [f(k)g(k + 1) - f(k)g(k + 1)] - f(k)g(k)
= A[f](k)g(k + 1) + f(k)A[g](k)
= A[f](k)T[g](k) + f(k)A[g](k).

The other half of (1.20) follows by applying the same argument to gf. □

Remark 1.6.4. The presence of the operator T in (1.20) is a little disappointing.
We don’t see this in the product rule in calculus because the term T[g](A;) in the
discrete case corresponds to g(x + h) in the infinitesimal case, and h —> 0 means
that g(x + h) —> g(x).

Integrating the product rule gives integration by parts, and summing the discrete
product rule gives the formula we call summation by parts.

Corollary 1.6.5. For any F-valued functions u,v on N (alternatively Z+ or %) we
have

и(Л)Д[г?](А;) = u(b)v(b) — u(a)v(a) — T[v](&)Д[u](fc). (1-21)
a<k<b a<k<b

Proof. This follows immediately from the product rule and the fundamental
theorem. □

1.6. Additional Techniques of Summation 39

Example 1.6.6. Using summation by parts, we can compute x kak for
a / 1. Let u(A;) = к and v(k) = ^zy, so that A[?z](fc) = 1 and A[v](fc) = ak.
Thus,

n n

£fcafc = £«(fc)AM(fc)
k=0 k=0

n

= u(n + l)u(n + 1) — и(0)г>(0) — A[tz](A;)u(A; + 1)
k=Q

(fl + l)«n+1 у-л Ufc+1
a — 1 a — 1

k=0

(n + l)an+1 a — an+2
a — 1 + (u — I)2

= -—y(nun+1 - (n + l)an + 1).
\a — I)2

1.6.2 Rising and Falling Powers
Remark 1.3.15 shows that sums of powers do not yield nice formulas. But there are
two expressions that behave like powers, called the rising and falling, or Pochham-
mer symbols, that do behave nicely with respect to summation operators. They
also behave nicely with difference operators.

Definition 1.6.7. Assume that m G N and x e R. The rising Pochhammer
symbol, which reads as “x to the m rising, ” is given by the expression

xm = x(x + 1)(ж + 2) • • • (x + m — 1).

Similarly, the falling Pochhammer symbol is defined to be

x— = x(x — 1)(ж — 2) • • • (x — m + 1).

In this case, we say “x to the m falling.” For notational convenience, we define
x° = x-= 1, since these both correspond to empty products, which are usually taken
to be 1.

We show the following two identities for raising operators and leave the corre­
sponding properties of the lowering operators to the reader to determine.

Lemma 1.6.8. If m G N and x e R, then

Tm+1 _

40 Chapter 1. Introduction to Algorithms and Analysis

Proof.

Ax(x + 1)(ж + 2) • • • (x + m)
= (x + 1)(# + 2) • • • (x + m + 1) — x(x + 1)(ж + 2) • • • (x + m)
= ((ж + m + 1) — x)(x + 1)(ж + 2) • • • (x + m)
= (m + 1)(я + 1)(ж + 2) • • • (x + m). □

Theorem 1.6.9. If m E N, then

fc=0

nm+1
m + 1 * (1.22)

Proof.
have

From Lemma 1.6.8 and the fundamental theorem (Theorem 1.3.10), we

nm+i

m + 1 m +1 k—Q

n—1 n n

= 52(fc+ir = 52fc“ = I2A:™
fc=0 fc=l fc=0

□

Example 1.6.10. Setting m = 1 we have

which agrees with (1.9). Setting m — 2, we have

52^2 = 52fc(fc+!) = n(n + l)(n + 2) n3
з = T

Expanding gives
n(n + l)(n + 2)

3 *

Subtracting A; gives
k=i k=i

n(n + l)(n + 2)
~3

n(n + l) n(n + l)(2n + 1)
2 =

which agrees with (1.10).

1.6.3 Inclusion-Exclusion
The inclusion-exclusion principle is a fundamental tool for counting and for working
with unions of sets that overlap. The basic idea for a union of two sets is to first
consider everything in both sets (inclusion) but then remove terms that were counted
twice (exclusion).

1.6. Additional Techniques of Summation 41

Proposition 1.6.11 (Inclusion-Exclusion for Two Sets). For any finite sets
E, F and any F-valued functions fi g defined onEUF, we have

£ /(*) = £/(*) + £/(*)- £ Ж-
keEuF keE keF keEnF

Proof. We partition E U F into three sets:

E U F = (E \ (E П F)) U (F \ (E П F)) U (E П F),

which gives

£ fW= £ /(*) + £ /(*) + £ /(fe)

e£?uF fce(F\(FnF)) fce(F\(FDF)) fce(FDF)

= £/(*)- £ /(*) + £/(*)- £ /(*) + £ Ж)
keE ke^EHF) keF ke^EHF) ke(EQF)

= £/(M + £/(M- £ /(*)• □
keE keF keEOF

Example 1.6.12. Choosing f to be the constant function 1 means that the
sum f(k) is the cardinality of the finite set S. Thus, for any finite sets
A and B, inclusion-exclusion (Proposition 1.6.11) implies that

|AUB| = \A\ + \B\ - |APB|.

This is a well-known counting formula for finite sets.

Proposition 1.6.13 (Inclusion-Exclusion for Three Sets). Given three finite
sets A, B, and C, we have

£ /(*) = £ /0) + £ /О) + £ f(x) - £ /(x)
igAubuc хеА хев хес хеАпв

- £ /(*)- £ f(x)+ £ f(x).
хеАпс хевпс хеАпвпс

Proof. This follows by writing E = AUB and F = C and applying the proposition
twice. The details are Exercise 1.34. A graphical representation of how the three
sets intersect is given in Figure 1.4. □

Example 1.6.14. For finite sets A, B, and C, we have the counting formula

|A U В U C\ = |A| + |B| + \C\ - |A П B| - |A П C\ - |B П C| + |A П В П C\.

42 Chapter 1. Introduction to Algorithms and Analysis

A

В C

Figure 1.4. A Venn diagram helps illustrate the ideas of inclusion-exclusion for
three sets A, B, and C, as in Proposition 1.6.13. Including everything from A, B,
and C means that the pairwise intersections АПВ, А П C, andВПС have all been
included twice and the triple intersection has been included three times. Excluding
one copy of each of the pairwise intersections means that the triple intersection,
which was originally included three times, has now been excluded three times, so it
must be reincluded once more.

Example 1.6.15. Let S be the set S = {1, 2,..., 1000} and let E be the
integers in S that are divisible by any of 5, 7, or 9; that is, let E = E^UE^UEq,
where En is the set of integers divisible by n in S. We have \En\ = [1000/nJ,
where [я? J denotes the integer part of x > 0. Note also that En A Em = Enm
whenever gcd(n,m) = 1. Thus

\E\ = |T?51 + \E?\ + | Eq I — IE's П E?\ — IE5 A £? 91 — |JE?7 A Eq I + I-E5 AE7A

= L1000/5J + [1000/7J + [1000/9J - [1000/(5 • 7)J - [1000/(5 • 9)J
- [1000/(7 • 9)J + [1000/(5 • 7 • 9)J

= 200 + 142 + 111 - 28- 22 - 15 + 3
= 391.

This can be extended to an arbitrary (finite) number of sets.

Theorem 1.6.16 (Inclusion-Exclusion). For any finite collection E±,... ,Em of
finite sets and for any function f : IJZti we have

m

E zW’Ei-1)** 1 E E /и-
eE|J™i Ei eeA}=i E^j

(1-23)

Proof, This follows by induction on m. The base case is m = 1, which is trivial.
Now assume that (1.23) holds for all m with 1 < m < n. We prove that the equation
also holds for m = n + 1.

1.6. Additional Techniques of Summation 43

Let E = иГ=1^« and F = ^n+i- By Proposition 1.6.11 and the induction
hypothesis, we have

£ /(e) = £ /(e) = £/(e) + £/(e)- £ /(e)
Ei etEuF eEE eEF etEOF

= £ /(e) + £ /(e)- £ /(e)
eEU7=i eGBn+i e^U£i EiHEn-^i

= E(-i)‘+1 E E /(«>+ E л»)
fc=l l<.i1<---<ik<.n eenfc=1 Ei. eEEn+i

-E(-i)‘+1 E E «')■
fc=l l<ii<---<ik<n ееП^=1 Ei .ПЕп+i

The last term can be rewritten as

E E /м= E E fM-
l<i!<-<ik<n ееП^=1Е^ПЕп+1 1<г1<---<гк<гк+1^п+1 eeQ^1 Ei.

Thus, we have

£ /(e) = £(-l)fe+1 £ £ /(e) + £ /(e)
eeUrJi1 Ei l<n<-<ifc<n ебА|=1Е{. eEEn+1

+E(-i)‘+! E E Л')
fc=l l<21<-"<ifc<2fc+i=n+l eenfc+11JEi.1 b = i з

= E(-i)‘+1 E E ■№>+ E л»)
l<i1<--<ik<n еЕр\к^1Ег. eEEn+i

+ £(-i)fc+1 £ £ /(e)
fc=2 l<2i<-"<^fc=n+l ебП^=1£?г-

= E(-D‘+1 E E «')
l<i1<---<ik<n-Fl eep|fc=1 Ei.

+ E(-i)w E E
fc=l l<2i<-"<^fc=n+l eenfc=1JEi.

n+1
= £(-i)fc+1 £ £ /(e)-

fc=l l<i1<---<ik<n-Fl eE(~]k_1Eij

Thus by induction, (1.23) holds for all m > 1. □

44 Chapter 1. Introduction to Algorithms and Analysis

Example 1.6.17. For any finite collection Ei,..., Em of finite sets we have

(1-24)

Alternatively, we can write

(1-25)E (-d|j|-1

1.7 Products and Counting
Computing the temporal and spatial complexities of an algorithm is essentially a
big counting problem. Many computations in probability theory also boil down to
counting problems (see Chapter 5). In this section we discuss some of the key tools
for counting, including the multiplication rule, permutations, combinations, and the
binomial theorem.

1.7.1 The Multiplication Rule
We begin by examining the cardinality of a product of sets. Let A and В be sets
of finite cardinality |A| and |B|, respectively. The Cartesian product of A and B,
denoted A x B, is the set of ordered pairs

AxB = {(a,6) |aU,6eB}.

A key observation is that the cardinality of A x В is |A| • |B|. This is sometimes
called the multiplication rule. It is a very useful concept even though its proof is
trivial.

Example 1.7.1. Let the set of entrees be E = {pizza, hamburger, salad} and
the set of drinks be D = {water, soda}. If a meal is defined as a pair of exactly
one entree and exactly one drink, then the number of possible meals is the set
of possible pairs \E x D\ = \E\ • \D\ = 3- 2 = 6.

The multiplication rule generalizes as follows: Suppose that we have the finite
sets Ai, A2,..., An. The Cartesian product A± x A2 x • • • x An is the set of n-
tuples (ai, a2,..., an) with each аг eAi. The cardinality of the Cartesian product
is |Ai x A2 x • • • x An\ = |Л1| • |A2| • • • |An|.

Example 1.7.2. In the Land of Oz, a license plate has two letters followed
by three numbers. By the multiplication rule, the total number of possible
license plates in Oz is 26 • 26 • 10 • 10 • 10 = 676,000.

1.7. Products and Counting 45

1.7.2 Permutations
A permutation of a set S is an ordering of the elements of S. For example, there
are six ways to permute the set {1,2,3}; they are (1,2,3), (1,3, 2), (3,2,1), (3,1,2),
(2,3,1), and (2,1,3). More generally, a set of n objects can be permuted n\ =
1 • 2 • • • (n — 1) • n ways. The proof follows by induction and is Exercise 1.37.

Example 1.7.3. If there are 19 students in a class, then there are 19! ways
that the students can be ordered; that is, there are 19! permutations of the
class. This is a very large number—approximately 1017.

Remark 1.7.4. For notational convenience, we set 0! = 1. This is a standard
convention in mathematics.

Sometimes we are only interested in ordering r objects taken from a set of n
elements. For example, suppose we wanted to elect a president, a vice president,
and a secretary from the class of 19 students. In this case there are 19 choices for
president, 18 choices for vice president after the president is chosen, and 17 choices
for secretary after the other two are chosen. That gives 19-18-17 = ||| = 5814
possible presidencies. This could also be thought of as taking the total number of
orderings 19! and dividing out the unused orderings 16!. This pattern applies in
general, as given in the following proposition.

Proposition 1.7.5. The number of permutations of r objects from a set of n
elements (0 < r < n) is P(n, r) = ^n2?r); •

Proof, The proof is Exercise 1.38. □

1.7.3 Combinations and Rearrangements
Suppose that instead of a presidency, we want to choose a committee of three people
from the 19 students in the class. In this case, since none of the three are ranked
above any other, we must also divide out the number of orderings of the three
people in a given presidency. Thus the number of combinations of students on the
committee is = 969. This is denoted C(19,3) or (19) and is pronounced “19
choose 3.”

Proposition 1.7.6. The number of (unordered) combinations of r objects from
a set of n elements (0 < r < n) is C(n,r) = ♦ For notational
convenience, we set C(n,r) = (™) = 0 whenever r > n or r < 0.

Proof, The proof is Exercise 1.38. □

Remark 1.7.7. The numbers are often called binomial coefficients because of
their role in the binomial theorem (Theorem 1.7.16), below. Note that these are
always integers because they count the number of times something can occur.

46 Chapter 1. Introduction to Algorithms and Analysis

Example 1.7.8. The number of ways to choose two socks, not necessarily
matching, from a drawer of 20 socks is C(20, 2) = 202!19 = 190, because we
don’t care about the order in which the socks are chosen. But the number of
ways to put these socks on your two feet is P(20, 2) = 20 • 19 = 380 because
there are 20 choices for your left foot and 19 remaining for your right foot.

Example 1.7 .9. In poker a player draws five cards, without replacement,
from a standard deck of 52 cards (four suits and 13 ranks; each card has a
rank and a suit). A three-of-a-kind is when there are three cards of the same
rank, plus two cards which are not of this rank nor the same rank as each
other. How many different ways can one get a three-of-a-kind? There are
C(13,1) = 13 possible ranks for the triple. For each possible rank, there are
C(4,3) = 4 different ways you can have three cards of that rank. Thus, there
are 13 • 4 = 52 different triples of the same rank.

For the two extra cards, neither of them can be the same rank as the triple
(or else you would have four of a kind), nor can they be the same as each other
(or else you would have a full house). The remaining two cards must be from
the remaining 12 ranks, which gives C(12,2) = 66 possibilities. For each of
these two ranks, there can be four different suits. Therefore, the total number
of unique three-of-a-kind combinations is C(13,1)C(4, 3)C(12, 2)42 = 54,912.

Example 1.7. 10. In the Powerball Lottery players choose five distinct num­
bers ranging between 1 and 69 and also choose the Powerball, which is a
single number ranging between 1 and 26. Although the balls are drawn one at
a time, the numbers are always reported in ascending order and therefore the
order drawn doesn’t matter. The number of possible unique lottery tickets
is the number of Powerball choices (26) times the number of ways to choose
five numbers from 69, or 26 • C(69,5) = 292,201,338. Since there is only one
jackpot, the odds of winning this lottery are 1 in 292,201,338.

Example 1.7. 11. How many unique rearrangements are there of the word
TOOTH? Five letters can be rearranged 5! ways, but there are two pairs of
letters that are multiples; specifically, the letters О and T are represented
twice. Thus, we must divide out the number of ways the multiple letters can
be permuted among themselves. This gives — 30 different rearrangements.

1.7. Products and Counting 47

Example 1.7. 12. The number of rearrangements of the word MISSISSIPPI
can be counted by noting that the letters I and S are repeated four times, and
P is repeated twice. Thus, there are = 34,650 unique rearrangements.

Remark 1.7.13. An important generalization of the binomial coefficient is the
multinomial coefficient. Let n± + 722 +---- 1- nr = 72, where each > 0. Define

n
721,722, . • . ,nr

n\
721!722! • • • 72r! (1-26)

It describes the number of ways that 72 elements can organized into r groups of
?2i, 722, •. •, nr elements, respectively.

Example 1.7. 14. If there are nine employees at a restaurant, how many ways
can you choose four wait staff, two cooks, two bussers, and one host (assuming
every employee is able to perform every job)? Using the multinomial, we have
4!2?2!1! = 3780.

1.7.4 Combinatorial Identities
The binomial coefficients satisfy some useful relations. Among the most famous is
Pascal’s rule, which is the foundation of Pascal’s triangle (see Table 1.1). This is
given algebraically in Lemma 1.7.15 and used in the proof of the binomial theorem
(Theorem 1.7.16).

n = 0: 1

n = 1: 1 1

Table 1.1. Pascal’s triangle can be used to determine the coefficients in binomial
expansions. Pascal’s lemma (Lemma 1.7.15) says that the rth element of the nth
row can be found by adding the two elements (the rth and the (r — l)th) just above
it on the (72 — l)th row.

72 = 2: 1 2 1

72 = 3: 1 3 3 1

72 = 4: 1 4 6 4 1

72 = 5: 1 5 10 10 5 1

Lemma 1.7.15 (Pascal’s Rule). For all n,r e Z+ with r < n we have

(1-27)

48 Chapter 1. Introduction to Algorithms and Analysis

Proof.

n — 1\
r — 1/

(>- 1)! (n- 1)!
(r —l)!(n —r)! r\(n — 1 — r)!

— l)!r (n — l)!(n — r
r\(n — r)! r\(n — r)\
(n — l)!n n\
r\(n — r)\ r\(n — r)\

□

Theorem 1.7.16 (Binomial Theorem). For any x,y GF and n e Z+ we have

(x + yr = J2^kyn-k. (1.28)

Here, as in all similar sums, we use the convention that xQ = 1, even when x = 0.

Proof. The proof follows by induction. We first prove the case n = 1. Note that

Now, assuming by the inductive hypothesis that the theorem is true for n — 1, we
prove that it holds for n. We have

(x + y)n = (x + y)(x + y)n 1

Thus (1.28) holds for all n e . □

Remark 1.7.17. Note that the binomial theorem gives another way to see that the
binomial coefficients must always be integers, because each coefficient of (x + y)n
must be an integer.

1.8. Division and Divisors 49

Corollary 1.7.18. For any n e Z+ , the following combinatorial identity holds:

Proof, From the binomial theorem we have

There is also a multinomial theorem that expresses (rri +-----1- Xd)n in terms of
multinomial coefficients.

Theorem 1.7.19. For any #i,..., Xd E R and n e Z+ we have

where the sum on the right runs over all d-tuples of nonnegative integers k±,... ,kd
that sum to n, and (fe the multinomial coefficient (1.26).

Proof. This is proved by inducting on d and using the binomial theorem. The
details are Exercise 1.45. □

1.8 Division and Divisors
Some of the most useful algorithms depend on divisibility properties of integers. In
this section, we develop these ideas and also discuss the Euclidean algorithm, an
ancient and very efficient algorithm for finding the greatest common divisor of two
positive integers.

1.8.1 Divisibility and the Division Theorem
The fundamental tool for working with integers is the well-ordering axiom of the
natural numbers (see Volume 1, Appendix A, Sections 3-4).

Definition 1.8.1. A binary relation < on a set X is called an ordering (or a total
order) if it satisfies the following properties:

(i) For every x,y e X either x < у or у < x.

(ii) x < x for every x e X.

(iii) If x < у and у < x, then x = y.

(iv) If x < у and у < z, then x < z.

A set X with an ordering < is well ordered if every nonempty subset S С X has
a least element, that is, if there exists an element x e S such that x < у for every
У e S.

50 Chapter 1. Introduction to Algorithms and Analysis

Unexample 1.8.2.

(i) The interval [0,1] 6 R with the usual ordering < is not well ordered,
because the set (0,1] does not have a least element. For example, given
any x E (0,1] the number | is strictly less than x.

(ii) The set of integers Z with the usual ordering is not well ordered because
there is no least element. For every n E Z the number n — 1 E Z is less
than n.

Axiom 1.8.3 (Well-Ordering Axiom for Natural Numbers). The set of
natural numbers N = {0,1,2,... } with the usual ordering < is well ordered.

Example 1.8.4. Any subset of a well-ordered set is also well ordered. Hence,
the set Z+ of positive integers is also well ordered.

The well-ordering axiom guarantees that any nonempty subset of N has a least
element. For example, given some property of interest characterized by a Boolean­
valued function P(n) on N, that is, P(n) E {True, False} for each n E N, we can let
S = {n E N | P(n)} be the set of all natural numbers satisfying that property. The
well-ordering axiom guarantees that if S is nonempty, then there is a least element
of S', and this must be the smallest natural number satisfying the desired property.

Lemma 1.8.5 (Archimedean Property). Ifa,b€ Z+, then there exists n E Z+
such that bn > a.

Proof. Suppose no such n exists. Thus, 0 < a — bn for each n E Z+. Let S =
{u — bn | n E Z+} C Z+. Since S is nonempty, the well-ordering axiom guarantees
that S has a least element, say, a — bm. It follows that a — bm < a — +1), which
implies that b < 0, which is a contradiction. Hence, there exists n E Z+ such that
bn > a. □

The well-ordering axiom is also the key to proving several divisibility properties
of the integers. The first of these is the division theorem.

Theorem 1.8.6 (Division Theorem). Given any integer a E Z and any nonzero
6 E Z, there exist unique integers q,r with 0 < r < \b\ such that

a = bq + r.

Moreover, if a, b > 0, then q > 0, and if a > b > 0, then q > 0. We call a the
dividend, b the divisor, q the quotient, and r the remainder.

Proof. Let S = {n — bx | x E Z} C Z and S+ = S П N. By Exercise 1.47 the
subset S+ C N is nonempty, so the well-ordering axiom implies that S+ has a least

1.8. Division and Divisors 51

element r > 0. Thus, there exists a q e Z such that r = a — bq. Assume, by way
of contradiction, that r = a — bq > \b\. If 6 > 0, then r — \b\ = a — b(q + 1) > 0
is an element of that is less than r, a contradiction. If b < 0, then r — \b\ =
u — b(q — 1) > 0 is an element of that is less than r, which is also a contradiction.
Therefore, 0 < r < \b\.

To see uniqueness, consider any r' = a — bq' with 0 < r' < \b\. Without loss of
generality, assume that r < r', and so 0 < r'—r < \b\. But r'—r = a—bq' — (a—bq) =
b(q — q') is a multiple of 6, and the only nonnegative multiple of b less than \b\ is 0.
Thus r' = r and q' = q.

Finally, if a > b > 0, then a — r > b — r > 0, which implies that q = (a — r)/b > 0.
If b > a > 0, then a = 0 • b + a, so q = 0. □

1.8.2 Greatest Common Divisors

Definition 1.8.7. Given any a, b e Z with b / 0, we say that b divides a (denoted
b\a) if there exists c e Z such that be = a. In this case, we say that b is a divisor of
a. If b does not divide a we write b{ a.

Example 1.8.8. We have 2| 18 but 6 113.

Theorem 1.8.9. Given a,b e Z; not both zero, there is a unique d e Z+ satisfying
the following properties:

(i) d is the least positive integer that can be written in the form ax + by for some
x,y e Z.

(ii) The integer d divides both a and b, that is, d\a and d\b.

(iii) For any integer d' with d'\a and d'\b, we have d'\d.

(iv) d is the greatest positive integer that divides both a and b.
The integer d is called the greatest common divisor (ged) of a and b and is denoted
gcd(a, 6).

Proof. Let S = {an + bm | n,m e Z} and let = S П Z+. It is straightforward
to see that S+ / 0. By the well ordering of Z+, there must be a least element in

let d be that least element.
(i) By definition, d = ax + by for some x, у e Z and is the least such element.

(ii) By the division theorem, there are integers q, r with 0 < r < d such that
a = dq + r, but r = a — dq = u(l — xq) — byq is either 0 or an element of S+.
If r is an element of S+, then since d is the least element in , we must have
d < r, which is a contradiction. Therefore r = 0, and d divides a. Exchanging
a for b in the previous argument proves that d also divides b.

(iii) Since d'\a and d'\b we must have a = d's and b = d't for some s,t e Z, and
hence d = ax + by = d'sx + d'ty = d'(sx + ty), so d'\d.

(iv) This follows from (ii) and (iii). □

52 Chapter 1. Introduction to Algorithms and Analysis

Example 1.8.10. In elementary school, we find the gcd by factoring the two
numbers into products of primes and then collecting the common factors. For
example, to compute the gcd(12,20) we write 12 = 22 -3 and 20 = 22 • 5, and so
the gcd(12, 20) = 22 = 4. But factoring is a very expensive algorithm. In fact
its high complexity is the foundation of many cryptosystems; see Section 1.9.7
for more on this. In Section 1.8.3 we present a much faster way to find the
gcd.

Proposition 1.8.11. Let a,b,c e Z. If a\bc and gcd(u,6) = 1, then a\c.

Proof. Since gcd(u, b) = 1 there exist x, у e Z such that ax + by = 1. Multiplying
by c gives axe + bye = c. Since a\bc we have az = be for some z e Z, and hence

c = axe + bye = a(xc + zy).

Therefore a\c as required. □

1.8.3 The Euclidean Algorithm
The gcd can be found very efficiently by way of the Euclidean algorithm. This is
one of the most ancient algorithms still in modern use. It was described by Euclid
in his book Elements around 300 BCE, but many scholars believe it was known
earlier.

Theorem 1.8.12 (The Euclidean Algorithm). Given a,b e Z with b / 0,
define qo,ro e Z as in the division theorem (Theorem 1.8.6) to get

a = bq0 + r0

with 0 < ro < \b\. If ro = 0, then gcd(u, b) = b. Otherwise, divide b by ro to get
qi,r± e Z by the division algorithm; that is,

b = r0Qi + n

with 0 < Г1 < r0. Repeating the process eventually gives a remainder of zero:

a = bqo + r0,
b = r0Qi +n,

П) = r±q2 + r2,
ri = r2qs + r3,

! (1.30)
rn-2 = rn-iqn + rn,
rn-i = rnqn+1 + 0.

The penultimate remainder rn is the gcd of a and b, that is,

gcd(a, 6) = r,

1.8. Division and Divisors 53

Proof, For any two integers m and n with n / 0, let m = nq + r with 0 < r < |n|.
Let d = gcd(m, n) and e = gcd(n, r). Notice that r = m — nq, and d\m and d\n, so
d\r, and hence d < e. Conversely, since m = nq + r, we have e\m and e\n, so e < d.
Therefore gcd(m, n) = gcd(n,r). Applying this result to each successive division in
(1.30) shows that

gcd(a, 6) = gcd(6, r0) = • • • = gcd(rn_i,rn) = gcd(rn, 0) = rn.

The algorithm terminates with n < \b\ — 1, because at each stage we have
0 < < rk, and so 0 < rn < • • • < n < r0 < \b\. □

Example 1.8.13. The gcd of 14562 and 348 is computed as follows:

14562 = 348 • 41 + 294,
348 = 294 • 1 + 54,
294 = 54 • 5 + 24,

54 = 24 • 2 + 6,
24 = 6 • 4 + 0.

Thus, gcd (14562,348) = 6.

The bound n < \b\ — 1 in the previous proof can be improved a lot, as the
following lemma shows.

Lemma 1.8.14. Following the notation in the previous theorem, we have b > 2r±
and rk > 2r/c+2 for each к e {0,1,2,..., n — 2}.

Proof. Since rfc+i = gfc+3rfc+2 + Пс+з and rk = qk+2rk+1 + rfc+2, we have that
rk = r/c+2(l+9fc+3Qfc+2)+Qfc+2rfc+3. Thus, rk > r/c+2(l+Qfc+3Qfc+2). Since < rj
for every j e {0,..., n — 1}, we have qk+2 > 1 and qk+3 > 1, hence rk > 2гк±2. To
show that b > 2r±, set r_± = b and use the same argument. □

Theorem 1.8.15. Using the notation in the previous theorem, assume a,b G Z+
satisfy b < a. The number n +1 of iterations of the Euclidean algorithm for gcd(a, b)
is bounded above by 2(log2 b) + 1; that is, n < 21og2 b.

Proof. Choose m e so that 2m~1 < b <2™. Suppose that n > 2m — 1. From
the lemma, we have

b > 2ri > 4r3 2rrt \
^2m-l >2 Г,

Thus, we have that rn < 2 < 1, which is impossible. Thus, n < 2m — 1, which
implies n < 2(m — 1) < 21og2 b. □

54 Chapter 1. Introduction to Algorithms and Analysis

Remark 1.8.16. The number of iterations of the Euclidean algorithm is at most
~ 2 log2 b. Normally we think of complexity in terms of the number of digits required
to store or represent the inputs, not the numerical value of the input. So in a base-2
representation of 6, the size of the input is £ = Plog2 b]. If the complexity of each
iteration is Q, then the temporal complexity of the Euclidean algorithm is ~ 2£Q.
If the input is represented in base 10 instead, then

n < 2 log2 b = 21°^10 « 6.644 log10 b < 6.644 x number of digits of b.
logio 2

Example 1.8.17. In Example 1.8.13, we computed gcd(14562, 348) = 6 as

14562 = 348-41 + 294, (1.31)
348 = 294 • 1 + 54, (1.32)
294 = 54-5 + 24, (1.33)

54 = 24-2 + 6, (1.34)
24 = 6-4 + 0. (1.35)

We work from the bottom up and solve for each remainder in terms of the
other parts and then back substitute. Equation (1.34) gives

6 = 54 - 24 • 2 (1.36)

and (1.33) gives
24 = 294 - 54-5. (1.37)

Substituting (1.37) into (1.36) gives

6 = 54 - (294 - 54 • 5) • 2 = 11 • 54 - 2 • 294. (1.38)

Solving for 54 in (1.32) gives

54 = 348 - 294 • 1, (1.39)

and substituting (1.39) into (1.38) gives

6 = 11- (348 - 294 • 1) - 2 • 294 = 11 • 348 - 13 • 294.

This is still a crude estimate—there are much sharper bounds in the literature.

1.8.4 Extended Euclidean Algorithm
Theorem 1.8.9 guarantees that, for any nonzero integers a and 6, the element
gcd(u, b) can be written as ax+by for some ж, у e Z. Knowing the actual values of x
and у is useful in many applications. This can be found easily, by back-substituting
in the original Euclidean algorithm. * 6

(1-40)

1.9. Primes and Remainders 55

Solving for 294 in (1.31) gives

294 = 14562 - 348-41, (1.41)

and substituting into (1.40) gives

6 = 11 • 348 - 13 • (14562 - 348 • 41) = 544 • 348 - 13 • 14562. (1.42)

This gives the desired expression for 6 = gcd(14562, 348) as an integer combi­
nation of 14562 and 348.

Writing out the equations for this procedure, we have rn = rn~2 — rn_iqn, rn_i =
гп-з — rn-2qn-i) and so forth, up to ro = a — bqo. The initial Euclidean algorithm
finds all the values of so back substituting gives

gcd(n, b) = rn = rn-2 - гп-^п
= 'f'n—2 n—3 ^n—2Qn— l)(7n

= (^n—4 3Qn—2) (^n—3 (^n—4 ^n—SQn—2)9n—l)(7n

and this gives an explicit expression for gcd(u, b) = rn as ax + by. This is called the
extended Euclidean algorithm. It may feel painful to write out all the equations for
the extended Euclidean algorithm, but it is simple to program.

1.9 Primes and Remainders
In this section, we treat basic properties of prime numbers and modular arithmetic.
We prove Fermat’s little theorem, which follows from the binomial theorem and
gives a very fast algorithm for determining when a given number is likely to be
prime. We also discuss the Rivest-Shamir-Adleman (RSA) cryptosystem.

1.9.1 Primes

Definition 1.9.1. If two integers a,b e Z satisfy gcd(a, b) = 1, then we say that
a and b are relatively prime. An integer p > 1 is prime if it is relatively prime to
every a e {1, 2,... ,p — 1}.

Example 1.9.2.

(i) We have gcd(6,9) = 3 and gcd(4,9) = 1, so 4 and 9 are relatively prime,
but 6 and 9 are not.

(ii) If p is any prime, and b € Z, then either gcd(p, b) = 1 or gcd(p, b) = p,
since the only positive divisors of p are 1 and p.

56 Chapter 1. Introduction to Algorithms and Analysis

1.9.2 Modular Arithmetic

Definition 1.9.3. Given a, 5 e Z and n e Z+ , we say a is congruent to b modulo
n, denoted a = b (mod n), if n\(a — b).

Example 1.9.4. The following statements are true:

37 = 25 (mod 12),
37 = 1 (mod 12),
-9 = 31 (mod 10),
5^7 (mod 3).

Example 1.9.5. You’ve been using modular arithmetic since you learned to
tell time. The minutes on a clock are measured modulo 60. For example,
45 minutes after the hour is the same as 15 minutes before the hour; that is,
45 = —15 (mod 60).

Theorem 1.9.6. Let a,b e Z and n e Z+. The relation a = b (mod n) is an
equivalence relation on Z.

Proof, It suffices to show that = is reflexive, symmetric, and transitive. Reflexivity
follows because n|0 always holds. Symmetry follows because n\(a — b) holds if and
only if n\(b — d). Finally transitivity follows from the fact that if n\(a — b) and
n\(b — c), then n|[(a — b) + (b — c)], hence n\(a — c). □

Definition 1.9.7. The set of equivalence classes in Z defined by congruence
(mod n) is denoted Zn. The equivalence classes are also called cosets.

The equivalence class of x is denoted [[#]]. The equivalence classes are the sets

[[0]] = {0, ±n, ±2n, i3n,... },
[[1]] = {1,1 ± n, 1 ± 2n, 1 ± 3n,... },
[[2]] = {2,2 ± n, 2 ± 2n, 2 ± 3n,... },

[[n — 1]] = {n — 1, (n — 1) ± n, (n — 1) ± 2n, (n — 1) ± 3n,... }.

Each equivalence class in Zn has a unique representative in the set {0,1,..., n — 1}.
As a result, when it can be done without introducing ambiguity, we often abuse
notation and leave off the [[•]] and write 1 to mean [[1]], 5 to mean [[5]], etc.

Remark 1.9.8. It is important to remember that each element of Zn is an entire
coset of numbers. We can write these cosets by choosing any element of the coset,
e-g-, [[-1]] = h - 1J = - 1]], [[—2]] = [n - 2]] = - 2]]> etc.

1.9. Primes and Remainders 57

Theorem 1. 9.9. If a,b,c e Z and n e Z+, then
(i) (a + b) + c = a + (6 + c) (mod ri),

(ii) (ab)c = a(bc) (mod ri),

(iii) a + b = b + a (mod ri),

(iv) ab = ba (mod ri),

(v) a(b + c) = ab + ac (mod n).

Proof. The proof is Exercise 1.54. □

The previous theorem, combined with the substitution rule, below, makes com­
putation in Zn much simpler than computation in Z.

Theorem 1.9 .10 (Substitution Rule). Let a, b, а', У e Z, and n e Z+. Ifa = a'
(mod n) and b = У (mod ri), then

(i) a + b = a' + У (mod n),

(ii) ab = а'У (mod n).

Proof. If a = a! (mod ri) and b = b' (mod ri), then n\(a — a') and n\(b — У). This
implies there exist c, d e Z such that a = a' + nc and b = У + nd.

(i) Adding gives a + b = af + У + n(c + d). Thus, a + b = a1 + У (mod n).

11A little thought shows that the particular terms aj appearing in the product are determined by
the binary expansion of k.

(ii) Multiplying gives ab = rib' + n(cb' + rid + ncd). Thus, ab = rib' (mod n). □

Example 1.9.11. Since 31 = 4 (mod 9) and 66 = 3 (mod 9), we have

97 = 31 + 66 = 4 + 3 = 7 (mod 9),
2046 = 31 • 66 = 4 • 3 = 12 = 3 (mod 9).

1.9.3 Fast Modular Exponentiation
We can also compute mk (mod ri) using Theorem 1.9.10. For example, to compute
3781 (mod 11), note that 37 = 4 (mod 11). So it suffices to find 481 (mod 11). We
apply the theorem multiple times in an improvised way to get

481 = (43)27 = (—2)27 = (—2)(—2)26 = (-2) • 413 = (-8) • 412 = (-8) • 166
= (-8) • 56 = (-8) • 253 = -8 • 33 = (-8) • 5 = -40 = 4 (mod 11).

We can do this more efficiently using a technique called fast modular exponenti­
ation. To compute mk (mod ri), find m = a0 (mod n) and then square both sides
to get m2 = («о)2 = «1 (mod n), and keep squaring to get each aj+i = a2 (mod n)
until к < 2j+1. At this point we can write mk as a product of some combination11
of the aj.

58 Chapter 1. Introduction to Algorithms and Analysis

Example 1.9.12. We compute 3781 = 4 (mod 11). We begin with 37 = 4
(mod 11), which gives «q = 4. Taking powers of both sides yields

372 = 42 = 16 = 5 = Ol,

374 = 52 = 25 = 3 = «2,

378 = 32 = 9 = a3,
3716 = 92 = 81 = 4 = a4,

3732 = 42 = 16 = 5 = «5,

3764 = 52 = 25 = 3 — ^6-

Thus, 3781 = 3764+16+1 = 3764 • 3716 • 371 = a6 • u4 • «1 = 3 • 4 • 4 = 4 (mod 11).

Remark 1.9.13. Fast modular exponentiation requires O([log2A:J) integer multi­
plications. This is considered fast because it uses many fewer multiplications than
the naive approach of multiplying by m repeatedly (which requires O(k) multipli­
cations).

1.9.4 Finding Inverses in
If a and n are relatively prime, then there exist x,y e Z such that ax + ny = 1.
This can be rewritten as ax — 1 = —ny, and therefore ax = 1 (mod ri). This implies
that x is a multiplicative inverse to a in Zn. In particular, given any relation of the
form az = w (mod n), we can easily find z by multiplying both sides by x, that is,

z = (xa)z = x(az) = xw (mod n).

Example 1.9.14. To find an integer z satisfying

31г = 17 (mod 56),

note that 31 and 56 are relatively prime, so there exist integers x and у such
that 31rr + 56?/ = 1. We can use the extended Euclidean algorithm to find
x = — 9 and у = 5. This implies that

(31)(—9) = 1 (mod 56),

and hence
(31)(—9)(17) = 17 (mod 56).

Therefore z = (—9) (17) = 15 (mod 56) is a solution.

1.9.5 Fermat's Little Theorem
Fermat’s little theorem is much more useful than his last theorem. It’s also much
easier to prove.

1.9. Primes and Remainders 59

Lemma 1.9.15. Assume p E Z+ is prime. If к E Z+ with к < p, then р|(£). In
other words, (£) = 0 (mod p) for к = 1,2,... ,p — 1.

Proof. We have (£) = E Z, and p divides pl = (fykl(p — fc)!. But p is
relatively prime to kl(p — fc)!, so by Proposition 1.8.11 we must have p|(£). □

Corollary 1.9.16 (Freshman’s Dream). Ifp is prime, then for a, b E Z we have
(a + b)p = ap + bp (mod p).

Proof. By the binomial theorem and the previous lemma we have

(a + b)p = =ap + 0ap-1b+--- + 0abp~1 + bp = ap + bP (mod p). □

Theorem 1.9.17 (Fermat’s Little Theorem). If p E Z+ is prime, then ap = a
(mod p) for all a E Z.

Proof. Assume p is prime. Define S = {u E Z | ap = a (mod p)}. We first prove
the theorem for nonnegative integers a by using induction to show N C S. We know
0,1 e S because 0p = 0 (mod p) and lp = 1 (mod p). Assuming к E S, we show
that к + 1 E S. By the freshman’s dream, we have

(k + l)p = lp + kp = 1 + kp (mod p).

By the inductive hypothesis, kp = к (mod p); therefore, к + 1 E S. By induction,
we have a E S for all a E N.

The theorem also holds for negative integers because if a < 0, then a = r
(mod p) for some 0 < r < p; thus ap = rp = r = a (mod p). □

Corollary 1.9.18. Ifp E Z+ is prime and a E Z with gcd(u,p) = 1, then ap~r = 1
(mod p).

Proof. By the theorem, we have that ap = a (mod p). Thus, there exists n E Z
such that np = a(up-1 — 1). Since gcd(a,p) = 1, we must have p|(up-1 — 1) or,
equivalently, ap~1 = 1 (mod p). □

Corollary 1.9.19. If p E Z+ is prime, and x = 1 (mod p — 1), then ax = a
(mod p) for all a E Z.

Proof. The proof is Exercise 1.61. □

Example 1.9.20. Consider again the problem from Example 1.9.12, where
we compute 3781 (mod 11). Since 11 is prime, Corollary 1.9.18 implies that
3710 = 1 (mod 11). Thus, 3781 = 37 • (3710)8 = 4 • I8 = 4 (mod 11).

60 Chapter 1. Introduction to Algorithms and Analysis

1.9.6 *Application: Primality Testing
In cryptography, it is often important to determine whether a given number n is
prime and, if not, then to factor it into a product of primes. One obvious way
to do both of these tasks is to attempt to factor n by each of the primes of size
less than or equal to y/n. If none of these primes is a factor, then n is also prime.
This algorithm is prohibitively time consuming when n is large, as are the most
sophisticated factoring algorithms currently available.

The strength of the widely used Rivest-Shamir-Adleman public-key encryption
method is based on the presumption that it is very time consuming to factor a
product of two large primes. For example, if the product is a few hundred digits
long, then the fastest factoring methods will take years to factor n with today’s
fastest supercomputers.

But there are much faster tests that merely determine whether a given integer
n is prime, rather than factoring it. And tests that determine whether a given
number is likely (but not guaranteed) to be prime are faster still. One probabilistic
test for primality is to use Corollary 1.9.18, which shows that un-1 = 1 (mod n)
holds whenever n is prime and a < n. If this equivalence fails for even a single value
of u, then n is composite and the test is concluded. If equivalence holds for several
values of a, we start to gain confidence that n is likely to be prime. Of course, this
approach does not prove that n is prime. So even though many people call this
a test of primality, it’s really a test of whether a given number is composite, and
repeated failure to show that a number is composite suggests that it is likely prime.

There is a class of composite numbers, called Carmichael numbers, that satisfy
an-1 = 1 (mod ri) for all a; the smallest of these is n = 561 = 3-11-17. However,
these numbers are very rare. For example, there are only 8,220,777 Carmichael
numbers between 1 and IO20, but there are roughly 2.17 x 1018 prime numbers
in the same range. Thus, even if we don’t explicitly account for the Carmichael
numbers, the chances of accidentally getting a Carmichael number are extremely
small when testing random integers for primality. Note that there are even better
probable primality tests with no Carmichael equivalent.

1.9.7 *Application: RSA Cryptography
The Rivest-Shamir-Adleman (RSA) cryptosystem is widely used in network seen-
rity. It works by choosing a pair of distinct, large primes p and g, setting n = pg,
and finding two positive integers e and d so that med = m (mod n) for every m e Z
(as described below). The numbers n and e are made public, but d is kept private.
Assuming a message is expressed as an integer m, anyone can encrypt the message
by computing the ciphertext c = me (mod n), but only the person holding the
secret key d can decrypt the message by computing cd = (me)d = m (mod n).

Given n = pq, the number e can be any integer that is relatively prime to
I = (p — l)(g — 1). The private key d is chosen to satisfy de = 1 (mod £) (see
Section 1.9.4). In the theorem below, we show that for any x = 1 (mod £) we have
mx = m (mod ri) for all m E Z. This yields cd = (me)d = med = m (mod ri).
Thus the original message is recovered.

The system relies upon the fact that it is easy to compute me (mod n) and
cd (mod n) using fast modular exponentiation, but it is numerically prohibitive to
compute m when all you know is c, e, and n. In particular, for large n there is no

1.10. Divide and Conquer 61

known feasible way to factor it into the two primes n = pq, and therefore there is
no known way to compute £.

The next theorem is the key to decoding RS A. It is an easy corollary of Fermat’s
little theorem (or, rather, of Corollary 1.9.19).

Theorem 1.9.21. If p,q e Z+ are distinct primes and x e Z is such that x = 1
(mod (p — l)(g — 1)), then for any mtlwe have mx = m (mod pq).

Proof. Since x = 1 (mod (p — 1)(q — 1)), we have x = 1 (mod p — 1) and x = 1
(mod q — 1). By Corollary 1.9.19 we have mx = m (mod p), which implies that
p\(mx — m). Similarly, we have q\(mx — m), and thus, since gcd(p,q) = 1, we must
have pq\(mx — m). □

Example 1.9.22. Let p = 17 and q = 13, which gives n = 221 and I =
192 = 26 • 3. We choose e = 7 and verify that gcd(7,192) = 1. The extended
Euclidean algorithm gives 1 = (55)7 + (—2)192, which implies d = 55.

If the message is m = 191, then using fast modular exponentiation we find
c = me = 1917 (mod 221). To do this we compute

1912 = 16 (mod 221) and 1914 = 162 = 35 (mod 221),

which implies с = 1917 = 1914+2+1 = 35 • 16 • 191 = 217 (mod 221).
To decrypt the message we compute cd = med = m (mod 221) via fast

modular exponentiation, again, which gives

2172 = 16 (mod 221),
2174 = 162 = 35 (mod 221),
2178 = 352 = 120 (mod 221),

21716 = 1202 = 35 (mod 221),
21732 = 352 = 120 (mod 221).

Thus 21755 ее 21732+16+4+2+1 ее 191 (mod 221).

1.10 Divide and Conquer
An algorithm is recursive when it divides a larger problem into one or more sub­
problems and then reapplies itself on the subproblems, dividing them further, and
so on, until the individual pieces are reduced to some simple base cases. Recursive
algorithms are sometimes called divide-and-conquer algorithms because of the way
they continually divide larger problems into smaller, more conquerable problems.

In this section we examine a few recursive algorithms and then present the
master theorem, which gives a general rule for computing big-О bounds on divide-
and-conquer algorithms. We prove the master theorem in the next section, after
giving a few more examples of its use. The master theorem does not tell us anything

62 Chapter 1. Introduction to Algorithms and Analysis

A CRVHO NERD'S
।------------

415 LAPTOP’S ENCRYPTED.
LETS BU/lD A HlU-iCW'POUAR
CLUSTER TO CRACK IT

1 NO GOOD1. IT’S

\ ЦОА6-ВГТ PSA\
BLAST1. COR /
EVIL PUN J
is foiled1. 4 L ()

WHAT WOULD
ACTUALLY HAPPEN;----------
H’S LAPTOP'S ENCRYPTED.
DRUG Hin AND НГГ НШ WITH
THIS $5 WRENCH UNTIL
HE TEUS US THE PASSWORD.

Figure 1.5. Cryptographic security. Source: XKCD, Randall Munroe, http:
//xkcd. com/ 538/

about the leading-order behavior of these algorithms beyond giving a big-0 bound.
For the leading-order behavior more in-depth analysis is necessary.

1.10.1 Examples of Recursive Algorithms
Recursive Merge

Recall the merge algorithm (Algorithm 1.3) in Section 1.2.2. We can use recursion
to give a different algorithm for merging together two ordered lists, as follows: Take
the first entry of each list, make a comparison, take the smaller of the two entries off
its list, and then reapply the merge function to the two lists again; see Algorithm 1.7,
below. The temporal complexity T(n) of this algorithm satisfies the equation

T(n) = T(n - 1) + c, (1.43)

where c is a constant representing the temporal complexity of one recursion step
and n is the sum of the lengths of the two lists. It is easy to see that (1.43) has
temporal complexity of O(n) (see Exercise 1.66) since we have

T(ri) = T(n - 1) + c = T(n - 2) + 2c = • • • = T(0) + nc.

The spatial complexity is a little more difficult to compute, because it depends on
whether the algorithm makes a copy of the data each time it is called. If the data
are duplicated each time, then the spatial complexity S(n) satisfies

S(n) = 5(n-l) + O(n). (1.44)

Here the O(n) occurs because we need to store the initial two lists and the output
list, all of which are O(n). This shows that the total spatial complexity of this

1.10. Divide and Conquer 63

2
3
4
5
6
7
8
9

10
11
12
13

def merge(K, L):
"""Merge two sorted lists К and L into a new sorted list.

Base case: a list is empty
if К == [] or L == [] :

return К + L

Recursive cases
elif K[0] <= L [0] :

return [KEO]] + merge(K[1:J , L)
else:

return [L [0]] + merge (K, L[l:])

Algorithm 1.7. Recursive routine for merging two sorted lists of numbers together
into a single sorted list.

algorithm is O(k) = O(n2). There are ways to do this more efficiently, for
example, by passing only some pointers to a location in the original lists—this can
bring the spatial complexity back down to O(n).

Recursive Addition

Addition can also be written as a recursive algorithm that cuts off the first two digits
(in the ones place), adds them together, and then appends the result to the sum of
the truncated addends, carrying if necessary; see Algorithm 1.8. If the larger of the
two addends has no more than n digits, then the temporal complexity T(n) of this
recursive addition algorithm satisfies (1.43). As a result, the temporal complexity
is also O(n). It is straightforward to see that the spatial complexity S(n) satisfies
(1.44), and thus S(n) e O(n2), but, again, this can be changed to O(n) by using
pointers instead of duplicating the data at each step.

Binary Search

A linear search algorithm is one that starts at the beginning of the list and checks
each entry in succession until the desired element is found or until the list is ex­
hausted. It is usually assumed that the input list is unsorted, and thus one has no
choice but to search sequentially for the entry.

If a list is length n, then, on average, half the list must be examined in order
to find the match and so the average run time grows linearly in n. The worst-case
scenario is that the desired entry is either the last entry or nowhere present in the
list. In either case, every entry is checked and thus the algorithm is O(n), both
spatially and temporally.

Linear search is a relatively slow method for searching a list. If the input list is
sorted, there is a much faster way to search through it, called binary search, which
works as follows. First check whether the target value is greater than, equal to, or
less than the middle entry in the list. If equal, terminate the search and return the

64 Chapter 1. Introduction to Algorithms and Analysis

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

def add(a, b, carry=0):
"""Add two numbers together recursively, where
each input is a list of single-digit integers.

Recursive case 1: both lists are nonempty
if a != [] and b != [] :

Add the rightmost digits and recurse on the rest
temp = a[-l] + b[-l] + carry
return add(a[:-l], b[:-l], temp//10) + [temp7010]

Recursive case 2: one list empty but must carry
elif carry:

return add(a+b, [carry], 0)

Base case: one list is empty and carry is 0
else:

return a + b

Algorithm 1.8. Recursive routine for adding two lists of digits together.

location. If less, then do a binary search on the first half of the list. If larger, then
do a binary search on the second half. Repeat, halving the list at each step, until the
match is found or until the list is exhausted. This is implemented in Algorithm 1.9.

This algorithm has temporal complexity O(logn) because it needs at most к
iterations, where 2fc-1 < n < 2fe. To leading order, the spatial complexity at the
first iteration is ~ n because the initial list must be stored, plus a few constant­
length variables (left, right, and midpoint). At each subsequent iteration the
same list is passed to the algorithm, and, at least in Python, this does not require
more memory, so the spatial complexity satisfies S(n) ~ n + c, where the
number к of iterations is less than log2(n), and c is a constant (corresponding to
the constant number of constant-length variables). Hence S(n) ~ n + clog2(n) ~ n.

Remark 1.10.1. This particular implementation of the binary search algorithm
reuses the same list at each iteration, which makes it much more efficient than it
would be if it passed a new list (or sublist) to each subsequent iteration (as is done
in Algorithms 1.7 and 1.8). If, instead, it passed new sublists at each iteration
(for example, my_list [left:midpoint-1]), then a new copy of the sublist would be
stored at each step and the spatial complexity would instead satisfy

к

S(n) ~ n + S = n + 2-Jn = n + n(l — 2-fe) ~ 2n.
J=i

1.10.2 Master Theorem
The master theorem gives general upper bounds on the complexity of a large class of
recursive algorithms. This theorem applies to many of the most important classical

1.10. Divide and Conquer 65

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

def binary_search(mylist, target, left=0, right=None):
и и и

Search a sorted list 'mylist1 for 'target'.
Return the index if a match and -1 if no match

Set initial variables
if right is None:

right = len(mylist) - 1
midpoint = (left + right) // 2

Failed search of entire list
if left > right:

return -1

If found the target in the list
if target == mylist[midpoint]:

return midpoint

Search the left half of the list
elif target < mylist[midpoint]:

return binary.search(mylist, target, left, midpoint-1)

Search the right half of the list
else:

return binary.search(mylist, target, midpoint+1, right)

Algorithm 1.9. An implementation of the binary search algorithm. This is an
example of a recursive algorithm because, after breaking the problem into two halves,
the algorithm calls itself again on one of the halves.

algorithms in computer science. We discuss the main ideas and present several
examples in this section. We prove the master theorem in Section 1.11.

Theorem 1.10.2 (Master Theorem). Consider a function T : Z+ —> [0, oo)
satisfying the recursion rule

T(n) <
+ f(ri)

Ti
if n > 1,
if n = 1,

(1-45)

where a > 0 and T\ > 0 are real constants, b > 2 is an integer constant, and f(ri)
is nonnegative, with f € O(nd) for some d > 0.

(i) Ifbd > a, then T(n) € O(nd).

(ii) Ifbd = a, then T(n) € O(ndlogn).

(iii) Ifbd < a, then T(n) € O(nlogi>a).

66 Chapter 1. Introduction to Algorithms and Analysis

Example 1.10.3.

(i) Let T(n) < 9Т(Г§1) + n. We have a = 9, b = 3, logba = log3 9 = 2, and
d = 1. Since bd = 3 < 9 = a, it follows that T(n) E O(nlogb°) = O(n2).

(ii) Let T(n) < T(f^1) + 1. We have a = 1, b = 2, and d = 0. Since
bd = 1 = a, it follows that T(n) 6 <9(n°logn) = O(logn).

(iii) Let T(n) < 3T(|’^1) + nlogn. We have a = 3 and b = 4. Note that
nlogn E O(n1+e) for any s > 0. Thus, the master theorem applies with
d = 1 + e. Since bd = 41+e > 3, it follows that T(n) E O(n1+e).

Remark 1.10.4. The master theorem does not give us the sharpest possible bound
for Example 1.10.3(iii). Exercise 1.68 shows that T(n) E O(nlogn).

Unexample 1.10.5. In the case of recursive addition (Algorithm 1.8), if we
let T(n) be the number of operations required by the algorithm for two lists of
length n, then T(n) = T(n — 1) + c for some constant c. The master theorem
does not apply because n — 1 / |’n/6-| for any integer b > 2. However, Exercise
1.66 shows, without using the master theorem, that T(n) E O(n).

Example 1.10.6. The binary search of Algorithm 1.9 checks to see if the
middle of the list is the number it is looking for, and if not, it calls itself again
on one half of the list. The number T(n) of operations required satisfies the
relation

T(n) <Т(Гп/2]) + с,

where c is a constant. The master theorem applies with a = 1, b = 2, and
d = 0. Since 2d = 1 = a, the master theorem implies that T(n) E O(logn).

1.10.3 Algorithms
The master theorem is useful for understanding the asymptotics of many important
algorithms. In this subsection we demonstrate this on a few examples.

Multiplication

One way to multiply recursively is to separate each number into right and left halves
and multiply each half separately. Let x,y denote two numbers in base 10, each
with n = 2m digits. Thus, x = + xr and у = ?/л10п/2 + yn, where the

1.10. Divide and Conquer 67

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

def mult(a, b):
"""Recursively multiply two numbers 'a' and 'b'

together, where each number is given as a list
of single-digit integers.

m = len(a); n = len(b)

Base case 1: one of the lists is empty
if a = [] or b = [] :

return []

Base case 2: single digit multiplication
elif m == 1 and n == 1:

product = a[0] * b[0]
return [product // 10, product % 10]

Recursive case
else:

aRbL=mult(a[m//2:],b[:n//2])+[0]*(n - n//2)
aLbR=mult(a[:m//2],b[n//2:])+[0]*(m - m//2)
aLbL=mult(a[:m//2],b[:n//2])+[0]* (n+m-n//2-m//2)
aRbR=mult(a[m//2:],b[n//2:])
return add(aRbL, add(aLbR, add(aLbL, aRbR)))

Algorithm 1.10. A recursive routine for multiplying two long integers together
when represented as lists.

subscripts L and R denote the left and right halves, respectively. This gives

xy = (xL10n/2 + xR)(yL10n/2 + yR)

= XbyiAW1 + (xRyL + хлуд)10п/2 + xRyR. (1-46)

So to multiply x and y, the function calls itself four times on new numbers with
§ digits each (see Algorithm 1.10 for details). The temporal complexity of the
addition step is in O(n), so the complexity of this recursion satisfies the relation

T(n)<4T([n/2]) + /(n),

where f(n) E O(n). The master theorem applies with a = 4, b = 2, and d = 1, and
since 2d = 2 < 4 = a, we have T(n) E O(nlog2 4) = O(n2).

Faster Multiplication

We can break up (1.46) differently, as follows:

xy = хьутЛМ1 + [(жь + xR}(yL + yR) - хьуь - ядуд]10п/2 + xRyR. (1.47)

68 Chapter 1. Introduction to Algorithms and Analysis

This expression consists of three long multiplications and six long additions, in­
stead of four long multiplications and three long additions. Since addition is O(n)
and multiplication is O(n2), this is more efficient when n is large than our earlier
multiplication algorithms. In fact, we have the recursive relationship

Т(п)<ЗТ(Гп/2]) + /(п),

where f(n) E O(ri). The master theorem applies with a = 3, b = 2, and d = 1.
Since 2d = 2 < 3, we have T(n) E O(nlog2 3) « O(n1,585). For large values of n, this
multiplication algorithm is much faster than the algorithms discussed earlier.

Remark 1.10.7. Note that in both (1.46) and (1.47) we assumed n = 2m. This
made the algorithms easier to implement. They can be adapted to the more general
case, but it’s rather messy and not very enlightening to analyze the algorithms.
Instead, we can pad the lists with zeros until their lengths are powers of 2.

Merge Sort

Section 1.2.2 shows that the naive sorting algorithm has temporal complexity O(n2).
A much better sorting algorithm is the merge sort. The algorithm splits the list in
half, calls itself on each half, and then merges the two resulting lists. The details are
given in Algorithm 1.11. Exercise 1.66 shows that the merge step has complexity
O(n), so the complexity of this algorithm satisfies the relation

T(n) = 2T(Pn/2B + cn, (1-48)

where c is a constant. The master theorem applies with a = 2, b = 2, and d = 1,
and since bd = 2 = u, we have T(n) E O(nlogn).

2
3
4
5
6
7
8
9

10
11
12
13
14

def mergesort(L):
"""Recursively sort a list 1L' by merging sorted

sublists.
и и и

n = len(L)

Recursive case: split L into halves
if n > 1:

return merge(mergesort(L[:n//2]), mergesort(L[n//2:]))

Base case: L has length 1 or 0
else:

return L

Algorithm 1.11. Recursive routine for merge sort. This algorithm can use ei­
ther of the previously defined merge routines, that is, either Algorithm 1.3 or Algo­
rithm 1.7.

1.10. Divide and Conquer 69

Matrix Multiplication

Matrix multiplication can be defined recursively by subdividing each matrix into
blocks. Let A and В be n x n matrices where n = 2m. Write A and В in block
form as

Ац Ai2
A2i A

Bn B12
B21 B22

where each Aij and Bij is a matrix of size | x We have

AB =
A21

Л12 Bn B12

Л22 B21 B22
АцВц + Ai2B2i ЛцВ12 + Л12В22
Л21В11 + A22B21 A21B12 + A22B22

Thus, the product of two n x n matrices is broken up into eight multiplications of
x matrices and added together as above. Since addition of n x n matrices is

O(n2), the number T(ri) of operations used by this algorithm satisfies the relation

T(n) = 8Т(Гп/2^) + сп2,

where c is a constant. The master theorem applies with a = 8, b = 2, and d = 2.
Since 2d = 4 < 8 = a, we have that T(ri) e O(nlog28) = O(n3).

Remark 1.10.8. This recursive matrix multiplication can be adapted to matrices
whose dimensions are not powers of 2 by padding the rows and columns A and В
with zeros.

Faster Matrix Multiplication

Just as there is a faster multiplication algorithm (1.47) there is also a faster matrix
multiplication algorithm due to Strassen, based on the following observation (see
Exercise 1.63). As before, we write the n x n matrices A and B, where n = 2m, in
block form as

A = -4ц A12 and В = Bn B12
-421 A22_ B21 B22

where each A^ and B2J is a matrix of size | x The key observation is that AB
can be written as

An A12 Вц B12
A21 A22 B21 B22

P5 + P4 — P2 + Pq B1+B2

Рз + P4 Pi + P5 — B3 — P7 (1.49)

where

Pl = Ац(В12 — B22),

P2 = (Ац + Ai2)B22,
B3 = (A21 + А22)Вц,
P4 = A22(B2i — Вц),

B5 = (Ац + 422)(Вц + B22),

P6 = (A12 — A22XB21 + B22),

P7 = (An — А21)(Вц + B12).

(1.50)

70 Chapter 1. Introduction to Algorithms and Analysis

This allows us to compute AB by doing only seven matrix multiplications of half
size and several matrix additions. Thus, the recursive equation is given by

Т(п) = 7Т(Гп/21) + /(п),

where f(n) E O(n2). The master theorem applies with a = 7, b = 2, and d = 2.
Since bd = 4 < 7 = a, we have T(n) E O(nlog2 7) « O(n2'8074).

12 The traditional plural of the word lemma is lemmata. People will think you are smarter if you
purse your lips and raise your eyebrows when you say it.

Nota Bene 1.10.9. It is important to remember that this is an asymptotic
result and a smaller big-0 rate doesn’t necessarily mean the algorithm is
always faster. Indeed, Strassen’s algorithm requires n to be moderately large
(roughly n > 3000) before it overtakes regular matrix multiplication in run­
time performance.

1.11 Proof of the Master Theorem
In this section, we prove the master theorem (Theorem 1.10.2). We first prove it
when n is an exact power of 6, and then we prove it generally.

Recall that the master theorem states that a function T : Z+ —> [0, oo) satisfying

T(n) = аТ(Гп/Ь)) + /(п)
Ti

if n > 1,
if n = 1 (1-51)

has its asymptotic bounds determined by the relationship between bd and a as

'(9(nd)
T(ri) E O(ndlogn)

O(nlogba)

if bd > a,
if bd = a,
if bd < a.

1.11.1 Proof for n =
In the special case that n = b™, we have the following lemmata.12

Lemma 1.11.1. Assume that (1.51) holds for some nonnegative integer b > 2,
constants a> 0 and T± > 0, and a nonnegative function f, such that for all n = bm
with m E N we have

аГ(рт-!) +

T1
Т(ЬШ) =

if m > 0,
ifm = 0.

In this case, for any exact power n = bm with m E N we have

m—1
T(brn) = am7\ + 52 akf(bm~k). (1.52)

1.11. Proof of the Master Theorem 71

Proof. Expanding the recursion we get

T(bm) = aTtb™-1) + f(bm)
= a2T(bm~2) + a/(bm"1) + /(6m)
= a3T(bm~3) + a2f(bm~2) + aftb™-1) + f(bm)

= amT(b°) + 52 akf(bm~k). □
fc=0

Remark 1.11.2. Since m = logb n = loga n • logb a, we have

am = (a^ganyogba =nlogba^

li n = brn for some m E N, then (1.52) becomes

(logfe n)-l

T(n) = nlo^“T1+ 52 «fc/(S)- (L53)
fc=0

The next lemma gives an asymptotic bound on the sum in (1.53).

Lemma 1.11.3. Let a > 0 be a real constant, b > 2 an integer, and f : Z+ —>
[0, oo). Assume that f(ri) E O(nd) for some d > 0 and that g is a function defined
on exact powers of b by

(logb n)-l
5(n)= 52 afc/(J) (1-54)

fc=0

for any n = brn with m E N.

(i) Ifbd>a, then g(n) E O(nd).

(ii) Ifbd = a, then g(n) E O(ndlogn).

(iii) Ifbd<a, then g(n) E O(nlogba).

Proof. If f(n) < cnd for n E N sufficiently large, then

(logbn) —1
ff(n)<cnd 52 (^) .

fc=0

This gives the following three cases:

(i) If bd > a, then

(logbn)-l k OO к 1

g(n)<cnd 52 (p) <cn</I2(p) = cnd • e O(nd).

72 Chapter 1. Introduction to Algorithms and Analysis

(ii) If bd = u, then since m = logfe n, we have

<j(n) < cndlogbn e O(nd \ogbn) = O(ndlogn).

(iii) If bd < a, then we have

(a)logbn_l logbn_ d logba_ d
5(П) < 1 = C a = C a _/ € “). □

bd 1 bd 1 bd 1
When n is an exact power of 6, the master theorem follows from the two lemmata.

In particular, under the hypotheses of the master theorem, since

T(n) = nlogb a7\ + g(ri),

we have

(i) T(ri) e O(nlogv) + O(nd) = O(nd), when bd > a\

(ii) T(ri) e O(nlogv) + O(ndlogbn) = O(ndlogbn), when bd = a;

(iii) T(n) e O(nlogba) + O(nlogba) = O(nlogba), when bd < a.

1.11.2 Proof for General n G Z+
If T satisfies the recursion relation (1.45) (or equivalently (1.51)) for all n E ,
then the fractional values in the argument of T are rounded up with the ceiling
operator, leading to a sequence of recursion arguments

This is a nonincreasing sequence that starts with n and goes down to 1 (and then
is always 1 thereafter, but that part is not important). Define the sequence as
n0,..., nm, that is,

n

[VI
= if j = 0,

if j > 0.
(1.55)

Let m be the smallest integer such that nm = 1. We call m the recursion depth
of T(n). In the special case that n = bm, the previous subsection shows that the
recursion depth is m = logb n. When n is not an exact power of 6, the length of the
sequence is not quite as simple to find, but we can still bound its size.

Proposition 1.11.4. IfT: Z+ —> [0, oo) satisfies the recursion relation (1.45), with
integer b > 2, then the depth m of the recursion, as given by the sequence (n/c)JIL0
defined in (1.55), is bounded above by [logbn^. In other words, m < flogbn].
Moreover, for any к >0, we have nk < nb~k + 1.

1.11. Proof of the Master Theorem 73

Proof. Begin by bounding each term in the sequence generated by (1.55). Since
the remainder of n divided by an integer b is at most b — 1, we have

n0 = n < n + 1,
n
b

6—1 n 6—1
~b~ = P + ~T

n
&

[Tlk_11 1 /1 / 1 fn 6—1\ 6—1\ 6—1\ 6—1
Пк= I “Г I - \"b[b + ~r) + ~r)'" + ~r) + ~r

n 6—1 / 1 V n 6—1 / 1 V n
bk 6 \ 6) < bk + 6 \ 6 J bk

j=0 4 7 j=0 4 7

Suppose, by way of contradiction, that m > piogbn^. Thus, m — 1 > flogfen] >
logbn, which implies n < 6m-1. Since

n
Tirn—i < ---- г T 1 < 2,rri 1 6m—1 —

we have nm_i < 1, which contradicts the minimality of m. Thus m < piogfe n]. □

Remark 1.11.5. If 6 is not an integer, the previous proof does not work, because
\n/b~\ — n/6 is not necessarily bounded by

We now complete the proof of the master theorem. The previous two lemmata
can be adapted to the case where n is not an exact power of 6. As in the case of
Lemma 1.11.1, expanding the recursion step by step gives

T(n) = T(n0)
= aT(m) +/(n0)
= a2T(n2) + a/(ni) + /(n0)

= amT(nm) + am H-------1- a/(m) + /(n0)
= amT1+g(n),

where m < piog6n] is the recursion depth and

5(«) = 52 afc/(nfc)'
Note that for each к E {0,..., m} we have bk < bm < 6logb n+1 = 6n, so, by
Proposition 1.11.4, we have

74 Chapter 1. Introduction to Algorithms and Analysis

Thus, for each к e {0,...,m}, we have rik < (1 + 6)^. This implies there exists a
constant c such that f(nk) < • This gives

fc=0 fc=0

So we have the following cases:

(i) If d > logfe a, or equivalently a < bd, then

(ii) If d = logfe a, or equivalently a = bd, then

p(n) < cndm < cndflogbn"| < cnd(logbn + 1) E O(ndlogbn).

(iii) If d < log6 a, or equivalently a > bd, then

g(n) < cnd

In Exercise 1.70, we show that < 1, which implies that

g(n) < c
am -nd

— 1bd 1

Since m < flogfe n] = log6 n + e = loga n • logfe a + e, where 0 < e < 1, and
u > > 1, we have

am < ariogb n1 = aloga n‘logba+£ = nlog*a • a£ e O(nlogb a). (1.56)

Thus, g(n) e O(nlogbtt).

This completes the proof.

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in

Exercises 75

this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

1.1. Prove or disprove each of the following:
(i) 3n — 1 E O(n).

(ii) 3n — 1 E o(n).
(iii) 3n — 1 E O(n2).
(iv) 1 e O(n).

1.2. A Prove the following:
(i) If /i(n), h(n) E O(g(n)) and Л(^) € О(Д(п)), then the sum satisfies

/l(n) + /2(n) € O(fr(n)).
(ii) If h(n) E o(g(n)) and Л(п) € О(Д(п)), then the sum satisfies

/i(n) + /2(n) € 0(5(71)).
(iii) For any к E N and any coefficients a^-i,..., uq € R, the function

f(n) = aknk + + • • • + a±n + a0 is in O(nk).
1-3. A Prove Proposition 1.1.13.
1.4. For m E N, prove that f(n) = km E O(nm+1).
1.5. Show that for every p > 0 and every a > 1 we have

(i) O(logn) C o(np), but logn 0(1);
(ii) nlogn e o(n1+p), but nlogn O(n);

(iii) O(np) C o(un).
Hint: Use 1’Hdpital’s rule.

1.6. Consider the standard elementary school algorithm for subtraction of multi­
digit integers.

(i) Code up the algorithm. Your code should accept two lists of single-digit
integers and return a list of single-digit integers. Explain the algorithm
carefully in the comments of your code.

(ii) Determine the asymptotic temporal and spatial complexity (big-O) of
this algorithm and explain why your answer is correct.

1.7. The Fibonacci sequence {Fn}^=0 is defined by the rule Fn+i = Fn + Fn~i,
for n E Z+, where Fq = 0 and F± = 1.

*

(i) Assuming that the sequence xn = Fn+i/Fn converges to some point in
R, prove that it converges to the golden ratio

Ф=1±^.' (1.57)

Prove that (1.57) satisfies ф2 = </>+1, and use this to prove (inductively)
that фРп + Fn_i = фп. Use this fact to prove that Fn E О(фп).

76 Chapter 1. Introduction to Algorithms and Analysis

(ii)t That Fn/Fn_i converges to ф is not enough to show that Fn e О(фп),
as you will now show. Let a > 0, and let Gn = ane1+^ I-™. Prove
that limn^oo Gn/Gn_i = a but that Gn £ O(an).

1.8. Prove the following:

(i) For any к e N and any coefficients a/c, a^-i,..., uq € R, the function
f(n) = aknk + + • • • + a±n + uq satisfies f ~ акПк.

(ii) If g e o(/), then f + g~f.

1.9. An algorithm with leading-order temporal complexity ~ 100n2 will not nec-
essarily take longer to run than an algorithm with leading-order temporal
complexity ~ 1. Give an example of two functions f ~ 100n2 and g ~ 1 such
that f(n) < g(n) for all n < 105.

1.10. Prove that ~ is an equivalence relation, as mentioned in Remark 1.2.3.
1.11. Find the leading-order spatial and temporal complexity of Algorithm 1.1 and

explain why your answer is correct.
1.12. Find the leading-order spatial and temporal complexity of the long subtrac­

tion algorithm in Exercise 1.6 and explain why your answer is correct.
1.13. Construct an algorithm for finding the index of the smallest element in a list

L of length n, using only primitive operations, that is, assigning a value to a
variable or to a given position in a list, looking up the value of a particular
element at a given position in a list, comparing two values, incrementing a
value, etc.

(i) Code up your algorithm.

(ii) Give the leading-order temporal and spatial complexity of this algorithm
as a function of n.

1.14. Consider the following sorting algorithm, called selection sort. Given a list L
of length n, first find the smallest element and swap it with the element L[0].
Then find the second smallest element of L and swap it with the element
L[l], and so forth for the first n — 1 elements of the list.

(i) Explain why the algorithm needs only to run through n — 1 elements
instead of all n.

(ii) Code up this sorting algorithm without using any built-in sorting or
indexing functions. You may use the minimum function you wrote in
the previous problem.

(iii) Give the leading-order temporal and spatial complexity for this algo­
rithm as a function of n.

1.15. Given n points in the plane, consider the problem of finding the pair of
points that is closest together. One algorithm for doing this is the brute
force method: list all the pairs, compute their Euclidean distances, and take
the smallest one.

*

(i) Explain how this brute force algorithm can be implemented without ever
computing a square root.

Exercises 77

(ii) Code up this algorithm without using square roots. Your code should
accept a list of points as ordered pairs (х^у^) of scalars and return the
two points that are closest together.

(iii) Show that this algorithm has temporal complexity in O(n2), where the
primitive operations include the basic arithmetic operations +, —, x, -F,
assigning a value to a variable or to a given position in a list, looking up
the value of a particular element at a given position in a list, comparing
two values, and incrementing a value.

1.16. Prove that the difference operator is linear; that is, if /, g : N —> F and
a, b e F, then

A [af + bg](k) = aA[/](fe) + 6Д [#](£).

1.17. Prove the following:
fi') v” _ 1_ = 1____J-v1/ г(г+1) n+1 ’

(H) iXr = 2^1-

Hint: Consider using the fundamental theorem.
1.18. Prove that

6-1 / 1 \
Y lo§ (1 + ь) = los(fe) “ 1о§(а)
k—a '

for b > a > 1.
1.19. Derive the formula (1.11).
1.20. A For any /3 e (—1,1) show that = (1_^)2 by differentiating the

geometric series w^b respect to /3 and then taking the
limit as n сю.

1.21. Show that
f>(n-fc) = Y/(4

fc=0 £=0

1.22. Find closed-form expressions (no summation) as a function of n for each of
the following:

(i) П155^-5)2.

(ii) 1Хо(£ + 2)3-

R Efc=5E&(*-4).

(iv) е;!зН^з(*- з).

1.23. Compute the following double sum in two ways: first, as written, and second,
by changing the order of summation:

n n

YY^-
k—0j—k

78 Chapter 1. Introduction to Algorithms and Analysis

1.24. Give another proof of the relation in Exercise 1.20 as follows:

(i) Show that tfr is equal to the double sum ft-

(ii) Change the order of summation.

(iii) Compute the inner sum as a geometric series.

(iv) Use the previous result to give a closed-form expression for

(v) Compute the limit as n ч x.

1.25. Show that the double sum of (1.18) satisfies

n n—j n a

52 52 b’
j—0 k—Q a—0 b—Q

Give a geometric description or picture (in the style of Figures 1.1, 1.2, and
1.3) of how this summation proceeds.

1.26. For each к = 1,2,..., 11 do the following:

(i) Define random matrices A and В of size 2fc x 2fc and a column vector x
of length 2fc.

(ii) Time the computation of (4B)x and the computation of A(Bx).

For each A;, find the ratio of the time it takes to compute (AB)x versus A(Bx).
When к increases by one, does the ratio of the times of the two computations
change? By how much? Explain this in terms of what we have discussed
about the complexity of matrix-matrix and matrix-vector multiplication.

1.27. Verify algebraically that (In + uvT)x = x + u(vTx) for any u, v, x e Rn. For
each choice of n = 1, 2,..., 11 do the following:

(i) Create the 2n x 2n identity matrix I and random vectors u, v,x of
dimension 2n.

(ii) Time the computation (I + uvT)x versus x + u(vTx).

(iii) Compare the computation times, describe how the ratio of the two grows
as n gets larger, and explain this in terms of the asymptotic temporal
complexity of the two computations.

1.28. Write out the details to prove the equality in (1.19).
1.29. Carefully compute the leading-order temporal and spatial complexity of the

back-substitution part of Algorithm 1.6 (Lines 21-29).
1.30. Consider the following Python code, which calculates*

n— 1 m— 1

s = 52£(*+/co),
i—0 j—Q

Exercises 79

where f(j) is a function that depends only on j:

S = 0
for i in range(n):

for j in range(m):
S += i + f(j)

(i) Assuming that computing f (j) requires F FLOPs for every j, calculate
the number of FLOPs that this code uses, as a function of n, m, and F.

(ii) Move any computations possible out of the inner loop and find the num­
ber of FLOPs used after this change is made.

(iii) Going back to the original code, change the order of the loops, so that
the i-loop is the inner one, and move any computations possible out of
the inner loop. Find the number of FLOPs required by the modified
code.

(iv) Eliminate the inner i-loop entirely by finding a closed-form expression
for the sum it computes. Find the number of FLOPs required now.

(v) The closed-form expression of the last step does not depend on j so it
can be moved outside the j-loop. Make this change to the code and
move any additional calculations outside the j-loop. Your new code
should correspond to computing the sum _|_ (n _]_) /(j).
Find the number of FLOPs used in this version of your code.

(vi) Show that you can save two more FLOPs by factoring (n — 1) out of the
previous expression. Adjust your code correspondingly.

1.31. Use summation by parts to compute the sum*

fc=0

in closed form.
1.32. Using equation (1.22), derive equation (1.11).*
1.33.-- Prove that

n~1 nfc+i к = n----

*

к + 1

1.34. Prove the inclusion-exclusion formula for three sets; that is, prove Proposition
1.6.13.

*

1.35. Suppose that (ufc)£T0 is a sequence of complex numbers with uniformly
bounded partial sums; that is, there exists M > 0 such that

*

n
Yafc

fc=0

80 Chapter 1. Introduction to Algorithms and Analysis

for every n E Z+. Prove: If (bfc)/Y0 С I is a monotonically decreasing13
sequence converging to zero, then the sum

13A sequence (bfc)j*L0 is monotonically decreasing if 6fc_|_i < for all к E N.

oo
2 ®kbk

k=0

converges. Moreover, | &kbkI < 2Mb±. Hint: Use summation by parts.
1.36. Use the previous result to prove that the sequence*

converges for any complex number |z| = 1 with z / 1.

1.37. Prove that there are n\ permutations of a set with n elements. Note: An
informal proof suffices.

1.38. (i) Prove Proposition 1.7.5. An informal proof suffices.

(ii) Prove Proposition 1.7.6. An informal proof suffices.
1.39. A group of friends, Alice, Bob, Carlos, Dan, Eve, and Fakhira, are going to

a movie. In how many different ways can they be seated together in a single
row of six seats if

(i) there are no restrictions on the seating assignment;

(ii) Alice and Bob must sit next to each other;

(iii) Alice, Bob, and Carlos must sit together;

(iv) the six seats must alternate between genders (Alice, Eve, and Fakhira
are female, while Bob, Carlos, and Dan are male).

1.40. Show that there are 123,552 different ways to draw a two-pair hand in five-
card poker; see Example 1.7.9 for details.

1.41. In a certain lottery, five distinct numbers (balls) are drawn randomly from
the set {1,2,..., 59} and a “superball” is drawn from the set {1,2,..., 35}.
You win the $100 prize when you match three regular balls and the superball.
How many unique draws qualify for the $100 prize?

1.42. Prove that for any n E Z+ and any x,y E F, we have

52 ^кхк~ХУП~к =n(.x + y)n~1.

Use this to show that

Hint: Compute the derivative of the binomial formula.

Exercises 81

1.43. Prove that for any x, у E F and n E N with n > 2 and x / 0 we have

and use this to show that

1.44. Prove that*

for integers r, n, and m with r < n + m. Hint: Look at the binomial
expansions for (1 + x)m and (1 + x)n, and compare their product to the
binomial expansion for (l + a;)m+n.

1.45. Prove Theorem 1.7.19.*
1.46. Prove that the Pochhammer symbols (see Definition 1.6.7) satisfy a form of

the binomial theorem:
*

(x + yf = Q) Xn~kyk and (x + y)- = 52 Q) x—y~-

1.47. Given any integer a E Z and any nonzero b E Z, show that the set =
{u — bx | x E Z} П N, in the proof of the division theorem (Theorem 1.8.6), is
nonempty.

1.48. Let a = 323 and b = 204. Use the Euclidean algorithm (by hand) to find
gcd(u, 6). Show all the intermediate steps.

1.49. Find x, у E Z such that 323# + 204?/ = 17.
1.50. Prove: If d = gcd(u, 6), then gcd(a/d, b/d) = 1.
1.51. Code up the extended Euclidean algorithm from scratch, without importing

any additional libraries or methods. Your code should accept two integers a
and b and return gcd(u, b) as well as x, y, satisfying ax + by = gcd(a, b).

1.52. Prove that gcd(n,n + 1) = 1 for all n E Z+. Conclude from this that if a
prime p divides n then it does not divide n + 1.

1.53. Using the previous exercise prove there are infinitely many prime numbers.
Hint: If there are only finitely many primes, say pi,P2, • • • ,Pm, then set
n = P1P2 • • • Pm and consider n + 1.

*

1.54. Prove Theorem 1.9.9.
1.55. Given an integer a = UfclOfe, prove that a is divisible by

(i) 3 if and only if the sum Ufc is divisible by 3;
(ii) 9 if and only if the sum is divisible by 9;

(iii) 11 if and only if the sum 22£=О(—l)fca/c is divisible by 11.
1.56. Prove: If a = b (mod c) and d|c, then a = b (mod d).

82 Chapter 1. Introduction to Algorithms and Analysis

1.57. Determine necessary and sufficient conditions on x and c so that

ax = bx (mod с) => a = b (mod c).

Prove your answer is correct.
1.58. By hand, find the remainder when dividing 34 by 12.34
1.59. Use the extended Euclidean algorithm to find

(i) the element a e Z72 such that 35a = 1 (mod 72);
(ii) the element b e Z72 such that 356 = 67 (mod 72).

1.60. Compute the following by hand:
(i) 14128 (mod 127).

(ii) 18 (mod 127).254
(iii) 25640 (mod 127).

1.61. Prove Corollary 1.9.19.

1.62. For each of the following recurrence relations, determine whether the master
theorem applies. If it applies, use it to provide the big-0 bounds, and if not,
explain why not.

(i) T(n) = 8T(r|])+n.
(ii) T(n) = 16T(r|])+n.

(iii) Т(п) = ЗТ(Г§])+п2.
(iv) Т(п)=4Т(Г§])+п2.
(v) T(n) = 5TO)+n2.

(vi) T(n) = T(n — 5) + y/n.
(vii) T(n)=T(F?l)+2".

(viii) T(n) = 2nT(^l) +nn.
1.63. Expand the terms to show that (1.49) is correct.
1.64. A sequence (жг)^0 is unimodal if it consists of an increasing sequence followed

by a decreasing sequence; that is, there is some к e {0,..., n} such that
Xi-i < Xi when 0 < i < к and x^ < Xi when к < i < n.

(i) Give an algorithm with temporal complexity O(logn) that finds the
maximal element xm in a unimodal sequence.

(ii) Code up your algorithm and explain the details in the comments.
(iii) Prove the O(logn) bound on the temporal complexity.

1.65. Assume a > 0 and g is a nonnegative function. Prove that the recurrence

T(n) = aT(n — 1) + p(n), n e Z+,

with 7(0) = 7b > 0, has the solution

T(n) = anT0 + an~kg(k). (1.58)
fc=l

Exercises 83

1.66. Use (1.58) from the previous problem to show that the temporal complex­
ity of both recursive merge and recursive addition, Algorithms 1.8 and 1.7,
respectively, is O(n).

1.67. Find an exact closed-form formula for T in each of the following recursions
when n = 2m for m E Z+:

(i) T(n) = 8T(f) + n.
(ii) T(n) = 3T(^) + n.

(iii) T(n) = 3T(§) + n3.
1.68. Prove that the recurrence

T(n) = 3T n l°g

with T(l) = Ti > 0, satisfies T(n) E O(nlogn).
1.69. Assume that T(n) satisfies the recurrence (1.45) for n = for m E N.

Generalize Theorem 1.10.2(ii) by proving the following theorem: If d = logfe a
and f(n) E O(nd(logn)£), then T(n) E О(nd(logn)£+1). Hint: Show that
T(n) E O(ndm£+1) and then use the fact that m = logbn.

1.70. Show that the sequence (1.55) satisfies < nk for each к E {0,1,2,..., m}.
In particular, < nm = 1.

1.71. Prove that recursion depth m, given by the sequence (1.55), is bounded below
by Ll°gt> n\ > that is, m > [log6 nJ.

Notes
Exercise 1.14 is from [CLRS01, Exercise 2.2-2]. Exercise 1.15 is discussed in [KT05,
Section 5.4]; surprisingly, there is a closest pair algorithm developed by Shamos and
Hoey that is O(nlogn). Exercise 1.64 is from [DL05, 1-3]. Our treatment of the
master theorem is inspired by [BHS+78] and [CLRS01].

For a comparison of matrix multiplication algorithms at various dimensions, see
[ВВ14]. For more details on solving linear systems, see [TB97, Section 20]. For more
about loop interchange in optimizing compilers, as mentioned in Section 1.5.3, see
[SS07, TdD14]. For more on the origins of the Euclidean algorithm, see [BBC+99,
Hea49, vdW83].

Asymptotic Integrals

You know my methods, Watson.
—Sherlock Holmes

Big-0 and little-o notation convey important information about the limiting behav­
ior of a function or algorithm by bounding its growth relative to another function.
The leading-order behavior provides more information about the limiting behavior
of a function or algorithm growth in absolute terms. In this section, we expand on
this theme by examining asymptotic behavior in richer detail.

One area of considerable interest is the asymptotic behavior of combinatorial
functions and algorithms, that is, those having factorial terms. As a first step to
analyzing these, we generalize the factorial function and extend it to the positive
real numbers and beyond. Additionally, we expand on the asymptotic behavior of
the factorial function and develop some tools for analyzing functions (and therefore
algorithms) that are combinatorial in nature.

2.1 The Gamma Function and Stirling’s Approximation
The complexity of many algorithms is expressed most naturally in terms of binomial
coefficients or other formulas involving factorials. For example, a binary search tree
is an important data structure that lies at the heart of many important algorithms
(see Section 3.3.1). One can show that the number of binary search trees with n
nodes is ^-j- (2^); see Exercise 3.14. It is useful to compare the asymptotic growth of
these combinatorial expressions to the growth of other expressions involving simpler
functions, like exponentials.

In this section we study the asymptotic behavior of the factorial function, we
define the gamma function, which is a continuous analogue and generalization of
the factorial function, and we describe an important asymptotic formula called
Stirling’s approximation for n\ or log(n!) when n is large. Stirling’s approximation
is useful in many areas of mathematics, including probability theory and asymptotic
analysis.

85

86 Chapter?. Asymptotic Integrals

2.1.1 Simple Approximation of the Factorial Function
It is easy to see that n\ = 1 • 2 • • • (n — 1) • n is bounded above by nn = n • n • • • n • n.
For a lower bound, the nth term nn/n\ of the power series en = nk/k\ satisfies
nn/n\ < en, which we can rewrite as nn/en < n!. Thus we have

77,n
-<n!<n". (2.1)
en

We can do better than this with a little more work. Since log (a;) is a strictly
increasing function on [l,oo), we can show (see Exercise 2.1) that

52iog(fc)< [iog(z)«te < 52iog(fc),

from which we get

n рП
/ log((r) dx < Y21og(A;) < log(n) + / log(;r) dx

fc=i

and, thus, the following proposition.

Proposition 2.1.1. For any integer n E Z+ we have

nlog(n) — n + 1 < log(n!) < nlog(n) — n + log(n) + 1 (2.2)

and
nn n^1

< n! < r. (2.3)en—1 — — en~1 v 7

Proof. The proof is Exercise 2.1. □

This proposition can be reformulated as an asymptotic formula:

log(n!) — nlog(n) + n — 1 e O(log(n)). (2.4)

These expressions show up in many different places, including the calculation of
entropy in statistical mechanics and the proof of the prime number theorem, which
says that the number of primes less than n is ~ log^n^. Below we improve these
approximations with the famous Stirling’s approximation.

Example 2.1.2. When n = 22,026, the approximation (2.2) for log(n!) gives
198,235 < log(n!) < 198,245, which is correct to four digits of accuracy. This
approximation is sufficiently close in some situations but inadequate in others.
We get a more accurate estimate in Example 2.1.9.

2.1. The Gamma Function and Stirling's Approximation 87

Example 2.1.3. Using (2.3) we can give upper and lower bounds for (2^)-
We have

1 \ лп < (^n)- < f 4n
en2 J ~ (n!)2 — \ e /

This bound can be improved with Stirling’s approximation (2.6), as shown
below in Example 2.1.10.

2.1.2 The Gamma Function
The gamma function is the continuous analogue and generalization of the factorial
function. There are, of course, infinitely many continuous functions that match the
factorial function at the positive integers, but the gamma function is natural in
applications. Its graph is pictured in Figure 2.1 and it is defined as

I e^t^dt,
о

(2.5)

which is well defined for all positive real numbers. This function can be extended to
the complex numbers and to negative real numbers (except the nonpositive integers)
using an important technique from complex analysis called analytic continuation,
but the details of that extension are outside the scope of this book. The following
proposition shows that Г(п + 1) = n\ for any nonnegative integer n, so it really is
a generalization of the factorial function.

Figure 2.1. A plot ofV(x) (left) and log |Г(ж)| (right). Notice that the graphs have
vertical asymptotes at zero and at the negative integers, where the gamma function
is not defined.

Proposition 2.1.4. If x e (0, сю), then Г(ж + 1) = xV(x).

Proof. For any x > 0, integrate by parts to get

Г (ж + 1) = /* е~Чх dt = — е~Чх +x f dt = жГ(ж). □
Jo о Jo

88 Chapter?. Asymptotic Integrals

Corollary 2.1.5. If n G N, then Г(п + 1) = n\.

Proof, When n = 0 we have

r(l)= / e-t dt = 1 = 0!.

The desired equality Г(п + 1) = n! follows immediately by induction on n, using
Proposition 2.1.4. □

Remark 2.1.6. The gamma function is special for many reasons, but one reason to
think it is the right continuous version of the factorial function is the Bohr-Mollerup
theorem, which guarantees that Г(ж) is the unique function defined for all x > 0
that satisfies

(i) жГ(ж) = Г(ж + 1) for all x > 0;

(ii) Г(1) = 1;

(iii) ^-log(r(j:)) > 0 on x e (0, oo), that is, log(T(a;)) is twice differentiable and
convex on the positive real numbers.

Proposition 2.1.7. Г (= д/тг.

Proof, The proof is Exercise 2.5. □

2.1.3 Stirling's Approximation
Stirling’s approximation gives a sharper estimate of the asymptotic growth of the
factorial function than the simple bounds in (2.2).

Theorem 2.1.8 (Stirling’s Approximation). As x -y oo, we have

Г(я + 1) - xx+re~x (2.6)

Alternatively,

log(r(rr + 1)) ~ a;log(j:) — x + - log(27Er).

We give the proof of Stirling’s approximation for positive integers in Section 2.1.4
and, more generally, for positive real numbers in Section 2.2.5.

Example 2.1.9. When n = 22,026, Stirling’s approximation for log(n!) is
198,239.45313 (evaluated to 11 digits). The correct value is 198,239.45314
(also evaluated to 11 digits). Compare this approximation to the one given in
Example 2.1.2, which was accurate only to four digits.

2.1. The Gamma Function and Stirling's Approximation 89

Example 2.1.10. Using (2.6) we can improve the bound on (2n) given in
Example 2.1.3, at least asymptotically:

2n\ у/2тг2п(2п)2п / e” \2 _ 471
nJ e2n \у/2тт(пп) J у/тгп'

Remark 2.1.11. A more careful analysis gives an improved version of Stirling’s
approximation, which includes an additional lower-order term. In Section 2.3.4 we
show that

Г(а? + 1) ~ xx~^1e~x \ — fl + —7-as x 00. (2.7)
V x \ 12a; J

In Table 2.1 we compare the logarithms of the gamma function, Stirling’s approx­
imation (2.6), and the improved Stirling’s approximation (2.7). Notice how much
more accurate the improved version is.

Table 2.1. The logarithms of Г(п + 1), Stirling’s approximation (2.6), and the
improved Stirling’s approximation (2.7).

n logr(n + 1) Leading Order (2.6) Improved (2.7)
8 10.6046029 10.5941916 10.6045544

16 30.6718601 30.6666524 30.6718472
32 81.5579594 81.5553553 81.5579561
64 205.1681994 205.1668974 205.1681986

128 496.4054784 496.4048274 496.4054782
256 1167.2572785 1167.2569530 1167.2572785
512 2686.0604716 2686.0603088 2686.0604716

2.1.4 Proof of Stirling's Approximation
In this section we prove Stirling’s approximation for positive integers. We prove the
general case for all real numbers in Section 2.2.5. We begin with a few lemmata.

Lemma 2.1.12. The Wallis integrals
Л7Г/2

Wn = / sinn(x)dx
Jo

form a positive, strictly decreasing sequence (Wn)^L0 satisfying

(i) Wo = 7Г/2,

(ii) Wi = 1,

(iii) Wn = ^wn_2 for all n> 2.

Proof, The proof is Exercise 2.6. □

90 Chapter?. Asymptotic Integrals

Lemma 2.1.13. The Wallis integrals (Wn)^0 satisfy the following identity:

г ГГ 4fc2 - r Wf2n+1 _ 7r

1 rfc+i / 1\ dx
-(log(A; + l) + log(A;))- / Lr - к-- -
2 Jk \ 2/ x

ЛА 11 4Д.2 _ i - 2 пДА W2n ~ 2 k—1
(2-8)

Proof. Since (Wn)^L0 is strictly decreasing, we have Wn > Wn+i > Wn+2, which
gives

1 Wn+1 Wn+2 _ n -h 1
wn Wn ~ n+~2’

and thus by the squeeze theorem we have

By Lemma 2.1.12(iii), we have

W2n+i _ (2B1) (rn) • • • (!) _ 2 A (2k)2 2 Ar 4fe2
W2n ~ (¥) ” *iA (2fc + 1)(2fc-1) “ *fc=i4fc2-i’

and thus (2.8) holds. □

Lemma 2.1.14. For any n € N, we have

Ar 4fe2 _ (rz!)424n
11 4/c2 - 1 “ (2n)!(2n + l)! (2-9)

Proof. The proof is Exercise 2.7. □

We now finish the proof of Stirling’s approximation (2.6) for positive integers;
that is, we show

(2.Ю)

where n G Z+. The proof for real numbers is given in Section 2.2.5.
The idea of the proof is to approximate the integral log (a?) dx with trapezoids

on the intervals [fc, k+1] (see Example 9.6.3) and integrate by parts with some clever
choices of integration constants.

Proof of Stirling’s approximation (integer case). We have

z»n n 1 z»/c+l
nlog(n) — n + 1 = / log(a;) dx = / log(a;)da;.

71 fc=iJk

Integrating the integrals by parts (J* udv = uv — f vdu) with u(x) = log (ж) and
v(x) = x — к — | gives

n—1
n log(n) — n + 1 = ^2

2.1. The Gamma Function and Stirling's Approximation 91

Integrating by parts again gives

where f(x) = | - ±(x-k- |)2. Since we have

rfc+1

к

/(ap
(fc + 1)2

dx <
x2 Jk кл

Hence, for each к G Z+, the intermediate value theorem (see Volume 1, Corollary
5.9.14) and Exercise 2.8 show there exists some G [к, к + 1] such that

_£ fk+1 f(1
dx — 2 / f (x) dx — 2 •

: X >>k J к

Moreover we have

IL—± IL

52 2^log^ + h + los(fc)) = ~2 log(n) + £log(fc) = ~2 log(n) + los(n!)-
k—1 k—1

Therefore, we have

yl.

nlog(n) - n + 1 = -- log(n) +log(n!) + Rn, (2-11)

where

r-TvT 1 v 1 1
fc=l k=l

Since Rn is monotone increasing and bounded (see Exercise 2.8), it converges to
some R. Moreover, for rn = exp(l — _Rn), we have rn r = exp(l — R). From
(2.11) we have

n\en
Гп = nn+i/2 ’

We complete the proof by proving that rn д/2тг- Lemmata 2.1.14 and 2.1.13 give
that

r* _ (n!)4(2n)4n+1 _ 2n +1 (n!)424n _ 2n +1 А 4A;2
(r2n)2 ~ n4n+2(2n)!2 “ ’ 2n (2п)! (2n + 1)! “ ’ 2n 4A;2 - 1 *

Thus, we have

r2 = lim
n—>oc

' n
(r2n)2

2n + 1 т-r 4fe2
2n 11 4fc2 - 1 fc=l

= 27T.

Therefore (2.10) holds. □

92 Chapter?. Asymptotic Integrals

2.2 *The Beta Function and Laplace's Method

14The capital Greek letter Beta looks identical to the Roman letter B.
15As with the gamma function, this definition can be extended to complex values of x and y, but

treating that carefully would take us beyond the scope of this book.

In this section we describe the beta function, which provides a continuous analogue
and generalization of the binomial coefficient. In addition to being important in
probability and statistics, the beta function also allows for the generalization of the
binomial theorem to real-valued powers that are not positive integers.

We also give an informal treatment of Laplace’s method, which is a very useful
tool in asymptotic analysis. Laplace’s method is key to proving the general version
of Stirling’s approximation. We give a rigorous treatment of Laplace’s method in
Section 2.3.

2.2.1 The Beta Function

Definition 2.2.1. The beta function14 is defined to be

which is well defined for all real15 x,y {0, —1, —2, —3,... }. Ifx+y is a nonpositive
integer, but x and у are not, then we set B(x,y) = 0.

The beta function can also be written as an integral, as follows.

Proposition 2.2.2. For all x,y > 0 we have

B(x,y)= [F-^l-t^dt. (2.13)
Jo

Proof. We have

Г(х + у) f tx~1(l-ty-1dt= f°° e~zzx+y~ldz f e-^l-ty^dt
Jo Jo Jo

= ([e-z(zt)x-1(zO-tW~1zdtdz.
Jo Jo

Let (u, v) = (zt, z(l — t)); this function has Jacobian determinant | det D(u, v)| = z.
Using this to change variables, the previous expression becomes (see Exercise 2.9)

ПОС / roc \ / roc \
e-u-vux-ivy-idudv= (J е~иих-Чи^ (J e~vvv~1 dv^ = Г(х)Г(у).

This gives us the required identity:

/>Ч1-Ч"-‘Л=^=В(^). °

2.2. *The Beta Function and Laplace's Method 93

2.2.2 Combinatorial Identities Revisited
When a and b are nonnegative integers, we have

ЛЛ _ Г(а+1) _ 1
V7 Г(а — & + l)T(b + 1) “ (a+l)B(a-& + !,&+!)’

Note that the right side of this equation is defined even when a and b are not
integers, so this gives an extension of the binomial coefficients to all real numbers
u, b such that a, 6, and a — b are not negative integers. Many of the properties of
binomial coefficients hold for these generalized binomial coefficients.

Proposition 2.2.3. The following identities hold for any a,b e R, provided the
various terms are defined.

(iv) If к E Z+ and a E R, with a > 0, then = a(a— l)(a — 2) • • • (a — k + l)/kl.

Proof, The proof is Exercise 2.10. □

Nota Bene 2.2.4. Not all properties of the integer binomial coefficients hold
in the general case. For example, the coefficient does not vanish for b > a
unless a — b E Z.

Theorem 2.2.5 (Binomial Series). Given any x E (—1,1) and any a > 0 the
following series converges absolutely:

(1 + ^r (2-15)

Proof, Convergence follows from the ratio test since (“) —> —1 as к сю. Hence
the series converges for x e (—1,1). To show that the series converges to (1 + rr)a,
compute the Taylor series of the right-hand side and match coefficients. The details
are Exercise 2.11. □

Remark 2.2.6. As an alternative proof of the theorem, we can show that f(x) =
SfcLo (k)xk satisfies a simple linear differential equation; see Exercise 2.14.

94 Chapter?. Asymptotic Integrals

Example 2.2.7. By Proposition 2.2.3(ii) we have

Thus for any x € (—1,1) we have

This agrees with the Taylor expansion of f(x) = (1 + rr)1/2 around x = 0.

Example 2.2.8. By Proposition 2.2.3(ii) we have

Thus for any x E (—1,1) we have

This agrees with the Taylor expansion

x x2 5ж3 Юз;4
3 - T + "8f “ 243 + ’

of f(x) = (1 + ж)1/3 around x = 0.

2.2.3 Trigonometric Integrals
The beta function can be rewritten as a trigonometric integral.

Proposition 2.2.9. For any a,b> 0 we have

Ъ(а,Ъ) = 2 [sin2a-1(?z) cos26-1(?z)du.
Jo

Proof. The proof is Exercise 2.13. □

(2-16)

As a special case of the previous proposition, we can express the Wallis integrals
Wn (see Lemma 2.1.12) in terms of the beta function.

Corollary 2.2.10. For any n eN, we have

W2 1 /п + 1 1wn = Уо Sinn(a;)^ = -B(^-,- r(^)
2 Г(§ + 1)’

Proof. This follows immediately from (2.16) and the definition of В (ж, у). □

2.2. *The Beta Function and Laplace's Method 95

2.2.4 Laplace's Method: Simple Version
Here we give a common form of Laplace’s method and a heuristic argument for it.
A rigorous proof is given in Section 2.3.

Theorem 2.2.11 (Laplace’s Method). Assume f : [a, b] —> R is smooth and has
a unique global maximum at t0 G (a, b). As x oo, we have

exf(M . /

Й/'Ш’ (2-17)

Rough Argument. Consider the Taylor expansion of f at t0 (see Theorem 10.3.7).
Since f has a local maximum at to, it follows that /'(to) = 0 and /"(to) < 0. Hence,
in a neighborhood of to, we have that /(t) « /(to) — |1/"(to)|(t — to)2. Thus,

С exfW dt « С exfW-x\f"(t0)\(t-t0)2/2 dt

a J a

rb_ exfW / e-x|/',(to)|(^-to)2/2

J a
x/(t0) ry/x\f"W\(b-to)

= / / e~u'2 du.
V^|/"(to)| J-v/x|f"(tO)|(to-a)

From Exercise 2.5 we know that f°° e *2/2 dt = л/2тг> so as x сю, we have J —oo v 7 7

I t______ e~u/2du
-\/ж17"(*о)|(4о-<1)

which yields (2.17). □

2.2.5 Proof of Stirling's Approximation (Theorem 2.1.8)
In the integral defining Г, make the substitution r = xt to get

I rxe~T dr = / exl°ST~T dr
0 Jo
[xex log xt~xt dt = xx+1 f ex(log t-t) dt.
0 Jo

We can use (2.17) to approximate the integral with /(t) = logt — t, which has its
maximum at to = 1 and satisfies /"(to) = — 1- For 1 we have

I ex^ogt-t)dt

0
(2-18)

Thus (2.6) holds. □

96 Chapter?. Asymptotic Integrals

2.2.6 Asymptotic Expansions
Remark 2.1.11 mentions an improved version of Stirling’s approximation (2.7),
which includes a lower-order term. The leading-order version (2.6) gives the asymp­
totic limit, but the inclusion of lower-order terms provides greater accuracy for in­
termediate values of x. In this subsection we describe how lower-order terms can
be accounted for, using what are called asymptotic expansions.

Definition 2.2.12. Let a sequence of real-valued continuous functions
defined for x sufficiently large in R, satisfying фк+1(х) E о(фк(х)) as x сю for
each к E N. The series акФк(х) is an asymptotic expansion of the function
f as x oo if for each n E N the remainder function rn satisfies

n—1
rn(x) = f(x) - У акфк{х) € о(фп(®)) as x -> oo.

fc=O
(2-19)

Remark 2.2.13. The leading-order behavior of an asymptotic expansion is given
by аофо (x). The additional terms in the series are all of lower order and do not affect
the leading-order behavior. Therefore it is correct to write f(x) ~ Y^kLo акФк(х) as
x oq. Throughout the remainder of this chapter, we use the symbol ~ to mean
“has the asymptotic expansion” when aligning a function to a series.

Example 2.2.14. Although it is algebraically complicated (see Exercise 2.21)
to compute additional lower-order terms of Stirling’s approximation, we can
expand the gamma function even further to get

_ж /2? A 1 1 139 \Г(х + 1) ~ x e у ж (i + 12a. + 288z2 51840жз + ' ’ ’) (2.20)

as x —> oo. This is an asymptotic expansion because each term is of the form
фк(х) — e~xxx~^2~k, which satisfies фк^(х) E о(</>^(ж)), for each к E N.

2.3. *Laplace's Method and Stirling Improved 97

2.3 *Laplace's Method and Stirling Improved
Laplace’s method has several different formulations. Section 2.2.4 gives a fairly
simple, yet common, version of Laplace’s method and a rough sketch of why you
should believe it. Although that heuristic argument is commonly given as a proof, it
is not rigorous. Here we state and carefully prove a much stronger form of Laplace’s
method. The main tool used in this proof is Watson’s lemma, which we also prove
carefully. We finish the section by using these results to prove the more refined
version of Stirling’s approximation (2.7).

2.3.1 Extending Big-0 and Little-o
In order to treat Laplace’s method and Watson’s lemma, we must first extend big-0
and little-o notation to describe the convergence of a function at a point to G R.
We also describe the notion of an asymptotic expansion as t to.

Definition 2.3.1. Let f and g be real-valued functions defined in a neighborhood
of to E R. We say that f(t) is big-0 of g(f) as t to, denoted f(t) G O(g(tf),
if there exist M > 0 and S > 0 such that |/(t)| < M|^(t)| whenever \t — to I <
Similarly, we say that f(t) is little-o of g(t) as t to, denoted f(t) G o(g(t)), if for
each e > 0 there exists S > 0 such that |/(t)| < e|#(t)| whenever \t —10| <

Remark 2.3.2. When we talk about big-0 and little-o as x сю, we can think of
it as convergence at infinity. In this sense, Definitions 1.1.4 and 2.3.1 are the same.

Definition 2.3.3. Let {фкbe a sequence of real-valued continuous functions
defined in a neighborhood of to E R, satisfying </>fc+i(t) G o(</>fc(t)) as t to for
all к G N. We say that the series «&</>&(£) is an asymptotic expansion of the
function f in a neighborhood of to if for each n E N the remainder function rn
satisfies

n—1
rn(f) = /(t) - 5? € o(</>n(t)) as t to- (2.21)

fc=O

Following the justification in Remark 2.2.13, we denote this as f(t) ~ SfcLo акФк(1)
as t to •

Example 2.3.4. We prove that

00 (_i \fc+i
log(l +t) ~ ---- г---- as t —> 0+

rv
k=l

by showing for all n E that (see Exercise 2.16 for details)

rn(t) = log(l + t) - V---- ------tk G o(tn) as t —> 0+.
к

k=l

98 Chapter?. Asymptotic Integrals

2.3.2 Watson's Lemma
To give a rigorous proof of Laplace’s method, we need Watson’s lemma. This
describes the asymptotic behavior of integrals of the form

I(x) = f e~xtf(t)dt as x oo. (2.22)
Jo

Watson’s lemma says that the main contribution of f(t) in (2.22) comes from its
behavior near t = 0; the behavior of f(t) elsewhere is wiped out by exponential decay
as x oo. However, before we prove Watson’s lemma, we need the following.

Lemma 2.3.5 (Small Laplace Tail). Let f : [0, oo) —> R be a continuous, real-
valued function and x G R. If I(x) in (2.22) converges absolutely (meaning that

e~xt\f(t)\dt is finite), then for all 6 > 0 there exists M > 0 such that

J(x) = j e-xtf(t)dt

satisfies |J(rr)| < Me~^x~x^ whenever x > x. It follows that |J(rr)| G o(xp) for all
p G R, as x oq.

Proof. For a given 5 > 0 and each T G [J, oo), define

W) = e~xtf(t)dt.

Let e > 0 be given. Since I(x) is absolutely convergent, we choose 7b > 0 so that
z»OO

JT
e~^f(t)dt < €

whenever T > To. Since К is continuous, it is bounded on [J, 7b]. Therefore, we can
set Mo = supTe^Toj |7f(T)|; moreover, К is bounded on [7b, oo) by M = Mo + e.
Thus, for x > x, we have

J(x) = /'OOe-(^-s)‘e-sty(f) dt = [°°e-(x-^tK\t)dt= (x-x) pe-^-^K^dt.
J8 J8 J8

And this gives

\J(x)\<\x-x\ [e~(-x~x^t\K(t)\dt<\x — x\Mf e~^~x)t dt = Me~^x~x\ □
J 8 J 8

Theorem 2.3.6 (Watson’s Lemma). If f(t) ~ ta as t 0+, where
a > —1 and (3 > 0, then

f°° -xtf/AJi X'' «/сГ(о + /Зк + 1)/ e f(t)dt~ У Ta+/3fc+i as x °0, (2.23)
Jo x

provided the integral converges absolutely for all sufficiently large x.

2.3. *Laplace's Method and Stirling Improved 99

Proof. It suffices to show for each n E N that

D,. f°° -IttM A afcr(a + (3k + 1) / 1 \
Rn(x) = I e ‘/(t) dt — > -------- , ,---- - e о I —, „ ,, I as ,r —> oo.

Exercise 2.4 gives
f e-xtta+i3k dt = r(« + ^ + h (2.24)

Jo xa+/3k+l V '

which yields

pOC n лОО
I e~xt f (t) dt — e~xtta+l3k dt
° k=o J°

where n
f(t)-ta^akt^k

fc=0

eo(f+^n) ast->0+.

Thus, given e > 0, there exists Sn > 0 such that |rn(t)| < for all t G [0, Jn].
Hence, we can decompose Rn(x) as Rn(x) = In(x) + 7п(ж), where

4i(#) = [£ xtrn(t)dt and Jn(x) = /* e xtrn(t)dt.
Jo Jsn

From (2.24), we have

f П -xt.a+fin i. < + 1)
'o e 1 ai as ж oo,

which implies that |ln(#)| £ о (а+зп+1) as x oo. By Lemma 2.3.5, we also have
that | Jn(x)\ e о (^-bjL+i) asrr чоо. Thus, Rn(x) e о (жа+^+1) as x oo. □

Example 2.3.7. Using Example 2.3.4 with Watson’s lemma, we have

Ге-«М1 + .)Л~ ’ - “•
JU k=l k=l

Remark 2.3.8. As mentioned above, Watson’s lemma says that essentially all of
the contribution to the integral (2.22) from f(t) comes from its behavior near zero.
In the corollary below, we see that we don’t even need to integrate all the way to
infinity to get the exact same asymptotic expansion.

100 Chapter?. Asymptotic Integrals

Corollary 2.3.9. Let 6 > 0 be given. If f(t) ~ ta^2^oak^k as t 0+, where
a > — 1 and (3 > 0, then

T / \ _ —xt £(J.\ Jj. “I" “I" 1) /о лг\— / e Q+^fc+i asx^vo, (2.25)
Jq fc=0

provided the integral (2.22) converges absolutely for all sufficiently large x.

Proof, For each n E N the proof of Watson’s lemma gives

Rn(x) = e j(t) dt — У -------- ,д, ----- - G о I —,д ,as x oo.' J® J \ J / j.a+/3fc+l \^xa-\-pn-\-l J

From Lemma 2.3.5, we have

Js(x) = e xtf(t) dt&ol +/3ra+1 I as ж —> oo.
J 8 \x J

Combining these gives

Jo e xa+0k+l ~ G О ^a+/3n+1 J

as x oo. Thus, (2.25) holds. □

Remark 2.3.10. When splitting up (2.22) into the two parts

z»OO p8 z»OO
/ e~xtf(f)dt = / e~xtf(t)dt+ / e~xtf(f)dt,

Jo Jo J 8

it is remarkable that the first term on the right-hand side has the asymptotic con­
tribution as x —> oo and that the second term decays exponentially. As shown in
the next subsection, when considering integrals of the form

[°° exh^f(t)dt,
Jo

the relevant part, asymptotically speaking, is near the maximum of h(t). In the
case of (2.22) with h(t) = —t, the maximum occurs when t = 0, so that’s the most
relevant part.

2.3.3 Laplace's Method
Laplace’s method is a generalization of Watson’s lemma. There are a few variations
in the literature. We prove a fairly general version here.

2.3. *Laplace's Method and Stirling Improved 101

Theorem 2.3.11 (Laplace’s Method, General Version). Let f : [a, b] R
be continuous and h : [a, b] R be continuously differentiable. Assume that h
has a unique maximum at a, that is, assume there exists с e (a, 6) and constant
M such that h'(t) < 0 on (a, c] and h(t) < M < h(a) for t G [c, b\. Hence the
function = hfa) — h(t) is strictly increasing on [a,c] and is invertible with
a continuously differentiable inverse denoted t(£). If F(£) = /(t(O)t'(C) ^as the
asymptotic expansion

fc=0

with a > — 1 and /3 > 0, then

dl ~ £ Т>Г^° +g,+ (2-'
fc=0

provided that the integral converges absolutely for all x sufficiently large.

Proof. Assume the integral I(x) converges absolutely for all x > L. Note that

I(x) = exh<a> Гe~xiMf(t)dt+ f exhWf(fi)dt
J a J c

fb
= exMa} у + у

Thus, for x > L we have

/(ж)-е^(“) у e-*«F(£)d£ <e^x-L)M у eLh^\f(t)\dt<CexM,

where C > 0 is constant. Since M < h(a), we have that CexM E о(а,„+Д+1) as
x oo for all к = N. Thus by Corollary 2.3.9, we have

Цх) ~ exh^ e-^F(£) d£ ~ exh^ £ as x °°- °
J° fc=o x

Corollary 2.3.12. For A > 0 and a > —1, we have

(2.27)

Proof. This is Exercise 2.17. □

2.3.4 Stirling's Approximation Refined
Using the more general form of Laplace’s method (Theorem 2.3.11), we can derive
the improved version of Stirling’s approximation (2.7).

102 Chapter?. Asymptotic Integrals

Theorem 2.3.13 (Asymptotic Expansion of Stirling’s Approximation).

Г(я + 1) as x —> oo. (2.28)

Proof. As in Section 2.2.5, letting r = xt gives

Г(х + 1) = [°°тхе-т<1т= [°°exloST-TdT= [°°xex'°sxt-xt dt = xx+1 [°°ех^-^ dt.
Jo Jo Jo Jo

To prove (2.28) it suffices to show that

ex(iogt-t) dt ~e-x fa A + 1 +._ A (2.29)
Jo V я \ 12ж у

Note that log/: — t has a maximum at t = 1, and the substitution s = t — 1 moves
the maximum to s = 0. Thus, we have

f°° ex(logt-t) dt = e-x f°° exh{s) ds ~ e-x f1 exh(s) ds as x

Jo J-l J-l

where h(s) = log(l-hs) —s. Write h(s) = —<s2/2+#(<s), where g(s) = —— •
Expanding the exponential eX9^ gives

ds = ds = ^6-^/2 + xg^s) + y5(s)2 + • • •) ds.

The terms of odd order in s integrate to zero, thus reducing the expansion to

Г1 _ж,2/2 Д /s4 s6 \ 1 2/s6 47s8 \ \ , ,non.
fa r1b+«+") + ? (?+»+'T"‘) 1 ’

Corollary 2.3.12 shows that the terms above that will contribute to the first lower-
order term (|) in (2.28) are of the form

y1 e-xs2/2xas2bds, (2.31)

where b — a = 1. The only terms in (2.30) satisfying this condition have a = 1, b = 4
or a = 2, b = 6. By even symmetry we can halve the domain and double the integral.
Further, the asymptotic expansion is the same when we integrate from 0 to infinity
instead of to 1. Thus we have

r1 r°° o / q4 q6 \(ex/l(s) ds ~ 2 / e~xs /2 (1 - x— + x2— 4-----) ds.
-i Jo \ 4 18 J

Exercises 103

Changing variables to £(s) = s2/2 and following Theorem 2.3.11, we have

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

2.1. Prove Proposition 2.1.1 as follows:
(i) Use the fact that log(rr) is a strictly increasing function on [l,oo) to

show that
Y log(fc) [log(a:) dx < ^2 log(A:).

(ii) Use the previous step to show that

nlog(n) — n + 1 < log(n!) < (n + 1) log(n) — n + 1

and hence
nn , nn+1

------ < n\ < ------. gn—i — — en-1

2.2. Let у > 0 be fixed. Prove that the binomial coefficient satisfies
(x + y\ xy() ~ —- as x —> oo.

y'-X

104 Chapter?. Asymptotic Integrals

2.3. Find the leading-order behavior of (3^) as n —> oo.
2.4. Let p > — 1 and x > 0. Prove that

Г(р+1)
о

2.5. A Perform the following steps:
(i) Show that

Hint: Use polar coordinates to compute

\ 2
e~x2/2 dx] e (ж2+^2)/2 dxdy.

(ii) Using the substitution t = u2/2 show that

I е~и2/2и2х~Чи.
о

(iii) Show that Г(|) = ^/тг.
(iv) Show that

dt =
1 Ftv

2 у x'

2.6. Prove Lemma 2.1.12 as follows:
(i) Prove that Wn > 0 for all n E N.

(ii) Prove that Wn — Wn+i = f^2 sinn(a?)(l—sin(rr)) dx > 0 for every n E N.

(iii) Prove that Wo = тг/2 and that W± = 1 by direct computation.
(iv) For n > 2, show that Wn = (n — l)(Wn_2 — Wn). Hint: Use integration

by parts.
2.7. Prove Lemma 2.1.14 as follows:

(i) Show that

ГГ 4fc2 = (nl)24n ГГ ______ 1______
114J.2-! П (2fc_ 1)(2fc + i)-

(ii) Show that
n

(2n)!
2n(n!)’

(iii) Combine the previous two results to show that

-A 4fc2 _ (n!)424n
4/c2 — 1 — (2п)! (2n + 1)!'

Exercises 105

2.8. Complete the proof of Stirling’s approximation by justifying the following
steps:

(i) Go through the second integration by parts argument and show that
fc+i -I

f(.x)dx = —.

(ii) Show that П is bounded.

2.9. Complete the proof of Proposition 2.2.2 by showing that*

e Z(zt)x г(г(1 — t))y 1zdtdz = I / e-^u^v^dudv.
0 Jo

Hint: Remember the change-of-variables formula (see Volume 1, Section 8.7).
2.10. Prove Proposition 2.2.3.*
2.11. Give all the details for a careful proof of Theorem 2.2.5 as follows:*

(i) Prove that the series converges.
(ii) Prove that the coefficients in the Taylor series expansion of (1 + x)a

around x = 0 satisfy the same relations as the binomial coefficients.
(iii) Prove these relations imply that the Taylor coefficients are the same as

the binomial coefficients.
2.12. Prove the following identities:*

(i) If к e Z+, then
/2(fc_i)\

\k) \ k-1 J 22к~гк '

(ii) As an alternative to Example 2.2.7, we have

к—0 \ / \ /

2.13. Prove Proposition 2.2.9 by substituting t = sin2(u), 1 — t = cos2(u), and
dt = 2sin(u) cos(u) du in the integral formula (2.13) for B.

*

2.14. Give an alternative proof of Theorem 2.2.5 by proving that both sides of*
(2.15) satisfy the differential equation (1 + x)yf = ay subject to y(fi) = 1.

2.15. Assuming that n G , prove the following:*
(i) If |z| < 1, then

1 X 77,-1-1 \
__ _ £(-l)^fc = (-l)n+1 (|^) . (2.33)

k—0 ' '

(ii) If |ж| > 1, then

Hint: Set x = 1/z in (2.33).

106 Chapter?. Asymptotic Integrals

2.16. Integrate (2.33) from 0 to t > 0 and reindex to show that*

log(l +t) - V ^4---- tk € o(tN) as t —> 0+.
fc=l

2.17. Prove Corollary 2.3.12.*
2.18. Find the leading-order behavior of the integral*

y1 e-xcOSht dt

2.19. Find the leading-order behavior of the integral*

y* e~xt dt as x —> oo.

2.20. Find the leading-order behavior of the integral*

/•% + £
/ e~xcostdt as rr —> oo

Jo

for any 0 < e < 7t/2. Note that this behavior does not change as e —> 0.
2.21. Extend Theorem 2.3.13 to one more term; that is, show that*

Notes
For more on the Bohr-Mollerup theorem and the uniqueness of the gamma function
see [BB08, Theorem 5.10] and [Art64, Theorem 2.1]. Our proof of the short form of
Stirling’s approximation follows that of [BB08], with additional ideas about Wallis
integrals from [Wikl8b]. For more on Stirling’s formula, see [Conl6, Wikl8a]. For
more on the coefficients of the Stirling series, see [NemlO]. Our proofs of Watson’s
lemma and Lagrange’s method were inspired in part by [vRB12].

Data Structures

Bad programmers worry about the code. Good programmers worry about data struc­
tures and their relationships.
—Linus Torvalds

A data structure is a specialized format for organizing, storing, and processing
data. Seemingly inconsequential differences between similar data structures can
have a profound impact on the complexity of the algorithms that use them. In this
chapter we discuss a few widely used data structures and prove complexity bounds
for several important algorithms.

One of the most fundamental low-level data structures is the array. An array
consists of a collection of several elements of a specific data type (integer, floating­
point number, character, memory address, etc.) stored together in a contiguous
block of allocated memory. Because the data types of the entries in an array are
all the same, each one uses the same amount of memory, so we can easily compute
the memory address of the &th entry, for any k. and can access or modify its value
in constant time. Arrays are convenient to use, since most modern programming
languages have (highly optimized) built-in functions for working with them. For
some applications (like many linear algebra algorithms) arrays are a very efficient
data structure.

However, arrays have the disadvantage that their length cannot be modified
dynamically. We cannot add more data to an array than was originally allocated,
and there’s no graceful way to make the array bigger. Instead, we must construct
a new, larger array elsewhere in memory and copy the existing data to it, along
with the new data being added. This can be very costly, especially if it happens
frequently. Arrays also cannot support mixed data types in the same array.

Applications that need to accommodate collections of dynamically varying size
often benefit from more versatile data structures that can dynamically and grace­
fully expand and contract, as needed, to accommodate the underlying application
and can do so without having to waste time and space shuffling data around un­
necessarily.

Most dynamic data structures spread their data across several disparate blocks
of memory and manage the blocks by keeping track of their memory addresses. Data

107

108 Chapter 3. Data Structures

that consists of a memory address for other data is called a pointer. In some cases
the pointers are all managed centrally in some kind of manifest or lookup table, and
in other cases the pointers are distributed across the various blocks, forming chains,
trees, or other network structures. In many cases these dynamic data structures
can gracefully store and dynamically process large quantities of data in memory, on
a hard drive, on an array of hard drives, or even in a large network of distributed
storage devices.

The sewing together of blocks of data into a sophisticated network structure
allows for the efficient insertion, deletion, and search across an entire collection of
data elements. This network structure relies on the mathematical theory of graphs,
which provides the rigorous abstraction needed to describe these data structures and
facilitate their analysis. Graphs can also be used to describe other kinds of networks
such as those used in communications, multiagent systems, and sophisticated supply
chains.

3.1 Theory of Graphs
In this section we describe some basic elements of graph theory. Graph theory is a
fundamental tool for analyzing and constructing data structures and algorithms.

3.1.1 Graphs

Definition 3.1.1. A directed graph G = (V, E) is a pair consisting of a nonempty,
finite set V of vertices (or nodes) and a set E С V x V of ordered pairs, called the
edges of the graph. A pair (vi,Vj) G E is an edge from vertex Vi to vertex Vj.

Example 3.1.2. Figure 3.1 depicts the directed graph G± = (Vi,Ei) with
vertices Vi = {1, 2,3,4} and edges E± = {(1,2), (1,3), (2,1), (4, 2), (4,3)}.

Figure 3.1. Depiction of a directed graph (Gi) and an undirected graph (Gz), as
described in Examples 3.1.2 and 3.1.6. A directed graph has arrows that identify
the directions of the edges, but an undirected graph does not specify a direction for
its edges.

3.1. Theory of Graphs 109

Remark 3.1.3. Note that we defined the collection of edges E in a graph to be
a set of pairs, so there can be at most one edge G E from Vi to Vj. Some
definitions of graphs allow more than one edge from one vertex to another, but we
do not consider such graphs here.

Application 3.1.4. As mentioned in the introduction, graphs can be used
to describe a data structure where each piece of data is stored along with
pointers identifying where to look for more of the data. Each node of the
graph corresponds to an object in memory (for example, an integer, a string,
a list, or even an entire data file), and each edge (v, v') of the graph corresponds
to a pointer stored at node v, pointing to the location of node vf.

Definition 3.1.5. An undirected graph G = (V,E) is a pair consisting of a
nonempty, finite set V of vertices (or nodes) and a set E of unordered pairs of
elements of V corresponding to the edges of a graph. We denote the undirected
edge16 from v to v' as A graph (whether directed or undirected) is called

16We recognize that this notation could be confusing when there is an undirected edge from a
vertex to itself, but the meaning should be clear from context. Moreover, we rarely discuss
graphs that are not simple.

simple if it has no edges connecting a vertex to itself

Example 3.1.6. Figure 3.1 also depicts the undirected graph G% = (V^,^)
with vertices V2 = {1, 2,3,4, 5} and edges E% = {{1,2}, {1,3}, {3,4}, {3, 5}}.

Remark 3.1.7. As with directed graphs, we allow at most one edge between any
two vertices in an undirected graph.

Remark 3.1.8. Every simple undirected graph has an associated directed graph,
defined by replacing every unordered edge in the undirected graph by the
pair of directed edges (v, vf) and (y', v). Conversely, if the set E of edges in a simple
directed graph is symmetric (that is, (yi, Vj) G E if and only if (vj,vi) e E), then it
naturally defines an associated undirected graph corresponding to replacing every
matching pair (v,v'fi (v',v) of directed edges with a single unordered edge {u, v'}.

Definition 3.1.9. Let G = (V,E) and Gf = (V',Ef) be graphs (either directed or
undirected). We say that Gf is a subgraph of G if V' С V and E' С E.

Example 3.1.10. Consider the undirected graphs represented in Figure 3.2.
Note that G3 is a subgraph of G4, G5, and Gq. Also, G4 is a subgraph of Gq
with the same vertices as Gq but fewer edges. However, G5 is not a subgraph
of Gq, despite the fact that its vertices are all in Gq.

110 Chapter 3. Data Structures

Figure 3.2. Several graphs and subgraphs, as described in Example 3.1.10.

Remark 3.1.11. When a definition, example, proposition, etc., does not specify
whether a graph is directed or undirected, it is usually because we want to adapt
the statement to both cases.

3.1.2 Walks, Paths, Cycles, and Connectedness

Definition 3.1.12. Let G = (V,E) be a graph. A walk of length m is any sequence
• • • ,vim) of vertices, where (vik,vik+1) € E (or {vik,vik+1} € E for an

undirected graph) for each fc = 0, — 1. A walk is closed if the first and last
vertices are the same; otherwise it is open. A path is an open walk in which no
vertex or edge is repeated. A cycle is a closed walk in which no vertex or edge is
repeated except for the first and last vertices, which are the same.

Example 3.1. 13. In graph G$ of Figure 3.2, there are four paths from node
2 to node 3, namely (2,3), (2,1,3), (2, 5,3), and (2,5,6,3).

Example 3.1. 14. In Figure 3.2, the walk (2, 3, 2) is not a cycle of G$ because
the edge {2,3} is the same as {3, 2}, and edges cannot be repeated in a cycle.
However, in Figure 3.1, the walk (1,2,1) is a cycle in Gi since in a directed
graph the edge (1,2) is a different edge than (2,1) and therefore no edge is
repeated.

3.1. Theory of Graphs 111

Example 3.1. 15. Consider the graphs in Figure 3.3. In graph G7, there
are two paths from node 4 to node 1, namely (4,3,1) and (4,2,1). Graph
G% has three different cycles starting (and ending) at 4, namely (4,3,5,6,4),
(4,3,1,4), and (4,2,1,4).

Definition 3.1.16. A graph G = (V,E), is connected17 if for any two distinct
vertices Vi,Vj G V, there exists a path from Vi to Vj. A graph is disconnected if it
is not connected.

17Many texts call this property strongly connected to distinguish it from a lesser property called
weakly connected. However, we do not consider weakly connected graphs in this text, and thus
we just use the term connected.

Remark 3.1.17. A connected, directed graph G = (V,E) with more than one
vertex must have a cycle. To see this, note that there must be at least one edge;
denote it by (y,vf) e E. Since G is connected, there is a path connecting v' to v.
Appending the edge (v, v') to the end of that path gives a cycle that starts and ends
at vf.

Remark 3.1.18. For undirected graphs, combining the two paths as described in
Remark 3.1.17 does not necessarily give a cycle, because some edges might be re­
peated; for example, the second path could just be the first path traversed backward.

Unexample 3.1.19. The directed graph G7 in Figure 3.3 has no cycles and
hence is not connected. If G7 were changed to an undirected graph, so that
each edge was replaced with an undirected edge, then it would be connected.

Example 3.1.20. The directed graph Gg in Figure 3.3 is connected. Note
that G8 has several cycles.

Figure 3.3. A disconnected directed graph G?, described in Unexample 3.1.19, and
a connected directed graph G%, with several cycles, as described in Example 3.1.20.

112 Chapter 3. Data Structures

Proposition 3.1.21. Any connected undirected graph with n vertices must have at
least n — 1 edges.

Proof. We prove this by induction on n. It is trivially true if n = 1. Now suppose
the proposition is true for all n < TV. Assume by way of contradiction that there
exists a connected undirected graph of N vertices with at most N — 2 edges. If
every vertex has at least two edges attached to it, then \E\ > |Vj = N. But since
\E\ < TV, we must have at least one vertex v with a single edge (if it had no edges,
then the graph would be disconnected). Removing v and its lone edge from the
graph will produce a connected subgraph because any path between two vertices
other than v could not have passed through v, and thus the path still remains after
removing v and its edge. However, the subgraph has N — 1 vertices and no more
than N — 3 edges, which contradicts the induction hypothesis. □

3.1.3 Adjacency Matrices
There are many ways to represent a graph. One important method is to represent
a graph as an adjacency matrix.

Definition 3.1.22. Let G = (V,E) be a directed graph with vertices V = {vi,V2,
..., vn}. The adjacency matrix is the n x n matrix A(G) = [aij], where

1
0

if(vi,Vj) e E,
otherwise.

For an undirected graph we use the adjacency matrix of the corresponding directed
graph (see Remark 3.1.8). As a result, the adjacency matrix of an undirected graph
is always symmetric.

Example 3.1.23. The adjacency matrices for the graphs depicted in Fig­
ure 3.1 are

"0 110 0“’0110' 1 0 0 0 010 0 0
A(Gy) = 0 0 0 0 and A(G2) = 10 0 11

0 0 10 00 110 0 0 10 0

Notice that AtfG^) is a symmetric matrix, since G2 is an undirected graph.

To determine whether a walk of length к from vertex i to vertex j exists, we can
look at the (г, j) entry of powers Ak of the adjacency matrix.

Proposition 3.1.24. Given any к e Z+ and any graph G with adjacency matrix
A, the (i,j) entry of Ak is the number of walks of length к in G from vertex i to
vertex j.

3.2. Trees and Tree-Based Data Structures 113

Proof, This follows by induction on k. The details are Exercise 3.5. □

Example 3.1.25. The adjacency matrix of the graph G7 from Figure 3.3 and
the square of the adjacency matrix are

"0 0 0 o' '0 0 0 o'

A(G7) = 1
1

0 0
0 0

0
0

j л/z^ Л2 0 0 0 0and A(G7) o o o o

0 1 1 0 2 0 0 0

By Proposition 3.1.24 the 2 in the lower left corner of A(Gy)2 shows there are
two walks of length 2 from node 4 to node 1, and the fact that all other entries
in the matrix are zero shows there are no walks of length 2 between any other
two nodes in the graph.

Example 3.1.26. Consider the graph Gg from Figure 3.3. The adjacency
matrix and its eighth power are given by

'0
1

0
0

0
0

1
0

0
0

o'
0

'0
2

4 4 4
0 0 4

0
1

1'
2

Л(С8) = 1
0

0
1

0
1

0
0

1
0

0
0 and A(Gg)8 = 6

8
1 1 4
4 4 1

3
4

2
0

0 0 0 0 0 1 2 0 0 4 1 2
0 0 0 1 0 0 0 4 4 4 0 1

This shows there are six walks of length 8 from node 3 to node 1; that is,
631 = 6 for A(Gg)8 = [bij]- Since the diagonals correspond to closed walks,
633 = 1 means there is exactly one closed walk of length 8 starting and ending
at node 3. The details of that walk are not clear from A(Gg)8, but in this case
it is easy to verify that (3, 5,6,4, 3, 5, 6,4,3) is the length-8 walk from 3 to 3.

3.2 Trees and Tree-Based Data Structures
In this section we describe two of the most common and important kinds of graphs,
namely undirected trees and directed rooted trees. Many of the most useful data
structures are based on these trees, and most recursive algorithms can be described
in terms of trees. As the godfather of algorithms, Donald Knuth, says, “Trees sprout
up just about everywhere in computer science.”

3.2.1 Undirected Trees

Definition 3.2.1. A connected, undirected graph without cycles is called a tree.
An undirected graph without cycles (not necessarily connected) is called a forest.

114 Chapter 3. Data Structures

Example 3.2.2. The graph G3 in Figure 3.2 is not connected and has no
cycles; that is, it is a forest of two trees. The graph G4 in the same figure has
no cycles and is connected, so it is a single tree.

Unexample 3.2.3. The connected graphs G5 and Gq in Figure 3.2 have cy­
cles and are neither forests nor trees.

Example 3.2.4. Although it may seem counterintuitive, the graph consisting
of a single vertex and no edges is a tree, since it is a connected, undirected
graph without cycles. It is also a forest since every tree is also a forest.

Proposition 3.2.5. An undirected graph is a tree if and only if for any two distinct
vertices there exists exactly one path connecting them.

Proof. If G is an undirected graph having the property that any two vertices are
connected by exactly one path, then the graph is clearly connected. If the graph con­
tained a cycle (vo, ^1, ^2, • • • > ^o)> then there would be two paths (vo, iq, • • •,
and (vv,Vk) from vq to contradicting the hypothesis of unique paths. Hence G
has no cycles and is a tree.

Conversely, if an undirected graph G is a tree, then it is connected, and hence
any two distinct vertices have at least one path between them. Suppose G con­
tains two distinct paths connecting the same pair of vertices v and w, say, P =
(i?o, , Vk) and P' = (vq, ..., v#), where vq = v = vf0 and Vk = w = v[.
Let i > 1 be the smallest index such that vi ф v[. And let n be the smallest index
greater than or equal to i such that v'n = vm for some m. Since Vk = w = v[, such
an n must exist. The closed walk 1^-1,1^,..., vm, v'n_1,..., v'i_1 is a cycle, since
the only repeated vertex is vi-i = v^. The existence of this cycle contradicts the
hypothesis that G is a tree. Therefore, there can be only one path between any two
vertices. □

Proposition 3.2.6. Any tree T with more than one vertex has at least two vertices
with only one edge each, that is, each of these vertices has only one edge connecting
to it.

Proof. Among all paths in T there must be at least one path P of maximal
length. Denote its endpoints by и and v, respectively. The path P has exactly one
edge connecting to и and exactly one edge connecting to v. Suppose, by way of
contradiction, that either и or v has more than one edge. Adding that additional
edge in T to P cannot make a cycle, so it must connect to a new vertex not in P.

3.2. Trees and Tree-Based Data Structures 115

Thus, adding the new edge to P makes a path that is longer than F, which is a
contradiction. Hence, и and v have exactly one edge each. □

Proposition 3.2.7. Let G = (V, E) be a connected undirected graph with n vertices.
The graph G is a tree if and only if \E\ = n — 1.

Proof. Assume that \E\ = n — 1 and suppose that G has a cycle. Removing one
edge from the cycle will yield a subgraph G' that is still connected, with n nodes,
but has n — 2 edges, which is a contradiction to Proposition 3.1.21. Hence G has
no cycles and is therefore a tree.

Conversely, assume G is a tree. We proceed by induction on n, noting that
the case n = 1 holds trivially. Assume the result holds for all graphs of at most
n — 1 vertices, and consider one with n vertices. Since G is a tree, it follows from
Proposition 3.2.6 that there must be at least one vertex with exactly one edge.
Removing that vertex and its lone edge gives a new tree G' with n — 1 vertices,
which must have n — 2 edges. Therefore G must have had n — 1 edges. □

3.2.2 Linked Lists, Stacks, and Queues
As mentioned above, using an array with n slots to accommodate a dynamic list
of к < n objects can be problematic. Adding £ > n — к new elements to the list,
so that the total number of elements in the list exceeds n, requires a new, larger
array to be created, and all the elements, old and new, must be copied to the new
array. This costs roughly O(k-\-£) « O(n) primitive operations. Similarly, removing
an object from the list can require up to O(ri) primitive operations, depending on
where the object is located, due to reshuffling of the remaining objects to the front
of the array. When n is large or there are many such lists to manage, the temporal
cost of using arrays can become prohibitively expensive. A better alternative in
this setting is a data structure that can dynamically and gracefully expand and
contract, as needed. One example of such a data structure links blocks together in
a chain called a linked list.

A linked list is among the most basic of the graph-based data structures. It
is a finite, ordered sequence of n nodes, each with an edge pointing to the next
node in the sequence. A linked list [iq,..., vn] corresponds to the directed graph
with n — 1 edges E = {(^1,^2), (^2,^3), • • •, as depicted in Figure 3.4(a).
The list can be searched by starting with the first node, which is called the root,

Root Root

(b)

Figure 3.4. Depiction of two linked lists. List (a) is a singly linked list, where
each node is a block of data (white) followed by another block (green) containing the
address of its successor. List (b) is a doubly linked list, with an address at the end
of each block pointing to its successor and another address at the beginning of each
block pointing to its predecessor.

116 Chapter 3. Data Structures

and following the edges until the desired node is found. Since there are at most
n nodes to visit, the temporal complexity of searching for an arbitrary node is
bounded by O(n).

To add a node to the beginning of a linked list, create the new node and point
it to the root of the old list. This can be done in constant time. Compare this with
the array, where insertion is O(n). In general, a new node can be added anywhere
in a linked list in constant time if the location of the node we wish to have precede
it is known: make the preceding node point to the new node that’s being inserted,
and then have the new node point where the preceding node was originally pointing.
Note, however, that in many settings one must search the linked list to find where
to insert the new item. Since the complexity of a search is O(n), any insertion
requiring a search is also O(n).

Similarly, to remove a node, once the location of the node preceding it is known,
redirect the previous node to point where the removed node had been pointing to.
So again the operation can be performed in constant time once the predecessor of
the desired removal location is known, but finding that predecessor may require a
search.

Remark 3.2.8. In some applications, nodes point back to their predecessors. Such
linked lists are called doubly linked; see Figure 3.4(b).

Linked lists can be used to define other kinds of data structures. Stacks and
queues are special types of lists where modifications to the list are more restricted
than a regular list.

Definition 3.2.9. A stack is a list where data may only be inserted and removed
from the root (first node) of the list. A queue is a list where data may only be
inserted at the tail (last node) and only removed from the root.

Nota Bene 3.2.10. Don’t confuse the abstract data structure called a stack
with the pool of memory in the computer called the stack. The latter is an
example of the former, but it is certainly not the only example.

Example 3.2.11. To help remember the difference between a stack and a
queue, consider a stack of plates in the kitchen cabinet. Plates are taken from
the top of the stack, and returned to the top of the stack (which is the root
of the stack). This means that the last plate put in will be the first one taken
out. Hence a stack is said to satisfy the last in, first out (LIFO) principle.

Contrast this with a queue of polite people standing in line. Here the root
is the front of the line and the tail is the back of the line. The first one to
arrive is the first one served. Hence a queue satisfies the first in, first out
(FIFO) principle.

3.2. Trees and Tree-Based Data Structures 117

Remark 3.2.12. It is common to use the word push to describe the operation of
placing an element on the stack or queue and the word pop to describe the operation
of removing an element and returning it to the user.

A stack can be implemented by creating a linked list and adding the restriction
that all insertions and deletions must happen at the root. A queue can also be
implemented with a linked list, where insertions happen only at the tail (whose
location should also be stored separately), and removals happen only at the root.
For further instruction on the coding of a linked list, see the computer labs that
accompany this volume.

If the maximum size n of the stack is known in advance, then we can also use an
array of size n to implement the stack. To do this, simply store a pointer that tracks
the location of the root as a counter. Start with an empty stack and push the first
node onto the stack by putting it in the first position in the array and setting the
root pointer to point to that position. Push each subsequent node onto the stack
by appending it to the existing data in the array (the immediate successor of the
old root) and resetting the root counter to point to the new root position. Data is
popped off the stack by removing the node at the root position and updating the
root pointer by subtracting the counter accordingly. This makes both pushing and
popping very efficient and avoids having to store all the links that point from one
node to the next. But searching for a node with a specific value still has temporal
complexity O(&), where к < n is the size of the stack.

A queue whose size never exceeds n can also be implemented as an array of size
n, but now two counters must be kept—both the root and the tail. New elements
are pushed at the point of the root counter (just like stacks) and then the root
counter is increased accordingly. Elements are popped off the queue by increasing
the tail counter. When either counter gets to n — 1 (the last entry in the array,
assuming indexing starts at zero), incrementing it starts the counter over at zero.
It helps to think of the counters modulo n. Of course, it is important to be careful
when the head and the tail are the same, since that could mean the queue is either
empty or full.

3.2.3 Directed Rooted Trees
Another type of graph that underlies many useful data structures is the directed
rooted tree.

Definition 3.2.13. A directed rooted tree is a directed graph with no cycles, having
exactly one node (the root) with no incoming edges, and where every other vertex
in the graph has a unique path from the root to that vertex. The outgoing neighbors
of a given node are called its children, and the given node is called the parent of
those children. A node with no children is called a leaf node.

When talking about data structures and algorithms, it is common to refer to
a directed rooted tree simply as a tree. When there is little chance of confusion,
we also use this terminology. An example of a directed rooted tree is shown in
Figure 3.5.

118 Chapter 3. Data Structures

Figure 3.5. An example of a binary directed rooted tree. It is traditional to draw
directed rooted trees upside down, that is, with the root at the top and the leaves
below. With this convention, it is assumed that the direction of the edge goes from
top to bottom and we don’t need to draw arrows. This particular tree is also a binary
search tree (see Section 3.3.1).

Data structures arising from trees give a generalization of linked lists, where
the nodes of a tree can link to multiple children, instead of just one. A linked list
corresponds to a tree in which every node has at most one child. We say that a tree
is binary if every parent has at most two children.

Some of the most common tree-based data structures are search trees, which are
organized in a way to facilitate rapid searching. Binary search trees are particularly
important. We describe these in the next section.

A natural way to implement any data structure based on a tree is like a linked
list: store each node separately, but have each node also store pointers to each of
its children. This makes it easy to add and remove new nodes, provided the parent
is known.

3.3 Search Trees
Search trees are special tree-based data structures that are designed to facilitate
rapid searching. In a search tree, each node has a value, called a key, that uniquely
identifies the node and is the basis upon which the tree is organized and searched.
For example, Figure 3.5 depicts a tree with integer-valued keys. Of course, the
keys need not be integers—they can be any objects that are ordered (for example,
strings, ordered lexicographically).

In addition to the key, the node can contain other data relevant to the node, but
for the purposes of searching and sorting the data, the key is all that matters. For
example, suppose each node represents a different student’s data, such as their date
of birth, address, student identification number, etc. Using the (unique) student
identification number as the key would allow for rapid search for a given student’s
data, provided we know their identification number. The other information could
be accessed once the node is found, but it wouldn’t be relevant for purposes of the
search or for building the tree.

3.3. Search Trees 119

3.3.1 Binary Search Trees

A binary search tree (BST) is a tree-based data structure that allows finding any
key in the tree in O(logn) time (assuming the tree is balanced; see Definition 3.3.6).
A BST has a maximum of two children per node and no duplicate keys, and the
nodes are organized so that the subtree to the left of each child contains only keys
that are less than the parent node, whereas the subtree to the right contains only
keys that are greater than the parent. See Figure 3.5 for an example of a BST.

One of the main benefits of a BST is that it allows for more rapid searching
than a linked list. However, this comes at a cost for insertion and deletion, as
shown below.

To find a certain node in a BST, start by comparing the target to the key at the
root. If the target is greater than the root key, move to the child on the right; if
it’s equal to the root, stop; otherwise move to the child on the left. Repeating this
process eventually reaches the target value, if it is in the BST. If the target value is
not in the BST, this process arrives at a leaf, at which point the search terminates
and reports an unsuccessful search.

Example 3.3 .1. The tree in Figure 3.5 is a BST. To find the target value 75,
compare with the root 50. Since 75 > 50, move to node 70 on the right. Since
75 > 70 move right again to 80. Since 75 < 80, move left to the desired node.

Example 3.3 .2. One spatially efficient way of implementing a BST with n
elements is to simply sort the keys (temporal complexity of O(nlogn) with
mergesort of Algorithm 1.11) and store the nodes, in order, in an array. To
find a given key in the sorted array, do a binary search (see Algorithm 1.9).
Specifically, compare the key in the middle (position |_^J) of the array with the
target value. If the target is less than the middle key, then compare with the
key in the center of the left half (the key that is in position |_^J)- Similarly, if
the target is greater than the middle key, compare now to the key at position
L^J; continue in a similar fashion until the desired key is found. Any such
search will terminate in at most log2 n steps.

Using a sorted array in this way is an implementation of a BST. The root
is in position |_^J, the left child of the root is in position |_^J, the right child
is in position and so forth. This is a space-efficient implementation,
since pointers need not be stored. However, adding a new key to the sorted
list requires finding the correct insertion point and shifting everything that is
greater than the new element one place to the right (temporal complexity of
O(n)). And, again, if the original array is not large enough to hold all the
inserted elements, the entire array must be copied to a larger array.

To add a node to such a BST, simply move down the tree (at each stage move
to the right if the new key is greater than the current node, and otherwise move to

120 Chapter 3. Data Structures

the left) until no further movement is possible. At this point we are at a node with
one or no children. This will be the new parent, and a new child is spawned below
it on the appropriate side. An insertion in a BST always creates a new leaf.

Example 3.3 .3. In this example, we build a BST containing the keys 23, 17,
97, and 28 by adding the keys consecutively to the tree.

Start with an empty tree, and add the root
node: 23.

Now add 17. The node for 17 becomes the
left child of 23 because 17 < 23.

Now add 97. The node for 97 becomes the
right child of 23 because 97 > 23.

Finally add 28. Starting at the root, move
to the right because 28 > 23. Since 28 <
97, the new node is placed as the left child
of 97.

To delete a node from a BST, there are three different cases to consider. First,
if the node is a leaf, delete it. Second, if the node is a parent with only one child,
replace it with its child. Finally, it could happen that the node is a parent with two
children. In this case first find its in-order predecessor node, which is the rightmost
child of the left subtree (or alternatively one can use the in-order successor node).
This predecessor will have at most one child. Swap the node to be deleted with its
in-order predecessor, and now the node to be deleted has at most one child, so it can
be deleted, as in the previous two cases. Examples of these three cases are shown in
Figure 3.6. For further instruction on the coding of a BST, see the computer labs
that accompany this volume.

3.3.2 Balance
The order in which numbers arrive when inserting and deleting nodes in a BST
affects the shape, or balance, of the tree, and that affects the efficiency of searching.

Definition 3.3.4. The height of a node in a directed rooted tree is the number of
edges in the longest path from the node to a leaf The height of a directed rooted
tree is the height of the root.

3.3. Search Trees 121

Figure 3.6. The three cases for deleting a node (red) in a BST. In the first case
(a), the node to delete (20) has no children. In the second case (b)? the node to
delete (15) has exactly one child. In the last case (c) the node to delete (10) has two
children. In this last case, swap the node to delete with its immediate predecessor
(8, blue). The node to delete now has at most one child, so it falls into one of the
other, easier, cases and can be removed.

Example 3.3.5. The height of the tree in Figure 3.5 is 4, corresponding to
the path 50 < 70 < 80 < 85 < 90.

Definition 3.3.6. The balance of a given node in a BST is the height of the left
child minus the height of the right child. A tree is balanced if every node has balance
—1, 0? or 1.

122 Chapter 3. Data Structures

Figure 3.7. Depiction of (a) a well-balanced BST of height 2 and (b) a pathologi­
cally unbalanced BST of height 4, which is really just a linked list.

Example 3.3.7. The BST constructed by successively adding the sequence
50,23,6,41,96,77,99 is shown in Figure 3.7(a). Every node in this example
has balance 0, because for any node in the tree, its left subtree has the same
height as its right subtree. In other words, the graph is perfectly balanced.

At the other extreme, constructing a BST by successively adding the (al­
ready sorted) sequence 6, 23, 41, 96, 99 gives the graph in Figure 3.7(b). This
is so unbalanced that it is a linked list. The balance of the root node is —4
since the subtree to the left has height zero and the subtree to the right has
height 4.

Remark 3.3.8. A perfectly balanced binary tree (one whose balance at each node
is 0) can exist only if the number of nodes is exactly 2k — 1 for some к e Z+. If the
number of nodes is anything other than this, then at least one node must have a
nonzero balance; that is why the definition of balanced trees allows nodes to have
balance 1 or —1 as well.

The temporal complexity of searching a BST is determined by the height of the
root. If the root has height /z, the search will take up to h + 1 steps. In the best
case every node is perfectly balanced, with a total of n = 2Zl+1 — 1 nodes, so the
best possible temporal complexity is О (Ji) = O(logzz). The closer the BST is to
being perfectly balanced, the faster the searches will be. The worst case is a BST
that is a linked list with n nodes and n levels. In this case the temporal complexity
of searching the BST is O(n).

Since additions and deletions consist of a search plus a bounded number of
operations, their temporal complexity is likewise bounded between the best case
O(logzz) and the worst case O(tz). In the next subsection, we examine a method
of rebalancing a BST so that the search complexity (and hence also insertions and
deletions) is always O(logzz).

3.3.3 AVL Trees
A balanced BST is called an AVL tree, named for two Russian mathematicians,
Adelson-Velsky and Landis, who first described them and the AVL balancing al-

3.3. Search Trees 123

Figure 3.8. An AVL right rotation on В to correct a left-left imbalance. Here each
circle indicates a single node, and each triangle indicates a subtree (possibly empty).
A left-left imbalance means that the balance of C is 2 and the balance of В is not
negative. All other subtrees are assumed to satisfy the AVL condition. To perform
the rotation, the node C is rotated clockwise around В, and the right subtree 3 below
В becomes the left subtree of C. This rotation reduces the balance of C so that it
and all other nodes and subtrees in this diagram satisfy the AVL condition.

gorithm in 1962. Their algorithm allows us to rebalance the tree after adding or
removing a node.

In an AVL tree, deleting a node or inserting a new node could throw off the
balance, making some nodes in the new tree have balance 2 or —2. Whenever this
occurs the tree must be rebalanced by rearranging the subtrees using an operation
called rotation. When a rebalancing is necessary, begin at the lowest level and first
rebalance the lowest subtrees that do not meet the AVL criterion. Then work up
one level at a time, rebalancing any unbalanced subtrees as follows:

There are four cases to consider.

(i) If a node C has balance at least 2, then the left subtree is deeper than the
right. Let В be the left child of C. If the left subtree of В is deeper than
(or the same depth as) the right subtree, we call this a left-left imbalance.
In this case perform a right rotation on B, as in Figure 3.8. This operation
takes the node C and its left child B, moves the node В up to where C was,
makes C the right child of B, and makes B’s old right subtree into C’s new
left subtree. Note that the ordering of the subtrees from left to right has not
changed, so the resulting tree is still a BST. Since we are working upward from
the bottom, we may assume the subtrees below C are all AVL trees. Using
this assumption, it is straightforward to check that in the new tree the nodes
В and C satisfy the AVL condition and the balance of all the other subtrees
has not changed; see Exercise 3.16.

(ii) If the node C has balance at least 2, but instead of a left-left imbalance the
left child of C has its left subtree shallower than the right (so its balance
is negative), then we call this a left-right imbalance. Denote the left child
of C by A and the right child of A by B, as depicted in the leftmost BST
of Figure 3.9. To correct the imbalance, first perform a left rotation on В
(first arrow of Figure 3.9) and then a right rotation on В (second arrow of
Figure 3.9). For the left rotation, the node A is rotated counterclockwise

124 Chapter 3. Data Structures

Figure 3.9. A left-right imbalance (in the tree on the left) is corrected by first
performing a left rotation on В (first arrow) and then a right rotation on В (second
arrow). For the left rotation, the node A is rotated counterclockwise around В, and
the old left subtree 2 below В becomes the new right subtree of A in the center В ST.
For the right rotation on В, the node C is rotated clockwise around В and the right
subtree 3 of В becomes the new left subtree of C in the final В ST.

around B, and the old left subtree 2 of В becomes the new right subtree of
A (in the center BST). For the right rotation on B, the node C is rotated
clockwise around В and the right subtree 3 of В becomes the new left subtree
of C (in the right BST).
Again, ordering of the subtrees from left to right has not changed, so the re­
sulting tree is still a BST. And since we are working upward from the bottom,
we may assume the subtrees below C are all AVL trees. The intermediate
step of this rebalancing does not meet the AVL condition, but it is straight­
forward to check that in the final BST the nodes A, B, and C all satisfy the
AVL condition and the balance of all the other subtrees has not changed; see
Exercise 3.17.

(iii) A right-right imbalance is the mirror of the left-left case. The node C has
balance at most —2, and its right child В has nonpositive balance. This is
rebalanced by a left rotation on B.

(iv) A right-left imbalance is the mirror of the left-right case. The node C has
balance —2, and its right child A has positive balance. This is rebalanced by
a right rotation on the left child В of A and then a left rotation on B.

Definition 3.3.9. An AVL tree is a balanced BST (every node has balance 1, 0,
or —1).

After a node is added or deleted, the tree is rebalanced, if needed, as described
above. This guarantees that the final BST constructed in this manner is close to
being balanced.

Theorem 3.3.10. The minimal number m(h) of nodes possible in an AVL tree of
height h satisfies

m(fi) = 1 + m(h — 1) + m(h — 2) > 2^2,

and the maximal height of an AVL tree with n nodes is bounded by 21og2 n.

3.4. Priority Queues and Heaps 125

Proof. It is straightforward to see that the minimal number of nodes in an AVL
tree of height 0 is m(0) = 1, and the minimal number of nodes in an AVL tree of
height 1 is 2. Given an AVL tree of height h — 1 with m(h — 1) nodes and another
AVL tree of height h — 2 with m(h — 2) nodes, we can construct a new AVL tree of
height h by adding one new vertex R as the root and making the root of each tree
into a child of R. This shows that m(h) < 1 + m(h — 1) + m(h — 2).

Conversely, given any AVL tree of height h and m(h) nodes, removing the root
produces two subtrees. One of these must have height h — 1 and at least m(h — 1)
nodes. The other must have height at least h — 2 by the AVL criterion and thus at
least m(h — 2) nodes. This shows that m(li) > 1 + m(h — 1) + m(h — 2), and hence
equality holds.

If h > 2, then m(h — 1) and m(h — 2) are both positive, and hence m(h) =
1 + m(h — 1) + m(h — 2) > m(h — 1). Thus if h > 3 we have m(h — 1) > m(h — 2),
which gives

rnffi) = 1 + m(h — 1) + m(h — 2) > 2m(/i — 2) > 2^2.

Since n > m(h) we have n > 2/l/2 and 21og2 n > h. □

Since an AVL tree has height at most 2 log2 n, searching it has a worst-case
temporal complexity of O(logn). Inserting a new node or deleting a node are done
the same way as with any BST (which requires a search), but then the result may
no longer be balanced, so one must also rebalance. Each rotation has a constant
time complexity, but to make the tree fully balanced may require O(logn) rotations
(proceeding up the tree to the root from the point of the insertion or deletion); there­
fore the temporal complexity of insertion or deletion, even if the correct location is
already known, is also O(logn).

The complexity of constructing an AVL tree, by inserting elements one at a time,
involves n insertions, costing at most O(logn) each, so the total cost of constructing
the tree is O(nlogn). For further instruction on the coding of an AVL tree, see the
computer labs that accompany this volume.

3.4 Priority Queues and Heaps
An important problem in computing is to find the minimal element in an unordered
collection (or list) of data.18 This is particularly challenging in a dynamic situation,
where data are continually being added to and removed from the collection. In this
section, we frame this problem as a priority queue and show how to solve it efficiently
with what is called a heap.

18 Since the algorithms for deciding which element is maximal are nearly identical to those for iden­
tifying which is minimal (invert all the inequalities), all the arguments can be easily translated
to that of finding the maximal element, but for simplicity we just consider the minimal case.

3.4.1 Priority Queues
A priority queue is a data structure where the keys have an order, and the node with
the lowest key value is removed and returned (popped) from the queue first. Instead
of a LIFO or FIFO rule for returning elements, as discussed in Example 3.2.11, a

126 Chapter 3. Data Structures

priority queue returns the node with the minimal key, regardless of when it was
added to the queue. In other words, first “priority” is given to the node with the
smallest key value. The combined operation of identifying, removing, and returning
the node with the minimal key is called pop_min or just pop. We call the operation
of adding a node insert or put.

Naive Implementations

A naive way to implement a priority queue would be to save the data in a linked list,
and then with each request for the minimal element, simply search the entire list
for the minimum. This implementation has a cost of only 0(1) for each insertion,
so it has a maximum total temporal cost of O(n) for building a priority queue with
n elements. Unfortunately, it also has a cost of O(n) for pop_min.

Alternatively, we could implement a priority queue as a balanced BST (for
example, as an AVL tree). The minimal element is easily found by moving down
the tree to the leftmost leaf. In this case each pop_min costs only O(logn). But
each insertion also costs O(logn), so constructing the tree by successively inserting
n unordered elements has a temporal complexity of O(nlogn).

The standard implementation of a priority queue uses a different type of balanced
tree called a heap, which we discuss in the next subsection. The advantage of a heap
is that it can be constructed in O(n) operations and yet pop.min still costs only
O(logn) operations.

Applications

Priority queues are very useful for handling sorting and optimization problems, like
the problem of finding the shortest path between two locations. This and other
examples are found in Chapter 4.

A priority queue can be used to construct a sorting algorithm as follows: Put all
the data into a priority queue, and then pop each key back off the priority queue.
The resulting sequence of elements will be sorted least to greatest. The temporal
complexity of this sorting algorithm on a data set of n elements is precisely the
cost of creating the priority queue and then the cost of removing (popping) all n
elements.

Several well-known sorting algorithms are constructed in this way, including
the selection sort, which uses the naive implementation of a priority queue as an
unordered linked list (or an array); tree sort, which uses a self-balancing tree as
the implementation of the priority queue; and heap sort, which uses a heap as the
implementation of the priority queue. Among the priority-queue-based sorting algo­
rithms, heap sort is generally preferred.

3.4.2 Heaps
A heap19 is a special type of tree providing an efficient implementation of a priority
queue. A heap is not a BST, but, like a BST, its temporal complexity for insertion
and deletion is O(logn); yet the temporal complexity of constructing a heap from an

19 This should not be confused with the pool of memory in your computer called the heap. While
the stack is an example of a stack, the heap is not usually structured as a heap.

3.4. Priority Queues and Heaps 127

unordered array of n elements is only O(n). Moreover, the construction can happen
in place, which means that we need only a small amount of additional memory—the
initial array plus 0(1)—for the construction.

Definition 3.4.1. A binary heap is a binary tree satisfying the following three
properties:

(i) Every level is full except, possibly, the lowest level.

(ii) Each parent is less than or equal to its children.

(iii) All leaves are located as far left as possible.

Remark 3.4.2. The minimal element of a heap is easy to find because it is always
the root.

Unexample 3.4.3. The three trees in Figure 3.10 are almost, but not quite,
heaps. The left tree fails (i). The center tree satisfies (i) and (iii) but fails (ii).
The right tree satisfies (i) and (ii) but fails (iii).

Figure 3.10. Some trees that are almost, but not quite, heaps. The left tree fails
condition (i). The center tree fails condition (ii). The right tree fails condition (iii).

A binary heap is often implemented as an array by storing the root (the minimal
element) in the first position of the array (position 0), its children in the next two
positions (positions 1 and 2), its grandchildren in the next four positions, and so
forth, so that the node in position к has its children in positions 2k +1 and 2k + 2.
This avoids storing pointers for each node and instead allows traversal of the tree
with simple arithmetic computations; see Figure 3.11.

When using the array implementation of a heap, every new added node is placed
in the leftmost empty position. However, this new node is not necessarily greater
than its parent and so Definition 3.4.1(ii) might not be satisfied. To remedy this,
we must sift up\ that is, the new node swaps places with its parent whenever it is
less than its parent. Repeat this process until either the new node is greater than
its parent or it becomes the new root. In either case, the new tree is now a heap
and we have the following result.

128 Chapter 3. Data Structures

root children grandchildren great-grandchildren

Figure 3.11. An array implementation of a heap. The root (blue) is in the Oth
position, its two children (green) are in positions 1 and 2, and, in general, the
children of the node in the к th position are in positions 2k + 1 and 2k + 2.

Proposition 3.4.4. If a heap has one new leaf added that does not satisfy the
condition that the leaf is greater than its parent, then sifting that leaf up until it is
greater than its parent will produce a heap.

Proof. The proof is Exercise 3.22. □

Remark 3.4.5. The process of inserting a new entry to a heap (that is, adding
it to the end of the heap and then sifting up until the new tree is a heap) has a
temporal complexity of O(logn) since there are at most log2 n ancestors to swap
with while sifting up.

To remove an element from a heap, simply replace the key to delete with the
key in the rightmost leaf of the heap. If that rightmost key is greater than one of its
children, sift down, by trading places with its smallest child and repeating as nec­
essary until it satisfies the ordering property in Definition 3.4.1(ii); see Figure 3.12
for an illustration.

Proposition 3.4.6. If the key in one node of a heap is replaced with a different
key that is greater than one (or both) of its children, then sifting that node down
(trading places with its smallest child) until it is less than all of its children will
produce a heap.

Proof. The proof is Exercise 3.23. □

Again, since there are at most piog2 n] levels, deletion requires at most O(logn)
steps (down- or up-sifts). Also, updating the priority of a given node and then

3.4. Priority Queues and Heaps 129

Figure 3.12. Removing a key from a heap. To remove the key 13 (red) from the
heap at the top of the figure, trade places with the bottom rightmost key 32 (blue),
and then remove 13. The result is no longer a heap, because the root 32 is larger
than a child (actually, it is larger than both children). To fix this, sift down by
trading places with the smallest child, in this case 16 (yellow). The result is still
not a heap because 32 is still larger than one of its children, 19 (green). Sift down
again, by trading places with 19. The process is complete because there are now no
children of 32 that are smaller than it, thus the last tree satisfies the heap-ordering
property of Definition 5.^.7(ii).

sifting in the appropriate way will require at most log2 n up- or down-sifts to make
the result into a heap again.

3.4.3 Constructing a Heap
Since adding a new node to an existing heap of n nodes costs O(logn) operations,
you might think that creating a new heap from an unordered array of n elements by

130 Chapter 3. Data Structures

adding the nodes in succession would take O(nlogn) operations. In this subsection,
we show how to grow a heap in O(n) time through a process called heapifying the
array, which goes as follows.

Start with all n elements in an array. Treating the array as a tree with the root
in position 0 and the children of node к in positions 2k + 1 and 2k + 2 means that
the tree automatically satisfies (i) (all but the bottom level is full) and (iii) (all the
nodes are as far left as possible) of Definition 3.4.1. Therefore, the only property
that is not necessarily satisfied is the heap-ordering property, (ii). The main tool
in the heapifying process is sifting down, and the success of the process relies on
Proposition 3.4.6, which guarantees that if all the elements of a subtree except the
root satisfy the heap-ordering condition (that is, the root may be larger than one
of its children, but all other nodes in the subtree are less than their children), then
sifting the root down until it satisfies the ordering condition ensures that the entire
subtree satisfies the ordering condition.

The strategy is to start at the bottom and work upward, sifting each node down
until it satisfies the heap-ordering property. The leaf nodes are those in the range
from to the end, and all leaves vacuously satisfy the property that they are less
than their children (since they have no children). Starting at the next level, the
rightmost node that has a child is in position — 1. Running through the nodes
in positions — 1 down to 0, sift each node down, as necessary. Once each node
has been sifted, then everything below that point is a heap.

Proposition 3.4.7. The process described above of building a heap from an un­
ordered array with n elements has temporal complexity O(n).

Proof. The temporal complexity T(n) is determined by the total number of down­
sifts. The bottom layer has no more than 2fc-1 leaves, where к = piog2n^, and
these leaves need no sifting down. The next layer has exactly 2k~2 nodes, and they
need to be sifted down at most once. The next layer of 2fe-3 nodes need to be sifted
down at most twice, and so forth. Therefore, we have

к—1 oo /1 \ 1
^n7T^=2n’

where the penultimate inequality follows from Exercise 1.20 and from the fact that
2fe-i < 2log2n = n. □

Remark 3.4.8. The previous description and proposition show that a heap can
be built in place, using the original array for memory with only a few additional
temporary variables for the sifting process. Moreover, the total number of sift­
down operations required for the build is less than n, so the build process is very
efficient. For these reasons this array-based binary heap is usually the preferred
implementation for a priority queue. Indeed, many people use the terms heap and
priority queue interchangeably, although this is not technically correct, since, as
we have seen, there are many other (less efficient) ways to implement a priority
queue.

3.5. *B-Trees 131

Remark 3.4.9. Since a heap can be built in O(n) time, it should not be surprising
that, on average, a heap insertion (with all necessary up-sifting) has complexity only
0(1)—intuitively, most of the elements of the heap belong near the bottom, since
the bottom has exponentially more elements than the top. Thus, most elements
inserted at the bottom need very few up-sifts after insertion to satisfy the heap
ordering.

Remark 3.4.10. In some settings it is useful for a priority queue to have an ad­
ditional operation that allows us to update the priority of an existing node. In
the heap implementation of a priority queue, this is easy to do if the location of
the node is known. In that case, simply delete the node (and heapify) and then
insert the same data back into the heap with the new priority (and heapify). The
problem, of course, is that we generally do not know the location of the node we
want to update, and a search for a general node in a heap costs O(n) because every
branch of the tree must be searched.

One possible approach to this problem is to simply duplicate the data. That
is, make a new node with the same data but with a new key matching the new
priority. This can work in situations where the additional memory cost is not a
problem, provided data with old priorities are not a threat to the success of the
application. If actually updating the priorities, rather than duplicating data, is
important, then a BST may be better suited than a heap, since finding an arbitrary
key in a BST can be done in O(log(n)) time.

3.5 *B-Trees
In Section 3.3.3, we showed that AVL trees were of logarithmic temporal complexity
for searches, inserts, and deletes. In this section we introduce the В-tree, which is
a more general self-balancing tree that also allows searches, inserts, and deletes in
logarithmic time, but each node can support several children and thus store large
blocks of data contiguously. This allows the tree to operate more efficiently with
some types of large data sets; for example, В-trees are used heavily to store data in
both relational databases and many file systems.

Definition 3.5.1. Fix two positive integers m and h, and let k = 2m. A balanced
В-tree of order к and height h is a tree where each node may contain multiple keys,
where edges from a parent node to its children are separated by the keys of the parent,
and where edges are arranged so that all the keys in a child lie between the keys of
the parent that separate that edge from the other edges. Moreover, the following
must hold:

(i) The distance from the root to every leaf is h.

(ii) Each node contains no more than к keys and no more than к + 1 children.

(iii) Every node except the root has at least m keys.

(iv) The root may never have only one child—unless the root is also a leaf, it must
have at least two children.

132 Chapter 3. Data Structures

Figure 3.13. A В-tree of order к = 4 and height h = 1, as described in
Example 3.5.2.

Example 3.5.2. An example of a В-tree is given in Figure 3.13. Note that
all the keys (10 and 14) in the leftmost leaf are less than the first key (20) of
the root, all the keys (24 and 34) of the middle leaf lie between the first two
keys (20 and 48) of the root, and all the keys of the rightmost leaf (50, 75, and
99) are greater than the last key (48) of the root. Also, every node including
the root has at least m = 2 keys. It is allowable for the root to have fewer
than m keys, but every other node must have at least m.

Remark 3.5.3. As with other data structures, we may associate a large amount
of data to each key, but each datum is only identified and ordered by its key, so we
only talk about the keys themselves, as if they were the data.

Proposition 3.5.4. The number of keys that a В-tree can hold grows exponentially
in h. More precisely, a В-tree of order к and height h can store up to k(k + V)h keys.

Proof, The proof is Exercise 3.24. □

Example 3.5.5. A В-tree of order к = 99 and height h = 2 can store
99(100)2 = 990,000 keys. Adding a new level (h = 3) increases the total
capacity a hundredfold to (99)(100)3 = 99,000,000 keys.

A В-tree has spatial complexity O(n), where n is the total number of keys.
Searching a В-tree of order к and height h has worst-case temporal complexity
O(k(h + 1)), so if n is the total number of keys, and the order к is fixed, then
searching has temporal complexity O(log(n)).

To insert a new key, first search for the appropriate leaf node to insert into. If
the leaf is not full, insert the key into the correct place in the leaf (this will require
rearranging the keys in the leaf, but will not require changing the rest of the tree).
If the leaf is full, temporarily add the new key to the list of keys in that leaf, find
the median of that list, and promote it to the parent node. All keys greater than
the median key belong to the new right leaf and all keys smaller than the median
key belong to the new left leaf; see Figure 3.14 for an example of this procedure.

If the parent node is full, split it in a similar way—by finding the median and
promoting it—and continue this process until you reach the root of the tree. If the

3.5. *B-Trees 133

Figure 3.14. Inserting the key 5 into a full leaf makes the leaf overfull. To
rebalance, the median 12 of the overfull leaf is moved into the parent node and the
overfull leaf is split.

№1

20 48

О M:ill I I |60|6H|74|

Figure 3.15. Deleting from a В-tree leaf with only m keys, and taking from a
sibling: Deleting the key 34 leaves the middle leaf (red) underfull. Since the right
sibling can spare a key, move the right separator in the parent (48) down to the
middle leaf. This leaves the parent (yellow) underfull. This can be repaired by
moving the immediate successor 60 of the moved key (48) from the right sibling up
to the parent.

134 Chapter 3. Data Structures

Figure 3.16. Deleting from a В-tree leaf with m keys, but siblings can’t spare keys:
Deleting the key 48 leaves the middle leaf (red) underfull. Since neither sibling can
spare a key, merge with the right sibling (yellow) and move the right separator 60
in the parent down to the merged leaf (orange). This leaves the parent (purple)
underfull. If the parent is the root, this is not a problem, but if it is not the root,
it will have to be rebalanced by taking from (or merging with) a sibling. In this
particular case it can also be rebalanced by moving the largest key (74) from the
newly merged leaf to the parent.

root is full, split it and create a new root (increasing the overall height by 1), with
the median as the only key in the new root. The number of times we must perform
this splitting procedure for a given insertion is never more than h+1, so the temporal
complexity of the insertion with rebalancing is at worst O(logn). Note, however,
that insertion can increase the height of the В-tree to h + 1.

To delete a key from a leaf with at least m + 1 keys, remove the key. If the leaf
has only m keys, removing the key will cause the leaf to be underfull. In this case
take a key from an adjacent sibling, if the sibling can spare it. To do this, move the
parent key down to the underfull leaf and move the sibling’s key up to the parent;
see Figure 3.15 for an illustration. If neither adjacent sibling can spare a key, merge
with one of the adjacent siblings. This is always possible, because the total number
of keys in the merged leaf will be (m— 1) + 1 + m = 2m. This reduces the number
of the parent’s keys by 1, so if the parent is underfull, it will need to be rebalanced.
In some cases, this can be done by moving either the largest or the smallest key up
from the newly merged leaf to the parent, but in general this requires taking from
a sibling again; see, for example, Figure 3.16.

3.5. *B-Trees 135

Figure 3.17. Deleting from a nonleaf node of a В-tree: Deleting the key 12 leaves
the root (red) underfull. Move 12’s immediate successor 13 up to the root. This
leaves the affected leaf (blue) underfull. Since its sibling (yellow) can spare no keys,
merge them (and the parent key L6 between them) to produce a completely full leaf.
But this makes the parent (red) underfull. To remedy this, since its sibling (blue)
cannot spare keys, merge the underfull node with its sibling and parent (purple).

136 Chapter 3. Data Structures

To delete a key from a nonleaf node, if the key is not separating two children,
remove the key and rebalance as above. If the key is separating two children, then
its immediate in-order predecessor (the largest element in the left subtree) is still
less than the key we wish to remove, and it lies in a leaf. Similarly, its immediate
in-order successor (the smallest element in the right subtree) is still greater than
the key we wish to remove, and it lies in a leaf. Move one of these two keys (the
immediate predecessor or successor) up to fill the spot vacated by the deleted key. If
the leaf from which the key was taken is underfull, rebalance as before. An example
of this is given in Figure 3.17.

The operation of deletion involves a search for the key to delete, and at worst
another search for the in-order predecessor or successor and a rebalancing. Each of
these steps has temporal complexity at most O(logn), so the entire operation also
has temporal complexity O(logn).

Remark 3.5.6. There are several common variants of the В-tree. For example, a
B+tree is like a В-tree, but the actual data of the tree is stored only in the leaf
nodes; all other nodes in the tree are index nodes.

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

3.1. Let G = (V, E) with V = {a, 6, c, d} and E = {(a, 6), (a, c), (a, d), (6, c)}. List
all the subgraphs of G.

3.2. How many distinct undirected graphs can be created with seven vertices and
13 edges? What if the graphs are directed?

3.3. Consider the graph in the figure below. Use the adjacency matrix to deter­
mine the number of walks of length 4 from node 1 to node 4. How many of
those walks are paths?

Exercises 137

3.4. Consider the graph G5 in Figure 3.2. Use the adjacency matrix to determine
the number of closed walks of length 3 starting and ending at node 3. How
many of those walks are cycles?

3.5. Let A be the adjacency matrix of a directed graph G.
(i) Explain why the (i,J) entry of A is the number of walks of length 1 from

node i to node j.
(ii) Prove that the (г, J) entry of A is the number of walks of length 2 from

i to j.
(i)2

(iii) Complete the proof of Proposition 3.1.24. Hint: Use induction.

(i) Starting with an empty queue, show the result of each step of the fol­
lowing sequence of operations (parsed from left to right): AB * CD * *

(ii) Starting with an empty stack, show the result of each step of the follow­
ing sequence of operations (parsed from left to right): AB * CD * *

3.8. Describe how to use two stacks to implement a queue. What is the temporal
complexity of the operations push and pop?

3.9. A double-ended queue, usually called a deque (pronounced “deck”), is a data
structure like a queue, but where the data can be added to (pushed) or
removed from (popped) either end of the queue. Describe how to implement
a deque using one or more of the data structures described in Section 3.2.2.
The temporal complexity of pushing or popping from either end should be
0(1).

3.10. Describe how to use a stack, queue, or deque to construct a palindrome veri­
fier: Given any input (a0,..., an), your algorithm should determine whether
ai = an_i for every i G {0,..., n}. What is the temporal complexity of your
algorithm? Justify your answer.

3.6. f An automorphism of a graph G = (V, E) is a bijection ф : V V such
that for each edge (v, vf) G E the pair (0(v), ф(у')) is also in E.
*

Show that if ф is an automorphism of an undirected (finite) tree with a finite
number of vertices, then either there exists a vertex v G V with ф(Е) = v or
there exists an edge (u, v') G E with ф(и) = v' and ф(и') = v.

3.7. We encode a sequence of instructions using letters and asterisks—a letter
means push that letter, and means pop. For each operation of the se­
quence, illustrate the result of applying the operation to the corresponding
data structure. For example, if the data structure is a stack, and the existing
state was

*

t t
root tail

A В c

then applying * (pop) results in

B c
t t

root tail

138 Chapter 3. Data Structures

3.11. Prove that for an undirected graph G the following statements are equivalent:
(i) G is a tree.

(ii) G is connected, but for every edge e of G, removing the edge e makes
the resulting graph disconnected.

(iii) G contains no cycle, but if any edge is added between any pair of vertices
of G, the resulting graph has a cycle.

3.12. Prove that a perfectly balanced tree of height h has n = 2h+1 — 1 nodes.
3.13. Start with an empty BST.

(i) Show the result and all intermediate steps of adding the sequence 5, 3,
7, 2, 4, 6, in order (from left to right).

(ii) Show the result and all intermediate steps of adding the sequence 2, 3,
4, 5, 6, 7.

3.14. Let Sn = {1,2,..., n} be a space of keys. Let Cn be the distinct number of
BSTs for Sn. By the multiplication rule, there are Ck-i • Cn_k BSTs with
root к G Sn.

(i) Prove that
n n— 1

Gn = Gfc_ iGn_fc = GfcGn-i-fc.
fc=l fc=0

(ii) Let C(x) = C^xk. Prove that C(x) = 1 + xC(x)2.
(iii) Since G(0) = 1, we have that

1 — \/l — 4x
2x

(iv) Using (2.32), prove that

Conclude for n G Z+ that Cn =
3.15. Start with an empty AVL tree.

(i) Show each step of the process of adding and then rebalancing for the
sequence 2, 3, 4, 5, 6, 7.

(ii) Now show each step of the process of deleting and then rebalancing for
the sequence 2, 7, 5, 6.

3.16. For a left-left imbalance, as in Figure 3.8, prove that if all the nodes below
G satisfy the AVL condition, but the balance of G is 2, then after a right
rotation on В the nodes В and G in the new tree satisfy the AVL condition
and the balance of all the other subtrees has not changed.

3.17. For a left-right imbalance, as in Figure 3.9, prove that a left rotation on B,
followed by a right rotation on B, gives a new tree in which the nodes A, B,
and G all satisfy the AVL condition and the balance of all the other subtrees
has not changed.

Exercises 139

3.18. Give an example to show that the order in which elements are added to an
AVL tree, and rebalanced by the AVL algorithm, can affect the final structure
of the tree.

*

3.19. Beginning with the following heap, insert a node with key 1 and sift, as
necessary, until the result is a new heap. Draw the corresponding tree at
each intermediate step of the process.

3.20. Starting with the array [7,6, 5,4,3,2,1], heapify the array, showing the status
of the array at each intermediate step of the process.

3.21. Given the array in the previous exercise, is there a permutation of the array
that would require more steps to heapify? What permutation would require
the most sifting? What permutation would require the least sifting?

3.22. Prove Proposition 3.4.4.
3.23. Prove Proposition 3.4.6.

3.24. Prove Proposition 3.5.4.*
3.25. Starting with an empty В-tree of order к = 4, show each step resulting from

adding (and rebalancing) the sequence 1,2,3,4,5,6, 7,8,9 (in order, from left
to right).

*

3.26. For the В-tree produced in the previous problem, show each step of the
result of deleting (and rebalancing) the sequence 5,2,3,1.
*

3.27. Consider an initially empty В-tree of order 3. Draw the В-tree after the
insertion of the keys 27, 33, 39, 1, 3, 10, 7.
*

3.28. Take your answer from the previous problem and then draw the tree after
deleting the following keys: 33, 39, and 10.
*

3.29. Find all legal В-trees of any order that contain only the keys 1, 2, 3, 4, 5.*

Notes
A standard reference for much of the material in this chapter is [CLRS01]. AVL
trees were first described in [AVL62] and have inspired many other methods for
balancing BSTs. Our proof of Theorem 3.3.10 on the depth of AVL trees was
inspired by [Pat 17].

It’s easy to see how to build a priority queue out of a sorting algorithm, but it
can also be shown that any sorting algorithm with temporal complexity of O(n s(n))
can be used to implement a priority queue such that the cost of the f ind.min and
pop_min function are O(s(n)). For more on this see [Tho07, WY12]. For more
information about the average complexity of insertion in a heap, see [PS75].

Combinatorial
Optimization

If people do not believe that mathematics is simple, it is only because they do not
realize how complicated life is.
—John von Neumann

Combinatorial optimization is about finding the best choice among a discrete col­
lection of choices. Many important problems, both in mathematics and in life, can
be formulated as combinatorial optimization problems. In this chapter we describe
a few of these problems and some common techniques for attacking them.

The problems we consider here include finding the shortest route between two
locations in a network of roads, the most efficient way to compress a message, and
the most efficient or valuable combination of items that meet a given budget (which
could be time, space, money, or something else). Many real-world problems can
be reformulated in terms of these and other standard combinatorial optimization
problems. You will find many of the ideas from this chapter cropping up over and
over again, not only in this text, but whenever you want to do something faster,
cheaper, or better.

Because combinatorial optimization problems are usually finite, we could, at
least in theory, check every possible combination and see what works best. We call
this naive approach the brute force or exhaustive method. One example using this
method is given in Example 4.0.1.

Example 4.0.1. Consider the change-making problem, which consists of find­
ing the smallest number n of coins necessary to achieve a given value v. We
assume the standard American coinage system, consisting of pennies ($0.01),
nickels ($0.05), dimes ($0.10), quarters ($0.25), half dollars ($0.50), and dollars
($1.00).

To solve the problem for v = $0.19 by the exhaustive method, we list all
the ways to get $0.19:

141

142 Chapter 4. Combinatorial Optimization

Configuration n
19 pennies 19
14 pennies, 1 nickel 15
9 pennies, 2 nickels 11
9 pennies, 1 dime 10
4 pennies, 3 nickels 7
4 pennies, 1 nickel, 1 dime 6

Since this table is complete, we see that the minimum number of coins for
v = 0.19 is 6.

In practice, the exhaustive method works only in situations where there are
relatively few possibilities to pick from. But, unfortunately, most combinatorial
optimization problems have far too many possibilities for anyone to check them all.
Example 4.0.2 is typical of the size of a combinatorial problem.

Example 4.0.2. The traveling salesman problem (TSP) asks for the best
route to visit a given collection of n cities. It is straightforward to show that
there are n!/2 possible routes. So if n = 20, then the number of possible routes
is 20!/2 = 1,216,451,004,088,320,000. Hence, even if you had a machine that
could check a billion routes per second, it would still take more than 38 years to
check all the possible routes. And in many applications, we need to solve this
problem for much larger values of n, which means that the naive, exhaustive
approach is simply not feasible.

One of the most useful tools for solving optimization problems is called dynamic
programming, which computes and keeps track of solutions of smaller, easier versions
of the problem and then combines them to construct the solution of the full problem.
We discuss dynamic programming in Section 4.1 and again in Chapter 16.

Another useful approach to solving discrete optimization problems is to use a
greedy algorithm. These are algorithms that develop a candidate solution stepwise,
always choosing the next step to be the option that appears at the moment to be
best. Greedy algorithms are not always successful because the optimal solutions to
many problems have intermediate steps that do not appear optimal at the inter­
mediate stages of development. But for a surprising number of problems, there is
a greedy algorithm that always produces the optimal solution, and for many other
problems, there are greedy algorithms that usually produce solutions that are nearly
optimal. We explore some of each of these sorts of problems in this chapter.

Finally, it is important to note that reformulating problems slightly to allow the
possibility of a small amount of error in a solution can vastly reduce the complexity
of the algorithms required to solve them. A good approximate answer can often
be found very rapidly, even for many optimization problems that are essentially
impossible to solve exactly. We discuss this briefly in Section 4.5.3 and further in
Chapter 7.

4.1. Dynamic Programming 143

4.1 Dynamic Programming
Some recursive algorithms are of low complexity because they “divide and conquer”
efficiently. For example, the mergesort algorithm (see Algorithm 1.11) breaks a
list of n elements into two subproblems of approximate size This gives us the
recurrence relation (1.48) and results in O(logn) temporal complexity.

By contrast, in many combinatorial optimization problems the size of the sub­
problems encountered in a divide-and-conquer method is not necessarily much
smaller than the original problem. For example, computing the lengths of all the
paths among n cities in the TSP (see Example 4.0.2) involves a subproblem of
computing the lengths of all the paths for n — 1 cities, and the obvious divide-and-
conquer approach to the TSP has temporal complexity satisfying the recurrence
relation T(n) = nT(n — 1), which results in factorial complexity O(nl). Note, how­
ever, that in this approach the various subparts of the recursive algorithm have
substantial overlap, and we end up solving the same subproblems over and over
again. This is common in many combinatorial optimization problems.

When problems have such an overlapping structure among their subproblems,
the algorithms that solve them can often be improved by storing the commonly
recomputed subproblems the first time they are computed and then looking up their
answers the next time they are encountered. Depending on the amount of overlap
among subproblems, this can significantly improve the temporal complexity of an
algorithm, but it often comes at the cost of some increase in spatial complexity.

The strategy of storing solutions of subproblems, rather than recomputing, is
called dynamic programming. The term program in this context does not refer to
a computer program but rather a schedule or table, corresponding to the idea that
the computed values are stored in some sort of lookup table.

Dynamic programming is primarily done in one of two ways:

(i) Top down (often called memoization2®).

(ii) Bottom up (sometimes called iterative dynamic programming).

4.1.1 Top-Down Dynamic Programming
The top-down (memoization) approach consists of running a recursive process as
usual, but at each stage, when a subproblem is encountered in the recursion, the
results of that subcomputation are saved for possible future use. The next time the
same subproblem is encountered, the answer is looked up instead of recomputed.

Example 4.1.1. Consider the change-making problem of Example 4.0.1. To
use memoization on this problem, first formulate it recursively. Let n(v) be
the minimal number of coins required to achieve value v > 0. Denote the set
of coins as C = {0.01,0.05,0.10,0.25,0.50,1.00}. We can write n(v) in terms
of n(y — c) for each с E C as

n(u) = min{l + n(y — c)}.
cEC (4-1)

20 Not to be confused with memorization.

144 Chapter 4. Combinatorial Optimization

Each smaller problem n(y — c) can then be attacked in the same way, repeating
until the amount to solve for is 0.

We have

n(0.19) = 1 + minn(0.19 — c) = 1 + min{n(0.18), n(0.14), n(0.09)},

n(0.18) = 1 + minn(0.18 — c) = 1 + min{n(0.17), n(0.13), n(0.08)},
c

n(0.14) = 1 + minn(0.14 — c) = 1 + min{n(0.13), n(0.09), n(0.04)},

n(0.09) = 1 + minn(0.09 — c) = 1 + min{n(0.08), n(0.04)},
c

and so on. In a naive recursion some of the subproblems (like n(0.08)) would be
computed multiple times. In a memoized (top-down dynamic programming)
algorithm, these values are stored the first time they are computed and then
just looked up each subsequent time they are needed; see Algorithm 4.1 for
details

2
3
4
5
6
7
8
9

10
11
12
13
14

global variables
C = [1,5,10,25,50,100] # Currency system
lookup={0:0} # Known solutions

def makechange(v):
..... Return the minimum number of coins that add to v cents,
и и и

if v in lookup.keys():
return lookup[v]

else:
ans = 1 + min([makechange(v-c) for c in C if c <= v])
lookup[v] = ans
return ans

Algorithm 4.1. Implementation of the change-making algorithm; note the use
of the dictionary lookup for memoization. As expected, calling make change (19)
returns 6. After calling makechange(19) the dictionary lookup contains all the

solutions for v e {0,..., 19}.

Remark 4.1.2. Knowing the optimal number of coins n(v) in the previous example
does not necessarily tell you how to achieve that optimal number. But it is easy to
adjust the algorithm to track the optimal configuration of coins (the optimizer) at
each step. This is true of most combinatorial optimization problems. The approach
to solving the problem usually produces the optimizer itself along the way, and so
algorithms that find the optimal value (n(u) in this example) can be adapted to
also return the optimizer as part of the solution.

4.1. Dynamic Programming 145

Example 4.1.3. The nth Fibonacci number F(n) is defined by the recurrence

F(n) = F(n - 2) + F(n - 1) (4.2)

with starting values F(0) = F(l) = 1. A naive divide-and-conquer algorithm
computes both F(n — 2) and F(n — 1) recursively. Therefore it has temporal
complexity

T(n) = T(n - 2) + T(n - 1) + 0(1) > 2T(n - 2) + 0(1) e O(2n/2),

which is terrible. Saving the result of each F(k) the first time it is computed,
speeds up the algorithm considerably. Indeed, the computation of F(n — 1)
computes F(n —2) along the way, so, using memoization, the value of F(n —2)
used in the sum (4.2) requires only a single lookup (hence 0(1)), and so the
new recurrence relation for the temporal complexity takes the form

T(n)=T(n-l) + O(l),

which means the memoized computation has temporal complexity in O(n).

Remark 4.1.4. Although memoization offers a huge temporal savings and is gen­
erally easy to implement, memoization can come at a significant memory cost. In
any divide-and-conquer algorithm, each step must be stored while the lower steps
are being computed. For the naive Fibonacci algorithm that means each level in­
creases the spatial complexity by at least one, and so the overall spatial complexity
is at least O(n). Memoizing requires us to store the previously computed results,
so it is also at least O(n). When computing F for large values like n = 106, these
algorithms are seriously constrained by limited memory.

Example 4.1.5. Consider the problem of multiplying three matrices together.
Matrix multiplication is associative, so we have two choices of how to compute
the product.

ABC = (AB)C = A(BC)

Exercise 1.26 shows that the choice of grouping can have a significant effect
on the complexity of the computation. More precisely, if A E В E
Mg>rn(lR), and С E Mm?n(R), then the temporal complexity of computing
AB is ~ 2k£m (see Section 1.5), and the complexity of computing (AB)C,
given (AB), is ~ 2kmn for a total complexity of ~ 2(k£m + kmri) for the
first grouping. Performing the multiplication using the second grouping has
complexity ~ 2(k£n + Imn).

If k, £, and m are large but not too similar in size, we can often save a lot of
time by comparing the complexities of the two groupings and then performing
the multiplication using the grouping with lower complexity. When there

146 Chapter 4. Combinatorial Optimization

are many matrices to be multiplied, careful grouping can make a significant
improvement in efficiency.

Assume that Aq, ... An_± are to be multiplied, with € MmfeXmfc+1(R)
for each к € {0,..., n — 1}, The optimal choice of grouping depends only on
the dimensions mo,... , mn. Denote the complexity of the optimal choice of
grouping by C(mo, mi,..., mn). This quantity satisfies the recursion relation

C(m0,mi,...,mn) (4.3)
= min {C(mo,..., m^) + 2тот/,тп + С(т^,..., mn)}.

0<fc<n

This leads to a naive divide-and-conquer algorithm that involves recursively
computing C(mo,..., rrik-i) and ..., mn) for each choice of к. But
many of these quantities are computed more than once. For example, C(mi, m^)
must be computed to find the quantity and again to find
C(mi, m2, m3). With memoization each of these is computed only once, which
reduces the temporal complexity of this algorithm substantially.

4.1.2 Bottom-Up Dynamic Programming

With bottom-up dynamic programming we still take advantage of the fact that many
of the subproblems are being solved repeatedly, but instead of using recursion, we
use an iterative algorithm, starting with the simplest computations and then assem­
bling the results into solutions of progressively more complicated problems, until
the desired solution has been computed. Most of the previously computed values
need to be remembered only for a few steps, after which they can be discarded.
This means that the spatial complexity is usually less for bottom-up dynamic
programming than for top-down, but the temporal complexity is similar between
the two.

Example 4.1.6. The bottom-up approach to the change-making problem of
Examples 4.0.1 and 4.1.1 is to compute n(0) = 0 and store that value. Now use
that to compute n(l) = n(0) + l = 1, and again store that value. Continuing in
this way gives n(2) = n(l) + 1 = 2, n(3) = n(2) + 1 = 3, n(4) = n(3) + 1=4,
and n(5) = 1 + min{n(0), n(4)} = 1. To solve the problem n(v) involves
computing every value n(a) for a < v.

These values need only be stored until we are sure they are no longer
needed. Since 1.00 is the largest coin value, the smallest that a — c could ever
be is a — 1.00. Therefore, once a — 1.00 > m, we will never need the value
n(m) and can safely discard it. This means we need only store at most 100
values at a time, and the spatial complexity of this algorithm is 0(1).

4.1. Dynamic Programming 147

Example 4.1.7. The bottom-up approach to the Fibonacci problem first
computes F(0) and F(l), then uses those to compute F(2) = F(0) + F(l).
Since F(0) will never be needed again, it is discarded. Now compute F(3) =
F(l) + F(2), at which point F(l) is discarded. The algorithm continues in this
way until reaching F(n). This dynamic optimization algorithm still involves
only n additions and has temporal complexity T(n) G O(n), but its spatial
complexity is 0(1), which is much better than memoization.

Remark 4.1.8. Not all recursive algorithms can be improved with a dynamic pro­
gram. The merge sort and binary search algorithms cannot be improved by these
techniques because no subproblem is the same as any other subproblem (usually).
In merge sort, for example, we don’t expect any of the sublists that we must sort
to be identical to any of the other sublists. Looking to see whether a sublist has
already been sorted is a waste of time, and storing previously sorted sublists is a
waste of memory.

Remark 4.1.9. Memoization is usually easy to implement, and it greatly improves
temporal complexity if there are many repeated computations. This is often more
than enough to achieve the performance needed from the algorithm. But it comes
at the cost of some added spatial complexity. In many situations the spatial cost
is not enough to matter, but when it does matter, bottom-up dynamic program­
ming is often a better choice. Bottom-up dynamic programming usually takes more
thought to implement than memoization, but the extra thought can produce sig­
nificant savings in spatial complexity while still achieving the temporal savings of
memoization.

4.1.3 Bellman Optimality
A fundamental idea that allows many problems to be solved rapidly with dynamic
programming is Bellman’s optimality principle. Bellman’s principle is essentially a
generalization of the observation that any part of a shortest path is itself a shortest
path. For example, if the shortest path from Boston to Salt Lake City passes through
Chicago, then the last part of that route, from Chicago to Salt Lake City, must be
the shortest path from Chicago to Salt Lake City. More generally, many problems
have the property that subparts of the optimal solution are optimal solutions for a
subproblem.

Example 4.1.10. In the change-making problem, if the optimal number of
coins n(y) for v is achieved with coins of value ci, C2,..., cn^ , then the optimal
number of coins n(y—ci) is achieved by removing coin ci to get C2, C3,..., cn(vy
That is the essence of the recursion relation (4.1), which we call the Bell­
man equation for the change-making problem. This relation is the key to
using bottom-up dynamic programming to solve the problem, as described in
Example 4.1.6.

148 Chapter 4. Combinatorial Optimization

Example 4.1.11. The Bellman relation for the matrix-grouping problem of
Example 4.1.5 is given by (4.3). It shows that if the best way to group n
matrices includes a grouping of the first к < n matrices, then that group­
ing is the best grouping for those к matrices. Again, this means we can use
bottom-up dynamic programming to solve this problem by first computing
Cfjrii, m^i, mi+2) = for every г, and then using the relation
(4.3) to compute С(тп{, тпг+ъ mi+2, тг+з) f°r every г, and so on, using (4.3)
to assemble the previous results into the optimal value for a slightly more com­
plicated problem, until finally reaching the optimal value C(mo, mi,..., mn)
of the original problem.

We revisit Bellman’s optimality principle several times throughout this book,
including in the next section, where we talk about Dijkstra’s algorithm, and again
in Chapter 16.

Remark 4.1.12. Bellman’s optimality principle is so important in dynamic pro­
gramming that people will often say dynamic programming or dynamic optimization
when they actually mean the optimality principle.

4.2 Graph Search Algorithms
Many important combinatorial optimization problems can be formulated as graph
search algorithms. In this section we discuss a few important examples of graph
search problems and the algorithms for solving them.

Two key questions about paths in a graph (including trees) are

(i) is there is a path between two given nodes? and, if so,

(ii) what is the shortest path?

These are examples of graph search problems, and the two standard methods to
solve them are depth-first search (DFS) and breadth-first search (BFS).

4.2.1 Depth-First Search
The idea of DFS is simple: Start at the initial node, follow the first edge out of
that node to a new node, follow the first edge out of that node to the next node
(deeper), and so forth until arriving at a node with no neighbors that have not been
visited. Then return up one step to the previous node, and follow the next edge and
repeat until arriving at a node with no outgoing edges that have not already been
traversed. Continue this process until the desired target node has been reached or
you run out of available nodes; see, for example, Figure 4.1.

Remark 4.2.1. For a given graph there are many different ways to perform a DFS,
depending on the different ways of ordering the outgoing edges from each node. The
ordering is usually not important.

4.2. Graph Search Algorithms 149

Figure 4.1. Example of a DFS to find a path from A to G in an undirected graph.
The algorithm begins at A and follows the first edge to B, and then to D (left
panel). Since there are no edges out of D to unvisited (white) nodes, it backs up to
B. Following the next edge out of В leads to F and then to E (center panel). Since
there are no edges to unvisited node from E, it backs up to F, and then B, finding
no unvisited neighbors at each step. Finally, backing up to A gives an edge to a new
node C and then to G (right panel), where the search completes.

To construct a DFS we need ways to keep track of which nodes have been visited
and which nodes to visit next. To do this, we use two data structures:

• A stack S of the partial paths that have been generated.

• A se£, M (marked), of the nodes already visited.21

Begin by putting the initial (starting) node on the stack S. At each stage, pop a
partial path off the stack S, examine the last node N of that path, and add it to M.
For each neighbor P of N that is not in M, add a new path to the stack consisting
of the old path (to TV) with P added to the end. Repeat the process by popping
the next path from S and moving to its last node. If there is no neighbor for the
last node of a path, then discard that path and pop the next path from S. Note
that the paths in the stack S are processed in reverse order of arrival (LIFO), so
we always move down first, as required in a DFS. The algorithm terminates when
S has no more paths or when the target node is found; see Algorithm 4.2.

Example 4.2.2. The following table lists the main variables and their states
at the beginning of each step of a DFS (using Algorithm 4.2), searching for
a path from A to G in the graph in Figure 4.1. The left panel of Figure 4.1
corresponds to step 2 here, the center panel corresponds to step 4, and the
right panel corresponds to step 6.

21 The data type called a set is similar to a mathematical set, in that each element occurs at most
once and there is no ordering of the elements. Most implementations of the set data type have a
very efficient method for identifying whether an element is in the set. For more on the set data
type, see Section 7.3.

Step 0 1 2
S [[A]] [[A,E],[A,C], [A,B]J [[A,E],[A,C],[A,B,F], [A,B,D]J
path [A] [A,B] [A,B,D]
M {A} {A,B} {A,B,D}

150 Chapter 4. Combinatorial Optimization

def dfs(graph, start, end):
"""Find a path from start to end with the DFS algorithm.
'graph' is a dictionary mapping each node to the set of

its neighbors.
к и и

Step 3 4______________________
S [[A,E],[A,C],[A,B,F]J [[A,E],[A,C],[A,B,F,EJ]
path [A,B,F] [A,B,F,E]
M {A,B,D,F} {A,B,D,F,E}

Step 5 6______________________
S [[A,E],[A,CJ] [[A,E],[A,C,GJ]
path [A,C] [A,C,G]
M {A,B,D,F,E,C} {A,B,D,F,E,C,GI

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Initialization
M = set(start) # Set of marked (visited) nodes.
S = [[start]] # Stack of partial paths.

while S: # While S is not empty:
path = S.popO
M. add (path [-1]) # Add the path's last node to M.
if path[-l] == end: # If the end node is found.

return path
for node in graph[path[-1]] - M: # Difference of sets.

S.append(path+[node]) # Update the stack.

Algorithm 4.2. Implementation of DFS. Here graph must be a dictionary mapping
each node of the graph to the set of its neighbors. Here the Python list S functions
as a stack, where append () plays the role of the operation push, and pop() pops
the last element off list (the end of the list is the top of the stack). To change
this implementation into a BFS, simply replace pop() in Line 12 with pop(O),
which pops the first element off the list S (instead of the last) and thus makes S
into a queue. For details on applying this code to the graph in Figure 4-1, see

Example 4-2.3.

Example 4.2.3. An implementation of the DFS algorithm in Python is given
in Algorithm 4.2. In that implementation the graph is stored as a dictio­
nary graph mapping each vertex to its neighbors. For the graph in Figure 4.1
we have graph = {’A’H’E’j’C’^B’J, ’B’^’A’j’D’}, ’С’:{’А’,’С’},
’D’:{’B’,’E’}, ’E’:{’A’,’D’,’F’}, ’F’: {’E’>, ’G’: {’C’}}. For this
example, calling dfs(graph,’A’,’G’) returns the list [’A’, ’C’, ’G’].

4.2. Graph Search Algorithms 151

Figure 4.2. An example of a BFS to find a path from A to F in an undirected
graph. First the nodes nearest to A are visited: В, C, and E. Then the nodes that
are two steps away are visited: D, G, and finally F.

4.2.2 Breadth-First Search
BFS is very similar to DFS, except it first visits all the nodes adjacent to the starting
node, and then visits all the nodes that are two steps away from the starting node,
and so on. An example of a BFS is given in Figure 4.2.

From an algorithmic perspective, the only change needed to convert the DFS
algorithm into the BFS algorithm is to replace the stack S with a queue, so that the
nodes are processed in the order they arrived (FIFO). To implement this in Python,
simply change Line 12 of Algorithm 4.2 to path = S.pop(O), which pops the first
element of S instead of the last, and makes S into a queue instead of a stack.

4.2.3 BFS versus DFS
The choice of which of these two graph search algorithms to use depends on both
the graph and the question being asked. If the goal is to determine whether the
graph is connected, then every node that is connected to the starting node must be
visited, and potentially every edge examined, regardless of the algorithm used. In
this case both DFS and BFS could have complexity as bad asO(|V| + |F/|), where
|Vj is the total number of nodes and |7£| is the total number of edges. So, in this
case it does not matter much which algorithm is used.

If the goal is to find the shortest path between two nodes, then BFS is really
the only choice, because the first path found using BFS will be the shortest, while
the first path found by DFS could easily be the longest, and DFS is not well suited
to finding another, shorter path. For example, in Figure 4.1 the path from A to
E found by DFS has length 3, while the first path from A to E found by BFS (in
Figure 4.2) has length 1.

If the goal is to find whether there exists a path between two given nodes of
a graph, then both of these algorithms have worst-case temporal complexity of
O(|Vj + \E\). They both could end up visiting every other node first, before finally
reaching the target node. So for the existence-of-path problem the choice of which
algorithm to use depends on which one is most likely to avoid the worst cases for
the given graph.

152 Chapter 4. Combinatorial Optimization

VW SnURPOMS
НКЗНГ1 prepare Rr?

I) NEDKAL EtERGENCY

OKAY, WHAT KINDS OF

EMERGENCIES CAN HAPPEN?

i) A) SNAKEBITE
B) LIGHTNING 5Л?|КЕ
ф FaLLFRCM CHAP

НЛМ. which snakes are
DANGEROUS? LETS SEE...

DAMPft?Da)<£) Corn snake ?
b) GARTER SNAKE ?
c) COPPERHEAD

THE RESEARCH WFAR1NG
SNAKE VOWS 1$ SCATTERED
AND INCONSISTENT: Til HAKE

A ^READSHEETTb ORGANIZE IT.

O,О
о-

TH HERETO PICK BY(До,THE INLAND
YOU UR YOU*E TAlRAN HASMIWJE5T
NOT DRESSED? VENOH OFftjy SNAKE’

X RE/UY HEEDTOSTbP
USHo DEPIH-ARSTJEA^HES.

Figure 4.3. Some potential problems with DFS. Source: XKCD, Randall Munroe,
http: //xkcd. com/ 761/

The DFS algorithm is generally most effective for graphs where the target node
is likely to be far from the start. It also tends to perform better when the available
memory is limited relative to the size of the graph. The BFS algorithm is generally
better when the target node is likely to be near the starting node and sufficient
memory is readily available.

4.2.4 Shortest Path via Dijkstra’s Algorithm
It is often useful to attach a weight to each edge of a graph. For example, these
weights could represent physical lengths if the nodes represent locations on a map
and the edges represent roads between them. Or they could represent costs associ­
ated to traversing the edge, if the graph represents a utility network, and some edges
have more capacity or lower cost than others. See Figure 4.4 for an example of a
weighted graph. In this section we always require that the weights be nonnegative.

The BFS algorithm finds the shortest path between two nodes if all the edges
have the same weight, but now we want to extend to the case that edges have differ­
ent weights. Dijkstra’s algorithm is the canonical method for finding the minimal-
weight path from a given starting node to a given target node in a weighted directed
graph. It can also be easily adapted to find the minimal-weight path to every node
in the graph from a given starting node.

4.2. Graph Search Algorithms 153

Figure 4.4. An example of a weighted graph, where each edge has a nonnegative
weight. In this figure the weights all happen to be integers, but the algorithms of
this section work for any nonnegative real weights.

Dijkstra’s algorithm is essentially a weighted variant of the BFS, but nodes
are visited in a locally minimizing way. Thus it is a greedy algorithm, but it is
still guaranteed to give the optimal solution. The key to Dijkstra’s algorithm is the
Bellman optimality principle: any segment of a shortest path is itself a shortest path.
The main idea uses this principle to do a sort of bottom-up dynamic programming,
computing the minimal distance to nodes, one after another, until reaching the
desired target.

The minimal distance to the starting node s is, of course, 0. Proceed now to the
nodes that are adjacent to the starting node, noting that the minimal path between
the starting node and a target node t must pass through one of these adjacent nodes.
Let v be the node adjacent to s that has the smallest weight w(s, u). There can be
no shorter path from s to v because the first step of any path must pass through one
of the adjacent nodes and hence must have weight at least w(s,u). So the optimal
path to v has weight 0 + w(s, u). Now repeat the process with the collection of all
the nodes adjacent to either s or v (but not including s and u). Continuing in this
way eventually gives the optimal path from s to the target node t.

The main data structure used in Dijkstra’s algorithm is a priority queue Q
containing all the nodes whose optimal path has not yet been found, prioritized
by the length of the current shortest path to those nodes. In detail, the algorithm
proceeds as follows: For each node и set d(u) = oo, except for the starting node s,
which is set to 0. The value of d(u) represents the length of the shortest path found
so far from s to u. Push the node s onto the priority queue Q with priority d(s).
Repeat the following steps until the minimal path is found or Q is empty. Pop the
minimal element off of Q, and call this v. Because it is minimal, the optimal path to
v has been found. If v is the target node, we are done. If not, then for each neighbor
и of v whose optimal path has not been found, check whether d(y) + w(v, u) < d(u),
where w(y,u) is the weight of the edge from v to u. If the inequality holds, then
set the predecessor of и to v, update d(u) = d(y) + w(v, u), and push и onto Q with
priority d(u). Repeat the process, popping the next minimal element off Q and
evaluating its neighbors. If Q has no remaining nodes to pop, then there is no path
from s to t.

If the node и is already in Q, the last step of the iteration, pushing и onto Q
with priority d(u), means that Q has multiple copies of и with different priorities. In
all future steps of the algorithm the copy with the lowest value of d will be popped
first, so the other copies do not interfere with the identification of the best value of
d(u), but some copies of и could be popped off Q before all the nodes have been

154 Chapter 4. Combinatorial Optimization

processed. These should be discarded once the first copy of и has been processed.
Alternatively, if the priority queue also has an efficient method for updating the
priority of an existing node, then instead of pushing a new copy of и onto Q, we
could just update the priority of и in Q.

The optimal path from s to t is recovered by working backward from t by identi­
fying its predecessor and then the predecessor of the predecessor, and so forth until
reaching s. An implementation of the algorithm in Python is given in Algorithm 4.3.

Remark 4.2.4. If every edge in a graph has the same weight, then Dijkstra’s
algorithm traverses the edges in the same order as the BFS.

Example 4.2.5. We use Dijkstra’s algorithm to find the shortest path from
A to E in the graph in Figure 4.4. Throughout this example, nodes that have
been processed are green, while those still in the priority queue Q are white.

The algorithm is initialized with every
node и having priority d(u) = oo, except
the starting node A, which has d(A) = 0.

Node A is popped off Q. Distances be­
tween A and its neighbors are updated, giv­
ing d(B) = 6, d(C) = 1, and d(D) = 2.
These nodes are pushed onto Q with prior­
ities given by d.

Node C is popped off Q. The priority of D
remains unchanged because d(D) < d(C) +
w(C,D).

Node D is popped off Q. The priorities
of В and E are updated to d(B) = 3 and
d(E) = 7, and these are pushed onto Q.

Node В is popped off Q. The priority of E
is updated to d(E) = 5 (and E is pushed
onto Q with this priority).

4.2. Graph Search Algorithms 155

Node E is popped off Q. The minimum
distance between A and E is 5.

The path can be reconstructed by stepping back through the predecessors,
which can be stored for each node and updated at each step when the priorities
are updated. For our example, they are E В <— D A.

Example 4.2.6. An implementation of Dijkstra’s algorithm in Python is
given in Algorithm 4.3. In that implementation the graph graph is given as a
dictionary of dictionaries, where the outer dictionary maps nodes to neighbors
and the inner dictionary maps nodes to weights. For example, we could let
graph = {’A’:{’B’:6, ’D’:2}, ’C’:{’D’:2},
’ D ’: {’ В ’: 1, ’ E ’: 5}, ’ E ’: , corresponding to the graph in Figure 4.4 and
Example 4.2.5. Calling dijkstra(graph, ’A’, ’E’) returns (5, [’A’, ’D’,
’В’, ’E’]).

Theorem 4.2.7. On a finite, weighted directed graph G, Dijkstra’s algorithm al­
ways terminates, and if there is a path from the start to the target, Dijkstra’s algo­
rithm returns the shortest path.

Proof. The algorithm always terminates because each vertex v can be added to
the queue Q only when an edge into v is processed, and each edge is processed only
once, so the maximum number of entries in Q is the number \E\ of edges in G,
which is finite.

We prove by induction on the number к of visited nodes (remember that dupli­
cates are discarded, not revisited) that the following hypotheses hold:

(i) If v is the node currently being visited, then the shortest path to v has length
d(v).

(ii) For every unvisited node u, the shortest path to и passing only through the
visited nodes has length d(ufi if such a path exists at all. If no path exists,
then d(u) = oo.

If к = 1, then only the starting node has been visited, and the hypotheses are
clearly true. Assume the hypotheses hold for the first к nodes visited, and let v be
the fcth node visited. Denote the next node to be visited as u, so d(u) < d(x) for
every other unvisited node x.

If there is a path P to и that has length less than d(u), then by (ii) P must
contain at least one other unvisited node. Let у be the first unvisited node in P.
By hypothesis the shortest path to у passing only through visited nodes has length
d(y). But this implies that the length of the subpath of P from the start to у must

156 Chapter 4. Combinatorial Optimization

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

from queue import Priority-Queue
from math import inf # Infinity

def dijkstra(graph,s,t):
""" Find shortest path from s to t in 'graph', where
'graph' is a diet mapping each node to a diet mapping
neighbors to weights,
и и и

Initialize.
Q = PriorityQueueO
Q.put((0,s)) # Start Q with only s
pred = О # Dictionary of predecessors
finished = set()
d = {u:inf for u in graph.keys()} # Dictionary of distances
d[s]=0

Iterate through the nodes in Q.
while not Q.emptyO:

(_,v) = Q.getO
if v == t: break # Success!
elif v in finished: continue # v was already done
else:

finished.add(v)
for u in set(graph[v])-finished: # Unfinished nghbrs

if d[v] + graph [v] [u] < d[u] :
d[u] = d[v] + graph [v] [u] # Update dist to u
pred[u]=v # Update predecessor of u
Q.put((d[u],u)) # Push (d[u],u) onto Q

Build the optimal path, from t back to s
path = [t] # Start at t
while path[-l] != s:

path.append(pred[path[-1]]) # Add predecessor to path

return d[t] , path[::-l] # Invert path to return it forward

Algorithm 4.3. Implementation of Dijkstra’s algorithm in Python to find the
shortest path from vertex s to vertex t in a weighted graph graph. Here graph
is given as a dictionary of dictionaries, where the outer dictionary maps nodes to
neighbors and the inner dictionary maps nodes to weights. Example 4’2.6 gives
details on applying this code to the graph in Figure 4-4 and Example 4’2.5.

4.3. Minimum Spanning Trees 157

be at least d(y), and hence the length of P must be at least d(y). Since и was the
next unvisited node to visit, and у is also unvisited, we have d(y) > d(u), which is a
contradiction. Therefore the shortest path to и must have length d(u). This shows
that (i) holds.

Finally, after visiting u, and given any node x in the graph, if the shortest path
to x containing only visited nodes passes through w, then x is adjacent to и and
that path has length d(u) + w(u, x). If that path does not pass through u, then,
by the induction hypothesis, it was already found before visiting и and has length
d(x) < d(u) + w(u, x). Thus (ii) holds. □

The temporal complexity of Dijkstra’s algorithm is dominated by the cost of
the priority queue operations. Let |7*7| denote the total number of edges in the
graph and | Vj the total number of vertices. There are at most |7£| + 1 inserts
of new elements into Q, contributing O(|£j log(|£j)) to the temporal complexity.
Moreover, the algorithm requires pop_min for each node in Q, including possible
duplicates, for a total of up to |7*7| + 1 calls to pop.min, each of cost O(log(|£j)),
for a total complexity of O(|£j log(|£j)). Note that |F/| < (^) < |Vj2, and, if the
graph is connected, then we also have | Vj — 1 < |7£|. Therefore, log(| V| — 1) <
logd^l) < 2log(|Vj), so we can also write the complexity of Dijkstra’s algorithm as
O(|E\ log(| Vj)). One can also implement the priority queue with a specialized data
structure called a Fibonacci heap which reduces the overall complexity of Dijkstra’s
algorithm to O(|£j + | Vj log(| Vj)).

4.3 Minimum Spanning Trees
A spanning tree is a subgraph of an undirected graph that is a tree and contains
all vertices. For example, if the graph represents all the potential connections that
could be made to provide electricity to customers, then a spanning tree represents
a way to make a connection to every customer without any loops (cycles) in the
network. A minimum spanning tree (MST) is a spanning tree in a weighted, undi­
rected graph that minimizes the total weight of the edges in the tree. For example,
in a utility network an MST would represent a network that reaches every customer
for the least cost. A graph may have many spanning trees (as shown in Figure 4.5)
and even many MSTs.

Figure 4.5. A weighted graph (left) and two spanning trees (center and right). The
tree in the center has weight 96 and the tree on the right has weight 93. Is there a
spanning tree for this graph of weight less than 93 ?

158 Chapter 4. Combinatorial Optimization

4.3.1 Prim's Algorithm
Prim’s algorithm is a greedy algorithm for finding an MST. At each stage it adds
the shortest edge that connects a node in the existing tree to a node that is not
in the tree. But despite the fact that the algorithm only looks for these locally
minimal edges, the tree it produces actually gives a global minimum.

As with Dijkstra’s algorithm, the main data structure used in Prim’s algorithm
is a priority queue Q, consisting of nodes adjacent to, but not contained in, the
current tree, ordered by the length (weight) of the edge connecting the node in Q
to a node in the tree. We also need to repeatedly identify which nodes have already
been processed, so we put each processed node into a set V.

The algorithm is initialized as follows: For each node и set d(u) = oo. Choose
an arbitrary starting node s and set d(s) = 0. Push node s onto Q with priority 0.
Also set V and E to be empty sets.

As long as Q is not empty, repeat the following steps. Pop the minimal element
off of Q. If it is in V, discard it and keep popping elements off Q until getting one,
call it v, that is not in V. Insert v into V. If the predecessor p of v exists, then add
the edge (p, v) into E. For each neighbor и of v that is not in V, let w(v, u) be the
weight of the edge from v to u. If w(v,u) < d(u), then set the predecessor of и to
v, update d(u) tow(t’,u), and push и onto Q with new priority d(u) (or update the
priority of и in Q).

Once Q is empty, the main algorithm is finished. The MST is recovered as the
graph whose nodes are in V and whose edges are in E. If V is not all the nodes of
G, the graph is not connected. An implementation of the algorithm in Python is
given in Algorithm 4.4.

Example 4.3 .1. We use Prim’s algorithm to find an MST for the leftmost
graph in Figure 4.5. Nodes that have been processed are green, while those
which have not been processed are white. Edges that are in the current tree E
are orange, those that are predecessors of some node but are not yet confirmed
members of the tree are green. Nodes that have been processed but are not
predecessors of any node are grayed out.

Initialize by choosing an arbitrary starting node (in this case H) and setting
d(H) = 0 and d(u) = oo for every other node u. Put H in priority queue Q.

Pop H off Q and update the neigh­
bors to give d(A) = 13, d(G) = 14
and d(E) = 15. Push each of these
onto Q, and set the predecessor of
each to H. indicated by the green
edges.

4.3. Minimum Spanning Trees 159

Pop A off Q and add the edge to its
predecessor H to the tree (orange).
Update the neighbors of A to give
d(B) = 12, d(D) = 16 and push
these onto Q. Set the predecessor
of each of these to A.

The rest of the steps are similar and are displayed here in sequence.

Example 4.3 .2. An implementation of Prim’s algorithm in Python is given
in Algorithm 4.4. In that implementation, as in Algorithm 4.3, the graph
graph is given as a dictionary of dictionaries, where the outer dictionary
maps nodes to neighbors and the inner dictionary maps nodes to weights.
The graph in Example 4.3.1 is stored as graph = f’H’:{’G’:14, ’A’: 13,
’E’:15}, ’G’:{’H’:14, ’B’:14, ’F’:15}, ’F’:{’G’:15, ’C’:14, ’E’:14},
’E’:{’H’:15, ’D’:13, ’F’:14}, ’D’:{’C’:12, ’A’:16, ’E’:13},
’C’:{’D’:12, ’B’:16, ’F’:14}, ’B’:{’G’:14, ’A’:12, ’C’:16},
’A’:{’H’:13, ’B’:12, ’D’:16}}.

Running prim (graph) returns the edges (and lengths) of an MST and the
total length of the tree: {(’A’, ’H’): 13, (’B’, ’A’): 12, (’G’, ’H’):
14, (’E’, ’H’): 15, (’D’, ’E’): 13, (’O’, ’D’): 12, (’F’, ’E’): 14},
93

160 Chapter 4. Combinatorial Optimization

2
з
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

from queue import Priority-Queue
from math import inf

def prim(graph):
Construct a minimum spanning tree of 'graph'.

Initialize.
s = next(iter(graph)) # Arbitrary starting node
Q = PriorityQueueO
Q.put((0,s)) # Start with only s on Q
pred = О # Diet of predecessors
V = setO
E = О
d = {x:inf for x in graph.keys()} # Dist: node to tree
d[s] =0

#Build the MST by iterating through nodes in Q
while not Q.emptyO:

(_,v) = Q.getO
if v in V: continue # v was already done, retry.
V.add(v)
if v in pred: # If v has a predecessor

E[(v,pred[v])] = graph [pred [v]] [v] # Add edge
for u in set(graph[v])-V: # Neighbors of v not in V

if graph [v] [u] < d[u] : # If wt(u,v) < old dist
pred[u] = v # Update predecessor of u
d[u] = graph [v] [u] # Update dist from u to tree
Q.put((d[u] ,u)) # Push (d[u] ,u) onto Q

return E, sum(x for x in E.values()) # Edges of MST & length

Algorithm 4.4. Implementation in Python of Prim’s algorithm to find an MST in
a weighted, undirected graph graph. As in Algorithm J^.3, the graph graph is given
as a dictionary of dictionaries, where the outer dictionary maps nodes to neighbors
and the inner dictionary maps nodes to weights.

Theorem 4.3.3. Prim’s algorithm applied to a finite, connected, weighted graph G
always terminates and returns an MST.

Proof, We continue with the same notation used in the description of the algorithm,
but we denote the queue Q and the sets V and E at the fcth stage of the algorithm
by Qk, Vk> and Ek, respectively. Let Tk be the subgraph of G consisting of the edges
Ek and the nodes defining those edges. The algorithm always terminates because
each vertex v can be added to the queue Q only when an edge into v is processed,
and each edge is processed only once, so the maximum number of entries in Q is
the total number of edges in G, which is finite.

4.3. Minimum Spanning Trees 161

We first prove by induction that Prim’s algorithm returns a tree. The induction
hypothesis is that after the A;th step, the subgraph forms a subtree of G. The
initial hypothesis is trivially true since E± = 0 contains no edges and hence Ti has
no cycles. At stage к + 1, the next edge to be added connects the existing tree
Tk to a node that is not in E^ and thus there can be no cycles in the new graph.
Therefore the result Tk+i returned by Prim’s algorithm is a tree. By induction, the
terminal tree T contains all the vertices of G and is thus a spanning tree.

We have shown that a spanning tree must exist. Since the graph is finite, there
must be an MST. Let T be an MST of G. Order the vertices of G by when they
were visited by Prim’s algorithm in the construction of T. Let v be the first vertex
such that the edge e of T from the previous vertex и to v is not in T, and assume
that v was the A;th vertex added to T by the algorithm. Let Тк_± be the subtree
generated by Prim’s algorithm up to step к — 1, that is, including и but not v.

Let P be a path in T connecting и to v, and let e be an edge in P that is
not in Zfc-i but has one vertex in Tk-i. Construct a subgraph T of G from T by
replacing edge e in T with edge e. We claim that T is also an MST. To see that T is
connected, first note that adding edge e to the path P makes a cycle, and removing
the edge e = (u, b) from that cycle gives a path P from a to b that lies in T. Now
pick any two vertices x and у. Let P be the path in T that connects them. If e P,
then P is also in T. If e E P, then form a walk W in T by replacing e in P with P.
The walk W lies in T and connects x to ?/, hence T is connected.

The total weight of T is less than or equal to that of T because any difference in
weight can only be due to the edge e, but was chosen by Prim’s algorithm at stage
к instead of e, so w(e) < w(e). The tree T is an MST, so the weight of T cannot be
less, therefore it must be the same as that of T. Finally, we note that T is a tree.
If it weren’t, then it would have an MST which would have fewer edges and, hence,
less weight than T. This is a contradiction to the fact that T is an MST. Thus, T
is a tree, and therefore an MST of G.

The new MST T has one more edge in common with T than T did. Repeating
this process of constructing a new MST closer to T eventually gives an MST that
is equal to T. Therefore T is an MST of G. □

The analysis of Prim’s algorithm is similar to Dijkstra’s. If a binary heap is
used for the priority queue, then the temporal complexity of Prim’s algorithm is
O(|P| log |P|). If a Fibonacci heap is used, then temporal complexity of Prim’s
algorithm is O(|P| + |V| log |V|).

4.3.2 Kruskal's Algorithm

The other standard algorithm for finding an MST of a undirected weighted graph
is called Kruskal’s algorithm, which we describe here only briefly. It is also greedy,
and it works by choosing edges one at a time from lowest weight to highest weight
and discarding the edge if the resulting graph has a cycle. The algorithm terminates
when all the edges are either added to the subgraph or discarded. The resulting
subgraph is connected with no cycles (and is therefore a tree) and by construction
has the lowest possible total weight. Therefore, it is an MST.

162 Chapter 4. Combinatorial Optimization

Example 4.3.4. We use Kruskal’s algorithm to find an MST for the leftmost
graph in Figure 4.5. Edges that are in the priority queue are black. Those
that are added to the tree are orange, and those that have been discarded are
grayed out. The algorithm steps through as follows:

The final three black edges can also be grayed out, since the final orange
subgraph is already an MST.

Kruskal’s algorithm can also be made to run in O(|E| log \E\) time. It tends to
do better than Prim’s algorithm when the graph is sparse.

4.4 Huffman Encoding
In the first half of the 19th century, the invention of the telegraph changed the world.
Communications that had previously taken days, weeks, or even months through
the mail service became nearly instantaneous, with the main bottleneck being the
human operators who sent, received, and relayed messages. By the second half of
the 19th century, a transatlantic cable connected North America and Europe.

Across the world, telegraph messages were sent and received through Morse
code, a system of dots and dashes used to encode letters and numbers. Telegraph

4.4. Huffman Encoding 163

a •—
b —•••

j
к

•---- s •••
t

c —• 1 u
d m — V ••• —
e • n —• w •----
f 0 — x —
g —• P •----• у
h •••• q ----•— z----• «
i •• r 0 ------

1 •--------
2 ••------
3 •••—
4 ••••—
5 •••••
6 —••••
7 —•••
8 ••
9 ---------•

Table 4.1. Morse code chart. Note that each codeword ends with a space, and a
space may occur only at the end of a codeword.

operators were able to send and receive messages at rates of 20 to 80 words per
minute. This was the primary mode of long-distance and maritime communication
for over 100 years, used even into the latter part of the 20th century.

Morse code has a built-in efficiency, some of the most commonly used letters
having the shortest code and less used letters having longer codes. For example,
the letters E and T are, respectively, a single dot and a single dash, whereas Z is two
dashes and then two dots. For a chart of the entire coding scheme, see Table 4.1.

In this section, we discuss how to create efficient encodings, given knowledge
of the relative frequencies of the symbols being encoded. This allows more effi­
cient transmission and storage of information. The most efficient of these encoding
methods is called Huffman encoding.

4.4.1 Introduction to Coding

Encoding is the process of mapping a source alphabet S' to a set C of codewords,
formed by combining strings from a code alphabet A. For example, in Morse code,
the source alphabet is alphanumeric (letters and numbers used in the English lan­
guage), and the code alphabet is dots, dashes, and pauses (spaces). The codewords
are the sequences of dots and dashes used to form the alphanumeric letters, and
pauses go between codewords, as described in Example 4.4.1.

Example 4.4 .1. Morse code is a map f from the source alphabet

S = {a, 6, с,..., 2,0,1,2,..., 9}

to a collection of codewords constructed from the code alphabet consisting of
three code letters: •, —, and “space.” Each codeword ends with a space, and a
space may not appear anywhere else in any codeword. For example, the map
sends the source letter a to the codeword •— (including the trailing space).
The full map is given in Table 4.1.

164 Chapter 4. Combinatorial Optimization

Example 4.4 .2. Let S = {a, b, c, d,..., z} and C = {01, 02, 03,..., 26}, with
the obvious mapping a 01, b i—> 02,..., z i—> 26 as the (bijective) encoding.
In this encoding scheme, the word acme maps to the code 01031305.

Definition 4.4.3. An encoding scheme (sometimes just called a code) is a bijective
map f : S —> C from a source alphabet S to a set C of codewords constructed from
some code alphabet A.

Remark 4.4.4. The terms alphabet and letters for the set S may be misleading.
The elements of S need not be traditional letters—they could just as well be Chinese
characters, Egyptian hieroglyphics, English words, or entire English sentences.

A desirable property of an encoding scheme is that it be uniquely decipherable,
meaning that we can uniquely reconstruct any source string from its encoded form.
Codes that are not bijective cannot be uniquely deciphered, but unless we have a
way of distinguishing the end of one encoded letter from the beginning of the next,
even bijectivity is not necessarily enough, because two different source strings could
still be mapped into the same codeword.

Unexample 4.4.5. Let S = {a, b, c, d,..., z} and C = {0,1,2,..., 25}, with
the mapping a i—> 0, b 1,..., z i—> 25. The word "RAT” maps to 17019, and
"BHABJ” also maps to 17019; thus this encoding is not uniquely decipherable.

Another common expectation, stronger than unique decipherability, is that a
code be instantaneous^ so that a string can be decoded as soon as a codeword
is received, rather than needing to wait for more of the message to be received
before decoding it. Clearly if a code is not uniquely decipherable, it cannot be
instantaneously decipherable.

Unexample 4.4.6. Let S — {x,y,z} and C\ = {0,01,011}, with the map­
ping x i—> 0, у i—> 01, and z i—> 011. This encoding scheme is uniquely de­
cipherable, but it is not instantaneous because the string 000101101001 does
not decipher to xxyzyxy until you get to the end of the message and then
work backward to pick off each codeword.

The next proposition provides a useful characterization of instantaneous codes.

Proposition 4.4.7. An encoding scheme is instantaneous if and only if no code­
word is a prefix of any other codeword.

4.4. Huffman Encoding 165

Proof. If any codeword f(s) is a prefix of another codeword f(sf), then upon
receiving /(s) we cannot decode it as s until we receive enough additional code
letters to recognize that f(s') was not sent instead. Therefore instantaneous codes
must have no codeword that is a prefix of any other codeword.

Conversely, if /(s) is not a prefix of any other codeword, then subsequent code­
words will not change how it is decoded, so if we can ever decode it, we must be
able to decode it as soon as it is received. □

Remark 4.4.8. Because of the previous proposition, instantaneous codes are also
often called prefix-free codes or just prefix codes.

Example 4.4.9. Let S = {x,y, z} and = {00,01,11}, with the mapping
x 00, у i—> 01, and z i-> 11. This encoding scheme is uniquely decipherable
and instantaneous. As an example, the code 00000111010001 deciphers to
xxyzyxy, and you can start deciphering the code instantaneously, as soon as
you encounter the first two digits.

The final property that we want from an encoding scheme is that it should
be efficient, that is, we want to minimize the total number of symbols used when
sending messages. This increases the amount of information that can be sent down
a channel in a given amount of time or that can be stored in a given amount of
memory. To make sense of the concept of efficiency, we need to know something
about how frequently the various source letters occur.

Definition 4.4.10. An information scheme is an ordered pair (S,P) where S is
a source alphabet and P : S —> [0,1] is a probability distribution on S (that is, for
each s e S the value of P(s) is the relative frequency with which the letter s e S
occurs or is expected to occur).

Example 4.4.11. From the words listed in the main entries of the Concise
Oxford English Dictionary, the letter e represents 11.1607% of all letters used,
and a represents 8.4966%. So in a setting where we expect to encounter
words sampled uniformly from those listed in the Concise Oxford English
Dictionary, we could define an information scheme where S is the set of letters
a through z, and the probability distribution P would have P(e) = 0.111607,
P(a) = 0.084966, and so forth.

Of course, words are not usually sampled uniformly from a dictionary—in
most settings words like the are much more common than words like avuncular.
So the dictionary-based information scheme would be a poor model for most
English text. A better model could be constructed by sampling text that is
typical of what you expect to encode.

The standard measure of efficiency of an encoding scheme is the average word
length.

166 Chapter 4. Combinatorial Optimization

Definition 4.4.12. Given an information scheme the average word length
of an encoding scheme f : S —> C is

awl(/) = 521en(/(s))P(s).
ses

(4-4)

Example 4.4.14. Given the encoding

a 01010, Ьн->00, c 10, d^ll

for the alphabet and frequency chart in the previous example, we have

40
17

Thus, this scheme is more efficient (has a shorter average word length) than
the one in the previous example, despite having one codeword that is much
longer than any codeword in the other scheme.

4.4.2 Binary Codes and Trees

One of the most common code alphabets consists of just the two symbols 1 and 0.
Any code formed with only two symbols is called binary. Any instantaneous binary

4.4. Huffman Encoding 167

Figure 4.6. Representation (as binary trees) of the instantaneous binary codes of
Examples 4-4-13 and 4-4-14- The tree on the left corresponds to the first encoding
scheme and the tree in the center to the second scheme. To decode a codeword,
begin at the root of the tree and follow the edges determined by the codeword until
reaching a leaf A more efficient encoding scheme for this information scheme is
given by the tree on the right. This last code has average word length of |y. Note
that c has the highest probability and the shortest codeword, whereas a and b have
the lowest probabilities and the longest codewords.

code can be represented by a binary tree, letting the leaves correspond to source
letters and letting edges from the nonleaf nodes correspond to the various code
letters of possible codewords. So the left and right edges out of the root correspond
to the first letter of a codeword being 0 or 1, respectively. The edges out of the
next node correspond to the next letter of the codeword, and so on. We show how
this works with the codes of Examples 4.4.13 and 4.4.14 in Figure 4.6.

4.4.3 Huffman Encoding

Huffman encoding is an algorithm for creating an instantaneous code with minimal
average codeword length. Like some of the other algorithms we have covered in this
chapter, it is an example of dynamic programming, that is, building the desired
solution out of the solution of smaller subproblems.

Codes of low average word length must use the shortest codewords possible, but
there are limited numbers of codewords of each length. Therefore, the most common
source letters must be encoded with the shortest codewords and the least common
letters with longer codewords. Additionally, once a short codeword is assigned, it
cannot be the prefix for any other codeword, further limiting the remaining available
short codewords. In spite of this apparent complexity, the Huffman algorithm is
surprisingly simple.

Begin by sorting the source alphabet in ascending order by frequency (or proba­
bility). These form the leaves of the tree. Create a parent of the two least frequent
leaves and give the new node a weight equal to the sum of the frequencies of the
children. Now repeat the process: reorder all parentless nodes by frequency, create
a parent for the two least frequent nodes, and set the weight of the parent equal to
the sum of its children. Continue until there is a unique root.

168 Chapter 4. Combinatorial Optimization

Example 4.4.15. Consider the source alphabet S = {a, 6, c, d, 1, 2}. Assume
the following frequencies:

Symbol Frequency
a 0.35
b 0.10
c 0.19
d 0.25
1 0.06
2 0.05

0.05 0.06 0.10 0.19 0.25 n oc Form a leaf node for each letter 0.35©of the source alphabet and sort
the leaves by increasing weight.

0.10 0.11 0.19 0.25 0.35 Give the first two leaves a par­
ent with weight equal to the
sum of its children. Then re­
order by increasing weight.

Again, create a parent for the
two lowest-weight nodes and
give it a weight equal to the
sum of its children. Then re­
sort by increasing weight.

0.25

Repeat this process for several
more iterations.

4.4. Huffman Encoding 169

Finally, only one parentless
node remains (the root) and we
have the completed tree.

The encoding scheme given by this tree is

b 010, c 00, dH>10, 1 i—> 0111, 2^0110.

The average word length of this code is

awl = 2(0.35) + 3(0.10) + 2(0.19) + 2(0.25) + 4(0.06) + 4(0.05) = 2.32.

Remark 4.4.16. At each stage of the algorithm, there is a choice about which
child to put on the left and which to put on the right. The length of each codeword
for each of the resulting codes is independent of these choices, and these could be
considered equivalent codes, even if they appear very different.

Implementation

The Huffman algorithm can be implemented with a priority queue consisting of the
parentless nodes, ordered by weight (frequency). Each step consists of two pop_min
operations, creation of a new parent node (constant time) and an insertion into the
queue. Thus the temporal complexity of the algorithm is O(nlogn) for a source
alphabet of n letters. But the temporal complexity of this algorithm is often not
very important because the alphabets involved are typically small.

Once the code is constructed, information can be encoded rapidly by looking up
the codeword for each letter in a table, and codewords can be decoded rapidly by
traversing the code’s binary tree.

Example 4.4.17. A very common way to store text is in the ASCII format,
which uses 7 bits per letter. To store the string MISSISSIPPI in ASCII
requires 77 bits. Huffman encoding for this word produces the code S H> 0,
I 10, P 110, and M 111. With this code we can rewrite MISSISSIPPI
as 111100010001011011010, which is only 21 bits. This is roughly 27% of the
ASCII 77 bits.

4.4.4 *Huffman Encoding Is Optimal
In this section we prove the following theorem, showing that Huffman encoding is
optimal.

170 Chapter 4. Combinatorial Optimization

Theorem 4.4.18. The Huffman algorithm produces an instantaneous binary code
with minimal average word length.

The first steps in the proof of Theorem 4.4.18 are given in the following lemmata.

Lemma 4.4.19. The average word length of an instantaneous binary code with a
corresponding binary tree T is given by

awl(T) = ^2 PW depth(£),
I

where the sum runs over leaves £ ofT, where P(f) denotes the probability (frequency)
of the leaf £ and where depth(^) denotes the depth of £ in the tree.

Proof. The leaves of T are exactly the letters of the alphabet of S. The depth of
the leaf in the tree is the number of edges lying between the leaf and the root, and
this is exactly the length of the corresponding codeword for that leaf. □

Lemma 4.4.20. IfT is a binary tree defining an encoding of average word length
a, and if T' is a tree obtained from T by swapping the position of two leaves x and
y, then

awl(T) — awl(T') = (depthT(rr) — depthT(?/))(F(;r) — F(t/)). (4.5)

Proof. First note that we have depthT,(a;) = depthT(?/) and depthT,(?/) =
depthT(rr). Moreover, the sums awl(T) and awl(T') are identical except for the
terms involving x and y. Thus we have

awl(T) — awl(T') = depthT(#)F(;r) + depthT(?/)F(?/)
— (depthT/(rr)F(;r) + depthT/(?/)F(?/))

= (depthT(z) - depthTQ/))(F(j;) - P(yf). □

Lemma 4.4.21. There exists an optimal tree such that two leaves with lowest
frequency are siblings and are at greatest depth among all leaves in T.

Proof. Given an optimal tree T, we create a new optimal tree having two leaves
with lowest frequency that are siblings.

Denote the two leaves with the lowest frequency as a and b. If there are more
than two such leaves, let a and b be two of lowest frequency with the greatest depth
among all lowest-frequency leaves in T.

If a and b are already siblings, they must be at the greatest depth among all
leaves in T because if not, swapping a with a leaf at greater depth would reduce
the average word length of Г, so T could not be optimal.

If a and b are not siblings, assume (without loss of generality) that depthT(a) >
depthT(6). This implies that F(u) < P(b), because if not, swapping a with b in the
tree would, by (4.5), produce a new tree with strictly smaller average word length,
and T would not be optimal. Since a and b have the lowest frequencies, we may
assume that F(u) < P(x) for all x e T.

4.4. Huffman Encoding 171

We claim that depthT(a) > depthT(a?) for every leaf x in T. To see this, assume
the contrary. We cannot have P(a) = P(x) because a was assumed to have the
greatest depth of all minimal-frequency leaves. Therefore, P(a) < P(x). Let T'
be the tree obtained by swapping a and x. By equation (4.5), we have awl(T) >
awl(T'), which contradicts the optimality of T. Thus depthT(a) > depthT(rr) for
every leaf x in T.

The leaf a cannot be an only child, because if it were, removing its parent from
the tree (attaching a to its grandparent) would reduce the average word length of
T, and T would not be optimal.

Therefore, a must have a sibling c, and by assumption P(6) < P(c). Let T'
be the tree created from T by swapping b and c, so that a and b are siblings.
Equation (4.5) gives awl(T) > awl(T'), but the optimality of T guarantees that
awl(T) = awl(T'), so T' Is also optimal. □

Lemma 4.4.22. Let T be a tree (not necessarily optimal) for the information
scheme (S, P) with minimal-frequency leaves a and b that are siblings at the greatest
depth. Let T' be the tree obtained by removing a and b from T and assigning the
frequency P(a) + P(6) to their parent c, so that T' is a tree for the information
scheme (S\P'), where S' = (S' U {c}) \ {a, b}, and P'(x) = P(x) if x c and
P'(c) = P(a) + P(6). We have

awl(T) = awl(T') + P(a) + P(6). (4.6)

Proof. We have

awl(T) = depthT(a;)P(a;)
xES

= depthT(a)P(a) + depthT(6)P(6) + depthT(rr)P(:r)
xGS \ {a,b}

= depthT(a)(P(a) + P(6)) + depthT(#)P(;r)
xES \ {a,fe}

= (depthT(c) + l)(P(a) + P(6)) + depthT(;r)P(rr)
xesf \ {c}

= (P(a) + P(6)) + depthT(:r)P(rr)
xES'

= (P(a) + P(6))+awl(T'). □

Proof of Theorem We induct on the size n = |S| of the source alphabet S.
The induction hypothesis is that the Huffman algorithm applied to any information
scheme with source alphabet of size n produces an optimal code for that information
scheme.

This is trivial in the case that n = 1. Assume now that the induction hypothesis
holds for all information schemes with |S| < k. Let H be a tree constructed by
the Huffman algorithm for an information scheme (S, P) with |S| = к + 1. By
construction, H has two lowest-frequency leaves a and b that are siblings and are
at the greatest depth.

172 Chapter 4. Combinatorial Optimization

By Lemma 4.4.21, there exists an optimal tree T for this information scheme
such that two lowest-frequency leaves a' and b' are siblings and are at the greatest
depth. Since {a, b} and {a', b'} are both lowest frequency in S, we may swap a with
af and b with b' in the optimal tree T without changing its average word length;
therefore we may assume that the two lowest-frequency siblings at greatest depth
in T are a and b.

Removing a and b from T gives a tree Tf for the information scheme (5', P'), as
in Lemma 4.4.22, so that

awl(T) = awl(T') + P(a) + P(6).

Let Hf be the tree constructed (as in Lemma 4.4.22) by removing a and b from P,
so that we have

awl(P) = awl(P') + P(a) + P(6).

Note that Hf is constructed by the Huffman algorithm for the information scheme
(5',P'), and so, by the induction hypothesis, H' must be optimal. Therefore
awl(P') < awl(T'), and hence

awl(P) = awl(P') + P(a) + P(6) < awl(T') + P(a) + P(6) = awl(T).

Since T is minimal, H must also be minimal. □

Remark 4.4.23. Given a source alphabet and the frequency of each symbol, Huff­
man encoding provides a scheme that has the smallest average word length. How­
ever, there are compression and encoding concepts that go beyond Huffman encod­
ing. For example, the optimality of Huffman encoding assumes that each symbol
in the source alphabet is independently drawn from a distribution, when in reality,
there’s a strong statistical dependence between letters in a given language. For
example, in English q is almost always followed by и, and taking advantage of these
dependencies opens the door to further efficiencies.

4.5 Hard Problems
So far we have mostly focused on algorithms that run in polynomial time, that is,
algorithms that, given an input of size n, have a worst-case temporal complexity of
O(nk) for some fixed k. The class of all problems for which there exists a polynomial­
time solution is denoted P. But, of course, not all problems can be solved in
polynomial time. For some problems we can actually prove there is no polynomial­
time algorithm that solves the problem. For other problems, no one knows whether
a polynomial-time algorithm exists. In this section we briefly and informally discuss
some of the various types of these problems and give some examples.

A large class of interesting and important problems are those for which there
exists a polynomial-time algorithm to check any proposed solution to see whether
it really is a solution. For such problems there might not be a polynomial-time
algorithm to find a solution, but there is a polynomial-time algorithm to check
whether a given candidate is a solution. The class of all such problems is denoted

4.5. Hard Problems 173

NP, short for nondeterministic polynomial time.22 Of course any problem in P
also lies in NP, because if we can find all the solutions in polynomial time, then
given any proposed solution, we can verify it by computing the actual solutions and
comparing them to the proposed solution. Thus we have P C NP.

22 More formally, NP is the class of all problems for which proposed solutions can be verified as
correct in polynomial time by a nondeterministic Turing machine. Since the goal in this section
is just to give a quick overview of the subject, we do not go into careful detail about Turing
machines and the formal theory of computation related to these problems.

Example 4.5.1. One NP problem that is not known to be polynomial is the
problem of finding a Hamiltonian path in a graph, that is, finding a path in a
graph that visits every vertex exactly once.

Given a path, it is easy to verify whether the path does indeed visit every
vertex exactly once. To do this traverse the path and keep track of how many
times each vertex is visited. If any vertex is visited more than once, or if any
vertex is not visited, reject the candidate path, and otherwise accept it. This
verification algorithm takes only O(n) steps in a graph with n vertices, so this
problem is in NP. But there is currently no known algorithm for finding a
Hamiltonian path in polynomial time.

A natural question to ask is whether there are any problems in NP that are not
in P. At the time of this writing, the question is one of the Clay Math Institute’s
millennium problems, and an answer to the question, with a proof of correctness,
will win you a prize of one million dollars.

As a first step to attack this problem, we consider the class of NP-hard problems.
A problem X is NP-hard if any problem in NP has a polynomial-time reduction
to X. That is to say, given any problem Y E NP there is an algorithm f solving
У, where f consists of a polynomial number of standard computational steps and a
polynomial number of calls for a solution of X. An NP-hard problem need not be
in NP, but it is at least as hard as any NP problem.

Nota Bene 4.5.2. Beware that the abbreviation NP stands for nondetermin­
istic polynomial. It does not mean “not polynomial.” In fact, all polynomial
problems are in NP, and the million-dollar question is whether there are any
problems in NP that are not polynomial.

Nota Bene 4.5.3. The name NP-hard is misleading. NP-hard problems are
not necessarily hard to solve for moderately sized inputs. The initial growth
of the problem may not be very fast, so that for smaller inputs, solutions to
an NP-hard problem can sometimes be very computable. The word hard in
this context means, roughly speaking, at least as hard as any NP problem
once the size of the inputs is large enough.

174 Chapter 4. Combinatorial Optimization

Conversely, polynomial problems are not necessarily easy. A problem that
can be solved in <9(n1561600) is in P, but it is uncomputable in essentially
all circumstances. An algorithm in 0(1) does not grow in complexity as the
input size grows, but its constant complexity could be so large as to make the
solution uncomputable for all inputs.

An especially interesting subset of the NP-hard problems is the set of NP-
complete problems. These are problems in NP that are also NP-hard. So a proof
that any one of these is in P would show that P = NP. Later in this section
we discuss some problems that are known to be NP-complete (but, of course, they
might also still be contained in P). Two possible Venn diagrams depicting these
relations are shown in Figure 4.7.

Figure 4.7. Two possible Venn diagrams depicting the relations among P, NP,
NP-complete, and NP-hard. The left diagram depicts the situation if P NP.
The right diagram depicts the situation ifP = NP.

4.5.1 Knapsack Problems
One class of combinatorial optimization problems that are known to be NP-hard
is the class of knapsack problems. The basic idea is that we are given a collection
of objects from which to load a knapsack. The goal is to choose the combination
of objects to put in the knapsack that will have the greatest value, given various
constraints (for example, the total weight of the objects can’t be more than a certain
amount, or the total volume can’t be more than a certain amount, or we can only
take at most a certain number of each item).

In one basic form of the knapsack problem, we are given a list of values ui,..., vn
and (positive) weights wi,..., wn e Q, and we must choose the numbers ..., xn e

4.5. Hard Problems 175

N of each item so as to maximize ^2Г=1 vixi> subject to a budget of ^2Г=1 wtxt < W.
A common variant of this problem limits Xi to {0,1}; in this variant we can take at
most one of each item.

Example 4.5.4. Consider a situation with four items, whose weights (in kilo­
grams) and values are listed below.

Item Weight Value
1 6 30
2 3 14
3 4 16
4 2 9

If I am not able to carry more than 10 kilos, which items should I take to
maximize the total value? If I can only take at most one of each item, the
optimal solution is to take item 1 and item 3, for a total value of 46. If
multiples are allowed, I can do better by taking one of item 1 and two of item
4, for a total value of 48.

There are a number of ways to try to attack this problem. A naive way is the
exhaustive approach of checking every possible configuration. But this is much too
costly if W is much larger than most of the weights Wi.

A better solution is a bottom-up dynamic programming approach; that is, find
the solution for certain very small maximum weights, and then assemble the small
solutions together into the solution for slightly larger weights, and so on until reach­
ing the desired result.

If m(w) is the maximum value achievable with total weight w, then we want to
know m(W). The lowest level of the problem is easy: m(0) = 0. The trick is to
realize that if we put item i in the knapsack, then we still have weight w — Wi left,
and now the best value we can get is vi + m(w — wi). Therefore, the maximum
value m(w) can be constructed from many smaller solutions as

m(w) = шах(17г + m(w — Wi)\ (4.7)Wi<W
which is another variant of Bellman’s optimality principle.

Since there are at most a finite number of weights and they are all rational, we
may assume that all the weights Wi are integer multiples of some basic value and
reformulate the problem with only (positive) integer values of Wi and W. Now use
(4.7) repeatedly to construct an (n + 1) x (W + 1) array M, where M(z, w) is the
maximum value achievable with a weight limit of w using only the first i items. The
desired solution is M(n, W).

Some initial values are immediate: M(0, w) = 0 for all w, and 7И(г,0) = 0 for
all i. Now compute from the bottom up; that is, starting with lower values of i and
w and moving to higher ones, compute

M(i, w) = max(M(z — 1, w),^ + w — wi)).

Since each Wi is positive, both of the two terms on the right are already known and
can be used to compute M(г, w). Iterating over all i from 0 to n and all w from 0 to

176 Chapter 4. Combinatorial Optimization

W finally reaches M(n, Ж), which is the desired solution. Of course the algorithm
described here does not give the actual choice of which items to put in the knapsack
to achieve the maximum value, but that can easily be added to the algorithm by
tracking the items added at each stage.

The temporal complexity of this algorithm is О (nW). An important but subtle
point is that complexity of an algorithm is usually measured in terms of the number
of inputs, not the value represented by the input. Integers are usually entered as a
sequence of binary digits, and there are d = log2 W digits of W. Thus the complexity
of this algorithm, in terms of the number of inputs (n and d), is O(n2d)—exponential
in d. But it is polynomial in terms of the value of the input W. Algorithms like
this, that are polynomial in the value of their inputs rather than in the number of
their inputs, are called pseudopolynomial.

It is known that the knapsack problem is NP-hard (measured in terms of the
number of inputs). Of course, this does not mean the problem cannot ever be solved.
Many specific instances of the problem can be solved in a reasonable amount of
time, despite the fact that the best-known algorithm for the general solution takes
exponential time.

Dynamic
programming
algorithms-
0 (n*2 n)

SELLING ON EBAG
O(')

STILL WORKING
ON YOUR ROUTE?

Figure 4.8 . A practical approach to the traveling salesman problem. Source:
XKCD, Randall Munroe, http: //xkcd. com/399/

4.5.2 Traveling Salesman Problem
Given a list of cities and distances between them (a weighted undirected graph),
consider the problem of finding the shortest path that visits all the cities exactly
once and that starts and ends at the traveler’s home city (such a path is sometimes
called a tour or a Hamiltonian cycle). This problem was introduced in Example
4.0.2 and is known to be NP-complete.

As in the case of the knapsack problem, there is a dynamic optimization al­
gorithm for the TSP that is better than the exhaustive approach. This is due to
Held-Karp and (independently) Bellman. The algorithm is as follows: Let the home
city be numbered 0 and let the remaining cities be numbered 1 through n. Denote
the distance from city i to city j by dij. For each S C {1,..., n} and for each x e S

4.5. Hard Problems 177

let d(S, x) be the minimum distance it takes to travel from home to all of the cities
in 5, finishing at x.

The optimal path for the traveler has length

min d({l,..., n}, x) + d,Q,x.
xE{l,...,n}

Again we have an optimality principle that allows us to assemble solutions of simpler
subproblems into solutions of larger problems.

d(S, x) = min d(S \ {#}, y) + dy,x.
yes \ {x}

As with other bottom-up dynamic programming algorithms, we start with the
smallest (singleton) subsets: for S = {ж} we have

d({x},x) = d0,x,

and we compute d(S, x) for increasing S and all x. Given any S, if d(S',y) has
already been computed for each S' C S, then for any x e S computing d(S, x)
is 0(151). Thus, for each S the complexity of computing d(S, x) for all x e S is
O(|S|2), so the overall complexity is

ofcisi2) =o(f; E Й =o(L
\ S / \fc=l \S\=k J \fc=l 4 7 /

We can compute the sum O(J2^=1 (^)&2) = О(22/с=]. (^)&(& — 1)) as follows: Let

/(*) = 12 QW _ 1)<fc~2 = QV = - i)(i+i)n-2-
This gives

iz _ =/(i)+(n - i)(n _ i)(n _ 2)+

= n(n — l)2n-2 + n(n — l)2
= O(2nn2).

So the Held-Karp algorithm has complexity O(2nn2). Compare this to the naive
algorithm with complexity O(n!), which by Stirling’s approximation is О y/n).

4.5.3 Better Approaches
As a general rule, if you are trying to find the exact solution to an NP-hard problem
with large inputs, then you are doing something wrong. In such cases you probably
need to stop looking for an algorithm to always find the exact solution and instead
think about some alternatives. Here are three options to consider:

(i) Look for a heuristic to solve a reasonable fraction of the most common cases
efficiently.

(ii) Solve the problem approximately instead of exactly.

(iii) Solve a similar, but easier, problem.

178 Chapter 4. Combinatorial Optimization

№ H(W
EMBEDDING NP-ОтПЕ PROBLEMS IN RESTAURANT ORDERS

VEO LIKE EXACTLY JlSOS
WORTH Of APPETIZERS, REASE.

| ...EXACTLY? UHH...

HERE, THESt PAPERS ON THE I
РЮ81ЕМ MIGHT HELP YOU OUT /

-A5FASTA5№SElf,(Fax®SE WANT /
SOMETHING ON IWEUNG SAlESTWl? /

\ LISTEN. I HAVE Six OTHER
\ TABLESTOGETTO-

Figure 4.9 . A real-world application of the change-making problem? Source:
XKCD, Randall Munroe, http: //xkcd. com/287/

Heuristics

Heuristics are simple guidelines or strategies that can be used to try to get a good
solution, but without guarantees of the quality of the solution. An obvious and
common heuristic is the greedy strategy of choosing the step that looks optimal
now.

A greedy approach to the knapsack problem is to always choose, at each stage,
to put as much as possible of the most valuable item into your knapsack. This
algorithm seems intuitive to many people, and it sometimes works. But sometimes
it also gives a very bad solution, and in some cases it can give the worst possible
solution. A better greedy algorithm is to sort the items by value per unit weight
vilvji and add as much as possible of the highest of these. This often gives good
results but still does very poorly in some cases (see Exercise 4.23).

A common greedy approach to the TSP is to form a path by choosing, at each
stage, to visit the nearest unvisited city. This is called the nearest neighbor heuristic,
and it has temporal complexity O(n2). It normally gives a path that is no more
than 25% longer than the best solution, but it is possible to construct cases where
the nearest neighbor algorithm gives the worst of all possible paths (see Exercise
4.24).

A different greedy approach to the TSP is to collect the shortest edges without
worrying about whether they form a connected path. This algorithm builds a
collection of edges that will eventually form a path, and at each stage it sorts the
remaining edges by length and adds to the collection the shortest one that does not
make a short cycle and does not make any vertex have more than two edges. This
algorithm is called the greedy algorithm for TSP, and it has temporal complexity

4.5. Hard Problems 179

O(n2logn). It typically constructs paths that are within 15% to 20% of optimal,
but again, there are some cases where it does very poorly.

There are several other heuristics for the TSP. Some begin with an optimal tour
of fewer cities and try to insert additional cities into the existing tour in an optimal
manner, while others start with an existing, suboptimal tour of all the cities and
try to improve it incrementally. Some of these heuristic improvement algorithms
have run times of O(n2) or better and tend to give answers no worse than 5% longer
than optimal, but in some cases they still give answers that are much worse.

Approximation Algorithms

In many circumstances we don’t need the absolute best solution—a solution that is
near best may be good enough. For many NP-hard problems, allowing a little bit of
error lets us rapidly construct solutions that are guaranteed to be within a certain
percentage of the optimal solution. Of course, there is usually a trade-off between
speed and accuracy—the more accurate the answer must be, the more time it will
take to compute.

Here we give one simple example of an approximation algorithm for the TSP in
the case that the cities all lie in the plane and that the distances involved satisfy
the triangle inequality—an edge between two cities is never longer than the length
of any other path connecting them. In this case, we can approximate the optimal
solution by constructing an MST. Removing one edge from any tour will produce a
spanning tree, so the MST must have weight no more than the length of the shortest
tour.

Since the MST lies in the plane, we can put an ordering on the vertices by
imagining an ant starting at the home city and walking along the outside of the
tree until returning home again. The total distance the ant walks is twice the weight
of the MST, since the ant traverses every edge exactly twice.

Listing the vertices in the order they are first encountered on the ant’s walk
will give a tour. For each edge e = of the tour, the ant will have to traverse
some edges of the tree to get from v to v', and because the graph lies in the plane,
the triangle inequality holds and e must be no longer than the sum of the lengths
of the edges walked by the ant. Summing over all the edges in the tour, the length
of the tour is no more than the total length of the ant’s walk, which is no more
than twice the total weight of the tree, which is no more than twice the optimal
tour length.

This shows that any tour produced by an MST is no more than twice the optimal
length. But Prim’s algorithm produces an MST in O(n2 logn), so if we can accept a
tour guaranteed to be no worse than twice optimal, this algorithm is fairly efficient.

For the TSP there are many other approximation algorithms. One of the best
known is Cristofides’ algorithm that runs in O(n2’2) time and is guaranteed to give
an answer no worse than 1.5 times optimal.

For the knapsack problem, there is an approximation algorithm that for any
choice of e > 0 gives an answer that is no worse than (1 — e) times the maximum
value and does so in better than O(n + 1/e3) time. This is an example of what
is called a fully polynomial-time approximation scheme (FPTAS). This shows very
clearly the trade-off between accuracy and temporal complexity: the more accurate
an answer must be (the smaller e), the greater the run time.

180 Chapter 4. Combinatorial Optimization

A Similar, but Easier, Problem

Finally, it is important to remember that the mathematical problems we solve in
applications are mathematical models of real-world problems. To formulate a model,
we typically need to make several assumptions and simplifications. Sometimes these
assumptions and simplifications make the problems easier to solve, but in some
cases, what we think of as a simplification actually makes the problem harder.

Some types of scheduling problems provide an example of this. For these prob­
lems one is given a collection of jobs of various (fixed) completion time and a
collection of machines with various properties. The problem is to decide which jobs
to schedule on which machines in order to minimize total time to completion of
all the jobs (subject to various additional requirements). Many of these scheduling
problems are known to be NP-hard.

But these simple models are also not completely realistic—for example, slow­
downs might occur for many reasons, causing random changes in the production
speeds of the machines. Remarkably, in some cases, a more complicated stochastic23
model that accounts for this randomness actually yields a version of the schedul­
ing problem that is more tractable than the “simpler” deterministic model [Leu04,
Section 38.4.1].

23The word stochastic here means that the model involves some element of randomness.

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

4.1. Code up the naive, the memoized, and the bottom-up dynamic programming
algorithms for computing the Fibonacci number F(n) for n G N. Time all
three methods and compare their performance for n E {1,2,..., 40}. Exper­
iment to find the largest value of n for which each of the three algorithms
gives an answer in less than one minute.

4.2. Code up both the naive recursion and the bottom-up dynamic programming
algorithm to compute the optimal number n(v) of coins in the change-making
problem for v cents (v € N) and an arbitrary coinage system C (a set of coin

Exercises 181

values, in cents). Adapt your code to also return the optimal configuration of
coins summing up to v. Time both methods and compare their performance
on each of the values v G {1,2,..., 1999} for the current U.S. coinage system,
where C = {1,5,10,25,50,100}. It is acceptable to stop your code for values
that take more than one minute to run.

4.3. Code up a greedy version of the change-making problem. For the U.S. coinage
system verify that the greedy solution is the same as the optimal solution for
all values v G {1,2,..., 1999}. Time your code for the greedy solution on
those values and compare your answers with those in Exercise 4.2.

4.4. Consider a coinage system with the following denominations:

C = {1,5,7,10,20,25,40,50,100}.

Provide some examples to the change-making problem in this coinage system
where the greedy solution is not the optimal solution.

4.5. Consider a sequence (xn)^LG defined by the recurrence relation x$ = x± = 2
and for n > 1,

n—2

*

k=0
We are interested in computing xn, given n.

(i) Show that implementing this recursion directly, as written, uses more
than 2n arithmetic operations to compute xn when n > 6.

(ii) Use memoization to give an algorithm that uses only O(n2) arithmetic
operations to compute xn (and prove the bound of O(n2)).

(iii) Use bottom-up dynamic programming to give an algorithm that only
uses O(n) arithmetic operations to compute xn (and prove the bound
of O(n)).

4.6. Given two sequences x = x±, X2,..., xn and у = у2, ..., у™, let s(x, y)*
be the length of the longest possible sequence that is a subsequence of both
x and y. So if x = 6,0,1,2,3,4, 5 and у = 5,6,2,3, then s(x, y) = 3, since
6, 2,3 is the longest sequence appearing as a subsequence in both.

(i) Let Tx = #1,..., xn_\ and Ту = т/i,..., Ут-i- Show that if xn = ?/m,
then s(x, y) = s(Tx, Ту) + 1.

(ii) Find a recursive formula for s(x, y) if xn ^ym.
(iii) Provide an algorithm for computing s(x, y) with temporal complexity

O(mn) (and prove the bound of O(mn)).

4.7. In the graph in Figure 4.10, beginning at the node labeled 50:
(i) Show the sequence of nodes visited when using BFS to find the node

labeled 90. Assume that neighbors of a node are always added to the
queue in numerical order (smallest to largest).

(ii) Repeat the previous problem, but with the neighbors of a node added
to the queue in reverse numerical order (largest to smallest).

182 Chapter 4. Combinatorial Optimization

Figure 4.10. Graph for BFS and DFS of Exercise

(iii) Show the sequence of nodes visited when using DFS to find the node
labeled 90. Assume that neighbors of a node are always added to the
stack in numerical order (smallest to largest).

(iv) Repeat the previous problem, but with the neighbors of a node added
to the stack in reverse numerical order (largest to smallest).

4.8. Given an undirected graph, which graph search method (BFS or DFS) would
be most useful for finding a cycle in the graph? Describe, in detail, an
algorithm for finding a cycle in any undirected graph, and explain why your
algorithm is correct (meaning that it is guaranteed to find a cycle if one exists
and will not give a false answer).

4.9. For the graph in Figure 4.11, describe what happens (and the state of all
the various variables, queues, etc.) at each stage of Dijkstra’s algorithm,
beginning at node A. Do not stop until every node has been processed; that
is, find the minimum distance from A to every node in the graph.

Figure 4.11. Graph for Exercise 13 and Exercise ^.9.

4.10. For any weighted, undirected graph G with nonnegative edge weights, and
for any vertex v G G, let d(s,v) denote the (actual) minimum distance from
the source s to v.
Prove that if Dijkstra’s algorithm processes node и before it processes node
v, then <5(s,u) < <5(s,v).

4.11. Give a careful justification for why Remark 4.2.4 is true.

Exercises 183

4.12. Let G be a connected weighted undirected graph. Prove that if all the weights
are distinct, then the MST is unique.

4.13. For the graph in Figure 4.11, describe what happens (and the state of all the
various variables, tables, dictionaries, etc.) at each stage of Prim’s algorithm,
beginning at node A.

4.14. In Prim’s algorithm, for any vertex v, let denote the distance from v to
the current minimum tree. What is the maximum number of times that
will be updated? What is the minimum number of times it will be updated?

4.15. Let G be a connected weighted undirected graph with at least one cycle.
Prove that if e is an edge in the cycle of strictly larger weight than the other
edges in the cycle, then it cannot be contained in the MST of G.

4.16. Adapt Prim’s algorithm to find the MST.

4.17. Prove that if a coding scheme / : S' —> G is bijective and instantaneous, then
it is uniquely decipherable.

4.18. Give an example of a uniquely decipherable code that is not instantaneous.
4.19. Compute a (binary) Huffman code for the source alphabet {a, 6, c, d, e} with

the probability distribution F(a) = 0.07, P(b) = 0.05, F(c) = 0.70, F(d) =
0.08, P(e) = 0.10.

4.20. Use Huffman encoding to compress the string “The harder I work, the luckier
I get.” How many total bits are required to encode this string using the
Huffman code? Compare this to the number of bits required to store the
string in ASCII. (Remember to encode the spaces and punctuation.)

4.21. Any code can be transformed into another obviously equivalent code by per­
muting the letters of the code alphabet. For example, trading 0 and 1 in
any binary code will give another code that is essentially equivalent to the
first. But even accounting for these permutations, Huffman codes are not
necessarily uniquely determined. Give an example of a source alphabet and
probability distribution for which there are two different (binary) Huffman
trees/codes such that neither one can be obtained from the other by permut­
ing the code letters 0 and 1.

4.22. For each of the following, explain whether proving the result would qualify
for the one-million-dollar millennium prize for P versus NP. Justify why or
why not.

(i) There is at least one NP-hard problem that is P.
(ii) There is at least one NP-hard problem that is not P.

(iii) There exists a problem that is NP but is neither NP-complete nor P.
(iv) Every problem that is NP is either NP-complete or P.

4.23. Give an example of a {0, l}-knapsack problem where the include-the-item-
with-the-most-value-per-weight heuristic gives the worst solution.

4.24. Give an example of a graph where the nearest neighbor heuristic (always
choosing at each stage to visit the nearest unvisited city) gives the worst
solution to the TSP.

184 Chapter 4. Combinatorial Optimization

4.25. Prove carefully that the naive, exhaustive approach to the TSP has temporal
complexity at least O((n — 1)!), where n is the total number of cities. Explain
how to do this exhaustive search with spatial complexity of only O(n2). Hint:
Think about DFS.

4.26. Implement the dynamic programming algorithm for the {0, l}-knapsack prob­
lem (where no multiples are allowed). Your code should accept as input a
maximum weight W and a list Items of tuples (weight,value). So, for example,
the list

Items = [(20,0.5), (100,1)]

would correspond to a collection consisting of item 0 of weight 20 and value
0.50, and item 1 of weight 100 and value 1.00.
Your code should return the maximum value that can be carried in the knap­
sack for the given Items and weight W.

4.27. Modify your code in the previous problem to also return a list of which items
should be included to achieve the maximum value.

Notes
For more about implementing Dijkstra’s and Prim’s algorithms with a Fibonacci
heap, see [FT87] or [CLRS01]. Prim’s algorithm is originally due to Vojtech Jarnik
in 1930 [Jar30] and was rediscovered by Prim in 1957 and by Dijkstra in 1959. As
a result, some people call Prim’s algorithm the Jarmk-Prim algorithm.

Our statistics on word frequency in the Concise Oxford English Dictionary are
taken from [Mat 15].

For more details on computability and formal Turing machines, some good ref­
erences include [CLRS01, KT05], and [Macl8]. For a fun example of an essen­
tially uncomputable polynomial-time algorithm, [DDM+14] provides a polynomial­
time algorithm for a picture hanging, but the best-known bound on the size is
^1561600).

Among computer scientists, it is generally believed that P ф NP. The main
justification for this belief is that lots of smart people have, for a long time, tried
and failed to find a polynomial-time algorithm for an NP-complete problem. A
problem of similar significance for economists is the efficient market hypothesis
(EMH), which is a question of whether markets are (weakly) efficient, meaning that
future prices cannot be predicted from analyzing prices in the past. The great
majority of economists believe the EMH. So it is interesting to note that, according
to Maymin [Mayll], the EMH holds if and only if P = NP. This means either
Maymin is wrong, or most economists are wrong about the EMH, or most computer
scientists are wrong about P ф NP.

For more about the TSP, see [GYZ]. General references on approximation al­
gorithms include [DKH12, WS11]. For approximation algorithms specific to the
knapsack problem, see [JK15].

Figure 4.7 is modeled after a diagram by Behnam Esfahbod [Wikl5], and
Exercises 4.5 and 4.6 are modified versions of problems in [Prul7].

Probability

Never tell me the odds.
—Han Solo

Probability is the mathematics of uncertainty, and it plays a key role in modeling
the world around us. We focus more on modeling with these tools in Volume 3
(where we also treat probability in more depth), but probability is also central to
the study of algorithms and optimization for several reasons. Probability is essential
to analyzing algorithmic complexity, and it is useful in helping us construct better
algorithms. It is also a source of many of the most important optimization problems.

Although probability has been used for centuries in areas such as gambling and
insurance, a rigorous and satisfactory development did not exist until after measure
theory was developed. In fact, it wasn’t until the 1930s that a rigorous theory was
developed by the Russian mathematician Andrei Kolmogorov.

Although we postpone many of the details of probability theory to Volume 3, in
this chapter we provide a lightweight version that allows us to understand and use
basic principles of probability in a wide variety of settings. In the first five sections
of the chapter we discuss discrete probability and discrete random variables, where
the space of possible outcomes is countable. In subsequent sections we discuss
how to generalize this to the continuous case, where the possible outcomes span a
continuum.

In the subsequent chapter we discuss what is arguably the most important
theorem in probability and statistics—the central limit theorem. The central limit
theorem is the key behind our ability to draw inferences and is truly central to
probability and statistics.

5.1 Probability Theory
Probability theory begins with a nonempty sample space Q, consisting of all possible
outcomes of an experiment. In this section we begin a discussion of discrete proba­
bility, which requires the sample space to be countable. We also discuss continuous
probability, corresponding to more general sets, later in the chapter.

185

186 Chapters. Probability

Example 5.1.1. If a coin is flipped three times, the sample space, or set of
all possible outcomes, is

Q = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

The event E = “heads occurs exactly twice” is represented by the subset
E = {HHT, HTH, THH}.

Definition 5.1.2. The power set of a set S is the set of all subsets of S. We often
denote it by the symbol 2s.

Remark 5.1.3. In the discrete setting, any subset E C Q is called an event; that
is, the collection of all events is 2Q. In the continuous setting, most subsets must be
excluded from consideration, because allowing every possible subset to be an event
constrains the theory so much as to make it uninteresting. In either case, we denote
the collection of all events by &. In the discrete setting we have & = 2Q, but in
the more general setting we only have & C 2Q.

5.1.1 Axioms of Discrete Probability

Example 5.1.4. If S = {a, 6}, then the power set of S is {0, {a}, {6}, S}. If
S is finite, of order |S|, the power set of S always has 2^1 elements in it. This
motivates the notation 2s.

Given two events A and В in Q, the event E that both A and В occur is the
intersection E = А П В. Similarly, the event F that at least one of A or В occurs
is the union F = A U B.

The probability of an event is a value between 0 and 1 (inclusive), where we think
of probability as some measure of plausibility that the event will occur: a probability
of 1 means that the event is practically guaranteed to occur and a probability of 0
means it is practically guaranteed not to occur.

Definition 5.1.5. If a collection of events {Ei}iEi is pairwise disjoint, meaning
that Ei П Ej = 0 whenever i j, then we say the sets are mutually exclusive. If
the union Uze/ °f the events is the entire sample space then we say that
the events Ei are collectively exhaustive.

Remark 5.1.6. If the subsets Ei are all nonempty, then saying they are mutually
exclusive and collectively exhaustive is another way of saying that they form a
partition of Q.

Definition 5.1.7. Consider a countable sample space and let = 2^. A
function P : [0,1] is called a discrete probability measure whenever the
following conditions hold:

(i) P(Q) = 1.

5.1. Probability Theory 187

(ii) Additivity: If {Ег}гЕ1 C & is a collection of mutually exclusive events, indexed
by a countable set I, then

p ЦЫ =Ew

/ iei

(5-1)

In this case, the triple is called a discrete probability space. We say that
an event E G & occurs with probability P(E). In the case that E = {cj} is a
singleton set, it is common to write P(ui) instead of P({cj}).

The two conditions on a probability measure should coincide with your intuition
about how probability behaves. First, the event Q is the set of all possible outcomes,
and since some outcome must occur, the probability of Q should be 1. Second, if
A and В are mutually exclusive events, the probability P(A U B) of at least one of
A or В occurring should be the same as the probability of A plus the probability
of B.

Example 5.1.8. Consider the space of three coin flips from Example 5.1.1,
together with its power set & — 2Q. A common probability measure to use in
this setting is P(cj) = | for every ш G Q. That means P(E) = ||B| for every
event E G &.

Since Q consists of eight elements, we have P(Q) = 1. It is easy to see that
for a collection of mutually exclusive events {Ei}iEi we have

So P really is a probability measure on (Q, ^).
With this probability measure, we have P(HHT) = P(TTT) = |, and

P(“heads occurs exactly twice”) = |.

Remark 5.1.9. It is common to write P(E, F) instead of P(EC\F) to indicate the
probability that both E and F occur.

The following proposition gives some simple but useful tools for computing prob­
abilities.

Proposition 5.1.10. Let be a discrete probability space. If E,F e &
and Ec = Q\E, then

(i) P(EC) = 1 — P(E), and, in particular, P(fb) = 0;

(ii) E C F implies P(E) < P(F); and

(iii) P(E U F) = P(B) + P(P) - P(B П P).

188 Chapters. Probability

Proof.

(i) Since E and Ec are disjoint and E U Ec = Q, we have

1 = P(Q) = P(E U Ec) = P(E) + P(Ecfi

and thus P(EC) = 1 — P(E). Since Qc = 0, we have P(0) = 0.

(ii) The events F П E and F П Ec are disjoint and have F as their union, that is,
(F П E) U (F П Ec) = F. If E C F, then E П F = F, and thus

P(E) + P(F П Ec) = P(F П E) + P(F П Fc) = P(F).

Since P(F П Ec) > 0 it follows that P(E) < P(F).

(iii) We have

P(F П E) + P(F П Ec) = P(F) and P(E U F) = P(E) + P(F П Fc).

Combining these equations yields P(F U F) = P(E) + P(F) — P(E П F). □

Example 5.1.11. During a particularly bad flu season, the probability you
will have a sore throat is 0.15. The probability you will have a headache is
0.10. If the probability of neither is 0.80, what’s the probability that you will
have both a sore throat and a headache?

To answer this, let E be the event “you have a sore throat” and F be the
event “you have a headache.” We are given that P(E) = 0.15, P(F) = 0.10,
and P(fE U F)c) = 0.80. This implies that P(E U F) = 0.20. Thus, we have
that F(E nF) = P(E) + P(F) - P(E U F) = 0.05.

5.1.2 Equally Likely Outcomes

Definition 5.1.12. Assume Q is finite and (Q, <F, F) is a discrete probability space.
We say that all outcomes of Q are equally likely if P(w) = 1/|Q| for every

Example 5.1. 13. In the probability space of Example 5.1.8 all outcomes are
equally likely.

In the case of equally likely outcomes, probability problems become counting
problems.

5.1. Probability Theory 189

Example 5.1. 14. Two fair (six-sided) dice are rolled and their sum is noted.
If the event E is “the sum of the dice is 5,” what is P(Ef? The sample space
Q for this problem is the set of all possible pairs of rolls.

(1,1), (1,2), •• •, (1,6)
(2,1), (2,2), .. •, (2,6)

(6,1), (6,2), .. ., (6,6)

The word fair implies that all of these outcomes (but not all sums) are equally
likely. Thus, we can answer the question by counting the number of outcomes
where the sum is 5, that is, counting the elements of

E = {(1,4), (2,3), (3,2), (4,1)},

and comparing this to the total number of possible outcomes, which is 36.
Therefore, we have P(E) = = |. Similarly, if the event F is “the sum of
the dice is 7,” then

F = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)},

so P(F) = = |.v ' 36 6

Example 5.1. 15. A cooler has three Diet Cokes and seven regular Cokes. If
you randomly draw three cans from the cooler, and all the cans are equally
likely to be drawn, what is the probability that you draw at least one of each
type?

We solve this by realizing that there are two ways you can have one of
each. Either you get one diet and two regular or you get two diet and one
regular. There are C(3,1) ways to choose one diet and C(7,2) ways to get two
regular, so C(3,1) • C(7, 2) ways to choose one diet and two regular. Similarly,
there are C(3,2) • C(7,1) ways to choose two diet and one regular. Summing
these gives the total number of ways to get at least one of each. To get the
probability of this event, divide by the total number C(10, 3) of ways to draw
three cans out of a cooler of 10 cans. Thus, the probability is given by

C(3,l)-C(7,2) + C(3,2)-C(7,l) _ 84 _ 7
C(10,3) “ 120 “ 10’

190 Chapters. Probability

Example 5.1.16. The cards in a standard 52-card deck of playing cards come
in four different suits (clubs, diamonds, hearts, and spades) and 13 different
ranks (2, 3, ..., 10, jack, queen, king, ace). What’s the probability that five
cards, randomly selected from such a deck, will form a full house, that is, a
three-of-a-kind and a pair? We solve this by first determining which number
is the three-of-a-kind and which is the pair. Notice that while order within the
three-of-a-kind or pair does not matter, order of which is the three-of-a-kind
and which is the pair does matter. Thus we have 13 • 12 ordered pairs, where
the first number is the rank of the three-of-a-kind and the second number is
the rank of the pair. We then multiply by C(4,3) and C(4,2) to account for
the number of ways we can choose the three-of-a-kind and pair, from their
respective ranks. We find that the probability is given by

13 • 12 • C(4,3) • C(4, 2)
C(52,5)

0.0014.

Example 5.1.17 (The Birthday Problem). In a given group of people,
how likely is it that two or more people share the same birthday? To simplify,
we assume there are exactly 365 days in a year (that is, no leap years) and
that a given person is equally likely to have her or his birthday on any of these
365 days.

In this situation, it is simpler to solve the complementary problem instead,
namely, what is the probability that all the birthdays are distinct? In a group
of к people, the total number of ways that birthdays might occur is 365fc. If
к > 365, at least two people must have the same birthday, by the pigeonhole
principle," but if к < 365, the number of ways that all the birthdays could
be distinct is (3^5 • Thus, the probability Q(k) that a randomly selected
group of к people will have all distinct birthdays is Q(k} = (3652fcy!365fc • The
probability that at least two people share a birthday is

P(fc) = 1 - Q(fc) = 1 - 36,5’ v (5-2)

aNo matter how you put n + 1 pigeons into n pigeonholes, at least one pigeonhole has at
least two pigeons.

Remark 5.1.18. The number 365 is large enough that Stirling’s approximation
is reasonably accurate for 365!, and if к is not too big, then Stirling also gives a
reasonable approximation for (365 — k)\. Using Stirling for both of these in the

(365 — k) !365fc

The probability P(k) is plotted in Figure 5.1. A careful look at the plot reveals
the surprising result that P(k) > 50% whenever к > 23. Thus, if birthdays
are uniformly distributed among the days of the year, then in a room of only
23 randomly selected people, there is a greater than 50% probability that at
least two of them will share a birthday.

5.2. Conditional Probability and Bayes' Rule 191

previous example gives

365365+2 _k Л к \fc-365-i
Q(k) ~------------------------------ г = e । 1------- I365fcefc(365 — &)365-fc+2 \ 365 J

or
/ k \fc-365-j

F(fc)«l-e-fc l--£- . (5.3)
\ ООО /

The approximation (5.3) is plotted along with the actual value in Figure 5.1.

Figure 5.1. Plot of the probability P(n) (in black) and its approximation (5.3)
(red) of a birthday collision between two or more individuals in a group of n people,
as described in Example 5.1.17. Note that when n > 23 the probability of two or
more people sharing a birthday is more than 50%.

5.2 Conditional Probability and Bayes’ Rule
Knowing that one event has occurred can give useful information about the probabil­
ity of another event. For example, once your roommate has the flu, the probability
that you will also get the flu increases. Conditional probability allows us to account
for changes in the world and to update our understanding of the situation to reflect
new information. Conditioning is also an extremely powerful tool for solving a wide
range of problems, including many problems that may seem at first to have nothing
to do with conditioning.

5.2.1 Conditional Probability

Definition 5.2.1. Let E and F be events in a probability space and
assume that P(F) > 0. The probability of E occurring, given that F occurs, denoted
P(E | F), is written as

P(E\F) = ^ip.. (5.4)

Alternatively we say that the left side is the probability of E conditioned on F. If
P(F) = 0, then P(E | F) is undefined.

192 Chapters. Probability

Remark 5.2.2. One way to think about conditional probability is to think of prob­
ability as the percentage of times a given event occurs when the experiment is re­
peated a large number of times. Under this interpretation, P(E) is the percentage
of times that E occurs, and P(F) is the percentage of times that F occurs. So if
there are N total experiments, of which E occurs tie times and F occurs tif times,
then we have

pw - and Tip

AT
The conditional probability P(E | F) corresponds to throwing out all the trials for
which F did not occur, so P(E | F) is the percentage of times E occurs among those
trials where F occurred. That is, if tief is the number of times that E and F both
occurred, then

p(p\p\ - П ~ ПЕЕ_/_М_ _ nEF
P(E\F) p(F) ~ np/N np

Remark 5.2.3. Alternatively, you can think of the situation where F is known
to occur as giving a new sample space F, replacing the original sample space Q.
For each E in the power set & of Q we can construct a new set E' = E П F in
the power set of F. Each of these sets Ef corresponds to an event on the new
sample space. The collection of all such new events is the power set = 2F of
the new sample space F. Finally, we define a new probability measure Pf on
by P'(E') = P(E | F) = • It is straightforward to check that Pf is indeed a
probability measure on

Example 5.2.4. A cooler has four Diet Cokes, three regular Cokes, and three
bottled waters. If someone randomly draws two drinks from the cooler and
tells us that they are not regular Cokes, but does not show us what they are,
what is the probability that the two choices are both Diet Cokes?

Let F be the event "Both are Diet Cokes” and F be the event “Neither is
a regular Coke.” Note that ЕП F = E, and thus

C(4,2)-C(3,0)-C(3,0)
C(10,2) _ 6 _ 2

C(7,2)-C(3,0) ” 21 “ 7’
C(10,2)

P(B|F)=P(E-nF) = gg> =
1 1 ' P(P) PIP)

Example 5.2.5. A doctor has six patients in the waiting room, two men and
four women. Patients are called up in random order and seen in the order in
which they were called. What is the probability that the second patient is a
female given that the first is a male?

This situation is depicted by the tree in Figure 5.2. Let A be the event
“the first patient is male,” corresponding to the yellow node and its children,
and let В be the event “the second patient is female,” corresponding to the
two green nodes.

5.2. Conditional Probability and Bayes' Rule 193

To find the conditional probability P(B | A) note that if the first patient
is male, the number of patients remaining is 5, and there are still four women
but only one man; so the probability that the second patient is also a man is

while the probability that the second patient is a woman is A similar
computation gives the probabilities for the edges in the lower half of the tree.
Note that we did not need to use (5.4) to compute the conditional probability
in this case.

5.2.2 The Chain Rule
Many useful results follow easily from the definition of conditional probability. One
of these is the chain rule. The chain rule gives a way to write the probability of the
intersection of several events in terms of conditional probabilities.

Proposition 5.2.6 (Chain Rule). If {Pi}F=i are events in a probability space
(Q, cF, P) with P(Ei,..., Pn-i) > 0, then

P(P1,P2) = P(P1)P(P2|P1),

P(Pb P2, P3) = P(P1)P(P2 | P1)P(P3 I ^2, Pl),
and more generally

Р(ЕЪ..., En) = P(Ei) П Р(& | Er,..., Et-i).

Figure 5.2. A tree depicting the probabilities that male and female patients are se­
lected first or second in Example 5.2.5. The yellow node and its children correspond
to the event “the first patient is male, ” and the green node corresponds to the event
“the second patient is female, and the first patient is male.” The leftmost edges
are labeled with the probabilities for the first patient (male or female, respectively),
and the rightmost edges are the conditional probabilities for the second patient. For
example, the edge from the yellow M to the green F is labeled with the conditional
probability that the second patient is female, given that the first is male.

194 Chapters. Probability

Proof, The proof is Exercise 5.11. □

Example 5.2.7. In the waiting room of Example 5.2.5, we might also ask
what is the probability that both the first patient is a man and the second is
a woman, or, in the notation of that example, what is P(A,B)? The event
A A В is the upper green node. By the chain rule we have

4 2 8
P(A,B) = P(B|A)P(A) =

5 6 30

Going one more step, what is the probability that the sequence of patients
is MFM? Let C be the event that the third patient is male, so we want
to find P(A, B,C). To find this we use the chain rule again but we first
need the conditional probability P(C | A, B). In the event of A A B, there
are four patients remaining—three women and one man—so the conditional
probability P(C | Л, B) is |. Now the chain rule gives

18 1
Р(Д В, С) = P(C I A, B)P(B I A)P(A) =

Q OU 10

Figure 5.3. A tree depicting the probabilities of a Ford (F), Chevy (C), or Tesla (T)
having autonomous capabilities (A) or not (N), as described in Example 5.2.8. The
left edges, from the black node to F, C, and T, are labeled with their corresponding
probabilities P(F), P(C), and P(T), respectively. The rightmost nodes depict the
case of two events both occurring, so the upper right node (A) depicts the situation
where a car is an autonomous Ford. The edge from node F to the upper right node
is labeled with the conditional probability P(A | F) = 0.30, and the other right-hand
edges are similarly labeled with their corresponding conditional probabilities.

5.2. Conditional Probability and Bayes' Rule 195

Example 5.2.8. In a large fleet of cars, 70% are Fords, 25% are Chevys, and
5% are Teslas. Thirty percent of the Fords are autonomous (self-driving),
while only 4% of the Chevys are. All Teslas are autonomous, obviously. If
you insist on an autonomous car and are given one at random, what is the
probability that it will be a Ford?

We begin to solve this by drawing a tree as in Figure 5.3, where the edges
from the black node to the nodes F, C, and T denote the probability of each
brand (without the constraint that the car be autonomous), and the right­
hand edges from F, C, and T to the nodes labeled A (autonomous) or N (not
autonomous) correspond to the conditional probabilities; for example, the
edge from F to the uppermost A is labeled with the conditional probability p(A|f).

By the chain rule, the probability that a car is an autonomous Ford is

P(F, A) = P(A | F)P(F) = 0.30 • 0.70 = 0.21.

Similarly, the probability of an autonomous Chevy is

P(C, A) = P(A | C')P(C') = (0.04)(0.25) = 0.01,

and finally
P(T, A) = P(A | T)P(T) = (l)(0.05) = 0.05.

We can now solve the problem because the three makes of car correspond
to mutually exclusive events, so by the additivity property of probability we
have

P(A) = P(F, A) + P(C, A) + P(T, A) = 0.21 + 0.01 + 0.05 = 0.27,

and thus
P(F|A) = P(F, A) _ 0.21

P(A) “ 07
7
9

Example 5.2.9. Assume in the previous example that 70% of the autonomous
Chevys are also electric, and the rest use fossil fuels. By the chain rule, the
probability that a randomly selected car is an electric, autonomous Chevy is

P(E, A, C) = P(E | A, C)F(A | C)P(C) = (0.70)(0.04)(0.25) = 0.007.

5.2.3 Law of Total Probability
The additivity property of probability, combined with the definition of conditional
probability, gives another useful tool, the law of total probability, which allows us
to condition on a partition in order to compute the probability of an event.

196 Chapters. Probability

Proposition 5.2.10 (Law of Total Probability). If {Ei}iei is a countable
collection of mutually exclusive and collectively exhaustive events in a probability
space (Q, P), then for any event F e we have

р(г) = £р(г|£?ат)-
iei

Here we use the convention that P(F | Ei)P(Ei) = 0 whenever P(Ei) = 0, even
though P(F\Ei) is undefined in that case.

Proof. The proof is Exercise 5.12. □

The law of total probability provides a powerful problem-solving strategy for
computing probabilities. The idea is to identify a collection of mutually exclusive
and collectively exhaustive events (or just an event and its complement) having the
property that if we knew which one occurred, the problem would be easy. We can
get the desired probability by conditioning on each of these events and assembling
the results using the law of total probability. This is illustrated in the following two
examples.

Example 5.2.11. Every day one of my three daughters, Adriana, Bhavana,
or Ciara, borrows my car for the entire day, and when she does, she sometimes
leaves a note (event AT) to say thank you. Of the three, Adriana takes the car
(event A) 50% of the time, and when she does, the probability she’ll leave a
note is P(N | A) = 25%. Bhavana takes the car (event B) 30% of the time,
and when she does, she leaves a note P(N \ B) = 10% of the time. Finally,
Ciara takes the car (event C) 20% of the time, and she always leaves a note. I
don’t know who borrowed my car today. What is the probability that I’ll get
a note?

Although I don’t know who borrowed the car, if I did know that, the prob­
lem would be easy. So I can compute the conditional probabilities, conditioned
on who borrowed the car, and then assemble the results using the law of total
probability:

P(N) = p(N | A)P(A) + P(N | B)P(B) + P(N | C)P(C)
= (0.25)(0.5) + (0.1)(0.3) + (1.0)(0.2)
= 0.355.

Example 5.2.12. In the waiting room example (Example 5.2.5) what is the
probability that the second patient is a woman? Once again, if we knew the
gender of the first patient, the problem would be easy—it would be one of
the conditional probabilities we already computed (listed on the edges of the
graph in Figure 5.2). So, we use the law of total probability to assemble these
conditional probabilities into the total probability.

5.2. Conditional Probability and Bayes' Rule 197

Let A be the event that the first patient is male, В be the event that the
second patient is female, and C be the event that the first patient is female.
Since A and С are mutually exclusive and collectively exhaustive, we have

4 2 3 4 2
F(B) = P(B | A)P(A) + P(B | C)P(C-) =

0 0 0 0 о

5.2.4 Bayes' Rule
In Example 5.2.8 we solved P(F | A) using information about P(A | F). This is a
very useful method, and it generalizes to give a fundamental tool of conditional
probability called Bayes ’ rule or Bayes ’ formula.

Theorem 5.2.13 (Bayes’ Rule). Let be a probability space, and let
E,F e with P(E) > 0 and P(F) > 0. We have

P(E\F) = P(F | B)F(B)
Ж (5-5)

Moreover if {Р$}™=1 C & is a collection of mutually exclusive and collectively ex­
haustive subsets of Q with P(Ej) > 0 for each j, then for any choice of i we have

P(Ei\F) =
P[F\Ej)P(E^

(5-6)

Proof. Equation (5.4) gives

F(F, П F) = F(F, | F)P(F) = P(F | Е<)Р(Е,).

Thus

P(Ei\F) =
P(F|Bj)P(Bj)

P(F)
P(F|BQP(B0

The last equality follows by the law of total probability. □

Example 5.2.14. Revisiting the problem in Example 5.2.8, we see that Bayes’
rule immediately gives

P(F|A) = P(A | F)P(F)
P(A | F)F(F) + P(A1 C)P(C') + P(A | T)P(T)

(0.3)(0.7) _ 0.21
(0.3)(0.7) + (0.04)(0.25) + (1.0)(0.05) “ 07

7
9

198 Chapters. Probability

5.3 Independence, Paradoxes, and Pitfalls
Although knowing one event often gives new information about the probability of
another, there are also times when two events are completely independent, and
knowing about one tells us nothing about the other. For example, the outcome of
one coin flip generally has no impact on the outcome of another. In this section we
treat the idea of independence and then discuss a number of paradoxes and pitfalls
in probability theory.

5.3.1 Independence
Informally, we say two events are independent if knowing the outcome of one event
gives no information about the probability of the other. Said more carefully, events
E and F are independent if

P(E | F) = P(E) and P(F\E) = P(F). (5.7)

Combining (5.4) and (5.7) gives P(E)P(F) = P(E П F). This is our definition of
independence.

Definition 5.3.1. Two events E,F in a probability space are independent if

P(EnF)=P(E)P(F). (5.8)

Remark 5.3.2. Although they are almost equivalent, (5.8) is more informative
than (5.7) because it does not require P(E) or P(F) to be nonzero.

Example 5.3.3. A card is selected at random from an ordinary deck of cards.
Let E be the event “the card is an ace” and F be the event “the card is a spade.”
Since P(E) = Y3, P(F) — and P(E П F) = | the events E and
F are independent.

Unexample 5.3.4. If A and В are disjoint events, then Р(АПВ) = P(0) = 0.
If P(A) > 0 and P(B) > 0, then these events cannot be independent.

If the outcome of E has no impact on the probability of F, then it also has no
impact on the probability of the complement of F.

Proposition 5.3.5. If E and F are independent events, then Ec and F are also
independent.

Proof. The proof is Exercise 5.13. □

We also need to consider collections of independent events. This is a little more
subtle than just requiring pairwise independence.

5.3. Independence, Paradoxes, and Pitfalls 199

Definition 5.3.6. Let (fl^P) be a probability space. A collection = {Ег}гЕ1
of events is independent if for every finite subcollection of^, we have

(m \ m
D^J = nmj.

fc=l / k=l
(5-9)

Unexample 5.3.7. Consider the situation where two fair dice are rolled, as
in Example 5.1.14. Let A be the event that 1 shows on the first die. Let В
be the event that 1 shows on the second die, and let C be the event that the
sum of the numbers showing is 7. We have

P(A) = P(B) = P(C) = - and Р(4ПВ) = Р(ВПС) = Р(СПЛ) = 1
0 OU

so any two of these events are independent (we call this pairwise indepen­
dence). But

/1\3
Р(АПВПС)=О^Р(А)Р(В)Р(С)= - ,

\6 J

so (5.8) fails to hold for the subcollection {A, B,C} even though it holds for
each of the smaller subcollections {А, В}, {A, C}, and {B,C}. Thus, A, B,
and C are not independent.

Unexample 5.3.8. Consider three outcomes x,y,z 6 Q in a discrete proba­
bility space Q with P(x) = P(y) = P(z) = The three events A = {x, y},
В = {?/, z} and С = {ж, z} are pairwise independent because

Р(АпВ) = P(PnC) = P(CnA) = | = P(A)P(B) = P(B)P(C) = P(C)P(A),

but the three events are not independent because

P(A П В П C) = P(0) = 0 / | = P(A)P(B)P(C).
8

Example 5.3.9. A sequence of n independent trials is to be performed. Each
trial results in a success S with probability 0 < p < 1 and failure F with
probability 1 — p (these are called Bernoulli trials).

(i) If n = 3, the set of all possible outcomes is

Q = {SSS, FSS, SFS, SSF, FFS, FSF, SFF, FFF}.

200 Chapters. Probability

The event “success on the zth trial” corresponds to the subset Ei of all
outcomes that have S in the zth position, so E% = {SSS, FSS, SSF, FSF},
and P(Ei) = p. The fact that the trials are independent implies that
the events Ei and Ej are independent for all i / j. Thus

P(Ei П E2) = P({SSS, SSF}) = P(EX)P(E2) = p2

and

P(Ei П E%) = P(Ei \ (Ei П P2)) = P(Pi) - P(Pi П P2)
= p - p2 = p(l - p) = P(E!)P(E2c),

so Ei and E£ are also independent.

(ii) The probability that the first trial will be a success and the others will
be a failure is P(Ei П E^P • • • A E^) = p(l — p)n-1.

5.3.2 Some Pitfalls in Conditioning
Conditional probability can be tricky, especially if you try to skip the calculations
and just estimate the values. In this section we give a few examples of the types of
pit falls that lie in wait for those who are careless.

SfWSnCAUy SPEAKING, IF YOU PICK UPA
SEA5HE1L AND ZWTHOCPITTO YOUR EAR,

YOU CAM PR06A&Y HEAR THE OCEAN.
THE ANNUAL DEATH RATE AHONG PEOPtfl
WHO KNOW THAT STATISTIC IS ONE IN Six.

Figure 5.4. Some pitfalls in conditional probability. Source: XKCD, Randall
Munroe, http: //xkcd. com/1236/ and http: //xkcd. com/795/

Prosecutor's Fallacy

A common error in conditional probability is to use P(A | B) when we really want
F(B | A). This error is sometimes called the prosecutor’s fallacy, corresponding to

5.3. Independence, Paradoxes, and Pitfalls 201

the situation when A is the evidence of guilt and В is the event that the defendant
is actually guilty. When written out carefully, it seems clear that we cannot expect
P(A | B) to be equal to P(B | A), yet when encountered in the wild, it is easy to
forget that these are not the same.

Example 5.3.10. When a large national database of DNA samples (selected
randomly) becomes available, investigators reopen an old, unsolved murder
case and search the database for a match with DNA found at the crime scene.
One match is found with a person who is not too young to have committed
the crime. DNA experts agree that the probability of a random match using
this particular DNA test is 1 in 3 million. We write this as

P(M I /) = i x 10-6,
О

where M indicates the event of a match and I indicates that the person is
innocent. The prosecutor’s fallacy is to claim this means the person who
matched has only a 1 in 3 million chance of being innocent, but the prosecutor
has mistaken P(M | /) for P(J | M).

In the absence of any other evidence for or against this person’s guilt, we
can use Bayes’ rule to compute P(I | M):

Р(М\Г)Р(Г)
P(M)

P(J\M) =
Р(М\Г)Р(Г)

P(M I Г)Р(Г) + P(M I P)P(IC)'

To compute P(T) we need to know the total population of people in the country
who could have committed the crime. Assume this is 250 million, so P(T) =
1 — Aq x IO"6 and P(Jcy) = 2I0 x 10 6- Assume also that the DNA will always
match if a person is guilty, so P(M | Iе) = 1. Putting this all together, we
have

P(I I M) =
(i x iq-6)(1 _ _j_ x 1Q-6)

(I x 10’6)(l - Йо x IO’6) + (1)(Йо x 10-6)

250 - IO"6
253 - 10-6

« 0.988.

This seems counterintuitive to many people—probably because most of us
tend to commit the prosecutor’s fallacy. But you can see it is approximately
right by using the following argument. If we had a database of DNA for all
250 million people, then a 1 in 3 million chance of random matching means
that there will be about ~ 83 false matches and one real match. Thus,
the probability that a specific one of those 84 matches is not guilty is close to
|| ~ 0.988, matching our previous calculation with Bayes’ rule.

202 Chapters. Probability

Example 5.3.11. At the time of this writing (2019), the incidence of breast
cancer among women ages 45 to 54 is about 0.3%. If a woman in this age group
with no other symptoms, risks, or evidence of cancer has a mammogram that is
positive, we want to know the probability that she actually has breast cancer.
Assume the following:

(i) The probability of a positive test, given the disease is present, is 0.90.

(ii) The probability of a negative test, given there is no disease, is 0.95.

Denote the event “disease present” by D and the event “disease absent” by
H (healthy). Let T+ denote a positive test and T~ a negative test. Thus
P(T+ I D) = 0.90 and P(T" | Я) = 0.95.

In this situation, the prosecutor’s fallacy is to look at P(T+ | D) = 90%
and think that P(D | T+) would also be 90%. To calculate the correct value
of P(D | T+), we can use Bayes’ rule. We assume that D and H are mutually
exclusive and collectively exhaustive—everyone is either healthy or diseased,
but not both. We compute

P(D | T+) =________Р(Т+\ртР)________
{ 1 7 P(T+ I D)P(D) + P(T+ I

(0.90)(0.003)
” (0.90)(0.003) + (1 - 0.95)(l - 0.003)
« 0.051 = 5.1%.

This result is counterintuitive for many people. A positive result on this test
that is supposed to be 90% to 95% correct only means that you have a roughly
5% probability of actually having the disease.® Because of this, it is common
to refer to a positive mammogram as simply abnormal.

You can make a rough estimate to see that this result is reasonable. If a
group of 1000 people in this age group had mammograms, we would expect
roughly 50 of them to have false positives and 3 to actually have the disease.
So, roughly 3 in 53 people who test positive for breast cancer are expected to
have the disease, and indeed, 3 in 53 is 5.7%—not far from the correct answer
of 5.1%.

This does not mean that you should skip your mammogram. It only means
that if your mammogram is abnormal, then you shouldn’t be too discouraged
and should undergo further testing under the care of a physician.

aIn fact, the true-positive and true-negative rates of most mammograms are worse than the
numbers we have used here [OSS+16], so the probability of disease is less likely than we
have computed here. However, these computations are only valid assuming the absence
of any other information about the presence of cancer—additional follow-up tests can and
should be used to confirm or exclude the possibility of any actual disease.

5.3. Independence, Paradoxes, and Pitfalls 203

Nota Bene 5.3.12. Faculty and students at Harvard Medical School were
asked a problem similar to that of Example 5.3.11, and fewer than 20% of
them got it right. Almost half of them said 95%—about as far away from the
correct answer as you could get [HLHG00]. One lesson to take from this is
that most human beings are really bad at estimating conditional probabilities.
In this particular case, it looks like the half that chose 95% were committing
the prosecutor’s fallacy.

Neglecting to Condition

In most real-life situations, the probabilities we know and the probabilities we must
think about are conditional probabilities. Using absolute probabilities, or forgetting
to condition on all the data, gives bad results.

Example 5.3.13. A famous example of forgetting to condition on all the
evidence is when the Center for Naval Analysis tried to minimize bomber
losses in World War II. After looking at the bullet hole locations in returning
bombers, they recommended putting armor in the places that showed the most
bullet holes. The mathematician Abraham Wald pointed out that they had
forgotten to account for the fact that the only bombers observed were those
that had survived in combat. The holes in the bombers that did not survive
were not observed.

For each location on the plane, the Center for Naval Analysis had not
computed the absolute probability of being hit by a bullet in that location but,
rather, the conditional probability of being hit by a bullet in that location,
given that the plane survived. Moreover, what was really needed was the
conditional probability of surviving, given that the plane is struck in that
location, and that was clearly higher for the locations where many bullet holes
were observed. That is, the best place to put armor was exactly the locations
where the fewest bullet holes were observed—not where the most bullet holes
were observed.

Written out mathematically, it is reasonable to assume bullets will hit
almost all locations with equal probability; that is, P(hit here) is roughly the
same for all locations. For a given location on the plane, Bayes’ rule gives

P (survive | hit here) = P(hit here | survive)P(survive)
P(hit here)

and since P(hit here) and P(survive) are independent of location, the de­
sired number P(survive | hit here) is higher at exactly those locations where
P(hit here | survive) is highest.

204 Chapters. Probability

Example 5.3.14. A poll conducted by a cable TV station found that a cer­
tain political figure had an approval rating of 35%—much higher than ex­
pected. Phrased in terms of probability, the claim was that P(approve) = 0.35.
However, this claim failed to account for some important factors, like the fact
that the only people who responded to this poll were people who happened to
be watching this station at 10 a.m. on Tuesday, when the poll was conducted.
People who did not watch this particular TV station at 10 a.m. on a Tuesday
morning, and people who, even if they were watching, were not willing to an­
swer a survey, were not included in the results. So it would be more accurate
to say that the poll really gave the conditional probability

P(approve | watches this station & answers a survey at 10 a.m. on Tues).

Since the condition watches this station and willing to answer a survey at 10
a.m. on Tuesday is not very representative of the general population, the result
is unlikely to be very similar to the unconditional probability P (approve) that
we really want to know. When we want an unconditional result, but our data
supports only a conditional result, the difference between the unconditional
and conditional results is called selection bias.

5.3.3 *Pitfalls of Assuming Independence
When dealing with apparently independent events, it is important to have a clear
understanding of the problem being solved and the questions being asked. Here we
consider an example that teaches us to be careful in our thinking when it comes to
independence.

Suppose that a fair die has both red and green dots on each side. Assume that
if you shine a red flashlight on the die in a dark room, you see only the green dots,
and if you shine a green flashlight on the die, you see only the red dots. In other
words, the flashlight drowns out its own color so that you can see only the other
color. When illuminated with the green light, the die has three odd-numbered red
sides and three even-numbered red sides; when illuminated with the red light, the
die has two odd-numbered green sides and four even-numbered green sides.

Consider an experiment where the outcome of a fair coin determines the color of
flashlight used to illuminate the die when it is rolled: heads means the flashlight is
green and tails means the flashlight is red. In each trial, the outcome of the coin flip
and the observed die roll are noted; see Figure 5.5 for a description of the outcomes
and probabilities.

Are the coin and the die roll independent? Of course they are—the coin and
the die do not influence each other. However, the coin does influence the choice
of flashlight, which affects the observation that is recorded. Therefore the coin
and the observed die roll are dependent, even though the coin and the die roll are
independent processes. We see this mathematically by noting that = |,
P(even) = and P(P, even) = A, that is, P(P, even) P(Pr)P(even). It is
important to recognize that independent processes can be observed in a way that
makes the final results dependent.

5.4. Discrete Random Variables 205

Figure 5.5. A tree diagram of the experiment described in Section 5.3.3.

5.4 Discrete Random Variables
Outcomes in a probability space don’t necessarily have to be numbers—they could
be nearly anything, including colors, textures, or flavors. A random variable is a
rule (function) that assigns a number (or a vector) to each possible outcome. For
example, for a coin flip, we could define a random variable that takes the values 0 for
tails and 1 for heads. Or for the roll of a die, we could define a random variable that
takes the value (1 through 6) of the face showing upward. But a random variable
can also represent many other things, like the amount of money you win in a game
of chance, or the number of votes a candidate will receive in an election.

Random variables are a fundamental tool of probability theory. In this section,
we define discrete random variables and their properties. We sketch how to extend
this to more general settings (uncountable probability spaces) in Section 5.6.

5.4.1 Definition and Examples

A discrete random variable is a function X : Q ч 1 on a discrete probability space
(Q,cF,P).

Definition 5.4.1. Let be a discrete probability space. Any function
X : Q R is called a discrete random variable or a random variable on (Q, P).
It is common to denote random variables by capital letters.

206 Chapters. Probability

Example 5.4.2. Let Q be the set of possible outcomes of n flips of a fair coin:

Q = {HHH... HH, THH... HH, HTH... HH,..., TTT... TH, TTT... TT}

All outcomes are equally likely, so P(cj) = 2~n for all cj G Q, and P(E) =
2~n\E\ for all E G &. We define random variables

Xk =
1 if A;th coin flip is H,
0 if fcth coin flip is T.

For example, XfiHHH) = X^HTH) = 1, while X^THT) = 0. The sum
X = fc=i Xk is also a random variable, which counts the total number of
heads.

Remark 5.4.3. We remind the reader that for any function f : A В and for
any subset S С B, the preimage of S is the set /-1(S) = {u G A | /(a) G S'}. For
a single element b G B, we often abuse notation and write /-1(6) when we mean
rW-

Nota Bene 5.4.4. Beware that the notation /-1(S) makes sense even if f
has no inverse. If f does have an inverse g, then the preimage /-1(S) is what
you might expect it to be, that is, the set /-1(S) = {g(s) | s € S}. But
J-1 (S') exists for any function /, whether f has an inverse or not.

Example 5.4.5. In Example 5.4.2, the set X]-1(l) consists of all elements of
Q which begin with H. The set X3 (0) consists of all elements of Q whose
third term is T. And if n = 4, we have

^-1({3,4}) = {HHHH, HHHT,HHTH,HTHH, THHH}.

Definition 5.4.6. Let X be a random variable on a discrete probability space.
Given a G R, define the event “X = a” to be the set X-1(a) = {cj G Q | X(w) = a}.
This set is an element of &, so it makes sense to define the probability of this event:

P(X = a) = P(X-\a)fi

The probability mass function (p.m.f) of X is the function gx • R [0,1] given
by

gx(a) = P(X = a).

Remark 5.4.7. The domain of a p.m.f., as we have defined it here, is all of R, but
it is often convenient to restrict the domain to be the range of the corresponding
random variable. This often simplifies the formulas for the p.m.f.

5.4. Discrete Random Variables 207

Example 5.4.8. Let Q be the set of possible outcomes for n Bernoulli trials
with probability p of success. Let

Yk =
if the A;th trial is successful,
if the Zcth trial is a failure

and y = ^Yfc.

k=l

Example 5.3.9 shows that

,gy(r) = P(Y = r) =
'®Рг(Д~РГ

<
if r € {0,1,..., n},

otherwise.
(5.10)

A random variable X whose p.m.f. is equal to gy is said to be binomially
distributed with parameters n and p.

5.4.2 Expectation
The expectation of a random variable is the sum of the values of the random variable
weighted by probability. This is often called the mean of the random variable.

Definition 5.4.9. Let X be a random variable on a discrete probability space. The
expectation (or expected value) of X is given by

E[X] = £x(w)F(4

provided this sum converges absolutely. If the sum does not converge absolutely, the
expected value does not exist.

It is immediate from the definition that

E[X] = ^iP(X = г) = ^грх(г), (5.11)
i i

where the sums run over all values i in the image of X.
Thinking of probability in terms of mass is a very useful analogy here. Each x

in the image of X corresponds to a point on the real line at position x with mass
gx(x) = P{X = x). Under this analogy, the expected value of X is the location of
the center of mass of the collection of all these points on the real line.

Example 5.4.10. A random variable X with range {0,1} is a Bernoulli ran­
dom variable. Note that since X can take on only the values 0 and 1, we must
have P(X = 0) + P(X = 1) = 1. Thus, if P(X = 1) = p, then we must have
P(X = 0) = 1 — p. This gives

E[X] = 0 • P(X = 0) + 1 • P(X = 1) = 0 • (1 - p) + 1 • (p) = p.

208 Chapter 5. Probability

Example 5.4.11. You flip a coin until it comes up heads. Let X be the
random variable corresponding to the number of flips it takes to get heads.
If it comes up heads on the first flip, then X — 1. If it takes two flips
to come up heads, then X = 2, and so forth. The sample space is Q =
{H, TH, ТТН, TTTH,... }. The probability P(X = n) is the probability of
getting tails n — 1 times in a row, followed by heads. Since each coin flip is
independent, we have

/l\n 1 1F(X = n)=^-J --=2-

The expected value of X is

e[x] = ^2 np(x =n) = Y n2~n
П=1 П—1

1/2
(1 - W

where the third equality follows from Exercise 1.20. Notice that the expected
value of X is well defined and finite, even though the sample space is infinite.

Nota Bene 5.4.12. To calculate the expected value of a random variable,
we need only the p.m.f. gx- We do not need to know the particulars of the
sample space Q, nor do we need to know all the values of the probability
distribution P(w) for every w 6 Q. This is a big deal, because many different
random variables defined on many different sample spaces end up having the
same p.m.f. This means that many different situations can be modeled and
understood with the same p.m.f. We discuss many of the most common p.m.f.s
in the next section. These few examples describe a surprisingly large number
of the most important situations you will encounter in discrete probability.

Proposition 5.4.13. For any constant a e R, we have E[o] = a.

Proof. Since X = a is constant, we have P(X = a) = 1 and P(X o) = 0, so we
have

E[o] = aP(X = o) = a. □

The next theorem shows that expectation is a linear operator on the space of
random variables.

Theorem 5.4.14. For any constants a,/3 El and any two random variables X
and Y on the same probability space Q, we have

E[oX + /ЗУ] = aE[X] + /ЗЕ[У].

5.4. Discrete Random Variables 209

Proof.

E|al + pY] = ^2(aX(w) + £У(и))Р(«)

= a 52 + /3 52 r(w)p(w)
cuGQ cjGQ

= cdE[X]+/3E[Y]. □

Given a function h : R —> R and a discrete random variable X : Q —> R, the
composition h о X : Q —> R is also a discrete random variable. By definition, the
expected value of h о X is

E[/1oX] = 52jF(/1oX=j),
3

where j runs over all the values in the image of h о X. If we weren’t thinking
carefully (if we were acting “unconsciously”), we might instead write

Е[Л о X] = 52 h(i)P(X = г),
i

where i runs over all values in the image of X. Surprisingly, this unconscious
computation still gives the right answer. This fact is not very hard to prove, but it
is very useful. It is sometimes called the law of the unconscious statistician.

Theorem 5.4.15 (The Law of the Unconscious Statistician). If X is a
discrete random variable, and h : R —> R is any function, then ho X is a discrete
random variable, and the expected value of h(X) is given by

Е[/г(Х)] = 52/г(г)Р(Х = г) = £ h(i)gx(i).

Proof. The proof is Exercise 5.20. □

Example 5.4.16. You are flipping coins to get heads, as in Example 5.4.11,
and someone offers you a bet, based on the outcome of the coin flip. If X = n,
then she will pay you A- dollars. Let Y be the random variable corresponding
to the amount you win. Note that Y = yy, so the expected value of Y is

00 1 °° Q —П

4H = E^P(-V = ») = E— =e,/2-l
n=l n—1

by the law of the unconscious statistician.

A random variable X defines many events of the form A-1 (a) = {cj | A(cu) = a}.
Just as events can be independent, random variables can also be independent, if
the corresponding events they define are independent, as follows.

210 Chapter 5. Probability

Definition 5.4.17. Two discrete random variables X and Y are independent if
the events X = a and Y = b are independent for all a,b El, that is,

P ((X = а) П (У = 0) = P(X = a)P(Y = b). (5.12)

Proposition 5.4.18. For any independent random variables X and Y on a discrete
probability space the product XY is also a random variable, defined by
Xy(cj) = X(cj)y(cj)7 with expectation

Е[ХУ] = Е[Х]Е[У].

Proof, The fact that XY is a random variable is immediate. We compute its
expectation as follows:

Е[ХУ] = ^2 XY(w)P(w) = ^nP(XY = n)

= У У nptx = Y = y) = 52 У xyP(x = x, y = y)
n x,y:xy=n x у

= xyP(X = x)P(Y = y) (by independence)
X у

= [5>F(X = rr)j (52т/Р(У = 7/)) = Е[Х]Е[У]. □

5.4.3 Variance
The variance of a random variable is a measure of how far the random variable
typically differs from its mean. Some random variables are spread out from the
mean (high variance), and others are bunched up near the mean (low variance). For
example, if all the darts on a dartboard are close to each other (but not necessarily
close to the bull’s-eye), this is an example of a random variable (the location of a
dart) with low variance. However, if the darts are spread all over the board, and
maybe even on the wall surrounding the dartboard, this is an example of a random
variable with high variance.

Definition 5.4.19. Let X be a discrete random variable with E[X] = д. The
variance of X is the quantity

Var(X) = E [(X - /i)2] , (5.13)

provided this expectation is defined (absolutely convergent). The standard deviation
is the square root of the variance.

Here |X — p\ is the distance from X to its mean—how spread out it is. The
square |X — /i|2 = (X — p)2 is even greater than that distance when |X — p\ > 1,
but it is smaller when |X — p\ < 1. Therefore, the expected value of (X — p)2 is big
when X is usually far from p and is small if X is usually close to p.

5.4. Discrete Random Variables 211

Theorem 5.4.20. Let X be a random variable with E[X] = /i. Denote by X2 the
random variable given by X2(w) = (X(cj))2. We have

Var(X) = E[X2] - E[X]2 = E[X2] - p2. (5-14)

Proof, The proof is Exercise 5.22. □

Example 5.4.21.

(i) For a Bernoulli random variable X with parameter p, we have

E[X] = p and E[X2] = l2p + 02(l — p) = p.

It follows that

Var(X) = E[X2] - E[X]2 = p - p2 = p(l - p).

(ii) For a binomial random variable X with parameters n and p, we have
E[X] = np and

E[JC2] = i2P(X = г) = fnV(l -p)n-i.

2=0 2=1

It is not hard to show that z(n) = which is used to prove that

E[X2] = (np)2 — np2 + np.

It follows that

Var(X) = E[X2] — E[X]2 = — np2 + np = np(l — p).

Proposition 5.4.22. For any random variable X and constants a, /3 € R, we have

Var(oX + /3) = a2 Var(X).

Proof. Expanding the definition and collecting like terms gives

Var(oX + /3) = E[(aX + /?)2] - (E[aX + /3])2

= E[o2X2 + 2a/3X + /32] - (aE[X] + /3)2

= o2E[X2] - o2E[X]2
= a2 (E[X2] - E[X]2)
= o2Var(X). □

212 Chapter 5. Probability

Proposition 5.4.23. If X and Y are random variables and a,/3 eR are constants,
then

Var(aX + 0Y) = a2 Var(X) + 2а/3(Е[ХУ] - Е[Х]Е[У]) + /З2 Уаг(У).

If X and Y are independent, then variance behaves like the square of a norm:

Уаг(аУ+/ЗУ) = а2 Уаг(У)+/32 Уаг(У). (5.15)

Proof, The proof is Exercise 5.23. □

5.5 Discrete Distributions
Most of the important properties of a discrete random variable X are determined
by its p.m.f. As described in Nota Bene 5.4.12, this means we rarely need to think
about the sample space Q or the probability distribution on Q—it is enough just
to understand the p.m.f. When we talk about a discrete random variable having a
particular distribution, we mean that it has a particular p.m.f.

In this section we give some important examples of probability distributions
for discrete random variables. Many different random variables defined on many
different probability spaces have the same p.m.f.; that is, they all have the same
distribution. Therefore, understanding just a few distributions gives us the power
to model and understand a large number of different probabilistic situations. Many
more random variables can be described as a composition of some function with one
of the basic random variables, and so by the law of the unconscious statistician, the
most important properties of these other random variables can also be described
using these basic distributions.

The set of values of x for which gx (ж) is nonzero is usually called the support2^
of the discrete distribution. It is a subset of the domain of gx and a subset of
the range of the random variable X. Throughout this section, the values of the
p.m.f. gx(%) are given only for x in the support of the distribution. The p.m.f. is
always 0 for values of x that do not lie in the support.

5.5.1 Bernoulli Distribution
The Bernoulli distribution is among the most fundamental of discrete distributions.
It typically represents the results of a Bernoulli trial—like a coin flip or a free
throw—where the results are always in exactly one of two categories.

A random variable X has Bernoulli distribution if its support is equal to {0,1}.
As described in Example 5.4.10, if P(X = 1) = p, then P(X = 0) = 1 — p and the
p.m.f. of X is

5х(х)=рж(1-р)1-ж = Г (5.16)
I 1 — p it x = 0.

24 More generally, the support of a function f : X —> Y is the closure of the set of all x G X such
that /(ж) 7^ 0. The support of a discrete distribution is just the support of the p.m.f. of the
distribution.

5.5. Discrete Distributions 213

In this case we write X ~ Bernoulli(p) and say “X has a Bernoulli distribution with
parameter p.” Example 5.4.21 shows that E[X] = p and Var(X) = p(l — p).

Example 5.5.1. Assume the probability that a basketball player will make
a free throw is 88.08%. We can define a random variable X that is 1 with a
successful throw and 0 with a failed throw. This is Bernoulli distributed, and
F(X = 1) = 88.08%, while P(X = 0) = 11.92%, so

9x(x) =
I 0.8808, x = 1,
(0.1192, x = 0,

= (0.8808)х(0.1192)(1-:г).

If you enter a bet where you win $5 if she misses and $2 if she is successful,
this defines a new random variable G(miss) = 5 and G (success) = 2, which
we can rewrite as G = h о X with /z(0) = 5 and /i(l) = 2. By the law of the
unconscious statistician, the expected return for this bet is

E[G] = E[h о X] = h(tygx(ty + /г(1)рх(1) = $5 • 0.1192 + $2 • 0.8808 = $2.36.

Definition 5.5.2 (Indicator Random Variable). Let E be any event in a
probability space (Q, F). The function : Q —> {0,1}, given by

1£?(^) =
1 ifutE,
0 ifw&E,

is called the indicator random variable of E.

The indicator is Bernoulli distributed with parameter p = P(E) (unless
E = Q or E = 0). Conversely, given any Bernoulli-distributed random variable X
with parameter p, letting E = X-1(l) gives Ec = X-1(0). For any w Efi we have

1
0

1#(^) =
if (jj e F,
if w e Ec

1
0

if X(cj) = 1,
ifX(cj) = 0

= x(4
and thus = X. So any Bernoulli random variable X is the indicator function of
the set E = X-1(l).

5.5.2 Binomial Distribution
The binomial distribution describes the number of successes of a sequence of n
repeated Bernoulli trials (by repeated, we mean independent and with the same

214 Chapter 5. Probability

parameter p). For example, the binomial distribution describes the number of heads
that occur when a coin is flipped n = 100 times.

We say that a random variable X has binomial distribution with parameters n
and p if the support is {0,1,2,..., n} and the p.m.f. of X is

9x^= (5-17)

In this case we write X ~ Binomial(n,p).
We will show below that

E[X] = np and Var(X) = np(l — p).

As the next two examples show, the sum of n independent Bernoulli random
variables A\,..., Xn, all with parameter p, is a binomially distributed random
variable with parameters n and p.

Example 5.5.3. Continuing with the situation of Example 5.5.1, assume that
all of Kevin Durant’s free throws are independent, so his ability to make a shot
is not affected—positively or negatively—by any previous failures or successes.

If he takes 10 free throws, let T be the total number of successes. The
probability that T = 7 can be computed by listing each of the ways that he
could make 7 and miss 3 and then summing the probability of all of those.
If F denotes failure and S denotes success, we have the following possibilities
and probabilities:

FFFSSSSSSS
FFSFSSSSSS
FFSSFSSSSS
FFSSSFSSSS

(1 -p)3p7,
/1 _(1 - p)2p(l - p)p6 = (1 - p)3p7,
(1 - p)2p2(l - p)p5 = (1 -p)3p7,
(1 - p)2p3(l - p)p4 = (1 -p)3p7,

There are (?) = 120 of these possibilities, all with the same probability,
so summing them all up gives

Р(Т = 7) = рт(7)= 3p7 = 120 • (0.8808)7(0.1192)3.

A similar argument for any tc{0,l,...,10} shows that

P(T = t) = р‘(1-р)10-г

and hence T is binomially distributed with n = 10 and p = 0.8808.

5.5. Discrete Distributions 215

Example 5.5.4. Generalizing the previous example, for any n repeated (in­
dependent) Bernoulli trials all with the same parameter p, let Xi be 1 if the
zth trial is successful and 0 otherwise. Each Xi is Bernoulli distributed with
parameter p, and the sum X = x Xi is also a random variable.

Making the same sort of argument as in Example 5.5.3, we find the prob­
ability that X = x, by listing each of the possibilities that sum to x and
summing those probabilities:

l,l,...,l,0,0,...,0
X n — x

0,l,...,l,l,0,...,0
x n—x—1

px(l — p)n x

рж(1 — p)n~x

There are of these possibilities, all with the same probability, so sum­
ming them all up gives

(77 XИ-рГ1.
ж /

This shows that X = (52™=1 Xf) ~ Binomial(n,p).

Proposition 5.5.5. If X ~ Binomial(щр), then

E[X] = np and Var(X) = np(l — p).

Proof. Note that the expected value and variance of a discrete random variable
are completely determined by its p.m.f., and the discussion in Example 5.5.4 shows
that X has the same p.m.f. as Xi, where each Xi ~ Bernoulli(p). Therefore
E[X] = E[J2™=1 A*] and Var(X) = Var(J2™=1 JQ). Since expected value is linear,
we have

n

E[X] = ^E[Xt] =np.
i=l

Also, by (5.15) we have

Var(X) = Var(Xj) = np(l — p). □
i=l

Figure 5.6 gives a plot of the p.m.f. of the binomial distribution for several values
of p.

5.5.3 Poisson Distribution
The Poisson distribution is used to describe the number X of occurrences of an event
in a given interval of time or space, where the interval is made up of many small
subintervals in which the probability of an occurrence is low, and the occurrence of

216 Chapter 5. Probability

p = 0.12 p = 0.25 p = 0.50

0.30- фв

0.25-
• •

0.20- ••

0.15- • * • •

0.10- . ее
0.05 - 9 ф е •
о.оо- ••• •••

0 5 10 15 0 5 10 15 0 5 10 15

Figure 5.6. Graphs of the p.m.f. gx(x) for the binomial distribution with n = 15
and with p = p = and p = respectively. For each value of x, the height of
the point above x is the probability P(X = x). In the leftmost graph, withp = the
probability of 7 or more successes in 15 trials is essentially zero, but the probability
ofl success is almost 30%. The expected value is E[X] = 15p = = 1.875, which
happens to lie between the two most likely values of x = 1 and x = 2. The variance
is 15p(l — p) = ~ 1.65, corresponding to the fact that most of the probability
(or mass) is concentrated within one or two units of the mean. In the rightmost
graph, with p = |, the mass is more spread out, corresponding to the fact that
Var(X) = ^ = 3.75.

an event in a given subinterval is essentially independent of the occurrence of any
event in any other subinterval.

It is often used to describe situations like the number of radioactive particles that
hit a detector in a second, the number of automobiles that arrive at an intersection
in a minute, or the number of customers that come into a store in an hour.

We say that X has Poisson distribution with rate A (denoted X ~ Poisson (A))
if the support is N and the p.m.f. is

gx(x) = (5.18)

A = 0.80 A = 2.50 A = 9.00

0.4-

0.3-

0.2 - • *

o.i- e

o.o- •••••••••••• ••••••••• ••••

0 5 10 15 0 5 10 15 0 5 10 15

Figure 5.7. Graphs of the p.m.f. for the Poisson distribution with A = 0.8, A = 2.5,
and A = 9, respectively.

5.5. Discrete Distributions 217

The expectation is

E[X] = £
fc=0

ke xXk
k'.

Xk-i

(fc-1)!
= Ле-Ау^ = Ле-АеА = Л

and the variance is also equal to A (see Exercise 5.32). Figure 5.7 gives a plot of
the Poisson p.m.f. for several values of A.

Example 5.5 .6. Assume that the number X of customers buying a certain
product at a website averages two per hour and that the customers buy in­
dependently of each other. In this situation we assume that X has a Poisson
distribution. If the basic unit of time is an hour, then A is 2, and the p.m.f. is

9x(x) =
e 22

x\

Thus the probability that exactly four customers will buy the product in a
given hour is <?x(4) = —= |e-2 « 0.0902.

Example 5.5 .7. We can also find the probability of a given number of events
in a different time period. In a period of t units, the expected number of events
is At, so the probability of x events in a period of t units is

e~tx(tX)x
x\

Thus in the previous example, with A = 2 per hour, the probability of 10
customers buying the product in a 3-hour period is e~6(6)10/10! ~ 0.0413.

Example 5.5 .8. The usefulness of the Poisson distribution is not limited to
time intervals. For example, the number of chocolate chips in a chocolate chip
cookie is a random variable that is approximately Poisson distributed. Here
the intervals are intervals of volume rather than of time. The average number
of chocolate chips in one cookie is proportional to the volume of the cookie,
and the number in one cookie is essentially independent of the number in
another cookie. Of course this is not precisely true, because the total number
of chips used to make one batch of cookies is probably fixed, but if there are
lots of cookies from one batch, having a few more chips in one cookie doesn’t
significantly affect the number in the next cookie.

218 Chapter 5. Probability

If A is the average number of chips per cubic centimeter of cookie, the
number X of chips in a given cookie of t cubic centimeters is approximately
Poisson distributed with

P(X , x) , «-‘W.
x\

The expected number of chips in a cookie of size t is E[X] = At, and the
variance is also Var(X) = Xt.

5.5.4 *Negative Binomial Distribution
The negative binomial distribution with parameters к E and p E [0,1] describes
the number of successes that occur in a sequence of repeated Bernoulli trials with
parameter p before к failures occur. For example, in a sequence of independent
games played against the same opponent, this distribution describes the number of
games you win before you lose к times (see Examples 5.5.10 and 5.5.11).

We say that X has negative binomial distribution with parameters к and p
(written X ~ NegBin(A;,p)) if the support is N and the p.m.f. is

. . f xк — 1\ .
9x(x) =1 Ip (1 -p) . (5.19)

Exercise 5.35 shows that the expected value and variance are

E[X] = and Var(X) = - (5.20)
1-p (1-РГ

Figure 5.8 gives a graph of the negative binomial p.m.f. for several values of p.

Remark 5.5.9. The special case of к = 1 is usually called the geometric distribu­
tion.

p = 0.25 p = 0.50

0.5-

0.4-

0.3-

0.2 -

0.1 -

0.0-

p = 0.12

Figure 5.8. Graphs of the p.m.f gx(%) for the negative binomial distribution with
n = 15, к = 5, and p = p = and p = respectively.

5.5. Discrete Distributions 219

Example 5.5.10. Blaise and Pierre play a game where they flip a coin re­
peatedly. Every time the coin comes up heads, Blaise gets a point, and every
time the coin comes up tails, Pierre gets a point. They play the game un­
til Pierre has к points. Assuming the probability of heads is p, what is the
probability px(rr) that Blaise will have exactly x points when the game ends?

We begin with the case of к = 1. The only way for Blaise to have exactly
x points when Pierre gets his first point is if the sequence HH... H T occurs,

X
and this has probability pxq, where q = 1 — p. If fc = 2, things are a little
trickier. If the game ends with Pierre having x points, then the second T
occurred on coin flip number x + 2. Thus, the first я + l flips consist of exactly
x heads and one tail, taken in any order. This implies рх(ж) = (ж+1)рж(1 — p)2.

More generally, for arbitrary A;, if Pierre ends the game with x points, then
flip number x + к must be T, and that means the remaining flips consist of x
heads and к — 1 tails, taken in any order. Thus we have

/ x (xк — 1\ X(
ffx(x) = I x \p (1 -p) •

Example 5.5.11. Experience shows that when you play tennis with your
friend your probability of winning a set is p = 0.55. Your friend challenges
you to a best-of-five tennis match, so you win the match if you win three
sets before she wins three sets. Assuming that the outcome of each set is
independent of the other sets, what is the probability that you will win the
match?

One way to model this situation is with a negative binomial distribution
with к = 3 (the number of sets your friend needs to win in order to beat you).
You lose the match if the number x of your wins is two or fewer when she
reaches к = 3. So we have

2

F(you win) = 1 - 9x(x)
x=0

i f x 2\ о з (x + 2)(rr + 1) x
= 1-Y(x)p (i-p) = i-u-p) E?—i—Lp

rr=O ' ' rr=O

= 1 - (1 - p)3(l + 3p + 6p2) « 0.59.

Example 5.5.12. A marketer is having a promotion where shoppers get a
special, randomly selected card every time they spend more than $10. Cards
come in 20 different types, and the probability of receiving any specific type
of card is the same for every type. Anyone who gets a complete set, consisting

220 Chapter 5. Probability

of one of each of the 20 different types, wins a big prize. You have already
collected 19 different types. What is the expected number of $10 purchases
you need to make in order to get the last type of card and complete your set?

This is essentially a situation where you want to know how many times
you will lose before you win once. Thus, if X is the number of purchases you
must make, then X = Y + 1, where Y ~ NegBin(l, ||). Here the parameter
p is (1 — ^q) = because the roles of success and failure have been swapped
in the story of the negative binomial distribution. Thus we have

/19\ж-1 1Р(Х = х) = Р(У = х-1)=(-)

and the expected number of additional cards you need to acquire is

v5' <19 V-1 1 120Д /19 V 1 19/20। 20 “ 2019 Yx (20) ~ 19 (1/20)2 “

Here the penultimate equality follows from Exercise 1.20.

5.6 Continuous Random Variables
Although discrete probability spaces and random variables cover many situations, it
is important to generalize the ideas of probability to the so-called continuous case—
where the probability space and the images of random variables are not countable.
We do this carefully and in full detail in Volume 3, but in this section we give a
quick sketch of the ideas and how to work with continuous random variables.

An important difference between the discrete and continuous cases is that with
discrete distributions every subset of the sample space has a well-defined probability,
and for any subset E, the probability of E is the sum of the probabilities of the
individual elements in E. But in the continuous case, the uncountable sums don’t
make sense and must be replaced with integrals, the probability of an individual
point a) e fl is usually zero, and not every subset has a well-defined probability.

5.6.1 Continuous Random Variables
If Q is uncountable, then insisting that every subset of Q has a well-defined prob­
ability is too restrictive. Instead we only require that probability be defined on a
subcollection / C 2Q such that & contains Q and is closed under complements,
countable unions, and countable intersections.25

25Such a collection is called a a-algebra of sets.

For such a collection & C 2Q, the definitions of a probability measure and
probability space (Definition 5.1.7) still make sense, and all of the basic properties
still hold in this more general case. These include Proposition 5.1.10, the definition
of independence, conditional probability, and Bayes’ rule (Theorem 5.2.13).

5.6. Continuous Random Variables 221

Definition 5.6.1. Let Cl be a set, and let & C 2Q be a collection containing Cl that
is closed under complements and countable unions.26 A function P : [0,1]

26If & is closed under complements and countable unions, then it is automatically also closed
under countable intersections.

is a probability measure if P(Cl) = 1 and countable additivity (5.1) holds. In this
case, the triple (Cl,&,P) is called a probability space.

We want to extend what we have done with discrete random variables to this
more general setting. One problem is that the p.m.f. gx(x) = P(X-1(a;)) is no
longer very useful, because in the continuous case we usually have P(X = x) = 0
for all x e R. Instead we use something called the cumulative distribution function
(c.d.f.). The c.d.f. of X gives the probability P(X < x) that X will be no greater
than a given amount x. But for an arbitrary function X : Cl R, talking about
P(X < x) might not make sense because the sets X-1((—oc,x]) might not have a
well-defined probability if they aren’t all in &. This motivates the definition of a
random variable to be a function for which these probabilities are always defined.

Definition 5.6.2. A function X : Cl R on a probability space (Cl, &, P) is a ran­
dom variable if X~r((—оо,ж]) e & for every x e R. The cumulative distribution
function (c.d.f.) of X is the function Fx : R —> [0,1] given by

Fx(a) = P(X <d) = P(V1(-oo, a]).

In the case of a discrete probability space, we have & = 2Q, so every subset of
Cl lies in & and every function X : Q —> R is a random variable. We discuss the
details of the general case in Volume 3, but essentially every function that you are
likely to encounter in applications will satisfy the conditions of Definition 5.6.2 and
have a well-defined c.d.f.

Example 5.6.3. For a discrete distribution, the c.d.f. can be written as the
sum

F%(a) = P(X < a) = 5лдх(а:),
x<a

where the sum runs over all values of x in the range of X that are less than
or equal to a. For example, if X ~ Binomial(n,p), then

Fx(a) = £Wpfc(l-p)"-\
\ rv /

k=0 ' 7

If the range of X lies in Z, then we can reconstruct the p.m.f. of X from
the c.d.f. as

gx(a) = Fx(a) - Fx(a - 1) = AFx(a - 1),

where A is the difference operator (see Definition 1.3.6 and Section 1.3.3).
Thus, for distributions with range in Z, the p.m.f. of X is a sort of discrete
derivative of the c.d.f.

222 Chapter 5. Probability

Proposition 5.6.4. The c.d.f. Fx(x) of any random variable X : Q —> R is
nondecreasing and satisfies

lim Fx(x) = 1 and lim Fx(x) = 0.
X—><X) X—^ — OQ

Proof. If a <6, then

Fx(a) = P(X < a) < P(X < a) + P(X E (a,b]) = P(X < b) = Fx(bfi

and therefore Fx(x) is nondecreasing. Since 0 < Fx(x) = P(X < x) < 1 for all x,
the function Fx(x) must converge to a limit as x сю, and it also must converge
to a limit as ж —> —сю.

Let Bq = (—oo,0], and for every n E Z+ let Bn = (n — l,n]. The sets Bn are
pairwise disjoint and their union is R. It is straightforward to check that the sets
X-1(Bn) are mutually exclusive and collectively exhaustive. Therefore, we have

oo / \

lim Fx(n) = £ P(X e Bn) = P |jBn = 1.
n—>oo ' \ /

n=0 \ n /

Finally, we have

lim Fx(n) = lim 1 — P(X > —k)
— k^oa

= 1 - lim P(-X < k) < 1 - lim F_x(k - 1) = 0. □
fc—>oo fc—>oo

Example 5.6.3 shows that the c.d.f. of a discrete distribution is discontinuous,
skipping upward every time x becomes larger than the next point in the image of
X. A continuous distribution is one whose c.d.f. is not only continuous but also
continuously differentiable.

Definition 5.6.5. A random variable X has a continuous distribution if its
c.d.f Fx(x) is a continuously differentiable function of x, when restricted to the
range of X. The derivative fx(x) = f^Fx(x) = F'x(x) is called the probability
density function (p.d.f.) of X.

By the fundamental theorem of calculus, we have

Fx(ty= f fx(x)dx
J — oo

for any continuously distributed random variable X and for any b E R. Thus
the area of the region bounded on the right by x = b and lying under the curve
у = fx(x) is the probability P(X < b); see Figure 5.9. Exercise 5.36 shows that

/•OO
/ fx(x)dx = 1.

J —oo

More generally, for any a < b the probability P(a < X < b) is given by the integral

P(a < X < b) = f fx(x)dx-
J a

5.6. Continuous Random Variables 223

Figure 5.9. Graphs of the p.d.f fx (left panel) and c.d.f Fx (right panel) of a
continuous distribution on [0,1]. The value Fx(x) (the height of the black dot) at a
point x (here x = 0.6,) is the probability P(X < x). This is the area (pink shaded)
under the graph of fx to the left of x. The value fx(x) is not the probability of
X = x. That probability is always 0 for a continuous distribution. For more on
this, see Definition 5.6.5.

A useful analogy is the problem of computing the mass of a discrete collection
of objects on a line, versus computing the mass of a solid rod of varying density.
In either case the c.d.f. Fx(b) gives the mass (probability) of everything to the left
of the point x = b. In the discrete case, this amounts to adding up the mass (the
p.m.f.) at the discrete points along the line to the left of b, but in the continuous
case, the mass varies continuously and is the integral of the density function (the
p.d.f.) up to b.

Remark 5.6.6. Just as with discrete distributions (see Remark 5.4.7), although
the domain of a p.d.f. is actually R, it often simplifies our formulas if we restrict
the domain of fx to be the range of X.

For a continuous random variable, the main change we must make from discrete
random variables is the definition of expected value, where we replace the sum with
an integral and the p.m.f. with the p.d.f.

Definition 5.6.7. For a continuous random variable X with p.d.f. fx, the expec­
tation of X is Zoo

xfx(x)dx,
-oo

provided И fx (x) dx is finite.

For a continuous random variable, all the other definitions and results we have
proved for discrete random variables still hold, once we make the obvious changes,
like replacing sums by integrals:

(i) Linearity of expectation:

E[qX + /3Y] = oE[X] + /Ж[У].

224 Chapters. Probability

(ii) Law of the unconscious statistician: if h is continuous, then hfX) is a contin­
uous random variable and

Zoo
h(x)fx(x)dx.

-oo

(iii) Expectation of a product of independent random variables is a product:

Е[ХУ] = Е[Х]Е[У] if X and У are independent.

Note the definition of independence in the continuous case also requires a sub­
stitution of p.d.f.s for probabilities in (5.12). See Definition 5.7.8 for details.

(iv) Variance:
Var(A) = E[(X - /i)2] = E[X2] - E[X]2.

(v) If X and У are independent, then variance satisfies

Var(aA + /ЗУ) = a2 Var(X) + /З2 Уаг(У).

5.6.2 Some Important Continuous Distributions
In this subsection we describe a few important continuous distributions. The sim­
plest is the uniform distribution, which describes a continuous version of equally
likely outcomes. Possibly the most important distribution is the normal (or Gaus­
sian) distribution. The last two distributions are the gamma and the beta distribu­
tions. These are especially important for Bayesian statistics (see Section 6.5), but
they also occur in many other probability models.

As in the discrete case, we describe the p.d.f. of each distribution only on its
support.27

27The support of a continuous distribution X is the support of the p.d.f. fx of the distribution.
As in the discrete case, this is a subset of the domain of fx and a subset of the range of X.

Uniform Distribution

The uniform distribution is the continuous analogue of equally likely outcomes (see
Section 5.1.2). A random variable X has continuous uniform distribution on [a,b]
if it has support [a, b] and p.d.f.

(1J b—a
(0

if x G [a, b],
otherwise.

(5.21)

This gives
'o if x < a,

Fx(x) = P(X < x) = < x—a
b—a if x G [a, b],
1 к if x > b.

We denote this by X ~ Uniform ([a, b]). Exercise 5.37 shows that the mean and
variance are

a + b . ? (b — a)2and <T2 = ———. (5.22)

5.6. Continuous Random Variables 225

Normal Distribution

The normal distribution is among the most important of all distributions. This is
primarily due to its appearance in the central limit theorem (Theorem 6.3.1) and
its appearance in nature. The normal distribution is typically used to describe a
value that depends on a number of other random factors, like measurement error,
or height or weight of a randomly chosen person.

A random variable X is normally distributed if it has support (—сю, сю) and
there exist /z E R and a > 0 such that the p.d.f. of X is

/x(l) = ^hexp((ar-^)2\
2cr2)' (5.23)

We denote this by X ~ <r2). This gives

Fx(x) - P(X < x) - exp ((j)) dt.

The mean is /z and the variance is a2. If ц = 0 and a = 1, then X has a standard
normal distribution.

Figure 5.10 shows graphs of the p.d.f. for the normal distribution with pt = 0
and several values of a.

Figure 5.10. Graphs of the p.d.f. fx(%) for the normal distribution with pL = 0
and a = 0.5, a = 1.0, and a = 2.0, respectively. The total probability (area under
the curve, or mass) is always 1, but as the variance a2 increases, the probability
becomes more spread out, and as the variance goes toward zero, the probability is
increasingly concentrated near the mean.

Gamma Distribution

The gamma distribution describes the waiting time for at least a > 0 events to
occur in a homogeneous Poisson process of rate b >
the p.d.f. is

0. The support is [0, oo) and

/x(i) =
6afa-ie-tb

Г(а)
(5-24)

226 Chapters. Probability

for all t e [0, сю). We denote this by X ~ Gamma(o, b). The parameter a is called
the shape, and the parameter b is called the rate. It is also common to specify the
gamma distribution in terms of a scale parameter 0 = 1/6. The scale 0 corresponds
to the average wait time for a single event. The mean and variance of the gamma
distribution are a i о a/x = — and cr = —.

b bz
Remark 5.6.8. In the special case that a = 1, the gamma distribution is usually
called the exponential distribution. When a = § and b = | for an integer n, the
gamma distribution is called the chi-squared distribution with n degrees of freedom.
The chi-squared distribution is important for estimating the variance of a sample
because it is the distribution of the sum of the squares of n independent, standard
normal random variables.

Figure 5.11 shows graphs of the p.d.f. for the gamma distribution with several
values of (a,b).

(a, b) = (10,1)

Г To
Figure 5.11 . Graphs of the p.d.f. fx(t) for the gamma distribution with 6 = 1 and
a = 2, 4, and 10, respectively.

Beta Distribution

The beta distribution is an important family of distributions defined on the unit
interval [0,1] (the uniform distribution is a special case). It plays an important
role in Bayesian statistics, especially as a way of describing the distribution of the
parameter p for a Bernoulli or binomial random variable; see Section 6.5 for more
on this.

A random variable X taking all its values in the interval [0,1] has distribution
Beta(u, 6) if its p.d.f. is

fx№ = a’6>0’ (5-25)

defined on the interval 0 < x < 1. This is denoted by X ~ Beta(cz, 6). The mean
and variance of Beta(a, 6) are

Cl i 2 О'Ь ,£1 =----- 7 and (T = 7----- 77777----- ---- —. (5.26)a+ 6 (a + 6)2(cz + 6 + 1) v 7

5.6. Continuous Random Variables 227

Figure 5.12 . Graphs of the p.d.f fx(x) for the beta distribution with (a,b) =
(3,4), (a, 6) = (15,20), and (a,b) = (30,40), respectively. The mean is always
/a = = |, but as a and b get larger, the variance gets smaller, and the peak gets
taller and narrower.

Given independent random variables A and В having gamma distributions with
parameters a, 0 and /3,0, respectively, the random variable

A + B

has distribution Beta(a,/3). Alternatively, a draw from a beta distribution Beta(A;,
n + 1 — k) comes by drawing n numbers from the uniform distribution on [0,1] and
then ordering them and taking the A;th smallest number.

Figures 5.12 and 5.13 show the graphs of the p.d.f. for the beta distribution with
various values of a and b.

(a,b) = (l,l)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.13 . Graphs of the p.d.f. fx(x) for the beta distribution with a = b for
various values of a. The mean for all of these is /a = = 0.5, but as a and b get
larger, the variance gets smaller. When a = b = 0.5 (blue), the distribution has a
peak at either end of infinite height. When a = b = 1 (green), this is the uniform
distribution on [0,1]. When a = b = 10 (red), this has a single maximum at 0.5.

228 Chapters. Probability

5.7 Multivariate Random Variables
We often need to think about collections of several random variables Xi,... ,Xn
at once. We can think of such a collection as a single function from Q to Rn, that
is, as a multivariate random variable. In this section we discuss some basic proper­
ties of multivariate random variables and some important examples of multivariate
distributions.

5.7.1 Multivariate Random Variables

Definition 5.7.1. A function X : Q —> Rn on a probability space with
X = (Xi,... ,Xn) is a multivariate random variable if every coordinate function
Xi : Q —> R is a random variable. If n = 2, we call the random variable bi­
variate, and when n = 1 (that is, when X is a random variable in the sense of
Definitions 5.4-1 and 5.6.2), we call the random variable univariate.

Example 5.7.2. Consider a bag filled with blue, white, and red balls that
are all identical except for their color. Assume there are 30 blue balls, 40
white balls, and 15 red balls. If we choose a ball at random from the bag,
then the probability of choosing blue is рв = Ц, choosing white pw =
and choosing red pr = ||.

If a ball is drawn three times with replacement (with the ball being returned
to the bag after each draw), we can model this with the discrete probability
space

Q = {BBB, BBW,..., RRB, RRR},

where P(BBB) = p^B, P(BBW) = p2BPw, • • • • Define a multivariate random
variable X : Q —> R3 by X = (Хв,Хц-,Хд) with Xb equal to the number of
times that blue is drawn, X\y the number of times that white is drawn, and
Xr the number of times that red is drawn. Therefore X(BBB) = (3,0,0),
X(BWB) = (2,1,0), and so forth. The range of X is the set of all triples
x = (xb,Xw,xr) £ N3 with xb + + XR = 3. This is an example of what
is called the multinomial distribution.

Each of the individual coordinates X#, Xjy, and Xr is itself a random
variable. We have Хв ~ Втот1а1(3,рв), since Xb counts the number of
times that blue occurs (success) versus any other color (failure). The other
coordinates are also binomially distributed.

5.7.2 Density, Mass, and Distribution Functions
As in the single-variable case, the ideas of probability mass functions, cumulative
distribution functions, and probability density functions are very useful.

Definition 5.7.3. If (D,^,P) is a discrete probability space and X : Q —> Rn
is a multivariate random variable, then the function <?x(x) = P(X = x) is called
the joint probability mass function of the univariate random variables Xi,... ,Xn

5.7. Multivariate Random Variables 229

or just the probability mass function (p.m.f.) of the multivariate random variable
X. For a multivariate random variable X = (X1?..., Xn) on a general probability
space (Q, P), the function

FX(x1,...,Xn) = P(X1 <xi,...,Xn <®n)
is called the joint cumulative distribution function of the univariate random vari­
ables Xi,..., Xn or the cumulative distribution function of the multivariate random
variable X. An integrable function fx'-№n^Risa joint probability density func­
tion for the random variables Xi,..., Xn and fx is a probability density function
(p.d.f.) for the multivariate random variable X = (X1?... , Xn) if

Fx(x1,...,xn) = ■ I fx(ti,...,tn)dti---dtn.
—oo J — oo

Example 5.7.4. The random variable X in Example 5.7.2 has p.m.f.

for any triple x = (xb,xw,xr) € N3 with xb + xw + xr = 3. This is an
example of the multinomial distribution (see Section 5.7.5).

The value of the joint p.m.f. gx.y(x^y) of two random variables X and Y cor­
responds to the probability P(X = x,Y = y) that Y = у and X = x. But we can
use this to find the probability that X = x, with no constraints on Y:

P(x = ж) = 52 p(x = xX = У) = Y y)-

This motivates the following definition.

Definition 5.7.5. If X is a discrete multivariate random variable with p.m.f
gx(x), then the marginal p.m.f. gi(a) at a is the sum of the joint p.m.f. over all
values of x with the ith coordinate equal to a:

9i(a) = 52 5x(x).
x:xi—a

Similarly, if X is a continuous multivariate random variable with probability density
function (p.d.f.) fx, then for each i e {1,..., n} the marginal p.d.f. fi is the integral
of the joint p.d.f. fx(fi,- • •, ti+i, • • • ,tn) over all values of t with the ith
coordinate equal to a:

fi (&) — I fx (fl, • • • , ti—1, O, ti-n, . . . , tn) dt
jRi~1x{a}xln~i

fx(fi, • • •, ti—i, a, ti+i,.. •, tn) dti • • • dti-idt^i • • • dtn.

230 Chapters. Probability

Remark 5.7.6. The name marginal comes from the fact that in early statistics
books the p.m.f. of a bivariate distribution X was often written out as a table.
Summing all entries in each column and writing the sum in the top margin of
the table gives a row of values corresponding to the p.m.f. of the coordinate X±.
Similarly, summing all entries in each row and writing the sum in the right margin
gives a column of values corresponding to the p.m.f. of the coordinate Х2.

Proposition 5.7.7. If X = (A\,..., Xn) is a random variable with p.d.f fx, then
for each i e {1,... ,n} the marginal p.d.f fi is the p.d.f. of X^:

fi = fXi-

Proof. The proof in the discrete case is Exercise 5.46. The continuous case follows
from standard properties of multivariable integration (see Volume 1, Chapter 8).
□

As noted earlier, the definition of independence used for discrete random vari­
ables (Definition 5.4.17) is not quite correct in the continuous case, but the definition
is analogous, with appropriate p.d.f.s substituted for the probabilities in (5.12). We
now have everything we need to give the correct definition.

Definition 5.7.8. Two continuous random variables X and Y are independent if
their joint p.d.f. factors as the product of the marginals:

fx,y(x,y) = fx(x)fy(y) ^x and y. (5-27)

5.7.3 Expected Value
The expected value of a multivariate random variable is a straightforward general­
ization of the univariate case.

Definition 5.7.9. The expected value E[X] of a discrete random variable X : Q —>
Rn with p.m.f. #x(x) is

= Y = 52 x^x(x) =
ExeiR- xxgxix)
ExeRn x2gx(x)

xer
ExGR" xngx(x\

The expected value of a continuous random variable X : Q —> Rn with p.d.f. /x(x)
is

E[X] = I xfx(x)dx =
JRn

'fK„xifx(x)dx
fRn x2fx(x) dx

JR„ xnfx(x) dx

Linearity of expectation follows immediately from linearity of summation and
integration.

5.7. Multivariate Random Variables 231

Proposition 5.7.10. Expected value for functions of multivariate random variables
is linear; that is, if (Q, , P) is a probability space and if X,Y : Q —> Rn are two
multivariate random variables, then for any constants a,b E the expected value
of aX + bY is

E[aX + bY] = aE[X] + ЫЕ[У].

In addition to the expected value E[X] of a random variable, we can also compute
the expected value E[X$] of each coordinate Xi. These are related in the most
natural way.

Proposition 5.7.11. For any multivariate random variable X = (Xi,...,Xn),
the expected value satisfies E[X] = (E[Xi],... ,E[Xn]).

Proof. The proof is Exercise 5.48. □

Example 5.7.12. The colored-ball random variable X of Example 5.7.2 has
expected value

%b
E[X] = xw P(x),

x Xr

which may seem a little painful to compute. But by Proposition 5.7.11 we
have

E[XB]‘
E[X] = E[Xw]

®[XR]

Each of the coordinate random variables X#, Xw, and Xr is binomially
distributed with probability рв, Pw, and Pr> respectively, from which we
conclude that

’ 90/85'
120/85
45/85

E[X] = 3pw
Зрд

5.7.4 Covariance
Variance of a single random variable tells us about how much the variable fluctuates
around the mean. When comparing two random variables, it is important to get an
idea of how much or how little they are constrained to move together. The main
tool for measuring this is the covariance.

Definition 5.7.13. If X and Y are univariate random variables on a probability
space Q with expected value fix and pr, respectively, then the covariance of X and
Y is the quantity

Cov(X, У) = E[(X - fix)(Y - fiy)].

232 Chapters. Probability

More generally, if Z : Q —> Rn is a multivariate random variable, then the covari­
ance matrix of Z is the following symmetric matrix:

Cov(Zi,Zi) Cov(Zi,Z2) ... Cov(Zi,Zn)‘
Cov(Z2,Z1) Cov(Z2,Z2) ... Cov(Z2,Zn)

Cov(Zn,Zi) Cov(Zn,Z2) ... Cov(Zn,Zn)

It is convenient to write p,z as a column vector nz = [/zi ... дп] and write

S = E[(Z-Mz)(Z-/zz)T],

where the expected value of the n x n matrix (Z — is taken entry by
entry.

Example 5.7.14. If У and Z are independent univariate random variables on
Q, then we can show that the covariance Cov(K Z) is zero as follows. We define
new random variables Y' = Y — /ay and Z' = Z — . These are independent
because X and Y are independent. Moreover, we have Е[У'] = E[ZZ] = 0. We
compute

Cov(y, Z) = Е[(У - /zy)(Z - pz)] = ^[Y'Zf] = E[y']E[Z'] = 0.

Nota Bene 5.7.15. The previous example shows that independent random
variables X and Y have Cov(X, У) = 0. but beware that the converse is false.
For example, if X is uniformly distributed on [—1,1] and Y = X2, then X
and Y are not independent, but Cov(X, У) = E[X3] — Е[Х]Е[У] = 0.

Proposition 5.7.16. For any multivariate random variable X and for any i j
the covariance satisfies

Cov(XbXj) = E[XiXj] - Е[Х,]Е[Х;].

Proof. The proof is Exercise 5.49. □

Remark 5.7.17. The covariance of a univariate random variable Y with itself is
the variance of Y. Therefore the covariance matrix of a multivariate random variable
X can be written as

Var(Xi) Cov(Xi,X2) Cov(Xi,Xn)
Cov(X2, XJ Var(X2) ... Cov(X2, Xn)

Cov(Xn,Xi) Cov(Xn,X2) ... Var(Xn)

5.7. Multivariate Random Variables 233

Example 5.7.18. To compute the covariance matrix for the three-colored-
ball random variable X of Example 5.7.2, we first use the fact that the coor­
dinates are binomially distributed (see Example 5.7.12) to find the variance
for each coordinate; see Proposition 5.5.5.

VarpCg) = 3pB(l-pB), Var(A'iy) = 3pw(l-pw), Уаг(Хд) = Зрд(1-рд).

To compute the covariance Соу(Хв, Xw) = Е[УдУц/] — Е[Уд]Е[Уц,’], we
need

Q|
£ xBxW , ;PxbbpWpXR-

xB\xw]-xRl
x в +xw R=%

Most of the terms are zero (whenever xB = 0 or xw = 0), so this becomes

Е[ХвА\у] — ^P^PwP^r d- ^PbPwPr

= 6pBpw(PB +Pw + Pr) = ^PbPw-

Assembling all these pieces gives

Cov(Xb, Xw) = —3pBpW-

The values of Cov(Xb, Xr) and Cov(Xw, XR) are computed similarly. As
described in Remark 5.7.17, the covariance matrix £ can now be assembled
from these values and the variances computed at the beginning of this example.

Proposition 5.7.19. Let X = (Xi,...,Xn) be a multivariate random variable
X : Q —> Rn with covariance matrix E. Given a e Rn, let Y be the univariate
random variable Y = aTX. We have Var(K) = aTEa.

Proof. The proof is Exercise 5.50. □

Since Var(y) is always nonnegative for any random variable У, we see that the
covariance matrix is always positive semidefinite.

Corollary 5.7.20. If X : Q —> Rn is a random variable with covariance matrix E,
then aTSa > 0 for all a.

Since E is symmetric, Rn has an orthonormal basis of eigenvectors of E that diag­
onalize it, that is, there exists an orthonormal matrix U whose columns are eigenvec­
tors of E such that if У = [У1 ... УП]Т = UX, then UTYU = diag((Ti,..., cr^)
is diagonal (see Volume 1, Section 4.3). By Proposition 5.7.19, this means that
the new random variables Y\,..., Yn have the property that erf is the variance of
У*, for each i e {l,...,n}, while Cov(Yi,Yj) = 0 for all i j. But recall from
Not a Bene 5.7.15 that this does not necessarily imply that the new variables are
independent.

234 Chapters. Probability

5.7.5 Common Multivariate Distributions
Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution that
counts the outcomes of a sequence of n repeated (independent, identically dis­
tributed) trials of an experiment where exactly one of к outcomes can occur,28
and for each j, the Jth outcome has probability p7, with JX=1pj = 1. The zth
coordinate Xi represents the number of experiments that had result i. The three-
colored-balls examples discussed throughout this section has a multinomial distri­
bution with n = к = 3.

The range of a random variable with multinomial distribution consists of A;-tuples
of nonnegative integers (aq, #2,..., #&), satisfying xi ~ n- The p.m.f. is

(77 \

ipi'pz2 • • -Pkk- (5.28)
(Г1,3?2, • • • , J

The coordinate Xi is binomially distributed, with probability of success pi and
probability of failure 1 — pi = ^j-^Pj, so the marginal p.m.f. of Xi is

9хЛх)=

The expected value of X is

E[X] = (E[X]1?... ,E[X]fc) = (npi,... ,npk)

as calculated in Proposition 5.5.5.
To calculate the covariance matrix of X, first note that since Xi is binomially

distributed, we must have Var(X$) = прг(1 — pi), see Proposition 5.5.5. To find the
covariance Cov(Xz,X^) for i j, write each Xi as a sum Xi = where
Yi^ is 1 if the £th trial results in outcome i and 0 otherwise. Since covariance is
linear in each coordinate, we have

n n

Cov(Xl5 Xj) = Сот(^м, (5.29)
1 m—1

If £ ф m, then Yi^ and YjiTn are independent and hence have zero covariance. If
£ = m, then Е[У$}ГПУ}}ТП] = 0, because the outcome of the mth trial cannot be
simultaneously both i and j. This gives

Cov(Y^m, Y)5m) = K[Yi,mYj,m] — E[y?m]E[lj5m] = —piPj-

Combining this with (5.29) gives Cov (Xi,Xj) = ~PiPj = —npiPj, and hence
the covariance matrix of X is

Pi(l -pi) -P1P2 • ~PlPn

-P2P1 P2(l-P2) • ~P2Pn
S = n

—PnPl ~PnP2 • •• Pn(l-Pn)_

28A single one of these trials has a categorical distribution with parameters (pi,... , p^).

Exercises 235

Multivariate Normal Distribution

The multivariate normal distribution is a generalization of the single-variable normal
distribution and has p.d.f.

... ,zn) = det(27rS)-^ exp (-^(x “ м)Т^-1(х ~ M)

where E is a positive definite n x n matrix, and fi = (/ii,...,^n) e Rn. If a
random variable X has this distribution, we denote this by X ~ A
straightforward, but tedious, calculation shows that E[X] = fi and the covariance
matrix of X is E.

Any coordinate Xi of a multivariate normal random variable X is itself a nor­
mally distributed random variable. Moreover, a linear combination aTX of the
coordinates is normally distributed for any a e Rn.

Figure 5.14. Graph of the p.d.f fx(x) for the bivariate normal distribution with
ph = 0 and E = diag(3,1).

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.

236 Chapters. Probability

Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

5.1. Consider an experiment where a six-sided die is rolled twice, and for each of
the two rolls we record the number showing, modulo 3, that is, whether the
number is congruent to 0, 1, or 2 (mod 3).

(i) Describe the sample space Q of all possible outcomes of the experiment.

(ii) Describe the event “neither roll is congruent to 0 mod 3” as an element
of the power set of Q.

(iii) Describe the discrete probability measure on the power set of Q if the
die is fair. What is the probability of the event “neither roll is congruent
to 0 mod 3” in this case?

(iv) Describe the discrete probability measure on the power set of Q if the
die is weighted so that the probability of rolling a 1 is |, while the
probability of rolling any other number is What is the probability of
the event “neither roll is congruent to 0 (mod 3)” in this case?

5.2. If you draw 5 cards from a standard deck of 52 cards:

(i) What is the probability of getting at least three of a kind (so a full house
or four of a kind might also occur)?

(ii) What is the probability of getting exactly two distinct pairs (not a full
house nor four of a kind)?

(iii) What is the probability of getting a flush (all cards are of the same suit)?

5.3. A box contains 10 different pairs of shoes. If 8 shoes are drawn at random,
what is the probability that there is at least one matching pair of shoes?
What is the probability that there is exactly one pair of shoes?

5.4. Assume you’re in a room of n randomly selected people. Assume that birth
dates are uniformly distributed among days of the year.

(i) What is the probability that exactly two people have the same birthday
and everyone else has a distinct birthday?

(ii) What is the probability that exactly three people have the same birthday
and everyone else has a distinct birthday?

(iii) What is the probability that there are exactly two pairs of people who
have the same birthday?

5.5. Suppose that the probability of a married couple having n > 1 children is
apn, where a < What is the probability that a couple has no children?

5.6. A Let (Q,<F, F) be a discrete probability space and let be a col­
lection of elements of & indexed by a finite or countable set I, such that

Exercises 237

{Bi}iei is a partition of Q (so Q = IJiez an<^ &j = ® f°r
Prove that for any A E /. we have

р(А) = £р(апд).
iei

5.7. Five of my friends come to dinner and take their coats off at the door when
they arrive, and my ever-helpful son puts the coats away in his room. The
guests leave one at a time, and when each one leaves, my son brings back a
random coat (selected uniformly) and gives it to them. Since the guests are
in a hurry, they each put on the coat given to them without noticing whether
it is correct, and then they leave.

(i) What is the probability that the first guest to leave gets the right coat?
(ii) If the first to leave gets the right coat, what is the probability that the

second to leave will get the right coat?
(iii) What is the probability that every guest will get the right coat?
(iv) If the first guest to leave gets the coat belonging to the second guest,

what is the probability that the second guest will get the right coat?
(v) If the first coat is wrong, but it is also not the second guest’s coat, what

is the probability that the second guest will get the right coat?
(vi) Without knowing the outcome of the first coat, what is the probability

that the second coat will be right? Hint: Consider using the law of total
probability.

5.8. Yann and Zoe like to play racquetball, and they both have killer serves.
These serves are so hard to return that whoever serves first is much more
likely to win than the person who serves second. Let F be the event that
Zoe serves first and W be the event that Zoe wins the game. Assume that
P(W | F) = 0.65 and P(W | Fc) = 0.45. Because of the advantage of serving
first, they agree to flip a fair coin to decide who will serve first. Assuming
that Zoe wins the game, what is the probability that she won the coin toss
for that game?

5.9. In the popular 1970s TV game show Let’s Make a Deal, a contestant would
choose one of three doors to open for a prize. Behind one of the doors was a
car and behind the other two were goats. After the contestant picked a door
(without opening it), the host, Monty Hall, would open one of the remaining
two doors, revealing a goat, and then ask whether the contestant wanted
to stay with the first choice or change doors. Show that the probability of
winning is much better if the contestant changes to the other unopened door
instead of sticking with the original choice. What are these probabilities?
Hint: The problem would be much easier if you knew which door the car was
behind. Assuming the contestant doesn’t switch doors, condition on each of
the three possibilities and use the law of total probability to assemble them to
get the probability of winning the car. Do the same assuming the contestant
does switch doors.
What would the probabilities be if there were 10 doors and Monty opened 8
with goats after the contestant’s first choice?

238

5.10.

5.11.
5.12.

5.13.
5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

Chapter 5. Probability

Prove the claim made in Remark 5.2.3 that P' is a probability measure on
(see Definition 5.1.7).

Prove the chain rule (Proposition 5.2.6).
Prove the law of total probability (Proposition 5.2.10).

Prove Proposition 5.3.5.
Let {£i, £2, • • •, En} be a collection of independent events. Prove that

(n \ n

=1-П(!-т))-
k—l / k—l

A family has three children, named Alice, Bob, and Caroline. Find the
conditional probability that Alice is older than Bob, given that Alice is older
than Caroline. Hint: It is not |.
If a certain type of cancer has a 0.4% incidence in the population, and a
certain test for this cancer has a 95% accuracy (meaning 5% false positive
rate and 5% false negative rate), what is the probability that a person has this
type of cancer given that they tested positive for it? Graph this probability
as a function of the false positive rate, as the false positive rate ranges from
10% down to 0.1%. Do the same for the false negative rate, ranging from
10% down to 0.1%, and again for incidence varying from 0.1% up to 5%.
In a certain town a car was involved in a hit-and-run accident one evening,
and a witness claimed the car was blue. In that town 90% of all cars are red
and 10% are blue. Some tests of the witness’s ability to identify cars under
these conditions showed that he identifies car color correctly 80% of the time;
so the probability he will identify red when the car is actually red is 0.8, and
similarly for blue. Under these assumptions, what is the probability that the
perpetrator’s car was actually blue?

Let Q = {u, 6, c, d, e, f} be the sample space of a random experiment and
assume that each outcome is equally likely. Define a random variable X :
Q R as follows:

outcome a b c d e f
X 1 1 1 2 3.5 3.5

(i) What is the p.m.f. of X?
(ii) Find E[X] and Var[X].

Let X be the outcome of the roll of a fair six-sided die. Find the expectation
and the variance of X.
Prove the law of the unconscious statistician (Theorem 5.4.15) in the following
steps:

(i) Prove that for each j we have P(h о X = f) = = ^)-

(ii) Prove that for each j we have jP(hoX = j) = 22^. h{i}=j}W)P(X = i).

(iii) Prove that jP(h о X = j) = h(i)P(X = i).

(iv) Prove that Yd-.h(t)=j h(i)P(X = i) = h(i)P(X = i).

Exercises 239

5.21. You are flipping coins to get heads, as in Example 5.4.11, and again someone
offers you a bet, based on the outcome of the coin flip.

(i) If X = n and n is even, then she will pay you 2n dollars. But if n
is odd, you pay her 2n dollars. Let Y be the random variable cor­
responding to the amount you win, so that Y = (—2)x. Prove that
E[Y] = l)n and that this sum does not converge, and therefore
the expected value is not defined.

(ii) Now she modifies the game so that you never lose—you win 2n if it
takes n flips to get heads. Let Z be the random variable corresponding
to the amount you win, so Z = 2х. Prove that the sum that defines
the expected value E[Z] has only nonnegative terms and the limit of its
partial sums is oo.

5.22. Prove Theorem 5.4.20.
5.23. Prove Proposition 5.4.23.
5.24. Let X be a binomial random variable with parameters n and p. Prove that

e (1 = i-u-p)n+1

*

\X + 1/ (n + l)p

5.25. Let (Q, F) be a discrete probability space and let X : Q R be a discrete
random variable. Let В E & be an event. Define the conditional expectation
E[X | B] of X given В to be

*

E[x! в] = = ^хР(х-\х) | в),

where the last sum runs over all x in the image of X.
Prove that if {Bi}iej C & is a collection of events indexed by a countable set
I, such that {Bi}iej is a partition of Q (mutually exclusive and collectively
exhaustive), then

E[X] = 52 E[X | Bi] Р(В,). (5.30)
iei

5.26. Make a table of the essential information about the discrete distributions
Bernoulli, binomial, and Poisson. Your table should include the support of
the random variable X, the p.m.f., E[X], Var(X), and a typical situation
where the distribution is used.

5.27. Add all the important information about the negative binomial distribution
to the previous table.
*

5.28. A student guesses randomly and independently on a true-false exam. If he
answers 20 questions this way, what distribution describes the probability
that he will get exactly five answers correct? What is that probability?

5.29. A call-in service center receives an average of 200 calls per hour.
(i) Which distribution could you use to describe the probability that the

call center will receive exactly 100 calls in the next 20 minutes?
(ii) What assumptions should hold for that distribution to be a good model?

240 Chapter 5. Probability

(iii) Describe circumstances under which those assumptions would not hold.
(iv) Assuming the assumptions hold and the distribution can be used, what

is the probability that the call center receives exactly 100 calls in the
next 20 minutes? What is the probability that the call center receives
more than 100 calls in the next 20 minutes?

5.30. A biologist is collecting kangaroo rats in the desert and she is hoping to find
some with a certain trait that occurs in 10% of the general population of
kangaroo rats. She collects 100 rats in total. Assuming that each sample is
independent of the others:

(i) Which distribution describes the exact number of rats that have the
trait?

(ii) What is the expected number of rats that will have the trait?
(iii) What is the probability that she will find exactly 30 rats with the trait?

5.31. My grandfather sits in a rocker on his front porch and counts the number of
cars that go by. He finds that the average number of cars passing is A = 7
per hour (he lives in a rural area). Assuming at most one car passes in any
given minute, we can think of a car going by in that minute as a Bernoulli
random variable (either one car passes or no car passes) with probability .
Assuming a car in one minute has no impact on the presence of a car in
another minute, then the number of cars passing in an hour (call this X) is
binomially distributed with parameters n = 60 and p = A/60 = 7/60. Thus
the probability of x cars passing in an hour is (6c°) (g^)^ (1 — ^j)6° X •
But, of course, it is possible for two cars to pass by in the same minute,
so this is not a perfect model. If we look at a smaller time interval, like a
second, it seems more reasonable to assume that two cars would not pass in
the same second, so the appearance of a car in a given second is Bernoulli
distributed with probability and the probability of x cars in an hour
is (^00) (_Т_)ж (i _ _Z_)3600 ж could happen that two cars could36
pass in the same second, so it is better to divide the hour into к intervals and
take the limit as к oo. This gives

Prove that this limit is exactly e ж,л , corresponding to the Poisson distribu­
tion. This (partly) justifies the form of the Poisson p.m.f. It is also useful
because, when n is large, the binomial distribution can be approximated with
a Poisson distribution, which is sometimes much easier to work with.

5.32. Prove that the variance of a random variable with Poisson distribution of
rate A is A. Hint: When you encounter the sum

fcA*- 1

it may be helpful to rewrite the summands as

((fc - 1) + l)Afc-1 _ A*- 1 A*- 1
(& —1)! “ (fc —2)! + (fe- 1)!’

Exercises 241

5.33. Assume that each ticket in a scratch-off lottery has a one-in-a-hundred
chance of winning some prize.
*

(i) Which distribution describes the number of tickets that must be bought
in order to win one prize?

(ii) What is the expected number of tickets that must be bought in order
to win one prize? Two prizes?

5.34. In Exercise 5.30, which distribution describes the number of rats she’ll have
to check in order to find a certain number with the trait? What is the
probability that she’ll have to check exactly 20 rats in order to find three
with this trait?

*

5.35. Prove that the mean and variance of the negative binomial distribution are
as given in (5.20). Hint: First do the case of к = 1 and then show that if
X ~ NegBin(A;,p), then X = Ai, where Xi ~ NegBin(l,p).

*

5.36. Prove that the p.d.f. fx of any continuous distribution satisfies the following
properties:

(i) fx (ж) > 0 for all x e R.

(ii) = 1.
5.37. Prove that the mean and variance of the uniform distribution are as given in

equation (5.22).
5.38. Assume a call-in service center receives calls according to a homogeneous

Poisson process on the average of 2 every 15 minutes.

(i) What is the probability that the first call of the day will arrive no more
than 5 minutes after opening?

(ii) If the operator steps away to take a lunch break for 15 minutes, what
is the probability that there will be no calls during his absence? This
could be answered either with the Poisson distribution or the gamma
distribution. Compute the answer both ways (and ensure your answers
match).

(iii) What is the probability that there will be 3 or more calls during the
operator’s 15 minute absence? Again, this can be computed with ei­
ther the Poisson distribution or the gamma distribution. Compute the
answer both ways.

5.39. If x E R maximizes the p.d.f. of a random variable X, then x is called a mode
of the distribution of X.

(i) For a normal distribution with mean ц and variance a2, show that the
mode is /1.

(ii) Find the mode of the gamma distribution when a > 1, and prove that
it is always less than the mean.

(iii) Find the mode of the beta distribution for a, b > 1. Give an example
of parameters a and b where the mode of Beta(a, b) is greater than the
mean and an example where the mode is less than the mean.

242 Chapter 5. Probability

5.40. Assume X is normally distributed with mean and variance a2. For each
к = 1,2,3,4,5,6 compute the probability that X lies within к standard
deviations (that is, X e [p, — kcr, fi + kcr]), as follows:

(i) Prove that the probability that X lies in the interval [p — kcr, fi + ka]
is the same as the probability that a random variable with standard
normal distribution (jjl = 0 and a = 1) lies in the interval [—/с, к].

(ii) For the standard normal distribution, and for each k, compute the prob­
ability that X lies in the interval [—к, к]. Hint: Many systems like
Python and R have easily accessible modules for computing the c.d.f. of
the normal distribution.

Your first three answers should be close to 68%, 95%, and 99.7%, respectively.
This is sometimes called the 68-95-99.7 rule.

5.41. Suppose five numbers are drawn from a uniform distribution on [0,1] and
placed in ascending order. What is the probability that the third largest of
these will be less than |? Hint: Many systems like Python and R have easily
accessible modules for computing the c.d.f. of many distributions.

5.42. Show that the p.d.f. (5.24) for the gamma distribution has integral equal to
one.

/x(x) =

5.43. Let X = (Xi,X2,X3) be a multivariate random variable taking values in R3
with p.d.f. defined for x = (^1,372,^3) as

I|x||2 if Xi e [0,1] Vi e {1,2,3}
0 otherwise.

(i) Verify that /Xo JXo JX M* (i) (ii) (iii) (iv) (v) (vi) * * * x)dx = L

(ii) FindP(X1<i,X2<|,X3<|)-
(iii) Find P(Xi > |,X2 < |,X3 < 1).
(iv) FindE[X].
(v) Find the marginal p.d.f. fi(x) of X±.

(vi) Find the covariance matrix of X.
5.44. Consider a bag containing 10 green, 20 red, 30 blue, and 40 white balls

that are all identical except for color. A ball is drawn, its color recorded,
and then it is replaced; this experiment is repeated 20 times. Let X =
(XqXr.XbXw) be the number of times each color was drawn.

(i) Find P(X = (2,4,6,8)).
(ii) FindE[X].

(iii) Find the covariance matrix of X.
5.45. Let X : Q Rn be a multivariate random variable with covariance matrix

E. Let ui,..., un be an orthonormal basis of eigenvectors of E such that the
corresponding eigenvalues are Ai > • • • > An. Prove that ui is the direction of
greatest variance of X and un is the direction of least variance of X. That is,
prove that for all a G Rn with ||a||2 = 1, we have Var(u^X) < Var(aTA) <
Var(u^X).

Exercises 243

5.46. Prove Proposition 5.7.7 in the case that X is discrete.
5.47. Prove Proposition 5.7.10.
5.48. Prove Proposition 5.7.11.
5.49. Prove Proposition 5.7.16.*
5.50. Prove Proposition 5.7.19.*

Notes
Remark 5.2.2 is based on [BH15, Chapter 2], which has a very nice treatment of
conditional probability in more depth than we have given here. We first learned
of Wald’s airplane analysis (Example 5.3.13) from [Blil3] (see also [Wikl7]). The
dice-flashlight thought experiment in section 5.3.3 was taught to us by our colleague
Dennis Tolley. The idea of Example 5.5.8 that chocolate chip cookies are Poisson
distributed comes from [Albl6]. The derivation of the Poisson p.m.f. in Exercise
5.31, using the story of car counting, is based on [Tanl7].

Probabilistic Sampling
and Estimation

If your experiment needs statistics, you ought to have done a better experiment.
—Ernest Rutherford

Probabilistic sampling is the process of observing or experimenting on a random
subset (or sample) of a target population. Statistical estimation is about inferring
information about that target population based on the results of the random sample.
For example, pollsters will sample the opinions of a random subset of likely voters
and then estimate the averages of the overall public opinion. Mathematically, we
view the sampling process as draws from a random variable and inference as an
estimation of the parameters of the underlying probability distribution.

In this chapter we discuss some of the key tools of probabilistic sampling and
estimation theory. We begin by discussing what it means to estimate parameters.
We then prove some important inequalities that give useful bounds on certain prob­
abilities and expected values. These inequalities are particularly useful in the study
of sums of independent, identically distributed random variables. The two main
tools for understanding these sums are the law of large numbers and the central
limit theorem. These results provide the mathematical framework for statistical
inference.

The estimates performed in the first section of this chapter are called point
estimates because they estimate specific values like the mean or the variance. By
contrast, in Bayesian statistics, which we treat in Section 6.5, the estimates are
distributions instead of values. This is a powerful idea that often requires a lot
of computational power to use. As computers have become faster and cheaper,
Bayesian statistics has become more popular for understanding the world in all its
uncertainty.

6.1 Estimation
In a given experiment, we make observations x±, x?...., xn, which result in a body of
data. We think of the data as draws from, or realizations of, the random variable X.
Often, the parameters of the distribution are unknown—we only have the data from
the sample. To estimate the parameters of the distribution, we apply a function

245

246 Chapter 6. Probabilistic Sampling and Estimation

or formula to this collection of data. A function of data that is used to provide
information about the distribution that generates the data is called a statistic.

More precisely, we assume that the data are generated by taking draws from an
independent and identically distributed (i.i.d.) sequence Xi, X2,... ,Xn of random
variables having the same distribution as X; the i.i.d. sequence of random variables
is called a sample of the distribution. Any function T(Xi,..., Xn) of the sample is
called a statistic and (assuming it is a sufficiently well-behaved function)29 is itself
a random variable. Statistics are often used to estimate an unknown parameter of
a distribution. Statistics that are used to estimate some quantity or parameter are
called estimators. An estimate is the result we get when we replace each random
variable Xi in an estimator by the given data that is, when we evaluate the
function T(X15..., Xn) at the point X-^ = X},..., Xn = xn.

29Continuous functions are all sufficiently well behaved.

For example, we may want to estimate the mean and variance of a distribution
to get an idea of its central tendency and variability.

Definition 6.1.1. The sample mean estimator is given by

(6.1)

The biased sample variance estimator is given by

л2 = (6-2)

We sometimes write jin and an when the length n of the sample might otherwise be
unclear.

Example 6.1.2. An exam is an experiment where the data are the students’
scores a?i,..., xn on the exam. It is common to assume that these are drawn
(approximately) from a normal distribution e/T(/i, cr2). An estimate for the
mean /a is given by the average score

(6.3)

which is the evaluation at Xi = xi,..., Xn = xn of the sample mean estimator
Д. Similarly, an estimate for a2 is given by evaluating the biased sample
variance estimator (6.2) at Xi = х±,..., Xn = xn to get

(6-4)

6.1. Estimation 247

Remark 6.1.3. Estimators such as the sample mean and biased sample variance
are random variables because they are functions of the random variables ..., Xn,
not functions of the data xi,... ,xn. Drawing from the random variables (that
is, evaluating the Xi at various points in the sample space Q), gives data x =
(#i,... ,яп) E Rn, which we can insert into the corresponding estimator to get an
estimate. In the previous example, a draw x from Xi,... ,Xn gave an estimate x
of Д6, defined by (6.3), and it gave an estimate d2 defined by (6.4). A different draw
produces a different estimate.

6.1.1 Biased and Unbiased Estimators
Some estimators are better than others for estimating a given quantity. Bias is a
measure of the average error of an estimator.

Definition 6.1.4. Consider an estimator 0 = 0(Xi, X2,..., Xn) of a parameter 0.
The bias of the estimator is given by bias(0) = E[0] — 0. //bias(0) = 0, then the
estimator 0 is unbiased; otherwise, it is biased.

Example 6.1.5. Let X be a random variable with E[X] = /1. The sample
mean estimator (6.1) is an unbiased estimator of ц since

1Е[Д] =E -Vx
n

Example 6.1.6. Let X be a random variable with E[X] = ц and Var(X) =
a2. We have called the estimator (6.2) the biased sample variance. To see
that it really is a biased estimator of cr2, compute

1
Е[<?2] — <т2 = E -V ((^-Д)2-(^-/1)2)

1=1

9 n
= E Д2-/?----

n £'= E д2-л2--£^(м n z'
1=1

= E [/z2 - /z2 - 2/z(/z - /z)]
= -Е[(Д - м)2] = - Var(/z)

E-2 = - n

This shows that d2 is indeed a biased estimator of a2, and E[d2] = ^^cr2.
Note that as n —> oo we have E[d2] —> a2. Because of this, we say that d2 is
asymptotically unbiased.

248 Chapter 6. Probabilistic Sampling and Estimation

Proposition 6.1.7. Let X be a random variable with E[X] = g and Var(X) = a2.
The estimator

s2 = ^-£(Xi-/l)2 (6.5)
n — 1 2 = 1

is an unbiased estimator of the variance a2. We call this the unbiased sample
variance of the random variable X.

Proof. The proof is Exercise 6.1. □

6.1.2 Maximum Likelihood Estimation
Perhaps the most widely used estimation method is maximum likelihood estimation,
which chooses the parameter for which the observations are most likely to have
occurred.

Definition 6.1.8. Let X±, X2, • • •, Xn be a sample of a discrete distribution X with
p.m.f g(x, 0) depending on some parameter 0. Let x = (a?i,..., xn) be a draw from
the sample. The joint probability

n n

= P(X, = xi,... ,Xn = xn) = = **) = П<7(*Ь0)
2=1 2=1

is called the likelihood of 0. Similarly, if X is continuous with p.d.f. f(x,0), de­
pending on some parameter 0, then the likelihood of 0 is the joint p.d.f

n
Ж) = П/(^,0)-

2 = 1

A maximum likelihood estimate (MLE) of 0 is a point 0 that maximizes the like­
lihood. In the case that there is an estimator 0(Xi,... ,Xn) whose corresponding
estimate 0(xi,..., xn) is always the MLE for 0 corresponding to x±,..., xn, we say
that 0(Xi,..., Xn) is the maximum likelihood estimator of 0.

Remark 6.1.9. As a notational convention, it is common to write the likelihood
function as L(0) = /(x | 0). We sometimes say that L(0) is the density ofx given
0. This is justified because the Xi are i.i.d. with p.d.f. f(x,0) depending on 0, and
thus the joint probability density function f(xi,..., xn | 0) for X±,..., Xn factors
as /(xi,. ,.,xn I 0) = П"=1

Example 6.1.10. Consider the Bernoulli distribution g(x,p) = рж(1 —
with unknown value of p. The likelihood of p given a draw x = (a?i, x%,..., xn)
is

L(p) = = p^Xi(l-p)n~^Xi = pnx(l-p)n{1~s\ (6.6)
2=1

6.1. Estimation 249

where x = - 527=1 xi *s shorthand for the average of the data (the sample
mean Д evaluated at the specific value x). If the maximum occurs at p, then
derivative of L is zero at p. Thus, we solve

о = L'(p) = nxpni-\l _ n(i _ x)pn\l

= (пж(1 — p) — n(l — ®)p)p"®-1(l —

This implies that
ж(1 — p) = (1 — x)p,

which simplifies to p = x. Thus, the MLE of p is p = x and the maximum
likelihood estimator is p(Xi,..., Xn) = 527=1

Remark 6.1.11. Since the likelihood function is nonnegative on the domain of
the distribution and the logarithm function is strictly increasing, the log of that
likelihood, that is, £(0) = logL(0), achieves its maximum at the same values 0 as
the likelihood L(0) does. Thus, we can solve for the maximum likelihood by solving
for the maximum of the log-likelihood. This usually makes calculations much easier.
Applying this idea to Example 6.1.10, we have

£(p) = nx logp + n(l — x) log(l — p),

which reduces to
о = t'№) = ? - ,1(1~г).

p 1 -p
Solving for p gives the same result.

Example 6.1.12. Consider the normal distribution e/E(/z, a2) for an unknown
value of p but a fixed value of a2. The likelihood of p given a draw x =
(*̂1 ? • • • , ^n) is

Г/) ГГ 1 (p, 2\-n/2 (

w=n*?“I’(—2^~J = (2to) exp(----------—1
The log-likelihood is

= -^(log(2?r) + log(cr2)) - - p)2. (6.7)
г=1

If p is a maximizer of L, then we must have = 0. This gives

= (6-8)

250 Chapter 6. Probabilistic Sampling and Estimation

and hence ji = x. Thus, for a given draw x, the MLE for /z is

i=l

and the corresponding estimator is the sample mean (6.1). * I

Example 6.1.13. As in Example 6.1.12, consider the normal distribution
j2), but now assume that // is fixed and known. We wish to estimate

cr2 by maximizing the log-likelihood

I n
^(o-2) = -^(log(27r) + log(<72)) - ^2 “ V)2-

i=l

If (72 is a maximizer of £, then we must have 1^.2 — 0- Note that here we
are differentiating with respect to cr2. We treat this not as the square of a but
rather as an awkwardly named variable in its own right. This gives

(6-9)

Solving for <72 gives

1 n-^2 + ^2)2 ^Xi ~ = °’

x 7 i=l

(6.10)

Thus, for a given draw x, the MLE for cr2 is (6.10) and the corresponding
estimator is the biased sample variance (6.2).

Vista 6.1.14. In simple problems like those of Examples 6.1.10-6.1.13, we
can find the maximum likelihood estimator using the standard techniques
of calculus, but for more complex problems with lots of data, this analytic
method becomes prohibitively difficult to implement. Usually all we can do
for such problems is use numerical optimization methods to find the maximizer
(MLE) for a given draw. In the second half of this text we cover many tech­
niques and algorithms for optimization. These methods are essential not only
for maximum likelihood estimation but also for many other important prob­
lems, including linear and logistic regression, and most methods of machine
learning.

6.1. Estimation 251

6.1.3 ^Comparing Estimators
There are many different kinds of estimators. One may ask, when is one estimator
better than another? To answer this question, we must first recognize that there
are different ways to measure “better.”

As a motivating example, consider throwing darts at a target, as in Figure 6.1.
If all the darts are clustered tightly together but off center, then that is good, in the
sense that the pattern is tight and the thrower is consistent, but bad, in the sense
that the thrower isn’t hitting near the bull’s-eye. In this case we say the thrower
is precise but not accurate. By contrast, suppose that the darts are symmetrically
scattered on the target where the average is right on the bull’s-eye. In this case, we
say that the thrower is accurate, but not precise.

Estimators are like dart throwers in the sense that some can be precise, but not
accurate, while others can be accurate, but not precise. Accuracy is described by
the bias of the estimator E[0] — 0. Precision is described by the variance of the
estimator, that is by Var 0 = E[(0 — E[0])2].

Example 6.1.15. Consider a sample of i.i.d. random variables X^,X2,X^,
each with mean p and variance a2. The statistic

Xi + 2X2 + ЗА3

6

is an unbiased estimator for /1, that is, Е[У] = p. Its variance is

Var(r) = =Ul + 22 + 3>2 = -V
oO lo

This is a larger variance than the sample mean

which has Var(/}) = |cr2. Both estimators are accurate because they are
unbiased; however, the sample mean is more precise.

One important way to measure the overall quality of an estimator is to compute
its mean squared error.

Definition 6.1.16. Given an estimator Y = Y(Xi,X2, ..., Xn) of the parameter
0, the mean squared error (MSE) of the estimator Y is

MSE(F) = Е[(У — 0)2].

Proposition 6.1.17. Given an estimator Y = Y(Х17 X2,..., Xn) of the parameter
0, the MSE of the estimator Y satisfies the relation

MSE(y) = bias(y)2 + Уаг(У).

252 Chapter 6. Probabilistic Sampling and Estimation

X

Figure 6.1. The target on the left shows a pattern that is precise (it has low
variance) but not accurate (it is biased) because it is clustered away from the center.
In the target on the right, the pattern is not precise (it has high variance), but it is
accurate (unbiased) because the sample mean is centered near the bull’s-eye.

Proof.

MSE(K) = E[(0 - У)2] = E [(0 - Е[У] + Е[У] - У)2]
= E [(0 - Е[У])2 - 2(0 - Е[У])(У - Е[У]) + (У — Е[У])2]
= (0 - Е[У])2 - 2(0 - Е[У])Е[(У - Е[У])] + Е [(У — Е[У])2]
= (0 - Е[У])2 + Е [(У - Е[У])2]
= bias(y)2 + Уаг(У). □

The estimator that minimizes the MSE is called the minimum MSE estimator.
If we restrict to unbiased estimators, then the previous proposition shows that
MSE(y) = Уаг(У). In this case, the estimator У minimizing Уаг(У) is called the
minimum-variance unbiased estimator of 0. But it is not always optimal to restrict
to unbiased estimators. There can be biased estimators with a smaller MSE than
the minimum-variance unbiased estimator, so if we wish to minimize the MSE, we
may need to accept a biased estimator.

6.2 The Law of Large Numbers
In the previous section we showed that the sample mean

л У1 + Xz + • • • + Xn
= П

of a sample (A\,..., Xn) of a distribution X is an unbiased estimator of the mean
fi = E[X]. But for any given draw x = (х±,... ,xn) the resulting estimate may
not be very close to the actual mean. In general one usually expects the estimate
to be better as n gets larger. In this section we quantify this and discuss many
properties of sums of i.i.d. random variables: how they are distributed, their mean

6.2. The Law of Large Numbers 253

and variance, and how well they approximate the main parameters of the random
variable X. We conclude this section with the law of large numbers, which gives
information about how rapidly approaches the mean /1.

6.2.1 Important Inequalities
In order to prove the law of large numbers we need some simple inequalities that
are important in their own right.

Lemma 6.2.1. If X,Y are random variables on a probability space with
X(uf) < Y(w) for all weft, then E[X] < E[Y],

Proof. We prove this in the discrete case; the continuous case is similar. Since
X < Y, the difference Y — X is always nonnegative, and so

Е[У - X] =^rP(Y -X = r) = ^rP(Y - X = r) > 0.
r r>0

This gives 0 < E[Y — X] = E[Y] — E[X] by Theorem 5.4.14, from which we have
the desired inequality. □

Theorem 6.2.2 (Markov’s Inequality). If X is a nonnegative random variable,
then for any a > 0, we have

P(x > a) < Ш. (6.12)
a

Proof. For u > 0, let 1ж>а : Q —> R be the composition

m m xr fl if X > a,
lx>a-l[a,oo)O^-|0 [{x<a

We have 1ж>а < Taking the expected value of both sides of this inequality gives

^Гп1 п ГХ1 E[X]
Е[1ж>а] < E — = ------ ,[a J a

and since E[lx>a] = P(X > a), we have (6.12). □

Remark 6.2.3. The last step of the previous proof involves a simple idea that is a
fundamental tool of probability, namely, that for any E C Q the indicator random
variable 1 e has expected value equal to the probability of E:

E[1e] = P(E). (6.13)

This fact is straightforward to prove but extremely powerful. It is sometimes called
the fundamental bridge between expectation and probability. Similarly, for any set
E C R and any random variable X, the expected value of о X is the probability
that X lies in E:

E[lFoX] = P(XeE). (6-14)

254 Chapter 6. Probabilistic Sampling and Estimation

Example 6.2.4. Markov’s inequality isn’t useful when a < E[X] because in
that case 1 < But when a is larger, it can give a useful bound. For
example, if a = 2E[X], it gives

P(X > 2E[X]) <

For many distributions this is not a tight bound. Its utility lies in the
fact that it holds for all nonnegative distributions. For example, if X ~
Binomial(n, and a = 2E[X] = n, then Markov’s inequality gives P(X >
n) < But we can compute this probability exactly to get P(X > n) =
P(X = n) = 2-n, which is much smaller than | when n > 2.

It should not be especially surprising that an inequality that holds for
all nonnegative random variables is not very tight for some specific random
variables. To get a very close bound for any particular random variable, we
should expect to have to use specific properties of the particular distribution.

Corollary 6.2.5 (Chebyshev’s Inequality). If X is a random variable with
finite mean /z and variance a* 2, then for any e > 0 we have

Example 6.2.7. For any X with mean /a and variance cr2, Chebyshev’s in-
2

equality gives no information for e < cr, because 1 < p-. If s = 2a, then we
have

Р(|Х-м|>2а)<1

Again, this holds for all distributions, but it is not a very tight bound for
many specific distributions.

2
P(\x-p.\>£)<^.

Proof. Since the quantity (X — Д02 is a nonnegative random variable, we can apply
Markov’s inequality:

F(|X-M|>e) = F((X-M)2>62)<
E[(X-M)2] _<72

£2 £2
□

Example 6.2.6. Let X be a random variable with E[X] = 50 and Var(X) =
25. What is the probability that X lies between 40 and 60? By Chebyshev’s
inequality, we have

25 4
P(\X - < 10) = 1 - P(\X _ > 10) > 1 - — =

6.2. The Law of Large Numbers 255

For example, if X ~ fyF(/z,a2), then by the 68-95-99.7 rule (see Exercise
5.40) we have

P(\X - /z| > a) = 1 - P(\X - /z| < a) « 0.32

and
P(\X - /i\ > 2cr) = 1 - P(\X - pi] < 2a) « 0.05.

Both of these are much smaller than the bounds we get from Chebyshev.

6.2.2 Law of Large Numbers
We now come to the important result called the law of large numbers. Informally,
this is often called the law of averages. It says that as n gets large, the sample
mean is increasingly likely to be close to the mean fi of the X$, assuming the Xi
are i.i.d. random variables. Figure 6.2 shows several plots of the estimates

1 nX = = - y^Xi
i— 1

Figure 6.2. Plot of consecutive values of x = pin(x.) for a sequence of coin flips
(draws from Xi ~ Bernoulli(0.5)) as n ranges from 1 to 1000 (left panel). The plot
shows Ж1+Ж2,..., X1+‘1Oqq1000 ♦ The value of x begins above pi = 0.5? rapidly ap­
proaches pi, then moves away again, then comes back and again moves away, but as
n —> 1000 it seems to approach рь. This illustrates the fact that the random variable
fln is not guaranteed to be close to pL, but the probability that a given realization x
is far away gets small as n —> сю. On the right the results of that same draw are
plotted again, along with the results of three more draws. None of these is consis­
tently close to pL, but the law of large numbers says that the probability that any one
of these estimates x will be more than a given distance e from /z = | is less than
пё^ = which gets small as n gets large.

256 Chapter 6. Probabilistic Sampling and Estimation

Figure 6.3. Plot of x = pn(x) for a sequence of draws x from Beta(10,30) as
n ranges from 1 to 1000 (left side). The plot shows Ж1+Ж2,..., X1+'10qq1000 ♦ In
this case as n —> 1000 the value of x does not seem to approach p very rapidly.
The experiment is repeated three more times and plotted in the right panel. The
value of x is closer to p near n = 1000 for the other three experiments (green, blue,
and yellow) than it is for the first (red). The law of large numbers says that the
probability that any one of these experiments will be more than a given distance e
from p gets small as n gets large.

arising from the estimator pn for a draw x = (#i,..., xn) from a sample , Xn
of a random variable X ~ Bernoulli(0.5) as n ranges from 1 to 1000. Figure 6.3
shows the same thing for X ~ Beta(10,30).

Theorem 6.2.8 (Weak Law of Large Numbers). Let X±, X2,... be a sequence
of i.i.d. random variables, each having mean p and variance a2. For each n G Z+
let pn be the estimator pn = ^(A\ + X2 +---- h Xn). For all e > 0, we have that

P(\pn - p\ > e) -> 0

as n —> oo. More specifically, for every e > 0

Р(|/1п-л1 >e) < (6.15)

Proof. By linearity of expectation (Theorem 5.4.14) we have

E[/xn] = E — (A”i + X2 + • • • + Xn)
n

= 1(Е[Х1]+Е[Х2] + -.-Е[Хп]) = д
n

and by the additivity of variance (5.15) for independent random variables, we have

Var(/Zn) = Var —PG. + x2 + • • • + xn) n
= 2- Var(Xi + X2 + • • • + Xn)

= 2-(Var(Xi) + Var(X2) + • • • + Var(Xn)) = —.
ir n (6.16)

6.2. The Law of Large Numbers 257

Using Chebyshev’s inequality, we have

—PG. + x? + • • • + xn) — n

which gives the result in the limit as n —> oo. □

There is also a stronger version of the law of large numbers called the strong law
of large numbers.

Example 6.2.9. Flipping a fair coin n times corresponds to n i.i.d. random
variables X^ each with expected value | and variance The law of large
numbers tells us for any e > 0 that

1
4ne2

This goes to 0 as n gets large; that is, the probability that Дп is any given
distance away from | gets arbitrarily small. This corresponds to the intuition
that the ratio jan should approach | as n gets large. This is depicted in
Figure 6.2. More generally, in a sequence of Bernoulli trials with probability
p of each success, we have

p(l -p)
ПЕ2

Nota Bene 6.2.10. The law of large numbers does not say that the sum
Sn = Xi + • • • + Xn is likely to approach n/a. As an example of this, consider
the situation with a fair coin (X ~ Bernoulli(0.5)). For any e > 0 the law of
large numbers says that

F(|Sn - щл\ >ne)=P Sn P n
(6-17)

But for any constant к and any choice of e, as n —> oo we eventually have
ne > k. so (6.17) tells us nothing about Р(|5П — n/i\ > k). In fact, a more
careful analysis shows that |Sn — > oo with probability 1.

Nota Bene 6.2.11. The law of large numbers also does not say that jan must
approach /i, only that it becomes increasingly likely to be near p. as n gets
large.

For a fair coin, it says that the probability that is outside the range
(|, |) is no more than 4.1001(i • While may seem unlikely (depending

258 Chapter 6. Probabilistic Sampling and Estimation

on the circumstances), it is certainly not impossible. Similarly, the probability
of being outside the range (|, |) if n = 1000 is no more than , which is
also not impossible.

This can be seen in Figure 6.2, where is often moving farther away from
// rather than getting closer, but the likelihood that it will be more than a
certain amount £ from p gets small as n gets large.

Example 6.2.12. Let Xi be the outcome of the zth roll of a six-sided die. If
the die is fair, then the expectation of each Xi is E[JQ] = | and Var(JQ) = -hL.
By the law of large numbers, we should have

pfTZjXi 7 105
\ n 2) ЗбпЕ2

for any n and £ > 0. If the die is fair, then the probability is low that a given
draw x = (xi,..., xn) will make x = Дп(х) very far away from Specifically,
after 105 rolls of the die, taking £ = 1, the probability that x lies outside the
interval [§, |1 is bounded above by ~ 0.027, and after 315 rolls it
is bounded above by « 0.009.J 36-3

6.3 The Central Limit Theorem
The [central limit theorem] would have been personified by the Greeks and deified, if
they had known of it. It reigns with serenity and in complete self-effacement, amidst
the wildest confusion. The huger the mob, and the greater the apparent anarchy,
the more perfect is its sway. It is the supreme law of Unreason.
—Sir Francis Galton

As its name suggests, the central limit theorem is central to probability theory. It is
also the key behind our ability to draw inferences. We give the proof of the central
limit theorem in Section 6.4. In this section we state the theorem and discuss a few
of its many applications.

6.3.1 The Central Limit Theorem
The central limit theorem says that for i.i.d. random variables X±, X2,..., Xn with
finite mean p and variance cr2, if n is large, then the sample mean pn is approx- 2
imately distributed as еЖ(д, This is both surprising and powerful because it
holds regardless of how Xi is distributed.

Theorem 6.3.1 (Central Limit Theorem). Let X2,..., Xn be a sequence
of i.i.d. random variables, each having mean p and variance a2. Define random
variables Sn = X± + X2 4------ h Xn and

6.3. The Central Limit Theorem 259

The sequence (ГупУ^=1 of c.d.f s converges pointwise to the standard normal c.d.f. as
n —> oc. In other words, for each у E i, we have

1 (* уP(Yn<y)^-= I e~x^2dx
v 2тг J—oo

(6.18)

as n —> сю.

The fact that the sample is i.i.d. implies that the sample mean pn = has
mean p and variance (see (6.16)). We can reformulate the central limit theorem
to say that as n gets large, pn approaches a normally distributed random variable

2
with mean p and variance —.

Corollary 6.3.2. For sufficiently large values of n the sample mean pn is approx­
imately distributed as and the sum Sn is approximately distributed as
jY(np, w2).

Proof. For large n we have

P(An < z)= P
z — p

у/п

Making the substitution x = (y — p) gives

\/n fz — (v~py2P(pn < z) ~ / e 2(<72/n)
V27TCF2 J-oq

which is the c.d.f. for jF(p,
A similar argument (see Exercise 6.12) shows that

1 rW _ (г>~^м)2
P(Sn < W) ~ / e 2(na2)

V^Tvna2 J-oQ
and hence Sn is approximately distributed as ^Ж(пр, no2). □

A key point of the central limit theorem is that the random variables X±,..., Xn
need not be normally distributed. They can be as unnormal as you like—for example,
heavily skewed to one side or bimodal—but as long as they have a well-defined (and
finite) mean and variance, the average always approaches a normal distribution as
n —> сю. Of course, the farther away from normal the original distribution is, the
larger n must be before the distribution of pn is approximately normal. But for n
large enough, pn will be close to normal; see Figure 6.4.

The central limit theorem also explains the great prevalence of normal distri­
butions in many applications. Whenever a quantity is a sum of many i.i.d. effects,
the central limit theorem (or appropriate generalizations) says that quantity will
be approximately normally distributed, regardless of the distribution of the pieces.
Thus we see the normal distribution in quantities like exam scores, total annual
snowfall, and radio noise, all of which are determined by sums of many independent
factors.

260 Chapter 6. Probabilistic Sampling and Estimation

Figure 6.4. Illustration of the central limit theorem for the distribution Beta(l,4)
(p.d.f in black). We have sampled Xi,...,Xn from Beta(l,4) ond constructed
рьп = For each n G {1,4,16}, the corresponding histogram (green)
shows the result of drawing from jin a thousand times, giving an approximation
of the distribution of jin. The central limit theorem guarantees that when n is
large, the distribution of fin is close to the normal distribution (p-d.f.
in blue).

Example 6.3.3. As discussed in Example 6.2.9, the law of large numbers
guarantees for repeated trials of a fair coin flip, for any e > 0, we have

1
— 4ns2

In the case that s = Л=- this gives the unhelpful result that

But the central limit theorem says that Дп is approximately normally dis­
tributed with mean | and variance The 68-95-99.7 rule (see Exercise
5.40) says that the probability that fLn is farther away than one standard
deviation s = from | is approximately

P fin
1
2

1 - 0.68 = 0.32.

6.3. The Central Limit Theorem 261

Similarly, the law of large numbers says that the probability that p,n is
more than two standard deviations (s = —U) away from - is bounded by

But the central limit theorem, combined with the 68-95-99.7 rule, says that

6.3.2 Approximation of Common Distributions by Normal

Many distributions correspond to sums of i.i.d. random variables. The central limit
theorem says that when the number of terms in the sum is large enough, the dis­
tribution is close to a normal distribution. This allows us to approximate many
distributions with a normal distribution.

Binomial

If X ~ Binomial(n, p), then X has the same distribution as a sum X^ where
the Xi ~ Bernoulli (p) are independent. Recall that the mean and variance of the
Xi are p and p(l — p), respectively. Therefore, when n is large enough, the central
limit theorem says that X is approximately distributed as e/K(np, np(l — p)), that
is,

Binomial(n,p) « e/K(np, np(l — p)).

This means that if Y ~ c/K(np, np(l — p)), then

1 (t-np)2
Fx(x) « Fy(x) — / e 2тгр(1-р) dt.

у/2ттр(1 -p) J- oo
(6.19)

See Figure 6.5 for a plot of the binomial p.m.f. and the corresponding normal p.d.f.
Although this is a good approximation for large n, we do still have a problem

arising from the fact that X is discrete, while Y is continuous. Thus, P(X = k) is
nonzero while P(Y = k) = 0. But observe that P(X = к) = P (к — | < X < A: + |),
and this is well approximated by P (k — | < У < к +

P(X = k)=p(k-^<X<k+^

P (k-^<Y <k+^\ =FY (k+^\ - FY (k-^

262 Chapter 6. Probabilistic Sampling and Estimation

Figure 6.5. Plots of the p.m.f.s for Binomial(n,p) (red) and p.d.fs for
^(np,np(l — p)) (black) for p = 0.25 and various values of n. As n grows the
binomial distribution is increasingly well approximated by the normal distribution.

This is called the continuity correction. It also applies to larger intervals, namely,
for any /e, £ G {0,..., n} we have

Example 6.3.4. A really bored student rolls a fair die 900 times and records
each outcome. What is the probability that the number 6 appears between
150 and 200 times? The number X of times that 6 appears is binomially
distributed with parameters n = 900 and p = |, so this probability could be
found as

200 200
P(150 < X < 200) = ^2 gx^= 52

ж=150 re=150

Alternatively, observe that X is a sum of 900 i.i.d. Bernoulli random variables,
with p = |, so by the central limit theorem this should be closely approximated
by the normal distribution tyK(np, np(l — p)) = ^(150.125). Therefore, we
have

1 Г200 5 0-150)2P(150 < X < 200) « . / e---- dt = 0.5178.
V2507T J149.5

Compare this to the exact answer of 0.5138677670284817.

6.3. The Central Limit Theorem 263

Figure 6.6. Plot of the p.d.fs for Gamma(a, 6) (red) and (black) for
various values of a (with b fixed at 1). As a grows, the gamma distribution is
increasingly well approximated by the normal distribution.

Gamma

Recall that if X is the waiting time for a events to occur in a homogeneous Poisson
process of rate b, then X ~ Gamma(u, 6) (see Section 5.6.2). If we let Xi be the
waiting time from event number i — 1 to event number i, then X has the same
distribution as Xi- Moreover, the Xi are independent and each Xi is also the
waiting time for a single event with the same rate b to occur, so Xi ~ Gamma(l, b)
with M = | and cr2 = ^-. By the central limit theorem, we have

Gamma(o, b) « acr2) = yf (у,
\ b bz /

when a is large. An example of this is shown in Figure 6.6.

Poisson

The sum of two independent Poisson-distributed random variables is again Poisson
distributed. Specifically, if X ~ Poisson(Ai) and Y ~ Poisson(A2) are independent,
then

gx+y(z) = P(X + Y = z) = p([J ({Х = х}П{У = ?;})]

\x + y=Z /
z

= Y 9х ^gY = Ygx <'X',gY (z ~
x + y—Z X — Q

z \ХЮ—Al \Z—X — A2 z \x \z—x_ V Л1е л2 e _ -А,-A2 Л1 Л2
h X' ^~ХУ- ^ox\{z-x)\

_ -Ax-a2 (Ai + A2)2
z\ '

where the last equality follows from the binomial theorem. This implies that X +
Y ~ Poisson(Ai + A2). Therefore, if X ~ Poisson(A), we can write X as Xi
with Xi ~ Poisson(^). The central limit theorem gives a normal approximation:

Poisson(A) «e/K(A, A).

264 Chapter 6. Probabilistic Sampling and Estimation

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

A=16

Figure 6.7. Plot of the p.m.fs for Poisson(A) (red) and the p.d.fs for c/K(A, A)
(black) for various values of A. As A grows the Poisson distribution is increasingly
well approximated by the normal distribution.

See Figure 6.7 for a plot of the Poisson p.m.f. and the corresponding normal p.d.f.
As in the case of the binomial, since the Poisson distribution is discrete, the

approximation can be improved by using a continuity correction:

P(X = k) = p(k-1-<X<k + ^xp(k-1-<

= Fy (к + -) - Fy (к - -)

Y <fc+|)

and
P(k < X < £) « Fy € + - Fy (к - I) ,

where X ~ Poisson(A) and Y ~ сЖ(А, A).

6.4 *Proof of the Central Limit Theorem

30Those who are familiar with the Fourier transform should recognize that the characteristic
function of a continuous random variable X is equal to the Fourier transform of the p.d.f. of X,
up to a sign. That is, if /x(x) is the p.d.f. of X, then fx(x)eZtx dx = /x(—t).

In this section we prove the central limit theorem (Theorem 6.3.1). To complete
this proof we first need to develop the idea of characteristic functions.

6.4.1 Characteristic Functions

Definition 6.4.1. Let X : Q —> R be a univariate random variable. The function
— P[e2tx] is called the characteristic function of the random variable X.30

Proposition 6.4.2. For any discrete or continuous random variable X : Q —> R,
the characteristic function <^x(£) exists for all t G R.

Proof. If X is a continuous random variable with p.d.f. fx(x), then for any t G R,
the value (px(t) exists if the integral e^fx^x) dx is absolutely convergent. This

6.4. *Proof of the Central Limit Theorem 265

is clear because \eltx\ = 1 for all x and t, giving

I \eltxfx(x)\ dx = /
R J R

fx(x)dx = 1.

The proof in the discrete case is similar. □

Example 6.4.3. Let Z have standard normal distribution with p.d.f.

fz(x) = -f=e x*/2
X/ Z7T

By completing the square, we have
-i z*OO 2 1 7*00

= —= / eitx dx = —= / е-1(х2+2гх^ дх

= e—= f e_2(a:+lt)2 dx
J—oo

= e 2 .

The integral e 2 (ж+^) dx jn the penultimate line is equal to л/2тг, as can
be seen with a substitution, using the results of Exercise 2.5. Thus

= e ‘2/2.

Proposition 6.4.4. For any univariate random variables X and Y, the following
properties of characteristic functions hold:

(i) <£x(0) = 1 and |<px(t)| < 1 for all t e R.

(ii) 99-x(t) = ^x(t).

(iii) If X and Y are independent with Z = X + Y, then — ^Px^^Py^)-

(iv) For any constant a e C the function fpax (£) = Px {ot).

Proof. The proof is Exercise 6.19. □

We need one additional theorem about convergence of characteristic functions.
This theorem says that pointwise convergence of characteristic functions implies
pointwise convergence of the corresponding distributions. We do not include the
proof here because it would take us too far afield, but the interested reader can
find it in many standard books on advanced probability, such as [Fel71, Kle08] or
[Shi84].

266 Chapter 6. Probabilistic Sampling and Estimation

Theorem 6.4.5 (Levy Continuity [Kle08, Theorem 15.23]). If Xi,X2> • • •
a sequence of univariate random variables, and if there exists a univariate random
variable X such that (pxi —> <Px pointwise, as n —> oo, then the c.d.fs Fxz converge
pointwise to Fx as n —> сю.

6.4.2 Proof of the Central Limit Theorem
We can now use characteristic functions to give a proof of the central limit theorem.
First we need two lemmata.

Lemma 6.4.6. If (wb ..., wn) and (zi,..., zn) satisfy \wi\ <1 and |^| < 1 for all
i e {1, •. •, n}, then

n n n

IFi-Ifwi < 52 l-Zi - Wi|. (6.20)
i— 1 2=1 2=1

Proof. The proof is by induction. The base case of n = 1 is immediate. Assume
now that the lemma holds for n — 1. A little algebraic manipulation shows that

n n /п—1 \ /n—1 n— 1
Ц Zi - Ц Wi = (zn - W„) I Ц Zi j + wn I П Zi ~ П Wi
2=1 2 = 1 \2=1 / \2 = 1 2=1

Applying the triangle inequality and the bounds \wi\ < 1 and |z*| < 1 gives

n n

П Zi - Ц Wi
2=1 2=1

< lzn - wn| +
n—1 n—1

П* - П
2=1 2=1

(6.21)

Applying the induction hypothesis to (6.21) gives (6.20). □

Lemma 6.4.7. Fix c > 0 and let t) = 1 — + h(n, t) be a function ofnE%+
and t e R such that \h(n, t)\ G о We have

^n,t)n^e~ct2 pointwise, as n —> oo. (6.22)

Proof. Since \hfn, t)\ G о as n —> сю, we have \hfn, t)| < |^-| < 1 for fixed t
and large n. Therefore, |^(n,f)| < 1 for large n. Applying (6.20) with Zi =
and Wi = (1 — ct2/n) for every i G {1,..., n} gives

|V>(n, t)n — (1 — ct2/n)n\ < n\hfn, t)\.

Taking the limit as n —> сю gives limn^oo t)n = e~ct2, as required. □

We are now ready to prove the central limit theorem (Theorem 6.3.1).

Proof. It suffices to prove the result for /i = 0 and a = 1 and Yn = Sn/y/n (see
Exercise 6.17). Since the Xi are identically distributed, we have <pxSf} = Vx^t)
for any i,j G {l,...,n}. Denote their common characteristic function by

6.5. Bayesian Statistics 267

By Proposition 6.4.4 we have

^„(0 =

We rewrite the characteristic function (-f=) by expanding the exponential as a
Taylor series (see Theorem 10.3.7) and using the fact that /л = 0 and a = 1:

\ Vn/

/»OO
1 = / e^/V^fx^dx

J —oo

f°° itx (itx)2 (itx)3= /J1+l!^+ 2!„ +3^+^Ж(1>‘'1

/.OO / /.oo /./42 /-oo
= / fx(x)dx + —~ / xfx(x)dx + — / x2fx(x)dx

J-oo VnJ-oo 2n J-ee
+ 6 3/2 [(x3+ ---)fx(x)dx

brZ / J—oo

d it t2 2 (if)3 Г°° . з \ J / \ j
= 1 + 9 a + 3/2 / (z3 + • • •)fx(x) dx

y/n 2n J _oo
t2

where h(n, t) G o(^). Lemma 6.4.7 gives

So the characteristic functions <PYn(t) of Yn converge to the characteristic func­
tion (pz(t) of the standard normal distribution Z ~ e/K(0,1). By Levy continuity
(Theorem 6.4.5), we have Fyn —> Fz pointwise, as n —> oo. In particular, (6.18)
holds for all points у G R. □

6.5 Bayesian Statistics
Probabilities do not describe reality—only our information about reality.
—E. T. Jaynes

Maximum likelihood and other methods of estimation discussed earlier in this chap­
ter are all about making a single point estimate for an unknown parameter. In
Bayesian statistics, rather than computing a single point estimate, we compute a
distribution for the parameter. A key feature of Bayesian statistics is recognizing
that if a parameter is unknown, it should be treated as a random variable in its
own right and therefore should have a corresponding distribution. New data can
be incorporated into the model via the conditional probability of the parameter,
given the data. This is done using Bayes’ rule, which gives an improved estimate
of the distribution of the parameter. The initial distribution for the parameter is
called the prior distribution and the updated distribution, accounting for the data,
is called the posterior distribution.

268 Chapter 6. Probabilistic Sampling and Estimation

More precisely, let Xi,..., Xn be a sample of random variable X whose distri­
bution P(x | 0) = P(X = x | © = 0) depends on an unknown parameter ©. Assume
© is a random variable with an initial (prior) distribution P(0) = F(© = 0). Given
a draw x = (a?i,..., #n), the conditional probability F(0 | x) = P(© = 0 | X = x)
gives an updated (posterior) distribution for © that takes into account the infor­
mation from the data. This conditional probability can be calculated using Bayes’
rule. If X and © have discrete distributions, then we have

= P(x I g)F(g) =
1 1 ’ (6.23)

where the sums in the denominators run over all possible values of the param­
eter 0'.

Example 6.5.1. Suppose there are two coins, one fair and one which comes
up heads with probability 0.25. The coins look and feel identical. One of the
coins is randomly selected and we are asked to determine whether it is the fair
coin or the unfair coin. The natural way to approach this is by flipping the
coin repeatedly and recording the results.

The outcome X of flipping the coin has a Bernoulli distribution with un­
known parameter ©:

P(x I 6») = P(X = X I 0 = 6») = gx(x) = 0X(1 - V)1-*.

Since the coin was chosen randomly, the probability of each of the two possi­
bilities is the same:

P(© = 0.25) = P(0 = 0.5) = 0.5.

This is called the prior distribution of ©. Flipping the coin once does not give
enough information to determine the value of ©, but we can incorporate the
result into the model using conditional probability. Assume the outcome of
the first flip is T (so X± = 0). By Bayes’ rule, we have

P(© = 0.25 | X = 0)
P(X = 0 | © = 0.25)P(© = 0.25)

- P(X = о I © = 0.25)P(© = 0.25) + P(X = 0 | © = 0.5)P(© = 0.5)
= °-75-°-5____ =0.6.

0.75 • 0.5 + 0.5 • 0.5

So we have a new (posterior) distribution for ©:

0.6 if 0 = 0.25,
0.4 if 0 = 0.5.

This procedure can now be repeated. The posterior distribution for the last
trial becomes the prior for the next trial. Assume that flipping the coin a

PW =

6.5. Bayesian Statistics 269

second time gives the outcome X2 = 0. Again Bayes’ rule gives the conditional
probability

P(0 = 0.25 I X = 0)
P(X = о I 0 = O.25)P(0 = 0.25)

" P(X = 0 I <Э = O.25)P(0 = 0.25) + P(X = 0 | 0 = O.5)P(0 = 0.5)
0.75 • 0.6—~ n GQ9

0.75-0.6 + 0.5-0.4 ’ ’

giving a new (posterior) distribution for 0:

0.692
0.307

if 0 = 0.25,
if F = 0.5.

For continuous distributions the corresponding version of Bayes’ rule31 replaces

31 We do not prove the continuous version of Bayes’ rule in this book, but the theorem itself is a
straightforward generalization of the discrete case. We give the proof and a complete treatment
in Volume 3.

probability with density functions: P(x | 0) is replaced with the p.d.f. f(x | 0) and
the probability P(x | 0) with the likelihood ПГ=1 f(xi I ^)> the probability P(0)
is also replaced with a p.d.f., which we still denote by P(0), and the conditional
probability P(0 | x) is replaced with a conditional p.d.f., which we also denote P(0 |
x). We have

F(0 I x) =
Дх | 0)P(0)

_/V(x|0')P(0')d0'’
(6-24)

where, as in the discrete case, the integral in the denominator runs over all possible
values of 0'.

Remark 6.5.2. It is common to use the notation of (6.24), regardless of whether
the distributions of X and 0 are discrete or continuous, with the understanding
that the obvious substitutions (integrals to sums and p.d.f.s to p.m.f.s) should be
made as needed.

Remark 6.5.3. If needed, we can take 0 to be multivariate, that is, a vector of
parameters. For example, if the parameter distribution were normal, we would
write 0 = (дб, cr2) to represent the two parameters and the marginalization in (6.24)
would be an integral over the domain of both variables.

Nota Bene 6.5.4. Almost everyone who does Bayesian statistics abuses no­
tation and uses the same symbol for both 0, in the numerator, and 0', in
the denominator, of (6.24). This is problematic because 0 is a parameter for
which we want to find a posterior distribution, but 0' is a dummy variable that
runs over all possible values, so the entire denominator is actually a constant,
independent of 0. In this book we do not indulge in this notational tradition
because we want to be able to look in the mirror without shame.

270 Chapter 6. Probabilistic Sampling and Estimation

6.5.1 Example: The Bernoulli Distribution
Suppose that we have a coin that may or may not be fair, but unlike Example 6.5.1
the parameter p determining the probability of heads is not limited to just two
possibilities—it could be anything in the interval [0,1]. To estimate p we draw the
data x = (a?i, • • •, #n) by flipping the coin n times, where each Xi e {0,1}. We
have

n

। p) = n i p)=pns(i - p)n(1~s),
2 = 1

where x = For reasons explained below, we choose the beta distribution
as the prior, with some chosen values for a and b. Thus, we have

X ~ Bernoulli(p) and p ~ Beta(u, 6).

The prior density is given by

P(p) = r(Q + fc) pq-i(i -p)6-1
W Г(а)Г(6)Р 1 P> ’

and thus we have

P(p! x) = _ IT.,
Jo П”=1 f(xi I p')f(p') dp'

p^(l _p)b-l

fo(p')nS(l -P/)n(1-s)r^5)(p')a_1(l -P')6-1 dp'

pa+nx-1^2 _ p)b+n(l-x)-l

fg(p')a+n£~1(l - p')<>+n(l-S)-l dp'

_ _____ Г(о + /> + »)_____ a+nx-li-i _ \b+n(l-x) — l
Г(а + п.г)Г(6 + n(l -x))P 1 P>

The last equality follows because the integral in the denominator is a beta function;
see (2.13). Alternatively, note that the numerator pa+n2}-1(i — p)b+n(1-x)-1 jjffers
from the p.d.f. fs(p) of Beta(u + nx< b + n(l — x)) by a constant multiple. Since
F(p | x) and fs(p) are both p.d.f.s, they must both integrate to 1, and so the
constant multiple must also be 1.

All this shows that P(p | x) is distributed as Beta(u + nx, b + n(l — ж)), so the
posterior is also a beta distribution, but with parameters a plus the number of suc­
cesses and b plus the number of failures. This is one reason that a beta distribution
is a preferred choice for a prior of the Bernoulli distribution—the corresponding
posterior has a very nice form. But, of course, the fact that it is convenient does
not necessarily mean it is good reflection of reality.

A better reason to choose one of the beta distributions as a prior is that the
family of beta distributions can easily represent a wide range of prior beliefs about

6.5. Bayesian Statistics 271

the parameter p of the coin. If we have reason to believe that the coin is fair, then
we could choose values of a and b that make Beta(u, b) have mean near 0.5. Since
/1 = (see (5.26)), this could be accomplished by choosing a « b. The more
certain we are of the fairness, the smaller we want the variance of the prior to be.
The variance a2 = (a+^2(a+b+1) of Beta(a, b) gets smaller as a and b get larger, and
it goes to zero as the parameters get large. If we have great initial confidence that
the coin is fair, we could reflect that by choosing large values of a « b in the prior,
and if we have low initial confidence that it is fair, we can reflect that in the prior
by taking a and b small.

If we have no prior reason to believe that the coin is any more likely to have
one probability than any other, we can reflect that by taking a = b = 1, which
gives Beta(l, 1) = UniformQO, 1]). Even bimodal priors are possible with the beta
family when a, b < 1; if a = b is less than 1, then the beta distribution approaches
infinity at each end; see Figure 5.13. Thus the beta family of distributions is fairly
expressive and can match many different prior beliefs about p.

Now suppose that the coin was weighted so that it landed on heads 40% of the
time; see Figure 6.8. Over the long run the posterior would look like Beta(a +
0.4n, b + 0.6n), which is essentially indistinguishable from Beta(0.4n, 0.6n) when n
is large enough. In other words, in the long run, regardless of the value of a and
6, the prior becomes less and less relevant and the data dominate the shape of the
posterior. When this happens, it is said that the data swamps the prior.

Figure 6.8. Graph of the p.d.f.s for Beta(l,l), Beta(20,32), and Beta(385,617)
corresponding to draws of the weighted coin for n = 0, n = 50, and n = 1000,
respectively. In the limit as n —> oo, the variance shrinks to zero and the probability
distribution takes on the shape of an infinitely tall, infinitesimally narrow spike of
area 1. Assuming that the coin is actually weighted to land on heads 40% of the
time, the spike should occur at 0.4. In this example after 1000 flips, we don’t have
exactly 400 heads, of course, but the likelihood of p = 0.4 in the corresponding
posterior distribution is very high.

272 Chapter 6. Probabilistic Sampling and Estimation

MODIFIED BAYES’ THEOREM

P(HlX) = P(H)-(l»P(C)-(-^ ̂

\ \ ГАК/

H- HYPOTHESIS

X: OBSERVATION
P(H): PRIOR PROBABILITY THAT H I5TROE

P(X> PRIOR PROBABILITY Of OBSERVING X

р/гч. PROBABILITY THAT YOU'RE USING
1 7 BAYESIAN STATISTICS CORRECTLY

32Not every distribution has a mode. For example, the distribution Beta(0.5,0.5) has no mode,
because its p.d.f. approaches infinity at either end of the interval (0,1); see Figure 5.13.

Figure 6.9. Bayesian statistics can be very powerful when used correctly. Source:
XKCD, Randall Munroe, http: //xkcd. com/2059/

6.5.2 MAP Estimate
Unlike the other estimation methods discussed earlier in this chapter, the Bayesian
approach does not give a single point estimate of the parameter © but instead gives
a distribution for ©. If we must choose a single value © = 0, a natural choice
would be the mode (the value that maximizes the p.d.f.) of the posterior F(0 | x),
assuming this exists and is unique.32 The mode of the posterior distribution, if it
exists and is unique, is called the maximum a posteriori estimate (MAP).

Example 6.5.5. In the case of the Bernoulli distribution with Beta(a, b) as
prior and Beta(u + nx. b + n(l — xf) as posterior, the MAP is found by maxi­
mizing the p.d.f. /(p) of the posterior. This is done by differentiating log(/):

т log(/(p)) = — ((a + nx - 1) log(p) + (i> + n(l - x) - 1) log(l - p)) dp dp
a + nx — 1 b + n(l — x) — 1

p 1 -p

Setting this to zero and solving for p gives the MAP

Pmap =
a + nx — 1

a + b + n — 2 (6.25)

The MAP depends on the choice of prior, but when the prior is uniform, the
MAP agrees with the MLE. In the case of the Bernoulli distribution, as discussed
in the previous subsection, the MLE for p is pmle = x = But if the

6.5. Bayesian Statistics 273

prior is uniform, the MAP is the mode of Beta(l + nx, 1 + n(l — #)), which is also
x, by (6.25). That is to say, starting with the uniform distribution as the prior and
taking the most likely value of the parameter p with the posterior distribution gives
exactly the MLE for the parameter. The relationship between the MAP and the
MLE is a general phenomenon for uniform priors, as the next proposition shows.

Proposition 6.5.6. For any given p.d.f. f(x,0), ifO is known to lie in the interval
\a,b] and the prior distribution P(ff) is uniform on [a, b], then the mode of the
posterior distribution is the MLE for 0:

0mle = mode(F(0 | x)).

Proof. The proof is Exercise 6.26. □

6.5.3 Conjugacy
As described in Section 6.5.1, the Bernoulli distribution with a beta prior results
in a posterior distribution that is also beta distributed. But in general there is no
reason to expect the prior and posterior distributions to be of the same type. In
the special case that they are of the same type, we say that type of distribution
is conjugate to the likelihood. The beta distribution (or rather the beta family of
distributions) is conjugate to the Bernoulli likelihood; see Table 6.1 for a list of
common likelihoods and their priors.

Conjugacy is a truly special relationship not enjoyed by most distributions. In
general, one has to compute nasty integrals to get the posterior. Since there’s
no simple functional form for most of these integrals, these are usually computed
numerically using quadrature (see Sections 9.6 and 9.7) or Monte Carlo methods
(see Section 7.1).

Only in recent years have computers become fast enough and algorithms good
enough that it is practical to compute these integrals in general. As a result,
Bayesian statistics wasn’t taken seriously as a reasonable way to do statistics until
nearly the end of the 20th century. Today, however, the tide has changed, and
Bayesian statistics has taken a dominant position in statistical estimation theory,
particularly for highly complex problems where other methods fail miserably.

Likelihood
Bernoulli
Binomial
Negative Binomial
Poisson
Gamma (shape fixed)
Normal (variance fixed)
Normal (mean fixed)
Multivariate Normal (covariance fixed)

Conjugate Prior
Beta
Beta
Beta

Gamma
Gamma
Normal

Inverse Gamma
Multivariate Normal

Table 6.1. Table of some common conjugate priors. Despite what this table may
seem to imply, most distributions do not have a conjugate prior.

274 Chapter 6. Probabilistic Sampling and Estimation

6.5.4 Example: Gamma(r, 0) with Fixed Shape r
Let X ~ Gamma(r, 0) for some fixed shape т > 0 and an unknown rate 0 > 0. The
density function takes the form Р^у(0тжт re вх) (see (5.24)); thus, the likelihood
takes the form

n f)nT n i n
It* I 0} - пЯк I n<-‘.

Example 6.5.8. Assume that the lifespan of a projector bulb can be mod­
eled as a random variable X with an exponential distribution. Recall that
the exponential distribution is a special case of the gamma distribution with
shape 1, so X ~ Gamma(l,A). Suppose that our prior experience consists of
observing 5 bulbs having an average lifespan of 4 months. We would like to
estimate the distribution of the parameter A, describing the rate of failure of
the bulbs.

Since the observed average rate of failure A is |, it is natural to choose a
prior that has E[A] = |. Since the gamma distribution is a conjugate prior
to the exponential distribution, it is convenient to choose Gamma(a, b) as
the prior for A, with expected value | for example, we could choose
Gamma(5, 20), corresponding to the 5 observed failures in approximately 5 x
4 = 20 bulb-months.

2=1 k ' 2 = 1 k ' 2=1

Choosing the gamma distribution with some fixed parameters a and b for the prior
P(Q) gives

1 Рпт-Зпх nn т-1 . (ьа \ na-lp-b6
D/Z)l \ r(r)"t' 6 Hi=l Xi \r(a))V ei (и x) — --- -----------------------

Г r# • (r^))

= Z6>nr+a-le-0(nx+fe) (6.26)

where Z is independent of 0 (the integral in the denominator runs over all values
of 0f, so the denominator is independent of any particular value of 0). Notice
that, as a function of 0, the last line of (6.26) is a constant times the p.d.f. of
Gamma(a + nr, b + nx). Since both (6.26) and the p.d.f. of Gamma(a + пт. b + nx)
are p.d.f.s, they must both integrate to 1, and hence they must be the same function.
Therefore, F(0 | x) is distributed as Gamma(u+nr, b+nx). This shows that gamma
is a conjugate prior to the distribution Gamma(r, 0) with fixed shape r > 0.

Remark 6.5.7. The expected value of the posterior Gamma(a+nr, b+nx) is
The MAP for 0 is the mode of the posterior, which is whenever a-\-nr > 1.
As in the case of the Bernoulli distribution with a beta prior, as n increases the data
swamps the prior and the posterior look increasingly like Gamma(nr, nx), which
has its expected value equal to its mode of J. This is the MLE estimate for 0 given
x with the original exponential distribution.

Exercises 275

Sampling four more bulbs with a total lifespan of 26.93 bulb-months (an av­
erage lifespan of 6.73 months each) gives a posterior distribution of Gamma(5+
4,20 4- 26.93) = Gamma(9,46.93) for A. This distribution has mean 0.19 and
mode (MAP) 0.17.

Sampling another 16 bulbs with a total lifespan of 112.57 bulb-months
(an average lifespan of 7.04 months each) gives a posterior distribution of
Gamma(25,159.5) for A. This has mean 0.16 and mode 0.15.

These distributions are depicted in Figure 6.10. Notice how incorporating
more data gives distributions for A with smaller and smaller variance, and the
mean of each distribution is equal to the average failure rate of all the bulbs
tested.

Figure 6.10. The evolution of the p.d.f. for Example 6.5.8, beginning with a prior
(black) o/Gamma(5, 20), incorporating data for four more bulbs (blue), and then for
16 more bulbs (red). In this case the mean of the final posterior distribution is 0.16.
Note how the variance shrinks and the height (likelihood) at the MAP increases as
more data are incorporated.

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.

276 Chapter 6. Probabilistic Sampling and Estimation

Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

6.1. Prove that s2 is an unbiased estimator of cr2, as claimed in Proposition 6.1.7.
6.2. A binomial distribution has parameters n and p. Show that for a sample

Xi,...,Xn, the estimator p = SiLi is an unbiased estimator for p.
6.3. Given a sample Xi,..., Xn of a Poisson distribution with parameter A > 0,

find the maximum likelihood estimator for A.
6.4. Given a sample Xi,..., Xn of the exponential distribution Gamma(l, A) with

rate A > 0, find the maximum likelihood estimator for A.
6.5. If a small number of draws (say, two or three) from the Bernoulli distribution

were taken and they were all equal to 1, what would be the MLE of p?
Explain how this might be a weakness of MLE.

6.6. Let b G N. Let Xi,..., Xn be a sample without replacement from a uniform
distribution on S = {1, 2,..., b} (that is, the probability of drawing x± G S
is but then, since there is no replacement, the probability of drawing
x2 G S is ^7-j- if x2 ф Xy and zero otherwise). Let M = max(X17... ,Xn).
For к G S show that if к < n, then P(M < k) = 0, and if к > n, then
р(м < к) = (Ж)-Use this to show p(M = M = (tM)-

*

6.7. If Xi,..., Xn is a sample without replacement from a uniform distribu­
tion on {1,2, ...,6}, and if M = max(Xi,..., Xn), then show E[Af] =
(6 + l)n/(n + 1). Hint: Consider using (1.22). Use this to show that

*

b = ILdlA max(Xi,..., Xn) — 1
n

is an unbiased estimator for b. This estimator was used by the Allies in World
War II to estimate the number of tanks built by the Nazis, based on serial
numbers on parts of tanks that were captured or destroyed.

6.8. Write code to sample from the Bernoulli(0.5) distribution 1000 times, simu­
lating a repeated coin flip, and compute Дюоо- Repeat the experiment 100
times, saving the result each time. For each value of e G {0.1,0.01,0.001} do
the following:

(i) Find the upper bound from the law of large numbers for n = 1000.
(ii) Of those 100 trials, calculate the proportion of times that |Дюоо — Ml > £

and compare your result to the bound from the law of large numbers.
6.9. Repeat the previous problem using the distribution Beta(l,9) instead of

Bernoulli(0.5).
6.10. Let В ~ Binomial(n, p) be a binomial random variable for n trials with

parameter p. Prove for any e > 0 that
В \ < p(l - p)

J ~ ne2

Exercises 277

6.11. Let Xi,X2,... be a sequence of mean-zero independent random variables
with bounded variances (for all г, ст2 < M for some M < сю). Prove that for
any e > 0 we have

as n —> сю.

6.12. Give the details for the second part of Corollary 6.3.2 to show that if Sn =
™=1 Хг is a sum of n i.i.d. random variables with mean /j, and variance cr2,

then for large values of n, the distribution of Sn is approximately e/K(n/i, шт2).
6.13. An elevator can transport a maximum of 2000 pounds. The safety plate on

the elevator says the maximum occupancy is 10 persons. Experience has
shown that passengers on this elevator have a mean weight of 176 pounds
and standard deviation 30 pounds. Use this information and the central
limit theorem to estimate the probability that a full elevator will not exceed
its safe carrying capacity. Hint: Most numerical computation software (like
Python or R) has built-in functions or a library with the c.d.f. of the normal
distribution.

6.14. A university wants to enroll 5000 new freshmen students each year, and the
most they can handle is 5500. Data on past admissions and enrollments
show that 80.1% of all students admitted to the university actually decide to
enroll (as opposed to going elsewhere or not going to school at all). Assuming
that each student’s decision to enroll is independent of the others, and each
has a probability 0.801 of enrolling (that is, enrollments can be modeled as
Bernoulli trials), use the central limit theorem to estimate the probability that
the number of students enrolling will exceed 5500, provided the university
admits 6242 students (so the expected number of enrollments is 6242x0.801 =
5000).

6.15. A fair four-sided die is rolled 800 times and each outcome recorded. Using
the central limit theorem, approximate the probability that the number 4
appears between 150 and 250 times.

6.16. For each of the two distributions Beta(j, j) and Uniform([0,1]), and for each
n e {1,2,4,8,16,32}, do the following:

(i) Find the mean // and variance cr2, and plot the p.d.f. of the distribution
(the results of this problem do not depend on n, but you will need a
separate one of these plots for each n).
Hint: Many computational systems have a built in method or a library
for sampling from common distributions like the uniform and beta dis­
tributions, as well as prebuilt functions for the c.d.f. and p.d.f. of those
distributions.

(ii) Plot (on the same graph as before) the p.d.f. of the normal distribution
with mean /j, and standard deviation cr/^/n.

(iii) Do the following 1000 times:
(a) Draw x17..., xn from the distribution.
(b) Compute x = £ £”=1 x.*

278 Chapter 6. Probabilistic Sampling and Estimation

(iv) Plot a normed histogram of the results of the previous item (scaled so
that the total area of the histogram is one—like a p.d.f.) on the same
graph as your original distribution and the normal.

6.17. Prove the claim at the beginning of the proof of the central limit theorem:
“It suffices to prove the result for /z = 0 and a = 1 and Yn = Sn/y/n.”
*

6.18. Compute the characteristic function for the following distributions:*

33Commuting expectation and derivatives is not always possible, although it works in this case.
Differentiation under an integral on a compact region is governed by Leibniz’ integral rule
(Volume 1, Theorem 8.6.9). Applying this to an unbounded region requires commuting limits
with derivatives (see Volume 1, Theorem 6.5.11).

(i) Bernoulli.
(ii) Binomial.

(iii) Poisson.
6.19. Prove Proposition 6.4.4.*
6.20. For any univariate random variable X with a characteristic function <px(t)

that is differentiable at t = 0, show that E[X] = —i(p'x(ff) (assume that
derivatives and expectation commute) and, more generally, that E[Xfc] =
(—i)k(px\o) for any к E N, provided 9^(0) exists for all j < k.

*

33

6.21. It can be shown that the characteristic function of an exponentially dis­
tributed random variable X ~ Gamma(l,A) is фх(1) = Use this fact
to give a closed formula for E[Xfe] for all к G N.

*

6.22. The Fourier inversion formula says that the characteristic function uniquely
determines the distribution. In particular, if X and Y are random variables
with the same characteristic function, then their c.d.f.s are equal. Use this
fact to show that if X± ~ Poisson(Ai) and X± ~ Poisson(A2) are independent,
then Y = Xi + X2 ~ Poisson(Ai + A2).

*

6.23. Use characteristic functions and the Fourier inversion formula to show that
if Xi ~ Binomial(n,p) and Xi ~ Binomial(m, p) are independent, then Y =
Xi + X2 ~ Binomial(n + m,p).

*

6.24. A coin is flipped 8 times with the outcomes H, H, H, T, T, H, H, H. Using a
uniform prior for the probability p of heads, what is the posterior probability
that p < 0.6? What is the probability that p > 0.8?

6.25. Assume that the lifespan of a projector bulb can be modeled as a random
variable X with an exponential distribution of unknown parameter A. Sup­
pose that your data consists of observing 7 bulbs which lasted 2, 3.3, 4.5, 1.8,
3.1, 2.7, and 2.2 months, respectively.
Using the prior Gamma(2,6), find the posterior p.d.f. for A. What is the
posterior probability that A < | (corresponding to an average lifespan of at
least 4 months)? Hint: The syntax of some computational systems uses the
scale j in the gamma distribution instead of the parameter b.

6.26. Prove Proposition 6.5.6, which states that whenever we start with a uniform
prior on any interval [a, 6], the mode (the value 0 which maximizes the p.d.f.)
of the posterior distribution is precisely the same as the MLE #mle- Hint:

Exercises 279

Use Bayes’ formula to show that the likelihood L(0) only differs from the
posterior f(0 | x) by a constant multiple.

6.27. Let ... ,Xn be i.i.d. random variables with a Poisson distribution of pa­
rameter A, and let x = (#i,..., xn) be a corresponding draw. Prove that if
the prior for A is Gamma(a, 6), then the posterior is Gamma(a + nx. b + n).
This shows that the gamma distribution is a conjugate prior for the Poisson
distribution. What is the MAP in this case? Compare the MAP to the MLE
for A, given x.

6.28. A Given a draw x = (rri,^) of a sample Xi,%2 of a random variable X
depending on an unknown parameter 0, there are two different ways to use
Bayes’ rule to compute the Bayesian posterior P(0 | x). The first way is to
do it in a single step as

= P(x | QPW
' 1 1

This is the method used in Section 6.5.1. The second way is to compute it in
two steps by first computing

P(0 | xi) = P(xi | 0)F(0)
/ F(®i | 0')F(0') dO' ’

and then taking F(0) = P(0 | Xi) as a new prior, computing

P(9112) = _
J P(n | e')P(S') M'

This two-step method was used in Example 6.5.1. Prove that for any likeli­
hood P(x | 0) and any prior F(0), the final posterior distribution P(0 | x) is
the same, regardless of which method is used.

6.29. Let X ~ cr2) for a fixed, known value of cr2 and an unknown value of
/1. Assume that /л ~ e/K(z/, r2) for some given, prior values of v and r2.

(i) Given a single draw x of X, show that the Bayesian posterior distribution
of [i is

/t2x + cr2// cr2r2 \

\ cr2 + r2 ’ cr2 + T2 /

(ii) Give a formula for the posterior distribution F(/z | x) of /л for data
x = (a?i,..., Xn) of n draws.

(iii) Show that the MAP converges to the MLE as n —> oo.

(iv) Show that for any n and any z/, the MAP converges to the MLE as
r2 —> oo. Note that there is no uniform distribution on R, but as r2 gets
large the distribution t2) can be thought of as a good surrogate
for a uniform distribution, so the fact that the MAP converges to the
MLE can be thought of as an analogue to Proposition 6.5.6 (Exercise
6.26).

280 Chapter 6. Probabilistic Sampling and Estimation

Notes
Additional introductory references about the ideas in this chapter include [Kurl5,
BH15, GS03, Ros07, Rosl4, Was04]. Our treatment of the law of large numbers is
inspired in part by [GS03]. For more about the fundamental bridge, see [ВН15].

Random Algorithms

Anyone who attempts to generate random numbers by deterministic means is, of
course, living in a state of sin.
—John von Neumann

A random algorithm is one that uses some notion of randomness as part of its
logic. In theory, they are algorithms that use random variables; in practice, they
are algorithms that use draws of those random variables.

Among the most important random algorithms are Monte Carlo methods, which
give powerful tools for estimating quantities like the value of an integral or, equiva­
lently, the expected value of a random variable. These are discussed in Section 7.1.
In Section 7.2 we discuss methods of sampling both to compute expectations (inte­
grals) and to draw samples from various nonuniform distributions.

In the rest of the chapter we discuss three other types of random algorithms,
namely, hashing, simulated annealing, and genetic algorithms. Hashing is a funda­
mental tool for producing efficient data structures like dictionaries and sets. Sim­
ulated annealing and genetic algorithms are important methods for optimization.
They are especially useful in situations where the function to optimize is not differ­
entiable or where its derivative is not easily calculated.

7.1 Monte Carlo Methods
Monte Carlo methods34 form a broad class of techniques that use random sampling
to estimate various quantities, including high-dimensional integrals, parameters of
distributions, and probabilities of various events. For example, with Monte Carlo
sampling, one can estimate the expected value E[X] of a random variable X by
computing its sample mean Д (see (6.1) and (6.3)). In fact, many of the Monte
Carlo techniques boil down to computing some kind of expectation, and in most
cases the central limit theorem can be used to analyze the convergence properties
of these methods.

34The name comes from the Monte Carlo Casino in Monaco.

281

282 Chapter 7. Random Algorithms

Monte Carlo methods are useful in a wide variety of settings. They are often
easy to implement in situations where analytic methods are difficult or even impos­
sible. While they are not usually considered very computationally efficient, they are
usually parallelizable, and for many high-dimensional problems they are the only
feasible approach. Moreover, they can be applied in almost any situation where the
desired answer has a probabilistic interpretation. For example, integration can be
interpreted as computing an expected value, and thus Monte Carlo methods can be
applied. In fact, the best methods for numerical integration in high dimensions are
Monte Carlo methods.

Example 7.1.1. Since the area of a circle of radius r is A = 7rr2, one way to
estimate 7Г is to estimate the area of the unit circle. A Monte Carlo approach
to this problem is to uniformly sample points in the square [—1,1] x [—1,1]
and then count the percentage of points that land within the unit circle. The
percentage of points within the circle approximates the percentage of the area
occupied by the circle. Multiplying this percentage by 4 (the area of the square
[—1,1] x [—1,1]) gives an estimate for the area of the circle.

The results of three such experiments, with 500, 2000, and 16,000 points,
respectively, are shown in Figure 7.1. The corresponding estimates for 7Г are
3.0880, 3.1980, and 3.1412.

500 points; 7г« 3.0880 2000 points; 7г« 3.1980

Figure 7.1. Monte Carlo estimation of the area of the unit circle. Points are
chosen uniformly from the square [—1,1] x [—1,1]. The area of the square times
the percentage of points landing in the circle gives an estimate for the area тг of the
circle; see Example 7.1.1.

7.1.1 Expected Value via Monte Carlo
One of the most basic problems in the class of random algorithms is estimating the
expected value E[X] of a random variable X. To estimate ц = E[X], we take a
draw x = (rci,..., xn) from a sample Xi,..., Xn of X and compute the value of
the sample mean Дх = x = The law of large numbers guarantees that
Дх —> p with probability 1 as n —> oo, and the central limit theorem gives additional
probabilistic information on the quality of the estimate as a function of n.

7.1. Monte Carlo Methods 283

More precisely, the central limit theorem (Theorem 6.3.1) guarantees that for
2

large n the sample mean Д is approximately distributed as J%^-), so by the
68-95-99.7-rule (see Exercise 5.40)), the probability that Д is within one standard
deviation of у is approximately 68%, and the probability that it is within two
standard deviations is approximately 95%.

The standard deviation of the sample mean is called the standard error (SE)
of the mean. Of course, if the purpose of the experiment is to approximate /1, then
we probably also don’t know cr2, but we can use the unbiased sample variance

(see (6.5)). Thus, a good estimate for the standard error is

Therefore, the result x of a Monte Carlo experiment to estimate у = E[X] with n
samples will, with approximately 95% probability, lie within two standard errors
(that is, ^) of the true mean /i.

More generally, to compute the expected value of h(X) for some well-behaved
function h : R —> R, observe that Y = h(X) is itself a random variable with
expected value Е[У] = E[/z(X)]. Again, we can estimate this value with a Monte
Carlo experiment, by drawing у = (?/i,..., yn) from a sample Yi,..., Yn. But each
Yi is h (ХД so to sample from Y we can apply h to a sample from X. This gives

1 n 1 n
у=Х^ =

l—l l—l

and P(\y — E[/z(X)]| < |^) is approximately 95%, where

4 = E^*) - уУ-
г—1 i—1

Example 7.1.2. Let X ~ Uniform([0,1]). To estimate the expected value of
Y = X2, we sample from X and compute у = - xi- Drawing n = 106
times, we found у = 0.333298 and s2 = 0.088995, which gives SE = -^= =
0.0003. We conclude from this that the probability that \y — y\ is no more
than 0.0003 is about 68%, the probability that it is less than 0.0006 is about
95%, and the probability that it is less than 0.0009 is about 99.7%.

In many cases the expected value cannot be computed analytically, but in
this special case the true answer can be computed as E[X2] = x2 dx = |,
and we have \y — /i\ ~ 0.000035, which is well within one standard error of the
mean.

284 Chapter?. Random Algorithms

Example 7.1.3. Consider a game where you repeatedly roll three distinct
six-sided dice. With each roll of the three dice, if there are no doubles or
triples, then you win the total amount shown (the sum of the three dice);
otherwise you lose everything you have won so far.

We can use Monte Carlo methods to estimate the expected value with very
little work. Let the random variable Y be the value of your stake after 10 rolls.
With only a few lines of code, we can draw from {1,..., 6} uniformly for each
of the three dice and compute the effect of each roll on the total stake. The
result у of repeating this 10 times constitutes one experiment. Here is an
example:

Roll Outcome Winnings Roll Outcome Winnings
1 3 6 3 0 6 5 2 2 0
2 2 5 2 0 7 1 5 3 9
3 2 6 4 12 8 6 5 4 24
4 4 2 5 23 9 6 6 4 0
5 2 6 4 35 10 4 3 3 0

In this example, the final winnings are у = 0. Repeating the 10-roll ex­
periment n times gives a draw т/i, y%,. . •, yn from a sample У1,..., Yn of Y.
From this we can quickly compute у and the standard error SE, increasing
the number of samples until we are sufficiently confident in the quality of the
estimate у ~ Е[У].

We ran this experiment 105 times and found у = 13.1, with SE « 0.06.
So the probability that the true value of Е[У] lies in the interval (12.9,13.3)
is greater than 99.7%; see Algorithm 7.1 for details. The analytical solution
of this problem shows that Е[У] = 13.0882, which is very close to our Monte
Carlo estimate.

7.1.2 Monte Carlo Integration with Uniform Distributions
In calculus, we learn that the average of a function on the interval [a, b] can be
computed via the integral

1 fb
b- a Ja

We can connect integration to Monte Carlo methods because this quantity is equal
to Е[У], where У = f(X) for X ~ Uniform([u, b]). This means that we can estimate
the integral as

(f(x) dx = (b — а)Е[У]
a -1 г—1

where x = (aq, aq, • • •, xn) is a draw from the sample X2,..., Xn of the random
variable X ~ Uniform ([a, 6]).

More generally, consider an integral of the form

dx,

7.1. Monte Carlo Methods 285

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

import numpy as np # module for efficient linear algebra

def MC_dice_game(n=10**5) :
Monte Carlo estimate of expected value of the dice game.

def trial(n_rolls=10,n_dice=3):
nun perform a single experiment of n.rolls dice throws
and return total_winnings (a draw у of Y)."""

total_winnings = 0
rolls = randint(1,7,[n.rolls,n.dice]) # array of rolls
for roll in rolls:

if len(np.unique(roll)) == n_dice: # if all distinct
total_winnings += np.sum(roll)

else:
total_winnings = 0

return total_winnings

run n total experiments and compute ybar
trials = np.array([trial() for x in range(n)]) # n trials
ybar = trials.mean() # Estimate of E[Y]
svar = np.sum((trials-ybar)**2)/n # Sample variance
SE = np.sqrt(svar/n) # Standard error
return(ybar, SE)

Algorithm 7.1. Routine for computing a Monte Carlo estimate у of the expected
value Е[У] for the dice game of Example 7.1.3. While the analytic computation of
Е[У] is difficult, writing and running the code for the Monte Carlo estimate is easy.

over a bounded interval [a,b] = [«i,6i] x ••• x [ad,6j] C for an integrable
function &(x) (the symbol x here is not a draw from a sample but rather just a
point in Rd). The p.d.f. of the uniform distribution on [a, b] is /(x) = aq2 ь]) ^[а,ь]>

where A([a,b]) = — aj), so we have

= A([a, b])E[fc(X)] «
2—1

where Xi,..., xn is a draw from the uniform distribution on [a, b]. Geometrically,
this is similar to computing Riemann sums, except that Riemann sums correspond
(when d = 1) to taking one point Xi in each interval [a + г А, a + (г + 1) A] for each
i e {0,1,..., n — 1}, with A = whereas the Monte Carlo method just takes n
points sampled uniformly from the interval [a,b\; see Figure 7.2.

286 Chapter?. Random Algorithms

Figure 7.2. Depiction of left Riemann sums (black/gray) versus Monte Carlo
integration (red) to estimate the integral f(x) dx. Riemann sums take one sample
(the leftmost point) from each interval [a + гД,а + (г + 1)Д], whereas the Monte
Carlo method takes samples drawn uniformly from the interval [a, b].

The standard error for this Monte Carlo integration is given by (we drop the
subscript on s)

SE » Л([а, b|) A = У) (7-1)

where у = k(x/) and s is the square root of the unbiased sample variance
for the draw &(xi),..., k(x.n/

Example 7.1 .4. Example 7.1.1 gives one way to estimate the numerical value
of 7Г using Monte Carlo methods. Another approach to estimating 7Г is to
numerically estimate the integral л/l — rr2 dx. which gives the area of one
fourth of the unit circle, and then multiply by 4. This gives

for a draw x±,... ,xn from the uniform distribution on [0,1]. Drawing 500,
2000, and 16,000 times gave the results 3.12053, 3.13163, and 3.14146, re­
spectively, and with standard errors of approximately 0.04065, 0.02006, and
0.00705, respectively. This is better than the results of Example 7.1.1, al­
though our error of only 0.00013 in the last case of 16,000 draws seems to
have been rather lucky, since the standard error is more than 5 times larger
than that.

72. Importance, Inversion, and Rejection Sampling 287

Example 7.1 .5. The method used in Example 7.1.1 can also be considered
an example of Monte Carlo integration of the indicator function of the unit
circle A on the square [—1,1] x [—1,1]. Thus, we have

7.1.3 Accuracy and High-Dimensional Integration
To improve the accuracy of the estimate у by one decimal place, we must shrink the
standard error by a factor of 10. But because the denominator of the standard error
is д/п, to shrink it by a factor of 10 requires that n increase by a factor of 100. For
one-dimensional integrals, other numerical techniques, like the quadrature methods
in Sections 9.6 and 9.7, usually give more accurate results more efficiently—for
example, the error in Simpson’s rule shrinks like n-4 (assuming f e C4([a, 6];R))
rather than n~\ so to get one more digit of accuracy using Simpson’s rule requires
only that n grow by a factor of 10 4 « 1.8 instead of 100.

In two dimensions, numerical quadrature still outperforms Monte Carlo meth­
ods, but the natural analogue of Simpson’s rule using n points only improves like
n~2 instead of n-4, so to improve by one digit of accuracy requires д/1б times more
points. In d dimensions the number of points needed for quadrature methods to
achieve a given level of accuracy grows exponentially (like kd for some constant k),
so these methods rapidly become unusable. But the standard error in Monte Carlo
methods is always which is independent of d; see (7.1). For this reason Monte
Carlo methods are still effective in high dimensions, even when other methods fail
completely.

Nota Bene 7.1.6. Beware that when an integral does not converge, a Monte
Carlo estimate still usually returns a finite number. You can often identify
that the integral diverges by watching how the Monte Carlo estimate changes
as the number of points increases.

7.2 Importance, Inversion, and Rejection Sampling
In this section we extend Monte Carlo integration to nonuniform distributions. We
also discuss a method of choosing a good distribution for Monte Carlo integration
called importance sampling. We then discuss two different methods of producing
draws from various distributions, called inversion sampling, and rejection sampling.

7.2.1 Monte Carlo Integration with Nonuniform Distributions
Uniform distributions are not the only distributions that can be used for Monte
Carlo integration. We can apply these ideas to any integral of the form

/ k(x)fx(x)dx

288 Chapter?. Random Algorithms

for any distribution X with p.d.f. f%(x), provided &(x) is sufficiently well behaved,
and provided we can sample from X. We have

fe(x)/x(x) dx = E[fe(X)]

where xi,..., xn is a draw from the distribution X instead of from the uniform
distribution. Again, the standard error is (we drop the subscript)

S _ -y^T^iWxJ-y)2 _ /^^(xQ-y)*

y/n y/n у n(n — 1)

where у = £ £Xi &(хД
If /x(x) never vanishes, then for any h(x) we can set fc(x) = to calculate

Г 7 / \ > f ^(X) J- / \ 7 7Г. Г ^(X) 1 1 hCXi) ./ h(x)dx = 7 /x(x)dx = E ~ f r v (7.2)
fx (x) L fx (x) J n fx (x,)

The uniform distribution is only well defined on sets of finite volume, so if the
integration runs over an infinite domain, we cannot use the uniform distribution. A
natural choice when integrating over Rn is the normal distribution, in part because
many good techniques have been developed for sampling from the standard normal
distribution.

Example 7.2.1. Let X ~ <Ж(0,1) have standard normal distribution. There
are many efficient algorithms for sampling from the standard normal, so we
can estimate the c.d.f. F%(a) = P(X < d) = fx(%) dx by sampling from
the standard normal:

z»a z*oc •£ n
' fxfa) dx — I 1 (_oo,a] (^)/x (#) dx — E[l(_OO;a]] ~ 1 (_сю,а] (*̂г) •
— OO J — OO П ,

Using this method to calculate F%(1), and taking 103, 104, and 105 samples,
we gained the estimates 0.8350, 0.8451, and 0.8422, respectively, with standard
error of 0.012, 0.004, and 0.001, respectively.

7.2.2 Importance Sampling
One of the main reasons to use a nonuniform p.d.f. is to reduce the variance of
the sample and hence reduce the size of the standard error of the Monte Carlo
estimate. In the rare case that /x(x) is exactly proportional to /г(х), the ratio

is constant for all хг, which means that s2 = 0 and SE = 0. Choosing
/x(x) to be close to Mh(x) for some constant M makes the standard error of the
Monte Carlo estimate small. This translates into computational efficiency gains,
since fewer samples are required to achieve the desired accuracy.

72. Importance, Inversion, and Rejection Sampling 289

Integrating by sampling from a distribution whose p.d.f. is nearly proportional to
/i(x) is called importance sampling, because the sampling favors the more important
regions that really contribute to the integral over the less important regions.

Example 7.2.2. Let h(x) = | sech(rr2), and consider the integral h(x) dx\
see Figure 7.3. Since this function has a maximum at the origin and then
drops off rapidly as x moves away from the origin, it makes sense to try sam­
pling from a normal distribution rather than from a uniform distribution. Let
X ~ c/F(0,1) with p.d.f. We can estimate jj5 h(x) dx as

/ h(x) dx = / -i— -fx(x)dx
J-5 J-oo fx(x)

1[_5>5] (x)h(x)
fx(x)

1- A 1[_5,5] {Xj)h{xi')

where ..., xn is a draw from X. When we run this Monte Carlo estimate
with n = 106, we roughly find that у = 1.18361 and SE « 0.00032. This is
better than the Monte Carlo estimate using the uniform distribution, which
gives roughly у = 1.18558 and SE = 0.00183.

Figure 7.3. Plot of the function h(x) = jsech(rr2) (black) and the p.d.f of the
standard normal distribution (red). Because the p.d.f. of the standard normal has
a shape similar to h, Monte Carlo estimation of the integral h(x) dx has im­
proved accuracy when importance sampling is used with draws taken from the stan­
dard normal distribution instead of from the uniform distribution, as discussed in
Example 7.2.2.

Unfortunately, even if the overall shape of the sampled distribution fx(x) is sim­
ilar to that of h(x), if there are places where fx(x) is much smaller than h(x), then
for a draw x = (a?i, #2,..., xn) from those places, the ratio can be very large.

290 Chapter?. Random Algorithms

This can cause the unbiased sample variance

1 / h^Xi)
n- 1 \fx(Xi) yJ

to grow uncontrollably, especially if is large on an unbounded region, that is,
in the tails of the distributions. Since the goal of importance sampling is to reduce
the variance, rather than to let it grow, it is essential to choose a distribution fx (#)
with tails that are large (fat), compared to the tails of the original function h(x).

Unexample 7.2.3. Let Y ~ Gamma(8,1). The obvious Monte Carlo method
for computing probabilities like P(Y > c) = dx is to use the funda­
mental bridge (see Remark 6.2.3) and sample from Y to get

1 n
P(Y > c) = E[1[C1OO)] ~

i=l

where is drawn from Y. But this can work only if we have a good way to
sample from Y. If not, it seems natural to try to use a normal distribution
X ~ «Ж(8,8), since c/K(8,8) is a good approximation to Gamma(8,1); see
Section 6.3.2. Trying this gives

J c J-ос fx(t) fx(Xi)

where xi,...,a;n are drawn from <уТ(8,8). Unfortunately, actually running
the computation with n = 104, 105, and 106, with c = 8 we find completely
nonsensical estimates 771.9, 1455.7, and 3226.4, respectively, with standard
error 185.5, 206.6, and 810.8, respectively. So the estimates and the standard
error are both failing to converge. This is because the tail of <Ж(8,8) is
substantially smaller than that of Gamma(8,1). The ratio of the two is

x/27rt7e-<
_ (t-8)2 ’

e 16

which diverges to infinity as t —> oo.
This can be remedied by sampling from a different distribution with a

larger tail. For example, the distribution on [0, oc) with p.d.f. equal to ^^2
will do, since

t7e_* t7(l+i)2hm ——------ — = hm ------—— = 0.
t—>00 7!/(l + t)2 t->oo 71et

We show how to sample from in Example 7.2.7.

7.2. Importance, Inversion, and Rejection Sampling 291

7.2.3 Inversion Sampling
Monte Carlo methods rely on the generation of random (or pseudorandom) sam­
ples from various distributions. Most modern computing systems have high-quality
methods for generating uniformly distributed and normally distributed pseudoran­
dom numbers, but in many cases (for example, in importance sampling) one needs to
sample from other distributions. A key tool for doing this is the following theorem.

Theorem 7.2.4 (Universality of the Uniform).

(i) Let F : (u, b) (0,1) be bijective and increasing, with inverse F-1. If U ~
Uniform((0,1)), then X = F-1(U) is a random variable with c.d.f. equal to
F (with the obvious extension that F(x) = 0 for all x < a and F(x) = 1 for
all x >b).

(ii) If X is a random variable with a continuous c.d.f F, then Y = F(X) is a
random variable with Y ~ Uniform((0,1)).

Proof, (i) The function F-1 : (0,1) (a, b) exists and is both increasing and
bijective because F : (a, 6) (0,1) is increasing and bijective. We now show
that F-1 is continuous by showing that for all r, s G (a, 6) with r < s the set
(F-1)-1(r, s) = F((r, $)) is equal to (F(r),F(s)) and hence is open in (0,1) (see
Volume 1, Theorem 5.2.3). To see this, note that F is increasing, so for every
x e (r, s) we have F(r) < F(x) < F(s), and, hence, F(x) G (F(r),F(s)) and
F((r, $)) C (F(r),F(s)). But bijectivity of F implies that for every у G (F(r),F(s)),
there exists z G (a, b) with у = F(z), and the fact that F-1 is increasing implies that
z G (r, s); hence, F((r, $)) = (F(r),F(s)), which implies that F-1 is continuous.

Since F-1 is continuous, the function X = F-1(U) is a random variable. Since
F(U < и) = и for any и G (0,1), the c.d.f. of X is

'o
P(X < x) = P(F-\U) <x) = P(U < F(x)) = F(x)

if F(x) < 0,
if F(x) e (0,1),
if F(x) > 1.

(ii) If F is continuous, then Y = F(X) is also a random variable. Its c.d.f. is

F(y < y) = F(F(X) < y) = F(X < F-1(y)) = F(F-1(y)) = y.

Therefore, Y ~ Uniform((0,1)). □

This theorem is useful for sampling from a given distribution with c.d.f. equal
to F, because whenever the inverse F-1 is known, we can generate a sample of
the original distribution by taking a sample U of the uniform distribution and
computing F-1(U). This is called inversion sampling.

Remark 7.2.5. Part (i) of the theorem also holds in the case that F maps to [0,1]
instead of to (0,1). The proof is essentially identical to the one given here for (0,1).

292 Chapter?. Random Algorithms

Example 7.2.6. The distribution Beta(a, 1) has p.d.f. equal to f(x) = axa~\
and thus its c.d.f. is F(x) = xa, which is strictly increasing on the support
[0,1] of the distribution, and hence bijective there. Its inverse F-1(u) = u1^
is also continuous. Therefore, to sample from Beta(a, 1) we may take a sample
U from Uniform([0,1]) and compute U^a.

Example 7.2.7. Let D be a distribution with p.d.f. equal to f(x) =
defined on [0,oo). The c.d.f. is F(x) = f(' (j^2 = and its inverse is

Therefore, given a sample U ~ UniformQO, 1)), taking
gives a sample from D.

7.2.4 Rejection Sampling
Unfortunately it is not always possible to compute a closed-form expression for
the inverse of the c.d.f. of a distribution. Hence, inversion sampling is not always
feasible. Another approach is rejection sampling, which uses the following two main
ideas:

(i) To sample from a continuous distribution F, one can sample uniformly from
the region in the plane R2 bounded above by the p.d.f. fp(x) of P and then
project each sample down to the ж-axis.

(ii) To sample uniformly from any region C, one can sample uniformly from a
larger region containing C and throw away (reject) any samples that do not
lie in C.

Idea (i) is illustrated in the left panel of Figure 7.4. The probability that sample
X ~ P lies in an interval [a, b] on the ж-axis is the area P(X e [a, b]) = fp(x) dx
under the p.d.f. This is the same as the probability that a uniformly chosen point
with coordinates (s, t) will lie in the region below the graph of fp(x) and above the
interval [a, b] of the ж-axis.

Idea (ii) is exactly the same idea used to approximate % in Example 7.1.1: To
sample uniformly from a region C, sample uniformly from a larger region and discard
(reject) any sample that does not lie in C. See the right panel of Figure 7.4 for an
illustration.

The two ideas are combined in the following way. If we know how to sample from
a distribution Q with known p.d.f. /ф(ж) (call this the proposal distribution), and we
want to sample instead from a distribution P (the target distribution) with known
p.d.f. fp(x), we can do this if there exists an M such that Mfq(x) > fp(x) for all
ж. In this case, the region in the plane bounded above by the curve у = Mfq(x)
contains the region bounded above by the curve у = fp(x). In the right panel of
Figure 7.4, the black curve is the graph of M/q, the blue curve is the graph of fp.
Now draw z from the proposal distribution Q and и from Uniform(0, Mfq(z)). The
point (z,u) corresponds to a uniform draw from the region in the plane below the

72. Importance, Inversion, and Rejection Sampling 293

Figure 7.4. Illustration of the two main ideas behind rejection sampling. The first
idea, illustrated in the left panel, is that sampling from a distribution is equivalent to
sampling uniformly (blue dots) from the region between the graph of the p.d.f and the
x-axis and then projecting down to the x-axis (green diamonds). The second idea,
illustrated in the right panel, is that sampling uniformly from one region (blue) can
be accomplished by sampling uniformly from a larger region (gray and blue) and
rejecting any samples (red dots) that do not lie inside the smaller region.

curve у = MfQ(x). If и < fp(z), then (z,u) lies inside the region bounded above
by fp(x) and hence the first coordinate г is a draw from X; otherwise reject z and
repeat the process.

One minor adjustment is usually made to this process: instead of drawing и
from Uniform(0, Mfq(z)), it is traditional (and sometimes more efficient) to draw
u from Uniform(0,1) and then use the acceptance rule u < • Combining all
these parts gives the rejection sampling algorithm:

(i) Choose M such that Mfq(x) > fp(x) for all x.

(ii) Draw z from Q and й from Uniform(0,1).

(iii) If u < MfQ(z) i then accept г as a draw from X; otherwise reject z and go
back to (ii).

Remark 7.2.8. A given draw z has a probability of being accepted, and one
can show that the expected number of draws from Q needed to get one acceptable
draw from P is proportional to M. Thus, it is generally best to choose a Q for
which we can find a small M satisfying fp(x) < Mfq(x) for all x, and it is best to
take the smallest M that satisfies the condition.

Example 7.2.9. Let P be a truncated exponential distribution on [0, 20] with
p.d.f. fp(x) = ^e~x, where Z = f^°e~xdx. Since e~x < 1 for all x >
0, one possible choice of proposal distribution is the uniform distribution Q
on [0,20] with M = 4^, so that fp(x) < Mfq(x) = for all x E [0,20].
To use the method with this proposal distribution, draw z from Q and й

294 Chapter?. Random Algorithms

from Uniform([0,1]) and reject any z whose corresponding и is greater than
= e~z. Implementing this and drawing one million times, we find that

roughly 950,000 proposals are rejected and only 50,000 are accepted.
We can improve the efficiency of this rejection sampler by choosing a pro­

posal distribution with a shape that is closer to that of the target. For example,
it is easy to check that e~x < (1 + ж)-1 for all x 6 [0, oo), and (1 -Frr)-1 has a
shape much more like that of e~x. Define a new proposal distribution R with

where W = = log(21). Setting M = we have

fp(x) < MfR(x)

for all x € [0, 20]. It is easy to sample from R using inversion sampling. We
have

„ z 4 1 Г dt 1 z
TT7 = iv106,1+ l)

and
= eWv - 1.

So the rejection sampling algorithm in this case consists of drawing both и and
v from Uniform([0,1]), letting z = eWv — 1, and rejecting z if и > =

Implementing this and drawing one million times, we find that roughly
2/3 of the proposals are rejected and 1/3 are accepted—a better success rate
than with the uniform proposal.

7.3 Hashing
Computers can determine whether two numbers are equal in just one clock cycle.
The ability to make such a comparison is built into the hardware. To check whether
two strings (or two other, more general objects) are the same, however, is a much
more intricate process. For example, to naively compare whether “John A. Smith”
and “John A. Smyth” are the same, we would successively compare each entry in
the first string against its corresponding entry in the second string until either we
find a difference or we run out of entries. With this example we could conclude on
the 11th iteration that the strings are not the same. Whenever two strings are the
same, or differ only in the last character, we must compare every single character
to decide whether they are equal. In applications where many strings or lists are
likely to be compared, a more efficient way to do this is to use hashing, that is, to
use a function (called a hash function) that assigns an integer to each string. A
computer can compare any two hash values in a single clock cycle, so this makes it
easy to compare different strings (assuming the hash function is easy to compute).

A related problem is that of searching for a given object in an unordered list (or
array of pointers) of length n. This has average temporal complexity O(n), because

7.3. Hashing 295

the expected number of entries to examine35 is + 1) = I?2^- Of course,

35This is assuming the location of the object is uniformly distributed over all the positions, and
assuming the number of entries we must examine is i + 1, when the target is in position i.

if the data are sorted and stored in an ordered list or in a BST, then search time
drops to O(log(n)). But there are ways to make this process much faster, based
on the fact that accessing the zth entry in an array is a very fast, constant-time
operation.

Again, the idea is to hash the data, that is, to use a hash function to assign an
integer to each object, and then use the integer as the index of the object in an
array. Thus, each object x is placed into entry number h(x) of the array, where h
is the hash function. This construction is called a hash table. In this section we
discuss hashing, hash tables, and related algorithms and applications.

7.3.1 Dictionaries and Sets
Hashing is used to implement some of the most useful and important abstract data
types in computer science, including dictionaries and sets. A dictionary (also called
an associative array or a map) consists of a collection of objects (often called values),
each indexed by a unique key, with the following operations:

(i) Search for a given key, and return the corresponding value if the key exists.

(ii) Add a value to the dictionary, with its key.

(iii) Delete a value and its key.

For now we assume that keys are unique, and so, for a given key, adding another
value with that same key overwrites the old value.

Dictionaries are useful any time you need to define a rule, or a mapping, from
one set (the keys) to another (the values). For example, they can be used for storing
computer usernames and passwords, where each username is a key and the user’s
password is the associated value. They could be used to store prices of entrees in a
restaurant menu, where the name of each entree is a key and the price of that entree
is the associated value. They could be used to store hyphenation rules for English
words, where the keys are the English words and the associated values are the
hyphenation rules. They are also used in compilers and interpreters for matching
variable names (keys) to their values and for countless other applications.

Example 7.3 .1. In Python a dictionary can be constructed with a sequence
of pairs of the form key rvalue, as follows:

menu = { "ham":8, "spam":7, "lobster":42}

The dictionary name is menu; the keys are "ham", "spam", and "lobster"; and
the corresponding values are the integers 8, 7, and 42, respectively. To search
for the "spam" key, use menu ["spam"], which returns 7. Searching for "beans"
raises a KeyError, since that key is not in the dictionary.

296 Chapter?. Random Algorithms

A closely related data structure is that of a set, which is essentially the same
idea as a mathematical set. It is a collection of elements without any order, and
with the following fundamental operations:

(i) Identify whether an object is an element of the set.

(ii) Add a new element to the set.

(iii) Remove an element from the set.

Example 7.3 .2. In Python a set can be constructed as a sequence of elements
inside of braces, as follows:

S = { "x", 42, 3.14 }

The set name is S and the elements are "x", 42, and 3.14. To identify whether
the element 42 is in the set, use the command 42 in S, which returns True,
whereas "spam" in S returns False.

7.3.2 Hash Tables
If the keys have an order on them, then a dictionary or a set can be implemented
with a BST. But searching a BST takes log(n) time if there are n entries in the
tree. We can do much better with a hash table. A hash table consists of two things:

(i) An integer-valued hash function h whose domain includes all keys.

(ii) An array (or a list) of size at least as big as the largest possible value of the
hash function. The value associated with the key к is placed in position h(k)
(or a pointer to the value is placed in that location).

Example 7.3.3. The menu dictionary of Example 7.3.1 can be implemented
as a hash table by first defining a hash function on the collection of possible
entree names. One simple example of a hash function is the function that
assigns each letter its position in the alphabet and then adds up the values
of all the letters in the word and reduces modulo 48 (the number 48 is an
arbitrary choice), thus

Д("аЬс") = 0 + 14-2 = 3,
/i("ham") = 7 + 0 + 12 = 19,

^("lobster") = 11 + 14 + 1 + 18 + 19 + 4 + 17 = 84 = 36 (mod 48).

There are problems with this particular choice of hash function (we discuss
some of these below). But despite its problems, we can use this hash function
to define a hash table for the menu dictionary. To do this, begin by construct­
ing a list menu of length 48 with None in each entry. For each of the foods, put

7.3. Hashing 297

the associated price in the position given by the hash:

/i("ham") = 19

/z("spam") = 45

/i("lobster") = 36

so menu[19] = 8,

so menu [45] = 7,

so menu [36] = 42

All remaining entries of menu are left at None. To find the price of key ж,
calculate its hash value h(x) and retrieve the value of menu[h(x)].

If the hash function can be computed in constant time for all the possible keys,
and if all keys have unique hash values (the hash function is injective), then finding
a value in the hash table can also be done in constant time, since accessing a known
position in an array is a constant-time operation. Moreover, inserting a new value
into the table involves computing the new key’s hash, and then putting the object
into the table at the hashed position, so this is also a constant-time operation, as
is removing a value from the table. No matter how big the table is, if the hash
function is injective and can be computed in constant time, then we can perform
any of the three hash table operations (search, insert, or remove) in constant time.
Unfortunately, however, most hash functions are not injective.

7.3.3 Hash Collisions
If the hash function is not injective, then differing keys could produce the same
hash value and thus also be assigned to the same position in the hash table. This
is called a hash collision.

Unexample 7.3.4. For the simple hash table menu of Example 7.3.3, if we
try to insert the pair "beans" :5 into the table, we get a hash collision because,
Л("beans") = 36 = /z("lobster"). Therefore, this particular implementation
of the menu dictionary cannot accommodate entries for both "lobster" and
"beans" simultaneously.

An injective hash function will have no hash collisions, but to use such a function
to construct a hash table in the obvious way with no hash collisions, the table must
have at least as many entries as the collection (also called universe) of all possible
keys.

Example 7.3.5. If we know that all keys will consist of three-letter words,
we can construct an injective hash function h from the universe of three-letter
strings by sending the first letter to its position in the alphabet, the second
letter to 26 times its position, and the third to 262 times its position, and then

298 Chapter?. Random Algorithms

summing these three. This hash function gives

/i("abc") = 0 + 1 x 26 + 2 x 262 = 1378,
ft("ham") = 7 + 0 x 26 + 12 x 262 = 8119,
/i("egg") = 4 + 6x 26 + 6x 262 = 4216.

To build a collision-free hash table with this hash function, we must allocate
an array with 17,576 entries (as many entries as the number of possible three-
letter words) and assign each key к to the hashed position. Such a table is
sometimes called a direct address table.

Of course this table is guaranteed to be collision free, but it is spatially
expensive if the total number of keys to be used is much smaller than the
universe of all possible keys (of size 17,576).

Remark 7.3.6. Some people call an injective hash function a perfect hash function.

Usually we do not know in advance which keys will be used or even how many
keys will be used. Consequently, the universe of possible keys could be very large,
and it is not practical to make a hash table that is as large as that universe. For
example, the data might consist of strings of arbitrary length. In this case the
universe of possible objects to hash is infinite, but we don’t want to make an infinite
hash table. When the hash table is smaller than the universe of possible keys, an
injective hash function is impossible.

The strategy for dealing with this is to go ahead and use a hash function that is
not injective, but then expand the algorithm to handle a hash collision. The goal
is to choose a hash function that minimizes the probability of a hash collision, and
then handle the collisions as efficiently as possible.

Probability of a Hash Collision

When a hash function is not injective, hash collisions can occur. Assuming that the
hash values are uniformly distributed among the possible indices in the hash table
(we call such a hash function simply uniform), the probability of a hash collision
can be computed in the same way we computed the probability of a birthday match
in the birthday problem (Example 5.1.17). If the number of possible outputs of the
hash function (and indices of the hash table) is n and the total number of keys is
k, then following the argument of Example 5.1.17 shows that the probability P(k)
of a hash collision is

= 1 “ (n-fc)!nfc’

provided 0 < к < n. If к > n, then P(k) = 1, by the pigeonhole principle.
The discussion of the birthday problem shows that if a hash table has n = 365

possible entries, then the probability of a collision is 50% or more if к > 23. So
even with a uniform distribution of hash values, collisions are likely with relatively
few keys. Figure 7.5 shows the probability of a hash collision for к keys in a table
of size 105.

7.3. Hashing 299

Figure 7.5. Plot of the probability P(k) of a hash collision for к keys with a
simply uniform hash function whose values are uniformly distributed among n = 105
possible values. Note that the probability is greater than 50% when к > 372, and it
is greater than 99% for к > 1000.

With a 32-bit hash function there are over four billion possible hash values
(232 — 1), yet the probability of a hash collision is more than 50% if the number of
keys is at least 77,164 (see Exercise 7.15). Again, relatively speaking, it does not
take a very large list of keys to cause a collision. Nevertheless, hashing is usually
much more efficient than search trees or any other table lookup method. As a result,
hashing is used widely throughout computer science.

Handling Hash Collisions

One common way to handle hash collisions is the method of chaining. In this
method, each position in the array corresponds to a linked list, and when a new
key is hashed to a given position, the key and corresponding value are placed at the
head of the corresponding linked list.

Example 7.3.7. For a chained version of the menu hash table of Example 7.3.3
and Unexample 7.3.4, if the table is to include both "beans" and "lobster",
then at position 36 = h("beans") = h("lobster"), we insert a linked list
whose tail contains the data "lobster" :42 and whose head contains the data
"beans" :5. Searching for "lobster" now involves first hashing to get position
36 and then searching the linked list to find the key "lobster".

In the worst case, chaining can perform very poorly. If all the keys are hashed
to the same value, then every value is contained in one linked list. Both the average
and the worst-case complexity of searching a linked list with к keys is O(k). If,
however, the hash function is simply uniform, taking n possible values, then the
expected number of keys in any of the linked lists is k/n, so the average complexity
of searching such a chained hash table is 0(1 + k/n). The number k/n is often
called the load factor of the hash table.

If the table has a fixed size n, then as к grows, we have 0(1 + k/n) = O(&); so
the average asymptotic complexity of searching the table is the same as searching
a linked list, but with a much better leading coefficient (by a factor of 1/n). It is

300 Chapter?. Random Algorithms

common practice to resize the hash table if the load factor grows too large. Often
the bound on the load factor is taken to be less than 1. Once the load factor
exceeds the bound, a new array is allocated with a larger number n' of positions, a
new hash function is chosen which produces n' hash values, and all the entries in
the old table are hashed with the new hash function and placed in the new table.
The construction of the new hash table has a cost of О (A;), but it need only occur
when k/n exceeds the desired bound.

Alternatively, if rehashing the entire table to construct a new, larger table is
too expensive, one may choose simply to build a second hash table, make all new
additions in the new table, and then search both tables for each lookup. This
doubles the time it takes to perform each search (at least until ongoing deletions have
removed all the elements from the original table) but does not require a complete
rehash of the original table.

One other method for handling hash collisions is called open addressing. In
this method, when a hash collision occurs, the algorithm searches for another open
address in the table to put the key into. For example, one could search for the next
available slot after the one addressed by the hash (modulo n). A drawback of open
addressing is that you can never have к > n. As in the case of chained hash tables,
if all the keys hash to the same value, then searching an open-address hash table is
no better than searching a list.

Example 7.3.8. When using open addressing for the menu hash table of
Example 7.3.3 and Unexample 7.3.4, we add the key "beans" to position
37, since there is a collision with lobster at position 36 = Л("beans") =
Л("lobster"). Searching for "beans" now involves first hashing to get po­
sition 36 and then moving consecutively through the array from that point
until finding the desired key. Note that "cheddar" also hashes to 36, so if we
wish to add "cheddar" to the menu, it cannot go into position 36 nor into
position 37, so we put "cheddar" into position 38. The word "pate" hashes
to 38 (treating e the same as e), but 38 has already been taken, so we put
"pate" in position 39.

7.4 Simulated Annealing*
A fundamental problem in mathematics and applications is to find the optimum
(minimum or maximum) of a function and the optimizer (the point which yields
the optimum). For concreteness, we consider the optimization problem

minimize /(x)
subject to x E Q

(7-3)

for some function f and some set Q. This is equivalent to maximizing —/(x) subject
to x E Q, so we lose nothing by focusing solely on minimization. Part IV of this
text discusses many methods for finding local minima when the objective function
f is differentiable. Chapter 4 discusses some deterministic methods for solving
combinatorial optimization problems, where the search space Q is discrete, where
differentiability doesn’t even make sense.

7.4. *Simulated Annealing 301

In this section and the next we discuss some probabilistic methods for optimizing
functions without differentiation. One obvious way to try to find an optimizer on
a discrete space is the brute force exhaustive method; that is, try every possible
input and see which one gives the best solution. The exhaustive method has the
advantage of guaranteeing the correct solution, and it does not use differentiation,
so it makes no assumptions about differentiability or smoothness, but it is usually
too computationally expensive to be useful.

One way to try to find an optimizer without an assumption of differentiability
and without trying every point in Q is a Monte Carlo method—sample Q randomly
and return the sample that produced the smallest value of the objective function.
This is potentially much cheaper than a brute force method, and if the sample is
dense enough in Q, it should give a good approximation to the global optimizer. But
random sampling does not take advantage of any information gained by previous
samples. For example, it might be better to sample near the current best estimate,
rather than choosing each point completely at random.

Simulated annealing and genetic algorithms are two methods that use some
randomness in their sampling but are sometimes more effective than purely random
sampling because they try to leverage information gained by previous samples in
choosing new samples. We discuss simulated annealing in this section and genetic
algorithms in the next section (Section 7.5).

Neither of these methods assumes differentiability, but they work best if the
objective function is approximately continuous, in the sense that small changes in
the input do not produce large changes in the output. If the output of the objective
function changes wildly with even the smallest change in the inputs, then simulated
annealing and genetic algorithms have no significant advantage over completely
random sampling. Finally, we note that, like random sampling, simulated annealing
and genetic algorithms provide no guarantee of finding the optimal solution, but
they often find a solution that is not far from optimal, which, in many cases, is
good enough.

7.4.1 Stochastic Hill Sliding
Before discussing simulated annealing and genetic algorithms, we begin with a more
naive sampling method that is sometimes called stochastic hill climbing when the
objective function is being maximized, but since we are minimizing the objective,
we call it stochastic hill sliding. This is an iterative method for minimization:

(i) Set к = 0. Choose an initial xq 6 Q.

(ii) Draw a candidate from a neighborhood ЛГ(х^) of x^.

(iii) If /(zfc) < /(xfc), then set Xfc+i = z^; otherwise set Xfc+i = X&.

(iv) Set к = к + 1 and go to (ii) (unless some stopping criterion is met).

The choice of the neighborhood N(x) and the distribution used to draw from
that neighborhood have a large effect on the final result of the algorithm. If AT(x)
is always a small neighborhood of x, the method will tend toward a local minimum.
However, if the neighborhood 7V(x) is large and the sampling method tends to
choose points far away from x, then the algorithm is unlikely to be trapped near a

302 Chapter?. Random Algorithms

local minimizer, but it may also have to sample many more points to find a value
that descends (/(z^) < /(x^)). If every neighborhood is the entire feasible set,
and if the samples are drawn from the uniform distribution, then the stochastic
hill-sliding algorithm is just random sampling.

Example 7.4 .1. Let f(x) = x4 — x2 + this is plotted in Figure 7.6. This
function has two local minimizers: one near x = 0.681 and the other (the
global minimizer) near x = —0.731. We implemented the stochastic hill­
sliding algorithm for minimizing this function, with xq = 0, and drawing each
Zk from jY^Xk, |)- The result was as follows:

жюо = 0.680 /(xioo) = -0.181

xq = 0
XI = ZQ

X2 = Xi

/(x0)= о
/(xi) = -0.006
/(x2) = -0.006

zq = -0.041
zi = 0.133
z2 = 0.331

/(zo)=
/(zi) =
/(Z2)=

-0.006
-0.004
-0.0644

accept zq
reject zi
accept z2

x$ = 0.6886 /(x8) = -0.180 zs = 0.395 /(zs)= -0.0922 reject z%

The algorithm arrived at an answer fairly near the positive local minimizer in
8 steps. But it still had not reached the global minimizer after 100 steps.

We repeated the process with a larger neighborhood, by choosing Zk from
1), again starting at Xq = 0. In the first move it went to xi = 0.759

and remained there for 10 steps, after which it moved to —0.828 for 19 steps.
Then it moved to —0.706, where it remained until step 100.

Figure 7.6. A plot of the function minimized in Examples 7-4-1 and 7.4-4- Starting
stochastic hill sliding at xo = 0 and drawing each new candidate with a low variance
(a2 = ±) in Example 7.4-1 leads us to the positive local minimizer (on the right),
but we never approach the global minimizer (on the left). Starting at the same place
but drawing with a higher variance (a2 = 1) allowed us to escape from the local
minimizer on the right and get near the global minimizer on the left. But, because
of the high variance, our experiment never got better than —0.706, while the global
minimizer is actually at —0.731. Simulated annealing in Example 7-4-4 did better:
starting at xq = 0 it got in the ballpark of the global minimum (x\% = —0.680,) in
13 steps and was very close (x^q = —0.730,) after 100 steps.

7.4. *Simulated Annealing 303

Example 7.4 .2. Consider the problem of finding the MST for the graph G
in Figure 4.5 and Example 4.3.1, which we include here again for ease of
reference:

Of course, Prim’s algorithm (see Section 4.3.1) gives a deterministic method
for finding an MST, but we can also apply the stochastic hill-sliding algorithm.
Let Q be the set of all spanning trees in G. We let a neighborhood of a given
spanning tree T be the set of all spanning trees of G that can be built from
T by deleting one edge and inserting one edge. So, for example, if 7q is the
spanning tree

then deleting the edge (1,8) and adding the edge (1,2) shows that the resulting
spanning tree 7i

is in the neighborhood of Tq. The objective function is the length of the
spanning tree. The hill-sliding algorithm is now straightforward: Given any
spanning tree Tk randomly select a tree in the neighborhood of by selecting
a node, an edge from that node to remove, and an edge from that node to
add. If the result is not a tree, reject it and try again. If the result is a tree,
compute its length. If the length is not less than the length of Т/~, reject and
try again.

Starting with Tq, which has length 96, assume the new tree 7i (above) is
randomly selected as a proposal. Since an edge of length 13 has been replaced
by an edge of length 12, it has length 95, and it is accepted as the new spanning

304 Chapter?. Random Algorithms

tree. At the next step, suppose the edge (1,2) is chosen to be replaced by the
edge (1,4), giving

The result is a spanning tree, but it has length 99, which is longer, so it
is rejected. Repeating the process, now suppose edge (7,8) is chosen to be
replaced by edge (1,8), giving the spanning tree

which has length 94, so the proposed tree is accepted. The process is repeated
until some maximum number of iterations has been reached or until it appears
that the proposed solution is no longer improving.

In this example there is no guarantee that every possible spanning tree
can be reached by this process of swapping edges. So it is possible that an
MST could not be reached if the initial starting tree was poorly (or unluckily)
chosen.

7.4.2 Simulated Annealing
Simulated annealing differs from stochastic hill sliding by sometimes allowing Zfc+i
to be accepted even if /(zfc+i) > /(x^). In Example 7.4.1 using larger neighbor­
hoods for stochastic hill sliding allowed the algorithm to probe farther away, but
most of those probes were unsuccessful and the algorithm did not converge well.
On the other hand, using small neighborhoods meant that the algorithm could
not probe far enough away to break away from the local minimizer, but many
of the probes did improve the result, so it converged to a good approximation of
the local minimizer. The idea with simulated annealing is to begin by sampling
from Q fairly broadly, by allowing more uphill moves, but as time goes on, fo­
cus near the current estimate and only accept a proposal if the result is actually
an improvement.

Specifically, choose a monotone decreasing sequence (tfc)fceN that converges to
zero (corresponding to temperature in the annealing process). This is called the

7.4. *Simulated Annealing 305

* = 2

Figure 7.7. Simulated annealing might accept a even when f(zk) > /(x/J. This
figure shows a plot of the acceptance probabilities (7.4), where the x-axis in the plot
corresponds to the difference /(z^) — /(x^). As tk gets smaller, the values of zfc
with f(zk) > /(xfc) are less and less likely to be chosen.

cooling schedule or annealing schedule. For each к e N let

Pfc(/(xfc), /(zfe)) = min (1, exp I. (7.4)
I \ J)

Now replace step (iii), above, with the following rule:

(iii) With probability p/c(J(x/c),/(z^)), set x^+i = z^. Otherwise, set x^+i = x^.

Note that pk = 1 whenever /(z^) < /(x^), and thus Zk is always accepted in that
case. When /(z^) > /(х&), there is still some probability that zfc will be accepted,
but that probability goes down as f(zk) — f(^k) increases and as tk decreases; see
Figure 7.7 for a plot of some of these probabilities.

As the temperature tk becomes very small, the sequence (x/c)^1 will usually
converge to a local minimizer. But this is not guaranteed to be a global minimizer,
and it might not even be the best value seen by the algorithm. Thus, it is usually a
good idea to remember the point with the best value seen so far. As the temperature
decreases, it sometimes also makes sense to occasionally restart the algorithm with
the best value seen so far.

Remark 7.4.3. One easy way to implement the rule of accepting z^ with prob­
ability pfc(/(xfc),/(zfc)) is the following: draw и from the uniform distribution on
[0,1] and then accept Zk if и < pk(ffx.kfi /(z^)).

306 Chapter?. Random Algorithms

Example 7.4.4. Let f(x) = ж4 — x2 + as in Example 7.4.1, and plotted in
Figure 7.6. We implemented the simulated annealing algorithm for minimizing
this function, with tk = 10/(к + I)2’5, starting at xq = 0, and drawing each
Zk from сЖ(ж/с,0.5). The result was as follows:

#ioo = —0.730 /(^loo) = —0.322

xq = 0.000 ЛМ = --0.003 ZQ = 0.122 /(zo) = ■-0.003 P = 1.00 accept
xi = 0.122 flxl) = --0.121 Z! = 0.460 /(zi) = ■-0.121 P = 1.00 accept
X2 — 0.460 /Ы = --0.108 z2 = 0.430 /(22) = ■-0.108 P = 0.98 accept

Ж13 = —0.680 Л®1з) = -0.317 Z13 = -0.535 /(Z13) = -0.258 P = 0.03 reject
a?i4 = —0.680 №14) = -0.320 z14 = -0.757 /(Z14) = -0.320 P = 1.00 accept

The algorithm was in the ballpark of the global minimizer by step 13, and by
step 100 it was close to the global minimizer of —0.731.

The results of simulated annealing depend a lot on the choice of the cooling
schedule A slower cooling schedule, such as tk = 10/(A: +1), will leave
the algorithm bouncing around quite a bit, so it behaves more like a random
sampler. A fast cooling schedule, such as = 10/(A;+l)4, will tend to converge
rapidly to the local minimizer at 0.681 and never see the global minimizer.

Remark 7.4.5. The sequence pk need not be defined by (7.4)—other choices of
Pk can be useful in some settings. The key requirement is that the probability of
accepting Zk should decrease both as к increases and as /(z^) — /(x^) increases.

Example 7.4.6. Simulated annealing can also be used on the problem of
finding the MST for the graph G of Example 7.4.2. As in that example, let Q
be the set of all spanning trees in G; let the neighborhood of a given spanning
tree T be the set of all spanning trees of G that can be built from T by deleting
one edge and inserting one edge; and let the objective function be the length
^(T1) of the spanning tree T.

As in the hill-sliding algorithm, given any spanning tree 7&, the algorithm
randomly selects a new spanning tree Zk in the neighborhood of Tk, com­
putes its length £(zk)i and accepts Zk as the next tree Tk+i with probability
Pk(zk,Tk). Otherwise it sets Tk+i = Tk.

As an explicit example, assume the cooling schedule is tk = and start
again with To,

7.5. *Genetic Algorithms 307

which has length £ = 96. Assume the new tree zq

is randomly selected as a proposal. Since an edge of length 13 has been
replaced by an edge of length 14, it has length 97, so po(/o, To) = exp(—(97 —
96)) = e-1 ~ 0.368. Thus the algorithm has a 37% chance of accepting zq
as the next spanning tree, despite the fact that its length is greater than To.
Assuming that zq is accepted, we have Ti = zq. Assume that the spanning
tree zy

is proposed for the next step. The length of z\ is 98, but it could still be
accepted with probability p1(^i,Ti) = exp(—2(98 — 97)) = e-2 « 0.135. This
process is repeated until some maximum number of iterations has been reached
or until it appears that the algorithm has converged.

As in the case of stochastic hill sliding, there is no guarantee that every
possible spanning tree can be reached by this process.

Remark 7.4.7. If it is known that the objective has only one local minimum, which
is also the global minimum, then stochastic hill sliding is probably a more efficient
search method than simulated annealing. But if there are likely to be many local
minima that are not global minima, then stochastic hill sliding can easily get stuck
near a local minimum, while simulated annealing has a better chance of avoiding
that trap.

7.5 *Genetic Algorithms
Genetic algorithms are the third best way to do almost anything.
—John Denker

Genetic algorithms provide another stochastic method for optimization on some
discrete domains. Rather than choosing sample points from a neighborhood of

308 Chapter?. Random Algorithms

one previous sample point, they use an idea inspired by genetics to construct new
samples from a collection (the current population) of several previous points. They
are applied to domains where every point can be described as a finite sequence of
symbols, analogous to DNA in genetics.

At each iteration (generation) some members of the population are paired as
parents to produce children that should have characteristics of each of the parents.
These children are added to the population, and some less fit individuals are selected
out of the population.

There are three main ingredients in a genetic algorithm:

(i) Crossover: children that are a mixture of their parents.

(ii) Mutation: random variation in the genetic information.

(iii) Selection: elimination of inferior species.

Genetic algorithms that incorporate all three of these tend to be more successful
than those that omit one or two of them.

7.5.1 Crossover
Given two points (parents) from the current population, crossover produces two new
points (children) that are a mixture of their parents. If each parent is represented
by a string of length n, a random point к is chosen and two children are created
by taking the first к terms of one parent and the remaining n — к terms of the
other.

Example 7.5 .1. If two parents are described as the 8-bit sequences

01101110 and 10111101

and к = 4, then the two children resulting from crossover are a mix of the
parents, taking the first four digits from one parent and swapping them with
the last four from the other parent.

01101101 and 10111110.

It is not essential that two parents produce exactly two children—they may produce
any number through mixing their sequences in some prescribed manner.

7.5.2 Mutation
With mutation, terms in the sequence can occasionally be changed at random to
allow for greater diversity in the population and thus allow the algorithm to sample
the domain more broadly.

7.5. *Genetic Algorithms 309

Example 7.5 .2. Assume the domain consists of strings of five binary digits
and the current population is

01010, 11101 11111, 10010.

If the second bit of the third
generation would be

child is chosen to be mutated, then the new

01010, 11101 10111, 10010.

7.5.3 Selection
To prevent the population from growing too large, one could simply replace all
parents by their children after each generation, but it is usually helpful to remove
less fit individuals from the population. This is called selection.

With each generation, each individual in the population is evaluated in terms
of the objective function and those that have a better objective function value are
considered more fit. A successful genetic algorithm normally includes some sort of
selection method to remove less fit candidates from the gene pool and to increase
the likelihood that a fit candidate will mate with another fit candidate.

Example 7.5 .3. Suppose that the domain of an optimization problem is Q =
{0,1, 2,..., 31} and we want to maximize the function f(x) = (x — 15)2.

Representing each point as a sequence of five binary numbers provides a
binary encoding.a

Suppose that the initial population is 13,27, 30,17, encoded as

01101, 11011 11110, 10001.

The fitness of these individuals is given by the objective function /:

(—2)2 = 4, 122 = 144, 152 = 225, 22 = 4.

Suppose we choose to pair the most fit individual 11110 with the second most
fit 11011 and also with 10001, and we randomly choose crossover points for
each pair. Suppose the first crossover point is 3 and the second is 2. This
generates the following children:

11111, 11010 11001, 10010.

Mutation now randomly chooses a few bits to change. Suppose the second bit
of the first child is chosen and the first bit of the fourth child is chosen, to give

10111, 11010 11001, 00010.

310 Chapter?. Random Algorithms

So, starting with 13, 27,30,17, we applied selection, then crossover and finally
mutation to get the children 23, 26, 25, 2. To avoid doubling the population at
each step we can either replace all the parents by their children (remembering
also that the point 11110 is the most fit individual seen so far), or we can
select the four most fit individuals to keep, discarding the others.

“Both this problem and the binary encoding are ill suited for a genetic algorithm. Never­
theless, this simple example gives a good illustration of some of the main ideas of genetic
algorithms.

GENETIC ALGORITHMS TiP:
/fo/AYS INOWETHIS IN Y0UR FITNESS FUNCTION

Figure 7.8. In a genetic algorithm individuals are selected based on their fitness.
Source: XKCD, Randall Munroe, http: //xkcd. com/53^.

7.5.4 Encoding
Typically the domain of an optimization problem is not given in the form of a
set of sequences. So we need some sort of genetic encoding that represents each
possible optimal point as a sequence and each sequence as a legitimate point in the
domain Q.

For example, if the domain has (or can be endowed with) a natural binary tree
structure, then a suitable encoding might be binary, where each binary address
represents a terminal branch of a tree. Or if the domain corresponds to corners
of a hypercube, then a possible encoding might represent each corner as a binary
address.

It is also important that the encoding reflect meaningful aspects of the problem.
The types of variation in the encoding that occur with each new generation should
also correspond to children that have some characteristics in common with the
parents. In other words, genetic changes seen in just one or two generations should
not produce large changes in the objective function.

It is not essential that every point in the domain be represented by the encoding,
provided the points that are left out are guaranteed not to be optimal.

7.5. *Genetic Algorithms 311

Example 7.5.4. Suppose you are asked to put all the integers from 1 up to
n into two sets, call them A and B, in such a way that 10 times the sum
of the numbers in A is as close as possible to the product of the numbers
in B. To encode the sets as sequences for use with a genetic algorithm, we
can write each choice of sets as a binary sequence of length n, where the A;th
term of the sequence is 1 if the number к is included in A and 0 otherwise.
Thus [1,1,1,0,1,0,0,1] corresponds to the two sets A = {1,2,3,5,8} and
В = {4,6,7}.

Example 7.5.5. The eight queens problem is to place eight queens on a stan­
dard chessboard in such a way that no queen threatens another. To try to
solve this using a genetic algorithm, we must choose an objective function
and find an encoding of all the possible configurations. A natural choice
of objective function is the number of pairs of queens that threaten each
other.

One way to encode the configurations as sequences is to first restrict the
domain by assuming that no two queens will be placed in the same column
(otherwise they would be threatening each other) and then observe that every
column must contain exactly one queen (because there are eight of them placed
in eight columns). Now encode a configuration by listing the position of the
queen in each column. So, for example, the configuration

would be encoded as [1, 2,8, 7,4,3,6,5]. To compute the objective function f
we must identify threatening pairs. In a configuration coded as a list L, queens
in a pair (corresponding to two positions i and j in L) threaten each other
if they lie in the same row (L[z] = В [J]) or if they are on the same diagonal

312 Chapter?. Random Algorithms

If the domain consists of integers or floating-point numbers and the objective
function depends on the input values, then the usual binary (or decimal) representa­
tion of these numbers is usually a poor choice of encoding, and a genetic algorithm
is unlikely to successfully combine two good points to produce another good point.
This is because changing even a single bit of the representation can result in a
huge change in the value of the represented number and hence of the objective
function.

Unexample 7.5.6. As in Example 7.5.3, suppose that the domain is

Q = {0,1,2,..., 31}

and we want to maximize the function /(#) = (x — 15)2. Representing each
point as a sequence of five binary numbers provides an encoding, but this
encoding, and indeed the entire problem, is poorly suited to genetic algorithms,
because the types of changes that occur are not likely to produce offspring that
are at all like the parents.

For example, suppose that we have an initial population of two individuals

00000, 11110.

The objective function at these points takes the values (—15)2 and 152, so
both are very fit. To create the next generation, choose a crossover point—
say 2—for the pairing, and combine the two parents at that point. This gives
a new population

00110, 11000

with objective function values (—9)2 and 92. Neither of the offspring is any­
where near as fit as the parents. The problem is that crossover of the binary
representations has no real meaning in terms of the objective function. In a
situation like this, a genetic algorithm is usually a poor choice, and simulated
annealing (and possibly even a Monte Carlo method) would probably perform
much better.

7.5. *Genetic Algorithms 313

7.5.5 Adjusting Crossover and Mutation
For some encodings the crossover and mutation operations described in Sections 7.5.1
and 7.5.2 do not result in valid children. In these situations the operations must be
adjusted.

Example 7.5.7. In the traveling salesman problem (see Section 4.5.2), if the
n cities to be visited are labeled 1 through n, then we can encode a tour simply
as a permutation of these n integers. Thus [3,1,2] corresponds to first visiting
city 3, then city 1, and finally city 2. But using this encoding, both crossover
and mutation fail to produce valid tours, if they are done as described in
Sections 7.5.1 and 7.5.2.

Instead, we define a mutation by taking a random pair of indices (i,j)
with i j and swap the positions of the corresponding cities. This produces
a legitimate tour. For example, if the original tour is [5,4, 3, 2,1,0] and the
indices chosen at random are 0 and 3, then the new tour is [2,4, 3, 5,1, 0].

To perform a crossover between tours T and 71', choose a random value
/с, as in the usual crossover, and start the child with the first к terms of T.
The remaining cities are then put into the child tour in the same order that
they appear in T'. For example, if T = [5,4,3,2,1,0] and T' = [1,2, 5,3,0,4],
with к = 3, then the child is [5,4, 3,1, 2, 0]. Both the modified mutation and
the modified crossover operation clearly produce legitimate tours if they begin
with legitimate tours.

7.5.6 Additional Considerations

Stopping Criteria

Stopping criteria for genetic algorithms depend on the problem. In some cases we
may know that the objective is nonnegative (as in the eight queens problem), and
so when the algorithm gets to an input that yields 0, it must be a global minimizer.
But in many cases we have no way to identify that we have actually found the
optimizer. In these cases the algorithm must continue generating populations for
some fixed number of generations, always remembering what the best candidate is
so far. Alternatively, the algorithm could run until a feasible point is found that
meets some standard of quality—for example, the objective function falls below
some predetermined threshold.

Other Methods

The quote at the beginning of this section, that “genetic algorithms are the third
best way to do almost anything,” reflects the fact that genetic algorithms can be
used to produce a passable solution for many problems, but for a given problem,
there are often other (usually more specialized) methods that work better.

314 Chapter?. Random Algorithms

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

7.1. Let X = Z2, where Z ~ Лф,1) is standard normal. The random variable
X has a chi-squared distribution with 1 degree of freedom. For each of the
following problems calculate the answer in the following two ways:
(A) Using Monte Carlo methods, sampling from a standard normal distri­

bution, and taking the number of samples equal to 10fe for each value of
к = 2,4,6.

(В) Using the appropriate built-in functions from your preferred computa­
tional tool.

Compare the results of the various computations.
(i) Plot the p.d.f. of the random variable X (experiment to find a good

number of bins for your histogram).
(ii) Compute the c.d.f. Fx(x) for x e {0.5,1.0,1.5}.

(iii) Compute the expected value E[X].
(iv) Compute the variance Var(X).

7.2. Write code to approximate 7Г using the Monte Carlo methods in the reading,
by sampling pairs from the uniform distribution on [—1,1] x [—1,1] and count­
ing the proportion that lie inside the circle x2 + y2 < 1. Sample 10fc times
for к G {2,4,6} and compare the results to the true value of 7Г. Calculate the
(approximate) standard error for each of these estimates.

7.3. There are at least two different Monte Carlo methods you could use to ap­
proximate the area under the curve у = ecos^) for x G [0,2].

(i) Estimate the integral
z»2 z»2
I /г(ж) dx = 2 I /i(^)/uniform([0,2]) (*^) = 2E[/i о A]

JO JO

by approximating Е[Л о X], with sampling from Uniform([0,2]) at least
105 times. What is the (approximate value of the) standard error?

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter. * (i)

Exercises 315

(ii) Estimate the area under the curve by taking a 2d-sample

Z ~ Uniform([0, 2]) x Uniform([0, b])

for some b with b > max^^]} ecos^2^ and then count (and scale ap­
propriately) the samples that lie under the curve. This corresponds to
estimating a multiple of E[k о Z], where к = 1a and A = {(x,y) | 0 <
у < ecos(x)}. Sample at least 5 x 104 times. What is the (approximate
value of the) standard error?

Compare the results of the two methods.
7.4. Use Monte Carlo methods to estimate the probability that a sample from

Beta(2,5) will be less than a sample from Beta(20,55). How many samples
are required to give 95% confidence that your answer is correct to three
decimal places?

7.5. Consider a game where you roll a fair four-sided die with sides labeled 1, 2,
3, and 4. You win $1 if the die shows 1 or 2, you win $2 if the die shows 3,
and you lose $1 if the die shows 4. Use Monte Carlo simulation methods to
estimate the probability that your winnings will be negative after 10 rolls of
the die. Justify your choice of the number of samples to use.

7.6. Sampling from the standard normal distribution 105 times, calculate a Monte
Carlo estimate of the value of e~^~ dx, and estimate the standard error.
Repeat the problem, sampling instead from c/K(3,1), as in (7.2).

7.7. Use importance sampling, drawing from Beta(u, 6) for various values of a and
6, to estimate the integral жз_^+1. Find values of a and b and sample
size n that will give a standard error less than 10-3.
Hint: The domain of Beta(u, b) is [0,1], but the integral is to be evaluated
over [0, 2tt] , so you’ll need to do a change of variables to be able to calculate
this with samples from Beta(u, 6).

7.8. The c.d.f. of the exponential distribution Gamma(l, A) is F(x) = 1 — e~Xx.
(i) Show that the inverse is F~r(y) = — los(i~?d.

(ii) Prove that if Y ~ Uniform(0,1), then 1 — Y ~ Uniform(0,1).
(iii) Thus, a draw from the exponential distribution can be constructed by

drawing и from Uniform(0,1) and computing — . Write code to
implement this, and use your code to draw 105 times from Gammafl, 2).
Plot a normed histogram of your results, and, on the same graph, plot
the p.d.f. of the exponential distribution for comparison.

7.9. The logistic distribution has p.d.f. f(x) = and c.d.f. F(x) = 1+^-ж.

(i) Compute the inverse of F.
(ii) Code up the inversion sampling algorithm to sample from the logistic

distribution, and use your code to draw from the logistic distribution
105 times. Plot a normed histogram of your results, and on the same
graph plot the p.d.f. of the logistic distribution for comparison.

(iii) Using your sample, estimate the mean and variance of the distribution.

316 Chapter?. Random Algorithms

7.10. Code up a method for estimating the volume of the unit ball in d-dimensional
space using rejection sampling. Compute estimates for these values for d e
{1,..., 10} using enough samples to get a standard error less than 10-2.

7.11. Let P be a distribution on [0, oo) with p.d.f. equal to fp(x) = ^e~x2~x3 for
some constant Z > 0 (the constant is Z = e~x^~x3 dx). Use rejection
sampling with proposal distribution Q ~ Gamma(l,l) to sample from this
distribution as follows:

(i) Find the smallest m for which e~x2~x^ < me~x.
(ii) Find the smallest M (expressed in terms of m and Z) for which fp(x) <

MfQ(x) for all x e [0,oo). Show that the quantity can
computed without knowing Z.

(iii) Code up a rejection sampler that draws z from Gamma(l,l) (using
either the sampler you wrote for Exercise 7.8 or another sampler), draws
и from Uniform([0,1]), and rejects any z such that the corresponding и
is greater than .

(iv) Use your sampling method to draw 105 times from F, and plot a normed
histogram of the results, along with a plot of the p.d.f. fp(x) (this last
plot will require you to approximate Z).

7.12. Insert the sequence of keys F О R G I V E, in that order, into an initially
empty hash table using chaining with linked lists. Assume the table consists
of n = 4 linked lists, and use the hash function that maps the J th letter in
the alphabet to 3J (mod ri). Start counting at 0, so, for example, hash (A)
= 3 ♦ О X 4 = 0 and hash(B) = 3 1 % 4 = 3. Give the contents of the
table at each step.

*

7.13. Let S be the set consisting of all 10 digits and all upper- and lowercase
letters. Let U be the set of all (ordered) strings consisting of exactly four
elements from S. Construct an injective hash function h : U —> N with
the smallest possible value of max[/ h(u). Modify your hash function to give
a simply uniform map hf to the set {0,..., 30}. In other words, if U is a
probability space with F(u) = F(u') for all u, u' e U, then the random
variable h! :U —> {0,..., 30} should have a uniform distribution.

7.14. Hashing is important for computer security. Rather than store passwords in a
file, many systems only store hashed passwords. To check if a user has entered
a correct password, the system hashes the entered password and compares it
to the hashed password in the file. This makes checking the password easy,
but it can also make the password file more secure.

(i) Assuming the hash function is easy to evaluate but hard to invert, if you
had access to the entire file of hashed passwords, how could you try to
find a password to break into the system?

(ii) Assuming the number of possible hash values is much larger than the
universe of possible passwords, that the hash function can be evaluated
in constant time, and that the hash function is injective, what is the
temporal complexity of your password search, as a function of the size
К of the universe of all possible passwords?

Exercises 317

(iii) Calculate the complexity of the search if passwords consist of only lower­
case letters and are only six characters long. Compare this to the com­
plexity if passwords are eight characters long and may include both
upper- and lowercase letters, as well as digits (but no special charac­
ters).

7.15. Prove that the probability of a hash collision with a simply uniform 32-bit
hash function is at least 50% if the number of keys is at least 77,164. Hint:
Naive application of the obvious formula will probably not work (why not?).

7.16. Let S be a finite set (the universe of possible keys for a hash table) of size
A, and assume that all keys in S are equally likely. Thus any hash function
h : S —> {0,..., n — 1} is a random variable with a discrete distribution

gh(x) = P(h(s) = x) = -l|{s € S | /i(s) = x}|.

(i) Prove that if two keys are chosen at random (uniformly in S'), the prob­
ability Р/г (2) of a hash collision is

Ph(2) = 1-^2 52 9h(x1)gh(x2) = ^gh(x)2.
Xi—0x2^X1 x—Q

(ii)* prove that P^(2) is minimized when h is simply uniform (that is,
gh(x) = for all x), Hint: You can either use Lagrange multipliers
to account for the constraint J2^Zq^(j:) = 1 or use the constraint to
solve for дь(п — 1) in terms of each of the other values of gh(x) and then
find where the gradient of Ph (2) (as a function of the values of Ph(^) for
x e {0,..., n — 2}) vanishes.

7.17. Implement the stochastic hill-sliding algorithm on Q = R, where at stage к
the proposal Zk is drawn from ^Ж(хк, cr2). Your code should accept an initial
guess xq, a callable function /, the variance cr2, and an integer n. At each
stage it should draw Zk from e/K(a?fc, cr2) and accept it only if f(zk) < ki­
lt should terminate after n iterations and return its best estimate xn of the
minimizer. For each choice of ст2 e {2-3,2-2,2-1, 2°, 21}, apply your code to
the function f in Example 7.4.1, starting at xq = 0, and running for n = 100
steps. Plot the value of f(xk) as a function of k. Compare the results.
Explain.

7.18. Implement simulated annealing on = R, where at stage к the proposal Zk
is drawn from ^Ж(хк, сг2). Your code should accept an initial guess xQl a
callable function /, the variance cr2, an integer n, and a monotone decreasing
cooling schedule (A)fceN defined as a function of k. At each stage it should
draw Zk from jK(xk, cr2) and accept Zk with probability pk(zk, Xk}- It should
terminate after n iterations and return its best estimate of the minimizer
(not necessarily the final point xn). For each of the cooling schedules tk =
10/(A; + 1), tk — 10/(fc + l)2, tk = 10/(fc + l)3, and tk = 2_(fe+1\ apply your
code to the function f in Example 7.4.1, with cr2 = |, starting at xq = 0,
and running for n = 100 steps. Plot the value of f(xk) as a function of k.

318 Chapter?. Random Algorithms

Compare the results for the different cooling schedules to each other and to
the results of the previous problem. Explain.

7.19. Adapt your code from the previous problem to work in R2 and use it to find
the global minimizer of the function

f(x, y) = exp (sin (50#)) + sin (GOe27) + sin (70 sin x) + sin (sin (80?/))

- sin (10 (x + y)) + (x2 + y2).

Hint: The current best-known estimate of the minimum value is —3.3068686.
7.20. Implement the stochastic hill-sliding algorithm for solving the TSP (see Sec­

tion 4.5.2) in the plane. Assuming that the distance between any two cities
is the Euclidean distance

d = У(Ж2 - Ж1)2 + (y2 - У1)2.

Your code should accept an integer n, representing the maximum number of
iterations, and a list L = [(ж0, ?/o)5 • • •, (#n, Уп)] of ordered pairs, representing
Cartesian coordinates of the city locations in the plane, listed in the current
order that the cities will be visited, assuming the traveler’s home is located at
the point (жо,?/о)- Given one route (list of cities), construct a new proposed
route by choosing a pair of indices at random and swapping the position
of the two cities at those indices. Your code should return a list corresponding
to the route that minimizes the total distance traveled. Hint: Remember that
the traveler must also return home at the end of the trip.
Use your code to find the best route you can for a list of 15 pairs of random
integers drawn uniformly from {—20, —19,..., 19,20}. Let the code run until
it stops improving. Plot the cities, the initial route, and the final route.

7.21. Modify your code in the previous problem to implement the simulated an­
nealing algorithm for solving the TSP (see Section 4.5.2) in the plane. (In
addition to the inputs from the previous problem, your code should also ac­
cept a cooling schedule (ffc)fcGN, represented as a function of k.)
Apply your code to the same list used in the previous problem. Plot the
cities, the initial route, and the final route. Compare the results and the
number of steps it takes to converge for a variety of cooling schedules.

7.22. Consider a genetic algorithm on binary sequences of length 4 that allows
only crossover, but never mutation or selection (so the population grows
at every generation). Give a population of two individuals from which it
would not be possible for the algorithm to generate all possible length-4
binary sequences; that is, no matter how long the algorithm runs and no
matter which choices of к are chosen at each step, no amount of crossover (as
described in Section 7.5.1) could ever generate all of the 16 possible sequences.
Are there two individuals from whom all the sequences could be generated?
Prove or disprove.

7.23. Describe the primary benefits and disadvantages of having a very large pop­
ulation or a very small population in each generation. What if there is a
very large population, but only the fittest individuals in that population are
allowed to cross?

Exercises 319

7.24. Implement the genetic algorithm described in Example 7.5.3 to maximize the
function f(x) = (x — 15)2 on the domain Q = {0,1,2,..., 31}. Show the
population and the value of the objective f on the most fit individual after
each generation.

7.25. Implement the genetic algorithm described in Example 7.5.5, starting with
a population of four configurations. At each generation cross the two most
fit individuals and also the most fit individual with one (randomly selected)
of the two remaining individuals, resulting in four new children for a total
of eight individuals. Then perform random mutation on one of the eight.
Finally, evaluate all eight for fitness and keep only the four best to start the
next generation. Use your code to solve the eight queens problem. Show the
results of each generation and the value of the objective function for the most
fit individual in each population.

7.26. Implement a genetic algorithm for solving the TSP in the plane using the
encoding, mutation, and crossover operations described in Example 7.5.7.
Apply your code to the same list of cities used in Exercise 7.21 and compare
the results, as well as the speed of convergence.

Notes
Sections 7.1 and 7.2 are inspired in part by [BH15] and [Was04]. For more on
importance sampling, see [Was04, Section 25.3]. Exercise 7.4 and Exercise 7.5 are
inspired by [Kurl5]. We are grateful to Chris Grant for showing us a slick way to
compute the exact solution of the problem in Example 7.1.3 using a nice symmetry
argument.

A more complete version of John Denker’s quote, as cited in [RN03], is “Neural
networks are the second best way to do almost anything, and genetic algorithms
are the third.”

Part II

Approximation

Harmonic Analysis

If you want to find the secrets of the universe, think in terms of energy, frequency,
and vibration.
—Nikola Tesla

The field of harmonic analysis is concerned with both the representation and the
approximation of functions, including signals36 and images, as linear combinations
of basic waves. In this chapter we consider two branches of harmonic analysis
corresponding to two different classes of “basic waves.” The first comes from the
class of trigonometric functions (sines and cosines) and is called Fourier analysis.
The second deals with self-similar waves and is called wavelet analysis.

36 In many quantitative disciplines a signal is a function that contains information about the
behavior or attributes of some phenomenon. In this text, when we say signal we mean a
function that depends on time.

Fourier analysis shows how to represent, or closely approximate, most well-
behaved functions as sums of trigonometric functions with varying frequencies and
amplitudes. This allows us to decompose a signal into different frequencies and
analyze the contribution of each frequency toward a given signal. The net result is
a powerful set of tools that can be used in myriad applications.

For example, wireless communication relies on the ability to isolate and extract
the part of a transmitted signal corresponding to a specific frequency or narrow
band of frequencies. The electromagnetic spectrum includes signals of all frequencies
from the various wireless devices that transmit and receive information, both across
the world and throughout space and time, as well as interference from the sun,
microwave ovens, and other sources of radiation. The superposition principle states
that when waves of differing frequencies travel through the same medium at the
same time, the net displacement of the medium at any point in space or time is the
sum of the individual wave displacements. Or, said more simply, the resulting wave
is just a sum of the individual frequencies. This is what allows a cell phone to pick
up a broad range of signals from countless sources of electromagnetic energy and
filter out all the frequencies except those specific to the cell tower. Fourier analysis
is the mathematical tool that allows the design and optimization of the algorithms
and circuits used to filter out all the undesired frequencies.

323

324 Chapters. Harmonic Analysis

More generally, the field of signal processing deals with taking readings that
come from various electronic devices or sensors (known as the signal), and separat­
ing out and analyzing the desired part of that signal from the undesired part (called
noise). For example, when producing music in a recording studio, one usually wants
to filter out and discard background noises such as the hum from air conditioning
and ventilation systems. Before the age of digital electronics, both audio recordings
and long-distance phone calls contained a lot of static noise, or interference, that
often made it difficult to hear what someone was saying. Today, signal processing
algorithms are able to remove the interference and provide crisp, clear communica­
tions that are mostly free of distortions or noise. It should be of no surprise that
much of the theory of signal processing came out of the telephone industry, most
notably Bell Labs.

Applications of Fourier analysis go well beyond the physics of light and sound.
For example, stock market analysts may want to separate out intraday trading
effects, which have a 1-day frequency, from day-of-week effects, which have a 7-
day frequency, and seasonal effects, which have an annual frequency. This may
help them understand whether a particular decline in market activity is signaling a
change in investor interest or whether it’s just lunchtime.

Regardless of the application, a good rule of thumb is that oscillatory signals
are likely to be amenable to Fourier analysis. In other words, greater understanding
will likely come from decomposing the signal into trigonometric functions of varying
frequency and amplitude.

We begin this chapter by showing how to represent or approximate a function
as a linear combination of trigonometric functions of varying frequencies. These
sums are called Fourier series. There are two conventions for representing Fourier
series. The first represents functions as sums of exponential functions with imagi­
nary exponents. The second convention represents functions as sums of sines and
cosines. Because of Euler’s identity (8.1), these two conventions are equivalent,
but, as we show in Section 8.5, the exponential form is better for computation.
With either convention, the process of mapping a signal into a Fourier series corre­
sponds to an orthogonal projection into a certain function space, where the Fourier
series is the image expressed in an orthonormal basis with respect to a certain
inner product.

A second important topic in this chapter is the idea of approximating a function
by sampling37 at equally spaced points in time, that is, going from a continuous­
time signal to an equally spaced discrete-time signal. In Section 8.5, we introduce
the discrete Fourier transform (DFT), which computes a Fourier series of a given
discrete-time signal. Because there are infinitely many possible Fourier series that
could produce the same discrete-time signal, we give the “best” Fourier series, in a
sense to be described in Section 8.7.

37To sample means to observe or measure. In Chapter 7, we used the term sampling to mean
observing realizations (or draws) from a random process like flips of a coin or rolls of a die. In this
chapter, there is no randomness or variation in the observations, and thus repeated experiments
yield identical observations—it’s the same signal each time—but we still use the term sample to
indicate we are observing or measuring something.

Transforming a discrete-time signal into a Fourier series with the DFT provides a
powerful way to analyze, filter, and compress the signal. The naive way to compute

325

the DFT on a sample of n data points takes O(n2) time. However, there is a very
fast algorithm for computing the DFT called the fast Fourier transform (FFT),
which takes only O(nlogn) time. For large n, this makes a substantial difference
in computing times. This is especially the case for data-rich fields like medical
imaging, where the FFT has profoundly sped up computations (and, consequently,
aided in the saving of countless lives). Indeed, the FFT is considered to be one of
the most important algorithms of all time and is ubiquitous in signal and image
processing.

A third major topic considered in Fourier analysis is an important theorem called
the periodic sampling theorem, which guarantees that, for periodic functions, the
original signal can be perfectly reconstructed from a finite number of samples, pro­
vided that the signal is sampled often enough and is band limited. More precisely,
the theorem states that perfect reconstruction of a band-limited signal is guaran­
teed whenever the sampling frequency is more than double the highest frequency
occurring in the signal.

In spite of the great usefulness of Fourier analysis, it does have weaknesses be­
cause trigonometric functions do not gracefully approximate discontinuous signals.
As we show in several examples in this chapter, in the presence of a discontinuity
the coefficients of the Fourier series do not converge to zero very quickly, resulting
in poor approximations. Hence, for signals with many discontinuities and especially
for images of objects with sharp edges, Fourier analysis is probably not the best
way to proceed.

As an alternative, we consider another class of basic waves that are useful in
signal and image processing, called wavelets. Wavelet analysis uses rescaling and
translation of the basic wavelets to build an orthonormal basis that forms a func­
tion space capable of representing or approximating most well-behaved functions.
Wavelet bases can usually be chosen so that the wavelet representation is sparse,
meaning that it has only a small number of nonzero entries. One of the big advan­
tages of wavelets is that they can be made to gracefully and efficiently approximate
functions with discontinuities; see Sections 8.8 and 8.10 for details. Hence, they are
great for analyzing signals with many discontinuities and images of objects with
sharp edges.

There are many similarities between wavelet analysis and Fourier analysis. Just
as the trigonometric functions in Fourier analysis, wavelets form an orthonormal
basis, so that an inner product can be used to identify the coefficients for each basis
function. In fact, in Sections 8.9 and 8.11, we discuss the discrete wavelet transform
(DWT), which is an algorithm used to represent a discrete signal in a wavelet basis,
just as the DFT represents a discrete signal in the Fourier basis. Finally, just as
the DFT can be made fast with the FFT, the DWT can be made fast with the fast
wavelet transform (FWT), which requires only O(n) time.

But there are some key differences between wavelet analysis and Fourier analy­
sis. In addition to being able to gracefully deal with discontinuities, wavelet basis
functions are well suited to representing local behavior. Their ability to easily ex­
press both local properties and discontinuities make wavelets very useful for analyz­
ing nonperiodic, piecewise-continuous functions, such as those observed in images,
videos, and other digital media. By contrast, Fourier basis functions are periodic
on R (and therefore not of compact support), and thus they are better suited to
representing global behavior.

326 Chapters. Harmonic Analysis

8.1 Complex Numbers
In this section38 we briefly review some fundamental properties of the complex
numbers, which are essential in Fourier analysis. The main results that we need
are Euler’s identity (8.1), the “inverse” of Euler’s identity (8.3), a relation on sums
of roots of unity (Proposition 8.1.6), and a relation for powers of roots of unity
(Proposition 8.1.7). Students who are already familiar with complex numbers, in­
cluding these four results, may skip to the next section.

38 This section has also been published as an appendix in Volume 1.

8.1.1 Basics of Complex Numbers

Definition 8.1.1. Let i be a formal symbol (representing a square root of —1). Let
C denote the set

C = {u + bi | a,b e R}.

Elements ofC are called complex numbers. We define addition of complex numbers
by

(a + bi) + (c + di) = (a + c) + (b + d)i

and we define multiplication of complex numbers by

(a + bi) (c + di) = (ac — bd) + (ad + bc)i.

Example 8.1.2. Complex numbers of the form а + Ог are usually written just
as a, and those of the form 0 + bi are usually written just as bi.

We verify that i has the expected property:

i2 = (0 + 1г)2 = (0 + 1г)(0 + 1г) = (0 - 1) + (0 + 0)г = -1.

Definition 8.1.3. For any z = a + bi e C we define the complex conjugate of z
to be z = a — bi, and we define the modulus (sometimes also called the norm) of
z to be |z| = y/~zi = \/a2 + 62 e R. We also define the real part Ж(г) = a, and the
imaginary part ^s(z) = b.

Proposition 8.1.4. Addition and multiplication of complex numbers satisfy the
following properties. For any z,w,v e C we have

(i) associativity of addition: (v + w) + z = v + (w + z);

(ii) commutativity of addition: z + w = w + z;

(iii) associativity of multiplication: (vw)z = v(wz);

(iv) commutativity of multiplication: zw = wz;

(v) distributivity: v(w + z) = vw + vz;

(vi) additive identity: 0 + z = z = z + 0;

8.1. Complex Numbers 327

(vii) multiplicative identity: 1 • z = z = z • 1;

(viii) additive inverses: if z = a + bi, then —z = —a — bi satisfies z + (—г) = 0;

(ix) multiplicative inverses: if z = a + bi / 0, then |z|-2 E R and so

Proof. All of the properties are straightforward algebraic manipulations. We give
one example and leave the rest to the reader.

For (ix) first note that since z^Owe have |z|2 = a2-\-b2 / 0, so its multiplicative
inverse (a2 + 62)-1 is also in R. We have

z (z|z|-2) = zz(zz)-1 = 1,

so (z|z|-2) is the multiplicative inverse to z. □

8.1.2 Euler's Formula and Graphical Representation
Euler's Formula

For any z e C we define the exponential ez using the Taylor series
oo

One of the most important identities for complex numbers is Euler’s formula
(see Proposition 11.2.12 in Volume 1):

ezt = cos(t) + zsin(t), t e R. (8.1)

As a consequence of Euler’s formula, we have De Moivre’s formula:

(cos(f) + i sin(£))n = (e2f)n = eirit = cos(nt) + i sin(nf), n e N, t e R. (8.2)

Inverting Euler's Formula

By taking the real and imaginary parts of ezt we can invert Euler’s identity and
write the sine and cosine formulas in terms of exponentials. Thus we have

cos(£) = SR(e2t) = e — and sin(£) = %(еи) = -——-—. (8.3)
2 2г

Trig Identities

Using (8.1), we can derive some key identities from trigonometry. Expanding
ег(х±у) _ егхе±гу |n^o rea] anJ imagjnary parts gives

cos(a? ± y) + i sin(a; ± y)
= (cos(rr) + zsin(a;)) (cos(?/) ± zsin(?/))
= cos(a?) cos(?/) ± sin(rr) sin(?/) + i [sin (a;) cos(?/) ± cos(a?) sin(?/)].

328 Chapters. Harmonic Analysis

Thus taking the real and imaginary parts gives the following identities:

сов(ж ± y) = соз(ж) cos(?/) =F зт(ж) sin(?/),
sin (ж ± y) = зт(ж) cos(?/) ± соз(ж) sin(?/).

From here it’s not hard to get the following three identities:

(8.4а)
(8.4b)

2 соз(ж) cos(?/) = cos (ж + у) + cos (ж — у),
2 sin (ж) cos(?/) = sin (ж + у) + sin (ж — у),
2зт(ж) sin(7/) = cos (ж — у) — cos (х + у).

(8.5а)
(8.5b)
(8.5с)

Graphical Representation

The complex numbers have a very useful graphical representation as points in the
plane, where we associate the complex number z = a-\-bi with the point (u, ti) E R2;
see Figure 8.1. In this representation real numbers lie along the ж-axis and imaginary
numbers lie along the t/-axis. The modulus |z| of z is the distance from the origin
to z in the plane and the complex conjugate z is the image of z under a reflection
through the ж-axis.

Figure 8.1. A complex number x + iy with x,y G R is usually represented graphi­
cally in the plane as the point (x,y). This figure shows the graphical representation
of the complex numbers i (red), 1 (blue), and 3 + 2г (orange).

Addition of complex numbers is just the same as vector addition in the plane,
so geometrically, the complex number z + w is the point in the plane corresponding
to the far corner of the parallelogram whose other corners are 0, z, and w; see
Figure 8.2.

Using (8.1), we can represent any point in the plane in polar form as z =
r(cos(0) + isin(0)) for some 0 e [0,2%) and some r e R with r > 0. Combining this
with Euler’s formula means that we can write every complex number in the form
z = гегв. In this form we have

|z| = |гег<9| = |r(cos(0) + zsin(0))| = r

and
z = r(cos(0) — zsin(0)) = re

8.1. Complex Numbers 329

Figure 8.2. Graphical representation of complex addition. Thinking of complex
numbers z = a + bi (red) and w = c + di (blue) as the points in the plane (a, b) and
(c, d), respectively, their sum z + w = (a + c) + (b + d)i (purple) corresponds to the
usual vector sum (a, b) + (c, d) = (a + c, b + d) in the plane.

We define the sign of z = гегв e C to be

sign(z) =
ле _ _z_
e - и
1

if z 0,
if z = 0.

(8-6)

The polar form gives a geometric interpretation for multiplication of complex
numbers. If z = гег1 and w = pezs, then

wz = грег^+^ = |z| | w\(cos(f + s) + zsin(t + $)).

This shows that multiplication of two complex numbers in polar form multiplies the
moduli and adds the angles; see Figure 8.3.

Figure 8.3. Complex multiplication adds the polar angles (s +1) and multiplies
the moduli (rp).

Similarly, г-1 = z|z|-2 = re~ltr~2 = r~1e~'bt, so the multiplicative inverse
changes the sign of the angle (t — t) and inverts the modulus (r r-1). But
the complex conjugate leaves the modulus unchanged and changes the sign of the
angle; see Figure 8.4.

330 Chapters. Harmonic Analysis

(b)

Figure 8.4. Graphical representation of multiplicative inverse (a), and complex
conjugate (b). The multiplicative inverse of a complex number changes the sign of
the polar angle and inverts the modulus. The complex conjugate also changes the
sign of the polar angle but leaves the modulus unchanged.

8.1.3 Roots of Unity

Definition 8.1.5. For n e Z+ an nth root of unity is any solution to the equation
zn = 1 in C. The complex number wn = е27гг/п js called the primitive nth root of
unity.

By the fundamental theorem of algebra there are exactly n of these nth roots of
unity in C. Euler’s formula tells us that

= cos(2?r/n) + zsin(27r/n)

is the point on the unit circle in the complex plane corresponding to an angle of
2?r/n radians, and

— е27гг/с/п = cos(2?rA;/n) + zsin(27rA:/n).

Thus we have
“п = e = 1,

so cjk is a root of unity for every к e Z; see Figure 8.5.
If к1 = к (mod n), then к' = к + mn for some m G Z, and thus

, ,k' _ . (k-\-mn) _ . ,k(. n\m _ ,k

The nth roots of unity are uniformly distributed around the unit circle, so their
average is 0. The next proposition makes that precise.

8.2. Fourier Series 331

Figure 8.5. Plots of all the third (on the left) and tenth (on the right) roots of
unity. The roots are uniformly distributed around the unit circle, so their sum is 0.

Proposition 8.1.6. For any n e Z+ and any к E Z we have

n—1
^2Trik£/n

£=0

ifk^O (mod ri),
if к = 0 (mod ri).

(8-7)

Proof. The sum is a geometric series, so if к 0 (mod n) we have

n—1

£=0

= o.

But if к = 0 (mod ri), then

0
1

-1 _ (Ofc -1
4 - 1 Wn - 1

We conclude this section with a simple observation that turns out to be very
powerful. The proof is immediate.

Proposition 8.1.7. For any divisor d of n and any к e Z, we have

= “n/d- (8.8)

The relation (8.8) is key in the derivation of the FFT; see Section 8.5.4.

8.2 Fourier Series
The idea of Fourier series is to use an orthonormal basis of trigonometric functions
to efficiently represent or approximate a broad class of well-behaved functions (to be
made precise in Section 8.4). By writing functions as a linear combination of these

332 Chapters. Harmonic Analysis

basis functions, we can process and transform a signal in many useful ways. As
discussed above, there are many situations where one may want to isolate certain
frequencies in a signal or, alternatively, filter out unwanted frequencies that add
noise or interference to the signal. But the implications of Fourier analysis are
much farther reaching, and deep insights can often come from analyzing the different
frequencies that contribute to a signal. For example, if a machine is rattling at a
certain frequency, one may be able to identify the specific cause of the problem
inside the machine, based in part on the frequency of the rattle.

In this section we develop Fourier series on the interval [0,7*]. As mentioned
in the introduction to this chapter, there are two different, but equivalent, ways of
expressing Fourier series. The first and more modern version is expressed in terms
of complex-exponential functions of the form e±za}kt with к E Z, whereas the second,
more classical, version is expressed in terms of the trigonometric functions sin(cjA^)
and cos (ш kt) with к e N. Throughout this section, we assume that

2% Ш = ---
T

for both versions.

8.2.1 Complex-Exponential Fourier Series
Recall that F refers to the field of either real or complex numbers. Throughout
this chapter let L2([0, T];F) denote the vector space of F-valued square-integrable
functions; that is, we assume every f e L2([0,T];F) satisfies

ll/H2= [T\f(t)\2dt<OO. (8.9)
Jo

And we assume this space is endowed with the inner product

= (8.10)

We show that E = is an orthonormal set in the space L2([0,T];C).
The Fourier series of a function f e L2([0,T];C) is just the orthogonal projection
of f onto the subspace X = span(E).

Theorem 8.2.1. The set E = with w = 2тг/Т, is orthonormal in
L2([0,T];C).

Proof, A straightforward integration (see Exercise 8.2) shows that

/ ii^kt iutt\ = f iu(£-k)t fa = x к —
) TJQ ke [Oiffc^,

where дщ. is the Kronecker delta. □

8.2. Fourier Series 333

Corollary 8.2.2. If f e L2([0, T];F) satisfies
oo

/(£) = 52 ckeiM
k— — OG

(8-11)

for some coefficients (ck)kez in C, then for each к F Z we have

(8-12)

This corollary inspires the following definition of the Fourier series of a given
function to be its projection onto the span of the basis vectors.

Definition 8.2.3. Given f e L2([0,T];F) and к e Z we define the kth Fourier
coefficient of f to be Ck, as given in (8.12). We define the nth truncated Fourier
series (also called the nth partial sum of the Fourier series) to be

n
Sn[f](t) = 52 cke^kt. (8.13)

k——n

where each c^ is the к th Fourier coefficient of f. Taking n —> oo gives the complete
Fourier series

oo

S[f](t) = 52 ckeiLukt. (8.14)
k——oo

Remark 8.2.4. The definition of the Fourier coefficients and the Fourier series
makes sense even if f cannot be written as a series of the form (8.11). As indicated
above, the truncated and complete Fourier series are simply orthogonal projections
of f onto the subspaces Xn = span(E'n) and X = span(B), respectively, where
En = {^kt}k^-n c E. In other words,

Pr°ix„ f = Sn [/] and projx f = £[/].

Remark 8.2.5. Since the complex exponentials e±tbjkt are periodic on [0, T], so
are the truncated and complete Fourier series (8.13) and (8.14), respectively, even
if the original function is not.

Example 8.2.6. Consider the function /(t) = t defined on [0, 2тг]. To find
the Fourier series we must find its Fourier coefficients. For к / 0, we have

e~ikttdt= 2-
27Г

te lkt
—ik

and for к = 0 one can check that co = 7r. Thus we have

00 00 „ikt p—ikt

Slf](t)= 52 скем=тг + Г£------ -k------ • (8.15)
k=—oo k=l

334 Chapters. Harmonic Analysis

Using (8.3), this can be rewritten as

S[/](i) = 7r-2£^. (8.16)
k=l

Figure 8.6 shows the wave and some of the partial sums of its Fourier series.

Figure 8.6. Graphs (in red) of the nth partial sums of the Fourier series for the
function f(t) = t (black) on the interval [0,2%], as in Example 8.2.6.

Remark 8.2.7. Example 8.2.6 shows that the Fourier series (8.15) isn’t identical
to the underlying function f. In particular, we have 5[/](0) = 5[/](2%) = %,
but /(0) = 0 and /(2%) = 2%. However, as we show in Theorem 8.2.16, the two
functions match everywhere else on the interval; that is,

S[/](t)=P -f^o0’2?’ 2 <8-17)

Remark 8.2.8. Recall that applying any projection twice is the same as applying
it once. Since S[f] is the projection of f onto X, as described in Remark 8.2.4, the
Fourier series of f is S[f] and the Fourier series of S[f] is also 5[/].

In the case of the series (8.15), it is straightforward to verify this property if
(8.17) holds, because then f and S[f] differ only at the endpoints. Changing the
values of the function at the endpoints does not change the values of the integrals
in Example 8.2.6, and thus the coefficients Ck remain the same.

8.2. Fourier Series 335

Remark 8.2.9. Since the function S[f] in (8.15) is periodic, it can be extended to
the entire real line; the resulting function is a sawtooth wave.

Example 8.2.10. Let f : [0, 2тг] R satisfy

if t E (0,7r),
if t e (тг, 2тг),
if t E {0,тг, 2tt}.

Recall that e г7гк = (—l)fc for к E Z. For к / 0 we have

For к = 0 one can show that co = Thus we have

if к is odd,
if к is even.

1 1 / “°0

wi(‘) = 5 + - E
\fe=-l

„j(2fc+l)t 00
2fc + 1 +^-'

k=l

ei(2k-l)t

2k — 1

Using (8.3) and Exercise 8.1 shows that (8.19) is the same as

1 2 sin((2fc - 1)£)
2 + 7Г 2-^ 2fc — 1

k=l
(8.20)

Remark 8.2.11. Since the function S[f] in (8.19) is periodic on the interval [0,2тг],
it can be extended to the entire real line, and the resulting function is a square wave.

In both Examples 8.2.6 and 8.2.10, the complex Fourier series simplifies to a
real-valued function. This is not coincidence, and, in fact, it happens whenever the
original function is real valued.

Proposition 8.2.12. If f E L2([0, T]; R), then Ck = c~k for each к E Z.

Proof. Since f(t) = /(t) and e~iajkt = we have

f(ty“ktdt = c_k. □

Remark 8.2.13. When computing the Fourier coefficients {ckjkez of a real-valued
function, we need only compute the coefficients Ck for nonnegative values к E N,
because .

As mentioned above, not every function is equal to its Fourier series. One useful
sufficient condition for equality is given in Theorem 8.2.16, below. To state the
theorem we first need one definition.

336 Chapters. Harmonic Analysis

Definition 8.2.14. A function f : [a, b] —> F is piecewise continuous if it is
continuous on [a, b] except at finitely many points and the limit at each point of
discontinuity exists and is finite. We say that f : [a, b] —> F is piecewise Lipschitz
if it is piecewise continuous on [a, b] and there is a constant L such that on every
interval I of continuity, we have

\f(x)-f(y)\ < L\x — y\ (8.21)

for all x,y e I.

Example 8.2.15. If / : [a, &] —> R is continuously differentiable, meaning
that f exists and continuous on [a, b] and both f'(a) and f'(b) are well defined
in the sense of left and right limits, respectively, then by the mean value
theorem (8.21) holds where

L = sup |/'(ж)|.

Theorem 8.2.16. For any function f : [0,T] —> F, denote f(t+) = limT^t+ /(r)
and f(t~) = 1ш1т_^- f(r). If f is piecewise Lipschitz, then

limn—>ocsn[№ = |(Ж) + Ж))
1(/(T) + /(O))

ifte (0,T),
ift e {0,T}.

(8.22)

In particular, if f is continuously differentiable on (0, T) with finite right and left
derivatives at t = 0 and t = T, respectively, with /(0) = f(T), then for each
t e [0,T] we have [/](£) —> /(t) as n —> oo.

Proof. The proof is given in Section 8.4. □

8.2.2 The Theory of Music
A pure note is a sinusoid playing at a frequency in the audible range. For example,
the A note just above middle C can be represented by the signal sin(27r440£) (with t
measured in seconds), which means that the signal cycles 440 times per second (440
Hz). This note is often called A4 because it’s in the fourth octave of a standard
88-key piano.

Increasing the frequency increases the pitch of the note. The A note that’s one
octave higher is A5, corresponding to the signal sin(27r880t) with twice the frequency
(880 Hz). The signal sin(27r660£) with 3/2 the frequency of A4 corresponds to E4,
which is the E above A4.

Increasing the amplitude (the modulus of the coefficient in front) of the signal
increases the volume of the note we hear without changing the pitch. Thus the
signal 2 sin(27r440t) is an A4 that sounds louder than the signal sin(27r440t), which
is the same A4, but softer.

When we hear a sound wave of the form

f(t) = 4sin(27r440t) + 6 sin(27r660£) + 2sin(27r880£), (8.23)

8.2. Fourier Series 337

Time

Figure 8.7. A plot of the signal in (8.23), where time is measured in seconds and
T = 0.05. This signal is the sum of three separate pure sinusoidal tones, one of
frequency 440 Hz, one of frequency 660 Hz, and one of frequency 880 Hz. A trained
musician can hear and identify the separate tones in the signal, which essentially
corresponds to doing a Fourier decomposition.

we hear (or at least an experienced musician hears) a three-note chord, consisting
of A4, E4, and A5, with the E4 sounding louder and the A5 sounding softer than
the A4. For a plot of this signal, see Figure 8.7.

Most humans cannot hear frequencies outside the range of 20 to 20,000 Hz. So
if we decompose an audio signal into its Fourier series and discard any frequencies
outside the audible range, the simplified signal will sound identical to the original,
but it will require less data to store the signal, and less energy to reproduce it.

Once we have the Fourier decomposition of the signal, we can adjust the am­
plitudes of the various frequencies. This is what a sound system’s equalizer does.
Some misguided teenagers like to increase the bass (low frequencies) on their sound
systems and decrease the treble (higher frequencies).

In some settings a signal may have unwanted noise. For example, the electrical
power source in a typical American home is an alternating current with a frequency
of 60 Hz, and this sometimes introduces an undesirable hum into the audio system.
This can be filtered out of a signal by setting the Fourier coefficient corresponding
to 60 Hz (and the others near 60 Hz) to zero and leaving all the other coefficients
unchanged.

Vista 8.2.17. The ideas of Fourier series can be extended by taking a limit
as the interval [0, T] is expanded to the entire real line R. This extension is
called the Fourier transform. Fourier transforms are an essential tool in many
areas of applied mathematics and are discussed in Volume 4.

In Fourier series the collection of coefficients {ckjkez can be thought of as
a function f : Z —> C, where f(k) = c^. In the Fourier transform, the index
к € Z is replaced with a continuous variable £ G R, and the new function takes
the form / : R -> C, given by /(C) = dt.

338 Chapters. Harmonic Analysis

8.2.3 *Gibbs Phenomenon
A careful look at Figure 8.6 shows that the distance from the graph of f down to
the bottom of the lowest valley does not shrink as the number of terms in the ap­
proximation increases. Although the valleys and peaks get narrower as the number
of terms increases, the valleys and peaks nearest the endpoints don’t actually get
closer to the graph of f. This is called the Gibbs phenomenon.

Extending a function from the interval [0, T] to the whole line by making it
T-periodic causes a discontinuity if /(0) f(T). Near such a discontinuity, any
finite Fourier series will overshoot the graph of the function being approximated;
that is, it will have a neighborhood where the series is a fixed distance a > 0 away
from the desired function. Adding more terms in the series will not shrink ct, but
it will shrink the size of the bad neighborhood. For more on this phenomenon, see
Exercises 8.21-22.

8.3 *Trigonometric Fourier Series
In this section we develop the theory of trigonometric Fourier series, using a basis
of trigonometric functions of the form cos(cjA^) and sin(cjA;t) instead of complex­
exponential functions. It should not be surprising that the complex-exponential
version is equivalent to the trigonometric version. Indeed Euler’s identity (8.1)
allows us to express any of the basis functions in E = {егшкъ}ке% in terms of
trigonometric functions of the form cos(cjA^) and sin(cjA;t); see, for example, (8.16)
and (8.20). Moreover, Euler’s identity can be inverted to express sine and cosine in
terms of complex exponentials (see (8.3)). The details of the equivalence are given
in this section.

Throughout this section, we assume that functions are contained in the space
L2([0, T];R) of real-valued functions satisfying

Jo

But for convenience we use the weighted inner product

2 Гт
(f,g} = ^J f(t)g(t)dt, (8.24)

which has a different scaling coefficient than the inner product used in the complex­
exponential Fourier series (8.10).

8.3.1 Formulation

Theorem 8.3.1. The set

cos (cut), sin (cut),..., cos(cjAJ), sin(cu/ct),... (8.25)

is orthonormal in L2([0,T];R). Here the set (8.25) includes only positive integer
values ofk.

8.3. trigonometric Fourier Series 339

Proof, It is straightforward to check that the first vector has unit length, and the
inner product of the first vector with any of the others is zero. The other inner
products all follow from the trigonometric identities (8.5), which give the following
integrals for &,£ e Z+:

2 rT i rT
— / sin(cj/et) cos(ozft) dt = — [sin(cu(fc + €)t) + sin(cu(A; — £)t)] dt = 0,
d Jo d Jo
2 rT i rT
— / cos(cj/et) cos(w£t)dt = — I [cos(cu(fc + F)t) + cos(cu(& — £)t)] dt =
T Jo T Jq
2 rT 1 rT
— / sin(cu/ct) sin(cj£t)dt = — / [cos(cu(A; — F)t) — cos(cu(& + £)t)] dt = 6k£- □
d Jo d Jq

Corollary 8.3.2. If f can be expressed in the form

00
f(t) = -^= + (a/, cos(cuA^) + bk sin(cuAtf)), (8.26)

v2 fc=l

then the coefficients satisfy the following relations:

2 fT
ak = (cos(cuAtf), f) = — / f(t) cos(cuA^) dt,

Jo
2 Гт

bk = (sin(cvAtf),/) = — / f(t) sm(wkt) dt,
1 Jo

for /0 G Z+, and
/1 \ \/2 1

ao = \-^’f) = ^ f(t)dt.
\V2 / J- Jo

(8.27a)

(8.27b)

(8.28)

As with the complex-exponential case, Corollary 8.3.2 inspires the following
definition of the Fourier series of a given function f as the projection of f onto the
span of the basis vectors.

Definition 8.3.3. Given f e L2([0,T];R), we define the nth truncated Fourier
series (also called the nth partial sum of the Fourier series) to be

Sn [/](*) = -y= + ffik cos((jjkt) + bk sin(cufct)), (8.29)
v2 fc=l

where each ak and bk satisfy (8.27) and (8.28). Taking the limit as n —> 00 gives
the complete Fourier series

S [/](£) = -y= + ffik cos(cufct) + bk sin(cufct)). (8.30)
v2 fc=l

Remark 8.3.4. As with the complex-exponential case, the truncated and com­
plete Fourier series defined here are also the orthogonal projections of f onto the
corresponding truncated and complete subspaces of trigonometric functions.

340 Chapters. Harmonic Analysis

Remark 8.3.5. Note that the constant term in (8.30) satisfies

which is the average value of f on the interval [0, Т]. Some authors write (f) for
the average of f and thus express (8.30) as

S[f](t) = (/) + 57 (afc cos(wfct) + bk sin(wfcf)). (8.31)
k=l

This notation is useful because adding or subtracting a constant to the function
only changes its average, not the terms which oscillate at a certain frequency.

Example 8.3.6. Following Example 8.2.6, consider the function f(t) = t
defined on [0, 2тг]. We integrate to find the Fourier coefficients. It is straight­
forward to check that (/) = tv. For к E Z+, we can show

/»2тг ■£ /*2тг
ak = — tcos(kt)dt = 0, bk = — / tsin(kt)dt =

tv Jo Jo k

Thus
5|/|(о = »-2£^

k=l

which agrees with (8.16).

Example 8.3.7. Following Example 8.2.10, let / : [0, 2тг] —> R satisfy (8.18).
We integrate to find the Fourier coefficients. It is straightforward to check
that that (/) = |. For к E Z+, we have

1 /* 27Г 1 f7r
ak = — f(t) cos(Atf) dt = — cos(A;t) dt = 0,

71 Jo 57 Jo
, 1 f2" л/x z, ч , 1 Г ,, 4 , f4 if A: is odd,
bk = — / /(t) sin(fct) dt = — I sin(fct) dt = < nk

tv J 0 tv Jo I 0 if fc is even.

Thus
-1 _l - x" sin1 _l £ v'sin((2fc ~ ty)

) 2 + 7Г к 2 + % 2k -1
к odd k=l

which agrees with (8.20).

8.3. trigonometric Fourier Series 341

8.3.2 Equivalency
We have developed two conventions for the Fourier series. We now show that the
conventions are equivalent by using Euler’s identity (8.1), which states that

e±iujkt _ ± xsin(cuA;t) (8.32)

for all к 6 N, t e R. This means that any complex-exponential Fourier series can be
written in terms of sin(cuAtf) and cos(cuA^). Conversely, by inverting Euler’s identity
(see (8.3)), we can also write a trigonometric Fourier series in terms of complex
exponentials via

giwkt । ia)kt ^ia)kt _ ^—iu)kt
cos(cuAtf) =-------- --------- and sin(cj/ct) =------- —--------. (8.33)

Theorem 8.3.8. For f e L2([0,T];F) the two conventions for Fourier series are
equivalent. In particular, we have

2 CT= ^ / f(t) sin(cu^) dt = bk. □
1 Jo

скег“къ = (/) + У2 ak cos(cuH) + bk sm(cvkt).
k——oQ k—1

Proof. Note that
oo oo oo

52 cke^kt = co + 52 cke^kt + 52 c_ke~^kt
k— — oQ k—1 k—1

oo
= c° + У2 Cfc(cos(cuAtf) + zsin(cu/rt)) + c_/c(cos(cj/et) — zsin(cuA;t))

k=l
oo

= C0 + £(cfc + c_fe) cos(wkt) + i(ck — c_k) sin(cuAtf).
k=l

Thus it suffices to show that

С0 = Ш, (8.34a)
ck + c_fc = ak, (8.34b)

i(ck - c-k) = bk. (8.34c)

The verification of (8.34a) is left to the reader. To prove (8.34b), we have
i rT 2 piaikt I p—iwkt

ck + c_k = - f f(t)(e~^kt + c-fct) dt= - f /(f)---------- dt

2 fT
= - j f(t) cos(wfct) dt = ak.

To prove (8.34c), we have
„• (*T 2 ГТ piwkt p—iwkt

i(ck - c_k) = - / /(f)(e--fct - e“fct) dt = - f(t)------- ----------dt
T Jo T Jo

342 Chapters. Harmonic Analysis

8.4 Convergence of Fourier Series
In this section we prove Theorem 8.2.16, which gives conditions for the convergence
of Fourier series. To do so, we first prove the Riemann-Lebesgue theorem, which
states that for a sufficiently well-behaved function /, the Fourier coefficients con­
verge to zero as к —> ±oo. We also develop the theory of Dirichlet kernels, which
provides a useful representation of Fourier series. Combining the Riemann-Lebesgue
theorem with the theory of Dirichlet kernels gives a nice proof of Theorem 8.2.16.

Throughout this section we assume T = 2тг and thus cj = 1, noting that this
causes no loss of generality because we can always rescale the domain.

8.4.1 The Riemann-Lebesgue Theorem
There are several versions of the Riemann-Lebesgue theorem, but they all essentially
say that the Fourier coefficients of a given well-behaved function f converge to
zero in the high-frequency limit. We provide two such versions (Lemma 8.4.1 and
Theorem 8.4.2).

Lemma 8.4.1 (Riemann—Lebesgue). If f e L2([0, 2%]; F), then the coefficients
Ck of the complex-exponential Fourier series of f converge to zero as к —> ±oo.
Moreover the coefficients ak and bk of the trigonometric Fourier series of f converge
to zero as к —> oo.

Proof. By Theorem 8.2.1, the set E = {elkt}ke% is orthonormal in L2([0,2тг];F).
Hence, by the Pythagorean theorem (Volume 1, Theorem 3.2.9), the coefficients
satisfy

£ ы2 = надш2 < над]ii2 + и/-ад]н2 = ii/ii2 < oo,
k——n

where the norm || • || is given in (8.9). Since this holds for all n 6 N, we have

oo
£ |cfc|2 < ll/ll2 < 00,

k— — oo

which implies |cfc|2 —> 0 as к —> ±oo. Moreover, max{|ufc|, \bk\} < |cfc| —> 0 as
к —> oo, which gives the desired result. □

Theorem 8.4.2 (Riemann-Lebesgue). If f e L2([a, 6];F) and ф e R, then

lim / dt = 0. (8.35)

Proof. First assume b — a < %; otherwise split the interval [a, b] into subintervals
each of length at most % and proceed with each integral separately. Then apply a
change of variables corresponding to a translation of [a, b] by some integer multiple
of % so that the resulting interval is a subset of [0, 2%]; note that the magnitude of
the integral does not change when doing so. Finally, extend f to the interval [0,2тг]

8.4. Convergence of Fourier Series 343

150

100

50

0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 8.8. A plot of the Dirichlet kernel Dn for n = 40 (red) and n = 80 (blue).

by setting it to zero outside of the interval [a, b]. All together, this shows we can
assume, without loss of generality, that f E L2([0,2%]; F).

By the lemma, the coefficients satisfy lim/c^ioo |с&| = 0. Thus as A: —> oo, we
have

y(f)ei(fct+^) dt f(t)eikt dt = 27r|c_fc| -+ 0. □

8.4.2 The Dirichlet Kernel
We define the Dirichlet kernel and prove several lemmata needed to prove the con­
vergence of Fourier series.

Definition 8.4.3. For n E N, the Dirichlet kernel Dn is the function

n

Dn{t) = 52 eikt. (8.36)
k——n

Lemma 8.4.4. For n E N and t E R, the Dirichlet kernel takes the form

Dn(t) = 1 + 252 cos(^)- (8-37)
k=l

It follows that Dn is real valued.

Proof. This follows by pairing up the positive and negative exponentials in (8.36)
and using (8.3). □

Lemma 8.4.5. Let f E L2([0,2%]; F). The truncated Fourier series of f can be
rewritten as

1 Г27Г
SMt) = ^Jq f(s)Dn(t - s) ds. (8.38)

344 Chapters. Harmonic Analysis

Proof. We have

1 Г^тг -1 /»2тг / n \
- Уо f(s)Dn(t -s)ds = -f f(s) (£ ds

n

= 52 ckeikt = Sn[f](e). □
k——n

Lemma 8.4.6. For n E N, the Dirichlet kernel Dn satisfies the following:

(i) Dn has area 2% on the interval [0,2%]; that is,

/»2тг
/ Dn(t) dt = 2%.

Jo

(ii) Dn is 2%-periodic; that is, Dn(t) = Dn(t + 2%) for all t E R.

(iii) Dn is even; that is, Dn(—t) = Dn(t) for all t E R.

Proof. These all follow directly from Lemma 8.4.4. □

Remark 8.4.7. Combining the results in Lemma 8.4.6 gives

Theorem 8.4.8. Let f E L2([0, 2%]; F). The truncated Fourier series of f can be
rewritten as

Sn[f](t) = f\f(t + s) + f(t - s))Dn(s) ds, (8.39)

where we extend f on both sides of the interval so that (8.39) is well defined; in
particular, we assume f(t) = f(t — 2%) for all t > 2% and f(t) = f(t + 2%) for all
t < 0.

Proof. Adding the identities in Exercise 8.19 shows that

Snm = Г (/(f + s) + /(f~s)) Dn(s)ds.
2ir J_„ \ 2 J

Since the integrand is even, as a function of s, we can halve the interval and double
its value giving (8.39). □

We conclude the discussion of the Dirichlet kernel with a useful identity that we
use in the proof of Theorem 8.2.16 below.

8.4. Convergence of Fourier Series 345

Lemma 8.4.9. When t = 2тгк for some к F Z we have Dn(t) = 2n +1. Otherwise,
the Dirichlet kernel can also be expressed as

e(2n+1W2 - e-<2n+1^/2 _ sin ((2n + 1)2/2)
n 2zsin(2/2) sin(2/2) (8.40)

Proof, The proof is Exercise 8.20. □

Remark 8.4.10. We can use (8.40) to plot the Dirichlet kernel Dn for varying n.
In Figure 8.8, we see what it looks like for n = 40 and n = 80. For increasing values
of n, we can see that Dn(t) takes the value of 2n+1 at t = 0 and gets closer to zero
for nonzero values of t.

8.4.3 Proof of Theorem 8.2.16
Let t E [0, 2tt] be fixed. By Remark 8.4.7, the right and left limits of t satisfy

7r/(t+) = /(* +) [Dn(s)ds and = f(t~) [Dn(s)ds,
Jo Jo

with the edge cases /(0”) and /(2тг+) defined as /(2тг) and /(0), respectively. By
Theorem 8.4.8, we have

Jo Jo
= r(/(t + s)-/(t+)M(S)ds+ r(/(f-S)-/(f-)M(s)ds.

Jo Jo

Hence, it suffices to show that for each e > 0, there exists N such that

Г(/(*
Jo

± s) - /(t±))£>n(s)ds (8.41)< €

whenever n > N.
Let L be the Lipschitz constant for f. Given e > 0, choose 6 < min so

that f is continuous on [t — 3,t) and (t,t + 5], respectively. Hence

\f(t ±s)- /(^)| < Ls (8.42)

whenever 0 < s < 5. Since the sine function is concave on s € [0, тг], we have

(8.43)

for all s € [—тг,тг]. Hence, for 0 < s < 5, (8.40) gives

|ад| =
sin ((2n + l)s/2)

sin(s/2)
7Г

“ 2s

346 Chapters. Harmonic Analysis

Thus combining (8.42) and (8.43) yields

±s) - ds Ls— ds
2s

tvLS e
< 2

Also, (8.40) and Theorem 8.4.2 imply that for sufficiently large n we have

where

2i sin(s/2)
for S e [(5, 7г],

which is piecewise Lipschitz on [J, 7r] and therefore in L2. Combining the two bounds
implies (8.41), which concludes the proof.

8.5 The Discrete Fourier Transform
Sampling a signal corresponds to observing a continuous-time function at (discrete)
equally spaced points in time. In nature, most signals are in continuous time. In
technological applications, most signals are in discrete time. Therefore the interplay
between nature and technology requires going back and forth between continuous­
time and discrete-time signals.

Given a discrete-time signal, we can compute its discrete Fourier transform
(DFT), which gives the Fourier series of the discrete-time signal, or rather the
Fourier series of a continuous-time function that, when sampled, gives the same
discrete-time signal. Of course there are infinitely many continuous-time functions
that yield the same discrete-time sample, so we provide the one that is most efficient,
in a sense to be described later. In short, the DFT provides a way to transform a
discrete-time signal into a Fourier series, thus providing a powerful way to analyze,
filter, and compress the sample.

In addition to discussing the DFT, we also describe a fast way to compute
it. Given a signal of n data points, the naive DFT algorithm takes O(n2) time.
However, the DFT can be computed very quickly using an algorithm called the fast
Fourier transform (FFT), which requires only O(nlogn) time. This difference is
substantial when n is large.

8.5.1 Sampled Functions and the Discrete Inner Product

Definition 8.5.1. Let f e L2([0,T];F) and n e Z+. A sample of f is an n-tuple

f = C/b, fi,..., /п-l) = (Ж),..., Ж-i)) e Fn, (8.44)

where the points 0 = tQ < • • • < tn = T are equally spaced on [0, T] and each t^
satisfies tk = kAn for An = T/n. The map Фп : L2([0,T];F) —> Fn that takes f to
(f(to),..., f(tn_if) is called the sampling operator with sample time An.

8.5. The Discrete Fourier Transform 347

Remark 8.5.2. It is straightforward to check that Фп is a linear transformation.

Definition 8.5.3. The discrete inner product on the space Fn is given by

1 n— 1
(f,g)n = - (8-45)

n k=0

which is ± times the standard inner product on Fn; that is, (f,g)n = ~fTg =

Remark 8.5.4. One nice property of the discrete inner product (8.45) is that it
approximates the continuous inner product

= f(t)g(t)dt

if n is large and the functions f and g are sufficiently well behaved. Specifically, we
have

= <Фп(/),Фп(5))п.

£=0 b £=0

8.5.2 The Discrete Fourier Transform
From Theorem 8.2.1 we know that the set is orthogonal in L2([0,T];F).
Correspondingly, the samples of the same basis functions {$n(el“kt)}k=o form an
orthonormal basis in Fn with the discrete inner product (8.45).

Proposition 8.5.5. Let n E Z+ be fixed. For each к E Zn (see Definition 1.9.7),
let

Фп(е^‘) = w<‘> = (W°,u£,.. • (8.46)

where wn = ехр(2тгг/п) is a primitive nth root of unity (see Section 8.1.3 for details
on the roots of unity). The set {w^J^Zq is orthonormal in Cn with the discrete
inner product (8.45) and thus forms a basis for Cn. We call the set {wn^'p the
discrete Fourier basis on Cn.

Proof. It suffices to show that is orthonormal,
have

The last equality follows from Proposition 8.1.6. □

For any j, к E Zn we

if j' к (mod n),
if j = к (mod n).

348 Chapters. Harmonic Analysis

Many good properties of Fourier series arise from the fact that they express
functions in terms of an orthonormal basis. In the discrete setting, we get these
same benefits since the discrete Fourier basis is orthonormal.

Definition 8.5.6. Let f = (fo, • • •, fn-i) € Fn. The discrete Fourier transform
(DFT) of f is the vector f e Cn of the coefficients of f expressed in terms of the
discrete Fourier basis. In other words, f = (/0, • • • 5 fn-i) satisfies

n—1

f = (/0,...,/n-i) = £AwW.
fc=0

The components can be found via the relation

£=0

(8.47)

Remark 8.5.7. Although the DFT is defined in terms of a vector f e Cn, we often
talk about the DFT of a function /, by which we mean the DFT of the sampled
function f = Фп(/)«

The DFT f i-> f, given by (8.47), is a linear transformation from Cn to Cn.
Because it is linear, we can express it in matrix notation. From here on out, we
write f and f as vectors. The matrix Wn representing the DFT, with f = Wnf, is
given by

(8.48)

For an implementation of the DFT, see Algorithm 8.1.

import numpy as np # module for efficient linear algebra
def DFT(f):

""" Compute the discrete Fourier Transform of
the ID array f."""

n = len(f)
m = np.arange(n).reshape(n,1)
W = np.exp((-2j * np.pi/n) * m @ m.T)
return W @ f / n

Algorithm 8.1. The DFT algorithm, which amounts to computing f = Wnf,
where the matrix Wn, is given in (8.48). Note that @ is the NumPy syntax for
matrix multiplication and -2j denotes the complex number —2i. To compute the
DFT of the vector in Example 8.5.8 call DFT (np. array ([1,6,2,4])).

8.5. The Discrete Fourier Transform 349

Proposition 8.5.9. The matrix Wn is symmetric, that is, Wj = Wn.

Proof. The (J, k) entry of the matrix Wn (indexed from 0 to n — 1) is given by
This is the same as the (k,j) entry. Thus Wn is symmetric. □

Theorem 8.5.10. The matrix y/nWn is orthonormal, that is, nW^Wn = I, where
is the Hermitian (conjugate transpose) ofWn.

Proof. Noting that wnk£ = шк£, we compute

(nWr?Wn)km = - = - £ ^nk~m^ = 6km

£=0 £=0

where the penultimate equality follows from (8.7). □

0 if к ф m (mod n),
1 if к = m (mod n),

Example 8.5. 11. If f = (1,1,..., 1), then the A;th component of the DFT is
given by

1 n— 1

а = -Е^ы = ^ =
£=0

1 if к = 0,
0 if к G {l,2,...,n- 1}.

In other words, f = eo, which is the first standard basis element for Fn,
counting from zero. This makes sense, since the signal is constant and the
first basis vector corresponds to the average.

Example 8.5. 12. Let f — (1, —1,1, —1,..., —1) 6 Fn, where n = 2m, that
is, n is even. Note that fa = (—1/ and —1 = ег7Г = ш™. Thus the /cth
component of the DFT is given by

1 n—1 1 n—1 if к = m,
if к / m.

In other words, f = em, the mth standard basis element.

350 Chapters. Harmonic Analysis

Example 8.5. 13. Let f = Wnm^ = (cjO, co™, 1^m) for some fixed
m G Z. The A;th component of the DFT is

1 n~ 1 i n~ 1 iF _ \ л , ,m£ —k£ “I \ л (m—fc)£ _ г _ J
ik~ n n ~n^n 6krn ~ I 0

£=0 £=0 I

if к = m,
if к / m.

In other words, f = em. In hindsight, this should be obvious, since Wn is
orthogonal to the other basis vectors.

Example 8.5.14. Exercise 8.9 shows how to write a signal as a sum (8.94)
of linear oscillators. By sampling a real-valued signal on [0, T] at n equally
spaced points and taking its DFT, we can estimate the contribution of each
frequency to the signal by plotting the amplitude 2|Д| as a function of the
frequency k/T for 0 < к < (assume n is even).

In Figure 8.9, we sample the audio signal (8.23) at n = 1024 points. We
then compute the DFT of the sample and then plot the amplitude 2|Д| as a
function of the frequency k/T (where T = 0.05 and so each point in the figure
increments by 20 Hz). Note that the peaks are roughly at the frequencies
440 Hz, 660 Hz, and 880 Hz, with amplitudes of approximately 4, 6, and 2,
respectively. In other words, we can use the DFT to decompose a signal into
a sum of linear oscillators of varying frequencies.

Frequency (Hz)

Figure 8.9. A plot of the Fourier amplitudes of a sample of n = 1024 points from
the audio signal in (8.23) (left) as described in Example 8.5.1J. and a zoomed-in
version of the same (right). The amplitudes roughly match those of the signal with
approximate frequencies of 440 Hz, 660 Hz, and 880 Hz.

500 1000
Frequency (Hz)

8.5. The Discrete Fourier Transform 351

8.5.3 The Inverse DFT
An immediate corollary of Theorem 8.5.10 is that the DFT matrix Wn has an easily
computed inverse, which allows us to transform the Fourier coefficients f back to
the original sample f by matrix-vector multiplication. This operation is called the
inverse discrete Fourier transform (IDFT).

Corollary 8.5.15. The IDFT is given by f = Wn 1f, where

’1 1 1 1
1 W„ wn a>n~1

n

W-1 = nWr? = nWn = 1 Wn W„
, ,2(n-l)

1 w^-1) • , ,(n-l)2

(8.49)

Proof. Since nW^Wn = I and Wn is square, we have Wn 1 = = nWn. The
rest of the proof follows from the observation that сийk£ = □

Nota Bene 8.5.16. There are several different conventions for the DFT and
IDFT. These correspond to various choices of к G {1, ^/n, n} and a G {-1,4-1}
in the sum

1 n— 1

K e=o

In this text we have used the convention of к = n and a = — 1, and our IDFT
corresponds to к = 1 and cr = 4-1. The reader should be aware of other
conventions, especially when using software libraries.

8.5.4 Fast Fourier Transform
Both the DFT and the IDFT can be implemented by matrix-vector multiplication
via (8.48) and (8.49), respectively, both of which have a temporal complexity of
O(n2). In this section we show how both of these transforms can be sped up to
O(nlogn) by using the fast Fourier transform (FFT). This drastic and remarkable
improvement allows for very fast real-time computation of the DFT in many set­
tings, including radar, image processing, audio filtering, magnetic resonance imaging
(MRI), and many other applications.

Lemma 8.5.17. Let n = 2m for some m G Z+. If f = (/о, Л, • • •, fn-i) € Fn,
then the DFT f = (/0, /i, • • •, /п-i) € Fn satisfies

/ n/2-1 n/2-1 \

■ (8-50)

352 Chapters. Harmonic Analysis

Proof. Separate (8.47) into the even and odd powers of wn to get

£=0

n/2-1 n/2-1

- £ + - L
j=0 j=0

1 / 1 n/2 —1 1 n/2-1

2 (^/2 £ Ь)ШП/2 +шпк^ £ /2j + lWn/2

\ 7 j=0 7 j=0

The last step uses (8.8) to get cvn2jk = □

Let fe denote the vector of length n/2 consisting of the even-indexed entries
of f, and let fe denote its DFT. Similarly, let fo denote the vector of odd-indexed
entries of f and fo its DFT. If к < n/2, then the first sum in (8.50) is exactly the
index-A: part of fe, and the second sum is exactly the index-A; part of fo. If A: > n/2,
then = cu^/2n^2, and so each sum corresponds to the entry with index к — n/2

from fe or fo, respectively. Thus we can construct the full DFT of f recursively, by
computing fe and fo rescaling the odd part by w~k (often called the twiddle factor
in this setting), and summing them.

Theorem 8.5.18 (Fast Fourier Transform). Let n = 2rn for some meZ+. By
applying (8.50) recursively, we can compute the DFT in O(n log n) time.

Proof. The lemma converts the DFT of a vector of length n = 2m into the sum of
two DFTs of length n/2. The second term must be multiplied by a root of unity
and then added to the first. The multiplication and sum have temporal complexity
0(1) for a single coefficient Д, and since we are computing them for n coefficients,
they contribute O(n) to the temporal complexity. If T(n) is the time it takes to
compute all n coefficients of the DFT of a vector of length n = 2m, then we have

T(n) < 2T(n/2) + cn

for some constant c > 0. By the master theorem (Theorem 1.10.2), it follows that
T(n) e O(nlogn). This recursive approach to computing the DFT is called the fast
Fourier transform. □

Remark 8.5.19. When n is not an exact power of 2, we can pad the signal with
extra zeros at the end until its length is a power of 2, and then perform the FFT.
The maximum number of zeros required is n — 1 (when n = 2m +1), and the padded
FFT will be run at worst on a sample of length 2n. Thus the temporal complexity
will be at worst O(2nlog(2n)) = O(nlogn).

Remark 8.5.20. Since the IDFT is constructed in a manner almost identical to
the DFT, an argument similar to the one above shows that the IDFT also has a
fast divide-and-conquer implementation of temporal complexity O(nlogn).

8.5. The Discrete Fourier Transform 353

2
3
4
5
6
7
8
9

10
11
12
13
14
15

def FFT(f):
"""Perform the FFT algorithm on the numpy array 'f

n = len(f) # assumed to be a power of 2

if n <= 4: # this cutoff to be optimized, also a power of 2
return DFT(f)

else:
f_even = FFT(f [: :2]) # FFT of even indexed entries of f
f_odd = FFT(f[l::2]) # FFT of odd indexed entries of f
w = np.exp((-2j * np.pi/n) * np.arange(n))
first_sum = f.even + w[:n//2] * f_odd
second_sum = f.even + w[n//2:] * f_odd
return 0.5 * np.concatenate([first_sum, second_sum])

Algorithm 8.2. The FFT algorithm, which computes the DFT recursively using
(8.50). At the end of the recursion, for the vectors of length less than some cutoff
(here we use 4, but that choice should be optimized), the algorithm uses the DFT
code from Algorithm 8.1. As observed after the proof of Lemma 8.5.17, the vectors
fe and fo are used once for the terms of index k < n/2 and again for the terms of
index к > n/2. Theorem 8.5.18 shows that this algorithm has temporal complexity
O(nlog(n)), which is a big speedup over the complexity O(n2) of the naive DFT
using matrix multiplication.

Remark 8.5.21. There are very efficient implementations of the FFT that have
relatively small leading coefficients on the nlogn. Algorithm 8.2 is just an illustra­
tion of how to implement the FFT, but it is not especially efficient.

8.5.5 A Foray into Filtering with Fourier
We conclude this section by presenting two simple methods of filtering noise from a
signal. Consider the audio signal given in (8.23). If some Gaussian noise is added to
the signal (for example, if it is transmitted along a noisy channel), then we get a new
signal, as in the top panel of Figure 8.10. Moreover, plotting the amplitudes of the
various frequencies shows nonzero coefficients distributed jaggedly, but somewhat
uniformly, across all frequencies; see the bottom panel of Figure 8.10. This is
because Gaussian noise is uniform across frequencies. We call this white noise
because in the visual spectrum the color white is a uniform combination of all
frequencies.

There are two easy ways to filter the noisy signal in Figure 8.10. In both cases
we carry out the filtering by sampling, using DFT, applying a function to the
transformed values, and then using the IDFT to get back a filtered signal.

One way to filter the noisy signal is to use the fact that the original signal
consisted only of frequencies between 400 and 900 Hz, so we remove all frequencies
less than 400 Hz and greater than 900 Hz. This is called a band-pass filter, and it is

354 Chapters. Harmonic Analysis

20

0)
■ft
3

10

-10

-20

a 0

0.050.01 0.040.02 0.03
Time

0.00

6-

4 -

2 -

0-1
2000 8000 100004000 6000

Frequency (Hz)

Figure 8.10. A plot of (8.23) with added Gaussian noise. The top panel shows
the noisy signal as a function of time (in seconds), and the bottom panel shows the
net amplitudes as a function of frequency (the result of applying the DFT).

accomplished by applying the DFT, setting all the resulting coefficients outside the
range of 400 and 900 Hz to zero, and then using the IDFT to construct the filtered
signal.

Another way to filter the noisy signal is to remove any frequency that has small
amplitude, with the expectation that the noise should have relatively small ampli­
tude relative to the original signal. This is accomplished by applying the DFT,
setting all the resulting coefficients with amplitude less than some value to zero (in
Figure 8.11 we used | as the cutoff), and then applying the IDFT to construct the
filtered signal. Both filtered signals are shown in Figure 8.11.

8.6 Convolution
In most modern applications, signals and images are typically represented in discrete
time and space as large arrays of numbers indicating an intensity or magnitude at
that specific point in space or time. Mathematically we can consider these arrays
as vectors in a high-dimensional vector space. This allows for methods from linear
algebra and multivariable calculus to be used to analyze and process the data.
However, the dimensions used are often too high to be immediately useful.

For example, when dealing with images, slight translations, rotations, or changes
in resolution, scale, or color will have no significant perceptual differences to a
human, but the vector representations can be wildly different from each other and
make it difficult or even impossible to make sense out of the data. One useful

8.6. Convolution 355

20

■g 10

ъ 0
I -10

-20

0.00 0.01 0.02 0.03
Time (s)

0.04 0.05

Figure 8.11. The two filtering methods discussed in Section 8.5.5. The plots show
the filtered signal in black and the original, noisy signal in red. The method used
for the upper panel is a band-pass filter that removes all frequencies outside of a 400
to 900 Hz band. The method used for the lower panel is a filter that removes all
frequencies with small amplitude (below ±).

approach is to reduce the variation through filtering so that perceptually similar
signals and images have similar vector representations.

For example, Section 8.5.5 showed that a low-pass filter can remove noise from
a signal. In this section we generalize the notion of a filter using a mathematical
construct called convolution, which, when applied judiciously, can often help sim­
plify or allow better analysis of the resulting vector. While this doesn’t reduce the
dimensionality of the vector representation, it can reduce the variability caused by
noise as well as provide better ways of understanding how to match signals and
images that have undergone translations, rotations, or changes in resolution, scale,
or color. Convolutions can average data locally, in a way that reduces variability
while preserving perceptual similarity. They can also be used to identify whether
a certain feature in the data is present. Moreover, multiple convolutions can be
composed in succession to extract features that help identify patterns in data.

8.6.1 Circular Convolution
Throughout this subsection, we assume that signals are periodic with period T and
thus correspondingly their samples are periodic with period n. Hence, given a vector
f = (Jo, fi, fz,..., fn-i) € we assume that fk+n = fk for each к e Z. We call
such a vector a periodic vector.

356 Chapters. Harmonic Analysis

Definition 8.6.1. Given periodic vectors f and g in Fn, we define their circular
convolution as the periodic vector f * g e Fn whose к th component is given by

n—1
(f * g)fc = E

j=o

(8.51)

Example 8.6.2. If f = (1,3, 2,0) and g = (1,1,0,1) are periodic vectors,
then

(f * g)o = 1 • 1 + 0 • 1 + 2 • 0 + 3 • 1 = 4,
(f * g)x = 3 • 1 + 1 • 1 + 0 • 0 + 2 • 1 = 6,
(f * g)2 = 2 • 1 + 3 • 1 + 1 • 0 + 0 • 1 = 5,
(f * g)3 = 0 • 1 + 2 • 1 + 3 • 0 + 1 • 1 = 3,

and so f * g = (4,6, 5,3).

Remark 8.6.3. Given periodic vectors f, g E Fn, the circular convolution f * g is
compatible with the requirement of periodic vectors that fk+n = fk for each к e Z.
Indeed, for any к we have

n— 1 n—1

(f * g)n+fc = У fn+k-j9j = У fk—j9j = (f * g)fc-

The next result lists some basic properties of the convolution operator.

Theorem 8.6.4. Let f,g,h e Fn be periodic. For any a,b e F, we have the
following properties:

(i) f g = g f.* *

(ii) f (g h) = (f g) h.* * * *

(iii) (uf + 6g) h = a(f h) + 6(g h).* * *

Proof, First observe that for any periodic vector f E Fn, the sum over n consecutive
terms is the same no matter where the sum begins:

n—1+fc n—1

E a = E^ vfceZ-
i—k i—Q

To see this, reindex to put all indices in the range {0,1,2,..., n — 1}. For example,
when 0 < к < n — lwe have

n—l+k n—1 n— 1+fc n—1 к—1 n— 1

E a = E^+ E л = Е^+Ел = Е^
i—k i—k i—n i—k j—0 i—0

Now we prove each of the parts of the theorem.

8.6. Convolution 357

(i) Using m = к — j to reindex the sum defining (f g)fc (and reversing the order
of summation) gives

*

n— 1 m—k

(f * g)fc = fk—j9j = fm9k—m
j—0 k—n+1
n—1

= Qk—mfm = (g * f)fc-
m—0

(ii) Using m = j — i to reindex the sum defining (g h)j gives*

(f * (g * h))fe = 52 h-j 52 9^-ihi
j—О \г—0

i—Q \m—Q

= ((f*g)*h) fc.

(iii) Expanding gives

n—1
((af + 6g) * h)fc = 52(aA-j + bgk-j)hj

j=o

n—1 n—1
= а fk-jhj + b gk-jhj

J=o j=o

= a(f * h)fe + 6(g * h)fc. □

Remark 8.6.5. Properties (i) and (iii) in Theorem 8.6.4 can be combined to show
that the convolution is also linear in the second argument. Thus convolution is a
bilinear operation.

Example 8.6.6. Let ei denote the periodic vector whose zth entry is one,
and all other entries zero; so the jth component of ег is 6ij. Thus

n—i

(f * ei)fc — fk—j^ij = fk—i-
j=0

In other words, convolving f with e^ shifts f to the right by i entries.

358 Chapters. Harmonic Analysis

Example 8.6.7. Convolving an input signal f with a sum g = ei — 0.5e2o
gives

f *g = f *ei — 0.5f * e2o-

The term f *ei gives a copy of f shifted one unit to the right. And the term
—0.5f * e2o gives a copy of f shifted 20 units to the right, inverted, and scaled
to half amplitude. Thus this convolution reproduces f along with an (inverted)
echo of f of half amplitude. See Figure 8.12.

Figure 8.12. Convolution of an input f, consisting of a single hump (left), with a
filter g = ei — 0.5e2o? as described in Example 8.6.1. The convolution f * g (left)
consists of a copy off shifted one unit to the right (due to e±) and one more copy of
f shifted 20 units to the right (due to e2o), inverted, and scaled to half amplitude.

8.6.2 The Finite Convolution Theorem
In this subsection we prove the finite convolution theorem, which gives a fast method
for computing the convolution using the FFT.

Definition 8.6.8. For f = (/0, fl, • • •, /n-i) € Fn and g = (g0,gi, ••• ,5n-i) € Fn,
the Hadamard product is the componentwise product

f ®g = (fogo, figi, • • •, fn-ign-i)-

Example 8.6.9. If f = (1,3,2,0) G F4 and g = (1, 2,0,1) G F4, then

f 0g = (1,6,0,0).

Theorem 8.6.10 (Finite Convolution Theorem). Iff, g G Fn are periodic,
then the DFT satisfies the identity

(f * g) = nf © g. (8.52)

8.6. Convolution 359

Proof. Assume f = (/o,/1, • • •,/п-i) Fn and g = (po,Pi, • • • ,5n-i) € Fn.
Writing out the fcth component of n(f * g) gives

n—1 n—1 /n—1
n(f * g)fc = £ Jfc(f * g)> = £ Jk (£

j=0 j=0 \г=0

Hence 8.52 follows. □

Example 8.6.11. Let f = (A, • • •, A, • • •, A-i) € Fn be the DFT of the
vector f 6 Fn. Recall from Example 8.5.13 that the DFT of the fcth (periodic)
Fourier basis vector is e&. Denoting the IDFT by W~T and applying
Theorem 8.6.10 to the expression gives

If *w^ = lw-x((f = W“x(f ®w£fc))
n n

= W"x(f 0 efe) = W-x(0, • • •, 0, A, 0..., 0).

This strips out the component of the A;th frequency of f and discards all the
other frequencies. We can use this fact, along with linearity of convolution,
to create a filter that removes, attenuates, or amplifies any combination of
frequencies in the original signal f. For example, if g = ^2k>rn then
convolving with g keeps all the frequencies greater than or equal to m but
removes all the frequencies less than m from f.

8.6.3 Fast Convolution
Taking the IDFT of both sides of (8.52) gives

f * g = nWn 1 (? © g) •

This gives a fast way to compute a convolution; that is, take the FFT of f and
g, multiply the results componentwise, and then take the inverse FFT. Since each
application of the FFT is O(n log n), and componentwise (Hadamard) multiplication
is O(n), the entire calculation is O(nlogn). This is a considerable speedup for
convolutions, since the naive definition (8.51) is O(n2).

Fast convolution has many applications, including in signal processing, as men­
tioned above. More examples are given in the computer labs for this volume.

360 Chapters. Harmonic Analysis

8.6.4 *Linear Convolution
Although circular convolutions are most useful when dealing with Fourier analysis,
other variations of convolution are important in many settings. An especially im­
portant variant is the linear convolution, which we denote by Linear convolution
maps two vectors f,g 6 Fn into a new vector f *'g 6 F2n-1, given by the rule

(f *' g)o = ZoPo,
(f *'g)i = /iPo + /oPi,

(f *Z g)n-l = fn-19o + fn-291 + • • • + fo9n-l,

(f *' g)n = fn-191 + • • • + fi9n-i,

(f *' g)n+l = fn-1 92 + • • • + f29n-li

(f * g)2n—2 = fn—19n—1,

(f *'g) fc =0 V/c^{0,...,2n-2}.

To compute a linear convolution within the framework of periodic vectors and cir­
cular convolution, we can pad the periodic vectors with n zeros before and after the
original vectors. That is, set

f'= (0,0,... ,0,/о, • • • >/n-i>0,0,...,0) € F3n,
g' = (0,0, • • •, 0, <7o, • • •, <M-i, 0,0, • • •, 0) € F3n,

which gives (f' * g')fc = fk-j9j, and then take (f *' g)fe = (Г * g')n+k for
к € {0,. ..,2n —2}.

Similarly, to compute a circular convolution within the framework of the linear
convolution, pad the vectors with one more copy, that is, set

f" = (/o,...,/n-i,/o,...,/n-i)eF2n,

g" = (go, ■ ■ ■,gn-i,go, ■ ■ ■,9n-i) & F2n,

which gives (f" *' g")fc = 1 fk-j9j, and then take (f * g)fc = (f" *' g")n+k for
к € {0,...,n- 1}.

8.7 Periodic Sampling Theorem
In this section we address the question of how to reproduce a periodic function from
a sample. The FFT and convolution are very powerful tools for understanding and
modifying sampled functions. But once all the computations and adjustments have
been made to the sample, we need to convert it back to a function, and, as it turns
out, there is not a unique way to do this. So the question becomes, What is the
best way to reconstruct the signal?

8.7. Periodic Sampling Theorem 361

8.7.1 Band-Limited Functions
In most real-world applications, the high-frequency part of a signal is considered
noise. For audible signals, crackling and static are high-frequency noises, and it
is often considered a good idea to filter all parts of a signal that lie outside of a
certain frequency band. This is one example of the common situation where we
want to consider only functions that have a Fourier series involving a limited range
of frequencies. Such functions are called band-limited functions.

Definition 8.7.1. A function f G L2([0, T];F) with Fourier series
oo

/(*) = 52 сквшк1
k— — OG

is called band limited if there exists a nonnegative integer v such that Ck = 0
whenever \k\ > v. In this case, the smallest such z/ is called the Nyquist frequency
of f. The Nyquist rate of f is twice the Nyquist frequency.

Example 8.7.2. Consider the function

f(t) = 2 sin(67rt) + 3 sin(107r£ + 2) + 5 sin(147rt + 4).

Using the formulas (8.33) to write the trigonometric functions as exponentials,
we have

7(f) = (е2™3* - e-2™3t

। / 2тгг74+4г
+ 2г

_2wi7t
2г

9x,2г
____ 2тгг5£

+ 2г +

3 / 2тгг5^+2г — 2ггг5£—2г
2г к

_ 27ri7t—4г

3е 2г -2ттг5г

2г
5е4г 2ттг7г

2г

_ 2тггЗг । ^л27ггЗг

г i

This exponential Fourier series has c±7 0 but all coefficients Ck vanish for
\k\ > 7; thus the Nyquist frequency of f is v — 7, and the Nyquist rate is
2z/ = 14.

Application 8.7.3. As mentioned in Section 8.2.2, most humans cannot hear
frequencies above 20 kHz. Hence, the difference between an audio signal /(t)
and the perturbed signal f(t) + sin(oz£t), when £ > 20,000, is not audible to
humans (although your dog might not like it!). Therefore, for audio signal
processing, it is common to work with functions having Nyquist frequency of
slightly over 20 kHz to cover people with exceptional hearing. This gives a
corresponding Nyquist rate of slightly over 40 kHz, and, indeed, the standard
sample rate used in audio recordings is 44.1 A; kHz.

362 Chapters. Harmonic Analysis

8.7.2 Aliasing
Assume that a signal f has Fourier series 5[/](t) = Скега}к*. As before, we
sample the interval [0,T] at n equally spaced points 0 = to < t± < • • • < tn_i < T
with te = These samples cannot determine the function f uniquely, because
the functions ега}1: and e2a;(n+1)t both take on the same values at each that is,

eia}t _ ^Tti(£+(./n) _ g27F2(n+l)t£ _ g2Cj(n+l)t (8.53)
t—tl t=te

The good news is that if the sample comes from a band-limited periodic function,
then Theorem 8.7.7 (given below) guarantees the function is uniquely determined
by the samples, if there are sufficiently many samples. Moreover, given a sample
rate, we can identify a band for which all functions limited to that band can be
perfectly and uniquely reconstructed from the samples.

Example 8.7.4. Consider the function f(t) = C-±e~lt + co + ciezt on [0, 2тг].
Sampling only once on the interval [0, 2тг], at the point 0, will only determine
the value of /(0) = c_i + cq + Q. Sampling twice, at 0 and 7Г, will also
determine /(тг) = —c_i + cq — q. With these two values, we can deduce
co but not c-i and ci. Only after sampling three times, at 0, can
we deduce the values of all three coefficients. This shouldn’t be a surprise
since three sample points gives a linear system with three equations and three
unknowns.

Remark 8.7.5. Generalizing the previous example, if we consider the family of all
functions of the form

n
= 52 ckeiM

k——n

on the domain [0, T], then to uniquely determine the 2n + 1 coefficients c_n,..., cn
requires 2n + 1 samples in order to have at least as many equations as unknowns.
This means we need to sample at a rate higher than the Nyquist rate of 2n in order
to recover the signal. Of course, even if we sample at this higher rate, it is con­
ceivable that there might be linear dependencies among the equations (the matrix
representation might not have full rank), but Theorem 8.7.7, below, shows that this
is not the case: the Nyquist bound is exactly the right bound, and any sampling
rate higher than the Nyquist rate will allow for perfect and unique reconstruction.

Definition 8.7.6. When the number of samples is insufficient to uniquely identify
a band-limited T-periodic function f with Nyquist frequency z/, any other function
with the same sample values is called an alias of f if its Nyquist frequency is no
greater than v.

Simple examples of aliasing are given in Figures 8.13 and 8.14. You can see two-
dimensional examples of aliasing when watching videos of rotating objects. When
the frame rate of the video is very close to an integer multiple of the rotation
rate of the object, the object appears to stop rotating. This is the explanation of

8.7. Periodic Sampling Theorem 363

Figure 8.13. A simple example of aliasing. When the black curve y(t) = sin(4t) is
sampled only four times, each sample also lies on the red curve y(t) = sin(2t). The
red curve is an alias for the black.

Figure 8.14. Two examples of aliasing. In the left panel is a plot of cos(800t),
and in the right panel a plot of cos(lOOOt), but neither image is an accurate repre­
sentation of the functions. Since the number of dots drawn in these images is much
smaller than the number of times each curve oscillates, the plots appear to be of
an entirely different shape than the true curves. Indeed, we can’t hope to plot these
curves at this resolution, since the thickness of a line is greater than the wavelength
of the oscillations.

the popular internet videos of flying helicopters whose rotors appear not to spin.
Similarly, if the frame rate is only slightly faster or slower than a multiple of the
rotation rate of the object, the object appears to rotate very slowly.

8.7.3 Periodic Sampling Theorem
The periodic sampling theorem guarantees that whenever the number of samples of
a band-limited periodic function exceeds the Nyquist rate, the function is uniquely
determined by the samples.

Theorem 8.7.7 (Periodic Sampling Theorem). Assume that a band-limited
function f : [0,T] —> F has the form f(t) = Y^k=-u ck^kt • If f is sampled at
equally spaced points 0 = to < й < • • • < tn-i < T, where each te = ^, and n
exceeds the Nyquist rate of 2v, then f is uniquely determined by its sampled values

364 Chapters. Harmonic Analysis

Фп(/) = f = (Л*о), /(*1), • • •, /(^n-i))« particular, the coefficients Ck are given
by the DFT of the vector of samples, with a shift, that is,

Ck =
A
fk+n

if k G [0, y\,
if к e \—y, 0),

where (/о, A,..., A-i) = ? = Wnf is the DFT off.

Proof. The discrete inner product (Фп(/), Фп(д))п is uniquely determined by the
values of f and g at the sample points to,..., tn_\. Moreover, by Proposition 8.5.5,
the set {&n(cl“kt)}k=o orthonormal with respect to For any к G Z and
any £ G {0,..., n — 1} the sample value of the function ezajkt at tp is equal to the
value of the function at fy. Therefore, the set

{Фп(е^)}”2

is also orthonormal with respect to (•, -)n. Since n > 2z/, we have у < n — v — 1,
and therefore, for each integer к E [—v, y\ the coefficient

Cfc = ($n(/),$n(e-fct))n fk if к G [0, y),
if к G [—У, 0)

is uniquely determined by the values of f at the sample points t0,..., tn_i. □

Example 8.7.8. The function of Example 8.7.2 has Nyquist frequency 7, so
the function is uniquely determined (as a periodic band-limited function with
у = 7) by 15 or more samples. In Figure 8.15 we show what happens when
we sample 2, 5, 9, 11, 14, and 15 times. In each case the red curve is the
periodic function with the smallest Nyquist frequency that passes through all
the sample points. The signal is not correctly reconstructed until the number
of samples exceeds 14.

Vista 8.7.9. There is also a sampling theorem for nonperiodic functions,
called the Shannon sampling theorem. Like the periodic sampling theorem, it
guarantees that if a function is band limited, then sampling above the Nyquist
rate will allow the function to be completely reconstructed. More precisely,
it guarantees that /(t) is completely determined by its values at the points
tk = for к G Z, that f(t) can be written as

/(») = E (8.34)
, nt — ктгk——oo

and that this series converges uniformly. A full treatment of the Shannon
sampling theorem requires the Fourier transform (see Vista 8.2.17), rather
than just Fourier series. This is discussed in more depth in Volume 4.

8.7. Periodic Sampling Theorem 365

9 samples

Figure 8.15. Attempts to reconstruct the f in Example 8.7.8 with 2, 5, 9, 11, 14,
and 15 equally spaced samples. The function f (black) has Nyquist frequency 7. In
each case the red curve is the periodic function with the smallest Nyquist frequency
that passes through all the sample points. As described in the periodic sampling
theorem (Theorem 8.7.7), the function is uniquely determined (as a band-limited
periodic function with Nyquist frequency 7) once the number of samples is strictly
greater than the Nyquist rate of 14.

8.7.4 Antialiasing
We have seen that when a band-limited, T-periodic function

/(t) = £ ckeiukt

k——v

is sampled at a rate n <2v, aliasing occurs when we try to reconstruct the function,
and the alias may be very different from the original function. One way to improve
the situation is to first set all the Fourier coefficients outside the interval [—/z, p] to
zero, where /1 = ; that is, replace f by the function

/(f) = £ ckeiukt.

k——p,

Sampling f at least n times will allow perfect reconstruction of f from the sample.
This is preferable to sampling from f and reconstructing an alias for f because f
is the best approximation to f (measured in the L2-norm), as the next proposition
shows. That means f is always at least as close to f as the corresponding alias
would be.

366 Chapters. Harmonic Analysis

Proposition 8.7.10. Define span(F^) to be the space of all band-limited Fourier
series on [0,T] with Nyquist frequency at most v. If f G L2([0, T];F) satisfies
f = 5[/], then the truncated Fourier series f = satisfies

\\f-f\\<\\f-9\\

for all g G span(B1/).

Proof. The proof is Exercise 8.37. □

The process of replacing f with f is an example of low-pass filtering, so named
because it keeps (passes) low frequencies and discards (filters) high frequencies. If
it is done before sampling, to reduce aliasing effects, it is called antialiasing. With
audio signals, antialiasing is often done with an analog electronic circuit, and with
video or images, it is often done with a lens or optical filter that slightly blurs the
images.

8.8 Haar Wavelets
Fourier analysis deals with the representation and approximation of functions as
the superposition (linear combination) of trigonometric functions. In this section
and throughout the remainder of this chapter, we consider superpositions of a dif­
ferent class of functions called wavelets, which come from sums of two self-similar
functions, called the father and mother wavelets, that are rescaled and translated
numerous times to form a representation or approximation of a function. In this
section and the next, we focus on a simple class of wavelets called Haar wavelets.
We consider more general wavelets in Section 8.10.

One of the key features of Fourier analysis is the fact that the Fourier basis
functions {ега}к1}ке% form an orthonormal basis. This allows us to use the inner
product to peel off the Fourier coefficients and represent a function as a linear com­
bination of the basis functions. This concept also extends to the discrete case, where
a signal can be written as a linear combination of the discrete Fourier basis vectors
{wn^Io, and the coefficients are likewise computed with an inner product; see
(8.47). Wavelets work similarly, expressing or approximating a signal or sample as a
linear combination of wavelet basis functions, and the coefficients can be determined
by computing an inner product.

While Fourier series nicely represent and approximate smooth periodic func­
tions, they are not ideal for functions with discontinuities. Indeed, as discussed in
Section 8.2.3, the Fourier series suffers from some undesirable error, called the Gibbs
phenomenon, when applied to discontinuous functions. This makes the Fourier ap­
proximation less than ideal for discontinuous functions. By contrast, wavelets can
gracefully and efficiently represent discontinuities in a signal.

Another advantage of wavelets is that the basis functions can represent local
behavior with only a few terms. Contrast this with Fourier series, where all the
basis functions are periodic and hence do not naturally represent local behavior.
One approach for dealing with this is to divide the domain into small subintervals
and use Fourier analysis on the restriction of the function to each subinterval, but
then it is difficult to capture behavior that occurs at large time scales. Wavelets
provide a different way of handling these problems.

8.8. Haar Wavelets 367

In summary, wavelets are sets of orthogonal functions specially designed for non­
periodic, piecewise-continuous functions. In many situations involving piecewise-
continuous functions, such as those observed in images, videos, and other digital
media, a wavelet basis can be chosen so that the wavelet transform is sparse, mean­
ing that it has only a small number of nonzero entries in its matrix representation,
thus providing a very efficient representation.

8.8.1 The Haar Father and Sons
We begin with a function called the Haar scaling function (or Haar father function)
and its scaled translates, which we call its sons.

Definition 8.8.1. The left-continuous39 map p : R —> {0,1} given by

39Recall that a function f is left continuous if limf_>a+ /(t) = /(a) for every a £ R.

99(f) =
if 0 < t < 1,
otherwise

(8.55)

is called the Haar (father) scaling function. Its graph is given in Figure 8.16. The
Haar sons are the following scaled and translated versions of the father function:

= ip(23t -k) =
•£ fc J. fc + 1
V 2J — b ’
otherwise,

where j G N and к e Z.

-1.0 0.5 2.0

Figure 8.16. Plot of the Haar father function p given in Definition 8.8.1.

The Haar father can be thought of as the most basic step function. Any left-
continuous step function f with compact support that only jumps at integers can
be written as linear combinations of integer translates of the Haar father. More
precisely, such an f can be written as

oo
/(f) = £ /(fcMt-fc).

к— — oo

Note that since f has compact support, all but a finite number of the sample values
f(k) are zero. Hence the sum is well defined.

368 Chapters. Harmonic Analysis

Example 8.8.2. Step functions that change only at integer values can always
be written as linear combinations of translates of the Haar father function p.
Consider the function

f(f) = 2p(f) + 0.8c/?(t - 1) + 3.- 2) - 2p(t - 3),

which is illustrated in Figure 8.17.

3- ------------------

2 ' ------------------

1 - ____________

0--- -------------------

- 1 -

- 2 - ------------------

— 3 л---------------1------------------ 1------------------- 1------------------ 1------------------- 1------------------ 1
-1 0 1 2 3 4 5

Figure 8.17. The function f in Example 8.8.2.

More generally, we can approximate any function f : R —> R by choosing j G N
and sampling f at the points tk = for к G Z. This gives an approximation Tj [f] (t)
by left-continuous step functions that have their discontinuities at the values , by
using the sons р^к:

™ / k\ / b\
Tj[f](t)= £ (8.56)

k——oo 4 7 k— — oo x 7

Again since f has compact support, all but a finite number of the sample values
are zero and the sum is well defined. Moreover, as shown at the end of this

section, if f is left continuous and has compact support, then the approximation
(8.56) converges pointwise to f as j сю.

Example 8.8.3. Consider the function

/(t) = 100t2(l - t) I sin(10t/3)|. (8.57)

We can approximate f by computing 7j[/] for various values of j € N; see
Figure 8.18.

8.8. Haar Wavelets 369

Figure 8.18. Sampling a function f (black) at points of the form for к G Z
gives an approximation (red) by Haar sons, as f(t) ~ Tj [f] (t) as given in (8.56).

8.8.2 Vector Space Structure
The Haar sons span a vector space that can be used to approximate functions.
Moreover, the Haar sons define an orthogonal basis. This is a very natural basis to
use for sampled signals, especially those which are discontinuous and nonperiodic.

Throughout the remainder of this chapter, we assume that we are working in
the vector space L2 (R; R) of square-integrable functions with compact support and
with the usual inner product

Zoo
fW)g(t)dt. (8.58)

-oo

Definition 8.8.4. For each j G N, let Vj denote the span of the set {(pj,k}ke%-

Every function in Vj is a left-continuous step function with compact support
and has discontinuities only on the grid points {^}fceZ- Moreover, it is immediate
that

<p(t) = + g>(2t - 1), (8.59)
which generalizes to the scaling relation

Tj,k(t) = Tj+l,2k(f) + W, (8.60)

which holds for all j G N and к G Z. This shows that Vj is a subspace of V)+i, for
each j G N. Thus we have an increasing chain of vector space inclusions

Vo C Vi C V2 C • • • C Vj-г C Vj C • • • .

Proposition 8.8.5. The set of functions {2^2(pj^}kez C Vj гз orthonormal.

Proof. The proof is Exercise 8.39. □

Assume f G L;?(R;R). We can project f orthogonally onto Vj by computing
OO OO „ fc+1

Projy. /(t) = 2J/2 ^2 (.A2j/Vj,fc(*))^,fc(*) = 27 H If f(t)dt.
k——oo k——oo J 2J

370 Chapters. Harmonic Analysis

The sum is finite because the support of f is bounded and thus covered by a finite
number of intervals of the form [i, If f is sufficiently well behaved, then as
j gets large the integral is well approximated by the area of the rectangle of height
f (7^-) and width 2“Л This gives

k+i z ./ 2^ f A* \
k
2-7 X 7

which implies that projv. /(t) « £ Yr In °ther words, the orthogonal
projection of / onto Vj is approximately !)[/], which also lies in Vj.

8.8.3 Haar Mother and Daughters
Recall that Vj is a subset of V)+i. Here we introduce the Haar mother wavelet,
and her daughter wavelets, which provide an orthonormal basis for the orthogonal
complement V^ in V)+i. This allows us to express elements of Vj+i as linear
combinations of Haar sons in Vj and Haar daughters in Vj-.

Definition 8.8.6. The Haar mother wavelet is the function

— y>(2t — 1) = — 1
0

ifO < t <

otherwise.
(8.61)

The graph of ф is given in Figure 8.19. The Haar daughter wavelets ^j^ are scaled
and translated versions of the mother:

Фз,к№ = ^(2^ - k) = - ft+l,2fc+lW (8.62)

for all j G N and all к eZ. Denote the span of {ф^к}ке% by Wj.

0-

-1.0 -0.5 0.0 R5 Z0

Figure 8.19. Plot of the Haar mother function ф given in Definition 8.8.6.

8.8. Haar Wavelets 371

Proposition 8.8.7. The following hold for all j G N and k,£ G Zr

(О =
(ii) € Vj+i and hence Wj C Vj+i-

(iii) = 0.

(iv) ll^.fclli = 2“J-
(v) The set {^j,fc}jeN,fcez is orthogonal.

Proof. The proofs of (i)-(iv) are Exercise 8.41. For (v) observe that if j < jf,
then by (ii) we have 'ipj^ € Vy, but by (iii) {^j^k^g} = 0 for all g e Vjf, so
('Ф^кт'Фу,k’} = 0- Finally, when к 7^ kf the functions and ^k' have disjoint
support, and so V^fc') = 0- □

8.8.4 Daughters and Sons Are Complements
As shown in Proposition 8.8.7(iii), for a given j G N each daughter is orthogonal
to each cpj^ for all &,£ G Z; thus each € VJ±. This implies that Wj C V^,
where Vj~ is the orthogonal complement of Vj in V)+i. We now show that Wj = Vj~.

Theorem 8.8.8. The space Wj is the orthogonal complement ofVj in that
is, Vj ф Wj = Vj+\ and Wj = Vj~. We denote this by

= Vj e± wr

Proof. Since Wj ± Vj and Wj C Vj+i, it suffices to prove that V^ C Wj. Assume
that

oo

9 = UkTj+l,k £ V7 + I
k——00

with g G V^; therefore, g ± (pj,m for each m G Z. Using the scaling relation (8.60)
and the orthogonality of sons (Proposition 8.8.5), we have

0 = = (<Pj+l,2m,g) + + = a2m •

Thus U2m+i = -fl2m for each m G Z. It follows that

00 00

g = 2 akTj+l,k = 2 (®2m 9^7+1,2m H” ^2m+19-?7 + l,2m+l)

k— — 00 m— — 00
00 00

= ®2m (9^7+1,2m 9^J+1,2m+l) = ^2ra^j,ra □
Tn— — 00 m——00

The previous theorem allows us to write each Vj as an orthogonal direct sum of
Haar daughters.

372 Chapters. Harmonic Analysis

Corollary 8.8.9. For any i G N with i < j e Z+ we have

Vj = Vi e± Wi e± wi+1 e± • • • e± %_2 e± w^.

Proof. For j G Z+ we have

Vj = Vj-! e± Wj-!
= Vj-2 ®± Wj_2 ®_l Wj-1

— Vo ®_L Wo ®± • ' • ®± Wj—2 ®± Wj — 1. □

The corollary shows that any function f G Vj can be written as f = vo + wo +
wi H------ |- wj-1, with г>о С И) and Wi G Wi for each i G {0,1,... ,j — 1}. Moreover,
for any i e N with i < j, we have

f = Vi +Wi, (8.63)

where

Vi = Vo + Wo H-------1- Wi-! G V,
Wi = Wi~\------- 1- Wj-! G V^.

This allows us to isolate the parts of a signal that change more slowly, namely
Vi G Vi, from those parts that change more rapidly, namely Wi G V^. For a fixed,
relatively small value of i < j, we call Vi the wavelet approximation of f and call Wi
the detail of f. By removing the detail from a signal and keeping the approximation,
we can filter out unwanted noise and compress the signal.

Example 8.8.10. Consider the function / from Example 8.8.3. We take as
the original the sample of f at equally spaced points of distance 2-8 apart.
The approximation and detail of the sample are given in Figure 8.20 for j = 6.
The method for computing this decomposition is given in Section 8.9.

Nota Bene 8.8.11. If f is sampled at the points of the form to construct
7}[/] — and T)[/] is decomposed as Vi + Wi, for some i < j,
then the approximation Vi is not the same as the sampled approximation
TtIf] — Sfc /(2*

8.8.5 *Uniform Approximation by Haar Sons
Any continuous function with compact support can be approximated uniformly to
arbitrary precision using Haar sons.

8.8. Haar Wavelets 373

original approximation detail

0.0 0.5 1.0 0.0 0.5 1.0

Figure 8.20. A plot (left panel, black) ofT8[f] G V8, where f is the function from
Example 8.8.3. This is constructed by sampling f at the points of the form As
described in Corollary 8.8.9, the function T8 [f] can be decomposed into the sum of
its Haar wavelet approximation Vi G Vi and its detail Wi G . The Haar wavelet
approximation v6 G Vq of T8[f] is plotted in the center panel (red), and the detail
ge G Vg1 is plotted in the right panel (blue).

(TO (k5 To

Theorem 8.8.12. Let f : R R be a uniformly continuous function with compact
support. Given e > 0, there exists N G N such that Tj [f] G Vj satisfies

H/-^-[/]||LoO=SUp|/(t)-TJ[/](t)|<S (8.64)

whenever j > N.

Proof. Assume that e > 0 is given. Since f is uniformly continuous, there exists
8 > 0 such that

|/(s)-/(t)|<£
whenever |s — t\ < 6. Choose N so that 2 N < 6. Then for j > N and t G R,
choose к G Z so that

к к + 1
2-> _ < 2->

This gives
1Ж- /(fc2->)| <e,

and thus
00 / к \

тап= £
k——oo ' '

(8.65)

satisfies (8.64). Since f has compact support, all but a finite number of the terms
of (8.65) are zero, and thus Tj[f] is an element of Vj. □

A similar argument shows that Tj [f] converges pointwise for left-continuous
functions with compact support.

374 Chapters. Harmonic Analysis

Theorem 8.8.13. If a function f is left continuous with compact support, then the
Haar son approximation Tj [f] of f converges pointwise; that is, for every t e R and
for every e > 0 there is an integer N > 0 such that \f(t) — Tj[/](t)| < e whenever
j>N.

The point is that Tj [f] (t) converges to f(t) as j oo, and if j is sufficiently
large, then Tj [f] is a good approximation of f. In practice, when dealing with slowly
varying functions, j does not have to be very large to produce good results. This
makes the Haar son approximation a good one for many digital signals and images.

8.9 Discrete Haar Wavelet Transform
As described in the previous section, we can approximate f G R) by projecting
it onto Vj and writing it in terms of the Haar sons; that is, we can approximate f
by sampling at each tk = to get

(k \
(8.66)

Moreover, Corollary 8.8.9 guarantees that any element of Vj can be decomposed
uniquely in terms of the daughters which is generally more useful (see, for
example, Applications 8.9.1 and 8.9.8) but which takes a little more work to com­
pute.

Transforming from sons to daughters is called the wavelet transform. In this
section we consider methods for writing elements of Vj in terms of the Haar wavelet
(daughter) basis, and we describe an efficient method for doing this called the fast
wavelet transform.

Application 8.9.1. The wavelet transform is useful for filtering certain types
of noise. When j is small, the approximations in Vj tend not to see high-
frequency noise, which tends to show up in the detail (in Vj_L). Therefore,
discarding the detail and keeping only the approximation in Vj is one way to
remove the noise. This method is especially effective at removing salt-and-
pepper noise (sparsely occurring black and white pixels) from an image.

8.9.1 Sampled Functions and the Discrete Inner Product
While the space Vj is infinite dimensional, we restrict ourselves to functions f that
are of compact support, that is, f G Z/2(R; R). Thus when we project these functions
onto Vj, all but a finite number of the terms in the sum (8.66) are nonzero, and
thus the projection can be expressed as a linear combination of basis functions. In
the case of Haar wavelets, one typically assumes for simplicity that the function f
is supported on the interval [0,1). If the support is some other interval, say, [a, b),
then we can translate and rescale as needed to reformulate the problem to having
support on [0,1).

The space П £^([0,1); R) is spanned by the scaling functions (wavelet sons)
(fj,k for к G {0,..., n — 1}, so this space is n = 2J dimensional. Moreover, on the

8.9. Discrete Haar Wavelet Transform 375

interval [0,1) the nonzero wavelets in each Wi (г < j) are ^o, • • •, Thus
the wavelet basis for V?- Г1 L2([0,1); R) consists of the functions

{^0,0, V\),0, V>l,0, Vh»l, V>2,0, ^2,1, ^2,2, ^2,3, ^3,0, • • • , j-

Note that this basis also has n = 2J elements because

J-i J-i

n = 2j = 1 + 52 = dim(Vo) + 52 dim(Wi)-
i—0 i—0

As with the DFT, we consider samples of functions, rather than the functions
themselves. For An = 1/n = 2_J’, let 0 = to < • • • < tn = 1 be given by tk = кДп
for each к G {0,..., n}. Given f G ([0,1); R), let

Фп(/) = f = (/о, Л, • • •, fn-1) = (/(to), • • •, /(tn-1)) e Rn. (8.67)

The sampling function Фп : Vj П£2([0,1);R) Rn maps each 92^ to the standard
basis vector G Rn. This is clearly surjective, so Фп is an isomorphism of vector
spaces.

Since the projected functions are in Vj and supported on [0,1), they are constant
on each interval of the form [tfc,tfc+i). Hence, the inner product (8.58) reduces to
the discrete inner product (•, -)n:

{f,9) = f(t)9^dt=^f(tk)g(tk) = (<M/),<M<7)V

J° n k=0

This shows that Фп is an orthonormal isomorphism (see Volume 1, Sections 3.2.2
and 3.3.2), so from now on we may work entirely in the inner product space Rn
with the discrete inner product (•, -)n. As shorthand we write <pik = Фп((/?г,/с) f°r
each i G {0,...,/} and each к G {0,..., 2г — 1}. Similarly, we write i/?ik = Фп(*̂л)
for each г G {0,...,/ — 1} and each к e {0,..., 2г — 1}.

Example 8.9.2. Taking j = 2 (so that n = 22 = 4), we have

Sampling the functions in the basis {(/?o,o, ^o,o? VTo, ^1,1} gives

376 Chapters. Harmonic Analysis

8.9.2 Wavelet Decomposition
Converting from sons to daughters in Vj A L2([0,1); R) corresponds to changing
basis from the standard basis in Rn to the basis {<p00, ^0,0> ^0,1 > • • • >

When j = 2, Example 8.9.2 gives the explicit form for the wavelet basis, and
expressing any f in terms of that basis amounts to solving the system

'fo ’1 1 1 0“ bo
fl
h

= 1
1

1
-1

-1
0

0
1

br (8.68)
/3 1 -1 0 -1 _^3_

Let H4 be the matrix in (8.68). Since the columns of H4 are orthogonal (by
Proposition 8.8.7), the inverse of H4 is the transpose of with the rows rescaled
appropriately.

1111
1 1
4 2

0

Я4-1 1 -1 -1
-2 0 0

0 2-2

This is the matrix representation of the wavelet transform for any f 6 R4.

Example 8.9.3. Consider the function f 6 V2 given by

/(t) = 2(^2, o(£) + 0.8(/>2,i(£) + 3.1<^2,2(£) — 2(^2,з(^)*
Note that 4>4(/) = f = (2,0.8, 3.1,—2). The wavelet transform is given by

= (0.975,0.425,0.6,2.55). Thus we have

Ж = 0.975^o,o(t) + 0.425^o,oW + <Wi,oW + 2.55^i,i (*).

More generally, for arbitrary j G N, computing the wavelet transform of f
corresponds to solving the system

f = япь,

where b = (60, • • •, &n-i) and the columns of Hn are the discrete wavelet basis
vectors. As in the case of j = 2, the matrix H~1 is always a rescaled transpose of
Hn.

Since solving this system requires only that we multiply by H~ \ computing the
wavelet transform this way has temporal complexity in O(n2). This is similar to
computing the DFT by matrix multiplication. But, just as in the case of the DFT,
there is a way to compute the wavelet transform much more efficiently. Surprisingly,
this can be done in O(n) time, as we show in the next subsection.

8.9.3 The Fast Wavelet Transform
To compute the wavelet transform more efficiently, we use the following lemma to
write each basis vector cpj^ of Vj in terms of elements of Vj-i and Wj_±.

8.9. Discrete Haar Wavelet Transform 377

Lemma 8.9.4. For j G Z+ and к E Z, we have

Pj — l,k H” ^j—l,k j Pj — l,fc ^j—l,kPj,2k = —— 2 —~ and 4)j,2k+i = —— 2 —

Proof, For j = 1 and к = 0 the claim of the lemma reduces to

V(2t> = уИ + W) and V(2j-1) (8.69)

which follows directly from the definitions. For general j and k, simply take dilates
and translates of (8.69). □

Theorem 8.9.5 (Haar Decomposition Theorem). Any function

f = 2 aj,kpj,k £ Vj {j £
k——oo

can be decomposed as
f = Vj-i

where
oo oo

i = i,fc and Wj—i = bj—i^^j—ijk
k— — OG k— — OG

with
aj,2k + aj,2fc+l 7 7 aj,2k — aj,2k+l ,Q -n4----- and bj_Kk = ------. (8.70)

Proof, The proof is just a computation, using the previous lemma:

oo

f= 2
k——oo

oo oo

= a-j,2kPj,2k + «J,2fc+l^j,2fc+l
k——oo k——oo
1 oo 1 oo

= 2 aj,2k (SPj-l,k + ^j-l,k) + 2 <^j,2fc+l (pj-l,k ~ ^j-l,k)
k——oo k— — oa

1 oo 1 oo

= 2 (aj,2k + &y,2fc+l) Pj-l,k + 2 (&j,2fc — &j,2fc+l)
k——oo k——oo
oo oo

= aj — l.JtSPj — l,fc “h l,k
k——oo k——oo

= Vj_1+Wj-i. □

378 Chapters. Harmonic Analysis

Corollary 8.9.6 (Fast Wavelet Transform). Fix i < j, and let f e with
n = 2J. Let

2г —1 j-l 2m-l

f = Ьтщк'Фгщк
k—Q m—i k—0

be the wavelet decomposition of f to level i, and define am = • • >«ж2т-1)

and bm = (6m,o, • • • 5 &m,2™-i)- The wavelet decomposition, consisting of аг and
b$,bi+i,... can be computed using the recursive algorithm below, called the
fast wavelet transform (FWT). For an implementation of this algorithm, see Algo­
rithm 8.3.

(i) Initialize by setting m = j and setting &j = f.

(ii) While m> i repeat the following steps:

(a) Compute am~i and bm~i via (8.70). To vectorize, let a^en and a^d
be, respectively, the even-indexed and odd-indexed parts of Thus
я , — 1 foeven -I- oodd^ л-nJ h , — 1 foeven — nodd^

(b) Decrement m: m m — 1.

(iii) Return аг and K,..., bj-i.

In particular, the full wavelet decomposition (ao, bo, bi,..., bj_i) is computed by
this algorithm with i = 0. The temporal complexity of the algorithm is ~ 4n FLOPs.

Proof, The fact that the algorithm computes the required coefficients is an im­
mediate result of the Haar decomposition theorem (Theorem 8.9.5). The mth
step requires 2m-1 additions, 2m-1 subtractions, and 2m multiplications by |
for a total of 2m+1 FLOPs per iteration. Summing over all values of m gives
SLi 2m+1 = 4(2-7 - 1) 4n FLOPs. □

2
3
4
5
6
7
8
9

10
11
12
13
14

import numpy as np
def FWT(a,j=0):

...... Haar FWT of a' down to level j
II II II

Assume len(a) is an integer power of 2
m = int(np.Iog2(len(a)))

L = □ # List of the partial trasforms
while m > j:

L.append(0.5 * (a[: :2] - a[l::2]))
a = 0.5 * (a[::2] + a[l::2])
m -= 1

return a,L[::-1]

Algorithm 8.3. An implementation of the FWT algorithm for the Haar wavelet.
It computes the wavelet transform of a vector a of length 2J down to level i, where
0 <i <j.

8.10. *General Wavelets 379

The theorem shows that the temporal complexity of the FWT is O(n), where
n is the number of samples. Contrast this with the complexity O(nlog(n)) of the
FFT. The reason that the FWT is faster than the FFT is that the wavelet transform
is sparse; that is, many of the entries in the matrix Hn are zero because the wavelets
are supported on very small intervals. This can be seen by looking closely at Hn.
While the first two columns of Hn have no zeros, the next two columns have only half
their entries that are nonzero, the next four have only a quarter that are nonzero,
and so forth.

Example 8.9.7. Consider the function f from Example 8.9.3. Instead of
computing the wavelet transform by matrix multiplication, we can use the
FWT. Setting a2 = f and using (8.70) we have

a0 = [0.975]

and

bo = [0.425], giving

0.975
0.425

0.6
2.55

as the wavelet transform. Thus

f(t) = + 60,0^0,0 W + &i,oVh,o(£) + bi,iVh,i(£)
= 0.975<£o,oW + O.425^o,o(^) + <Wi,o(*) + 2.55^i,i (t),

which agrees with the result of Example 8.9.3.

Application 8.9.8. The wavelet transform is often used to compress signals
or images. In many settings the most important information in the signal is
carried in the approximation Vj E V), while the information carried in the
detail Wj E is less important. Keeping the approximation and discarding
the detail results in significant compression with minimal information loss.
This is the basis of compression used by the JPEG 2000 image compression
standard (although these do not use Haar wavelets). This is treated in more
depth in the computer labs associated with this volume.

8.10 *General Wavelets
Haar wavelets are reasonably well suited to slowly varying piecewise-continuous
functions such as those encountered with many digital signals and images. There
are many other examples of wavelets that can also be used, and some tend to have

380 Chapters. Harmonic Analysis

time (seconds)

Figure 8.21. An ECG signal, which is sampled at 500 Hz, measuring the electrical
activity of the heart (in millivolts) using electrodes placed over the skin.

more success with specific types of signals. For example, Figure 8.21 shows a typical
electrocardiogram (ECG) signal from a beating heart. Because this signal has sharp
peaks that occur with each beat and intermittent periods of slow variation between
beats, the Haar wavelet is usually less favored than other types of wavelets. But
the Daubechies wavelet, which is defined in the next section, tends to do fairly well
with ECG signals.

In this section, we show how to generalize wavelets to a much more general
setting, where many different scaling functions (father wavelets) can be considered,
each with a corresponding mother wavelet that couples with the father. These are
combined to produce their own wavelet decomposition.

8.10.1 Scaling Function
To generalize the wavelet constructions of the previous sections, we identify the key
requirements of a general father function, also known as a scaling function.

Definition 8.10.1. A function p e L;?(R;R) is said to be a scaling function (or
father function) if it satisfies the following:

(i) It has positive mass, that is, p(x) dx > 0.

(ii) The set {p(x—k)}ke% of translated father functions is orthonormal with respect
to the usual L2 inner product.

(iii) It can be written as a linear combination of half-scaled translates, that is,

<p(x) = hep(2x — I), (8-71)
£ez

where all but a finite number of the coefficients he G R are zero.

Example 8.10.2. In the case of the Haar scaling function, the scaling relation
(8.59) shows that (8.71) holds with ho = h± = 1 and hi = 0 for all i {0,1}.

8.10. *General Wavelets 381

Definition 8.10.3. Given 92 G £2(R;R) satisfying Definition 8.10.1, the sons are
the functions

<Pj,k(x) = p(2jx - к), (8.72)

where j G N and к e Z.

Proposition 8.10.4 (Scaling Relation). For each J G N and к E Z we have

9^j,fc = (8.73)
^ez

Proof. Reindexing the sum via m = 2k +1, gives

4>5,к(я) = p(2Jx — к) = h^pt^^x — 2k — £)
£ez

= У7 frm-2fc¥’(2'7+1Z - m) = ^2 hm-2k<Pj+l,m(x). □
mEZ mEZ

Proposition 8.10.5. For any j G N, the set {2^2pj^}ke^ is orthonormal.

Proof. Using the u-substitution и = 2Jx — I, we integrate to get

{pj,k,<Pj,£) = f 9?(2Jx — k)p(2jx — t) dx = 2-J6k,e- □
J —00

Proposition 8.10.6. For j G Z+ and k,m EZ; we have

{Pj,kiPj — l,m} = 2 ^hk—2rri' (8.74)

Proof. This is Exercise 8.48. □

Remark 8.10.7. Let Vj = span^t/^}/^^). As with Haar sons, we have the chain
of inclusions

Vo C Vi C V2 C • • • .

Remark 8.10.8. Definition 8.10.1 puts many constraints on the function p and
the possible values of the scaling coefficients h^.

Proposition 8.10.9. The coefficients hk satisfy the following properties:

(i) For £, m G Z we have

2£^fc—2m = 2J^jTn. (8.75)
fcEZ

382 Chapters. Harmonic Analysis

(ii)
52/ifc = 2. (8.76)
fcez

(iii)

52h2k = i and 52/i2fc+i = 1- (8-77)
fcez fcez

Proof.

(i) We have

2 Ьк—2m — 2? hk—21 (SPj,k)
ke% ke%

(ii) Integrating (8.71) with the substitution у = 2x — к gives

= 2

Dividing both sides by <p(x) dx, which is nonzero, gives (8.76).

(iii) To prove (8.77), set t = 0 and sum (8.75) over meZto get

mezfcez

Breaking the inner sum into even (k = 2j) and odd (k = 2j + 1) values of к
and changing the order of summation gives

*=£ £ h2j-2mh2j + ^2j+l-2m^2j+l

mEZ \JEZ JEZ

^2j+l-

j'EZ \mEZ j'EZ \mEZ

Substituting m j — m gives

2 — I ^2m j I I + I 2 ^2m+l j I ^2J+1 I •
\mEZ / \ JEZ / \mEZ / \ JEZ /

Setting r = him and s = /i2m+i we have r2 + s2 = 2. Moreover,
applying (8.76) gives r + s = 2. Solving the system yields r = s = 1, which
gives the result. □

8.10. General Wavelets* 383

8.10.2 Wavelets: Mother and Daughters

Definition 8.10.10. Given a father function <p satisfying Definition 8.10.1, the
corresponding mother wavelet is the function

Цх) = (8.78)
^ez

where the scaling coefficients hk are those given in (8.71). For each j € N and
fc G Z define the daughter wavelet 'ifak to be

^j,k(x) = ^(2jx - k). (8.79)

Moreover, let Wj = span({'0j!fc}fcez) be the span of the daughters.

Proposition 8.10.11. Given j G N and к G Z, we have Wj C V)+i with

= (8.80)
£ez

Proof. Let € € — 2k. Thus

'i/ij^x) = ^(2jx — k) = ^2(—l)^/zi_£(/?(2j+1a; — 2k — t)

= 52(—1)^^1—е+2/с^+1,€(^)« □
^ez

Proposition 8.10.12. Given a scaling function 99 satisfying Definition 8.10.1,
the corresponding son and daughter wavelets and ^j^ (see (8.72) and (8.79),
respectively) satisfy the following properties for each j G Nr

(i) JXq dx = 0 for each к G Z.

(ii) (V^,fc5 ^j,7n) = 0 for all A;, m G Z.

(iii) The set {2J’/2^j,fc}fcez is orthonormal.

Proof.

(i) Integrating (8.78) gives

>00 __ POO 1 __ POO
^(x)dx = '^j-l)eh1_e ip(2x~e)dx =4>(y)dy.

-00 £ez J-00 2 £ez J-00

The result follows from Exercise 8.49.

384 Chapters. Harmonic Analysis

(ii) We have

1) ^1—£+2fc9-?J+l,£

uez £ez

-2m^l-£+2fc <£j+l,£)

£ez «ez

= 2-J-1 l)€^£-2m^l-£+2fc

£ez

= 2->-i(-i)fc+- j2(-i)4fc_m+£/ife_m_£+1.

£ez

Note that the negative indices cancel the positive. Specifically,

0 oo
(1) m+£^fc—m—£+1 = 1) m—m+£+l

£=-oo £=0
oo

— 1) Ьк—тп—£+l^fc—m+£-
£—1

Thus
1) m+£^fc—m—£+1 = 0-

£ez

(iii) Reindexing and using (8.75), we have

2^ fyjfa^j,Tn) = 2^" (1) h_z+^ktyj+!,£•) 1) ^1—«4-2771^4-1,i
left

= 2J y^(—l)€+2/li-£+2fc^l -i+2m ^Pj+1,i)
ie%

= - hi-£+2khl-£+2m
2 £ez

= q ^£+2fc^£+2m = □
2 £ez

8.10.3 Wavelet Decomposition
In this section we generalize Theorem 8.8.8. This makes the wavelet transform
possible, where an element of Vj can be expressed as a linear combination of wavelet
daughters. We describe the general wavelet transform in the next section.

Theorem 8.10.13. For j G N, we have V)+i = Vj ®j_ Wj.

Proof. We know that Wj ± Vj, Vj C Vj+i, and Wj C Vj+i. Thus it suffices to
show that Vj+i С V? ® Wj. We do this by showing for j, к G N that there are sets

8.10. *General Wavelets 385

{uy^bez and {bj^}^z (with all but a finite number being zero) such that

%+1,к = Z (8.81)
^ez £ez

Assuming the hypothesis, Exercise 8.50 gives

азЛ = 2^k-2(. and bj^ = -(—l)fc/zi_fc+2£. (8.82)

Thus

2^j+l,fc = Л&-2£<^,£ + y^(~

^ez ^ez

= (hk—2£^m—2£ T —m+2^) ^Pj+1

^EZ mGZ

Taking the inner product with cpj+i^+i gives

2£о,г = ~ У2 (^c-2£^fc-2£+z + (—1)г^1-/с+2£^1-А:+2^-г) • (8.83)
2 £ez

Thus to prove the theorem, it suffices to show that (8.83) holds. We do this by
proving the case for even (г = 2s) and odd (i = 2s + 1) values of г, respectively.

For the even case, mapping I к — £ in the first sum of the right-hand side of
(8.83) gives

У2 (^k-2^fc-2£+2s + ^l+2£-fc/il+2£-fc-2s)
£ez

= У2 (^2£-fc/i2£-fc+2s + ^l+2£-fc/il+2£-fc-2s)

£ez

= hj-khj-k+2s — hjhj+2s = 2$s5o = 25^0*
jez jez

For the odd case, mapping £ s + к — £ in the second sum of the right-hand side
of (8.83) gives

УУ~ 1)г^1+2£-/с^1+2£-/с-г = “ У^ ^l+2£-fc^-fc-2s = ~ У^ hk-2£+ihk-2£,

which cancels with the first term in (8.83). □

Since Vj+i = V3; ®_l Wj, we can write any f G V)+i uniquely as f = Vj +wj with
G Vj and Wj e Wj. Since is an orthogonal basis for Vj and is

an orthogonal basis for Wj, we can write f G V}+i uniquely as a linear combination
of elements in these two bases. To find the appropriate linear combination, we
generalize (8.82) with the following corollary.

386 Chapters. Harmonic Analysis

Corollary 8.10.14. For each j € N and к E Z we have

1
Vj+^k — 2 У^ hk-2^Pj,£ + (— l)fc У2

k£ez ^ez
(8.84)

Example 8.10.15. Haar wavelets satisfy ho = hi = 1 and hi = 0 for all
i / 0,1. Thus (8.84) gives

<£j+l,2k = У2 + hi-2k-2^j,f. = 2 + hi^j^k) ,
z £ez

<£j+l,2fc+l = 2 У? fl2k^l-2£(Pji£ — ^l-(2fc+l)-2£'0j,€ = ~ ^WP^k ~ ho^jjc) ,
z £ez

which are exactly the relations of Lemma 8.9.4.

8.11 *General Fast Wavelet Transform and Examples
In this section we show how to extend the FWT from the Haar case in Section 8.9
to general discrete wavelets, thus providing a general computational framework for
wavelet decomposition. As an example, we discuss the famous Daubechies wavelets,
which are used widely in applications. We conclude by showing the Daubechies
wavelet decomposition of an ECG.

8.11.1 Sampling for General Wavelets
The FWT gives a change of basis to express a function f G V3; in terms of the
daughter wavelets. In particular, since

Vj = Vi ®± Wi ®_L ®_L • • • ®_L Wj—2 ®± Wj—1) (8.85)

we can use the DWT to decompose f as f = fy + where Vi G Vi is the ap­
proximation and Wi G V^ = Wi ®_l Wi+i ®_l • • • ®j_ Wj_2 ®± Wj-i is the detail
(see, for example, (8.63)). But before we can do this, we must have the function f
(or a sample of /) expressed in terms of the basis {(pj,k}kez of Vj. In the case of
Haar wavelets, this was trivial since we can simply sample the function directly (see
(8.66)), but in the general case it’s not immediately clear how to take a compactly
supported function f G L;?(R;R) and compute the projection projv. f itself or a
good approximation of the projection.

Recall that for any function f G Z/2(R; R), the nearest element of Vj to f is the
orthogonal projection onto Vj given by

OO OO / pOQ \
projv. f = 2^/2 /) (/ f(x)<pj,k(x)dxj

fc=-oo fe=-oo V-°° 7

Since the support of p is bounded, the support of pj^ can be made arbitrarily
small by choosing j large enough. If f is continuous or otherwise well behaved,

8.11. *General Fast Wavelet Transform and Examples 387

then on a sufficiently small interval, it is almost constant, and the integral above is
approximately 2_J f(2~^k) <p(x)dx, as the following theorem shows.

Theorem 8.11.1. If f G L2(R;R) is continuous and p is compactly supported,
then for any e > 0 there exists j > 0 such that the coefficients aj^ in the expansion
(8.87) of the projection projv. f satisfy

|aj,fc - a/(2--7A:)| < £,

where a = p(x) dx.

Proof. Assume the support of p lies in the compact interval [—£,£]. Since f is
continuous, it is uniformly continuous on [—L, L], so for every e > 0 there exists a
5 > 0 such that |/(ж) — f(y)\ < % whenever |ж — y\ < 5. Choose j > 0 such that
2_JL < 5. Hence for any к G Z the support of lies in [2—J (A; — L), 2~i(k + L)].
This implies that

/•oo /•2-5(fc+I/)
2~]a]tk = / f(x)<pj,k(x)dx= / flx^p^x - k) dx

J— oc L)

= 2"> j f(2~j(t + k)yp(t)dt

/•OO
= 2"J/(o:o) / <p(t) dt = 2~1f(x0)a

J —oo

for some = 2_J(A +10) € [2-J(A — L), 2~i(k + L)]. Since

|2-J(k +10) - 2~jk\ = 2~j\to\ < 2~jL < 5,

it follows that p
|/(2^(fc + to))-/(2-^)|<-. a

Thus

|aJifc - a/(2->fe)| = la/Cro) - af(2~^k)\ = a|/(z0) - /(2’^)1 < £• □

Remark 8.11.2. Since aj^ ~ af(2~^k), when j is sufficiently large the projection
projv. f is well approximated by the sampled sum

proj^ f = 52 ~ ° 52 /(2-7/сМл- (8-86)
fcez fcez

Now that we have the approximate the projection, we can consider the DWT.

8.11.2 The FWT for General Wavelets
Fix a value of J E N and let n = 2Л Given any function f G Vj with compact
support, assume f G span({^fc}^Q-1) for some M so that we can write

nM— 1

f = 52 (8-87)
fc=0

388 Chapters. Harmonic Analysis

As in the case of Haar wavelets, the relations (8.84) can be applied iteratively to
write f in terms of the orthogonal wavelet basis

9^0,0 > • • • , V>0,0, • • • ? ^0,М-1^1,0> • • • , • • • ,

Theorem 8.10.13 guarantees that f can be written in terms of the bases for Vj-i
and Wj_i as

f = 52 aj-i,kVj~i,k+52 (8-88)
fcez fcez

A calculation similar to the proof of Theorem 8.9.5 gives the following theorem.

Theorem 8.11.3. For j e Z+, the coefficients aj-i.k and bj_±^ in (8.88) satisfy

a>j—i,k 2 Z and bj_\ ^ — 2(1) /и—(8.89)
£ez ^ez

Proof. Taking the inner product of f with the basis function Pj-i,k is

2 — = (9?J —l,fc?/) = / hf—2k(Pj,£i ^'j,'rn(Pj,m)
\£eZ mGZ /

£€% m£Z

Similarly, the inner product of f with the basis function 'ifj-i^k gives

2 ^bj — i^k = (^j — l,k>f} = (^(1) h±—£-\-2k(Pj,£-))
\£ez mez /

= (1) ^1—£-\-2k^j,m (^J,£5 9-?j,Tn) = 2 ^ ^ ^(1) hi—£-^2k^j,£’ □
£ez mez £ez

Theorem 8.11.3 shows that the same idea used for the Haar case gives an FWT
for general wavelets constructed from a more general scaling function p. The algo­
rithm is outlined in Algorithm 8.4.

Remark 8.11.4. If there are К nonzero coefficients hk in the scaling relation
(8.71), then the zth step of the FWT iteration (Algorithm 8.4) requires 2г-1А
multiplications and 22-1(JC — 1) additions (or subtractions). This adds up to a
total of 2г-1(2А — 1) FLOPs per iteration. Computing the full wavelet transform
by this method requires 2г-1(2А — 1) = (2J — 1)(2JC — 1) ~ 2-?+1A = 2Kn
FLOPs.

8.11.3 The Daubechies Wavelet
In the 1980s Ingrid Daubechies developed a new class of wavelets, where both the
father function p and the mother function if are continuous. The canonical example
from this class is known as the Daubechies db2 scaling function and wavelet. These

8.11. *General Fast Wavelet Transform and Examples 389

(i) Initialize by setting i = j.

(ii) For each к e {0,1,2,..., 2г-1М — 1}, compute (8.89).

(iii) Decrement г: i G- i — 1.

(iv) If i > 0, then repeat from step (ii).

Algorithm 8.4. Outline of the FWT algorithm for general wavelets. Given f as in
(8.87), determined by coefficients a.j = (o^o, • • •, aj,nM-i)? this algorithm computes
the coefficients aj_i and b^i of the decomposition (8.88) and then continues to
compute a.i and Ьг iteratively for all i E {j — 1,..., 0}.

functions are continuous but cannot be written down in terms of elementary func­
tions; see Figure 8.22. One advantage of the continuous wavelets is that they tend
to approximate continuous functions more efficiently than discontinuous wavelets
do. After describing the Daubechies db2 wavelets, we apply them to the ECG image
in Figure 8.21.

The Daubechies db2 scaling function p : R —> R is characterized by the scaling
rule (8.71), satisfying

p(x) = hQp(2x) + hip(2x — 1) + h2p(2x — 2) + h3p(2x — 3), (8.90)

with scaling coefficients

, 1 + V3 , 3 + V3 , 3-V3 , , 1-V3ho =--------- , hi =---- ----- , h2 =---- ----- , and h^ =---- ----- , (8.91)4 4 4 4

and the corresponding mother wavelet ф : R —> R, which is similarly characterized

Figure 8.22. The Daubechies db2 scaling function p (left), and the mother wavelet
ф> (right).

390 Chapters. Harmonic Analysis

by the rule (8.78), satisfying

ф(х) = — ho<p(2x — 1) + Л1у?(2я;) — /г2^(2ж + 1) + h^(p(2x + 2).

These coefficients are derived from the fact that the Daubechies db2 wavelet has
a first moment of zero, that is,

хф(х) dx = 0. (8.92)

The only choice of four coefficients До, Д1, Д2, and that satisfy the scaling
identities in Proposition 8.10.9, as well as (8.92), are those given by (8.91); see
Exercise 8.56 for details.

To construct y? and Vs first define iterative sequences of functions (y2n)neN and
(V’n)neN by

9?n+i(ar) = h0(pn(2x) + hiipn(2x - 1) + ЛгУ’пСЗж - 2) + h.3<pn(2x - 3)

and

^n+iW = -hopn(2x - 1) + hikpn(2x) - h2(pn(2x + 1) + h3(pn(2x + 2)

with initial functions <po = Фо = l(o,i]- К can be shown that both <pn and фп
converge uniformly to their limiting functions <p and ф.

As an alternative construction, we can determine the values of and ф pointwise
on each , where for each fixed j e N, the numerators к vary between 0 and 3 • 23'.
As j gets larger, the distance between adjacent points grows smaller, and in the
limit as j —> oo, we arrive at the values of the functions ip and ф on a dense set.

To do this start with the initial values

99(1) = 1 + 5/3
2 and ^(2) = 1 - Уз

2

Now use (8.90) to find 9?(|), 9?(|),and assume that p(x) = 0 for all x (0,3).
and y?(j). Then, using the values at <£>(|), y?(l), 9?(|), ^(2), and j), we can use
(8.90) to compute the values 92Q), ^(1)> ^(I)> ап^ ^(т)* °^ег
words, by having all of the nonzero values of 92(^7), for fixed j e N, we can find all
the values of ^(^tt). Then we can increment j and repeat until we have a dense
representation of 92 on the interval (0,3). To find the mother wavelet, we follow a
similar procedure, but on (8.78) instead. Plots of the Daubechies scaling function
and mother wavelets are given in Figure 8.22; see Algorithm 8.5 for the code that
generated the figures.

8.11.4 Convolutional Form of FWT
Further inspection of (8.89) shows that the sums can be written as convolutions
followed by what is called downsampling. We conclude this section by demonstrating
how to compute a single iteration of the DWT algorithm using this approach. We
apply this technique on the ECG signal in Figure 8.21.

8.11. *General Fast Wavelet Transform and Examples 391

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

import numpy as np

def daubechies(j):
""" Produce a sample of the Daubechies d2 scaling function
and mother wavelet on the interval [0,3].
и и и

signs = np.array([1,-1,1,-1])
h = (np.array([1,3,3,1])+np.sqrt(3)*np.array ([1,1,-1,-1]))/4
phi = np.zeros(3*2** j+1);
psi = np.zeros(3*2** j+1);

idxO = (2**j)*np.array ([1,2]);
phi [idxO] = 2*np . array ([h [0] , h [3]]) ;
psi [idxO] = 2*np . array ([h [3] , -h [0]]);

for к in range(j):
idxl = 2**(j-k-l)*np.arange(l,3*2**(k+l) ,2)
for 1 in idxl:

z = 2*1 - (2** j)*np .array([0,1,2,3])
z = np.array([a*int (a in idxO) for a in z])
phi[l] = np. dot (h, phi [z]) ;
psi[l] = np.dot(h[::-1]*signs,phi[z]);

idxO = idxl
return phi, psi

Algorithm 8.5. The Daubechies algorithm for generating values of the db2 scaling
function and corresponding mother wavelet sampled at points of the form
forke {0,1,2,..., 3-2-7}.

Writing the convolution operator as

(x*y)< = "^ХкУе-к

simplifies the expressions in (8.89). Let aj = (aj,k)ke% and bj = (bj,fc)fcez denote
the sequence of coefficients, all but a finite number of which are zero. Reindexing
к —> 2£ — к gives the approximation coefficients as

= 2 У? hk-2£aj,k = 2 У? h-kaj,2£-k = (L * aj)2£,
fcez fcez

where
L = 2 (^3’ ^2’ h-^hn).

The vector L is often called a low-pass filter.
Similarly, reindexing к —> 2£ — к gives the detail coefficients as

bj-i,£ = - y^(~l)fc^i-fc+2£Qj,fc = 2 yy_l)fc^i+&a.7,2£-fc = (H * aj)2£,
fcez fcez

392 Chapters. Harmonic Analysis

where
н = -[-h0,h1,-h2,h3].

The vector H is often called a high-pass filter.
Both expressions include only the even values of the convolution. We can skip

the odd-numbered elements via the downsampling operator

Dx £-2,^0, x2,.. •)•

In other words, we have

aj_i = D(L * a,-) and bj-i = D(H * a,-). (8.93)

Remark 8.11.5. In actual code it’s customary to implement edge conditions at the
beginning and the end of the signal to give the convolution operator extra padding.
This is done by adding К — 1 values at the beginning and the end of the sample,
where К is the length of the filters L and H (K = 4 in the case of the Daubechies
db2 wavelet). The leading and trailing padding most used is just the К — 1 elements
of the signal, respectively, in reverse order. So if the actual signal is «о? «1? • • • ? «n
and К = 4, then we feed the following as the signal into the convolution formulas
(8.93):

(2з, a2l O1, Uq, а1ч а2ч • • • , an< an-l,an-2, an-3-

Example 8.11.6. Applying Algorithm 8.6 to the ECG data in Figure 8.21
gives the decompositions shown in Figure 8.23. With each iteration of the
DWT, the number of points halves the previous input and therefore so does
the number of coefficients required to store the signal. Applying the DWT
three times yields a visually similar ECG signal compared to the original,
despite being | = 2-3 the number of coefficients.

import numpy as np
2
3
4
5
6
7
8
9

10
11
12

def dwt(X,H,L):
""" The DWT algorithm using convolutions and downsampling.

К = len(H)
1 = np.flip(X[O:K-l],0) # left padding
r = np.flip(X[-(K-l)::],0) # right padding
X = np.concatenate((l,X,r),axis=0)
cD = np.convolve(X, H, 'valid')[1::2] # detail
cA = np.convolve(X, L, 'valid1)[1::2] # approximation
return cA, cD

Algorithm 8.6. Algorithm for a single iteration of the DWT via convolution and
downsampling. Left and right padding are attached to the signal as described in
Remark 8.11.5.

Exercises 393

Figure 8.23. The top pair represents the first db2 wavelet decomposition, taking
3580 points from the ECG signal in Figure 8.21 and splitting it into the approx­
imation (left) and the detail (right), each consisting of 1791 points. The middle
pair is the second db2 wavelet decomposition, resulting in 897 points for both the
approximation (left) and the detail (right). Finally the bottom pair is the third db2
wavelet decomposition, resulting in 450 points for both the approximation (left) and
the detail (right). All three approximations are strikingly similar to the original.

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,

394 Chapters. Harmonic Analysis

and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

8.1. Show that
ег(Ь-а) ег(а-Ь) 2г sin(tt — 6)
b — a a — b a — b

8.2. Show for all к G Z, with к 0, that

/»2тг
/ eikt dt = 0.

Jo

8.3. For any г, w G C prove that
(i) zw = щ

(ii) z ± w = z ± w,

(iii) (—) = 4.
8.4. If |z| = 1, and a, b G C, prove that

az + b
bz + a

Hint: Remember that |w|2 = ww, and rw + s = rw + s.
8.5. Express each of the following complex numbers in polar form (i.e., z = гегв):

(i) 2 + 2%/Зг.
(ii) —2 + 2г.

8.6. Find all the complex numbers £ satisfying the relation £2 + £ + 1 = 0 as
follows:

(i) First determine how many solutions exist.
(ii) Show that any such £ must satisfy £3 = 1 and £ 1.

(iii) Use the previous step to find the polar form of all the solutions.
(iv) Now solve the problem using the rectangular form by writing £ = x + iy

and computing (x + iy)2 + (x + iy) + 1. Setting both the real and
imaginary parts to zero gives two equations in two unknowns, whose
solutions give the required values of x and y.

(v) Show that the answers you got in polar form agree with the answers you
got in rectangular form.

8.7. Simplify the following into the form a + ib, where a, b G R. Is the solution
unique? Justify your answer.

Exercises 395

(i) Vi-

(ii) v'l + i-
(iii) VV^i-

8.8. Let J € L2([0,T];F). Prove the “almost converse” of Proposition 8.2.12: If
Cfc = c-k for all к G Z, then S'[/] is real valued on [О, Т].

8.9. From Proposition 8.2.12, we know that the Fourier coefficients of the function
f e L([0,T];R) satisfy c_k = Ck- Thus the Fourier series satisfies

S[f](t) = 22cke^kt = co + 22 cre-“fct + cke^kt

= Co + (cfc + Cfc) cos(cufcf) + z(cfc - Cfc) sin(cu/ut).
fcez+

Show that for each к E Z+ the following holds:

(cfc +Cfc) cos(a;A;t) +z(cfc - Cfc) sin(cu/0t) = 2|cfc| cos(cuA:t + 0fc),

where the real and imaginary parts of Cfc satisfy Jf(cfc) = |cfc| cos(</>fc) and
9(cfc) = |cfc| sin(</>fc), respectively. In other words, we can decompose the
Fourier series S[f] into a sum

W) = Co + 22 2|cfe| cos(u>A:t + <fa) (8.94)
fc=i

of linear oscillators, each having frequency k/T, amplitude 2|cfc |, and phase
angle фк.

8.10. Find the complex-exponential Fourier series of the function f(t) = sin(5cj£)
on the interval [0,T].

8.11. Find the complex-exponential Fourier series of the function

ж=? (<8-95>

on the interval [0,2%]. By Theorem 8.2.16 the Fourier series converges point­
wise to f on [0,2%]. Hint: We already computed the Fourier series of the
sawtooth function in Example 8.2.6.

8.12. Find the complex-exponential Fourier series of the function

1
У(ж) = 0

if 0 < x < %,
if x E {0, %, 2%},
if % < x < 2%

(8.96)

on the interval [0,2%]. Hint: We already computed the Fourier series of the
square wave function in Example 8.2.10.

396 Chapters. Harmonic Analysis

8.13. Show that if Ck = C-k, then the following hold:
(i) al = afc and bk = bk.

(и) ak + bk = 4cfec-fc-
(Ш) Vak+bk = 2Ы-

8.14. Find the trigonometric Fourier series of the function f in Exercise 8.12.
8.15. Use the results from Exercise 8.14 to prove that the following equalities hold:

Hint: Show that ||/||2 = 2.
8.16. Many textbooks develop Fourier series on the domain [—7г, 7г] instead of [О, Т].

In this case, the trigonometric Fourier series S[f] of f : [—7г, 7г] —> R is still
of the form (8.31), but the Fourier coefficients are given by

1 Г7Г
ak = — f(t) cos(Atf) dt,

J-TV
1 f7r

bk = — f(t) sm(kt) dt.
7Г J-ir

(8.97)

(8.98)

We call this approach the centered trigonometric Fourier series. Now consider
the function

1
/(*) = 0

1
. 2

if t e [-7Г, -|) U (f,7r],
if t =

defined on the interval [—7г,тг]. Compute the centered trigonometric Fourier
series using (8.97) and (8.98).

8.17. Consider the function f(t) = \t\ on the interval [—%, 7г]. Write f as a centered
trigonometric Fourier series (see Exercise 8.16). Hint: Write

\t\ =
t
-t

if t > 0,
if t < 0,

and then integrate by parts.

8.18. Prove that the Dirichlet kernel Dn satisfies the following for each t E R:
(i) £>n(f) = £>„(2тг - t).

(ii) £>п(тг +1) = Dn (тг - t).
8.19. For f e L([0,2тг]; R), extend f to all of R by letting /(t) = f(t — 2тг) for all

t > 2tt and /(t) = f(t + 2tt) for all t < 0. Prove the following identities:

Exercises 397

(i)

[f(s)Dn(t- s)ds = [f(t-s)Dn(s)ds = [f(t - s)Dn(s) ds.
JO Jo J-7T

(ii)

[f(s)Dn(t- s)ds= [f(t + s)Dn(s)ds= [f(t + s)Dn(s)ds.
Jo Jo J-7T

Hint: Use integration and change of variable rules with Lemma 8.4.6.
8.20. Prove Lemma 8.4.9. Hint: Use the geometric series formula for (8.36).
8.21. Consider the function

I 7Г if t = 0 or t = 27Г.

Let gn(£) = f(t) — Sn [/](£) be the approximation error between the function
f and the nth partial sum of its Fourier series (see Example 8.2.6).

(i) Plot дп(х) for different values of n to demonstrate the Gibbs phenomenon.
(ii) Show that

, _ sin((2n + l)t/2)
9n() sin(t/2)

Hint: Use Lemmata 8.4.4 and 8.4.9.
(iii) Show that tn = is the first critical point of gn to the right of zero.

Hence the L 00-norm (supremum) of the approximation error is at least
gn(tn\

8.22. Continuing from the previous problem, complete the following steps:
(i) Using the fundamental theorem of calculus, show that

, ['■ sin«2»+1)1/2)
9“(<-) = Л sin(l/2) Л - *■

Hint: Recall that the fundamental theorem of calculus will apply only to
functions that are continuous on the interval [0, £n], so you will need to
replace the integrand with a function that is continuous on that interval.

(ii) Prove that
i- / \ л f* sin(t) hm gn(tn) = 2 / —dt - тг.П-ЮО JQ t

(iii) Evaluate the integral numerically to show that

2 [dt - тг « 0.562.
Jo

This shows that the nth truncated Fourier series Sn [f] (t) does not converge
uniformly to /(£), despite the fact that it converges pointwise. Hint: You can
compute the integral with a Riemann sum.

398 Chapters. Harmonic Analysis

8.23. Compute the following:

(i) Find the DFT of f = (1,1,0,0).

(ii) Find the inverse DFT of f = (1,0,1,0).

8.24. (i) If p(x) = ao + a±x H-----------h an~ixn-1 is an arbitrary polynomial, what is
the value of for arbitrary £ e Z? Explain carefully how to use the
matrix representation of the DFT to compute this.

(ii) A fairly fast way to evaluate a general polynomial at a single point is
Horner’s method:

p(x) = a0 + rr(ai + x(a2 4----------H ^(un-2 + £«n-i) • ••)),

which takes O(n) time. But to evaluate p at n distinct points using
Horner’s method takes O(n2) time. Explain carefully how to compute
the evaluation of p at the n distinct points , cj™-1 in O(nlog(n))
time using the FFT.

8.25. Prove that applying the DFT twice to f = (/0,/1, • • •,/n-2,/п-i) gives

8.26. A matrix A e Mn(F) is circulant if it is of the form

&2

«3 «2

no an-i
«1 (Zo

(i) Show that the circulant matrix can be diagonalized by the DFT. That is,
show that if Un = y/nWn is the orthonormal matrix of Theorem 8.5.10,
then diag(co,..., cn-i)Un = A for some (co,..., cn_i).

(ii) Find the eigenvalues of A.

8.27. The DFT approximates a function f(t) using the orthonormal set
but if f(t) = elajXt with A e R\Z corresponds to a frequency that is not
in that set, we see nonzero effects in all the DFT frequencies k/N. This is
called leakage from the actual frequency X/N to the other frequencies k/N.

(i) Prove that the modulus |/(fc)| of the &th discrete Fourier coefficient f(k)
of f is given by

l/(fc)l = sin7r(A — k)

This formula gives the so-called leakage amplitude for the DFT of a
noncharacteristic sinusoidal frequency.

(ii) Plot |/(fc)| as a function of к for several values of A, taking N = 100.

Exercises 399

8.28. Let f, g, h, к be the 4-periodic vectors

f = (1,2,3,4),
g= (0,0,1,0),
h = (l,z, —1, —г),
k= (1,-1,1,-1).

Compute f * g, g * h, g * g, h * k, and h * h.
8.29. Using the same notation as the previous problem,

(i) compute the DFT of each of the vectors f, g, h, k;
(ii) find the products 0 W^g, W4g 0 H^h, W^g 0 W4g, W4h 0 W4k,

and 0 W^h;
(iii) verify that dW^1 applied to each of these products agrees with the

corresponding convolution that you computed in the previous problem.
8.30. The naive algorithm for multiplying two polynomials

f = ^0 ak %k and 9 = ^0 bk%k
k=0 k=0

of degree n E is to compute every term of

2n

fg = 52cexf'
(00

as
£

c£ = ajbe-j.

This naive computation has temporal complexity O(n2). Explain how to
use the DFT to multiply two degree-n polynomials in O(nlogn) time. Hint:
Use Exercise 8.24 and the fact that a polynomial of degree 2n is uniquely
determined by its values at 2n + 1 distinct points.

8.31. Let A be the circulant matrix

<2q <2n-l
<21 «о

«2 <2i

«3 <22

an-2 ttn-3 • • • «0 «n-l
an~i an-2 • • • ai uq

and let g = (go,gi,..., gn-2,9n-i)- Show that Ag is precisely a * g, where a
is the periodic vector a = (a0, «i, • • •, an-2, &n-i)-

8.32. Let f = x and g = sin(j;). Using your preferred computational tools, sample
both of these functions 1000 times on the interval [0,2тг] to get vectors f and
g. Treating f and g as periodic vectors, compute the (circular) convolution
f g and the Hadamard product f 0 g. Plot the points (хк,Ук) where Xk = *

400 Chapters. Harmonic Analysis

2тгА:/1000 and yk is the &th coordinate of each of the vectors f, g, f * g, and
f 0 g. Plot them all separately and then plot them together on the same
graph.

8.38. Prove the Haar scaling relation (8.60).
8.39. Prove Proposition 8.8.5.
8.40. Prove the equality ф(2^х — k) = — <£>j+i,2fc+i(#) from (8.62) holds.
8.41. Prove items (i)-(iv) of Proposition 8.8.7.
8.42. Complete the following:

(i) Code up a method that takes a function f : [0,1) —> R and an integer
n > 0, and returns an array consisting of the values of the function f at
the points k/2n for к G {0,..., 2n — 1}.

(ii) Write a method that accepts an array a = [a0, cq,. •., a2™_i] and a value
x e [0,1) and returns EjLo akPn,k(x)-

(iii) For the function
/(t) = Si^- ̂ (8.99)

у |c — 7Г/201

8.33. Given n > 2y samples (£0, /(^o)), • • •, (tn-i, /(^n-i)), implement the periodic
sampling theorem algorithm to compute the exponential Fourier series of a
function f : [0,T] —> R with Nyquist frequency z/. Your code should accept
integers у and n, a floating point number T, and a function / and return
an array of coefficients [c.^,..., cq, ..., c^]. Also, implement a method that
returns g(t} = 'Y^k=-v ck^kt as a callable function.

8.34. Find the period T and the Nyquist frequency of the function

f(x) = 1 — 3sin(127nr + 7) + 5sin(27nr — 1) + 5sin(47nr — 3).

For each value ofnG{3,7,ll,13} use your code from the previous problem
to sample / at the n points , ^n-i with and find the unique
function gn(x) with Nyquist frequency less than n/2 passing through those
n points. Plot /, gn, and the n sample points on the same graph.

8.35. For any у G N prove that the set V of all functions on [0, T] with Nyquist
frequency no greater than v is a vector space. Let / have Nyquist frequency
y. Assume f is sampled at n = 2v uniformly spaced points on [0,T) as
in Definition 8.5.1. Prove that the subset of V consisting of functions that
vanish at all the sampled points is a subspace of V of dimension at least 1;
therefore, there are an infinite number of functions agreeing with f at all the
samples. This shows the conclusion of the periodic sampling theorem fails
for n = 2y.

8.36. Let V be the set of functions on [0,T] with Nyquist frequency у or less. Fix
n > 2z/ +1, and let f = Фп(/) = (/0, • • •, /п-i) be the corresponding sampled
vector. Prove that there exists at least one vector a G Cn such that for every
f G V we have aTf = 0. In particular, this shows that for most choices
у = (t/o, • • • lUn-i) (for all but those satisfying the linear relation aTy = 0)
there is no function f G V satisfying f(ti) = yi for all i G {0,..., n — 1}.

8.37. Prove Proposition 8.7.10. Hint: The Fourier basis is orthonormal.

Exercises 401

and for each of the values n e {1,2,3,..., 10}, use your code to plot f
and plot fn(x) = Hint: It may look like the
sum has a l°t °f terms, but for any x all but one of
the terms are zero.

8.43. Consider the function f : [0,1) —> R given by

—2, x e [0,0.25),

/00 = < 4,
2,

x e [0.25,0.5),
x e [0.50,0.75),

<-з, x e [0.75,1.0].

(i) Find the wavelet transform of f by matrix multiplication.
(ii) Find the wavelet transform of f by using the FWT.

(iii) Express f in terms of its component parts Vo, Wo, and W±.
8.44. Write out the matrix representation of the wavelet transform T8-1 on the

subspace of V3 consisting of functions that have support contained in [0,1).
Consider the function f : [0,1) —> R given by

2,
4,

x e [0,0.125),
x e [0.125,0.25),

/00 = < 3, x e [0.25,0.5),
1, x e [0.50,0.75),

-3, к x e [0.75,1.0).

(i) Find the wavelet transform of f by matrix multiplication.
(ii) Find the wavelet transform of f by the FWT.

(iii) Express f in terms of its component parts W2, Wi, Wo, and Vo-
8.45. Complete the following:

(i) Code up a function that takes as input the wavelet transform (given by
the array [uoo, boo, &io, &n, • • •]) and an integer j and returns the approx­
imation 7)[/] e Vj and detail gj e Vj~ as callable functions.

(ii) Apply your code to the function (8.57) and reproduce the images in
Figure 8.20.

8.46. Complete the following:
(i) Use your code from Exercise 8.42 and Exercise 8.45 to construct a

method that takes a function f defined on [0,1) a positive integer £ and a
positive integer j < fa samples f to get an approximation /f, and returns
the two functions Tj [f] e Vj and gj e V^ such that fa = Tj [f] + gj.

(ii) Apply your methods to the function (8.99) for £ = 10. For each value of
j e {0,1, ...,£— 1} plot each of the functions Tj[f] and gj.

(iii) Compare the plots of each Tj [f] to the corresponding plots in Exercise
8.42. In both cases they are functions in Vj, but they are not identical.
Explain the difference. Explain why it occurs.

402 Chapters. Harmonic Analysis

8.47. Complete the following:
(i) Adapt your code from the previous problem to sample functions on

any compact interval [a, b], construct the Haar wavelet transform of
the sampled function on that interval, and return the two functions
Tjlf] e vj and 9j e Vj1- such that fe = Tj[f] +gj.

(ii) Apply your method to the function (8.99) on the interval [—1,1] for
£ = 10. For each value of j e {0,1, ...,£ — 1} plot each of the functions
Tj[f] and 9j-

8.48. Prove Proposition 8.10.6.
8.49. Prove that Z^ez(—l)£^i-^ = 0-
8.50. By taking the appropriate inner products, show that the two equations in

(8.82) hold.
8.51. Consider the class of scaling functions (8.71) with exactly four coefficients /zq,

Zzi, Zz2, and /z3 satisfying

1 + д/2 cos 0 1 + y/2 sin 0
=-------5------- , hr =--------- ------- ,

(8.100)
1 — д/2 cos 0 1 — y/2 sin 0

h2 = ------- ~2------- , h3 = ------- ~2-------•

Prove that the three identities in Proposition 8.10.9 hold, specifically:

(i) Following (8.75), show that Hq + h2 + + h% = 2 and /zq^2 + hih^ = 0.
(ii) Following (8.76), show that /zq + hi + /z2 + = 2.

(iii) Following (8.77), show that /zq + /z2 = 1 and hi + h% = 1.
8.52. Do the following steps to prove that any scaling function with exactly four

coefficients /zq, /zi, /z2, and /z3 can be written as (8.100) for some choice of
0. Assume that the scaling function coefficients satisfy (i)-(iii) from Exercise
8.51.

(i) Show that (/zq + hi)2 + (/zi + Л3)2 = 2.
(ii) Show that h0 + /z2 = Tzi + /z3 = 1. Hint: Let /z0 + ^2 = 1 + £ and

hi + I13 = 1 — e and use the previous identities to show that e = 0.
(iii) By writing

7 1 ,1 ,1 ,1^0 — 2 + ^1 — 2 + ^2 — 2 — ^з — 2 —

show that s2 +t2 = 1/2.
(iv) Complete the proof by showing that (8.100) holds.

8.53. Show that the coefficients of the Daubechies db2 scaling function, given in
(8.91), satisfy (8.100). What is the value of 0 that makes them equal?

8.54. Show that the first moment of the mother wavelet satisfies

fcez
(8.101)

Exercises 403

8.55. For the Daubechies db2 scaling function, prove that p(x) dx = 1. What
does this mean for Theorem 8.11.1?

8.56. Assume that the scaling function for a certain wavelet satisfies the following:
(i) There are exactly four nonzero coefficients ho, hi, h-2, and h^.

(ii) The first moment (8.101) of the mother wavelet is zero, that is,

52(-i)fcw = o.
fcez

(iii) The three scaling identities in Exercise 8.51 (i)-(ii) hold.
This gives a system of four equations and four unknowns. Solve these to get
(8.91).

8.57. Plot the approximation and detail of the function f in (8.99) with the Daubechies
db2 wavelet Tj [f] for varying depths.

Notes
Much of our treatment of wavelets and Fourier series was inspired by [Str93, BN09,
GV15]. For more on the FWT see also [BCR91]. For the proof that both pn and
фп (in the construction of the Daubechies wavelets) converge uniformly to their
limiting functions p and ф see [DD10].

Polynomial
Approximation and
Interpolation

There ’s no sense being precise when you don’t know what you ’re talking about.
—John von Neumann

This chapter is about approximating continuous functions on bounded intervals with
polynomials. This is useful because polynomials are relatively simple functions that
can be evaluated rapidly. They can also be differentiated and integrated easily.
Thus we can often approximate the integral of a function, the zeros of a function,
or the extrema of a function very well by approximating it closely with a polynomial
and then computing the desired operation for the polynomial approximation.

We begin by proving the Weierstrass approximation theorem, which guarantees
that every continuous function can be approximated arbitrarily closely in the uni­
form norm. To prove this we use Bernstein polynomials (see Volume 1, Section 2.6).
The more closely these polynomials approximate a (nonpolynomial) function, the
higher degree the polynomials must be. Unfortunately to approximate an arbitrary
continuous function very closely it often takes a very high degree polynomial.

But for functions that have some level of regularity, or smoothness (that is,
functions that are Ck for some к > 1), we can approximate much more efficiently
using a special collection of orthogonal polynomials called Chebyshev polynomials.
In this case the function is interpolated by the polynomial; that is, the polynomi­
als are required to agree with the values of the function at certain predetermined
points called nodes. We first discuss existence and basic properties of interpola­
tion, and then we discuss the use of orthogonal polynomials, especially Chebyshev
polynomials in interpolation. Chebyshev polynomials have a strong connection to
Fourier series, and that connection leads to a very fast method for computing highly
accurate Chebyshev interpolations using the FFT.

Finally we discuss several methods of numerical integration based on polynomial
approximations. These include Newton-Cotes methods (like the trapezoid rule and
Simpson’s rule), Clenshaw-Curtis quadrature, which uses Chebyshev polynomials,
and Gaussian quadrature, which uses Legendre orthogonal polynomials.

405

406 Chapter 9. Polynomial Approximation and Interpolation

9.1 Polynomial Approximation
In this section we prove that any continuous function on a compact interval [a, b]
can be approximated arbitrarily closely (in the uniform norm) by a polynomial.
In other words, the vector space of polynomials is dense in the space C([a, 6]; R) of
continuous functions under the uniform norm || • ||l<x>). This is called the Weierstrass
approximation theorem and is a fundamental theorem in mathematical analysis.

9.1.1 The Bernstein Transformation
To prove the Weierstrass approximation theorem we use the Bernstein polynomials,
described in Volume 1, Section 2.6, and the Bernstein transformation, described
below. This transformation takes a function f and returns a sum of Bernstein
polynomials of a given degree that approximates f on the interval [0,1]. The ap­
proximation becomes increasingly accurate as the degree of the polynomial gets
large.

Recall that for each n 6 N the degree-n Bernstein polynomials

B?(i)=Q?(l-I)n-J for j e {0, ...,n} (9.1)

are nonnegative on the interval [0,1] and have their extrema on [0,1] occurring at
the points ..., Moreover, the set of all Bernstein polynomials of a given
degree sum to one (they form what is known as a partition of unity).

Definition 9.1.1. Denote the vector space of polynomials in x with coefficients in
R by R[rr] and the subspace of polynomials of degree at most n by R[rr; n]. For each
n e the Bernstein transformation Bn : C([0,1]; R) —> R[ar; n] is given by

fc=0

Example 9.1.2. Let g(x) = sin(7nr). If n = 3, the Bernstein transformation
ЯзЫ(ж) is

вз[д](х) = g(0)B$(x) +g (A B^x) +g (|) B%{x) +g B%(x)

У3/3\ . .2 У3/3\ 2/= 0 + — ^JxCl - a;)2 + — (2)ж (1 -ж) + 0

3\/3 2\
= — (ж-a:2).

Although this is a sum of polynomials of degree 3, the highest-degree terms
cancel, yielding a polynomial of degree 2 in x. Note that #з[д](0) = 0 = g(0)
and Вз[д](1) = 0 = g(l). The functions g and Вз[д] are plotted in the left
panel of Figure 9.1.

9.1. Polynomial Approximation 407

Figure 9.1. Bernstein polynomial approximation Bn [<j] (plotted in black) of the
function g(x) = sin(7nr) (plotted in red) for n = 3 and n = 6. Note that the
approximations Bn[g] agree with g at x = 0 and x = 1 but do not intersect the
graph of g anywhere on the open interval (0,1).

Example 9.1.3. As before, let g(x) = sin(7nr), but now take n = 6. The
Bernstein transformation Вб[д](ж) is

-ВбЫ(яО = g(0)B$(x) + g Г0 B^(x) + g (0 Bf(z) +g (0 B$(x)

+ g (0 B46(a:) + g (0 B6(a;) + g (0 B66(x)

= 3a;(l — x)5 H———a;2(l — a:)4 + 20a:3 (1 — a;)3

4—~~ л:4(1 — а:)2 + 3a:5(l — x)

« —0.02a:6 + 0.058a:5 + 0.93a:4 - 1.96a:3 - 2.01a:2 + 3.0a:.

The functions g and Вб[д] are plotted in the right panel of Figure 9.1.

The next two lemmata give some of the basic properties of the Bernstein trans­
formation.

Lemma 9.1.4. For all n e Z+ we have

Bn [1] = 1, Вп[ж] = ж, and Bn[x2] = x2 + -——

Proof, The proof is Exercise 9.3. □

408 Chapter 9. Polynomial Approximation and Interpolation

Figure 9.2. Bernstein polynomial approximations (plotted in black) of the function
f(x) = ;r2sin(27Er + %) (plotted in red), for n = 4, 10, 50, and 200, respectively.
This is not a very good approximation unless n is large.

Example 9.1.5. In Figure 9.2 we plot the function

/(ж) = x2 sin(27nr + 7г) (9-2)

and the Bernstein approximations Вп[/](ж) for n = 4, 10, 50, and 200. Al­
though these approximations do converge uniformly to / as n —> oc, they are
not very good approximations until n is fairly large.

Lemma 9.1.6. Let f,gE C([0,1];R) and a,b e R. For all n e N, the Bernstein
transformation Bn satisfies the following properties:

(i) Linearity: Bn[af + bg] = aBn[f] + ЬВп[д].

(ii) Weak monotonicity: If f < g on [0,1], then Bn [f] < Bn[<?] on [0,1].

(iii) Strong monotonicity: If \ f\ < g on [0,1], then \Bn[f]| < Bn[<?] on [0,1].

9.1. Polynomial Approximation 409

Proof.

(i) We have

Bn[af + ЭДСг) = f>/ + bg) (£)

fc=0

= а^/^В^х)+Ь^д^)В^х)

= aBn[f](x) + bBn{g](x).

(ii) The proof is Exercise 9.4.

(iii) If \f\ < g, then -g < f < g, which implies -Bn[g] < Bn[f] < Bn[g], or
equivalently | Bn [f] | < Bn [g]. □

9.1.2 Weierstrass Approximation

We now have all the tools we need to prove the Weierstrass approximation theorem.

Theorem 9.1.7 (Weierstrass Approximation Theorem). If f e C([a,6];R),
then there exists a sequence of polynomials mR[a;] such that ||pn —0
as n oo. In other words, R[rr] is dense in C([a,6];R) under the sup-norm.

Proof. Rescale the domain [a, b] to [0,1] via so that we may assume
a = 0 and 6=1. The desired sequence of polynomials that converges to f is given
by the Bernstein transformation: given f e C([0,1];R), we show that for all e > 0
there exists N > 0 such that ||Bn[/] — /||ьоо < e for all n > N.

Since [0,1] is compact, f is bounded and uniformly continuous on [0,1]. Hence,
for every e > 0 there exists 6 > 0 such that \f(x) — f(y)\ < f whenever |ж — y\ < 6
and x,y e [0,1]. Let M = maxxE[0,i] |/(#)|- We claim that

2

for any с e [0,1]. To see the claim, note that if |ж — c| < <5, then |/(ж) -/(c)| < f.
But if I# — c| >5, then

I/O) - /(с)I < 2M < < | + ^(ж - c)2.

Thus the claim holds.

410 Chapter 9. Polynomial Approximation and Interpolation

By Lemmata 9.1.4 and 9.1.6, we have

|Вп[/](ж)-/(с)| = |Вп[/-/(С)](ж)|

Bn 2 + ^(*"c)

where the last inequality follows from the fact that maxxe[01] (x — x2) = Substi­
tuting c in for x gives |Bn [/](<?) — /(c) | < f + 7^2 • Since c is arbitrary, we have
\\Bn[/] - f\\Loo < € whenever n > N > Д. □

Remark 9.1.8. Although useful for proving the theorem, the Bernstein approxi­
mation method requires that n be large in order to produce close approximations.
A particular weakness of this method is that for a polynomial p of degree к > 2, we
usually have Bk [p] ф p- For example, B2 [ж2] = | (ж2 + ж). Thus n must often be
much larger than к in order for Bn [p] to achieve a good approximation of p.

Remark 9.1.9. If the function to approximate is C1, then we can approximate
it much more efficiently using some powerful methods involving interpolation by
Chebyshev polynomials, described in Sections 9.4 and 9.5. The smoother / is (the
more derivatives of / that exist), the lower the degree of the polynomial required
to approximate / to a given accuracy.

9.2 Interpolation
The previous section focuses on uniform approximation of functions by polynomials,
but those polynomials are not required to actually agree with the function at any
points—they are just required to be uniformly near the function. However, in many
settings we want an approximation that actually agrees with the function at certain
points. This is called interpolation.

Interpolation plays a key role in applied and computational mathematics; it is
particularly important in numerical analysis, where interpolating polynomials are
used to approximate continuous functions. It is also pervasive throughout computer-
aided design, signal processing, coding theory, and mathematical systems theory.

In this section we prove the Lagrange interpolation theorem, which states that
if я?о, Xi,..., xn are distinct, then for any values yo, ..., yn, there exists a unique
polynomial p(x) of degree at most n such that p(xi) = yi for each i = 0,1,2,..., n.
Although the Lagrange interpolation theorem does give a constructive proof of the
existence of the unique interpolating polynomial, that construction is not generally
a good numerical algorithm. But we describe two stable, efficient methods for
numerically computing the unique interpolating polynomial, namely, barycentric
Lagrange interpolation and Newton interpolation.

9.2. Interpolation 411

9.2.1 Interpolation

Definition 9.2.1. Given a collection of points {(x0,y0),..., (xn,yn)} in R2 with
all the Xi distinct, we say that a polynomial p e R[rr] interpolates the collection of
points if p(xj) = yj for each j e {0,1,2,..., n}. If I C R is an interval containing
the distinct points {tq, ..., xn}, then a polynomial p interpolates f : I R at
{to, ..., xn} if p interpolates the collection {(^o, /(^o)), • • •, (xn, /(жп))}.

Remark 9.2.2. Although the definition is given here for points (хг,уг) e R2, this
definition also makes sense for points in C2, and most of the theorems of this chapter
also hold over C.

Example 9.2.3. The rational function /(ж) = 1/(1+25ж2) is not polynomial,
but p(x) = 1 — ||a;2 is a polynomial interpolation of f at the points { —1,0,1},
because p(—1) = /(—1) = 1/26, p(0) = /(0) = 1, and p(l) = /(1) = 1/26.
This is shown in the left panel of Figure 9.3.

terpolating polynomials. In the left panel is the degree-2 polynomial 1 — ||t2 (in
black) interpolating f at the points x e {—1,0,1}, as described in Example 9.2.3.
On the right is the degree A polynomial (black) interpolating f at the points x e
{—1, — |, 0, |, 1}, as described in Example 9.2.8. After simplifying, the degree-4
polynomial can be written as ^^x4 — ^^x2 +1.

Unexample 9.2.4. The Bernstein polynomial approximation Bn[/] is not
(usually) an interpolation of f at the points This is because
even though Bn [f] is a polynomial that is determined by the values of f at
the points k/n, it usually does not pass through the points (k/n, f(k/nf) for
к E {1,..., n — 1}. See also Figure 9.1.

412 Chapter 9. Polynomial Approximation and Interpolation

Remark 9.2.5. Any polynomial passing through {(#o,?/o), • • •, (^n,£/n)} is an in­
terpolation, but we usually want the interpolating polynomial of lowest degree. For
example, any polynomial of the form p(x) = xn passes through the two points
{(0,0), (1,1)}, but the polynomial of least degree that passes through those two
points is the line f(x) = x.

Theorem 9.2.6 (Interpolation Theorem). Given n + 1 distinct points #o,^i,
..., xn and corresponding values y^,... ,yn, there exists a unique polynomial of de­
gree at most n that interpolates the collection {(#0,3/0), • • •, (^n,3/n)}«

Proof, Define a family of n-degree polynomials by

- JI _ • (9-3)
j k

These polynomials are called the Lagrange basis functions. Evaluating Lnj at each
Xk gives Lnj(xk) = djk- Hence, the linear combination

P(z) = (9.4)
j=o

is an interpolating polynomial for the given collection. To prove uniqueness, suppose
there exists another interpolating polynomial q of degree at most n. The polynomial
p — q has degree at most n, yet it has n + 1 distinct zeros (the points #0, • • •, xn).
But a nonzero polynomial of degree n can have at most n zeros, by the fundamental
theorem of algebra (see Volume 1, Theorem 15.3.15); hence, p — q = 0. □

Corollary 9.2.7. Two distinct polynomials of degree n can intersect in at most n
points.

9.2.2 Lagrange Interpolation
Lagrange interpolation is the method used in the proof of Theorem 9.2.6 for con­
structing the unique interpolating polynomial of degree at most n. Namely, given
{#0, • • • ,#n} first construct the basis polynomials Lnj, and then use (9.4) and the
values ?/o, • • •, Уп to assemble the desired polynomial.

4

Ь4,о(ж) = Р
fc=l

Example 9.2.8. To use Lagrange interpolation to interpolate a function in
the interval [—1,1] at the five equally spaced points Xi = for i € {0,..., 4},
construct the Lagrange basis polynomials of degree 4:

X = |(ж + |)ж(х— |)(х- 1) = |(4x* 4 -4ж3 — x2 + ж),
-l)-xfe 3 2 2 6

9.2. Interpolation 413

and similarly

£4,1(2)
4 _ я

=]L n = 9(ж + 1Ма: г)(х x)
“НН 3
k^l

= — - (2ж4 — x3 — 2x2 + x),
0

4
£4,2(2)l=Hn =4(x + l)(x+2X2 l)=4x4 5x2 + 1,

k=oU~Xk k^2

£4,3(2)1 = TT 1 = „(2 +1)(2+ J)2(a; 1)= (2a;4 +x3 2a;2 a;),
“2-^ 3 3

k^3

£4,4(2) = IT 1 = <>(2+l)(a; + 2^X(X 2) = a (^4 +
1 — Xfc 0 0k=0k^4

To use these to interpolate the rational function 1+25ж2 (see Figure 9.3, right
panel), compute the function values yj = f(xj) for all j G {0,..., 4} and apply
(9-4):

p(^) — ^6^4,0 + + ^4,2 + ^^4,3 + ^^4,4

1250 4 3225 2 ,
“ 377 X ~ 754 +

(9-5)

Figure 9.4. Lagrange polynomial interpolations (in black) of the function f(x) =
x2 sin(27nr + %) (plotted in red) with equally spaced values in x for n = 4 and
n = 8. The approximation is eyeball perfect for n = 8. Compare these to the
Bernstein approximations in Figure 9.2. Beware, however, that this is a special
example—interpolating at uniformly spaced points can sometimes provide very poor
approximations; see Section 9.4-1 for more on this.

414 Chapter 9. Polynomial Approximation and Interpolation

Nota Bene 9.2.9. In college algebra classes it is traditional to simplify ex­
pressions like (9.3), (9.4), and (9.5) by expanding all the multiplications and
gathering all the terms of the same degree. In the previous example, we sim­
plified £4,0(ж) from its original form |(rr + ^)x(x — |)(ж — 1) to the form
I(4a;4 — 4a:3 — x2 + x), and similarly with the other Lagrange basis poly­
nomials L±j(x). We also simplified (9.5) to + 1- But these
simplifications are not necessary. The expressions (9.3), (9.4), and (9.5) are all
polynomials whether they are simplified or not, and they can still be evaluated
in their unsimplified form.

When we talk about Lagrange interpolation as a method for construct­
ing the unique interpolating polynomial we usually mean the unsimplified
form of (9.4) with the Ln j of (9.3) also unsimplified. Moreover, as an algo­
rithm this unsimplified form is easy to code up, whereas methods for au­
tomatically simplifying the polynomial are not so easy. In Sections 9.2.3
and 9.2.4 we discuss two other methods for constructing the interpolating
polynomial that are algebraically equivalent to Lagrange interpolation (that is,
they all simplify to give the same polynomial), but, in their unsimplified form,
they yield more efficient algorithms for computation than the naive Lagrange
method.

The interpolation theorem (Theorem 9.2.6) has the following immediate corol­
lary.

Corollary 9.2.10. If f is a polynomial of degree at most n, then the polynomial
constructed by Lagrange interpolation of f at n + 1 distinct points is f.

This corollary shows one virtue of Lagrange interpolation over the Bernstein
polynomial approximation: even when f is a polynomial, the Bernstein approxima­
tion Bn[/], is rarely equal to /; see Remark 9.1.8.

Complexity of Lagrange Interpolation

Assuming the values y0,... ,yn are known and the denominators

II -xk) (9-6)

are computed in advance (a cost of ~ 2n FLOPs each, for a total complexity of
~ 2n2 FLOPs for the initial startup), evaluating the unsimplified polynomial at a
point x involves n multiplications and n subtractions, for each of the n + 1 basis
polynomials £п^(ж), and then an additional n + 1 multiplications and n additions
to compute the expression (9.4), for a total of ~ 2n2 FLOPs for each evaluation of
the interpolating polynomial.

9.2. Interpolation 415

Example 9.2.11. In Figure 9.4, we see the unique degree-n interpolation of
/(a?) = x2 sin(27ra; + 7r) at n + 1 equally spaced nodes in the domain [0,1]
for n = 4 (left panel) and n = 8 (right panel). In this case, the Lagrange
interpolation is more accurate for n = 8 than the Bernstein approximation
is when n = 200. In Section 9.4.1 we show, however, that interpolation at
uniformly spaced points is not always so accurate. It can sometimes provide
a very poor approximation.

9.2.3 Barycentric Lagrange Interpolation
Lagrange interpolation can be made more stable and more efficient with some simple
modifications. The resulting method is called barycentric Lagrange interpolation.
Barycentric Lagrange interpolation still has a startup cost of ~ 2n2, but evaluating
the resulting polynomial at a given value x costs only O(ri) FLOPs. Contrast this
with naive Lagrange interpolation which has a cost of O(n2) for each evaluation of
the polynomial.

The Barycentric Lagrange Method

Barycentric Lagrange interpolation begins with the observation that the Lagrange
basis function Lnj in (9.3) can be rewritten as

LnJ(x) = v(x)-

where the Wj (hereafter called the barycentric weights) are given in (9.6), and v(x) =
n;=o(* — Xj). Using (9.4) we can write

p(x) = «(ж) л> - (9-7)
J=ox Xj

Applying (9.7) to the degree-0 polynomial 1 (so yj = 1 for all j) gives

J=o
™j
— X j

so we can avoid computing v(x) and write

n Wj
X — Xj

POO = ------------------

v- Wj
(9-8)

X — Xj

We call (9.8) the barycentric form of the interpolating polynomial p. Although this
does not look like a polynomial, the previous discussion shows that it is, and, in

416 Chapter 9. Polynomial Approximation and Interpolation

fact, it is the unique polynomial of degree at most n that interpolates the data

Remark 9.2.12. Although the barycentric form (9.8) defines a polynomial func­
tion (meaning that there is a polynomial, in the traditional sense, that agrees with
it at all the points where (9.8) is defined), the expression (9.8) is not defined at the
points Xj for j e {0,..., n}. But the value of the polynomial at Xj is already known
to be yj, so (9.8) need never be evaluated at any of the Xj.

Example 9.2.13. To use barycentric Lagrange to interpolate a function in
the interval [—1,1] at the five equally spaced points Xi = for i E {0,..., 4},
use (9.6) to compute the barycentric weights

(4 \ —1
П(-1 - xk) | = ((-1 + i)(-l - 0)(—1 - 1)(-1 - I))-1 = |
k=l /

and, similarly,

8
w3 = and

To use these to interpolate the rational function f(x) = 1+25^.2 , use the func­
tion values yj = f(xj) for all j € {0,... ,4}, and then apply (9.8):

By the interpolation theorem (Theorem 9.2.6), the polynomial (9.9) is unique
and thus must equal (9.5), so both of these simplify to + 1-
But one benefit of the barycentric Lagrange method is that one can rapidly
compute the value of this polynomial using (9.9), without doing any simplifi­
cation.

Complexity of Barycentric Lagrange

Every evaluation of p(x) in (9.8) uses the weights Wj, which are constant, so these
can be computed in advance. Computing each Wj requires 2n FLOPs, for a total
startup cost of ~ 2n2 FLOPs. To evaluate the polynomial at a given point x requires
computing (9.8). To do this, first compute the expressions x™x , which require only
2 FLOPs each, for a total of 2(n +1) FLOPs. Computing the sum in the numerator
requires an additional n+1 multiplications and n additions, and computing the sum
in the denominator requires n more additions, for a grand total of ~ bn FLOPs.
Thus the startup cost of barycentric Lagrange interpolation is the same as naive
Lagrange interpolation (~ 2n2), but evaluation of the polynomial at any point x
costs only ~ bn instead of ~ 2n2.

9.2. Interpolation 417

Remark 9.2.14. When a generic polynomial is fully simplified into the standard
form evaluating it requires at least n multiplications and n additions
(using Horner’s method), for a minimum number of ~ 2n FLOPs. The barycentric
method is not significantly worse than this, and any algorithm to further simplify
the polynomial would require additional computation. Thus barycentric Lagrange
is not far from being optimal, in terms of temporal complexity.

Remark 9.2.15. The weights Wj depend only on the Xj and are independent of
the yj, so once the Wj are computed, they can be used for interpolation with any
collection of 7/j, without any additional startup cost. Adding a new point #n+i to
the formulas can also be done with an additional temporal cost of O(n) (see Exercise
9.11).

9.2.4 *Newton Interpolation
Newton interpolation is an alternative method of constructing the interpolating
polynomial. It also requires only O(n) FLOPs to evaluate the polynomial, once some
initial numbers have been computed, and computing those initial numbers requires
O(n2) FLOPs. It has the disadvantage that the initial numbers depend on the values
Уэ, so changing the yj means another startup cost of O(n2). Nevertheless, Newton
interpolation is a practical and commonly used method. And it has the advantage
of generalizing well to Lagrange-Hermite interpolation, a variant of interpolation
where not only values of f(xj) are to be matched by the polynomial, but also
derivatives (see Volume 1, Section 15.7.4). Traditionally Newton interpolation was
the preferred method for interpolation, but more recently it has become clear that
barycentric Lagrange is a better algorithm for many applications (see [BT04]).

Newton interpolation is an iterative method that constructs the interpolating
polynomial of degree at most к through the first к +1 pairs {(^o, yo),..., (#&, Ук)}-

Theorem 9.2.16. For each к e {0,... ,n} let pk(x) be the unique polynomial of
degree at most к that interpolates the subset {(xj,yj)}j=G with the Xi all distinct.
For each к e {1,... ,n} the polynomial Pk(x) satisfies the relation

Рк(х) = Pk-i(x) + akwk(xfi (9.10)

where
k—1

^k{x) := Ц(я - Xj) (9.11)

and
— ~ Pk~l(Xk) Zn i
— / \ (9.12)Wk(xk)

Proof. The difference pk(x) — Pk-i(x) is a polynomial of degree at most к with
all the same zeros as Wk(x); therefore it must equal some scalar multiple of wifx).
Evaluating (9.10) at the point Xk yields (9.12). □

418 Chapter 9. Polynomial Approximation and Interpolation

Corollary 9.2.17. For {а7-}™=0 and wffx) defined iteratively, as above, we have

n
= '^ajWj(xfi (9.13)

J=o

where wo(rr) = 1 and «о = Уо- If the coefficients aj are known in advance, then, for
a given value of x, the expression (9.13) can be computed as

Pn(x) = (... ((an(x -xn-i) + an-i)(^ - xn-2) + an-2)-----h «i)(^ - z0) + a0.
(9.14)

The corollary motivates the following proposition and the corresponding algo­
rithm, called divided differences, which allows for fast computation.

Proposition 9.2.18. For each к e {0,... ,n} define = yk, and for 0 < j < к
recursively define

....... =»*-.] (915)
Xk Xj

The coefficients ak in (9.10) satisfy

ak = y[x0,x1,...,xk].

Proof. Let pk (x) denote the unique polynomial of degree at most к that interpolates
{(xj, yj)}j=Q- Similarly, let Pk(x) be the unique polynomial of degree at most к — 1
that interpolates {(^j, 2/j) }^=i • For each к e {1,..., n} we have

Pfc(ar) = Pk(x) + ——— (Pk(x) -pfc-i(®)).
Xk ^0

Matching the terms of degree к gives (9.15). The details are Exercise 9.13. □

Example 9.2.19. To apply the divided differences algorithm to interpolate
the set {(0,1), (—1,3), (1,1), (2,15)}, we compute

«о = y[xo\ = 1 and

Xi — жо —1 — 0

Computing a2 requires

= 1,1121 ~ = -1,
x2 - Ж1

from which we compute

г , укьжз] - yko,^i]
«2 = У Жо,^1,Ж2 = —---------- 2-------- ’---------- - = 1.

Х2 ~ Х0

9.3. Orthogonal Polynomials for Approximation 419

Computing аз requires

3/[#2,#з] = —— = 14 and
- #2

Г i у1х2,Хз\ - у[х1,х2] _
y\xi, #2,^3 =------------------------------------= 5,

Хз - X!

yielding аз = 2. Combining these using (9.14) gives

Рз(^) = ((а3(х - ж2) + а2)(ж - #i) + ai)(z - a?0) + «о
= ((2(z-l) + l)(z + l)-2)z + l.

9.3 Orthogonal Polynomials for Approximation
As discussed in Chapter 8, choosing an orthogonal basis for a space of functions is
a very powerful tool for approximating functions. Fourier series and wavelets are
important examples of this. Orthogonal bases are also very useful in the space R[rr]
of polynomial functions. There are many choices of inner products that we can put
on R[&], and these different choices each lead to a different orthogonal basis.

9.3.1 Legendre Polynomials
The Legendre polynomials arise from considering the vector space R[ar] with the
inner product

(/, 9) = / x f(x)g(x) dx. (9.16)

Applying the Gram-Schmidt process (see Volume 1, Section 3.3.1) to the power
basis {1, x1, a?2,...} C R[rr] gives an orthonormal basis. Recall that this process
involves letting

and defining Qi, q2, ..recursively, by

к= xK -pk-i
qk ||arfc — pfc_i|| ’ к e Z+,

where
k—1

Pk-1 = projQfc_1(®fc) = '^2(qi,xk)qi
2=0

(9-17)

is the orthogonal projection of xk onto Qk-i = span({#o, • • •, Qfc-i})«
We now compute the orthogonal basis

Po =projQo(rr) =
1 \ 1—) —— = 0,

72 /72

420 Chapter 9. Polynomial Approximation and Interpolation

so x is already orthogonal to Qq. This gives

_ x-po _ \/3
91 II® -Poll V^X'

And next, a straightforward integration shows that (x,x2} = 0, which gives

so
®2 - Pi /о 2

77-5-------- iT = ----7=\^x ~®2-Р1 2>/2qi =

Continuing in this manner gives an infinite orthonormal set {qo, Qi, ...} of polyno­
mials, with each qn of degree n.

Although orthonormal sets have some advantages over other orthogonal sets,
for polynomials it is often more convenient to rescale the polynomials to create an
orthogonal set {uq,ui,...} of nonzero polynomials of the form Uk = xk — Pk-i,
where Pk-i is given by

Pk-i (9.18)

That is, we take each и к to be a monic polynomial of degree к (monic means the
coefficient of the highest-degree monomial is 1). For example, with the Legendre
polynomials this gives uq = 1, u± = x, and = x2 — 1/3.

9.3.2 Monic Chebyshev Polynomials
The Chebyshev polynomials are constructed in a manner similar to the Legendre
polynomials but using a different inner product on R[rr], namely

(f,g}= f1 f-^M^dx. (9.19)
J — 1 у 1 X

Applying the Gram-Schmidt process to the power basis {1, x, x2, x3,... } using this
inner product, but rescaling to make these polynomials monic, gives the monic
Chebyshev polynomials {Tn}£T0, which satisfy

ВД = 1,
Ti(&) = x,

f2(x) = x2 -

fn+i(x) = xfn(x) - n>2. (9.20)

This forms an orthogonal sequence of monic polynomials on the interval (—1,1)
with the inner product (9.19).

9.3. Orthogonal Polynomials for Approximation 421

Proposition 9.3.1. The monic Chebyshev polynomials satisfy the following rela­
tion:

Tn(x) = cos (n cos"1 ж) forn e Z+. (9.21)2n 1

Proof. The proof is Exercise 9.17. □

9.3.3 Chebyshev Polynomials
It is useful to rescale the monic Chebyshev polynomials to get rid of the 2n-1 in
(9.21), so for n > 1 we define

Tn(x) = 2n-1fn(x).

We call these nonmonic polynomials simply Chebyshev polynomials. They are
sometimes called Chebyshev polynomials of the first kind, since there are other
kinds of Chebyshev polynomials, but we don’t use that name (“of the first kind”)
because these are the only kind of Chebyshev polynomials that we really use in this
book.

The Chebyshev polynomials satisfy the recurrence

ВД = 1,
71 (a:) = x,
Т2(ж) = 2x2 - 1,

Tn+1(x) = 2xTn(x) - Tn-i(x), n > 2. (9.22)

See Figure 9.5 for a plot of some of these polynomials.

Remark 9.3.2. The Chebyshev polynomials Tn satisfy the relations

'o
(Tn, Tm) — < 7Г

л/2

if n Ф m,
if n = m = 0,
if n = m Ф 0,

(9.23)

so, as with the monic Chebyshev polynomials, these are orthogonal but not or­
thonormal.

By (9.21), we have

Tn(cos(t)) = cos (nt) \/n e N. (9.24)

This relation provides an important connection between Chebyshev expansions and
Fourier series, which we explore further in Section 9.5.

Proposition 9.3.3. LetTn(x) be the Chebyshev polynomial of degree n.

(i) The zeros ofTn(x) (and ofTn(x)) are given by

/fi / 1 \ \
Zj = cos I — I j- + - I I, j = 0,1,2,..., n — 1. (9.25)

\ П \ Z ! !

422 Chapter 9. Polynomial Approximation and Interpolation

/V A A

Figure 9.5. A plot of the first nine Chebyshev polynomials on the interval [—1,1].
The degree of the polynomial Tn(x) is n, and its zeros are Zj = cos (j + j)) for
j e {0,1,2,..., n — 1}. When restricted to the domain [—1,1], the range of the
Chebyshev polynomials is also contained in [—1,1].

We call these the Chebyshev zeros. They are often called Chebyshev points
of the first kind or Gauss-Chebyshev points; see Figure 9.6.

(ii) The extrema ofTn(x) (and ofTn(x)) in [—1,1] occur at the points

yj = cos f — J, j = 0,1,2,..., n, (9.26)

and yield Tn(yj) = (—I)-7 and Tn(yj) = . We call the points yj Cheby­
shev extremizers or just Chebyshev points. These are often called Chebyshev
points of the second kind or Chebyshev-Gauss-Lobatto points.

Proof, The proof is Exercise 9.21. □

9.3. Orthogonal Polynomials for Approximation 423

Figure 9.6. A plot (red) of the Chebyshev points (extremizers) when n = 20.
These correspond to the x-coordinates of points (blue) uniformly distributed around
the upper half of the unit circle. Notice the clustering of the zeros near the two
endpoints.

9.3.4 Other Inner Products and Orthogonal Polynomials
We can generalize the previous process to any interval (a, 6) with an inner product
of the form

(f,g)= [w(x)f(x)g(x) dx, (9.27)
J a

where the weight function w(x) >0 is an integrable function.
The orthogonal polynomials in Table 9.1 are some of the most widely used

examples in applications. They arise frequently in numerical analysis, probability
theory, statistics, number theory, and physics.

Performing the Gram-Schmidt process (but scaling to make the polynomials
monic, instead of orthonormal) gives a recursive formula for the orthogonal monic
polynomials for the corresponding inner product, as described in the next theorem.

Table 9.1. Commonly used orthogonal polynomials. The constants &k+i and ftk+i
are the coefficients of the recursion described in Theorem 9.3.4 for к e N.

Class Domain w(rr) afc+i ftk+1

Chebyshev (-1,1) (l — #2)-1/2 0 1/4 (l/2forfc = l)
Hermite (—oo, oo) exp (—x2) 0 k/2
Laguerre (0, oo) exp (—#) 2k + 1 k2
Legendre (-1,1) 1 0 k2/^k2 - 1)

424 Chapter 9. Polynomial Approximation and Interpolation

Theorem 9.3.4. Let I be an interval in R and letw:I^ [0, сю) be a nonnegative,
integrable function on I. If the integrals fT w(x)x2k dx are finite and nonzero for all
к e N, then (f,g) = fT f(x)g(x)w(x) dx defines an inner product on R[rr] and there
exists a unique basis of monic orthogonal polynomials {uq,ui, ...}, with degu^ = к
for each к e N. Moreover, the polynomials satisfy the recursive equation

ЗД+1 — (# Pk+lUk—1, (9.28)

where the recursion begins with uq = 1 and u± = x — ai, and the coefficients
and ftk+i are given by

«fc+i =
{uk,XUk}
(uk,Uk)

and {uk^,xuk}
Pk-^-1 / \ •(Uk-l,Uk-l)

(9.29)

Proof. It is straightforward to check that (f,g) = fT f(x)g(jc)w(x) dx defines an
inner product. We show (by induction) that for any к > 0 the given equations do,
in fact, define an orthogonal set {w}^0 with each u^ monic of degree £ for every
£ e {0,..., k}. This shows that the set {u#}k=0 forms a basis of the space R[rr; k]
of polynomials of degree at most к and that for each £ < k, the polynomial is
orthogonal to every polynomial in R[rr; £ — 1] (that is, every polynomial of degree
at most £ — 1).

The initial case of к = 0 is immediate. For к = 1 we need only check that
(1, # — oq) = 0, which follows from the definition of oq. Assume now that the claim
holds for some к > 1. Since Uk and Uk-i are monic, they must have (uk,Uk) > 0
and (ufc-i, Uk-i) > 0, which shows that the denominators in (9.29) defining ctfc+i
and /3fc+i are not zero, so the polynomial и^+1, defined by (9.28), makes sense and
is a monic polynomial of degree к + 1.

We have

(nk, Uk-^-1) (W'ki^'U'k ^k-^-l^k ftk+l'U'k—1)

= (uk, XUk) - (ufc, Uk) = 0,

(У'к—1, ^fc+1) (У'к—1т^^к ^k-\-l^k (dk-\-lUk—\)
= (ufc_i, xuk) - Д/c+i (ufc_i, ufc_i) = 0,

and

l\Uj, Uk-\-]_) (Uj)XUk ^k-\-l^k ftk+lUk—1)

= {uj, xuk) for each j < к — 1.

However, (uj,xuk) = (xuj, Uk) = 0, since xuj is a polynomial of degree at most
к — 1 and hence is always orthogonal to Therefore, the set is orthogonal.

To prove uniqueness, suppose that is also an orthogonal basis of monic
polynomials each satisfying deg Vk = k. Thus Uk — Vk is a degree к — 1 polynomial,
and hence (uk — Vk,Uk) = 0 and (uk — v^Vk) = 0, since Uk and Vk are orthogonal
to all lower-degree polynomials. Therefore \\uk — Vfc||2 = (uk — Vk,Uk — Vk) = 0, and
thus Uk = Vk- □

9.3. Orthogonal Polynomials for Approximation 425

Remark 9.3.5. The converse also holds: If a sequence of monic polynomials satis­
fies the recurrence in (9.28), then there exists a domain I and weight function w(x)
such that the polynomials are orthogonal with respect to the inner product defined
by I and w; see [Fav35] for details.

9.3.5 *Further Analysis of Legendre Polynomials
We conclude this section by applying Theorem 9.3.4 to the monic Legendre poly­
nomials. Assume the domain is (—1,1), and the weight function is w(x) = 1. We
show that ctfc+i = 0 and = Zc2/(4A:2 — 1), for each к > 0. As a first step, we
prove Rodrigues’ formula, which is very useful in its own right.

Theorem 9.3.6 (Rodrigues’ Formula). For each к e N the monic Legendre
polynomial Uk satisfies

u\ rfk
= '“0)

Proof. We first show that the right-hand side of (9.30) is orthogonal to the set
R[rr; к — 1]. Any basis for R[rr; к — 1] can be used to check this orthogonality, so we
use the power basis {1, x,..., Repeated integration by parts gives

Z1 jfc * Jk—j — 1
dl = - 1) J + - 1)‘

1

= 0
-1

for I = 0,1,2,..., к — 1. Since the right-hand side of (9.30) is a degree к polynomial
that is orthogonal to all lower-degree polynomials, it must be a scalar multiple of
Uk(x). Thus we need only choose a scaling to make it monic.

Note that

dk / 2 .Afc dk v—-r(x2 - IF = —r >
dxk dxk

f-j ,k—2
k\ (fc-2)!

This implies

k\ dk
(2k)l dxk

(x2 - l)fc = xk
1) fc-2

2k(2k - 1) (9.31)

which gives the desired monic scaling. □

Remark 9.3.7. Each of the orthogonal polynomials described in Table 9.1 has a
similar formula and the term Rodrigues’ formula is used to describe them.

The recursion formula (9.28) gives an interesting way to compute the Legendre
polynomials, computing the coefficients &k and using (9.29). But Rodrigues’
formula gives a way to compute the Legendre polynomials directly, as described in
the following corollary.

426 Chapter 9. Polynomial Approximation and Interpolation

Corollary 9.3.8. For each n e N, the monic Legendre polynomial un is given by

/ л nfc (n!)2(2n - 2/c)! n_2fcUn “ £ 1) ^(п-^)!(п-2^)!(2п)!Ж ' (9'32)

Proof, By the binomial theorem we have

П! (д.2 _ 1Г = n! y- n! 2(n—fc)(nfc
(2n)P ’ (2n)! A;!(n - A;)! 1 >'

Differentiating n times gives (9.32). □

Theorem 9.3.9. The recursion (9.28) for Legendre polynomials satisfies ctfc+i = 0
and fik+i = к2/ (4A;2 — 1) for each к > 0.

Proof. Corollary 9.3.8 shows that Uk is an odd function when к is odd, and it is an
even function when к is even. Combining this with (9.28) implies that 0^+1 = 0.

To prove that /3k+i = k2/(4k2 — 1), we write Uk(x) = xk + p>kXk~2 H---- , where
fik is given in (9.31). Thus

Q _ xuk(x) - Uk+i(x) _ _ —k(k — 1) t (k + l)k
lk+1 ~ uk-i(x) ~^k~ ^k+1 ~ 2(2fe - 1) + 2(2fe + 1)

(A; — 1)(2A: + 1) — (A; + 1)(2A: — 1) _ k2
2(2k — l)(2fc4-l) “ 4k2 - 1'

Remark 9.3.10. For each k, the monic Legendre polynomial и к satisfies the second-
order ordinary differential equation

(x2 - + 2^^- - k(k + Ifuk = 0. (9.33)
(LJl (LJL

Indeed each of the orthogonal polynomials described in Table 9.1 can be generated
by a sequence of differential equations in this manner.

Another way to construct the Legendre polynomials is to start with the linear
operator D : R[ж] R[&] given by D = (x2 — 1)^ + 2#^. Relation (9.33) shows
that each Legendre polynomial Uk is an eigenvector (also called an eigenfunction)
of D with eigenvalue k(k + 1). It can be verified that D is self-adjoint (Hermitian)
with respect to the inner product (9.16), which means that the eigenvectors must
be orthogonal.

9.4 Interpolation and Approximation Error
Interpolating a function does not always give a good approximation of that function,
and, contrary to intuition, adding more points does not always improve the quality
of the approximation. The key is how the nodes are distributed. If the nodes are
uniformly spaced, interpolation at those points can give terrible approximations, but
if the nodes are spaced like the Chebyshev zeros (9.25) or the Chebyshev extremizers
(9.25), then interpolating gives a good approximation, as measured by the sup-norm,
provided the original function is well behaved. The quality of the approximation
improves for smoother functions and for higher-degree polynomials.

9.4. Interpolation and Approximation Error 427

9.4.1 Interpolation Error
We begin this section with a theorem that describes the interpolation error for a
degree-n polynomial interpolation of a smooth function in terms of the (n + l)th
derivative of the function and the polynomial v(x) = П”=о(* — xf), where the хг
are the nodes of the interpolation.

Theorem 9.4.1. Let p e R[&; n] be the unique interpolating polynomial of degree
at most n for a function f e Cn+1([a, 6]; R) at n + 1 distinct points x0, Xi,... ,xn
on the interval [a, 6]. For each x e [a, b] there exists £> e (a, b) such that

/(*) -p(x) = -J—/"* 1)(9.34)
Vn ' 17*

where

v(x) = П(ж - xk)- (9.35)
fc=O

Proof. Fix x e [a,b\. Assume x • • • , since otherwise the result
holds trivially. Let

5(У) = /(У) - P(y) - •v[x)

Note that g(x) = 0 and g(xj) = 0 for all j = 0,1,2,... ,n. By Rolle’s theorem,
g'(y) has n+ 1 distinct zeros in (u, b). Similarly, g"(y) has n distinct zeros in (a, b).
Repeating, g(n+1\y) has at least one zero in (a, 6); call it £. Thus we have

о = 5(n+i)(e) = /(п+1)(о -p(n+1)(e) - «(п+1)

n+l)/n _ /(ж) - p(x)
v(x)

Simplifying gives (9.34). □

(n + 1)!.

Remark 9.4.2. You might wonder why we used Bernstein polynomials to prove
the Weierstrass approximation theorem (Theorem 9.1.7) when the previous theorem
seems to suggest that polynomial interpolation can also give good approximations.
There are at least two reasons why Theorem 9.4.1, as it stands here, is not strong
enough to prove the Weierstrass approximation theorem. First, to prove conver­
gence, we need a bound on the polynomial v(x). Without some restrictions on the
interpolation nodes x0,..., xn, the polynomial v(x) can grow very large (see imme­
diately below), but this problem can be circumvented: If the nodes are carefully
chosen, then |v(#)| can be bounded.

Second, a more fundamental problem is the fact that Theorem 9.4.1, and most
other theorems about convergence of polynomial interpolation, requires the function
f being interpolated to lie in Cn+1. Therefore, a convergence result as n сю
would require f e C°°, whereas Weierstrass approximation holds for any continuous
function, with no differentiability requirement at all.

428 Chapter 9. Polynomial Approximation and Interpolation

9

6

3

0

-3

-6

-9

0 5 10 15 20

lel2

Figure 9.7. Plots of the Wilkinson polynomial W(t) (left panel, blue) and the
signed-log of the Wilkinson polynomial, that is, sign(W(x)) -log(|W(j:)| + 1) (right
panel, green). Note that the у-axis in the left panel is measured in multiples of 1012
(lel2). To get a sense of the scale of the plot, notice that W(0) = 2.43 x 1018 =
e42,34? corresponding to a value of 42.34 on the log plot.

Uniformly Spaced Points

If the (п + l)th derivative of f is bounded by M on an interval I = [a,b], so
lyCn+i)^)! < for all x e I, then Theorem 9.4.1 shows the error \\f — p||z,oo =
suPxei 1/(ж) — р(ж)1 is controlled by the polynomial v(x). But, unfortunately, if the
nodes are uniformly spaced, then this polynomial can behave very badly. In the
special case where the nodes are the integers 1,2,3,..., 20, this polynomial is called
the Wilkinson polynomial (see Figure 9.7):

20

W(t) =]^[(^ — Xi) = (x — 1)(t — 2) • • • (t — 20)
г=1

= т20 - 210т19 + 20615т18 - 1256850т17 + 53327946т16 - 1672280820т15

+ 40171771630т14 - 756111184500т13 + 11310276995381т12

- 135585182899530т + 1307535010540395т - 10142299865511450т11 10 9

+ 63030812099294896т8 - 311333643161390640т7 + 1206647803780373360т6

- 3599979517947607200т + 8037811822645051776т4 - 12870931245150988800т35

+ 13803759753640704000т2 - 8752948036761600000т + 2432902008176640000.

Although Wilkinson’s polynomial takes on the value zero at each of the nodes
1,2,..., 20, it gets very far away from zero between those points, especially near
the endpoints of the interval [1,20]. This illustrates that equally spaced points in
high-degree polynomials can cause serious problems.

The fact that v(x) (or W(t)) can become so absurdly large has led many stu­
dents, and some professors, of numerical analysis to the mistaken conclusion that

9.4. Interpolation and Approximation Error 429

polynomial interpolation is useless. This is not true. With a good choice of inter­
polation points, polynomial approximation can be very well behaved and extremely
useful. The key is to choose the interpolation points judiciously. We see this more
in the next subsection and throughout the rest of this chapter.

Nota Bene 9.4.3. One might expect that increasing the number of interpo­
lation points would give a better approximation of the functions, but this is
not always the case. It turns out that adding more interpolating points can
make the oscillation much worse, rather than better. This is called Runge’s
phenomenon. See Figure 9.8 for an example. But again, choosing the inter­
polation nodes more judiciously solves this problem. We treat this more in
Section 9.4.2.

Degree 2 Degree 4 Degree 6

Degree 8 Degree 10

Degree 14 Degree 16

Figure 9.8. Runge’s phenomenon: Interpolating the function 1/(1 H- 25rr2) (red)
at uniformly spaced points. As the number of points increases the interpolation
polynomial (black) oscillates more and more wildly near the endpoints.

-1 о 1

<

A

430 Chapter 9. Polynomial Approximation and Interpolation

9.4.2 Monic Polynomial Approximation
Consider the question of finding the degree-n monic polynomial that best approx­
imates a continuous function f in the uniform norm; that is, given a continuous
function f on some interval I C R, we seek the polynomial p G R[&; n] such that
II/ — p||l°° < II/ — q||l°° for all q G R[rr; n], that is,

sup \f(x) - р(ж)| < sup \f(x) - g(x)|
xEl xEl

for all q G R[rr; n\. Solving for the absolute best solution to this problem is usually
difficult, but we can get very near optimal with Chebyshev polynomials.

In fact, the monic Chebyshev polynomial of degree n is the best degree-n monic
polynomial approximation of 0 on the interval [—1,1]. This fact is sometimes called
the minimax theorem because it states that the monic Chebyshev polynomial has
the minimal maximum (that is, the smallest L°°-norm) on [—1,1] of any monic
polynomial of degree n.

Theorem 9.4.4 (Minimax Theorem). If p(x) is a monic polynomial of degree
n, then

= sup |fn(x)| < sup |p(x)|,
2 x€[-l,l] x€[—1,1]

where Tn(x) is the monic Chebyshev polynomial of degree n.

Proof. Suppose that \p(x) | < for all x G [—1,1]. If yj = cos (^), then for
each j = 0,1,2, ...,n, the monic Chebyshev polynomial satisfies Tn(yj) = .
Thus

(-iy [fn(y>)-p(%)] >o VJ = 0,1,2, ...,n. (9.36)

This means that Tn(x) —p(x) crosses the rr-axis n times (has n zeros) in the interval
(—1,1). But Tn(x) — p(x) is a polynomial of degree n — 1, which implies that
Tn(x) = p(x), but that contradicts (9.36). □

The monic Chebyshev polynomials satisfy Tn+1 = — ^), where the
Zj = cos (/ + j)) are the Chebyshev zeros. Because of this, we can give the
previous proposition another formulation.

Corollary 9.4.5. For any collection of points x^..., xn, consider the monic poly­
nomial flLoO — xk) of degree n + 1. The L°°-norm of this polynomial on the
interval [—1,1] is minimized when {a?o5 • • •, xn} = {zq, • • •, zn} is the set of degree-
(n + 1) Chebyshev zeros.

9.4.3 Error for Interpolation at Chebyshev Roots
The results of the previous subsection, combined with Theorem 9.4.1, give some
control of the interpolation error when interpolating at the Chebyshev zeros. Recall

9.4. Interpolation and Approximation Error 431

that Theorem 9.4.1 guarantees that for any x 6 [—1,1], the interpolating polynomial
p(x) of the function f(x) at the points xQ,... ,xn e [—1,1] has the error (9.34)

/(®) -p(x) = * /(п+1)Юф)
(n + 1)!

for some value £ e (—1,1), where v(x) = П&=о(ж —the most general setting,
the value /(n+1)(£) may be hard to control, since the exact dependence of £ on x
is not specified. But, if f e Cn+1([—1,1]; R), then /(n+1)(£) is bounded on the
compact interval [—1,1]. It is reasonable, therefore, to focus on minimizing the
product |v(a?)| as a proxy for the whole error term. Choosing the interpolating
points to be Chebyshev zeros minimizes this product, which gives the following
bound on the interpolation error.

Proposition 9.4.6. If |/(п+1\ж)| is bounded by M on [—1,1], and if p(x) is
the degree-n interpolating polynomial of the function f(x) at the Chebyshev zeros
{zq, • • •, zn}, given in (9.25), then

M
sup |/(ж) -p(x)\ < ———. (9.37)

xe[-i,i] 2n(n+l)!

Proof, By Theorem 9.4.1 we have

M
7-------777 SUP(n + 1)! xe[-i,i]

sup |/(ж)-р(ж)|<
n

Ц(ж - Xk)

k=0

By the previous corollary, this bound is minimized when the interpolation points
{a?o, • • • >%n} are the Chebyshev zeros {г0,..., zn}. And for all x e [—1,1] we have

n

II(a:-zfc)
fc=0

2n

by Proposition 9.3.3(ii). □

9.4.4 Interpolation at Chebyshev Extremizers
So far we have focused on interpolation at Chebyshev zeros, but another set of
interpolation points with very good behavior is the collection of Chebyshev extrem­
izers {yk = cos(7r/c/n)}^0. These have a few advantages over the Chebyshev zeros:
first, they include the endpoints of the interval, so we can force the interpolating
polynomial to take a certain value at the boundary, and second, they are somewhat
simpler to compute with, especially with the methods of the next section.

It should not be too surprising that interpolation at the extremizers gives an
approximation that is almost as good as interpolation at the zeros of Tn+i, since
both of them are the real part of a set of points that are uniformly distributed
around the unit circle, and consequently, both of them cluster near the endpoints
of the interval.

432 Chapter 9. Polynomial Approximation and Interpolation

As with interpolation at the Chebyshev zeros, we can bound the error for interpo­
lation at the Chebyshev extremizers by bounding the product v(x) = П^=о(ж — %)
and using (9.34) in Theorem 9.4.1. First we prove some basic properties of the
partial product \x ~ Уз), which is often denoted Un_i(x) and is called the
monic Chebyshev polynomial of the second kind of degree n — 1. Note that yo = — 1
and yn = 1, so

n

v(x) = IK* - = (x2 ~ Wn-i(z)- (9.38)
j=o

Proposition 9.4.7. If {yk = cos(7r/c/n)}JL0 are the extremizers of Tn(x) on
[—1,1], then the polynomials v(x) = П^о(ж — Уз) an^ ^n-i(^) = П^1(ж — Уз)
satisfy the following:

(i) Un_i(x) —

(ii) If x = cos(t) with t e [0,7г], then Un-i(x) =

(iii) For all x e [—1,1] we have |v(#)| <

Proof, The proofs of (i) and (ii) are Exercise 9.24. Property (iii) follows from (ii)
and (9.38), since

\v(x)\ =
j=0

= 1(Ж2-1Я_1(Ж)1 = ^Т sin2(£)
sin (nt)
sin(t)

= ——г I sin(t)sin(nt)| < —r. □ 2n~i1 v 7 v /I — 2n—i

Corollary 9.4.8. //’|/(n+1)(x) | is bounded by M on [—1,1], and ifp(x) is the inter­
polating polynomial of the function f(x) at the Chebyshev extremizers {yo,... ,yn},
then

M
^|UPi||/(I)-P(I)|<2„_i(n + 1),. (9,39)

Proof, By Theorem 9.4.1 we have

1Г/ A / M / TT I I / M
sup \f(x)-p(x)\ < sup Ц \x — yk < v —-TV7,

xe[-i,i] (n+1)! ^[-id]fc=o 2 4^+1)!

where the last inequality follows from Proposition 9.4.7(iii). □

This gives a uniform bound on the error for interpolation at the Chebyshev ex­
tremizers that is twice the size of the bound (9.37) for interpolation at the Cheby­
shev zeros. But both of these go to zero rapidly as n oo, assuming that f is in
C'oo([—1,1]; R) with all derivatives bounded by some fixed M < oo.

9.4. Interpolation and Approximation Error 433

-1 0 -1 0 1

Figure 9.9. Polynomial interpolation (black) of the function 1/(1 + 25a;2) (red)
at Chebyshev extremizers. Notice that the interpolation improves as the number
of points increases, and Runge’s phenomenon does not occur. Contrast this to the
interpolation at uniformly spaced points in Figure 9.8.

Remark 9.4.9. The upshot of this corollary and Proposition 9.4.6 is that inter­
polation at Chebyshev extremizers and zeros both converge for sufficiently smooth
functions. This and the results of the previous section show that the Runge phe­
nomenon is not a problem when the interpolation points are the Chebyshev zeros or
extremizers. Even if the interpolating polynomial oscillates around the function /,
the maximum total error is bounded and becomes smaller as n grows; for example,
see Figure 9.9.

Remark 9.4.10. The Chebyshev polynomials and Chebyshev interpolation can
be adapted to any interval [a, b]. Specifically, if we want to interpolate f on the
interval [a, 6], we can make a linear change of variables of the form g(x) = rx + s
for some r, s e R to get a new function f(x) : [—1,1] R given by f(x) = f(g(xf).
Interpolation of f on [—1,1] then corresponds to interpolation of f on [a, b\. The
details are Exercise 9.27.

434 Chapter 9. Polynomial Approximation and Interpolation

9.5 Fast Chebyshev Interpolation
Recall that the Chebyshev polynomials 7b, 7i,..., Tn form an orthonormal basis for
the vector space R[&; n] of polynomials of degree at most n. Thus for any p e R[rr; n]
there exists a unique set of coefficients ao,..., an such that

n

р = ^акТк. (9.40)

The Chebyshev basis has many advantages over the standard monomial basis
{a?fc}£=0. Among the advantages is the fact that a small change in the coefficients

of the Chebyshev basis produces only a small change in the location of the zeros
of p inside [—1,1], but if p is expressed in terms of the standard monomial basis,
then a small change in the coefficients can change the zeros of p a lot. We say
the rootfinding problem for the Chebyshev basis is well conditioned, whereas the
rootfinding problem for the monomial basis is ill conditioned. The conditioning of
a problem describes how much or how little the solution of the problem changes
when the inputs to the problem are slightly changed; see Section 11.2 for more on
conditioning.

In this section we describe a fast algorithm to express the interpolation of a
function f at the Chebyshev extremizers in terms of the Chebyshev basis. As a
function, this polynomial is the same as the one constructed by Lagrange interpo­
lation, but it is written in terms of the Chebyshev basis instead of in terms of the
Lagrange basis or the standard monomial basis. Since any degree-n polynomial is
its own interpolation, this algorithm will also express any degree-n polynomial in
terms of the Chebyshev basis.

9.5.1 Fast Chebyshev Interpolation
If the interpolating polynomial p has already been computed in terms of the mono­
mial basis, then the naive way to change from the monomial basis to the Chebyshev
basis is to multiply by the (n + 1) x (n + 1) transition matrix (see Volume 1, Sec­
tion 2.4). The temporal complexity of this algorithm is dominated by the matrix
multiplication, which is typically O(n3).

Alternatively, if we have not yet computed the interpolating polynomial in terms
of another basis, we could compute the values of f(x) at the n+ 1 points x0,..., xn
and compute the values of the Chebyshev basis functions at those points to get a
system of (n + 1) linear equations in the coefficients а&. Solving this system also
has temporal complexity of O(n3). But in the case that the interpolating points
are the Chebyshev extremizers,40 there is a much more efficient way to express the
interpolating polynomial in terms of the Chebyshev basis. This is based on the
relation (9.24)

40Similar methods also work for the Chebyshev zeros, but everything turns out a little messier.

Zn(cos(t)) = cos (nt) \/n e N.

This relation reveals a deep and important connection to Fourier series, which per­
mits the use of the FFT to compute the Chebyshev interpolation in terms of the
Chebyshev basis very rapidly, in O(n\ogn) time. The following theorem is the main
result of this section.

9.5. Fast Chebyshev Interpolation 435

Theorem 9.5.1. For each keZ, let у к = cos(7rP/n). The coefficients a^... ,an E
R of (9.40) are given by a certain multiple of the real part of the DFT of the 2n-
dimensional vector of samples {pG/k)})^1. Specifically, we have

Uk =7fe3i(DFT(p(yo),p(yi),---,p(y2n-i)))fc, (9.41)

where JR denotes the real part, and the coefficient yk is

if к e {0,n};
otherwise.

(9.42)

Proof. Let cu2n = е27гг/2п. For the Chebyshev extremizers yj we have

n n / ‘1 \ П [n

рШ = 52 akTk(.yj) = 52ak cos ()= 52 ак®(ш2п) = 152 акш&
k—Q k—Q ' ' k—Q \k—Q

The right side resembles the real part of the inverse discrete Fourier transform
(IDFT), except that the upper limit of the summation does not go to 2n — 1, which
is what it would need to be for the IDFT, given the way we have indexed things. But
we may extend the coefficients to by defining an+j = an_j, j = 1,2,..., n.
Exercise 9.29 shows that for any j, к e Z we have JR = JR which
gives

2n n n n
£ afc3?(<4) = £an+fc3?(<4n+fc)) = £an_fc3?(^”-fc)) = £afc3?(^).
k—n k—Q k—Q k—Q

Moreover, since = aQ> it follows for j = 0,1,2,..., 2n — 1 that

IL -j / IL IL

p(yp> = 52 = 2 (52 ak^2n)+52 ак®(ш2п)
k—Q \k—Q k—Q t

1 / n 2n

= 2 E«^(4) + £ak»(4)
\fc—0 k—n
(2n-l \

fc=0 /

where the last equality follows from the definition of jk, which accounts for the
double counting of un^2n and °f ao = «2n-

Thus the sample values are the real part of the IDFT of (t% rf,..., J2""1)•
v 7o ’ 71 ’ 72 n-i 7

Taking the DFT of both sides and rescaling componentwise gives (9.41). □

Remark 9.5.2. Taking the real part of the DFT in the formula above is actually
unnecessary, since the DFT of the vector

(p(po),p(yi), • • • ,p(pn-l),p(pn),p(pn-l), • • • ,p(yi))

436 Chapter 9. Polynomial Approximation and Interpolation

is always real; see Exercise 9.30 for details. But we usually take the real part in
numerical computations in order to eliminate any imaginary error terms that arise.

Corollary 9.5.3. If f : [— 1,1] R is any function, the degree-n interpolating
polynomial pn of f through the n + 1 Chebyshev extremizers {y^ = cos(?rA;/n)}£=0
can be written as n

Pn(x) = ^акТк.
k=0

where each a^ is given by

ак=ук$ (DFT(/(y0), /(3/1), • • •, /(3/2n-i)))fe

= 3? (DFT(/(3/o),..., /(з/n-i), /W, J(3/n-i), • • •, /(3/i)))fc , (9-43)

and yk is given in (9.42).

Proof. By definition of the interpolating polynomial, we have

Pn(3/fc) = /(?/fc) (9.44)

for each уь with к e {0,..., n}. Moreover, cos(tt + x) = cos(tt — x) for any x e R,
which gives yn+j = Уп-j for each j e {0, thus (9.44) holds for all к e
{0,..., 2n — 1}. The corollary now follows immediately from Theorem 9.5.1. □

Remark 9.5.4. Since the DFT of any vector may be computed using the FFT, the
previous corollary gives a method for computing the degree-n interpolation (in the
Chebyshev basis) of any function f at the n+1 Chebyshev extremizers in O(nlogn)
time. Compare this to barycentric Lagrange and Newton interpolation that cost
O(n2) for their initial setup.

This algorithm gives the resulting polynomial as a linear combination of the
Chebyshev polynomials rather than as a linear combination of the standard mono­
mial basis, but, as mentioned above, for many applications the Chebyshev basis
is actually preferable. Moreover, Clenshaw’s algorithm (Exercise 9.20) allows the
polynomial expressed in the Chebyshev basis to be evaluated in O(n) time, which
is as efficient as evaluating a polynomial in the standard monomial basis.

Finally, by the results in the previous section, if f is sufficiently smooth and n
is large enough, then this Chebyshev interpolation is a close approximation to f.

Example 9.5.5. We interpolate the function f(x) = ex sin (2тгж) + x + 6
using the method given above. Algorithm 9.1 gives the code that performs
the interpolation. A plot of the resulting approximation in degree 29 is given in
Figure 9.10. The plot is eyeball perfect. The sup-norm error in this example is
5.3 x 10 15—that is, essentially perfect, to machine accuracy (for more about
the limits of machine accuracy in floating point, see Section 11.1). In other
words, with 30 numbers we can store the whole function f to within machine
accuracy. This is remarkable.

9.5. Fast Chebyshev Interpolation 437

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

import numpy as np
from numpy.fft import fft

def cheb_interp(f,n):
""" Compute the coefficients of the degree-n Chebyshev
interpolation of f at the extremizers y_k=cos(k pi/n).
и и и

у = np.cos((np.pi * np.arange(2*n)) / n)
samples = f(y)

coeffs = np.real(fft(samples))[:n+l] / n
coeffs [0] = coeffs [0]/2
coeffs[n] = coeffs[n]/2

return coeffs

Algorithm 9.1. Code to produce the degree-n Chebyshev coefficients for any func­
tion f(x), as described in Corollary 9.5.3. Note that NumPy’s fft is missing the
scaling factor of l/2n, so we must put it in explicitly. Combining the scaling factor
with means that the Oth and nth coefficients are scaled by l/2n, and the rest of
the coefficients are scaled by 1/n. Note that this algorithm could have used the FFT
algorithm in Algorithm 8.2, but the reader should become used to using professional
grade packages that have been carefully optimized for speed and usability.

Figure 9.10. The function in Example 9.5.5 and its degree-29 interpolation using
30 Chebyshev points. The actual function is plotted in red, but it is directly beneath
the interpolation (the black curve is plotted with a slightly thinner width so the red
can still be seen beneath).

438 Chapter 9. Polynomial Approximation and Interpolation

Example 9.5 .6. We interpolate the function f(x) = x4 at the five Chebyshev
points yQ^... Since f is a polynomial of degree 4, we should recover x4
exactly but expressed in terms of the Chebyshev basis; that is, we should find
the coefficients such that x4 = Ylk=oakTk(%)- Computing the coefficients
a к numerically, as before, we get

a0 = 0.375000000000000,
ai = 0.000000000000000,
a2 = 0.500000000000000,
a3 = 0.000000000000000,
a4 = 0.125000000000000.

We can verify this answer by hand:

+ |lb(*) = h&r4 - 8x2 + 1) + 1(2^ - 1) + |
o z о о z о

4 2 1 2 1 3
= X -X + ~+Ж -9 + 0

О z о
= X4.

So the numerical solution using the FFT is the same as (or rather, within
machine accuracy of) the exact solution.

Example 9.5 .7. The function g(x) = |ж| is not smooth at 0, so we cannot
expect the Chebyshev interpolation of g to be as good as the interpolation for
the smooth functions in Examples 9.5.5 and 9.5.6. In Figure 9.11 we plot the
degree-28 Chebyshev interpolation of g. You can see that the approximation
is very good away from 0, and it is less accurate near the singular point at
0. The sup-norm error for this approximation is less than 0.0058—far from
the extremely small errors of the previous examples, but still a very good
low-degree polynomial approximation near this singular point.

Example 9.5 .8. Even functions that fail to be differentiable at many points,
like the one depicted in Figure 9.12, can still be approximated fairly well with
Chebyshev interpolation if the number of interpolation points is sufficiently
large. The use of the FFT in the computation of the coefficients means that
finding these approximations is still very efficient even when interpolating at
many points.

9.5. Fast Chebyshev Interpolation 439

Figure 9.11. Degree-28 interpolation of the absolute value function, using Cheby­
shev points for n = 29. The actual function is plotted in red and the interpolation
in black. The approximation is still very good away from the singularity at 0 and
not really terrible even at 0—with an error no worse than 0.0053.

Figure 9.12. Interpolation of a very singular function using Chebyshev extremiz-
ers. The actual function is plotted in red and the interpolation in black. By degree
200, the approximation is visually pretty good, and by degree 600 it has error less
than 0.0006.

9.5.2 *Chebyshev Projections
There is another way to assign a polynomial of degree n to a function f : [—1,1]
R, provided that f e L2([— 1,1]; R). In this space, endowed with the Chebyshev
inner product (9.19), the set of Chebyshev polynomials 7b, 7i,... ,Tn of degree at
most n is orthogonal, and thus we may project f orthogonally onto the subspace

440 Chapter 9. Polynomial Approximation and Interpolation

n] C L2([—1,1]; R) spanned by these polynomials to get

fn = Proj>[x;n] f

= Y.bkTk
fc=0
1 9 n

= -{f,T0}T0 + -^(f,Tk}Tk.

The coefficients and in the last line are the inverses of (7b, Tq) = % and
(7fc,7fc) = (see (9.23)). In general this projection is not the same as the inter­
polating polynomial pn of the previous section, but it is fairly close, as we show
below.

The main problem with computing this projection is that the inner products

J-i vl — x2

are usually not easy to compute, but we can approximate them numerically.
One natural way to approximate them is by subdividing the interval [—1,1] at
the Chebyshev extremizers у к and then using the trapezoid rule (see Section 9.6.3).
Remarkably, this gives almost the same result as interpolation at the Chebyshev
extremizers, as we now show.

For к > 0 the coefficient bk is (/, 7/J. Making the substitution x = cos(0), for
к > 0 we have

7Г J-i VI — X2

К J7V д/l — COS2(0)

9 f7r
= — /(cos(0)) cos(A;0) dO.

it Jo

Dividing the interval [0,7r] uniformly into n pieces gives a grid of n + 1 points 0j =
Trj/n for j e {0,..., n}. Using this grid for the trapezoid rule (see Example 9.6.3)
to approximate the integral gives

- <f,Tk) = - Г f(cos(0))cos(k6)d0
л ~ Jo

~ I 52 I (ACOS<A)) c°s(M) + /(cos(0,+i))cos(fc(9j+i))
7Г *—' Z П

= - I/(yo) cos(fc0o) + 2 V f(.yd cos(fc^) + f(yn) cos(/c#n)) .
n \ ы J

Using the same argument given in the proof of Theorem 9.5.1 shows that this
last line is the same as the fcth term in the expression

23?(DFT(/(y0),/(yi),...,/(?/2„-i))fc.

9.6. Integration by Interpolation 441

Dividing everything by 2 also gives a trapezoid-rule approximation for

bo ~ 9? (DFT(/(y0), №1),.. •, /(У2п-1))о •

The final result is closely related to the result of Theorem 9.5.1. Indeed, we have
shown that

(9.45)
I 2a^ и к = n,

so this approximation of the projection fn is almost identical to the interpolation
pn at the Chebyshev extremizers.

In general, the projection fn has a somewhat smaller uniform error than the in­
terpolation pn. But the approximated projection given by (9.45) does not, because
it is, after all, just an approximation of the projection fn. Moreover, the inter­
polation is guaranteed to pass through the extremizers, including the endpoints
(—!,/(—!)) and (1,/(1)), whereas the projection and its approximation are not.

9.6 Integration by Interpolation
Polynomial approximation is a powerful tool for computing integrals. The main
idea of this and the next section is simple: integrating polynomials is easy, so
approximate the integrand with a polynomial and integrate the polynomial instead.
The methods we consider in the rest of this chapter differ mostly in the choice of
how to approximate the integrand. In this section we consider Newton-Cotes, which
corresponds to interpolating at uniformly spaced points. To avoid problems arising
from the Runge phenomenon, it is generally better to use low-degree interpolations
on many subintervals, rather than using a single high-degree interpolation on the
entire domain of integration. This is called composite Newton-Cotes quadrature.

9.6.1 Numerical Quadrature
Numerical quadrature is a method of choosing points Xi and weights Wi so that for
any sufficiently well-behaved functions /, the integral f(x) dx is closely approxi­
mated by the sum /(a?*) .

Definition 9.6.1. A numerical quadrature for continuous functions on a bounded
interval [a, b] is a set of n+ 1 points (called nodes,) xq < x\ < • • • < xn in [a, b] and
a set of corresponding weights wq, wi, ..., wn e R for every n e such that for
all functions f e C([a, 6]; R) we have

n

2=0
dx

as n oo.

442 Chapter 9. Polynomial Approximation and Interpolation

Example 9.6.2. Right-hand Riemann sums are a form of numerical quadra­
ture with equally spaced nodes a = < #1 < • • • < xn = b and with weights
wq = 0 and Wi = Xi — Xi-i for all i € {1,..., n}, giving

Since all continuous functions are integrable, their Riemann sums converge
to the integral as n —> oo, so this simple quadrature can approximate the
integral as closely as desired by making n large enough. But the convergence
is not very rapid—we usually need to take n to be large in order to get a good
approximation; see Figure 9.13.

0

10 -

5 -

0 -
5 10 0 5 10 0 5 10

Figure 9.13. Quadrature by Riemann sums. Here we are taking right-hand sums,
as in Example 9.6.2, with n = 4, 8, and 12, respectively. The approximation is still
relatively poor with n = 12 (right panel).

9.6.2 Quadrature by Polynomial Interpolation
Many quadrature rules arise from integrating a polynomial interpolation. The idea
is to choose n+1 distinct nodes я?о,..., xn in the interval [a, b], compute the unique
interpolating polynomial pn E I[x:n] for f at those nodes, and then integrate that
polynomial as an approximation of the integral of f. This gives

(9.46)

where

for j e {0,1,2,... , n}, (9.47)

and the Lnj are the Lagrange basis functions (9.3).

9.6. Integration by Interpolation 443

9.6.3 Newton-Cotes Quadrature
Interpolation quadrature with n+1 evenly spaced nodes a = xq < Xi < • •• < xn = b
in [a, b] is called Newton-Cotes quadrature of order n. Newton-Cotes performs
poorly for large values of n because the high-order polynomial approximations of
the integrand can suffer from Runge’s phenomenon. One remedy, which we explore
in the next section, is to choose the nodes more judiciously—either at the Chebyshev
extremizers (this is called Clenshaw-Curtis quadrature) or at zeros of the Legendre
polynomials (called Gaussian quadrature).

Another remedy is to chop the domain into subintervals and use lower-order
Newton-Cotes quadrature on each subinterval. Assuming that n = d£, with d, £ e
Z+, we can split up the domain as

[a, b] = [ж0, xn] = [ж0, xd] U [xd, x2d] U • • • U [xd(£_i), xde\.

Since each subinterval has d+1 nodes, we can use a degree-d Newton-Cotes quadra­
ture on each subinterval. Thus we have

r^i+1)d
2 , / Pi(x)dx,
2=0 J Xid

(9.48)

where Pi(x) is a degree-d polynomial. We call (9.48) the composite Newton-Cotes
rule.

Example 9.6.3. First-order (d = 1) composite Newton-Cotes quadrature
is better known as the trapezoid rule. First consider the contribution of the
interval [a?o,#i], where h = x± — xq to the approximation (9.48). The first-order
Newton-Cotes quadrature weights are given by the integrals of the first-order
Lagrange basis functions

Г1 x-X1 , 1, . h

ib H C+1 ^/(ж,+1) + /(ж.)/ /(ж)<7ж«2^/ Pi(x)dx=2_^--------- z--------- h. (9.49)
Ja i=0 Jx' i=o 2

Wo= --------- dx = -(^1 - Xq) = -,
Jx0 Xo-Xi 2 2

Г1 ж-жо , 1, . hwi= ----------dx = -(Ж1 - ж0) = -.J Xq ^0 2 2

Thus we have

[f(x) dx « f(xo)wo + J(a:i)wi = (/(ж0) + /(zi)).
J Xq

If we choose the points xq, ... ,xn to be equally spaced with a gap of h =
Жг+i — Xi = (b — a)/n, then these weights are the same for all the subintervals.
Thus (9.48) becomes

444 Chapter 9. Polynomial Approximation and Interpolation

Remark 9.6.4. One can show that the error in the trapezoid-rule estimate shrinks
like O(n-2), which means that as n grows, the error of the integral is bounded by a
constant times n-2, whereas the errors in the right- or left-hand rule with Riemann
sums are in O(n-1). It’s worth noting that the computational complexity of the
trapezoid method is no greater than that of computing a Riemann sum, and so the
trapezoid rule gives improved accuracy without a higher computational cost. See
also Figure 9.14.

Figure 9.14. Quadrature by the trapezoid rule with n = 4, 8, and 12, respectively.
Compare the quality of the approximations here with those for Riemann sums in
Figure 9.13.

Example 9.6.5. The second-order Newton-Cotes quadrature rule is better
known as Simpson’s rule. As with (9.48), begin by approximating the integral
of the function f(x) on the interval [rco,x2]. The second-order Newton-Cotes
quadrature weights are given by the integrals of the second-order Lagrange
basis functions

Ь2,о(ж) =

L2ti(x) =

L2,2(x) =

(x — Х1)(х — X2)
(x0 - xi)(xo - x2)’
(x - ж0)(ж - a?2)

(^1 - Жо)(Я1 - x2)’
(x - жр)(ж - Ж1)

(x2 - x0)(x2 - Xi)'

It follows that

w0 =
ГХ2

/ Т2?0(я)сЬ =
1 Xq

Г2 (ж - Ж1)(ж - ar2)

Jx0 (x0 - Xi^Xo - X2)
dx. (9.50a)

Wi =
px2
/ L2,i(^) dx =

1 Xq

fX2 (ж - £р)(ж - a:2)
Ixo (Xl - Жр)(Х1 - X2) dx, (9.50b)

W2 =
ГХ2

/ L2j2(x)(Lr =
J Xq

ГХ2 (x - жр)(ж - a?x)
lx0 (x-2 - Жр)(ж2 - Xi) dx. (9.50c)

9.6. Integration by Interpolation 445

These integrals are tedious to compute, but some work shows that

x2 — hw0 = w2 =---------= -6 3
2(ж2-ж0) 4/iand wx =-------------= —, (9.51)

О о

where h = Жг+i — Xi = for all г; see Exercise 9.34 for details. Again, the
weights do not depend on the actual values of x2 and xq—just the difference
between them—and so this rule works for all of the subintervals. Thus if there
are an even number n = 2£ of nodes, the degree-2 composite Newton-Cotes
rule (Simpson’s rule) is

rb £ z*2(i+l) £ 1 i
I f(x) ~ ^2 / Pi(x) dx = ^2~ [/(a?2i) + 4/(a:2i+i) + У(^+2)] •
a i=o ^2i i=Q 6

This simplifies to

n
^f(Xi)Wi,

г=0

4
< 2

4X

if i = 0, n,
if i is even (but not Oorn),
if i is odd.

(9.52)

Remark 9.6.6. Now that we have (9.52), estimating the integral using Simpson’s
rule is no harder to compute than the trapezoid rule or Riemann sums, but it gives
greater accuracy; see also Figure 9.15. From Theorem 9.4.1, it is straightforward to
show that the error in Simpson’s rule is in O(n-3) (see Exercise 9.36), and a more
sophisticated argument shows that the error is actually in O(n-4).

Figure 9.15. Quadrature by Simpson’s rule with n = 4, 8, and 12, respectively.
Compare the quality of the approximations here with those for Riemann sums in
Figure 9.13 and the trapezoid rule in Figure 9.14- The Simpson approximation here
for n = 12 is visually almost perfect, while the trapezoid rule still has visible flaws
at n = 12, and Riemann sums are obviously very far from accurate at n = 12.

446 Chapter 9. Polynomial Approximation and Interpolation

Example 9.6.7. Table 9.2 shows the result of Simpson’s rule and the trape­
zoid rule applied to the following integral for various values of n:

log(a;) dx = 201og(20) - 19 40.914645471079815. (9.53)

Table 9.2. Performance of trapezoid rule and Simpson’s rule on the integral (9.53).
For both methods, the results become more accurate with larger values of n. Esti­
mating the big-О rate by hand from the table suggests (correctly) that the trapezoid
rule has error roughly O(n~2), whereas Simpson’s rule has error roughly O(n~4).

Trapezoid Rule Simpson’s Rule
n Approximation Error Approximation Error
4 39.5343 1.3803e-00 40.5232 0.3914e-00
16 40.8073 0.1074e-00 40.9047 0.0100e-00
64 40.9077 6.9562e-03 40.9146 7.7541e-05

256 40.9142 4.3600e-04 40.9146 3.3449e-07
1024 40.9146 2.7255e-05 40.9146 1.3162e-09
4096 40.9146 1.7034e-06 40.9146 5.1585e-12

Remark 9.6.8. A composite Newton-Cotes quadrature with a larger (but fixed)
value of d converges even faster as n goes to infinity, but it is not a good idea to let
d grow with n because this would be similar to high-degree, naive (noncomposite)
Newton-Cotes quadrature—using a single polynomial to interpolate through many
equally spaced points—and this approximation can be adversely affected by Runge’s
phenomenon.

9.6.4 Method of Undetermined Coefficients
Naive computation of the integrals in (9.47) to find the quadrature weights can be
painful, but there is another way, based on the observation that n+1 distinct points
uniquely determine a polynomial of degree at most n through those points. The
next proposition is immediate.

Proposition 9.6.9. Any quadrature rule on [a, b] arising from polynomial inter­
polation in n +1 distinct nodes in [a, b], as in (9.46), is exact on R[rr; n], meaning
that it computes the value of the integral dx exactly for any f e R[ж; п].

Since quadrature by interpolation at n + 1 points yields exactly the correct
answer for any polynomial of degree n or less, for any such quadrature rule we have

kfc+l _ fc+1 rb n
---- -—----- = / xk dx = Ух^г VA: e {0,1,... ,n},

k + 1 Ja i=0

9.7. Clenshaw-Curtis and Gaussian Quadrature 447

which gives a linear system of n + 1 equations and n + 1 unknowns (the weights).
In matrix form, this is written as

111
x0 Xr x2
~2 ~2 ~2
JzQ Xi x2

J/Q X1 X2

Wo

W2

b — a
(62-u2)/2
(63-u3)/3 (9.54)

(6n+1 — un+1)/(n + 1)

The matrix on the left-hand side is the transpose of the Vandermonde matrix, which
is known to be invertible if the Xi are distinct, so a unique solution exists and can be
found by solving the linear system. This approach to finding the weights is called
the method of undetermined coefficients.

Example 9.6.10. If n = 2 and the nodes {a?o, #1, #2} are evenly spaced with
a?o = a, xi = and x2 = b (Newton-Cotes of order 2), then the correspond­
ing quadrature weights (9.47) are given by the integrals of the second-order
Lagrange basis functions

ГХ2
Wo = / £2,0 (ж) dx =

J x0
ГХ2

Wi= L2^{x)dx =
J Xo
ГХ2

w2 = / L2,2(x)dx =
J x0

Г2 (% - ~ J
Lo (x0 - xO(xo - X2)

fX2 (# ~ ж0)(а: - X2) dx
Jx0 (Ж1 - Жо)(®1 - X2)
rX2 (x - x0)(a: - a?i)

Jx0 (x2 -aro)(x2 -xi)

The method of undetermined coefficients computes these by solving the system
(9.54), which, in this case, reduces to

1 1
2^o 2^i
3#o 3rr2

f
2j:2
3rz^_

Wo

Wi
w2

%2 ~ xo
2 2

x2 ~ x0
7^.3 _ Q,3x2 Xq

A little work (basic Gaussian elimination) gives the same result for the Wj as
(9.51) in Example 9.6.5.

9.7 Clenshaw-Curtis and Gaussian Quadrature
Newton-Cotes quadrature corresponds to interpolating at equally spaced nodes.
In this section we consider quadrature methods where the nodes are chosen more
judiciously. Throughout this section we work on the interval [—1,1] rather than
on an arbitrary interval [a, 6], but we can always rescale so that any integral
f f(x) dx on a compact interval [a, b] can be rewritten as an integral on the
interval [—1,1].

448 Chapter 9. Polynomial Approximation and Interpolation

9.7.1 Clenshaw-Curtis Quadrature
Instead of integrating by interpolating at uniformly spaced points, we can inter­
polate at the extremizers of the Chebyshev polynomials and then integrate the
resulting polynomial. This is called Clenshaw-Curtis quadrature.

Expressing the interpolating polynomial pn in terms of the Chebyshev basis
Pn(^) = and then using the fact (see Exercise 9.41) that

f1 _ z 4 . fo if A; is odd,
/ Tk(x)dx= < (9.55)
J-i I n к is even,

we obtain
f1 f1

J i /(x)dxx J iPn(x) dx = 4 _ ^.2 • (9-56)

This gives a simple and efficient method for computing the Clenshaw-Curtis approx­
imation of f(x) dx, namely, compute the interpolating polynomial pn in terms
of the Chebyshev basis pn(x) = using fast Chebyshev interpolation,
and then apply (9.56).

The standard form for a quadrature rule is

(/(x) dx « f(yj)wj. (9.57)
7-1 j=0

In this case the yj = cos(^) are the Chebyshev extremizers, and the Wj are the
quadrature weights given by (9.47). We can compute the weights Wj by using (9.43)
to express the coefficients U2fc in (9.56) in terms of the samples

Г1 2 /1 2n-1 \
/ pn(x) dx = ^2 T _4fc2 I 27 52 72fc cos(-2K7r/n)/(y£) j

2n—1 LtJ

= - 52 52 cos(-2HTr/n)

1 n Lt J
= - 52 52 i ?4\2 cos(-2KTT/n),

£=0 fc=0

where the last line follows from the fact that yn+j = Уп-j and cos(—2k£ir/ri) =
cos(—2к(/ ± п)тг/п) (recall from (9.42) that 7o = 7n = 1 and 7? = 2 otherwise).
Thus we have

LtJ
wj = 52 i ?4\2 cos(-2fej7r/n). (9.58)

k—Q

Remark 9.7.1. Not surprisingly, there is an efficient algorithm for computing the
weights in O(nlog(n)) time, using the FFT. This algorithm is due to Waldvogel
and is especially advantageous if multiple functions are to be integrated with the
same order-n quadrature rule.

91. Clenshaw-Curtis and Gaussian Quadrature 449

9.7.2 Gaussian Quadrature
Gaussian quadrature uses a different set of points for its interpolation, namely the
zeros of the Legendre polynomials. Surprisingly, if f is a polynomial of degree at
most 2n + 1, then Gaussian quadrature with only n + 1 points gives precisely the
right answer, with no error whatsoever; that is, Gaussian quadrature with n + 1
points is exact onK[x;2n+l|. This suggests that whenever a function can be well
approximated with an interpolating polynomial through the n + 1 Legendre zeros,
then Gaussian quadrature should give a very good approximation of the integral of
that function.

Theorem 9.7.2. If {^}?=o C [—1,1] are the zeros of the (n + L)th Legendre
polynomial, then for all f G 1[ж:2п + 1] we have

i n

f(x)dx = y^J{xi')Wi,
1 i=0

(9.59)

where

г = 0,1,2,... ,7i, (9.60)

are the integrals of the corresponding Lagrange basis polynomials.

Proof. Let Pn+i denote the (n+ l)th Legendre polynomial. The division algorithm
for single-variable polynomials says that for any f G 2n + 1] there exist unique
polynomials q G R[#; n] and r G R[#; n] such that f = qpn+i + r (see Volume 1,
Section 15.2). Since pn+i is orthogonal to all polynomials of lower degree, it must
be orthogonal to q. It follows that

f(x)dx = У pn+i(x)q(x) + r(x) dx = r(x)dx.

Moreover, we have f(xi) = r(xi), since pn+i(#i) = 0 for all i G {0,1,..., n}. Thus

n n pl n

У f(xi)wi = У r(xi)wi = / У r(xi)Ln^x) dx
г=0 г=0 J-1 г=0

f(x) dx. □

This theorem shows that only n +1 points are needed to evaluate the integral of
a polynomial of degree 2n+ 1 exactly. Thus any integrable function g : [—1,1] R
can be integrated fairly accurately if it is closely approximated by a polynomial f
of degree 2n + 1 or less that agrees with g at the Legendre zeros xq,. .. ,xn. For
small n, the zeros (xf) and weights (wj) can be precomputed and stored to be used
for quadrature of any function. These zeros and weights for Gaussian quadrature
are built in to many computational systems. For large n there is a fast algorithm
for computing the zeros and weights in O(n) time [Bogl4].

450 Chapter 9. Polynomial Approximation and Interpolation

Example 9.7 .3. The monic Legendre polynomial of degree 2 is x2 — so its
zeros are Theorem 9.7.2 guarantees that

/ 1
+ I

\ у О

for all p(x) E R[x; 3], with wz = Li^(x)dx. A straightforward calculation
shows that Li?0(^) = — ^(x — ^=) and £1д(ж) = an<^ integrating
these gives wq = wi = 1.

This implies that

1
(аж3 + bx2 + ex + d) dx = a

-i

for all a, b, c, d, 6 R. The coefficients of terms of odd degree do not contribute
in the computation because all odd functions integrate to 0 on [—1,1].

Example 9.7 .4. Given any function f for which there is a good degree-3
polynomial approximation of f on [—1,1] that agrees with f at the points

we have the approximation

У * /(x) dx f (--h) + f (^0 • (9.61)

For example, the function /(ж) = ^/соэ(ж) on the interval [—1,1] has

dx = 1.82796941..

while the approximation (9.61) gives

у д/соз(ж) dx « у cos(—1 /\/3) + ycos(l/V3) = 1.83075048,

so with only two evaluations of the function we have an approximation of the
integral that is accurate within 3 x 10-3.

Clenshaw-Curtis and Gaussian Quadrature 451

Example 9.7 .5. In the case of n = 4, using the five zeros xq, ... ,хд of the
degree-5 Legendre polynomial and the five weights Wo,..., W4 gives

у f(x) dx « wof(xo) + Wif(xi) + w2f(x2') + w3/Ce3) +1174/(2:4).

Using this approximation for the integral in Example 9.7.4 gives

У Усоз(х) dx « 1.82797138,

which has an error of 1.97 x 10-6.

9.7.3 Convergence
As n gets large, naive Newton-Cotes quadrature (not the composite form) often
fails to converge to the integral it is intended to approximate because of Runge’s
phenomenon—as the degree increases the interpolating polynomial oscillates more
and more wildly, and the weights Wi can grow very large. But the next theorem
shows that Clenshaw-Curtis and Gaussian quadrature don’t have this problem,
since both converge for any continuous function. First we need the following lemma.

Lemma 9.7.6. The weights Wj in Clenshaw-Curtis quadrature and Gaussian
quadrature are positive for all j G {0,..., n}, and they satisfy wj = 2-

Proof. By (9.58) the Clenshaw-Curtis weights satisfy

/ LfJ
— I 1 - У2 .,22fc 1 cos(-2HTr/n)
n \ 4k2 - 1

\ k—1

Since 1 < 7fc < 2 for all k (see (9.42)) this gives

where the last equality follows from Exercise 1.17(ii).
For positivity of the Gaussian quadrature weights, consider the Lagrange ba­

sis polynomials £пДя;) G R[#;n]. Recall that Lnj(xi) = Sij. For each j G
{0,1,2,..., n} we have Lnj(x)2 G R[ж; 2n], and, by Theorem 9.7.2, this gives

Wj — Wj

Finally, each quadrature method is exactly correct for polynomials of degree at
most n, and so for the polynomial 1 G R[&; 0] we get Wk = 1 dx = 2. □

452 Chapter 9. Polynomial Approximation and Interpolation

Theorem 9.7.7. If f is continuous on [—1,1], then Clenshaw-Curtis and Gaussian
quadrature both converge to ftxf(x)dx as n oo.

Proof. Given e > 0, the Weierstrass approximation theorem (Theorem 9.1.7),
guarantees there exists n > 0 such that

£ II/-pIIl~ < |

for some p G R[x; n\. This implies

f(x) dx — У p(x) dx

M=0
<2\\f-p\\^ + \\f-p\\ ̂

< 4||/-p||l~ < £• □

Convergence for Analytic Functions

For a special class of functions called analytic functions, Gaussian and Clenshaw-
Curtis quadrature converge very rapidly. We say that f is analytic at a point x
if f has a convergent Taylor series expansion in an open neighborhood of x. All
polynomials and polynomial combinations of ex, sin(rr), cos(rr), as well as many
other common functions, are analytic at all points of C; see Volume 1, Chapter 11.

Given p > 1, if a function is analytic on an ellipse in C with foci at ±1, and
with major and minor semiaxes cosh(p) and sinh(p), respectively, then the error in
Clenshaw-Curtis quadrature applied to f is in O(p-n) as n oo, and the error
in Gaussian quadrature is in O(p-2n); see [Trel3] for details. Contrast these with
Simpson’s rule, which is in O(n-4) or with naive (noncomposite) Newton-Cotes,
which does not necessarily converge at all.

Remark 9.7.8. Because the exponent of p in the convergence bound for Gaus­
sian quadrature is —2n, while the corresponding coefficient for Clenshaw-Curtis is
—n, you might think that Gaussian quadrature should converge significantly faster
than Clenshaw-Curtis quadrature. But in practice that is not usually the case.
Clenshaw-Curtis quadrature converges about as rapidly as Gaussian quadrature,
and both converge very rapidly when the integrand is analytic.

9.7.4 *Gaussian Quadrature with Other Orthogonal Polynomials
Theorem 9.7.2 can be extended to orthogonal polynomials with other domains and
weights. Any class of orthogonal polynomials corresponding to an inner product

91. Clenshaw-Curtis and Gaussian Quadrature 453

(/, g) = fb f(x)g(x)w(x)dx with weight function w(x) satisfies

pb n
/ p(x)w(x) dx = (9.62)
J* i=0

for any p G R[rr; 2n + 1], where

fb
Wi= Ln,i(x)w(x) dx, i = 0,1,2,..., n,

J a

are the quadrature weights, and {хг}™=0 C [a, b] are the zeros of the degree-(n + 1)
polynomial pn+i(&) in the w-orthogonal polynomial basis. The proof is like that of
Theorem 9.7.2, but we must show that the zeros of the corresponding w-orthogonal
basis functions do, in fact, all lie in the interval (u, b).

Lemma 9.7.9. Assume w(x) > 0 is continuous on [a, b\. If a nontrivial function
f G C([a, b];R) is w-orthogonal to R[#; n], that is,

f f(x)p(x)w(x) dx = 0 Vp G R[x; n],
J a

then f changes sign at least n + 2 times on (a, b).

Proof, By hypothesis, f is w-orthogonal to 1 G R[rr;n]. Thus f must change
sign at least once in (a, 6); otherwise the integral fb f(x)w(x) dx would be nonzero,
which is a contradiction. Suppose that f changes sign exactly r + 1 < n + 1 times
in (a, 6). Since f is continuous, it must, therefore, have at least r < n distinct zeros
{^}[=1 in the interval (a, b). The polynomial

p(x) = Ц(ж - r]
2=1

has degree r < n and changes signs precisely when f does, and thus

f f(x)p(x)w(x) dx 0,
J a

which contradicts the w-orthogonality hypothesis. Therefore f changes sign at least
n + 2 times in (u, b). □

Corollary 9.7.10. The degree-n w-orthogonal polynomial on the domain [a,b] has
exactly n distinct real zeros in the interior of its domain (a, b). Moreover, all of the
zeros are simple (multiplicity one).

Corollary 9.7.11. Assume w(x) > 0 is in C([a,6];R). The class of orthogonal
polynomials corresponding to the inner product (f,g) = fb f(x)g(x)w(x) dx with
weight function w(x) satisfies

pb n
/ p(xfw(x) dx = y^^p(xj)wj

2=0

454 Chapter 9. Polynomial Approximation and Interpolation

for any p G 2n + 1], where

fb
Wi= Ln l(x)w{x) dx. i = 0,1,2,..., n,

J a

are the quadrature weights, and {a^}£L0 C [a, b] are the zeros of the (n + l)th poly­
nomial рп+1(ж) in the w-orthogonal polynomial basis.

Proof. The proof is essentially the same as that for Theorem 9.7.2. □

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

9.1. Show that the fcth Bernstein polynomial B^(a?) of degree n has a local max-
• , кimum at x = -. n

9.2. Prove that for any n G and any f : [0,1] R the polynomial Bn [f] agrees
with f at the endpoints: /(0) = Bn[/](0) and /(1) = Bn[/](1).

9.3. Prove Lemma 9.1.4. Hint: It may be useful to employ the results or tech­
niques of Exercise 1.42.

9.4. Prove weak monotonicity of the Bernstein operator (Lemma 9.1.6(ii)). Hint:
Consider Bn[g — f] and recall that B£(x) > 0 for all x G [0,1].

9.5. Code up a method to compute the polynomial Bn[/] for any n G N and any
callable function f. Use your code to reproduce the plots in Figure 9.2.

9.6. Another way to interpolate is to solve the linear system

1 Xq Xq • Xq «0 ~Уь

1 Xi • Xy «1 = У1

1 Xn Xn • <rn Уп_

The (n + 1) x (n + 1) matrix is called the Vandermonde matrix.

Exercises 455

(i) Prove the Vandermonde matrix is nonsingular when the Xi are distinct.

(ii) Use the Vandermonde matrix to find the unique cubic polynomial that
interpolates the set

A = {(-1,2), (0,-4), (1,-6), (2,-16)}.

9.7. Use Lagrange interpolation to find the unique cubic polynomial that inter­
polates the set A from Exercise 9.6. Your answer need not be written in the
form a3x3 + a2x2 + «irr + a0.

9.8. Use barycentric Lagrange interpolation to find the unique cubic polynomial
that interpolates the set A from Exercise 9.6. Your answer need not be
written in the form a3x3 + a2x2 + a±x + Uq.

9.9. Code up a method to compute the barycentric weights for a given set of
distinct points {^o,..., xn}. Using your weights method (and the barycen­
tric construction), code up a method to evaluate the unique interpolating
polynomial of {(^o, yo),..., (xn, yn)} at any point x.

9.10. Using your method from the previous problem, for each of n = 2,3,..., 20
compute and plot the interpolation polynomial for the function f(x) = |ж| at
n+1 evenly spaced points on the interval [—1,1] and graph /, for comparison,
on the same plot. Which of these interpolating polynomials has the smallest
error (measured in terms of the L°°-norm) on the interval [—1,1]?

9.11. Prove the claim made in Remark 9.2.15: If a new point xn+i is added to
the set of points to interpolate, then the new barycentric weights for the set

, £n, ^n+i} can be computed in O(n) time by giving an algorithm for
computing the new Wj using the old Wj, and then show that the algorithm
has temporal complexity in O(n).

*

9.12. Use Newton interpolation to find the unique cubic polynomial that interpo­
lates the set A from Exercise 9.6. Your answer need not be written in the
form a3x3 + a2x2 + a^x + do-

*

9.13. Write up the details of the proof of Proposition 9.2.18.*
9.14. Prove that the computation of the in Newton iteration has temporal

complexity O(n2), while the computation of p(x) for any x is O(n), once the
ak are known.

*

9.15. Compute the first three monic Legendre polynomials.
9.16. Compute the first five monic Chebyshev polynomials.
9.17- t A Using the recursive relation (9.20), prove Proposition 9.3.1; that is, show

that the monic Chebyshev polynomials satisfy the relation

Tk(x) = л cos (A; cos"1 (a;)) for к G Z+. (9.63)2« i

Hint: Let 0 = cos"1 x and use the trigonometric identity:

cos [(fc ± 1)0] = cos(0) cos(A;0) =F sin(0) sin(A;0).

456 Chapter 9. Polynomial Approximation and Interpolation

9.18. Use (9.63), above, to show that the monic Chebyshev polynomials {Tk(x)}^L0
are orthogonal with respect to the inner product

J-i vl — x2

Hint: Recall the trigonometric identity

2 cos (a) cos (/3) = cos (a + (3) + cos (a — /3).

9.19. Prove that the nonmonic Chebyshev polynomials satisfy

IT T \ - I7’’ if n = °’
1 n) (тг/2 if n^O.

9.20. Clenshaw’s Algorithm: The Chebyshev polynomials 7b,...,Tn form a
basis of R[x; n] over R, so any polynomial in R[a;; n] can be written uniquely
in the form p = with G R for all к G {0,..., n}. Consider the
following algorithm: For any fixed x G [—1,1], set izn+i = 0 and un = an,
and recursively compute

Uk = 2xuk~\~i — Uk~\~2 + «fc for к = n — 1, n — 2,..., 0.

(i) Prove, using the recurrence (9.22), that p(x) = |(«о + — ^2)- This is
called Clenshaw’s algorithm for evaluating polynomials in the Chebyshev
basis at points in x.

(ii) Compute the leading-order (both temporal and spatial) complexity of
Clenshaw’s algorithm.

9.21. Prove Proposition 9.3.3.*
9.22. Use equation (9.63) to show that the monic Chebyshev polynomials satisfy

the ordinary differential equation
*

(1 -x2)f^(x) - xf^x) + k2fk(x) = 0 VUZ+. (9.64)

The nonmonic polynomials also satisfy this ordinary differential equation,
since it is a linear equation.

9.23. Prove that the monic Chebyshev polynomials satisfy*

Tk(x) = Vl - *2/fc(l - *2)fc~1/2 Vfc€Z+ (9.65)
(2/v)! dxK

Hint: Follow the same approach as in the proof of Theorem 9.3.6.

9.24. Prove parts (i) and (ii) of Proposition 9.4.7.
9.25. Use barycentric Lagrange interpolation to find the degree-3 interpolating

polynomial for the data (—1,sin(—7г)), (—1/3,sin(—тг/З)), (1/3,sin(7r/3)),
and (l,sin(7r)); that is, interpolate through the points {(т7,8т(тгт7)}^0 for
xq = —1, Xi = —1/3, X2 = 1/3, and x% = 1. Plot your answer and the
function sin(7nr) on the interval [—1,1].

Exercises 457

9.26. Repeat the previous problem, but instead use the Chebyshev extremizers
yj = cos(jtt/3); that is, interpolate through the points {(з/j,sin(7r?/j))}^=0.
On the interval [—1,1] plot your answer along with the function sin(7ra;) and
your answer to the previous problem.

9.27. Work out the details for Remark 9.4.10; that is, give a formula for the linear
change of variables x that maps [—1,1] to [a, b], and give an explicit formula
for the points of [a, b] corresponding to the Chebyshev zeros under this map.
Give the analogue of Proposition 9.4.6 for interpolation at these points on
the interval [a, b\.

9.28. Let z[, ..., z'2O be the points in [1,20] corresponding to the degree-20 Cheby­
shev zeros, as computed in the previous problem. Plot the polynomial
qO) = II?2i (x — z'), on the interval [1,20], and plot the Wilkinson poly­
nomial W(rr) on the same graph. Compute supxe[12o] q(#), and compare this
to sup^ji^o] VT(a;).

9.29. Let j,k,n € Z with n 0. Prove that if ш = е™1п, then Ji=
sR(wfc(«-»).

9.30. Let n € Z+ be given. Assuming the vector (ag, «1, • • •, a2n-i) € IR2n satisfies
an_|_j = an_j for J = 1,2,..., n — 1, prove that the Fourier coefficients

1 2n—l
1 у—> — jkCk = 2^

are all real.
9.31. The polynomial approximation p(x) computed in Exercise 9.26 can be written

as p(x) = Y^k=oakTk- Use the DFT, as described in the text, to compute
the coefficients a,k by hand. Expand the sum and collect like terms to prove
that your answer gives the same polynomial as p(x).

9.32. Using Algorithm 9.1, plot the Chebyshev interpolating polynomials of degree
2k for к = 1,..., 7 for the function

1 + X
X/(*) = if x < 0,

if x > 0

on the interval [—1,1]. Also graph f for comparison in each of the plots.
9.33. Code up the algorithm for computing the trapezoid-rule approximation of

the Chebyshev projection method, as described in Section 9.5.2. Repeat Ex­
ercise 9.32 using your projection code instead of Algorithm 9.1, and compare
the results to the results of Exercise 9.32.

*

9.34. Compute the integral of one of the three Lagrange basis functions for the
second-order Newton-Cotes quadrature and verify that it equals the corre­
sponding weight.

9.35. Show that Simpson’s rule is exact for the integral xk dx for any к G
{0,1,2,3}. Use this to prove that Simpson’s rule is exact for any cubic poly­
nomial. Hint: First prove the results just for three points Xq, х±, #2, and then

458 Chapter 9. Polynomial Approximation and Interpolation

apply that result to the triple of points Ж2,хз,Х4, and then again for each
triple of the form x2^ #2k+i, ж2й+2, which then gives the result for Simpson’s
rule for any even n > 2.

9.36. Assume that f G C3([a, 6];R).
(i) Show that is bounded by some M < oo.

(ii) Show that if p is the degree-2 interpolating polynomial for f at uniformly
spaced points xq < x\ < x2, then

M 2
sup |/(x)-p(x)| < — sup

xe[x0,x2] 0 жЕ[ж0,ж2]^0

Hint: Consider using Theorem 9.4.1.

(iii) Under the assumptions of the previous step, show that

sup |/(x) -р(ж)| < ^-h3,
xe[x0,x2]

where h = x± — x0 = x2 — x±.

(iv) Show that the degree-2 Newton-Cotes approximation I2 of I = f(x) dx
has error \I — I2\ bounded by ^/z4.

(v) Show that the error arising from using Simpson’s rule to approximate
f f(x) dx lies in O(n-3) as n oo.

9.37. Using the data in Table 9.2, show empirically that the error for the trapezoid
rule is roughly O(zz-2) and the error for Simpson’s rule is roughly O(n-4).
Specifically, assume that the errors are of the form t = kna and then estimate
a using the data for various values of n.

9.38. Find the weights wq,wi,W2 so that

f p(x) dx = p(0)wo + p(l/2)wi + p(l)w2 Vp G R[x; 3].
Jo

9.39. Determine the values of the nodes жсь^ь^2 and the weights wq,wi,W2 so
that

*

/ p(x)x2 dx = p(xq)wq + p(£i)wi + p(x2)w2 Vp G R[rr; 3].
Jo

9.40. For what value of c G (0,2) is the following quadrature rule exact for all
реф;2|?

*

/ p(x) dx = p(c) + p(2 — c)
Jo

9.41. Prove that Tk(x) dx is zero if к is odd and is if к is even; see (9.55).
9.42. Prove that Gaussian quadrature with n + 1 nodes cannot be exact for all

f G R[z;2n + 2].

Exercises 459

9.43. Compute the Taylor polynomial of degree 3 for sin(a; + 3) around 0. Use this
and the results of Example 9.7.3 to estimate the integral

y* sin(:r + 3) dx.

Compare your computation to the value of the integral computed symboli­
cally.

9.44. Generalize Theorem 9.7.2 from the interval [—1,1] to an arbitrary interval
[a,b\. Give explicit formulas for the appropriate sample points in terms of
the zeros of the Legendre polynomials, and give explicit formulas for the
appropriate weights in terms of integrals of the Lagrange basis polynomials.
Prove your generalized theorem is correct.

9.45. (i) Using built-in methods for finding the zeros and weights for Gaussian
quadrature, code up a method that accepts any callable function f on
[—1,1] and any integer n > 1 and uses Gaussian quadrature at n + 1
points to approximate the integral f(x) dx.

(ii) Using your method, compute the Gaussian quadrature estimate of the
integral |ж| dx for n = 10,20,30,..., 100. Compare your results to
the true answer (which is 1).

(iii) Repeat the computation for cos(x) dx. Compare your results to the
true answer of 2sin(l).

(iv) Explain why the computations for one of these integrals are so much
more accurate than for the other integral.

9.46. Prove that if*
pb n
/ p(x)w(x) dx = 52 p(® i)wi \/p € R[&; 2n + 1],

2=0

then the polynomial — ^-orthogonal to R[x\ n] on [a, b\.

Notes
Much of the material discussed in this chapter is inspired by [Trel3]. Our treatment
of barycentric Lagrange interpolation is based on [ВТ04]. Lagrange interpolation
is also discussed in more detail, and from a different perspective, in Volume 1,
Section 15.7.1.

For a detailed discussion of Chebyshev polynomials and many of their properties,
we recommend [МН03]. When f is analytic in a Bernstein ellipse around the line
segment [—1,1], then much stronger results than (9.37) and (9.39) can be proved
about the convergence of the interpolation at the Chebyshev zeros and extremizers.
This is discussed in detail in [Trel3, Chapter 7].

For more information about conditioning of the problem of finding zeros of a
polynomial as a function of the coefficients, see Volume 1, Section 7.5.2, and [Trel3,
Appendix: Myth 6]). The fast algorithm for computing the weights in Clenshaw-
Curtis quadrature is due to Waldvogel [Wal06]. For more about the convergence of
Clenshaw-Curtis quadrature versus Gaussian quadrature see [Tre08].

Part III

Interlude

-И Review of Multivariate
Differentiation

Nothing ruins your day more than getting a bad review.
—Taylor Swift

In this chapter we briefly review derivatives in multiple dimensions. A solid working
understanding of multivariate differentiation is essential for the remainder of the
text, most notably for the theory of optimization. We cover differentiation only
briefly here, and mostly without proofs. For a rigorous treatment of the topic, see
Volume 1, Chapter 6.

10.1 Directional, Partial, and Total Derivatives
In single-variable calculus the derivative of a well-behaved function / : (a, 6) —> R
at a point t G (a, b) is the rate of change (or slope of the tangent) of the function
f at the point t G (a, 6). For the multivariate case, given an open set U G Rn
and a well-behaved function f : U —> R, the derivative at a point x G U allows
us to find the tangent plane (or hyperplane) to the graph of f at x, as well as
the slope in any direction along the plane. In this section and the next we review
the basic theory of derivatives and how to write the tangent plane of a function at
a point.

10.1.1 Curves and Tangent Vectors
Before we treat derivatives with a multivariate domain, we first consider the case
where the domain is one dimensional, but the codomain is higher dimensional.

Definition 10.1.1. A curve is a map у : (a, b) Rn. We say that the curve у is
differentiable at t G (u, b) with derivative

7(t) = lira
h—у0

7(t + /t) - 7(t)
h (Ю.1)

463

464 Chapter 10. Review of Multivariate Differentiation

Figure 10.1. The derivative rf(t) of a differentiable curve у : (a, b) Rn points
in the direction of the line tangent to the curve at 7(f). Note that the tangent vector
7'(t) (blue) represents the instantaneous velocity of the curve at y(t), whereas the
line segment (red) from 7(f) to y(t) + 7'(t) is what is often informally called the
“tangent” to the curve.

if the limit exists. The derivative is a vector, commonly called the tangent vector
or the velocity; see Figure 10.1 for an illustration. If у is differentiable at every
point of (a,b), we say that the curve у is differentiable on (a, b). In this case,
defines a curve as well, often called the tangent curve 0/7.

Throughout this chapter we will assume that all curves are differentiable.

Remark 10.1.2. If the curve 7 is given by

?(t) = (71(t),---,7n(t)),

then the derivative gives the componentwise representation

7^) = (7;а),...,7;а))-

Example 10.1.3. The differentiable curve 7 :]R —> IR2 given by

7(f) = (cost, sin t)

traces out a circle of radius one, centered at the origin, going counterclockwise.
The tangent vector at t = тг/2 is 7'(tt/2) = (—1,0). The tangent curve is
7'(t) = (— sint, cost). Note that 7(f) and 7'(t) are orthogonal for each £ E EL
This is treated further in Example 10.1.5.

By looking at the individual coordinates of the differentiable curves, we can
prove the following results.

10.1. Directional, Partial, and Total Derivatives 465

Proposition 10.1.4. Let f, g : R —> Rn be differentiable curves, and let 99 : R —> R
be differentiable. The following hold:

(i) (/() +<?())' = /'()+ </()•* * * *

(ii)

(iii) (/(), </()>' = </'(), P()> + (/(W«* * * *

(iv) (/ °

41 By well-behaved we mean that the limit in (10.2) exists.

Example 10.1.5. Consider again the differentiable curve of Example 10.1.3.
It is straightforward to verify that (7(^)5 7(t)) = IItWII2 — 1 for each t €
R. By Proposition 10.1.4(iii) the derivative is (7'(t), 7(f)) + (7(f), 7'(t)) = 0,
which implies 2 (7'(£),7(£)) = 0. This shows that the tangent vector 7'(t) is
orthogonal to the curve 7(7).

10.1.2 Directional Derivatives
Let U C Rn be an open set containing x and f : U —> R a well-behaved41 function.
Given a vector v G Rn, the rate of change of the function f at the point x, moving
in the direction v eRn, is the directional derivative of f at x with respect to v.

Definition 10.1.6. Let U G Rn be an open set containing x and f : U R.
Given veRn, the directional derivative of f at x with respect to v is the limit (if
it exists)

= lim /(x + tv)-/(x)
7 t->o t (Ю.2)

Remark 10.1.7. The curve 7(f) = x + tv is the line in Rn passing through x and
pointing in direction v. The directional derivative is simply the derivative of the
composition / о 7 at the point t = 0, that is,

>7) .1 ЖМ)-№(0)) /(x + tv)-/(x)^v№)
at t—Q t t—>0 t

Remark 10.1.8. If u is a unit vector, the directional derivative of f at x in the
direction of u is the slope of the tangent line along the direction u. If u is not
a unit vector, then the directional derivative is the product of the slope and the
magnitude ||u|| of the vector u.

466 Chapter 10. Review of Multivariate Differentiation

Example 10.1.9. Let f : R2 —> R be defined by f(x,y) = xy2 + x3y. The
directional derivative at x = (x,y) in the direction v = (-d^, d=) is found by
computing the derivative of /(x + £v) with respect to t at t = 0:

10.1.3 Partial Derivatives
Taking directional derivatives along the standard basis vectors ег for each i gives
partial derivatives. In other words, the partial derivatives are simply the directional
derivatives Dei/(x)5 which are often written as Th/(x) or

Definition 10.1.10. Let U 6Rn be an open set and f : U Rm. The ith partial
derivative of f at the point xtU is given by the limit (if it exists)

Difix') = lim /(X + - /(X)
t

Remark 10.1.11. In the previous definition the ith coordinate is the only one that
varies in the limit. Thus we can think of the ith partial derivative as the derivative
of a single-variable function with the only variable being the ith coordinate; the
other coordinates are treated as constants.

Example 10.1.12. The partial derivative Dif(x, y) of the function f(x, y) =
xy2 +x3y can be computed by treating f as a function of x only, holding у as
a constant. Thus, this partial derivative is

Dif(x,y) = y2 + 3x2y.

Similarly, the partial derivative Dzf(x,y) can be computed by treating f as
a function of у only, holding x as a constant. Thus, this partial derivative is

-°2/(ж,у) = "Ixy + X3.

10.1.4 The Derivative
We now review the idea of the total derivative of a function f : U Rm, where
U e Rn is an open set.

10.1. Directional, Partial, and Total Derivatives 467

Definition 10.1.13. Let U C Rn be an open set. A function f : U Rm is
differentiable at x G U if there exists a matrix Df(x) G Mmxn(W) such that

||/(x + h)-/(x)-Z>/(x)h||
h”o llhll (10.3)

The matrix Df(x) is called the derivative of f at x. If f is differentiable for each
xeU, we say that f is differentiable on U. If f is differentiable on U and the
function g : U given by g(x) = D/(x) is continuous on U, then f
is continuously differentiable on U. In this case we write f G C1(U;R) or say
/is C1.

Remark 10.1.14. The derivative is sometimes called the total derivative as a way
to distinguish it from the directional and partial derivatives.

Nota Bene 10.1.15. An element of Rn is an n-tuple a = (оц,... , un), but
when written in terms of the standard basis it corresponds to a column vector
[ai • • • an] . Unless otherwise indicated, we always use the standard basis
ei,..., en, where the zth entry of e* is 1 and all other entries are 0, so ег =
(0,..., 1,..., 0) and [ai,..., an] denotes the element a = 52?= i eiai- We
always use parentheses () to indicate an n-tuple in Rn, and we use square
brackets [] to indicate the representation of that tuple in a given basis (always
the standard basis, unless otherwise indicated).

The derivative Df(x) of a function / : Rn —> Rm at x is actually a linear
operator mapping Rn to Rm, which means that in standard coordinates it is
given by an m x n matrix. In particular, for a function f : Rn —> R, the
derivative maps Rn to R and hence is expressed in standard coordinates as a
1 x n matrix, that is, as a row vector. If we need to use Df(x.) as a vector
in Rn instead of as a linear operator, we take its transpose D/(x)T (often
called the gradient), which is represented in the standard basis as a column
vector. For more details on the derivative as a linear operator, see Volume 1,
Chapter 6.

Theorem 10.1.16. Let U C Rn be an open set and f : U Rm be given by
f = (/i? /2, • • •, fm)* If f is differentiable on U, then the partial derivatives Difj(x)
exist for each i,j G {1,..., m} and x^U, and the matrix Df(x) satisfies

■£>l/l(x) Wl(x) • •• £>n/i(x)‘

£>/(x) =
£>1/2(x) ад(х) • • • Г>п/2(х)

£>2Лп(х) • • £>n/m(x)_

(Ю.4)

468 Chapter 10. Review of Multivariate Differentiation

Example 10.1 .17. Let f : R3 —> R2 be given by

f(x, y, z) = (xy + x2z2, y3z5 + x).

The derivative D/(x) of /, written in standard coordinates, is the matrix

Df(x,y,z) = у + 2xz2
1

x 2x2z
3y2z5 by3z*

Example 10.1 .18. Let f : Rn —> Rn be the sоftmax function, which is given
by

/(x) = (/l(x),/2(x),...,/n(x)),

where for x = (^i, , %n), each /г(х) satisfies

Л(х) = ™(10.5)
Efe=i eXk

The partial derivatives of (10.5) are

D f(x\ = (E£=ie*fc) ~
J dxj (ELi^)2

= еж‘ ME^i6**)
“(Efc=1^) (EZ=i^)
= /i(x)№j -Л(х))-

This shows that D/(x) can be written as the following symmetric matrix:

D/(X) = diag(/(x)) - /(x)/(x)T, (10.6)

where diag(/(x)) denotes the diagonal matrix whose (г, г) entry is fffx).

10.2 Properties of Derivatives
In this section we review three important properties of the derivative, namely lin­
earity, the product rule, and the chain rule.

10.2.1 Linearity
Derivatives are linear maps on the space of differentiable functions.

Theorem 10.2.1 (Linearity). Let U C Rn be an open set. If f : U Rm and
g : U —> Rm are differentiable on U and a,b G R, then af + bg is also differentiable

10.2. Properties of Derivatives 469

on U and satisfies the rule

D(af(x) + 6p(x)) = a£>/(x) + bDg(x)

for each xtU.
(Ю.7)

Remark 10.2.2. An immediate consequence of the theorem is that if f : Rn —> R
is given by /(x) = afc/fc(x), then Df(x) = afcZ>/fc(x).

Nota Bene 10.2.3. Beware that the derivative at a point x is not a linear
function in x. This can be seen in Examples 10.1.17 and 10.1.18 by comparing
Df(ax) to aDf(x).

10.2.2 Product Rule
The product rule holds for the total derivative of real-valued functions.

Theorem 10.2.4 (Product Rule). Let U C Rn be an open set. If f : U —> R and
g : U —> R are differentiable on U, then the product map h = fg is also differentiable
on U and satisfies the product rule

D/z(x) = ^(x)£>/(x) + f(x)Dg(x) (10.8)

for each xtU.

Example 10.2.5. Let f : R3 —> R and g : R3 —> R be defined by

/(ж, ?/, z) = x5y 4- xy2 4- z7 and g(x, y, z) = x3 + z11.

By the product rule we have

D(fg)(x, y, z) = g(x, y, z)Df(x, y, z) + f(x, y, z)Dg(x, y, z)
= (x3 + z11) [5x4y + y2 x5 + 2xy 7 г6]

+ (x3y 4- xy2 + z7) [Зя2 0 11г10].

For example, the derivative at the point (0,1,-1) € R3 is given by

Z>(/^)(0,1, —1) = — [1 0 7] - [0 0 11] = [—1 0 -18].

Proposition 10.2.6. For any a G Rn, if g(x) = aTx (and note that aTx = xTa
always holds), then

Dg(gC) = aT.

Proof. This follows because (10.3) holds for all x with A = aT because

||#(x + h) — g(x) — Ah|| = ||aT(x + h) — aTx — aTh|| =0. □

470 Chapter 10. Review of Multivariate Differentiation

Corollary 10.2.7. Let A = [aij] be an m x n matrix. If g : Rn —> Rm is given by
g(x) = Ax, then Dg(x) = A.

Proof. Write g in coordinates g(x) = [<?i(x) ^2(x) ••• gm(x)]T, with each
gi(x) = ajx, where each a* = («a,... , a^n) is the transpose of the zth row of A.
This gives

I?p(x) =

-Dpi(x)
-Op2(x)

Dgm(x) _^m_

= A. □

Example 10.2.8. If g : Rn —> Rn is given by g(x) = x, then Dg(x) = I.

Proposition 10.2.9 (Inner Product Rule). Let U C Rn be an open set. Ifu,v
are differentiable functions from U into Rm and /(x) = (u(x),v(x)) = u(x)Tv(x),
then

Df(x) = u(x)TDv(x) + v(x)TDu(x).

Proof. Write u(x) = (ui(x), u2(x),...,and v(x) = (vi(x), v2(x),...,
vm(x)), so that /(x) = Ui(x)vi(x). The product rule (Theorem 10.2.4) gives

D/(x) = (ui(x)Dvi(x) + vfxjDufx)) = u(x)TDv(x) + v(x)TDu(x). □

Example 10.2.10. If a vector-valued function r : U —> Rm is differentiable
on the open set U C Rn, then the function /(x) = ||r(x)||2 = r(x)Tr(x) is also
differentiable on U and satisfies Df(x) = 2r(x)TDr(x).

Corollary 10.2.11. If g : Rn —> R is given by g(x) = xTAx for some A e Mn(R),
then

Dg(x) =xT(A + AT).

Proof. Let u(x) = x and v(x) = Ax, so g(x) = u(x)Tv(x). The inner product
rule, combined with Example 10.2.8 and Corollary 10.2.7, gives

Dg(x) = u(x)TDv(x) + v(x)TDu(x) = xTA + (Ax)T I = xT(A + AT). □

Example 10.2.12. If Ac Mn(R) is symmetric and f : Rn —> R is given by
/(x) = xTAx, then Df(x) = 2xTA.

The following is a slight generalization of the product rule.

10.2. Properties of Derivatives 471

Proposition 10.2.13. Letw : Rn —> and В : Rn —> Mfcxm(^) be differentiable
functions given by w(x) = (wi(x),..., wm(x)) and

B(x) =

(x)

b2,l(x)

bl,2(x)

^2,2 (x)

bfc,i(x) &fc,2(x)

&l,m(x)‘

&2,m(x)

Ьк,т (x)

If H : Rn —> is given by H(x) = B(x)w(x), then

w(x)TDbi(x)T
ВЯ(х) = B(x)Dw(x) + (10.9)

_w(x)T Dbfc(x)T

where b* is the ith row of В.

Proof. Let Uffx) = b*(x)w(x) be the ith coordinate of B(x). The inner product
rule (Proposition 10.2.9) gives DHi(x) = b*(x)Dw(x) + w(x)TDbi(x)T for each i.
Stacking these vertically gives (10.9). □

10.2.3 Chain Rule
The chain rule also holds for total derivatives.

Theorem 10.2.14 (Chain Rule). Assume that U C and V G are open
sets and that g :U —> V and f : V —> Rn with g(U) С V. If g is differentiable on U
and f is differentiable on V, then the composite map h = f og is also differentiable
on U and satisfies the chain rule

Z>/i(x) = £>/(y(x))£>y(x) (10.10)

for each xEU.

Example 10.2.15. The function h(x,y) = (sin(j;g),xy(x — y)2) can be writ­
ten as h = f og, where /(p, q) = (sin p, pg2) and д(ж, g) = (rrg, x — g). We can
write р(ж, g) = xy and q(x, y) = x — g. The chain rule gives

Dh\x,y) = Df(p,q)Dg(x,y') = Jj

cos(a;g) 0 у x
(x-y)2 2xy(x — y)\ [1 -1

gcos(rrg) xcos(xy)
y(x - y)2 + 2xy(x - y) x(x - y)2 - 2xy(x - y)

The total derivative may be used to compute directional derivatives.

т Chapter 10. Review of Multivariate Differentiation

Theorem 10.2.16. Let U cRn be an open set. If f : U Rm is differentiable at
x E U, then the directional derivative Dvf(x) along v e Rn at x exists and is the
product of the derivative Df(x) and the tangent vector v:

r>v/(x) = £»/(x)v. (10.11)

Proof, Let f : Rn —> Rm be arbitrary and 7 : R —> Rn be defined by the differen­
tiable curve 7(f) = x + tv. The chain rule gives

Pv/(x)=^/(7(t))| = Я/(7(0))7'(0) = Df(x)v. □
at I

Example 10.2.17. Let f : R2 —> R be defined by f(x,y) = xy2 + x^y, as in
Example 10.1.9. We have

Df(x, y) = [Dif(x, y) Dzf(x, у)] = [у2 + 3x2y 2xy + x3] .

Thus, the directional derivative of f in the direction v = (-U, -U) is ’ J v 2 V 2 /

Dvf(x, y) = [y2 + 3x2y 2xy + ж3]

which agrees with the (more laborious) calculation in Example 10.1.9.

Figure 10.2. Depiction (yellow) of the tangent plane H to the graph (gray) Гf =
{(x, z) G R2 x R I z = /(x)} of a function f at the point (xo,/(xq)) as given in
(10.14).

10.2. Properties of Derivatives 473

10.2.4 Tangent Planes
We conclude this section by describing the tangent plane to the graph of a function
at a point. For a function f : U R, the graph of f is the set

Tf = {(x, z) E U x R | z = /(x)} C Rn x R = Rn+1; (10.12)

see Appendix A.2 of Volume 1 for more on graphs of functions. If U is open and
f is differentiable on [7, then the tangent plane to the graph of f at x0 E U is the
graph of the function

Mx) = Лхо) + £)/(x0)(x-x0). (10.13)

Thus, the tangent plane is the set

H = {(x, z) € Rn+1 | z = L(x)}, (10.14)

which is a hyperplane in Rn+1; that is, a set of the form {v E Rn+1 | aTv = b}
for some a E Rn+1 and b E R. We may write the tangent plane as a hyperplane
by setting a = (D/(x0),—1) and b = Df(xo)xo — /(x0). See Figure 10.2 for an
illustration.

Remark 10.2.18. This is a generalization of the formula for the line tangent to
the graph in single-variable calculus given by the equation

У = Лжо) + Л(жо)(® - Жо).

Example 10.2.19. Consider the function f : R2 —> R in Example 10.1.9
given by f(x,y) = xy2 + x3y. The tangent plane at the point (#o>?/o) is the
graph of the function

L(x, y) = f(xo,yo) + Df(x0, ?/o) X — Xq

У-Уо

= f(xo, Уо) + [уо + 3a'oJ/o 2жоуо + Л)] X — Xq

У~Уо.

Nota Bene 10.2.20. The tangent plane H = {(x, L(x)) | x E Rn} in Rn+1
is not a vector subspace because it does not (usually) pass through the origin
in Rn+1. Instead it’s an affine set, which is a translate of a vector subspace; for
more on affine sets, see Section 13.1.8. Indeed, T = {(v,D/(x0)v) | v E Rn}
is a vector subspace of Rn+1, called the tangent space of the graph of f at
(xq,/(xq)), and the tangent plane H is the translate of T given by H =
T + (x0,/(x0)).

This is similar to the situation for derivatives of curves, where the tangent
vector 7'(to) at does not necessarily touch the curve 7(f) at all, but the
tangent line 7(^0) + ^7z(^o) is actually tangent to the curve at the point 7(^0);
see Figure 10.1.

474 Chapter 10. Review of Multivariate Differentiation

10.3 Implicit Function Theorem and Taylor's Theorem
In this section we review the implicit function theorem, higher-order derivatives,
and Taylor’s theorem. These are essential for understanding smooth, nonlinear
functions and will be used throughout the rest of the book.

10.3.1 Implicit Function Theorem
Let I, J C R be open intervals (possibly infinite). Given a function of two variables
F : I x J —> R, each constant c G R defines a level set {(#, y) G I x J I F(x,y) = c}.
The implicit function theorem gives conditions that guarantee the level set is locally
the graph of a function f : I1 J, where Г С I is also an open interval. This
new function f is the implicit function satisfying the relation F(x, /(#)) = c for all
x e I1. The implicit function theorem also generalizes to higher dimensions.

Example 10.3.1. Let F(x,y) = x2 + t/2, and consider the circle of radius 3
defined by the level set {(x,y) C R x R | F(x,y) = 9}. In a neighborhood of
the point (rro>?/o) — (0,3) we can define у as a function of x on the interval
(—3,3); that is, y(x) = \/9 — x2. We say that F implicitly defines у as a
function of x in a neighborhood of (0, 3).

However, we cannot define у as a function of x in a neighborhood around
the point (3, 0) since in any neighborhood of (3, 0) there are two points of
the level set of the form (ж, ±\/9 — x2) with the same x coordinate. This is
depicted in Figure 10.3. The implicit function theorem gives general conditions
for when one or more variables can be defined implicitly as functions of other
variables.

Figure 10.3. An illustration of Example 10.3.1. In a neighborhood around the point
(0,3), the points on the circle F(x,y) = 9 (black arc on the left) can be written as
(x,f(xf), provided x remains in a small enough neighborhood (blue line) ofO. But
near the point (3,0) there is no function of x defining y. Instead, there is a function
g so that we can write points of the circle near (3,0) as (g(y),y), provided у remains
in a small enough neighborhood (red line) of 0. Thus, x is implicitly defined as a
function g of у.

10.3. Implicit Function Theorem and Taylor's Theorem 475

In the previous example, we were able to solve explicitly for у as a function of a?,
but in many cases solving for one variable in terms of the others is very hard or even
impossible. Yet, for many problems just knowing it exists and knowing its derivative
is enough. The implicit function theorem tells us not only when the function exists
but also how to compute its derivative without computing the function itself.

Theorem 10.3.2 (Implicit Function Theorem). Assume that U C Rm and
V C Rn are open sets containing x0 and y0; respectively, and F : U x V —> Rn
is a continuously differentiable map. Let Z?iF(xo,yo) denote the derivative of F
with у = уо held constant, and let Р2^(хо,уо) denote the derivative of F with
x = xq held constant. If D^F^q, уq) is nonsingular, then there exists an open
neighborhood Uo x Vo C U x V o/(xo,yo) and a unique continuously differentiable
function f : Uq Vq such that /(x0) = yo and

{(x,y) e Uo x Vb I F(x,y) = F(x0,y0)} = {(x,/(x)) | x e Uo}. (10.15)

Moreover, for each xeUq. the derivative of f satisfies

= -D2F(x, /(x)). (10.16)

Example 10.3.3. In Example 10.3.1, the hypothesis of the implicit func­
tion theorem is satisfied since D2F(xo,yo) = 2yo Ф 0. Hence, there exists
a unique continuously differentiable function f(x) in a neighborhood of the
point (xo,yo) satisfying Е(а?,/(ж)) = 0. Setting у = f(x) and differentiating
the equation F(x, y) = 0 with respect to x gives

о = DiF^x, f(x\) + D2F(x, f{x))f'(x) = 2x + 2y(x)y’(x).

Solving for у' = Г(х) yields

, , DiF(a;,t/) 2x -x
’w = /w = ~WW7’

which agrees with (10.16).

Remark 10.3.4. The previous example is a special case of a claim often seen in
a multivariable calculus class. For any function F : R2 —> R, if the equation
F(x,y) = c defines у implicitly as a function of x, then the derivative is given
by

7 FE&У = dx
dx OF- *

oy

(10.17)

The implicit function theorem guarantees that у is a function of x whenever ф 0,
and (10.17) is a special case of (10.16).

476 Chapter 10. Review of Multivariate Differentiation

Example 10.3.5. Consider the two-dimensional surface S defined implicitly
by the equation Е(ж, у, z) = 0, where

F(x, y, z) = z3 + 3xyz2 — 5x2y2z + 14.

If (#0, Vo, го) — (1, — 1,2) € S, then F3F(a7o, Уо, ^о) = —5^0. By the implicit
function theorem, the surface S can be written explicitly as the graph of a
function z = z(x,y) in a neighborhood of (жо,?/о5 ^o)-

Furthermore, the partial derivatives of z(x, y) can be computed by differ­
entiating F(rr, ?/, г(ж, ?/)) = 0, which gives

0 = D]F(x, y, z) + B3F(z, y, z)Drz(x, y)
d z

= (Syz2 — 10xy2z) + (3г2 + 6xyz — 5x2y2) — ,

0 = D2F(x, y, z) + D3F(x, y, z)D2z(x, y)
dz

= (Зжг2 — Юж2?/ z) + (3г2 + 6xyz — 5ж2?/2) —.
<э?/

Substituting жо,?/о,^о and solving for the partial derivatives of z gives

dz
dx
dz
dy

n , x DYF(xQ,y^z^ 32
= Аг(жо,?/о) = n a = r ’F3F(£ro,?/o,^o) 5

D2F(a;o,?/o,^o) 32
= D2^(^o,2/o) = n \ = r •DbF^o^o^o 5

Thus, the tangent plane of the surface S at (ж3,?/о? го) is

32(ж - 1) - 32(?/ + 1) + 5(z - 2) = 0.

10.3.2 Higher-Order Derivatives
Let U C Rn be an open set. If the function f : U —> R is continuously differentiable
on U, then the function g : U Rn given by g(x) = is continuous on U.
This derivative is transposed because D/(x) is a row vector, and we want to treat
elements of Rn as column vectors; see Nota Bene 10.1.15. If g is differentiable on [7,
then we can take its derivative Dg(x) for each x G U. The n x n derivative matrix
Dg(x) can be considered the second derivative of / at x G 77, hereafter denoted
D2/(x) and called the Hessian of f at x. If g is continuously differentiable, we say
that f is twice continuously differentiable and write f G C2(77;R) or just say f is
C2.

Write

p(x) = D/(x)T =
A/(x)

A/(x).

91 (x)

_0n(x).

10.3. Implicit Function Theorem and Taylor's Theorem 477

where each g2(x) = Differentiating gives

£>151 (x)
£>152 (x)

B2/(x)=

£>251 (x) ••• £>n51(x)
£>252 (x) ••• £>n52(x)

,£>15п(х) £>25n(x) ••• Dngn(x)
DiDtflx) D2D1f(x) ••• £>n£>i/(x)
DiD2f(x) D2D2f^) ••• £>n£>2/(x)

,£>i£>„/(x) £>2£>n/(x) ••• £>„£>„/(x)

Proposition 10.3.6. Let U C Rn be an open set and assume f : U R is twice
continuously differentiable on U. For any xtU, the matrix D2/(x) is symmetric,
and hence

DiDrftx) = DjDiflx) (10.18)

for every i and j.

2
Taking things one step further, let U C Rn be an open set and let h : U Rn

be the function that maps x to the flattened Hessian D2/(x), where the elements of
the matrix are just listed in a single column vector of length n2. If h is continuously
differentiable, then we say that f is thrice continuously differentiable and write
/ G C3(/7;R) or just say f is C3.

10.3.3 Taylor's Theorem

Taylor’s theorem is one of the most powerful tools in analysis. It allows us to
approximate smooth (differentiable) functions in a small neighborhood to arbi­
trary precision using polynomials. This allows us to approximate functions that
are otherwise difficult to analyze and can give a lot of insight into the behavior of a
function.

The univariate version of Taylor’s theorem holds both in R and in C, and we
need the complex version in the next chapter. We use F to denote either R or C.

Theorem 10.3.7. Let U C F be an open set with f : U -4- F in Cfe(C7; F) (meaning
that exists and is continuous on all of U). If z e U and h e F are such that
the line segment £(z, z + h) = {z + th | 0 < t < 1} is contained in U, then the к th
derivative f^ must be bounded by some M < сю on the line segment. For any such
M we have

f(z + h) = f(z) + f'(z)h + (z~)h2 + --- + Rk, (10.19)

where \Rk\ < ^|/i|fc.

478 Chapter 10. Review of Multivariate Differentiation

There is also a multivariate version of Taylor’s theorem, but talking about mul­
tivariate higher-order derivatives is a little messy, so here we only give quadratic
and cubic versions of Taylor’s theorem.

Theorem 10.3.8. Let U C Rn be an open set. Assume that x EU and h e Rn
are such that the line segment £(x, x + h) = {x + th | 0 < t < 1} is contained in U.
If f e C2(U', R) and ||D2/(x + th) || < L on all of x + h), then

/(x + h) = /(x) + D/(x)h + B2, (10.20)

where

Г1 LT?2 = / (1 - t)hTr>2/(x + th)hdf and |Я2| < ^||h||2. (10.21)
Jo 2

Similarly, if f e C3(t/;R), and ||D3/|| < M on ^(x,x + h), then

+ h) = /(x) + £>/(x)h + ihT£>2/(x)h + R3, (10.22)

where

|йз| < ||h||3. (10.23)

Corollary 10.3.9. Let U C Rn be an open set and f e C2(C7;R). If ||D2/(x)|| <
L for each x EU and ||h|| is sufficiently small, then

|/(x + h) —/(x) — D/(x)h|| < ^£||Ь||2. (10.24)

Example 10.3.10. Let f : R2 —> R be given by f(x,y) = ex+y. To find the
second-order Taylor polynomial of f at (0, 0) compute the derivative

r>/(0,0) = [e®+y = 1
0,0

1 1]

and the Hessian
~ex+y ’1 1'

D2f(0,0) = ex+y ex+y
0,0 1 1

With x = (0,0) and h = (x,y), the second-order approximation of f at x is

f(x, y) « /(0) + Z>/(0)h + |hTZ>2/(0)h,

= 1 + x + у + |(я:2 + 2xy + у2).

Exercises 479

Example 10.3.11. Let f : R2 —> R be given by = cos(a;)e32/. To find
the second-order Taylor polynomial of f at (0,0), compute the derivative

£>/(0,0) = [— sin(a;)e32/ 3cos(a;)e32/]

and the Hessian

— cos(a;)e32/ —3 sin(a;)e32/
—3sin(rr)e32/ 9cos(a;)e32/

0
9

If x = (0, 0) and h = (ж, ?/), then the second-order approximation of / at x is

f(x, y) « /(0) + D/(0)h + |hTD2/(0)h,

= 1 +3y - l^2 + |y2-

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

10.1. Generalize the result in Example 10.1.5: Prove that if the differentiable curve
7 : (a, b) Rn has constant norm for all t e (a, 6), that is, if ||7(t)|| = C for
some constant C, then the tangent vector y'(t) is orthogonal to y(t) for each
t e (a, 6).

10.2. Show that the function / in (10.5) of Example 10.1.18 has derivative Df(x) =
diag(/(x)) - /(x)/(x)T.

480 Chapter 10. Review of Multivariate Differentiation

10.3. Let A e Mn(R) and consider the differentiable curve f : R —> Mn(R) given
by

k—0 k—0

This is well defined, since the sum converges absolutely, that is, for any matrix
norm42 || • || we have

42For more about matrix norms, see Volume 1, Section 3.5. For more about the absolute conver­
gence of sums, including this one, see Volume 1, Section 5.6.3.

k=o k'

Use the definition of the derivative to prove that

Df(t) = AeAt

for every t e R. You may assume without proof that

(i) f(t + s) = /(t)/(s) and

(ii) eAt = I + At + O(f2) for small |t|.

10.4. Let A = [aij] be an n x n matrix. As \t\ 0, we have

— (IT £<2ц)(1 T ^22) •••(1 T tann) T O(t2)

det (I T tA) =

1 T tan
td21

tai2
1 T td22

'' tain
' * ta2n

tani tdn2 ’ * 1T tann

= 1 T ttr(A) T O(t2).

(i) Use this to prove that det(I T fA)|f=0 = tr(A).

(ii) Let f : Mn(W) R by given by /(X) = det(X). What is the directional
derivative of f at the identity in the direction A?

10.5. The coordinate transformation f : R3 —> R3 from spherical coordinates to
rectangular coordinates is given by

= (psin(^)) cos(0), psin(0) sin(0), pcos(0)).

Compute Df(x) and show that detD/(x) = — p2sin</>.

10.6. Given A e Mn(R) and b e Rn, let /(x) = ||Ax — b||2. Prove that

D/(x) = 2(xTAT - bT)A.

Hint: Write f as (Ax — b)T(Ax — b), then expand and differentiate.

Exercises 481

10.7. Let U C ln be an open set. Prove that if f : U —> R and g : U R are
differentiable on U, and g is nonzero on U, then the map h = f/g is also
differentiable on U and satisfies the quotient rule

g(x)Df(x) - f(x.)Dg(x)
(10.25)

for each x E U.
10.8. Let U C Rn be an open set containing x. Given a differentiable function

f : U —> R, find the unit vector v that maximizes the directional derivative
Dvf(x) = Df(x)v.

10.9. Given a vector (3/1,3/2, • • •, Уп) € Rn, let g : Rn R be the function g(x) =
— yk l°g(/i(x)), where each fi : Rn R is given by (10.5). Use the
chain rule to show that Djg(x) = /j(x) У г) — yj-

10.10. Given a sequence of real numbers bi, 62, • • •, and an m x n matrix A = [a^-]
with rows a^, aj,..., a^ in Rn, define the LogSumExp function f : Rn —> R
as

/(x) = log 52 ^(x)
V=1

(10.26)

where each Zj(x) = exp(ajx + bj). Show that

g.i°^W_*W T-4
’’ 1

10.11. Show that the equations

sin(a; + z) + ln(?/z2) = 0,
ex+z+yz = 0

implicitly define continuously differentiable functions x(z) and y(z) in an
open neighborhood of the point (1,1, —1). Find x'(2) and y'(z).

10.12. Let A E Mn(R) be symmetric and b E Rn. Show that if /(x) = xTAx + bTx,
then D2/(x) = 2 A.

10.13. Let U С Г be an open set and assume r : U Rm is twice continuously
differentiable on U. In Example 10.2.10 we showed that the “norm squared”
function /(x) = ||r(x)||2 = r(x)Tr(x) satisfies Df(x) = 2r(x)TDr(x). Now
show that the Hessian of f satisfies

Z>2/(x) = 2 I Dr(x)TDr(x) + 52 п(х)Г>2п(х)

where ri is the zth coordinate function of r.

where 1 E Rm is the ones vector and z(x) = (21 (x), 22 (x),..., zm(x)).

(10.28)

482 Chapter 10. Review of Multivariate Differentiation

10.14. Show that the Hessian of the LogSumExp function (10.26) is given by

Г>2/(х) = AT diag(z(x)) - (1tz1(x))2z(x)z(x)T) A> (10-29)

where z is defined as in Exercise 10.10.
10.15. Find the second-order Taylor polynomial for g(x,y,z) = e2x+yz at the point

(0,0,0).

Notes
For a deeper and more thorough exploration into differentiation, see Volume 1,
Chapter 6.

Fundamentals of
Numerical
Computation

Nothing brings fear to my heart more than a floating point number.
—Gerald Jay Sussman

11.1 Floating-Point Arithmetic
Essentially every algorithm involving real numbers is implemented using floating­
point numbers. Many basic floating-point operations are built into CPUs at the
lowest level, so they can be executed very rapidly. These operations include arith­
metic operations (addition, subtraction, multiplication, division, and square root),
as well as other important functions such as round. More complicated operations,
and operations on more general data types, such as arbitrarily long integers, are
slower because they process more data and require software function calls instead
of hardware calls that are built in to the processor’s design.43 For this reason the
temporal complexity of many algorithms is reported in terms of the number of
floating-point operations (FLOPs) used by the algorithm; see also Section 1.5.1.

43With software function calls, the computer has to find instructions in memory for how to compute
the desired function.

11.1.1 Fundamentals of Floating Point
The default number in most floating point systems is the 8-byte (64-bit) double-
precision floating-point number. Floating-point numbers are maintained in binary
scientific notation, like — I.OIIIIOIOIOO2 x 21011012. These numbers are broken into
three parts: the sign, the significand, and the exponent:

IOIIOI2
- I.QIIIIOIOIOO2 X2 exponent

sign significant!

483

484 Chapter 11. Fundamentals of Numerical Computation

exponent
sign (11 bit)

fraction
(52 bit)

11.1. Double-precision bit map for IEEE 754 double-precision binaryFigure
floating-point format. Bits are, from left to right, sgn, вб2, egi, - ■ •, 652,651,..., b0.

Except for special numbers like 0 we can normalize each number so that the leading
digit of the significand is 1, so we need not record that digit. Instead we only record
the digits after the decimal point, which we call the fraction 44 Almost all computers
currently follow the IEEE 754 standard for double-precision floating-point numbers.
In this standard, the first bit is the sign of the number. The next 11 bits correspond
to the exponent and the last 52 bits represent the fraction; see Figure 11.1 for an
illustration. All together, we have

44Beware that some people use the words fraction and significand interchangeably. Also, some
people use the word mantissa instead of significand, but that term is misleading because it also
means the fractional part of a logarithm, which is similar to, but not quite the same as, the
significand.

(52 \
1 + 52б52-г2-' x2e-1023,

2=1 /

where the exponent is represented as the bits 652651. •. 653652 with e = б52+г2г.
If e is the stored value of the exponent, the actual exponent of the floating-point
number is shifted to e — 1023; this allows us to represent both positive and negative
exponents without tracking another sign. The exponents of —1023 (all zeros) and
+1024 (all ones) are reserved for special numbers, so the range of possible exponents
is all the integers from —1022 up to +1023.

Example 11.1.1. The number

5 = 1012 = 1.012 x 22

is positive, so it has a sign bit of 0, an exponent of 2 = OOOOOOOOOIO2, which
is shifted to a stored exponent of 2 + 1023 = 100000000012, and a fraction of
.OI2, so 5 is represented in floating point as

0100000000010100.

11.1. Floating-Point Arithmetic 485

Example 11.1.2. The number

-0.25 = -0.012 = -1.02 x 2-2

is negative, so it has a sign bit of 1, an exponent of —2 = —000000000IO2,
which is shifted to a stored exponent of —2 + 1023 = OIIIIIIIOI2, and a
fraction of all zeros, so —0.25 is represented in floating point as

10111111110100.

Special Numbers

There are two special exponents—all zeros and all ones—that allow representation
of the following special numbers:

• Denormalized numbers.

• +0 and —0.

• + INF and - INF.

• NaN.

The special exponent —1023 (all zeros) indicates that the exponent should be
treated as —1022, and the leading bit, which is usually taken to be 1, is now 0.
This allows us to represent additional numbers like 1.0 x 2-1025 as 0.001 x 2-1022.
These are called denormalized numbers and they range in size all the way down to
2-52-1022

Zero is the special denormalized number represented by setting both the expo­
nent and the fraction to be all zeros. The sign bit is still used, however, so floating
point has both a +0 and a —0. These usually print as the same number, and an
equality check -0 == +0 returns True, yet they are different because l/(+0) returns
+ INF and l/(—0) returns — INF.

The special exponent of +1024 (all ones) indicates INF (00) or — INF (—сю) if
the fraction is all zeros. The exponent of +1024 indicates NaN (Not a Number)
if the fraction is nonzero. IEEE 754 arithmetic yields the following results with
computations involving INF:

any nonnegative number/ ± INF = ±0,
any positive number/ ± 0 = +INF,

any positive number x ± INF = ± INF,
± INF x ± 0 = NaN,

INF - INF = NaN.

± INF x INF = ± INF,
INF + INF = INF,

±0/±0 = NaN,
± INF / ± INF = NaN,

Any operation involving NaN returns NaN.

486 Chapter 11. Fundamentals of Numerical Computation

Gaps

Since the significant! can only take on 252 values, not every number can be rep­
resented. There are always gaps between the values we can represent with finite-
precision numbers. There is a less popular system, called fixed-point arithmetic, in
which all of the gaps are the same width along the number line. But this has the
disadvantage that you can’t represent both very small and very large numbers in
the same system.

In floating point the size of a gap is determined by the size of the numbers near
the gap. The floating-point numbers that lie in the range [1,2] are of the form

1,1 + 2"52,1 + 2 x 2"52,1 + 3 x 2"52,..., 1 + (252 - 1) x 2"52,2

and the floating-point numbers that lie in the range [2fe, 2fc+1] are just the numbers
in [1,2] multiplied by 2fc. So the gaps between very small numbers are tiny, but the
gaps between very large numbers are large.

Except for those numbers that are too large or too small to be represented,
the distance from any real number x to its nearest floating-point representation is
bounded by 2“53|я|. So, if А(ж) is the floating-point representation of x (that is,
fl(rr) is the representable number closest to x), then

|z-fl(rr)| <2-53|4 (11.1)

The advantage of floating-point numbers is that they allow us to represent very
small numbers very finely and still represent enormous numbers in the same sys­
tem. The disadvantage, as shown in Example 1.0.1, is that in some algorithms the
relatively small errors caused by these gaps can compound into very large errors.

11.1.2 A Model of Floating-Point Arithmetic
Basic floating-point operations like addition, subtraction, multiplication, division,
and square root are hard-coded into most computers. Generally addition, sub­
traction, and multiplication are several times faster than division and square root,
but this depends on the specific implementation. Also, the error in various basic
floating-point operations may depend on the particular numbers being operated on
and on the specific implementation. Of course we want our analysis of algorithms
to apply to all sorts of machines and not depend on the specific implementation.
So, rather than go into the detailed specifics of these operations and the errors
they produce for each implementation, we set some basic assumptions that we ex­
pect all floating-point systems to use and then make all our analyses using those
assumptions.

The standard model for floating-point arithmetic consists of a set F С 1 con­
sisting of 0 and all numbers of the form

where b (the base, which is usually 2) and p (the precision, which is the number
of digits in the significand) are fixed integers, whereas s and e are variable integers
with bP-1 < s <bp and — M < e < N for some choice of M, N e N. Here s/bp~r is
the significand, and e is the exponent. Depending on the situation, we may ignore
the bounds on s and e to simplify the analysis.

11.1. Floating-Point Arithmetic 487

Example 11.1.3. For IEEE 754 double-precision binary floating point, the
base b is 2, the precision p is 53, and the exponent e is bounded by —1022 <
e < 1023 (ignoring denormalized numbers). The significand is s/252 = 1 +
^51/2 + &5o/4 + • • • + &o/252. Clearing denominators gives

252 < s = 252 + 65i251 + • • • + 6121 + 6O2° < 253 - 1.

So s is any integer in the range from 252 up to 253 — 1.

We require the system to satisfy two key axioms:

(i) There exists a number ^machine, called machine epsilon or unit round-off^
such that for any x in the representable range, there exists 5 with |5| < £machine
such that

fl(rr) = (l + <5)z. (11.2)
That is, the relative error | fl(#) — ж|/|ж| is no more than ^machine-

(ii) If * denotes any of the standard operations +, —, x, or /, and if ® denotes its
floating-point counterpart, then for ж,р, e F with x * у in the representable
range we have

x ® у = (1 + 6)(x * p), (11-3)
where |5| < ^machine- Or, equivalently, the relative error

(ж ® p) - (a; » y)
x *y

is at most ^machine*

We use this model whenever we need to analyze errors or evaluate the stability of
algorithms.

Example 11.1.4. Equation (11.1) shows that | fl(a;) — a?| < 2 53|a?| for IEEE
754 standard, double-precision. In fact, IEEE 754 requires that £machine —

2-53.

Remark 11.1.5. The key thing to note in both of these axioms is that the error
is relative. If we were interested in absolute error, we would require the differences
| fl(#) — ж| or \(x ® y) — (x * y)\ to be less than ^machine, but instead we require the
ratios | fl(a;) — ж|/|ж| or \(x ® y) — (x * y)\/\x * y\ to be less than ^machine-

The relative error is generally more meaningful than the absolute error. It is
probably OK to be off by a mile when measuring the distance to the sun, but it’s
definitely not OK when measuring the distance to the bathroom. In order to know
whether an error is significant, it needs to be measured and reported in proportion
to the thing being approximated. Relative error does that.
45 Some authors use the term machine epsilon to mean the distance from 1 to the next largest

floating-point number (that is, b1—p), and they reserve unit round-off for the quantity we call
^machine- For example, [Hig96] and NumPy use that convention, while [Dem97] and [TB97] use
our convention.

488 Chapter 11. Fundamentals of Numerical Computation

Remark 11.1.6. It is common to treat the square root as a basic floating-point
operation and assume that the floating-point implementation sqrt of square root
satisfies the analogous property: if x and y/x are in the representable range, then
sqrt(a;) = (1 + 6)y/x for |<5| < Emachine-

Remark 11.1.7. Complex floating-point arithmetic is usually done by simply re­
ducing complex numbers to their real and imaginary parts. We may still use our
model of floating-point arithmetic, but the value of ^machine is changed by a factor
of approximately 22.

11.1.3 Practical Considerations for Using Floating Point
Programmers and algorithm designers who forget or ignore the basic properties
of floating-point arithmetic can get into trouble. We discuss these issues more in
Section 11.3, but here are a few practical considerations to keep in mind.

Test for Relative Nearness—Not Equality

Essentially every operation has some round-off error, so two floating-point numbers
that should be equal will almost never be identical—they will only be close. For
example, the command sqrt(x)**2 == x returns False for most values of x. A
slightly better, but still naive, way to try to identify when two floating-point num­
bers x and у are equal is to choose a small error tolerance 6 and then check whether
|ж — y\ < 6. The problem with this is that it ignores the fact that the gaps between
floating-point numbers are proportional to the size of the numbers; so, for example,
even when x and у are adjacent floating-point numbers, if they are much larger
than <5, this test for nearness fails.

A better solution is to check for relative nearness: choose some 6 > 0 and then
test whether \x — y\ < 5max(|x|, \y\). If J is not much bigger than ^machine, then
this test returns True only for x and у that are nearly adjacent.

Be Aware of Relative Size in Addition and Subtraction

Adding a relatively small number to a relatively large one returns the larger one
unchanged. If \y\ is much smaller than the gap between x and its nearest floating­
point neighbor, then x ф у = x. Here ф is floating-point addition, as described in
axiom (ii).

Example 11. 1.8. In double-precision floating-point arithmetic we have 2 +
1 = 2 and 1 + 2“ = 1.

53
53 53

Similarly, subtracting two numbers that are different, but whose difference is
relatively small, results in a substantial loss of precision. This is a problem, for
example, when trying to compute derivatives from their definition as a limit of
difference quotients.

11.1. Floating-Point Arithmetic 489

Example 11. 1.9. You might try to compute the derivative of cos (a?) at x = 1
as

cos(l + h) — cos(l)
hm----------- ------------- .
h—>0 П

This estimate gradually improves until h gets to be about 2-26, after which
the approximation degrades. So while the true value of the derivative of cos at
1 is — sin(l) = —0.841470984808, in Python with the default double-precision
arithmetic, the command
for n in range(20,54):

print(n, (cos(1+2** (-n)) - cos(l)) / (2**(-n)))
yields the following:

For more about numerical computation of derivatives, see Section 11.4.

20 -0.841471242486 37 -0.84147644043
21 -0.84147111373 38 -0.841461181641
22 -0.841471049003 39 -0.841491699219
23 -0.841471017338 40 -0.841430664062
24 -0.841471001506 41 -0.841552734375
25 -0.841470994055 42 -0.84130859375
26 -0.841470986605 43 -0.841796875
27 -0.841470986605 44 -0.841796875
28 -0.841470986605 45 -0.83984375
29 -0.841471016407 46 -0.84375
30 -0.841470956802 47 -0.84375
31 -0.841470956802 48 -0.84375
32 -0.841471195221 49 -0.875
33 -0.841470718384 50 -0.875
34 -0.841470718384 51 -0.75
35 -0.841472625732 52 -1.0
36 -0.841468811035 53 0.0

Keep Intermediate Steps at Reasonable Size

Despite the fact that floating-point arithmetic can represent some very large and
very small numbers, it is still easy to exceed the largest possible value. This is called
overflow. Overflow is a risk when working with exponentials, factorials, and other
fast-growing functions, including many of the functions discussed in the first half of
this book related to counting and probability. It is also easy to produce calculations
whose results have absolute value smaller than the smallest positive representable
value. This is called underflow.

Generally the intermediate steps in a computation are more susceptible to over­
flow or underflow than the final result is. Moreover, even if the intermediate steps
do not actually overflow or underflow, if they are much larger than the final answer,
you are at risk of losing precision in your computation.

490 Chapter 11. Fundamentals of Numerical Computation

Example 11.1 .10. For many values of к the binomial coefficients =
(n—fc)!fc! are n°t imP0SSibly big, even if n is large. But computing them by
first computing n\ and then dividing by the product (n — k)\k\ causes the
computation to overflow once n > 170, regardless of A;, because 171! > 21024.

This problem can be solved in at least two ways. The first is to simplify
the expression algebraically before constructing the algorithm: n\/(n — k)\ =
n- (n— 1) • • • (n — A; + 1), which is much smaller than n\ if к is small. A second
way to deal with this is to use logarithms. We have

n! f л (n\ \\Ar!(n — fc)! = exp (°S — fc)!) J

(п к n—k \

52iog(j) - j^iogU) - los0) •
J=1 j=l J=1 /

This expression is much less likely to overflow than the original algorithm
because the logarithms are much smaller than their inputs, they are summed
rather than multiplied, and they are exponentiated only at the end of the
computation.

11.1.4 *Financial Computations
Financial computations are problematic in base-2 floating point because a high
degree of accuracy is required and because rounding is usually done in base 10. The
primary problem with using base-2 floating point is that negative powers of 10 have
a nonterminating representation in base 2, for example,

0.10 = О.ОООИОО2 and 0.01 = 0.000000101000111101011100002,

where the part that is overlined is repeated infinitely. Since 0.01 does not have an ex­
act representation as a base-2 floating-point number, it is impossible to round to the
nearest hundredth in base 2—instead the machine rounds to the appropriate binary
approximation, depending on the binary precision being used. Financial numbers
usually must be recorded, rounded, and reported to the nearest hundredth or some
other power of 10, and there are strict laws regarding this rounding. Therefore,
any system that relies on binary arithmetic will introduce errors in the continual
conversion back and forth between decimal and binary.

Many programming languages have a software implementation of base-10
floating-point arithmetic that helps reduce these problems. But if the decimal
arithmetic is not implemented directly in the hardware, there is a substantial loss
of speed using decimal arithmetic compared to binary floating point (a factor of
roughly 100 in Python).

Of course, switching to base 10 does not prevent all round-off errors. As shown
earlier, floating point in any base presents problems with loss of precision. This can
be a special problem in financial transactions because even minor errors have real
costs and create significant opportunities for malicious exploitation.

11.2. A Brief Review of Conditioning 491

It is tempting to try to solve this by performing all computations with exact
(integer or rational) arithmetic to avoid errors. But there are at least two prob­
lems with this idea: first, some important financial computations, like continuous
compounding, involve transcendental numbers that cannot be represented as ra­
tional numbers without round-off; and second, exact arithmetic is inefficient and
slows down rapidly as the number of computations grows. A system based on exact
arithmetic could rapidly become unusable in settings involving many operations,
like a record of many savings accounts, with interest, deposits, and withdrawals
over many days.

The numbers occurring in financial applications usually lie within a well-defined
range and require a well-defined level of precision. In those situations fixed-point
decimal arithmetic may be useful.

11.2 A Brief Review of Conditioning
This section is an abbreviated version of Section 7.5 of Volume 1.

The solution to nearly every problem in applied mathematics can ultimately
be expressed as an algorithm. Executing these algorithms amounts to evaluating
functions. But evaluating functions numerically has several potential sources of
error. Two of the most important of these are errors in the inputs and errors in
the intermediate computations. Since every measurement is inherently imprecise,
and most numbers cannot be represented exactly as a floating-point number, inputs
almost always have some error. Moreover, floating-point arithmetic almost always
introduces additional error at each intermediate computation, and depending on
the algorithm, these can accumulate to produce significant errors in the output.

For each problem we must ask (i) how sensitive is the function to small changes
in the inputs? And (ii) how much error can accumulate from round-off (floating­
point) error in the algorithm? The answer to the second question is measured by
the stability of the algorithm. Stability is treated in Section 11.3. The answer to
the first question is captured in the conditioning of the problem. If a small change
to the input only results in a small change to the output of the function, we say that
the function is well conditioned. But if small changes to the input result in large
changes to the output, we say the function is ill conditioned. Not surprisingly, a
function can be ill conditioned for some inputs and well conditioned for other inputs.

Example 11.2.1. Consider the function f(x) = x/(l — x). For values of x
close to 1, a small change in x produces a large change in f(x). For example,
if the correct input is ж* = 1.001, and if that is approximated by x = 1.002,
the actual output of f(x) = 1/(1 — 1.002) = —500 is very different from the
desired output of /(ж*) = 1/(1 — 1.001) = —1000. So this problem is ill con­
ditioned near x = 1. Note that this error has nothing to do with round-off
errors in the algorithm for computing the values—it is entirely a property of
the function itself.

But if the desired input is xq = 35, then the correct output is /(ж*) =
— 1.0294, and even a bad approximation to the input like x = 36 gives a good
approximate output f(x) = —1.0286. So this problem is well conditioned near
x = 35.

492 Chapter 11. Fundamentals of Numerical Computation

11.2.1 Condition Number of a Function
The condition number of a function at a point measures how sensitive the function
is to changes in input values. Throughout this section we assume that norms have
been fixed on Fn and Fm (we use || • || to denote both of these norms).

Definition 11.2.2. Let U C Fn and f : U Fm be given. The absolute condition
number of f at x e U is

= lim sup
<^o+ ||h||<5

||/(x + h)-/(x)||
l|h||

Proposition 11.2.3. Let U C Fn be an open set containing x. If f : U Fm is
differentiable at x, then

«(x) = p/(x)||, (11.4)

where ||D/(x)|| is the induced norm of the linear transformation Df(x); see Volume
1, Section 3.5.2, for more on induced norms.

Remark 11.2.4. The condition number depends on the choice of norm, but all
norms on Fn are topologically equivalent (Volume 1, Theorem 5.8.7), which means
that for any two norms || • ||a and || • ||& there exist constants 0 < m < M such that

m||x||a < ||x||b < M||x||a (11.5)

for all x e Fn. Therefore, the condition number of f with respect to the norm || • ||&
is bounded by a fixed multiple of the condition number of f for the norm || • ||a, as
follows:

m ||/(x + h) - /(x)||a ||/(x + h) -/(х)||ь M ||/(x + h) -/(x)||a
M ||h||a - ||h||6 - m ||h||a

and thus

T7«a(X) < K6(x) < — Ka(x)M m

for all x.

In most settings, relative error is more useful than absolute error. An error of 1
is tiny if the true answer is IO20, but it is huge if the true answer is IO-20. Relative
error accounts for this difference. Since the condition number is really about the size
of errors in the output, the relative condition number is usually a better measure
of conditioning than the absolute condition number.

Definition 11.2.5. Let U C Fn be an open set, and let f :U Fm be a function.
The relative condition number of f at x e U is

«(x) = lim sup
<5->0+ ||h||<6

/||/(x + h)-/(x)|| /||Ь||\
к ii/wii / mJ ll/(x)||/M’ (ц-e)

11.2. A Brief Review of Conditioning 493

Remark 11.2.6. The relative condition number depends on the choice of norm,
but, as in the case of the absolute condition number (see Remark 11.2.4), the value
of k;(x) relative to a norm || • ||a is bounded by a constant times the value of
relative to the norm || • Ц5.

Remark 11.2.7. A problem is well conditioned at x if the relative condition num­
ber is small. Similarly, the problem is ill conditioned if the relative condition number
is large. Of course, what we mean by “small” or “large” depends on the problem.

Not a Bene 11.2.8. Roughly speaking, we have

relative
change

in output

relative \
condition x
number /

relative
change
in input

This leads to a general rule of thumb that, without any error in the algorithm
itself, we should expect to lose к digits of accuracy if the relative condition
number is 10fc.

If f is differentiable, then Proposition 11.2.3 gives a formula for the relative
condition number in terms of the derivative.

Corollary 11.2.9. Let U C Fn be an open set containing x. If f : U Fm is
differentiable at x, then

||D/(x)|| _ ||x||p/(x)||

||/(x)||/||x|| ||/(x)|| (П-7)

Example 11.2.10. Consider the function /(rr) = of Example 11.2.1. We
have Df(x) = (1 — ж)-2, and hence, by (11.7), we have

_ ll-D/(x)|| _ 1 (X-г)* |
1

Il/(x)||/||x|| Ш/и 1 — X

This problem has a small relative condition number when x is far from 1 and
a large relative condition number when |1 — ж| is small.

Example 11.2.11. Given y. consider the problem of finding x on the curve
x3 — x = y2. Setting F(x, y) = x3 —x — y2, we can rewrite this as the problem
of finding x to satisfy F(x, y) = 0. Note that DxF(x, y) = 3x2 — 1, so, provided
that x / ±^/1/3, the implicit function theorem (Theorem 10.3.2) applies and
guarantees that there is (locally) a function x(y) such that F(x(y),y) = 0.

494 Chapter 11. Fundamentals of Numerical Computation

Moreover, Dx(y) = dx/dy = 2y/(3x2 — 1). Therefore, near a point (rr,y) on
the curve with x ±^/1/3, the relative condition number of this function is

= |2?//(3a72 - 1)| = 2y2 = 2|a?3 - ж| = 2|ж2 - 1|
|ж|/|?/| |3ж3 — ж| |ж||3ж2 —1| |3а?2 — 1| ’

This problem is ill conditioned when x is close to ± ^/1/3 and well conditioned
elsewhere.

11.2.2 Condition of Finding a Simple Root of a Polynomial
The implicit function theorem can be used to show that varying the coefficients of
a single-variable polynomial p causes the simple roots (those of multiplicity 1) of p
to vary as a continuous function of the coefficients. The next proposition gives the
condition number of that function.

Proposition 11.2.12. Define P : Fn+1 x F —> F by F(a, а?) = For any
given a* G Fn+1 and any simple root x* G F of the polynomial p(x) = P(a*,a;) 7
there is a neighborhood U of a* in Fn+1 and a continuously differentiable function
r : U F with r(a*) = x* such that P(a,r(a)) = 0 for all a G U. Moreover, the
relative condition number of r as a function of the ith coefficient ai at the point
(a*, a?*) is

Figure 11.2. The black dots are the true roots of the Wilkinson polynomial
w(x) plotted in the complex plane. The red crosses are the roots of the polyno­
mial obtained by perturbing w(x) by 10-7 in the coefficient of a?19. As described in
Example 11.2.13, the roots are very sensitive to tiny variations in this coefficient
because the relative condition number is very large.

11.2. A Brief Review of Conditioning 495

Proof, A root x* of a polynomial p is simple if and only if p'(x*) / 0. Differentiat­
ing P at (a*, x*) with respect to x gives DxP(a* , x*) = = р'(ж*).
Because pf(x*) is invertible, the implicit function theorem guarantees the existence
of a neighborhood U of a and a unique continuous function r : U F such that
r(a*) = x* and such that P(a, r(a)) = 0 for all a G tA Moreover, we have

Dr(a*) = -DTP(a*,x*)- 1DaP(a*,x*) = - 1
p'(x*)

X* CH2

Combining this with (11.7) shows that the relative condition number of r as a
function of the ith coefficient di is given by (11.8). □

Example 11.2.13. If the derivative p'(x*) is small, relative to the coefficient
a*, then the rootfinding problem is ill conditioned near (a*, a;*). A classic
example of this is the Wilkinson polynomial

20
w(x) = Jpa; - r) = ж20 - 210ж19 + 20615ж18 ------+ 2432902008176640000.

r=l

Perturbing the polynomial by changing the coefficient of ж19 from —210 to
—210.0000001 changes the roots substantially. Specifically, the 10 largest (in
modulus) roots become 20.4 ± 0.99г, 18.16 ± 2.47г, 15.31 ± 2.70г, 12.85 ± 2.06г,
and 10.92 ± 1.10г, while the 10 smaller roots remain real and are closer to
their original integer values. This is plotted in Figure 11.2. The big change
in the value of the roots is because the derivative p'(x*) is small for roots like
x* = 15, relative to (a?*) 18ai9, where is the coefficient of a;19. Specifically,
at x* = 15 we have

P (15)

11.2.3 Condition Number of a Matrix
We conclude this section by discussing the condition number for problems of the
form Ax = b, where A G Afn(F) is nonsingular. There are several cases to consider:

(i) Given A, what is the relative condition number of /(x) = Ax?

(ii) Given x6Fn, what is the relative condition number of g(A) = Ax?

(iii) Given A, what is the relative condition number of /z(b) = A-1b?

Although the relative condition numbers of these three cases are not identical,
they are all bounded by the number ||A||||A-1||, and this is the best uniform bound.

496 Chapter 11. Fundamentals of Numerical Computation

Theorem 11.2.14.

(i) The relative condition number of /(x) = Ax satisfies

к = ||Л||^<||Л||||А-1||. (11.9)
ll7ixll

Moreover, if the norm || • || is the 2-norm, then equality holds when x is a right
singular vector of A corresponding to the minimal singular value.

(ii) Given x e Fn, the relative condition number of g(A) = Ax satisfies

* = ||х||Ж < ||Л||||А-1||. (11.10)
ll^-xll

Moreover, for the 2-norm, equality holds when x is a right singular vector of
A corresponding to the minimal singular value.

(iii) The relative condition number of /z(b) = A-1b satisfies

« = М-11|А^Ь<цл||||л-1||. (н.п)

Moreover, for the 2-norm, equality holds when b is a left singular vector of A
corresponding to the maximal singular value.

Proof. For the proof of (11.9), note that Corollary 10.2.7 gives D/(x) = A, so
Corollary 11.2.9 gives the first equality of (11.9). To get the upper bound, substitute
x = Ay into the definition of || A~11| to get

IIЛ 41 =sup
X

ll^xll
llxll = sup

У
HA-iAyll

My|| = sup
У

llyll
Му1Г

This gives ||A~11| > ||y||/||Ay|| for all y, from which we get (11.9).
The proof of (iii) is similar. Again Corollary 10.2.7 gives Dh(b) = A-1. The proof

of (ii) is a little trickier. The details are given in Volume 1, Theorem 7.5.11. □

The previous theorem inspires the following definition.

Definition 11.2.15. Let A G Mn(F). The condition number of A is

к(А) = ||Л||||А-1||.

Nota Bene 11.2.16. Although ft(A) is called the condition number of the
matrix A, it is not the condition number (as given in Definition 11.2.5) of
most problems associated to A. Rather, it is the supremum of the condition
numbers of each of the various problems in Theorem 11.2.14; in other words,
it is a sharp uniform bound for each of those condition numbers. Also the
problem of finding eigenvalues of A has an entirely different condition number
(see Volume 1, Section 7.5.4).

11.3. Stability of Numerical Algorithms 497

11.3 Stability of Numerical Algorithms
As described in Section 11.2 the two main sources of significant error in a numerical
computation are poor stability and ill conditioning. If a problem is ill conditioned,
then no algorithm will give good results—the problem itself is not well suited to
numerical computation. If the problem is well conditioned, then there is hope that
it is amenable to computation, but one still needs an algorithm to compute the
solution to the problem. It is possible that the algorithm can produce a large
error from round-off and truncation, rendering the solution unreliable. Such an
algorithm is a bad algorithm, even if the problem itself is well conditioned. It
is important to remember that even when an algorithm has been proved correct
when implemented in exact arithmetic, it can still give very bad answers when
implemented in finite-precision arithmetic on a computer. The study of the stability
of algorithms is about quantifying the severity of the accumulated errors produced
by round-off.

Throughout this section, assume that a variable wearing a tilde denotes a com­
puted quantity; thus, x denotes the computed value of x.

11.3.1 Forward Error
When evaluating the errors in an algorithm, it might seem natural to think about
the forward error, which is the (relative) difference between the computed value
and the exact “true value.”

Definition 11.3.1. For a function f : Fn —> Fm, let /(x) represent the computed
value of /(x) (that is, the result at x of some algorithm to compute f). Given a
choice of norm on Fm, the relative forward error is given by

ll/(x)-/(x)||

ll/(x)|| (П-12)

Remark 11.3.2. It is common to call the relative forward error of an algorithm
the accuracy of the computation. This is different from, but depends very much
upon, the precision, of the machine, which is determined by ^machine-
Remark 11.3.3. As in the case of condition numbers (see Remark 11.2.4) the
relative forward error depends on the choice of norm, but the relative forward error
with respect to the norm || • ||ь is bounded by a fixed multiple of the relative forward
error for the norm || • ||a, as follows:

m ||/(x)-/(x)||a ||/(x)-/(x)||b M||/(x)-/(x)||a

M ||/(x)||a - ||/(x)||b - m ||/(x)||a

There are at least two problems with using forward error to evaluate the quality
of an algorithm. The first is that it does not account for the fact that the output
of the algorithm might be fundamentally wrong or nonsensical, even if the forward
error is small.

498 Chapter 11. Fundamentals of Numerical Computation

Unexample 11.3.4. Consider a decay function /(t) = e~l, being used in a
physical problem to represent the mass of some object at time t. Suppose we
have two algorithms for computing f(t\ and suppose that on the input t = 10,
the first algorithm produces the result f(t) = —4.5 x 10“ 5 and the second
produces the output f(f) = 4.5 x 10-4. The correct answer is approximately
4.5 x 10-5; therefore, the relative forward error of the first algorithm is =
(4.5 — (—4.5))/4.5 = 2, whereas the second algorithm has a relative forward
error of ej = (4.5 — (4.5 x 10))/4.5 = 9.

However, the quantity /(10) = —4.5 x 10-5 does not make sense for the
function /(t) = e~t, because e~l is always positive, and the concept of negative
mass is not physically meaningful. Meanwhile, 4.5 x 10-4 ~ e~7'7 is at least
the correct value of e~l for a value of t close to 10.

The second problem with using forward error to evaluate an algorithm is that we
cannot expect the input itself to be exact—in reality one computes with approximate
inputs, and so we are really considering the error produced by /(x + s) for some
small s.

11.3.2 Backward Error
To separate the conditioning of the problem from the stability of the algorithm, we
instead think about the relative backward error of the algorithm.

Definition 11.3.5. Let || • || denote a norm on Fm. Given a function f : Fn —> Fm?
the absolute backward error of an algorithm f for f is the smallest ||5|| for all
3 e Fn such that /(x) = /(x + 3); that is, if

Pf = min{||<5|| : 7(x) = /(x + <5)},

then the relative backward error of f is /3j = .

If the relative backward error is small, then the algorithm gives exactly the right
answer to nearly the right problem. Since our inputs are almost never exact, this
is a reasonable measure of the quality of the algorithm. Indeed, as pointed out in
[Hig96, Section 1.5], if the backward error is no larger than the uncertainties in the
inputs, the quantity x + 3 could even be the correct input, and /(x) could well
be the exact answer to our question. So it is reasonable to say that the algorithm
performs well when the relative backward error is small.

Example 11.3.6. Consider the two algorithms in Unexample 11.3.4. The
first algorithm has no meaningful finite value for the backward error, since the
output is not equal to the exact answer for any input. It might make sense in
this setting to say that the backward error is infinite /3 = oo.

The second algorithm produces /(10) = 4.5 x 10-4 = f(7-7), so the relative
backward error of the second algorithm is Pf = (10 — 7.7)/10 = 0.23.

11.3. Stability of Numerical Algorithms 499

Example 11.3.7. Let f be the algorithm /(ж, у) = fl(x)®fl(iy) for computing
the sum /(ж, у) = x + у. By the axioms of floating-point arithmetic, we have

f(x,y) = fl(®) ф fl(y)
= (fl(ar) + fl(j/))(l + <51)
= (x(l + 52) + 2/(1 + *з))(1 + *i)
= ж(1 + <J2)(1 + <5i) + y(l + 53)(1 + *1)
< x + у + ж(<52 + *i) + 2/(*з + *1) + (x + 2/)e machine t

where |5i|, |52|, |53| < ^machine- Letting

8 = (ж(1 + 52)(1 + <5i) - x, y(l + 53)(1 + 5i) - y)

gives f(x,y) = f(fx,y) + 5), so the relative backward error of this algorithm
is bounded by

ll^ll < (^machine + ^machine) II II
Il(*,?/) и _ ii(*V)ii

— 2smachine + ^machine*

11.3.3 Backward Stability
We would like to say that an algorithm is backward stable if the relative backward
error is always small. Of course the meaning of “small” might depend on the situa­
tion, but the following definition gives a uniform meaning to the idea of backward
stability as precision increases.

Definition 11.3.8. An algorithm f for f is backward stable if there exists a
constant C > 0 such that for each x in the domain of f and for each ^machine
(determining the precision of all the arithmetic used in the algorithm) there exists
8 e Fn such that /(x) = /(x + 8) with

11*11
llxll < C^machine- (11.13)

If an algorithm is backward stable, we can make the relative backward error as
small as desired by using sufficiently high precision (a sufficiently small ^machine)-
Remark 11.3.9. It is common to write (11.13) as

и и £ O(6machine) ^machine 0*

Notice here that 8 is a function of ^machine and x, while C must be independent of
both X and ^machine-

500 Chapter 11. Fundamentals of Numerical Computation

Example 11.3.10. If f is the algorithm f(x,y) = fl(#) фй(з/) for computing
the sum f(x,y) = x + у, then, as shown in Example 11.3.7, the relative
backward error of the algorithm is bounded by < 2smachine + ^machine’
which is in O(£machine) as ^machine —> 0- Therefore floating-point addition is
backward stable. The proofs that the other basic floating-point operations are
backward stable are similar.

Example 11.3.11. For x € R we show that the algorithm g(x) = fl(#) ®fl(#)
for computing g(x) = x2 is backward stable. The axioms of floating-point
arithmetic give

<)(#) — X2 (1 4“ $1)2(1 4“ $2) — #2(1 4" 2$1 + $1 + $2 T 2$1$2 4“ $1$2)

or
^(#) — #2(1 + 2$i 4- $2 4- $3)

for some $3 with |$3| < 4s^achine. We must find 6 such that |$|/|#| € O(^machine) and g(x 4- $) = <?(#). That is, we need

(# + $)2 = x2 + 2x6 + 62 = X2 + #2(2$i 4- $2) 4“ #2$3.
This is quadratic in $, and the smaller of the two solutions is

<5 = x(-l + 0 - (25i + 52 + <53)).

Using the Taylor expansion \/l — a = 1 — 4- О (a2) shows that

o ^machine 4” О (^machine)
and thus

I I £ О (^machine),
as required.

Example 11.3.12. Consider the algorithm g(x) = fl(#) Ф 1 for computing
g(x) = x 4- 1. We have

g(x) = fl(#) ф 1 = (#(1 4- $2) 4- 1)(1 + $1)
= (#(1 4- $г)(1 + ^i) 4"^i) 4" 1
= g(x + 6),

11.3. Stability of Numerical Algorithms 501

where <5i,52 < ^machine and

8 = rr(l 4- (52)(1 4~ $i) 4- <5i — x = x(6i + 62 4- (5i<52) + (5i.

Thus the relative backward error of g is (3g = |(Ji 4- (52 4- (?i(52) 4- <5i/#|, which
could become arbitrarily large as x —> 0. Thus g is likely not backward stable
near x = 0 unless <5i also gets very small as x —> 0 for a fixed ^machine- But
since all we know is that Ji < smachine5 we have no reason to believe that this
algorithm is backward stable near x = 0.

However, for any a > 0, if x is restricted to lie in (a, oo), the relative
backward error is

Pg = |(<51 + <5'2 + ВД + <5i/a:| < 3gmachine + £^chine g 0(£machine).

Therefore, this algorithm is backward stable if x is restricted to lie in (a, oc).

11.3.4 Numerical Stability

Backward stability is a strong condition. As shown in Example 11.3.12, even a
very simple, fundamental algorithm might not be backward stable. But often we
can get by with a weaker condition called numerical stability, often just called sta­
bility. For stability, we allow not only the input to be approximated but also the
output. That is, rather than requiring the exact answer to nearly the right prob­
lem (backward stable), we require only nearly the right answer to nearly the right
problem.

Definition 11.3.13. An algorithm f to compute f is stable if there exist positive
constants C and D such that for all x in the domain of f and for any sufficiently
small ^machine there is a 8 (depending on x and 6machine J satisfying

и и — machine
and

||/(x + <5) —/(x)||

№ + <5)11 < D£machine«

We write these conditions as e O(Emachine) and ||*̂дх +<?)||Х)11 e O(Emachine) as ^machine 0.

Theorem 11.3.16, below, shows that if the relative condition number ^(x) of a
function f is bounded, then any backward stable algorithm is stable.

502 Chapter 11. Fundamentals of Numerical Computation

Example 11.3.14. Consider again the algorithm in Example 11.3.12. The
backward error is well behaved away from x = 0 but is problematic near x = 0.
For |x| < | if we let 6 = x(6i + 62 + ^1^2), then g(x) = g(x + 5) + <5i, so

|д(ж + J) - g(x)|
|р(ж + <5)|

< ^machine
I + 5 £ ^(^machine).|ft|

|x + 1 + 5|

and |<5|/|x| € O(Emachine)5 so g is stable in the open interval |x| < |. Moreover,
the algorithm g is stable when |ж| > | because it is backward stable there.
Therefore g is stable for all x.

Example 11.3.15. For x, у € R", computing the outer product /(x, y) =
xyT using the obvious algorithm

fl(xi) ® fl(yi)
7(x, y) =

fl(xi) ® й(з/2)
А(ж2) ® fl(y2) А(ж1) ® fl(yn) fl(z2) ®

® fl(yi) fl(xn) ® fl(j/2)
is stable, but not backward stable. If the algorithm were backward stable,
there would be a small 6 = (<5i, Й2) € R2n such that /(x,y) = (x + <5i)(y +
Й2)Т7 but the rank of (x + <5i)(y + ^2)T is always 1, regardless of the value of
x,y,^i,^2, whereas the rank of the matrix /(x, y) is almost never 1. There­
fore, f cannot be backward stable. The proof that /(x,y) is stable is Exercise
11.14.

11.3.5 *Conditioning and Stability
Roughly speaking, one can expect that the condition number /s, the forward error,
and the backward error are approximately related by

relative forward error < к x relative backward error

if they are all computed using the same norm. So an algorithm with a small back­
ward error for solving a well-conditioned problem also has a small forward error,
but if the problem is ill conditioned, the forward error could be large, even when
the backward error is small.

The following theorem makes this relationship more precise.

Theorem 11.3.16. Suppose the relative condition number of a function f at x is
Ap(x) and that an algorithm f for f is backward stable. Then the relative forward
error of f satisfies

IIZ?J^X)I1 e OMxkmachine). (U-14)

11.4. Computing Derivatives 503

Proof, By the definition of ^(x) we have

к = lim sup
h^0+ ||<5||<h

/||/(x + <?)-/(x)||||x||\
\ ll/(x)||||<5|| J-

By backward stability, for each ^machine there is a 8 such that

7(x) = /(x + <5) and jpqj e О (Emachine)•
llxll

Thus as ^machine 0 we have

ll/(x)-/(x)|| ||/(x + d)-/(x)|| 0(D) ll^ll c 0Mx)E b-)
||/(x)|| H/(x)|| - (Mx) + o(l))||x|| eO(/i(x)Emachme),

where o(l) indicates a quantity that converges to zero as £machine 0. □

The theorem indicates that the accuracy of a backward stable algorithm is as
good as the precision of the arithmetic system and the conditioning of the problem
allow.

11.4 Computing Derivatives
Many applications, including optimization, which is a focus of the rest of this book,
require approximating first or second derivatives of functions. In this section we
discuss some of the main methods for computing derivatives. These include sym­
bolic differentiation (done either by hand or with the help of a computer algebra
system), finite differences, complex step differentiation, and algorithmic (or auto­
matic) differentiation.

11.4.1 Symbolic Differentiation
In some situations, one can compute a derivative symbolically, that is, analytically
compute a closed-form expression for the derivative, and then use the resulting ex­
pression to compute the value of the derivative. Although some simpler expressions
can be calculated by hand, computer algebra systems with symbolic differentiation
tools, like those in the Python module SymPy, are usually needed to compute more
complicated derivatives symbolically.

Example 11.4.1. The symbolic method works very well for functions with
known, simple, closed-form expressions for their derivatives. For example, to
compute cos (a;) at x = 1, we can use the standard formula from calculus

cos(a?) = — sin(a?). Evaluating at x = 1 gives —0.8414709848078965.

504 Chapter 11. Fundamentals of Numerical Computation

3000-

2500-

• 15000-

12500-

2000 - 10000 -

Figure 11.3. Plot of the number of terms in the expansion of the function hk(x)
(left panel, blue) of Example 11.4-2 and the symbolic derivative j^hk(x) (right panel,
red) as functions of k. This rapid growth is an example of expression swell, which
can make it costly to compute symbolic derivatives.

In some applications, it is necessary to compute the derivative of functions that
are compositions of many simpler functions. Such functions can be evaluated rapidly
at any particular input value, but symbolic differentiation usually involves expand­
ing out the compositions and differentiating. The number of terms in these ex­
pansions and their derivatives can rapidly grow to be very large. This growth is
called expression swell, and it can make the computation of a symbolic derivative
prohibitively expensive.

Example 11.4.2. Let f(x) = x — 7x2, and consider the function

Ы1) = (/ О f О • • • О /)(ят)

к

for various values of к E Z+. Here we expand out the composition and compute
the derivative symbolically for the cases of к = 2 and к = 3:

^2(^) = —7x2 + x — 7(—7x2 + ж)2,
h'2(x) = -14x + 1 - 7(—2&r + 2)(-7x2 + x\
h%(x) = —7x2 + x — 7(—7x2 + x)2 — 7(—7x2 + x — 7(—7x2 + x)2)2,
h'^x) = -14z + 1 - 7(—2&r + 2)(-7ж2 + ж)

- 7(—2&r - 14(—2&r + 2)(—7rr2 + x) + 2)(-7rr2 + x - 7(-7x2 + x)2).

In Figure 11.3 we plot the number of terms in the expansion of hk and the
derivative of hk for к up to 10.

Of course, if a function is not defined by a standard, closed-form formula but
rather by the output of a more complicated algorithm or some opaque process,

11.4. Computing Derivatives 505

Figure 11.4. Plot of the algorithmic function f (blue) defined in Unexample 11.4-3
and its derivative (red). Because this function does not have a simple closed form,
its derivative is not easy to compute symbolically. But it can be approximated with
numerical difference quotients or, more efficiently and accurately, with algorithmic
differentiation. See Section 11.4-4 for more about algorithmic differentiation.

like the result of a physical measurement, then the derivative usually cannot be
computed symbolically.

Unexample 11.4.3. Functions without a simple, closed-form expression, like
the following Python function, are not well suited to symbolic differentiation.

import numpy as np

def f (x) :
z = max(x,1.5)
while x>5:

z = int(np.round(np.log(np.abs(x) + l),0))
for к in range(z):

x -= z/2 + np.sin(z)
if 3*x + 2 < np.exp(z):

return np.sin(x) + x
else:

return 5/x

See Figure 11.4 for a plot of this function and its derivative.

11.4.2 Numerical Difference Quotients
In many situations we may only have access to the values of the function as the
output of a complicated subroutine or other “black box,” so the best we can hope

506 Chapter 11. Fundamentals of Numerical Computation

for is an approximation to the first and second derivatives using specific values of
the function. In this case one strategy is to use the difference quotient

~ /(ж + л) -/(ж)
7 w ~ h

for small values of h. When h > 0, this is called a forward difference. In the
absence of round-off error, the forward difference would approximate the derivative
more and more closely as h 0+, and the size of the error in this estimate would lie
in O(/z). Specifically, if f G C2((a, 6); R) for some neighborhood (a, b) around rr0 and
|/"(ж)| < L on (a, b) for some constant L, then Taylor’s theorem (Theorem 10.3.7)
gives

|У(х0 + h) - У(ж0) - hf'(xo)\ < ^h2L,

so the error from using the forward difference Zfoo+frH/foo) £0 compute f'(xo) is
bounded by

/(ЖО + /0-/Ы _ //(a.o) < lhL e

n, 2
The quality of the approximation can be improved to O(/z2) by taking a centered

difference
/'(*) f(x + h)-f(x-h)

2n
If f € C3 with |/(3)(ar)| < M near xp, Taylor’s theorem (Theorem 10.3.7) gives

h2 Mh3\f(x0 + Л) - /(x0) - hf'(x0) - ^/"Ы1 < (П.16)
Z o!

Applying (11.16) twice, once with h and once with —/z, gives

2hf\x0)-(f(x0 + h)-f(x0-h))

/ h2 \
= 2hf'(x0) - \f(xo + h)~ f(xp) - -^-f”(xoH

(П-17)

(11.18)

(11.19)

+ hf'(xQ)
/ h2 \\f(x0 -h)- /Ы - - f"(x0))

2Mh3
~ 3! ’

Dividing this inequality by h gives (11.15).
Unfortunately, approximations of the derivative using difference quotients in

floating-point arithmetic usually develop large errors when h is too small. One
example of this is given in Example 11.1.9. Therefore, minimizing the total error
requires finding a value of h that keeps

-
f(xp + h) — У(жо)

h

11.4. Computing Derivatives 507

small enough but that also avoids making the round-off error too large. The optimal
answer depends on which difference quotient method is being used and the size of
the relative forward error in /, as well as ^machine- As a rough ballpark estimate, if
q is a close upper bound on the relative forward error in f for all x near then

h ~ 2^/q

is a reasonable choice for the step size with forward differences. For more on the
choice of step size, see Section 11.4.5.

11.4.3 Complex Step Differentiation
Computing derivatives by numerical differences is fundamentally limited in its ac­
curacy by the trade-off between the need to make h small to get a reasonable
approximation and the need to keep h large enough to avoid loss of precision from
subtraction. But if the function f to be differentiated is analytic (its Taylor series
converges at every point)46 in a small neighborhood of the point xq in C, then we
can compute a numerical derivative /'(^o) at xo without subtraction by using the
following proposition.

46For more on analytic functions, see Volume 1, Chapter 11.

Proposition 11.4.4. If Xq eR with f analytic in a small neighborhood of Xq in
C, and f(x) is real for all x in a small real interval around xq, then for sufficiently
small real h > 0 we have

= s + (1120)

where is the imaginary part of z.

Proof. If f is analytic near xq, then there exists 6 > 0 such that f G С°°(В(д;о? <5); C)
on B(xq,S) and there exists M > 0 with < M for all x G B(xq,6). For
0 < h < 6 Taylor’s theorem gives

h2 Mb3
f(x0 + ih) - /(x0) - + 2|-/(2)(яо) < -gj-.

Taking the imaginary part shows that for all real h with |/i| < 6 we have

Mh3

Dividing by h gives (11.20). □

This shows that to approximate /'(^o) we may compute j^s(f(xo + ihf). This
is called complex step differentiation. Since this method does not involve a subtrac­
tion in the numerator, it is resistant to the sorts of errors that arise in the numerical
differences methods. Since most numerical computing libraries handle complex com­
putations seamlessly, this gives a practical method for numerically computing many
derivatives accurately. This can be a very robust way to accurately approximate
the derivative, but it does require the function f to be defined as a composition of
analytic functions.

508 Chapter 11. Fundamentals of Numerical Computation

Example 11.4.5. Applying complex step differentiation to compute cos(l)
behaves much better than the forward difference method in Example 11.1.9. In
Python with the default double-precision arithmetic, calculating S(cos^-n—-)
for n e {20,..., 500} yields the following:

20 -0.8414709848080241 27 -0.8414709848078965
21 -0.8414709848079285 28 -0.8414709848078965
22 -0.8414709848079045 29 -0.8414709848078965
23 -0.8414709848078986 30 -0.8414709848078965
24 -0.8414709848078971 31 -0.8414709848078965
25 -0.8414709848078967 32 -0.8414709848078965
26 -0.8414709848078965 33 -0.8414709848078965

So this computes the correct answer, to machine precision, by n = 26 (corre­
sponding to h = 2-26), and then continues to give that same, correct answer
for all n up to 500—it never degrades the way that the forward differences did
in Example 11.1.9.

Remark 11.4.6. If the operations involved in computing f use complex numbers
other than those in the argument, then round-off error can affect the imaginary
parts of this computation and degrade the result.

11.4.4 Brief Overview of Algorithmic Differentiation
Algorithmic differentiation is a powerful method for computing derivatives. The
method called back propagation, which is one of the fundamental tools for training
neural networks, is a special case of algorithmic differentiation.

The rough idea is to define a class of primitive functions (for example, linear
operators, arithmetic operations, trigonometric functions, and so forth) with known
derivatives, and then construct derivatives of arbitrary compositions of these func­
tions using the chain rule. These methods begin by explicitly coding up algorithms
for computing the derivative of each primitive function. These derivatives are usu­
ally calculated by a formula (like sin(rr) = cos (a;)), instead of numerically. This
helps prevent the loss of precision that typically occurs in numerical difference quo­
tients.

Having the derivatives of the primitive functions coded explicitly means that for
any primitive function b and any valid input x we can rapidly compute both 5(x)
and D6(x). For any function f that is built from a composition of the primitive
functions f = bi о b2 о • • • о bk, the chain rule gives

D/(x) = D5i(b2 о... о bk(x))Db2(b3 о • • • о bfe(x)) • • • Dbk(x). (11.21)

Thus, D/(x) can be computed by first computing bk(x) and D6fc(x), then computing
bfc-i(6fc(x)) and Dbfc_i((5fc(x))), and so forth until computing Dbi(b2 о • • • obfc(x)),
and then multiplying together all the terms appearing in (11.21). Moreover, these
matrix multiplications can be performed relatively efficiently by judicious choices
of the order of multiplication.

11.4. Computing Derivatives 509

The idea of algorithmic differentiation generalizes to more complicated com­
positions of functions (for example, to functions of the form Ь1(62(х), Ьз(х))) by
carefully tracking the effect of the chain rule through all the compositions. This
allows for efficient differentiation of very complicated functions, including functions
whose definition involves loops, conditional statements, and other computer code,
provided the actual computations themselves consist of compositions of the primi­
tive functions.

Example 11.4.7. The Python function defined in Unexample 11.4.3 can be
algorithmically differentiated using the autograd module. This module adds
explicitly coded derivatives to most NumPy functions and then differentiates
any function constructed from those functions by repeatedly applying the
chain rule.

import autograd.numpy as np # NumPy with derivatives
from autograd import grad # Algorithmic differentiator

def f(x): # Same function as before
z = max(x,1.5)
while x>5:

z = int(np.round(np.log(np.abs(x) + l),0))
for к in range(z):

x -= z/2 + np.sin(z)
if 3*x + 2 < np.exp(z):

return np.sin(x) + x
else:

return 5/x

df = grad(f) # Derivative of f

See Figure 11.4 for a plot of this function and its derivative, computed with
autograd.

11.4.5 *More on Forward and Centered Differences
In this subsection we discuss the temporal complexity of difference quotient methods
and also the problem of choosing the optimal step size.

Temporal Complexity of Difference Quotients

To compute the approximate derivative D/(xq) = [Di/(xq) • • • Z>n/(xo)] of a
multivariate function f : Rn —> R by one-sided difference quotients requires n + 1
function evaluations: /(x0) and /(x0 + /ze*) for each i. The centered difference
requires 2n function evaluations and is somewhat more accurate. The decision of
whether to use the one-sided or centered difference will depend heavily on the nature

510 Chapter 11. Fundamentals of Numerical Computation

of the problem, the level of accuracy needed, and the overall cost of the additional
n — 1 function evaluations.

To approximate the Hessian D2/(xq) when the gradient Df(x) is available, we
can use the same techniques that we used to calculate the gradient from the original
function. This requires n + 1 evaluations of the gradient.

If the gradient is not available, then we can use the approximation

r> ti A /(xo + /zei + /ie>)-/(xo + /zei)-/(xo + /zej) + /(xo)

but this, of course, suffers from an additional loss of accuracy and requires O(n2)
evaluations of f. The error on this approximation can be computed in a manner
similar to the first derivative, using the higher-order Taylor approximation.

Optimal Step Size

Let f'(xo) denote the computed value of using the centered difference with
step size h. The total error \f(xq) — f'(xo)\ can be split into two parts:

l/'Oo) - /'(ж0)| < f’(x0) - f^ + h^ V
2ri

f(x0 + h) — /(жр - h) _ ~

(11.22)

In the case of centered differences, (11.17) shows that the term

ГЫ - f(x0 + h) — /(ж0 - h)
2h

on the right side of (11.22) is bounded by where |/^3\ж)| < M for all x
near xq. To bound the second term, assume that |/(ж)| < C for all x near xp and
that q is an upper bound on the relative forward error for /(ж) near жр, so that
|/(ж) — /(ж)| < Cq for all ж near жр. We write

7'(ж0) = (/(жр + h) © 7(ж0 - h)^ 0 2h.

This gives

/(жр + h) - /(ж0 - h)
2h - f’M

f(x0 + h) — /(жр - h)
2h

f(xp + h) — /(жр - h)
2h

((/(*o + h) © 7(ж0 - h)^ 0 2hj

f(x0 +h)Q f(x0 - h)
2h H” ^machine

2CQ ^machine
2h H” ^machine*

Thus the total error using this method with step size h is bounded by

I rf / \ \| h2M 2CQ + ^machine
\f \x0) ~ f (жо)| — । I" ^machine-

Exercises 511

Differentiating shows that this bound is minimized at

3/ 3 । 1 \у Q “r 2 ^machine j •
If q >» £machine (meaning that q is much larger than emachine)5 then this is approx­
imately

provided С « M » emachine-
A similar analysis shows that a good choice of h for forward differences is

2C + ^machine).
where |/(2) (ж)| < L for all x near xq. If C « L >* ^machine, then is approximately
given by

/z+ 2y/p,

which is a common choice for approximating derivatives with a forward difference.

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

11.1. Express the following numbers in IEEE 754 floating point:
(i) 7.

(ii) 77/64.
(iii) 22/7.

11.2. Not every integer can be represented as a floating-point number. Give a
formula in terms of b and p for the smallest positive integer that cannot be
represented in the system F of Section 11.1.2. What is the smallest positive

512 Chapter 11. Fundamentals of Numerical Computation

integer n that cannot be represented as an IEEE 754 double? Write and
execute a program to verify that n — 3, n — 2, and n — 1 are all represented
as floating-point numbers on your computer, but n is not. What about
n + 1, n + 2, n + 3,... ?

11.3. Floating-point arithmetic does not behave the way regular arithmetic does.
Many of the “laws” of regular arithmetic fail to hold. Here are a few:

(i) The set F is not closed under (true) addition. Give an example of two
numbers ж, у G F such that x + у is in the represent able range but
x + y F. Explain. For your example, evaluate x®y on your computer.
What is the relative error | |?

(ii) The set F is not closed under (true) division. Give an example of a
number in F such that 1/x is in the representable range but 1/x £ F.
Explain. For your example, what is 10 x? What is the relative error
| (1/ж)~(10ж) |9
I 1/x I '

(iii) Floating-point addition is not associative. Find floating-point numbers
ж, ?/, and z such that (x ф у) ф z ф x ф (у ф z). Explain.

(iv) Floating-point arithmetic does not satisfy the distributive law. Find
floating-point numbers x, y, and z such that (x@y)®z (ж0г)ф(?/0г).
Explain.

11.4. Consider the series 1000/n.
(i) Compare the result when you sum the series forward, from 1 to 107,

with the result when you sum the series backward, from 107 down to 1.
(ii) Floating-point addition is commutative, so why does changing the order

of this summation change the result?
11.5. Plot the function f(x) = (1 — x) — 1 and the function x at a thousand points

along the interval (—3 x 10-15, +3 x 10-15). Note that (1 — x) — 1 = —x in
exact arithmetic. Explain why the graph of x looks smooth but the graph of
(1 — x) — 1 is jagged. Now plot the ratio ((1 — x) — 1)/ж. Why does the error
(the distance from the correct value of —1) get larger as x —> 0?

11.6. Find the relative condition number at xq G R of the following functions:
(i) e* (i) (ii) (iii) (iv) * * * * * x.

(ii) 1п(ж).
(iii) cos(a;).
(iv) tan(rr).

11.7. Given (x, y) G C2, consider the problem of finding z such that x^+y2— z3+z =
0. Find all the points (x,y) for which z is locally a function of (x,y). For a
fixed value of т/, find the relative condition number of г as a function of x.
What is this relative condition number near the point (ж, у) = (0,0)?

11.8. Give an example of a matrix A with condition number > 1000 (assuming
the 2-norm). Give an example of a matrix В with condition number k(B) = 1.
Are there any matrices with condition number less than 1? If so, give an
example. If not, prove it.

Exercises 513

11.9. Let {go(^L • • • , <7n(#)} be a basis of the space F[rr; n] of polynomials of degree
no more than n, with deg(^) = i. Let F(a,x) = ^7=0 ai9i(x>) be a polyno­
mial expressed in this basis. Just as in the case of Proposition 11.2.12, for any
given a e Fn+1 and any simple root x of the polynomial p(x) = Р(а,ж),

there is a neighborhood U of a in Fn+1 and a continuously differentiable
function r : U —> F with r(a) = x such that P(a, r(a)) = 0 for all a e U.

* * *

*

* *
(i) Show that the relative condition number of r as a function of the zth

coefficient сц at the point (a , x) is* *

k(x*) =
zp'(.-r*)

(11.23)

(ii) Prove that for any nonzero scalar c € F, the condition number (11.23)
remains the same if any basis element gi is replaced by сдг.

(iii) For a given p(x) with simple root x , prove that choosing a monic basis
{go,... ,gn} that minimizes the condition number (11.23) is equivalent
to choosing a monic basis that minimizes the numerator \agi(z)|.

*

*
(iv) Recall that the minimax theorem (Theorem 9.4.4) guarantees that the

monic Chebyshev basis (gi(x) = T^x) for every i, where is the monic
Chebyshev polynomial of degree i) minimizes sup2e[_1 ?1] gi(z) among all
monic bases. This does not guarantee that the Chebyshev basis neces­
sarily minimizes the numerator of (11.23) for each г; nevertheless, it sug­
gests that the Chebyshev basis should be among the better-conditioned
choices of basis for real roots in [—1,1]. Prove that if x E (—1,1) is real,
then the condition number of the root x as a function of the coefficients
of the Chebyshev basis is

*
*

«(#*) < 2i~1x*p'(x*)

11.10. Prove that floating-point subtraction is backward stable, as a function from
R2 to R.

11.11. Any reasonable algorithm involves more than one single operation. Let

=
^^machine

1 ks machine
Prove the following result, which shows how errors from multiple operations
combine. If |J| < 7^ and \ф\ < yj, then (1 + J)(l + </>) = (1 + £), where
|C| < 7fc+j-

11.12. Find a good upper bound on the relative forward error that results when
computing (a + b)/(c + d) for a, b, c, d e F.

11.13. For each of the following, decide whether the algorithm is backward stable,
stable but not backward stable, or unstable. Sketch a proof.

(i) For x G R the algorithm k(x) = fl(:r) 0 А(ж) 0 • • • 0 А(ж) for computing
k(x) = xn.

(ii) For x G R\ {0} the algorithm й(х) = А(ж) 0 А(ж) for computing the
value of u(x) = 1.

514 Chapter 11. Fundamentals of Numerical Computation

(iii) The algorithm for computing e as ё = (1 ф 1 0n)n with n some fixed
large value, and where the nth power is computed with the algorithm
in (0-

(iv) The previous algorithm for e, but with n = fl(fc/£machine) for some fixed
к > 0.

(v) The algorithm for computing e as e = , where all the operations
are the usual floating-point operations and the sum is added starting
from к = 1 upward, and terminated once < ^machine-

(vi) The algorithm for computing e as ё = , where all the operations
are the usual floating-point operations and the sum is added backward
(starting from the smallest positive integer к such that l/k\ < ^machine

and proceeding down to к = 1).
11.14. Prove that the algorithm given in Example 11.3.15 for computing the outer

product is stable.
*

11.15. Show that, in the absence of round-off error, if f E C4((a,b);¥) in a neigh­
borhood of € (a, b), then for h sufficiently close to 0 we have

2f(x + Л) + 3f(x) - 6f(x - h) + f(x - 2h)
6/z

11.16. Computing gradients with forward differences:
(i) Write code for computing the gradient Df of a function f : Rn —> R

using forward differences and a given step size. Your code should accept
an integer n > 0, a callable function f : Rn —> R, a point x E Rn, and a
step size Л, which should default to h = 2л/гтасыПе- Your code should
return an estimate for D/(x) computed using forward differences.

(ii) Compute the gradient of f(x,y) = (ж+2ж+^, symbolically and
evaluate the symbolic expression numerically at the point (2,3).

(iii) For each value h = 2~k with к e {2,3,...,53}, use your code to compute
the gradient of f(x,y) = (ж+2ж+^2, ^2^2) at the point (2,3).

(iv) Time each of the previous computations, and identify the value of h that
gives the optimal accuracy.

11.17. Computing gradients with centered differences:
(i) Write code for computing the gradient Df of a function f : Rn —> R

using centered differences and a given step size. Your code should accept
an integer n > 0, a callable function f : Rn —> R, a point x E Rn, and a
step size Л, which should default to h = 1.4^emachme- Your code should
return an estimate for D/(x) computed using centered differences.

(ii) For each value h = 2~k with к e {2,3,...,53}, use your code to compute
the gradient of f(x,y) = ^2^2) at the point (2,3).

(iii) Time each of the previous computations, and identify the value of h
that gives the optimal accuracy. Compare your results to those of the
previous problem.

Exercises 515

11.18. Compute the derivative of f(x) = sin (ЖНСО8(Ж) at = 1.5 in each of the
following ways. For the difference quotients and complex step methods, com­
pute with the value of h = 2-n for each n e {1,..., 53}. Compare the
convergence rate, overall accuracy, and computation time for each method.

(i) Compute the derivative ff(x) symbolically (either by hand or with a
computer algebra system) and evaluate at xq.

(ii) Compute the forward difference /(Жо+М~/(жо).

(iii) Compute the centered difference .

(iv) Compute the complex step approximation ^(/(xo+2h-)).

(v) Use an algorithmic differentiation package to compute
11.19. Let ReLu : R —> R be the function47

47The name ReLu is short for rectified linear unit, because a rectifier is an electrical device that
lets current pass in the positive direction only. This function is a common component in deep
neural networks.

{
t if т > 0

0 if x < 0.

(i) Symbolically compute the derivative with respect to w of ReLu(wTx+6).
(ii) Consider the function F : R2 x (R2)3 —> R2 given by

F(x, wi, w2,bi) = (ReLu(w]"x + 6ц), ReLu(wJx + 612))-

The composition

7Vi(x, wq, wi, W2,6o,bi) = ReLu(wjF(x, wi, W2, bi) + bo)

corresponds to a very simple single-layer neural network, while

TV2(x, И7, B) = 7Vi(F(x, W3, w4, b2), wq, wi, W2, bo, bi)

= ReLu(wjF(F(x, w3, w4, b2), w1? w2, bi) + 50)

corresponds to a two-layer neural network (here W = (wq, ..., w4), and
В = (b0,bi,b2)). Symbolically compute the partial derivative with
respect to wn of Nt (here wx = (wn,wi2)).

(iii) Repeat the following 10 times:
(a) Draw each of x±, x^, wqi, W02, • • •, W42, bo, 6ю,..., 622 from a stan­

dard normal e/K(0,1).
(b) Use an algorithmic differentiation package to compute the partial

derivative with respect to wn at the point x, w0,..., w4, b0, b1? b2
of the simple one- and two-layer neural networks TVi and N2, re­
spectively.

(c) Evaluate your symbolic solution at the chosen values for x, wq, wi,
W2, bo, and bi and compare to the solution for к = 1 found by
algorithmic differentiation.

516 Chapter 11. Fundamentals of Numerical Computation

Notes
Sources for floating-point arithmetic include [Dem97, Hig96, TB97, 1ЕЕ08]. For
more on Remark 11.1.7 about how machine epsilon changes in complex arithmetic,
see [TB97, pg. 100]. Example 11.1.8 is inspired by a similar example given in
[Cool4], and Exercise 11.2 is from [TB97, Exercise 13.2].

Our treatment of stability is inspired by [TB97] and [Dem97]. Exercise 11.5 is
due to [Dem96] and Exercise 11.13 is based on [TB97, Example 15.1]. Our proof of
Theorem 11.14 is based on [TB97, Section 15].

For more examples and discussion of higher-order difference methods for numer­
ical differentiation see [LeV07].

We first learned of complex step differentiation from [Higl8], but it apparently
originated with [ST98] and was foreshadowed by ideas from [LM67]. This method
can also be applied to compute derivatives of matrix functions; see [АМН10].

Part IV

Optimization

Unconstrained
Optimization

Premature optimization is the root of all evil.
—Don Knuth

Nearly every problem in the world is, or can be formulated as, an optimization
problem. How do I maximize profits? What’s the best way to study for the test?
How can I minimize my risks? How can I carry out a task with the fewest resources?
How can I do the most good? All of these are optimization problems.

Chapter 4 gives many examples of discrete optimization problems, including
graph problems such as finding a minimum spanning tree and computing the short­
est path between two vertices. In the remainder of the book we focus on optimization
problems for which the function to be optimized (called the objective function) is a
differentiable function of its inputs, and the algorithms for solving these optimiza­
tion problems are derived from principles of differential calculus.

In single-variable calculus we find the minimum of a function by first locating all
its critical points (that is, the points for which the derivative is zero or undefined)
and all the boundary points for the domain in question. Critical points that fail the
second-derivative test can be discarded, and then we evaluate the function at each
of the remaining critical points and all boundary points and compare their values.

This chapter generalizes these ideas to multiple dimensions. We focus here on
problems for which there are no imposed constraints or boundaries. These problems
are called unconstrained optimization problems. In later chapters, we consider opti­
mization problems where constraints are added to force the solution to have certain
properties. The addition of constraints adds significant complexity to the problem,
and so it takes several chapters to sort through all of the nuances involved. But
in this chapter we avoid those challenges and focus only on problems that have no
constraints (and therefore no boundaries).

12.1 Fundamentals of Unconstrained Optimization
Unconstrained optimization is the problem of finding the minimizer or maximizer
of a function f : Q —> R, where Q C Rn is an open set. In this section we give some
basic definitions and discuss the first- and second-order necessary conditions and

519

520 Chapter 12. Unconstrained Optimization

the second-order sufficient condition for finding optimizers. These are fundamental
tools of optimization.

12.1.1 Mathematical Descriptions
We begin with some basic definitions.

Definition 12.1.1. Assume Q C and let f : Q № be given. A point x* e Q
is a minimizer of f on Q if /(x*) < /(x) for all x E Q. In this case /(x*) is
called a minimum value of f on Q or just a minimum of f. If there exists an open
neighborhood U ofx* in Rn such that x* is a minimizer on the set U П Q, then x*
is a local minimizer of f on Q. A minimizer (or local minimizer) is strict if the
corresponding inequality is strict for all x x* in Q (or in U 0(1/ If the set Q
is open in Rn and there are no other restrictions on the set of possible minimizers,
then the problem of finding a minimizer is called an unconstrained optimization
problem.

Remark 12.1.2. If x* is a minimizer on all of Q it is common to call it a global
minimizer of f on Q to distinguish it from a local minimizer. Of course, a global
minimizer is also a local minimizer.

Definition 12.1.3. A point x* E Q is called an optimizer if it is either a minimizer
or a maximizer of f. In optimization problems the function f to be optimized is
called the objective function. In minimization problems the objective function is
sometimes called the cost function or loss function. In maximization problems the
objective function is sometimes called the utility function or payoff function.

Definition 12.1.4. Assume (1 C Rn and let f : Q —> R be given. We denote the
set of all minimizers of f on Q by

argmin/(x) = {x e Q |/(x) </(y) Vy e Q}.

If the global minimizer x* of f on Q is unique, we often write

x* = argmin/(x).

The argmax is defined similarly.

Remark 12.1.5. Maximization problems can easily be recast into minimization
problems. In particular, observe that x* E (1 is a local (resp., global) minimizer
of f in Q if and only if x* E (1 is a local (resp., global) maximizer of — f. In
order to simplify notation and our discussions, we always assume from now on that
optimization problems are minimization problems, unless otherwise indicated.

Local versus Global Optimization

As with single-variable calculus, we solve global optimization problems by identify­
ing all the local minimizers (and the boundary, if the problem is constrained), and
then check to see which gives the smallest value of the objective function.

12.1. Fundamentals of Unconstrained Optimization 521

There are special classes of functions that have only one local minimizer, and
thus the local minimizer is also the unique global minimizer. This occurs, for
example, with convex objective functions, which are discussed in Chapter 15.

12.1.2 First-Order Necessary Condition
Differential calculus gives some of the most important tools for finding optimizers.
In this section we discuss a necessary condition for a minimizer of a differentiable
function. These can, of course, be easily modified to give necessary conditions for
a maximizer.

Theorem 12.1.6 (First-Order Necessary Condition (FONC)). Assume that
Q C Rn is open and f : Q —> R is differentiable at x* F Q. Ifx* is a local minimizer
of f on Q, then Df(x*) = 0T.

Proof. Suppose some local minimizer x* F Q satisfies Df(x*) 0T. Thus the
unit vector v = — satisfies Z>/(x*)v = — ||D/(x*)|| < 0 (assuming the
usual Euclidean norm). Since x* is a local minimizer, there exists a 5 > 0 such that
/(x* + tv) > /(x*) whenever 0 < t < 5. Hence,

|/(x* + tv) - f(x*) - Ш/(х*)у| = /(x* + tv) - fj£) + t||Z>/(x*)||
||tv|| t

= + р/(х*)|| > P/(X*)||.

This is a contradiction, since the left-hand side of the first equality converges to
zero by the definition of the derivative; hence, Df(x*) = 0. □

Example 12.1.7. Consider the function f(x,y) = x3 — 3x2 +y2. We compute
the derivative Df(x,y) = (За;2 — 6a;, 2т/), which vanishes only at the points
(0,0) and (2,0). We call these the critical points of f. Thus by the FONC,
no other point (а;, у) E R2 can be a local minimizer of /. We do not yet know
whether either of the points (0, 0) or (2, 0) are local minimizers; we just know
that they are the only two feasible candidates.

Remark 12.1.8. While the FONC (Theorem 12.1.6) gives a necessary condition
for a local optimizer, it is not always easy to find all the solutions to the equa­
tion Df(x) = 0. Unless the derivative Df(x) is very simple, there is usually
no nice, closed-form solution. Sometimes the best approach is to use numerical
methods to try to solve the system of equations D/(x) = 0, but it is often more
efficient to use other (iterative) techniques that do not depend on finding the ze­
ros of the derivative directly. Most of the rest of this chapter is dedicated to such
techniques.

522 Chapter 12. Unconstrained Optimization

Example 12.1.9. We generalize the one-dimensional optimization problems
of Examples 6.1.12 and 6.1.13 to two dimensions by computing the MLE of
the mean /i and variance <r2 of a normal distribution

As in Examples 6.1.12 and 6.1.13, we begin with an i.i.d. sample (a?i,... ,rrn)
drawn from a normal distribution with unknown parameters /z and cr2 and
consider the likelihood

n / 1 \ n/2 / i n
L^, a2) = P f(xi | /z, a2) = (—) exp I — —= - /z)2\ £ О / \2=1 ' ' \ 2=1

The MLE is the maximizer (/z, ?2) of the likelihood L(/z, cr2). As in the one­
dimensional case, it is easier to work with the log-likelihood ^(/z, cr2), which is
given by

1 n
O-2) = log(L(/z,CT2)) = --log27T<T2 - -m)2-

2=1

Thus, to find the MLE we must solve the unconstrained minimization problem

(/z, ст2) = argmin — -£(/z, cr2).

Any minimizer (jEz, a2) of — -£(/z, cr2) must be a critical point and hence must
satisfy the FONC:

o=?
O/L

And by (12.1b) we have na2 = — /i)2, and hence the maximum
likelihood estimator a2 satisfies

2=1

1 n= —\^(^-/z) and (12.1a)
—2 az L' № 2=1

° = da* -.2 = ~2^ + 2(?2)2 - ^2- (12.1b)

Here, as in Example 6.1.13, we treat a2 not as the square of a but as an
awkwardly named variable in its own right. By (12.1a) we have 0 = 52/=1(жг —
/z) = (Z2?=i хг) ~ nV>- Thus, the maximum likelihood estimator jEz of /z for an
i.i.d. sample Xi,..., Xn satisfies

12.1. Fundamentals of Unconstrained Optimization 523

Remark 12.1.10. We have already seen the estimators of the previous example in
Section 6.1. Recall that is an unbiased estimator, but <r2 is biased.

Nota Bene 12.1.11. The FONC is a necessary condition, meaning that ev­
ery minimizer must satisfy it. But it is not sufficient, because a point could
satisfy the FONC without being a minimizer. For example, the point x = 0
satisfies the FONC for the function f(x) = x3, but it is neither a minimizer
nor a maximizer.

12.1.3 Second-Order Conditions
The second derivative (or Hessian) of a function f can give both necessary and
sufficient conditions for a critical point x* to be a minimizer of the function f.

Theorem 12.1.12 (Second-Order Necessary Condition (SONC)). Assume
that Q C is open and that f e C2(Q;R). Ifx* e Q is a local minimizer of f on
Q, then D2f(x*) is positive semidefinite (hereafter denoted D2f(x*) >0).

Proof. Suppose, by way of contradiction, that there exists v e Rn such that
vTB2/(x*)v < 0. Choose 6 > 0 sufficiently small so that x* is a minimizer on
B(x*, J) C Q and vTB2/(x* + tiv)v < 0 for all t e [0,1]. By Taylor’s theorem
(Theorem 10.3.8), for any 0 < e < S we have

/(x* + ev) = f(x*) + eDf(x*)v + e2 / (1 — t)vTB2/(x* + tev)v dt.

Since 2?/(x*) = 0 (by the FONC) and vTB2/(x* + tev)v < 0 for all t e [0,1],
we must have f(x* + ev) < /(x*), which is a contradiction, since x* is a local
minimizer. Thus vTD2/(x*)v > 0 for every v ERn. □

Example 12.1 .13. Like the FONC, the SONC guarantees that certain points
cannot be minimizers. For example, consider the function /(ж, у) = —x2 — у2.
The derivative Df(x, y) is [—2x —2?/], so the origin is the only critical point.
The second derivative is

D2f(x,y) = -2 0
0 -2

which is negative definite everywhere, since both eigenvalues are always neg­
ative. Therefore by the SONC, no point can be a local minimizer.

524 Chapter 12. Unconstrained Optimization

Example 12.1 .14. Consider the function f(x,y) = x3 — 3x2 + y2. Example
12.1.7 shows that the critical points of f are (0,0) and (2,0). The Hessian of
f is

D2f(x,y) = 6x — 6 0
0 2

Since the Hessian is diagonal, we can immediately see that the Hessian is
positive definite at (2,0) and indefinite (that is, the eigenvalues are of mixed
sign) at (0,0). Thus (0,0) is not a local minimizer, but the SONC does not
rule out (2,0). But note that the SONC cannot guarantee that a point is a
minimizer.

Example 12.1 .15. Consider the function g(x,y) = x3 — y3. The derivative
Df(x, y) is [Зге2 —3г/2], so the origin is the only critical point. The second
derivative is

which is zero (hence positive semidefinite) at the origin. Therefore the SONC
does not rule out the possibility that the origin could be a minimizer.

The second derivative can also be used to guarantee that certain critical points
are minimizers, as the next theorem shows.

Theorem 12.1.16 (Second-Order Sufficient Condition (SOSC)). Assume
that Q C Rn is open and that f e C2(Q;R). Ifx* e Q is such that Df(x*) = 0 and

is positive definite (hereafter denoted B2/(x*) >0/ then x* is a strict
local minimizer on Q.

Proof. Since B2/(x*) > 0, there exists e > 0 such that vTD2/(x*)v > 2e||v||2
for all v 0, and, in particular, the smallest eigenvalue of D2/(x*) is at least 2e.
(See Volume 1, Section 4.5.1, for more details.) By the implicit function theorem
(Theorem 10.3.2) the eigenvalues of B2/(x) depend continuously on x, so there
exists 5 > 0 such that the smallest eigenvalue of D2f(x.) is at least e for all x 6
B(x*,J) C Q. This implies that vTB2/(x)v > e||v||2 for all v 0 and for all
x e B(x*, J) c Q.

For any v with ||v|| < <5, Taylor’s theorem (Theorem 10.3.8) implies that

/(x* + v) = /(x*) + £>/(x*)v + / (1 - t)vTD2/(x* + tv)vdt

Since vtD2/(x* + tv)v > 0 for all v ± 0 and t G [0,1], the integral is always
positive. Since B/(x*)v = 0, we must have /(x* + v) > /(x*). □

12.1. Fundamentals of Unconstrained Optimization 525

Example 12.1.17. A Solving a linear system is closely related to minimiz­
ing a quadratic objective f : Rn —> R of the form

/(x) = хтЛх — bTx + c (12.2)

for some square matrix A G Mn(R), some vector b G Rn, and some constant
c € R. Exercise 12.3 shows that the function (12.2) is equal to the function

/(x) = -xTQx — bTx + c, (12.3)

where Q = A + AT, so one may always assume that quadratic functions are
of the form (12.3) with Q symmetric. Equation (12.3) has a unique critical
point x*, corresponding to the unique solution of

Qx* = b, (12.4)

and the SONC shows that this can be a minimizer only if Q > 0. The SOSC
shows that it is always a minimizer if Q > 0. Thus solving the system (12.4)
with Q > 0 is equivalent to solving the quadratic optimization problem (12.3).

Remark 12.1.18. Depending on Q, the best way to solve the linear system (12.4)
is often to use numerical optimization algorithms on the quadratic problem (12.3)
instead of using standard linear solvers on (12.4). Some of these numerical methods,
such as gradient descent and the conjugate-gradient method, are described later in
this chapter.

Example 12.1.19. Consider again the function f(x,y) = x3 — 3x2 + y2 of
Examples 12.1.7 and 12.1.14. Since D2/(2,0) > 0, the SOSC guarantees that
(2, 0) is a local minimizer.

Example 12.1.20. The Rosenbrock function, pictured in Figures 12.1 and
12.2, is

f(x,y) = (1 - x)2 + 100(2/ - ж2)2. (12.5)

The point (1,1) satisfies the FONC since

Df(l, 1) = (-2(1 - x) - 400ж(т/ - ж2), 200(у - *2))|(1>1) = (0,0).

A straightforward computation shows that there are no other critical points,
and hence, by Theorem 12.1.6, no other point can be a local minimizer of f.

526 Chapter 12. Unconstrained Optimization

The Hessian at the point (1,1) is given by

Я2/(1Д) = 2 - 400?/ + 1200x2 —400x1
—400x 200 _| (11}

802 -400
-400 200

To see whether this is positive definite, note first that its eigenvalues satisfy
the degree-2 equation A2 — BX + C = 0, with В = tr (D2/(l, 1)) and C =
det (Z)2/(l, 1)). Since the Hessian is symmetric, its eigenvalues are all real.
The quadratic equation gives A = 1(B±\/B2 — 4C). It is left to the reader to
show that tr (Z?2/(l, 1)) > 0 and det (D2/(l, 1)) > 0, so В > \/B2 — 4C > 0,
and hence the eigenvalues must both be positive. Therefore, the point (1,1)
satisfies the SOSC and is, indeed, a local minimizer.

The SOSC tells us nothing about global minimizers—even though there are
no other local minima, the function could decrease below that local minimum
without having another local minimizer. However, in this special case (1,1) is
also a global minimizer because /(1,1) = 0 and f(x,y) is strictly positive for
all other points (x, y).

Remark 12.1.21. The Rosenbrock function is often used as a test function for
optimization algorithms because, although it is easy to find the minimizer analyti­
cally, many algorithms for finding local minimizers get confused in the long, narrow,
almost-flat-bottomed valley of the graph of the Rosenbrock function.

Remark 12.1.22.* In the two-variable case we give a general condition to ensure
that 2?2/(x*) >0. If U CR2 is open and f e C2(C7;R), then

o2/(x‘) = fxy
fyy.

fxx
fyx

Figure 12.1. A graph of the Rosenbrock function as defined in (12.5), with its min­
imizer at (1,1) indicated as a darker dot. As an alternative to the three-dimensional
plot shown here, the contour plot in Figure 12.2, can also be useful.

12.1. Fundamentals of Unconstrained Optimization 527

Figure 12.2. A contour plot of the Ros enbrock function, where the colors represent
the values of f, corresponding to the color bar on the right of the figure. The bottom
corners are yellow, representing larger values around 1500, and the dark blue curves
represent small values near zero. The minimizer (1,1) is indicated in black. The
light-colored curves in the plot are contour lines, corresponding to level sets, which
are sets of the form {x | /(x) = c} for various values of c.

As observed in the previous example, the eigenvalues of B2/(x*) are the roots of
A2 — BA + C where В = tr (B2/(x*)) and C = det (B2/(x*)). Since B2/(x*) is
symmetric, the eigenvalues are always real. The quadratic formula guarantees that
the roots are both positive precisely when В > y/B2 — 4C >0. A little thought
shows that this is equivalent to the condition that В > 0 and C > 0. Expanding out
the trace and the determinant, along with a little more work, gives the conditions
which are often taught in multivariable calculus classes:

/xxlx- >0 and (Jxxfyy- Д)|х- >o. (12.6)

Similarly, the characteristic polynomial has nonnegative roots precisely when the
previous strict inequalities are relaxed to allow equality.

Remark 12.1.23.* Since B2/(x) is symmetric, the spectral theorem (Volume 1,
Theorem 4.4.7) guarantees that at any point x G Q there is an orthogonal basis
of Rn consisting of eigenvectors of B2/(x) and the eigenvalues are all real. This
implies that the directional derivative is increasing in the directions corresponding
to the positive eigenvalues and decreasing in the directions corresponding to the
negative eigenvalues. In two dimensions, if B/(x) = 0 and B2/(x) has both a
positive and a negative eigenvalue, then the graph has a saddle shape at x. More
generally, we call x a saddle point of f if B2/(x) is indefinite (has at least one
positive and at least one negative eigenvalue).

Example 12.1.24.* At the point (0,0), the function f(x,y) = x3 — 3a;2 +y2
of Examples 12.1.7 and 12.1.14 is a saddle point.

528 Chapter 12. Unconstrained Optimization

12.2 One-Dimensional Numerical Optimization
For functions with a one-dimensional domain, the tools of the previous section
reduce to the usual first- and second-derivative tests of single-variable calculus.
However, even in this simple one-dimensional case, finding the points where f'
vanishes is not always easy, and most functions have no closed-form expression for
the critical points. So we need numerical methods for finding minima of functions
of one variable. In this section we discuss several of the most common methods.

All of the optimization methods discussed in this chapter are iterative, meaning
that they begin with an initial approximation, or guess, and then use that ap­
proximation to (hopefully) construct a better approximation. The utility of such
algorithms depends on how rapidly they converge. Therefore, we begin the section
with a brief discussion of convergence, before moving to the specific algorithms.

12.2.1 Convergence
It only makes sense to discuss the temporal complexity of an algorithm that termi­
nates. Many important algorithms never have a natural termination point—instead
they iterate, getting closer to the desired answer with each iteration. When to stop
the algorithm depends on how accurate one wants the answer to be. In this sit­
uation, there are two important factors that affect the overall complexity of the
algorithm:

(i) The number of steps necessary to reach a desired level of accuracy.

(ii) The temporal and spatial complexities of each step.

Both the complexity of each iteration and the convergence rate are important
when evaluating iterative algorithms. In some algorithms, each iteration involves
only a few simple steps, but many iterations are required to reach the desired
accuracy. Other algorithms need only a few iterations to converge to a high level
of accuracy, but each iteration is costly to execute.

Definition 12.2.1. Given a sequence (x^^Lq C R that converges to x* C R, let
en = \xn — £*| for each n e N. The convergence of x* is (at least) linear
of rate fi if there exists a p e [0,1) and an N > 0 such that

en < P^n-i whenever n> N. (12.7)

If for every p e (0,1) there exists an N such that (12.7) holds, then we say the
convergence is superlinear. If en 0, but there is no p e (0,1) and N > 0
satisfying (12.7), then the convergence is sublinear. If there exists an a > 1 and
numbers p, N > 0 such that

en < P^n-i whenever n> N,

then we say the convergence of (#fc)£T0 to x* is of order a. In particular, the
convergence is said to be quadratic convergence if a = 2.

Roughly speaking, a linear convergence of rate p adds about — log10 p digits of
accuracy at each iteration, whereas quadratic convergence (a = 2) approximately
doubles the number of digits of accuracy with each iteration.

12.2. One-Dimensional Numerical Optimization 529

Remark 12.2.2. The number // must be less than 1 for linear convergence, but
the number p has no such restriction for higher-order convergence. The reason for
the restriction p < 1 is that we expect the errors to be decreasing at each step, but
when p is 1 or greater, then the relation Ek < gives no guarantee that the
errors decrease. When p < 1, however, then < pEk-i < £k-i guarantees that Ek
shrinks, and it gives some information about how quickly Ek shrinks. For a > 1,
the errors shrink regardless of the size of p.

Example 12.2.3. The sequence Xk = 1 + (|)fc converges to 1 linearly with
rate p = |, because Ek = (|)fc — Since p = | we expect the number
of digits of accuracy to improve by — log10(|) « 0.30 each iteration—that is,
we expect the number of zero digits immediately after the decimal point to
increase by about one every ~ 3.3 iterations. This is clearly visible in
the following list of the decimal representations of the first 10 terms of this
sequence.

k=0 2.0
k=l 1.5 one digit correct
k=2 1.25
k=3 1.125
k=4 1.0625 two digits correct
k=5 1.03125
k=6 1.015625
k=7 1.0078125 three digits correct
k=8 1.00390625
k=9 1.001953125
k=10 1.0009765625 four digits correct

Example 12.2.4. The error in the trapezoid rule for n + 1 evenly spaced
nodes is approximately of the form En = cn~2 for some constant c (see
Section 9.6.3). This converges sublinearly, but not linearly, because

En = СП
(n — I)2

C--------2-----(n-l) 2
1 \
2) ^n—1*
nz)

Since the sequence (1 — - + converges to 1 as n —> oo, there is no p < 1
such that En < pen-i for ah sufficiently large n.

Simpson’s rule has error approximately cn-4, which converges to zero much
faster than the trapezoid rule, but it also converges sublinearly.

12.2.2 Bisection Algorithm for Critical Points
The bisection algorithm is a method used to find a zero of a function. Applying it
to f' on [a, b] for a continuously differentiable function f will find a critical point
under mild conditions.

530 Chapter 12. Unconstrained Optimization

The algorithm begins by computing the value of f at the endpoints ao = a and
bo = b, if those two values have different sign, then the intermediate value theorem
(see Volume 1, Corollary 5.9.14) guarantees that there is a zero of /' in the interval
(a, 6).

Now divide the interval in half to get cq = а°2Ь(| and compute f'(co). There
are three possibilities: (i) If /'(co) = 0, the zero has been found, and the algorithm
terminates. Otherwise, (ii) /'(с0) must have sign opposite of /'(a0) or (iii) /z(co)
must have sign opposite of /'(fro)- In either of these last two cases, we now have
a new interval (uo,co) or (cq,6o) that must contain a zero. Call the new interval
(ai,&i).

At each subsequent step, evaluate ff at Ck = ak+bk, and let the new interval
(«/c+i, 6fc+i) be either (a^, Ck) or (q, 6^), depending on which one has a sign change.
The process is repeated until the desired accuracy is reached.

At stage A;, take the midpoint Ck = ak+bk of the interval as the approximation
of the true zero x* e (ufc,5fc). The error ek = Ck — x* can be no larger than
|(6fc — Ofc) = 2_(fe+1)(6 — a). In the worst case, where вк = 2_(fc+1)(6 — a), the
sequence ek converges linearly at rate /a = |, because вк = Just as in
Example 12.2.3, this means that the number of correct digits should increase by
— log10(|) « 0.30 for each iteration.

Example 12.2.5. Taking f(x) = ±x4 — 27x and f'(x) = x3 — 27 means
that the minimizer occurs at x* = 3. Calculating this using the bisection
algorithm with an initial interval of [2.4,4.4] yields the following, for the first
10 iterations:

k=0 3.4 one digit correct
k=l 2.9
k=2 3.15
k=3 3.025 two digits correct
k=4 2.9625
k=5 2.99375
k=6 3.009375 three digits correct
k=7 3.0015625
k=8 2.99765625
k=9 2.999609375
k=10 3.0005859375 four digits correct

The exact answer, to machine precision, was first found after 48 iterations.

12.2.3 Newton's Method in One Dimension
A much faster method for finding a local minimizer is Newton’s method. Newton’s
method, or variants of Newton, like the secant method (see Section 12.2.5 below),
are almost always the methods of choice whenever they can be used.

To find a critical point of a function f whose second derivative is Lipschitz, we
may use Newton’s method for finding a zero of f'(x). The method takes an initial

12.2. One-Dimensional Numerical Optimization 531

/'(Zfc)
ГЫ'

estimate Xk of the critical point and replaces it with

If the initial estimate is sufficiently close to the zero, then Newton’s method con­
verges quadratically.

Theorem 12.2.6. Given f e C2((a, 6);R) with f" Lipschitz,48 assume that x* G
(a, 6) is a local minimizer of f. If / 0, then there exists 6 > 0 such that for
any initial xq e B(x*,6) Newton’s method converges quadratically to x* ; that is, if
£k = \%k — then for some constant M > 0.

48If f" is differentiable, then f" is Lipschitz, by Proposition 6.3.7 of Volume 1.

Proof, This follows by applying the convergence result for the rootfinding Newton’s
method (Volume 1, Theorem 7.3.4) to the function □

Example 12.2.7. Consider f(x) = ^x4 — 27x, with f'(x) = x3 — 27, as in
Example 12.2.5. Using Newton’s method with an initial guess of Xq = 3.4
yields

k=0 3.4 one digit correct
k=l 3.0452133794694354 two digits correct
k=2 3.0006679769830704 four digits correct
k=3 3.0000001486869405 seven digits correct
k=4 3.0000000000000070 fifteen digits correct
k=5 3.0000000000000000 exact, to machine precision

In this example the number of correct digits roughly doubles at each iteration,
corresponding to the quadratic convergence of Newton’s algorithm. The algo­
rithm reaches the exact answer, to machine precision, in five steps. Compare
this to bisection, which took 10 iterations just to find the first four digits and
48 iterations to find the exact answer, to machine precision.

Nota Bene 12.2.8. Newton’s method is very sensitive to the initial guess.
If the value of xq is too far from the minimizer, Newton’s method may never
converge and may even diverge to infinity.

12.2.4 Newton as Quadratic Approximation
An alternative way of thinking about Newton’s method for minimization is as a
quadratic approximation. This approach begins by fitting a quadratic function q(x)

532 Chapter 12. Unconstrained Optimization

to the function f(x) at xq by using the Taylor expansion. Let

:= /(^o) + /'(ж0)(ж - ж0) + |/"(жо)(ж - ж0)2.

Note that q(xo) = /(#о)? О'Ч^о) = and q"(xo) = f,f(xe). We use the
minimizer x^ of q(x) as a proxy for the minimizer of f (see Figure 12.3). Thus x^
must satisfy 0 = which gives 0 = /'(^o) + — #o)« Solving this
yields the relation

which is exactly the same formula as Newton’s method for finding a zero of ff.
Therefore, applying one step of Newton’s method to the derivative /' is the same
as approximating the function f with a quadratic and finding the minimizer of the
quadratic.

Figure 12.3. Given an approximation x^ of the minimizer x* of a function f
(blue), Newton’s method for minimizing corresponds to approximating f with the
quadratic function q (red) that best fits f at Xk and then letting Xk+i be the mini­
mizer of q.

When f is a quadratic function, then the quadratic approximation is actually
equal to f. The previous discussion shows that one step of Newton’s method gives
the minimizer of the quadratic approximation, which is the minimizer of f. Thus,
we have the following proposition.

Proposition 12.2.9. If f : R —> R is quadratic (that is, f(x) = ax2 + bx + c, for
some a,b,c, e R, a > 0), then Newton’s method converges to the unique optimizer
of f in a single step, regardless of starting point.

12.2.5 The Secant Method
The subtraction and division steps of Newton’s method are inexpensive, but com­
puting f"(x) may be difficult or expensive. Suppose we cannot or prefer not to

12.2. One-Dimensional Numerical Optimization 533

calculate the second derivative of f. We can approximate f"(xk) by using forward
differences of the first derivative

fH, x f'(xk + h) -f'(xk)f (xk) ~------------ j------------ for small values of h.h

If Xk-i is near Хк, then we can take h = Xk-i — Xk to obtain

/"(xfc) ~ Г(^)~Г(^-1) (12 8)
&k ^k—l

Substituting (12.8) into Newton’s method, the next approximation is

(12'9)

This is the secant method. At each stage, since f'(xk-i) has already been calculated
for the previous step, we need only calculate ff(xk) in order to compute the next
approximation Xk+i- Of course, this computational savings comes with a cost,
namely, the order of convergence is no longer quadratic, as the next theorem shows.

Theorem 12.2.10. Assume that f e C2((u, 6);R) and f" is Lipschitz on (a,b).
If x* e (a,b) is a local minimizer of f with f,f(x*) / 0, then there exists 5 > 0
such that the secant method converges to x* with order ф = 1+2^ « 1.618034,
provided xq,x\ e B(rr* ,6) with Xi / xq- In other words, if €k = \xk — #*| < 6, then
£fc+i < for some constant M > 0.

The proof is similar to that of Newton’s method (see Volume 1, Theorem 7.3.4)
and is given in Section 12.2.7.

Remark 12.2.11. Although Newton’s method has a higher order of convergence,
the secant method can be faster if computing the second derivative /"(#&) is much
more expensive than computing f'(xk)-

12.2.6 Stopping Criteria
When performing any of the iterative methods in this chapter, we need to know
when to stop. There are several standard stopping criteria. These can be based
on the norm of the derivative, the change in approximation, or the change of the
function. For a prespecified error tolerance e > 0 we might choose any one of the
following conditions to decide when to stop:

(i) ||L>/(xfc)|| <£.

(ii) ||a:fc+i - Zfc|| < £.

(iii) l/Ofe+i) - f(xk)\ < e.

(iv) The number of iterations is too large.

534 Chapter 12. Unconstrained Optimization

The first condition is based on the FONC: when the derivative Df(x) is nearly zero,
we expect the function to be close to its minimum. The second and third conditions
are based on the idea that we should stop when the next iteration does not change
enough to matter—either the estimated optimizer Xk is not changing much or the
estimated optimal value f(xk) is not changing much.

These different stopping criteria give different stopping times, and a reasonable
argument can be made for each choice. The “correct” choice may depend on the
problem being solved. These stopping criteria can also be combined in various ways.
Of course, if the method does not converge, then we must stop the method after a
fixed number of iterations and consider using a different method.

Remark 12.2.12. This chapter covers some of the more common methods of one­
dimensional optimization. But there are many others. Some of these are explored
in more depth in the labs for this volume.

12.2.7 *Proof of Theorem 12.2.10
We prove Theorem 12.2.10, which guarantees that the secant method converges
superlinearly, with order ф = 1+2 .̂

Proof, Assume that f" is Lipschitz with constant L, so that

\m-f'\d)\<L\c-d\

for any c,d e (a, 6). Choose <5,77 > 0 with C (a,6), so that for every
x e В(ж*,5) we have /"(a?) > rj > 0. Let A = and, if necessary, shrink 5 so
that A < 1. Choose any distinct values of #0,^1 £ B(rr*, 5) to start the iteration.
We show inductively that each xn e В (x*, 6) and that for each n > 1 the error
en = \xn — #*| is strictly less than Aen_i (that is, the convergence is at least linear).

Since #0,^1 £ В (ж*, J), the initial induction step holds. Now assume the induc­
tion hypothesis for all n < к and that xn / x* for all n < k. We have

£k = \(xk -xk-i) + (xk-i - x*)\ = p// \ Xk— 1 Xk—2 / *\

Since Xk-i and Xk-2 lie in B(rr*, J) and |/"(a;)| > r] > 0 for all x e B(x* , <5), we have
f'(xk-i) ф f(xk-2^ The mean value theorem guarantees the existence of some
c,d e B(x*,5) such that r(^fc_~)2p(~2fc-2) = and /'(^-1) = f”(d)(xk-i -
x*). Combining these with the previous calculation gives

, n /"(d)(xfe_i - x*)(xfc_i - x)------------——--------

(12.10)

< Acfe-i.

This concludes the induction and shows the secant method converges at least lin­
early.

12.3. Gradient Descent 535

To see that the order of convergence is at least ф, note that the difference
|c — d\ in the previous argument can be bounded more tightly. Specifically, c lies
in the interval from Xk-i to Xk-2, and d lies in the interval from x* to Xk-i, so
|c — d\ < 2\xk-2 — #*| = 2£fc_2. Substituting this into (12.10) and letting C = 2L/rj
gives

£k < Ek-i£k-2^L/T] = Cek-iSk-2- (12.11)

We wish to find the largest value of a such that

lim £k = D (12.12)

for some constant D. We have already shown that convergence of the secant method
is at least linear, so a > 1. Let

This implies
ek = Ske<j^ = Sk(Sk^_2)a = SkS^-2.

which gives
q qct ca2

£k _ ^k^k-l£k-2 _ c oa-l^a2-a-l
~ q — °k^k-l£k-2

£k— l^k—2 ^k—l^k—2^k—2

The first two factors of the right side approach constants, so we must have

a2 — a — 1 = 0,

and the quadratic equation, combined with a > 1, shows that a = ф = +2 . □

12.3 Gradient Descent
For the rest of this chapter we discuss numerical algorithms for solving uncon­
strained optimization problems in higher dimensions of the form

minimize f : Rn —> R.

These algorithms can also be used in many cases to solve problems on an open subset
Q C Rn, but there is a possibility that they will step out of Q. In such situations,
one can either just try restarting the algorithm at a different initial point or switch
to some of the constrained optimization techniques discussed later in the book.

In this section we discuss a class of algorithms called gradient descent methods.
These are based on the observation that the negative gradient of the objective
function points in the direction of greatest decrease.

12.3.1 Gradient Descent Methods
Exercise 10.8 shows that the gradient D/(x)T of a function f points in the direction
of greatest increase of the function. Here we give the proof again.

536 Chapter 12. Unconstrained Optimization

Proposition 12.3.1. Let Q C be open and let f : Q —> R be a function that is
differentiable at x e Q. Among all unit vectors in the direction u e Rn with
the greatest directional derivative Duf(x) at x is the normalization of the gradient
u = D/(x)T/||D/(x)T||.

Proof. The Cauchy-Schwarz inequality (see Volume 1, Proposition 3.1.17) guar­
antees that

|Du/(x)| = |L>/(x)u| = | (D/(x)T,u) I < p/(x)T||

for every unit vector u e Rn. But letting u = 2?/(x)T/||2?/(x)T|| gives

L>u/(x) = (U/(x)T,D/(x)T)/||D/(x)T|| = ||D/(x)T||.

Hence the normalized gradient u = 2?/(x)T/||2?/(x)T|| maximizes the directional
derivative. □

To minimize /, move in the opposite direction, which is the direction of greatest
decrease. This insight provides an important class of optimization methods called
gradient descent methods, which are all iterative methods of the form

xfc+i = Xfc - afcD/(xfc)T, (12.13)

where the parameter ak G (0, oo), called the learning rate, is chosen in various ways.

12.3.2 Exact Gradient Descent
One approach for choosing the learning rate ak is to minimize f along the ray
Xfc — aDf(xk)T for a > 0. More precisely, at each step solve the one-dimensional
optimization problem

ak = argmin^)fc(a!), (12.14)
Q>0

where ^>fc(o) = f (xfc — oZ?/(xfc)T). Finding the optimal ak can be done using
the one-dimensional minimization methods described in Section 12.2. Using the
minimizer as ak gives the maximal decrease in the direction — 2?/(xfc)T. We call
this the method of exact gradient descent.49

49Some, like [CZ01], call this method steepest descent, but others, like [BV04], use that name for
an algorithm that we do not discuss in this book.

Example 12.3.2. Recall from Example 12.1.7 that the function f(x,y) =
x3 — За?2 + у2 has a local minimizer at (2, 0). Here we take one step of exact
gradient descent, starting at the point x0 = (x, y) = (4,4). The gradient is
[3rr2 - 6x 2y] = [24 8] , so the next iteration is

Xi = x0 - Ck'o(24,8)

12.3. Gradient Descent 537

with Qo chosen as the minimizer of the function

ф(а) = /((4,4) - a(24,8)) = (4 - 24a)3 - 3(4 - 24a)2 + (4 - 8a)2.

Using one of the one-dimensional methods of the previous chapter, we find
that «о = 0.10243 is a minimizer, which gives Xi = (1.5415,3.1805). Note
that /(xi) = 0.10244, whereas /(xq) = 32, so this first step has already
reduced the value of f a lot. Repeating the process continues to descend (see
Proposition 12.3.3) and the sequence eventually reaches (2.0,4 x 10-8) after
35 iterations.

The method of exact gradient descent does indeed descend; that is, the sequence
of values (/(xfc))£l0 generated by the method is strictly decreasing, as the next
proposition shows.

Proposition 12.3.3. Let f e C1 (Rn; R) with Df(xk)T ф 0. If ak is a minimizer
of ф(а) = /(xfc — aD/(xfc)T) on an interval of the form (0, b), then setting Xfc+i =
xfc - afc£>/(xfc)T gives

/(xfc+i) < /(xfc).

Proof. Since Ofc is a minimizer of ф on (0,6), we have </>(ofc) < ф(сф for all a e (0,6).
The chain rule shows that

<A'(0) = —D/(xfc)D/(xfe)T = — ||D/(xfc)||2 < 0.

Since f is C1, the function ф(сф is too, which implies that <^'(o) is negative on some
open interval (0,e). It follows that ф(рф is a decreasing function on the interval
[0,e). In other words, there exists a > 0 such that ф(оф < </>(0) for all a e (0,о].
Therefore, we have

/(xfc+i) = ф(ак) < ф(а) < ф(0) = f(*k)- □

12.3.3 Exact Gradient Descent for Quadratics
For a quadratic objective function /(x) = |xTQx — bTx + c with Q > 0, we
can find an explicit formula for ak in the exact gradient descent method. Note that
2?/(xfc)T = Qxfc —b. Since ak minimizes </>&(«), the FONC implies that фк(ак) = 0.
Thus,

0 = фк(ак) = —Df(xk - afc£>/(xfc)T)£>/(xfc)T

= bTD/(xfc)T + afcD/(xfc)QD/(xfc)T - x^Q£>/(xfc)T.

Thus, ak satisfies
£>/(xfc)D/(xfc)T

°k Df(xk)QDfW

Recall that the condition number ^(Q) of the matrix Q is = ||Q||||Q-1||;
see Definition 11.2.15. Recall also that the 2-norm of a square matrix Q is the

538 Chapter 12. Unconstrained Optimization

largest singular value of Q; see Volume 1, Exercise 4.21 (i). In our current setting
with Q > 0, the eigenvalues of Q are its singular values, so = Ai/An, where Ai
is the largest eigenvalue, and An is the smallest. The next proposition shows that
the rate of convergence of exact gradient descent is governed by ft(Q). Some of the
geometric intuition for why this is true is given in Remark 12.3.6.

Proposition 12.3.4. For a quadratic objective function /(x) = |xTQx — bTx + c
with Q > 0, the exact gradient descent method converges linearly with rate no worse
than 1 — ^(Q)-3, where is the condition number of the matrix Q.

Proof. To simplify the analysis, first make the change of variables x i-> x — x*.
This moves the optimizer to the origin and transforms the objective function into
the form /(x) = |xTQx + c. Moreover, since Q is symmetric, it is orthonormally
diagonalizable (see Volume 1, Theorem 4.4.7). Thus, there is a linear, orthonormal
change of variables (a rigid motion of Rn about the origin) that makes Q diagonal.
Since an orthonormal change of basis does not change the 2-norm, making this
change of basis does not change anything about the convergence rate. Therefore,
we may assume that Q = diag(Ai,..., An) with Ai > • • • > An > 0 (the eigenvalues
are all positive because Q > 0). Finally, the location of the minimizer and the
outcome of each step of the exact gradient descent algorithm are independent of
the constant c, so we may assume that the objective /(x) and its derivative D/(x)
have the form

/(x) = |xTQx and D/(x)T = Qx,

with Q diagonal. Thus (12.13) and (12.15) reduce to

XfcQ2Xfc
x^Q3xfc

and xfc+i = xfc-----y—-—Qxfc,
^kQ

respectively.
To simplify notation further, drop the subscript on х& and just write x/~ = x =

(#i,..., xn). At stage к + 1, the error ||x/c+i ||2 is bounded by

l|Xfc+l||2 =
xTQ2x
xTQ3x I-

xTQ2x
xTQ3x l|x||2.

2

But if a matrix is diagonal, then its 2-norm is the largest element on the diagonal.
This implies

/ \2 2\
l|Xfc+11|2 < max 1 - ** 1Ы|2

/ A2r2\ / A3 \= 1 - A^ryi l|xfc||2 <1-4 l|xfcI|2.
X 2^г=1ЛгЖг/ X Л1 /

Therefore the exact gradient descent method converges linearly (or better) with
rate /1 = (1 - (An/Ai)3) = 1 - k(Q)~3. □

Remark 12.3.5. The proposition shows that when is large the convergence
rate is poor (close to 1), and when «(Q) is small, the convergence rate is good (close

12.3. Gradient Descent 539

to 0). In the special case that Ai = • • • = An = A, we have = 1, and exact
gradient descent converges in one step because and = Ax^, which
implies that x^+i = 0.

Remark 12.3.6. The convergence result of Proposition 12.3.4 also has a geometric
interpretation. At each stage of the exact gradient descent algorithm, the next
direction is orthogonal to the previous one (see Exercise 12.14) and each step stops
at a point that is tangent to the level set (set of the form {x | /(x) = d}) containing
the stopping point.50 An example of this is illustrated in Figure 12.4. If all the
eigenvalues of Q are equal, then the level sets are spheres and a normal to a sphere
is a radius, so it points directly toward the center of the sphere (the minimizer), and
exact gradient descent converges in a single step. As long as the eigenvalues of Q are
nearly equal, the level sets are nearly spheres, and each step of the algorithm gets
much closer to the minimizer. But if the largest and smallest eigenvalues of Q are
very different, the level sets are ellipsoids with high eccentricity, and the normals to
these sets do not point toward the center; see Figure 12.4. Instead, the method can
bounce back and forth repeatedly, while improving by only a small amount with
each iteration.

50For a function from R2 to R, the level sets are like contour lines in a topographic map, and
plotting them can give a good sense of the shape of the function.

Figure 12.4. Exact gradient descent at step к always moves in a direction orthog­
onal to the level set containing -x.k, and that direction is always tangent to the level
set containing the stopping point х&+1. In this example the level sets are ellipses in
the plane.

12.3.4 Other Gradient Descent Methods
Exact gradient descent is not always the most efficient form of gradient descent.
Even if the gradient is easy to calculate, other methods of choosing the learning rate
can often give better performance. There are at least two reasons why exact gradient
descent is not always the best choice. First, the time spent finding the optimal &k
is often better spent computing the next iteration in a new direction instead. And
second, even if it is easy to find the optimal &k in the line search, that may not

540 Chapter 12. Unconstrained Optimization

Figure 12.5. Gradient descent with a relatively small constant learning rate gen­
erally moves in a good path toward the minimizer x*, but if the learning rate is too
small, it may take many steps to actually reach the minimizer.

actually be the best choice, because, as described in the previous subsection, if the
Hessian of the objective function has a large condition number, then the graph has
the shape of a narrow trough, and the method of exact gradient descent can zigzag
back and forth, while descending slowly, whereas a smaller learning rate could lead
to x* in fewer steps.

Constant Learning Rate

One very simple way to choose the learning rate for gradient descent is just to use
a small constant value a for a at every step:

Xfc+1 = Xfc - a£>/(xfc)T.

This can work well in many settings. If the objective function f is continuously
differentiable, then, as the approximations approach a minimizer, the gradient
D/(xfc)T approaches 0 and the total length of the step аВ/(х^)т also becomes
small. Thus, it is possible for gradient descent with constant learning rate to con­
verge to the minimizer; see Figure 12.5 for an illustration.

The challenge in choosing the constant a is that if it is too large, the algorithm
can overshoot and not converge (see Figure 12.6); but if a is too small, the algorithm
could take many steps to approach the minimizer.

Descent with Backtracking

Backtracking starts with a constant learning rate, but then adjusts it to ensure
descent and prevent climbing out away from the minimizer. The algorithm begins
by trying the constant learning rate to see if it descends; that is, it tests whether
/(x/c — aD/(xfc)T) < /(xfc). If not, it replaces a by a/2 and tries again, repeating
until it finds the largest choice of 2~£a that gives descent. Of course any value
greater than 1 could be used in place of the number 2 here.

It is often beneficial to require additional conditions on the learning rate while
backtracking in order to encourage faster descent. One of the best known of these

12.4. Newton and Quasi-Newton Methods 541

Figure 12.6. Gradient descent with a constant learning rate that is too large can
diverge. In this example, even though the gradient is pointing in the right direction at
each step, the algorithm moves too far in that direction. As the iterates get farther
away from the minimizer, the norm of the gradient increases, and the distance
||xfc — Xfc-iH grows instead of converging to 0.

conditions is the Armijo condition, which uses the tangent at х& to give a bound
on how much less /(xfc+1) should be than /(x/J. If the chosen descent direction at
x/c is d, then the Armijo condition is

/(xfc) - /(xfc + ad) > -aaZ>/(xfc)d (12.16)

for some choice of a e (0,1). In the case of gradient descent, with d = —D/(x/c)T,
the Armijo condition becomes

/(xfc) - /(xfc - aI?/(xfc)T) > aa||Z>/(xfc) ||2. (12.17)

To understand the Armijo condition geometrically, note that Z?/(x/c)d is the direc­
tional derivative at х& in the d direction, so if f were linear, then —aZ?/(x/c)d is
the amount that f would decrease when moving from x/~ to X& + ad. Of course,
near a local minimum, we expect f to curve upward from the tangent plane, so an
improvement of —aD/(x/c)d is too much to expect. Thus, the Armijo condition
requires only that f improve by some fraction a e (0,1) of that ideal amount.

Remark 12.3.7. Another condition that is sometimes imposed on the learning
rate is the curvature condition, which gives a bound for how much less the slope
at Xfc+1 should be than the slope at xfc. Taken together, the Armijo and curvature
conditions are called the Wolfe conditions.

12.4 Newton and Quasi-Newton Methods
Newton’s method for one-dimensional optimization is discussed in Section 12.2, but
Newton’s method also works for higher dimensions. If the initial starting point is
sufficiently close to the minimizer, then Newton’s method converges quadratically,
which is a much higher order of convergence than most algorithms. This means

542 Chapter 12. Unconstrained Optimization

it takes very few steps to converge and makes it the algorithm of choice in many
settings.

But Newton’s method also has some drawbacks. Some of the most notable of
these are as follows:

(i) A good initial guess is needed; otherwise it may not converge.

(ii) It requires computing the Hessian, which can contribute significantly to the
computational cost.

(iii) It requires D2/(x/~) to be positive definite at each of the points xfc.

(iv) It requires solving a linear system with the Hessian, which has temporal com­
plexity O(n3), where n is the dimension of the domain of f. In high dimensions
this can be prohibitive.

Instead, quasi-Newton methods are techniques that are based on, or are similar
to, Newton’s method but are designed to overcome one or more of these disadvan­
tages. We begin this section with a discussion of multivariate Newton’s method and
then describe some key quasi-Newton methods.

12.4.1 Newton's Method
If the second derivative D2f of f : Q —» R is Lipschitz, then applying the zero-
finding version of Newton’s method (see Volume 1, Section 7.3.2) to the function
DfT : Rn —> Rn gives a method for finding a critical point of f.

Theorem 12.4.1. Assume Q C Rn is an open neighborhood ofx* and Df(x*) = 0.
I/D2/(x*) > 0 and D2f is Lipschitz on Q, then the iterative map

Xfc+1 = Xfc - D2/(xfc)-1Z>/(xfc)T (12.18)

converges quadratically to x* whenever xq is sufficiently close to x* .

Proof. This follows immediately by applying the convergence result for the zero­
finding Newton’s method (Volume 1, Theorem 7.3.12) to the function DfT. □

Remark 12.4.2. The temporal complexity of each iteration of Newton’s method
is O(d + h + n3), where d is the cost of computing the gradient D/(x)T and h is
the cost of computing the Hessian D2/(x).

Not a Bene 12.4.3. Solving a linear system is usually faster and more stable
than first computing the matrix inverse and then multiplying by the inverse.
It still has complexity O(n3), but the leading-order complexity is better, as is
the stability. We can use this to improve the speed and stability of Newton’s
method by breaking the computation into two steps:

(i) Solve £>2/(xfe)dfc = -_D/(xfc)T for dfc.

(ii) Set Xfc+i = xfe + dfc.

12.4. Newton and Quasi-Newton Methods 543

Example 12.4.4. Consider again the function f(x,y) = x3 — За?2 + у2 of
Examples 12.1.7 and 12.3.2, with a local minimizer at (2,0). We take one step
of Newton’s method starting at the point xq = (4,4). The gradient is

Df(x0) = [3a?2 — 6a? 2y] = [24

and the Hessian is

0
2^2/(xo) = 6a? — 6

0
18
0

0
2 *

This gives

X1 = xo - D2/(x0) Х£»/(х0) 18
0

0
1
2_

24
8

’8"
3
0 '

comparison, inFor32.Note that /(xi) = —2.37037, whereas
Example 12.3.2, we computed a single step of exact gradient descent starting at
the same point and it yielded x.^9d = (1.5415, 3.1805) with /(x^rf) = 0.10244.

Continuing with the Newton algorithm gives X2 = (2.1333,0), and the
algorithm reaches the minimizer (2,0) exactly (to machine precision) after
just five iterations, which is much faster than exact gradient descent.

/(xo)

4
4

12.4.2 Newton as Quadratic Approximation
Just as in the one-dimensional case (see Section 12.2.4 and Figure 12.3), Newton’s
method can be interpreted as minimizing a quadratic approximation. To see this,
assume that f : Rn —> R is a C2 function and that x* e Rn is a local minimizer of
/ satisfying D2/(x*) > 0. The degree-2 Taylor polynomial of / at х& is

q(x) = /(xfc) + Z)/(xfc)(x - Xfc) + |(x - Xfc)TZ>2/(xfc)(x - Xfc). (12.19)

Since this is a quadratic function with positive definite Hessian, it is minimized
when D/(xfc) + (xfc+1 — xfc)TD2/(xfc) = 0, which (after transposing) gives (12.18)
again. Hence, minimizing the quadratic approximation gives the same algorithm as
Newton’s method.

As in the one-dimensional case, if f is itself quadratic, then it is equal to its
quadratic approximation, so Newton’s method must converge in one step. As a
result, we have the following proposition.

Proposition 12.4.5. If /(x) = |xTQx + bTx + c; for some Q > 0, some b 6 Rn;
and some c e R, then Newton’s method converges to the unique minimizer of f in
a single step, regardless of starting point.

12.4.3 Descent of Newton
Newton’s method does not necessarily descend. But it always moves in a descent
direction, which is a direction that descends if the step size is small enough.

544 Chapter 12. Unconstrained Optimization

Proposition 12.4.6. Let (xfc)£L0 be the sequence generated by Newton’s method
for minimizing a given objective function f. If the Hessian Z?2/(x/c) > 0 and
Df(xk) ф 0, then dfc = Xfc+i — х& = — Z?2/(x/c)-1Z?/(x/c)T is a descent direction
for f, that is, there exists an a > 0 such that for all a e (0, a),

/(xfe +adfc) < /(xfc).

Proof, The proof is similar to that of Proposition 12.3.3. The details are Exercise
12.18. □

12.4.4 Newton with Line Search
Even though the direction chosen by Newton’s method is a descent direction, the
actual method may not descend because the step size chosen by Newton’s method
could be too large; see Figures 12.7 and 12.8. The fact that d/~ = —Z?2/(x/c)-1Z?/(x/c)
is a descent direction means only that f will descend in that direction if the step size
is sufficiently small. If the higher derivatives of the objective function f are large,
then the function f can move away from its quadratic approximation (12.19) very
quickly and the minimizer x/~ — D2 f (x^)-1 D f (x&) of the approximating quadratic
might give a value of f that is larger than /(x^). And even if it does descend, this
might not be the best choice for the next iteration.

The first of the quasi-Newton methods discussed here is a simple variant on
Newton’s method that addresses this problem of stepping too far by changing the
learning rate and letting

xfc+i = Xfc - afcZ)2/(xfc)_1Z)/(xfc),

Figure 12.7. Plot of a function f and a starting point xk for which the Newton
step does not descend. Instead it produces a point Xfc+i with ffx.k+i) > f(^k)-
As long as the Hessian is positive definite at xk, Proposition 12.j.6 guarantees
that Newton’s method moves in a descent direction, which means that the objective
function decreases if the step size is small enough.

12.4. Newton and Quasi-Newton Methods 545

Figure 12.8. Newton’s method applied to the Rosenbrock function. Notice that the
x2 and x4 steps here do not descend, but we were lucky with the initial choice x0;
and the method still happened to converge.

where the learning rate < 1 is chosen by one of the same methods used in gradient
descent, for example, by setting ak = argminQ/(xfc — aD2/(x/c)-1Z?/(x/c)) or by
simple backtracking until descent occurs.

12.4.5 Levenberg-Marquardt Modification
Newton’s method requires the Hessian to be positive definite at each step, but this
may not hold if the point х& is too far from the minimizer. If Z?2/(x/c) is not positive
definite, then the Newton direction = —Z?2/(x/c)-1Z?/(x/c)T may not be a de­
scent direction at all, and the method may not converge. The Levenberg-Marquardt
modification is a modification to Newton’s method (hence, a quasi-Newton method)
designed to deal with this problem.

Since D2/(xfc) is symmetric, it has real eigenvalues Ai,...,An. Denote the
corresponding eigenvectors by vi,..., vn. Choose // > 0 and define the matrix G =
D2 f (x) + /11. Exercise 12.22 shows that D2/(x) and G share the same eigenvectors,
and the eigenvalues of G are Ai + /1,..., An + /1.

Choosing /1 large enough makes the eigenvalues of G all positive and hence makes
G positive definite. At each step of Newton’s method, replacing the Hessian with
G/c = A^(D2/(x/c) + /iklfi for suitable positive choices of /ik and learning rate a^
defines a new algorithm

xfc+i = xfc - afc(£>2/(xfc) + /ifc/)-1Z)/(xfc)T,

which has the descent property for /ik sufficiently large and ak suitably small. This
is the Levenberg-Marquardt modification.

Remark 12.4.7. The Levenberg-Marquardt modification can be thought of as a
weighted combination of Newton’s method and gradient descent because setting
/1 = 0 with ak = 1 just gives Newton’s method, whereas if /ik сю, then this

546 Chapter 12. Unconstrained Optimization

method becomes a type of gradient descent. As a general strategy, one usually
starts with /1 small and increases only as needed at each step to keep G positive
definite.

Remark 12.4.8. The function _D2/(x) + ц! is the Hessian of the regularized func­
tion F(x) = /(x) -b /lz||x||2- The function F is less bumpy than /, and as /1 increases
F becomes more and more like the simple quadratic function ЦхЦ^. Algorithms
minimizing F are less likely to end up in suboptimal local minima than those that
minimize f. The Levenberg-Marquardt modification is similar to, but not quite the
same as using Newton’s method on F, because Newton’s method for F would use
x — D2F(x)-1DF(x) instead of the Levenberg-Marquardt x — D2F(x)-1 D f (x).

12.4.6 Gauss-Newton for Nonlinear Least Squares
Another weakness of Newton’s method is the fact that it requires computing the
Hessian at each step, which can be computationally expensive (or unstable). The
Gauss-Newton algorithm is a quasi-Newton method for avoiding this computa­
tion for an important class of optimization problems called nonlinear least squares
(NLS).

NLS problems are minimization problems where the objective function f : Rn —>
R can be written as a sum of squares:

(12.20)

where each r* : Rn —> R is a smooth function (the ri are often called residuals), and
the ri can be combined to give a vector-valued function r(x) = (п(х), Г2(х),...,
rm(x)).

Example 12.4.9. Assume we are given a family of functions of the form
p(£;x) = j;0cos(j;i£ + #2)? where x = (жо^ь^г) is a vector of parameters.
Given a collection of data points (to,po),..., (tm-i,pm-i), we wish to find the
parameters x that best fit the data, so that the MSE (see Definition 6.1.16)
— ^27=o x)— Pi)2 is minimized. This amounts to solving the optimization
problem

1 m—1 m—1

x = argmin — V' (р(2г; x) - p,)2 = argmin V' (x0 coslx^ + x2) - Pi)2 ■
x m x2=0 2=0

Setting t\(x) = p(ti, x.) — pi = xq cos(xiti + x%) — Pi for each i expresses this
as an NLS problem.

More generally, for any family of functions p(t; x) parametrized by a vector
x, finding x to fit data points (to,Po)? • • •, (^m-bPm-i) is an NLS problem with
n(x) = p(^;x) - pi.

12.4. Newton and Quasi-Newton Methods 547

To use Newton’s method for (12.20), first compute the derivative and Hessian.
The derivative of f is given by Df(x.) = r(x)TDr(x); see Example 10.2.10. The
Hessian of f is given by

£>2/(x) = Z>r(x)TZ>r(x) + гДх)£>2п(х),
2 = 1

S(x)

(12.21)

as computed in Exercise 10.13. Thus, Newton’s method for this optimization prob­
lem is given by

Xfc+1 = Xfc - (Dr(xfc)TDr(xk) + S(xfc))-1Z>r(xfc)Tr(xfc), (12.22)

where 5(x) = x п(х)£>2Гг(х).
The Gauss-Newton algorithm takes advantage of the special structure of NLS

problems to avoid computing the second derivatives. Specifically, the Gauss-Newton
algorithm method drops the second term S(x) in (12.22) giving

xfc+i = xfc - (£>r(xfc)TDr(xfc))-1 £>r(xfc)Tr(xfc). (12.23)

At the minimizer x*, the FONC implies that £>/(x*) = r(x*) TDr(x*) = 0. If
r(x*) = 0, then S(x*) = 0, and if x is near x*, then all entries of S(x) must be small.
In either case, dropping S from (12.22) gives a close approximation to Newton’s
method whenever S(x) is small. In such situations the convergence rate of the
Gauss-Newton method is close to quadratic, but without the cost of computing the
Hessian. For this reason, the Gauss-Newton algorithm is the standard optimization
method for NLS problems. But if 5(x) is too large, the method may not converge,
so it is still important to have a good initial guess.

Example 12.4.10. Assume that m + 1 range finders (devices that can mea­
sure distance, but no other location information) are placed at points ao,...,
am E Rn, and they all record the distance to an object located at point
xtrue E Rn as di = ||a^ — xtrue|| + where the measurement error has
E[e?i] = 0. If the true location xtrue E Rn of the object is unknown, we can use
the measurements of the range finders to try to get an estimate x for xtrue as

m

X = argmin (dt - ||x - a,||)2 .
X „2=0

Letting n(x) = di — ||x — a*|| makes this into an NLS problem.
To make this concrete, consider the case depicted in Figure 12.9, where the

object is located at the point xtrue = (3,3) and there are four range finders, lo­
cated at points ao = (0,0), ax = (1,1), a2 = (2,0), and аз = (—1,3). Exercise
12.23 is to code up the Gauss-Newton algorithm and apply it to this problem

548 Chapter 12. Unconstrained Optimization

in the case that the (noisy) measured distances from the range finders to
the object are given by d - (3.88506517,2.87540403, 3.10537735,3.99674185).
The values of the objective

з з
/(x) = 52(x)= 52 (di ~ iix - a* ii)2 г=0 i=0

are plotted in Figure 12.9 as a contour plot. In this example the Gauss-
Newton method converges (within machine precision) in eight steps to x =
(2.9546367,2.88618843), which is not quite equal to the true value because of
error in the initial measurements.

Figure 12.9. Contour plot of the objective function for the NLS problem of locating
xtrue (the star) given noisy measurements from four range finders (blue dots), as
described in Example 12.4-10. Darker colors correspond to smaller values of the
objective. The minimizer x (orange triangle) of the objective function is quickly
reached using the Gauss-Newton method, starting at x0 = (2,0). The minimizer x
does not quite agree with the true location because of the noise in the measurements.

Remark 12.4.11. Although Dr(x/C)TDr(xfc) is always positive semidefinite, it may
not be full rank and hence not invertible (and therefore not positive definite). To
remedy this, we can make a Levenberg-Marquardt modification to Gauss-Newton,
replacing Dr(x/C)TРг(х^) by Dr(xfc)TРг(х^) + pT. This is essentially the same
as approximating S(x) by pl in (12.22). When applied to the Gauss-Newton
algorithm, the Levenberg-Marquardt modification is often called the Levenberg-
Marquardt algorithm.

12.5. The BFGS Method 549

Example 12.4.12. When applying Gauss-Newton to minimize the quadratic
function

/(x) = ||b - Ax||| = xTATAx - 2xTAb + bTb,

it is straightforward to verify that S(x) = 0, and the Gauss-Newton method is
the same as Newton’s method. Thus, Gauss-Newton converges for quadratic
functions of this form in a single step.

12.5 The BFGS Method
Newton’s method converges rapidly, but it requires solving a linear system involving
the Hessian matrix at each step; and both computing the Hessian and solving
the resulting system can be expensive, especially in high dimensions. The BFGS
method, named for Broyden, Fletcher, Goldfarb, and Shanno, is a quasi-Newton
method that approximates the Hessian in a clever way to allow the inverse of the
approximated Hessian to be computed easily. This approximation generally comes
at the cost of slower convergence, but the decreased computational complexity of
each iteration is often well worth it.

12.5.1 Low-Rank Updating
Newton’s method approximates the objective function f with the second-order ap­
proximation

<7k(x) = y(xfc) + Z>y(xfe)(x - Xfc) + i(x - xfc)TZ>2/(xfc)(x - Xfc)

and solves for the minimizer, which is given by

Xfc+1 = Xfc - Z>2/(xfc)-1Z)/(xfc)T.

The BFGS method also approximates the objective function f with a quadratic
approximation

Qfc(x) = /(Xfc) + £>/(xfc)(x - Xfc) + |(x - Xfc)T4fc(x - Xfc) (12.24)

for a special choice of Ak > 0, and the update is similarly given by

xfc+1 = Xfc - A^Df^ky. (12.25)

The idea behind BFGS (and similar methods) is to choose Ak to be a low-rank
update of Л/с-i of the form

Ak = Afe_i + акак or Afc = Afc_i+afcafc+bfcbfc, (12.26)

where a/c,b/c 6 are chosen to give Ak good properties for optimization. The
main advantage of using low-rank updates like these for Ak is that they are easy to
invert if the inverse of Л/c-i is already known. Typically, the process begins either
with Ло = D2/(x0) or with some easily invertible, positive definite approximation
of _D2/(xo), like I. The initial quadratic term Ло must be positive definite, and this
ensures that all the subsequent Ak remain positive definite.

550 Chapter 12. Unconstrained Optimization

12.5.2 Inverting Low-Rank Updates
If is already known from the previous step, then the following identity, due
to Sherman and Morrison, gives an explicit formula for , after which the mul­
tiplication Л^1/?/(хп)т only requires ~ 2n2 FLOPs.

Proposition 12.5.1 (Sherman—Morrison Formula). For any invertible n x n
matrix A, and any vectors u, v e Rn, the matrix A + uvT is invertible if and only
ifl + vTj4-1u 0. If A + uvt is invertible, then

(^ + uvV1=>l-1-1+vTx_lu. (12.27)

Proof. The proof is Exercise 12.25. □

The benefit of using the Sherman-Morrison formula in this setting is that Л-1 is
already known. The time cost of computing (j4+uvt)-1 via (12.27) is dominated by
the computation j4-1uvTj4-1. This can be computed as (Л-1и) (vTj4-1), which
consists of two matrix-vector products (with leading-order complexity ~ 2n2 each)
followed by a vector-vector outer product, which has leading-order complexity ~ n2.
Thus, the total complexity of computing the inverse using Sherman-Morrison is
~ 5n2 FLOPs. Compare this to the cost of inverting directly, or rather solving the
corresponding linear system, which is ~ |n3 FLOPs.

12.5.3 Two Requirements
Matching Gradient

The quadratic Taylor approximation of f at x/~ matches both the gradient and the
Hessian of f at xfc. The main point of the BFGS method is to try to get a good
quadratic approximation (12.24) of f without computing the Hessian, so instead of
making the Hessian match, a reasonable alternative assumption is that the gradient
of the approximation should match the gradient of f at both x/~ and at x^-i, that
is, DQfc(xfc) = Df(x.k) and Dqk(^.k-i) = Df(xk-i)- Since the first is automatic,
we need only consider the second. Differentiating (12.24) at Xk-i gives

Dqk{y-k-i) = Df(xk) + (xfe_i - xfe)TAfe,

and so the matching gradient condition becomes

Df(xk) - Df(xk_i) = (xfc - xfc_i)T4fc. (12.28)

We call (12.28) the matching gradient constraint.
One possible choice for the matrix Ak is to take the best symmetric rank-one

update of Ak-i (meaning that Ak = Ak-i + vvT for some v e Rn) that satisfies
the matching gradient constraint (12.28). This naive method is called Brogden’s
method. Unfortunately it does not work very well because rank-one updates do not
always make Ak positive definite, which means the method does not necessarily
descend, as we discuss below.

12.5. The BFGS Method 551

Positive Definite for Descent

In order to guarantee that each new direction Л^12?/(х/г)"г in (12.25) is a descent
direction, the matrix Ak should be positive definite. Specifically, for any optimiza­
tion method of the form Xfc+i = Xfc — Л^’12?/(х/с)т, Taylor’s formula (Theorem
10.3.8) for /(xfc+i) expanded around Xfc gives

/(xfc+i) = /(xfc) + D/(xfc)(xfc+i - Xfc) + o(||xfc+i - Xfcll)
= /(xfe) - D/(xfc)(4^1D/(xfc)T) + o(||xfc+1 - Xfcll).

So if ||xfc+i — Xfc|| is sufficiently small and Ak > 0, then we have

/(Xfc) > /(Xfc+1).

However, if Ak is not positive definite, then we cannot expect this inequality to
hold.

12.5.4 BFGS
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method brings together all the
ideas discussed so far in this section. To do this, it makes a positive definite rank-
two update instead of the rank-one update of Broyden’s method. Specifically, for
an objective function /, points xq, ..., Xfc, and matrix Ak_± > 0, set

Ak — Ak-i + УкУк
YfeSfe

Xfc-iSfcSfcXfc i
(12.29)

where

yfc = Z)/(xfc)T - Z>/(xfc_i)T and sfc = xfc - xfc_i. (12.30)

The next point Xfc+i is now computed using (12.25).

Theorem 12.5.2. Let B(x*, J) be an open ball containing Xfc and Xfc_x. Assume
that f e C2(B(x*,(5);R) and D2f(x) > 0 for all x e B(x*,J). If A^ > 0
and satisfies the matching gradient constraint (12.28), then the matrix Ak given
in (12.29) is a positive definite, rank-two (or less) update of Ak-i satisfying the
matching gradient constraint (12.28).

Proof. It is straightforward to check that Ak is symmetric whenever Ak-i is. It is
also straightforward to check that Aksk = уfc, so Ak satisfies the matching gradient
constraint (12.28). Moreover, the difference Ak — Ak-i is the sum of two rank-one
matrices, so it has rank at most two.

To show that Ak > 0 we first prove the special case s[Aksk > 0. Begin by
rewriting this as

SfeXfeSfe = yfeSfc = (Z>/(xfc) - Z>/(xfc_i))(xfc - Xfe_i) > 0. (12.31)

By Taylor’s theorem (Theorem 10.3.8), for each pair x,x' 6 B(x*,<5), we have

/(x') = /(x) + -D/(x)(x' - x) + -Й2, (12.32)

552 Chapter 12. Unconstrained Optimization

where
R2 = [(1 — t)(x' — x)TZ?2/(x + f(x' — x))(x' — x) dt.

Jo

Since Z?2/(x + t(x.' — x)) > 0 for all t e [0,1], we have R2 > 0 and

/(x')-/(x)>£»/(x)(x'-x)

for any x, x' e B(x*, J). This gives

/(xfe_i) - /(xfc) > 7?/(xfc)(xfc-i - xfe) and
/(xfc) - /(xfc_i) > 7?/(xfc_i)(xfc - xfe_i),

which combine to give Z>/(xfc)(xfc — x^-i) > D/(x/c_i)(x/e—x^-i), and thus (12.31)
holds.

Since Ak-i > 0, it defines an inner product (w,x)* = wTAfc_ix. To see that
is positive definite, compute zTAfcZ for any z 6 Rn with z 0 as follows:

.’4.=.4-,.+ z'v;z -
y^.Sfc S^fc-iSfc

_/^.\ . zTyfcyfcz (sfe,z^
YfcSfc \s/c?sfc/*

By the Cauchy-Schwarz inequality, we have (s/~, z)* < (s^, S&)* (z, z)*, with equality
if and only if z and S& are linearly dependent. This gives

zTA^z > (z, z), + > 0,
y^.sfc (sfc,sfe)+ y^.sfc

where the last inequality follows from (12.31).
If z and Sfc are linearly independent, then the first inequality above is strict,

giving zTj4fcS > 0, as desired. If z and are linearly dependent, then since z 0
and Sfc / 0, we must have z = ask for some a / 0, and

zTXfcz = a2SfcXfcsfc > 0,

where the inequality again follows from (12.31). □

The last step of the BFGS algorithm is to use the Sherman-Morrison identity
twice to invert A^ to get the following (see Exercise 12.28):

.-1 _ .-1 , (slyfc +yMfc2iyfc)sfcs^ A-^yksl + sfcy^;21
‘ «У»)2

A Python implementation of the complete BFGS algorithm is given in
Algorithm 12.1.

(12.33)

12.5. The BFGS Method 553

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

import numpy as np
from numpy.linalg import inv, norm

def BFGS(f, df, xO, AO, max_iter=40, tol=le-8):
"""Minimize f using BFGS, given the derivative df, an
initial guess xO, and an initial approx AO of D~2f(xO).
и и и

Initialize
done = False
iters =0 # Count the number of iterations
A_inv = inv(AO) # Initial approximate inverse Hessian
x = xO - A_inv @ df(xO) # x_l
s = x - xO # s_l

while not done: # Main BFGS loop
у = df(x) - df(xO) # Update у
sy = s @ у # This product is used several times
Ay = A_inv @ у # This product is used several times
Approximiate the new inverse Hessian
A_inv = (A_inv +((sy + у @ Ay)/sy**2) * np.outer(s,s)

- (np.outer(Ay,s) + np.outer(s,Ay))/sy)
xO = x
x = xO - A_inv @ df(xO) # Update x.
s = x - xO # Update s.
iters += 1
Stopping criteria
done = ((norm(s) < tol) or

(norm(df(x)) < tol) or
(np.abs(f(x) - f(xO)) < tol) or
(iters >= max_iter))

return x

Algorithm 12.1. Python implementation of the BFGS algorithm for finding a
local minimizer of i, given the gradient function df, an initial guess xO, and
an initial approximation AO of the Hessian. The function df can usually be con­
structed easily from f using algorithmic differentiation (see Section 11.4-4)- Note
that the Python matrix multiplication operator @ automatically transposes vectors to
be the (assumed) correct shape, so a product like s @ у gives the inner product and
A_inv 0 df(xO) computes the usual matrix-vector product even though df(xO) is a
row vector. Computing an outer product like syT requires np.outer(s,y).

554 Chapter 12. Unconstrained Optimization

Example 12.5.3. Consider, yet again, the function f(x,y) = x3 — 3x2 4- y2
of Examples 12.4.4, 12.3.2, and 12.1.7, with a local minimizer at (2,0). We
apply the BFGS method, starting at the point x0 = (4,4)- As computed in
Example 12.4.4, the gradient and Hessian are

£>/(x0)T = and £>7(x0) = 0
2

(i) Setting Aq = D2 /(xq) makes the first step of BFGS the same as Newton,
so by Example 12.4.4 we have xi = (|, 0).

(ii) Proceeding with the next BFGS step we have

(a) yi = £>/(xi)T - D/(x0)T = (-^,-8) and si = xi - x0 =
(-1,-4)-

(b) Compute s}yi = Aj^yi = (-Ц,-4), and y^A^yi = 4Ж
and plug these into (12.33) to get

1 Г17 3
256 3 121

(c) This yields x2 = Xi— At = (2.3125,-0.0625) with/(x2) =
-3.67261.

Compare this result to Newton’s method, which yields x^ewt = (2.1333,0)
with /(x^ewt) = —3.94432. At this step BFGS does not give quite as good an
estimate of x* = (2, 0) as Newton’s method, but it is not much worse.

Continuing with BFGS on this optimization problem yields the solution
X9 = (2, — 1 x 10 13) in nine steps, which is more than Newton’s five steps, but
much fewer (with a better final result) than exact gradient descent’s 35 steps.
Since the dimension of this problem is so low, BFGS provides no computational
benefit at each iteration over Newton’s method in this example. But in higher-
dimensional problems, BFGS can be much cheaper per iteration than Newton;
see Remark 12.5.4.

Remark 12.5.4. The BFGS algorithm is very effective for high-dimensional, un­
constrained optimization problems with a dense Hessian. On these problems it
generally runs much faster than Newton’s method, despite taking more iterations
to converge. After the initial step, each iteration of the BFGS method runs in
O(n2 + d) time, where d is the cost of evaluating the gradient D/(x)T. When
n is large, this is a big improvement over the O(d + h + n3) cost of computing
£>2/(xfc)-1£>/(xfc)T in Newton’s method.

Remark 12.5.5. The standard modifications to the learning rate for Newton’s
method and gradient descent can be applied to the BFGS algorithm. That is, we
can change (12.25) to

Xfc+i = xfc - akAk 1Df(xk)

12.5. The BFGS Method 555

for an appropriate choice of We can either use optimal line search

oik = argmin /(xfe - a4“1D/(xfc)T) (12.34)
Ct

or use a simple backtracking algorithm to find a choice of that results in descent
(or compliance with the Armijo, Wolfe, or other conditions).

Remark 12.5.6. After several iterations the matrices A^ can become very small,
and their inverses Aj”1 very large, which can make the algorithm unstable. In such
cases a standard approach is to restart the method, either with = D2 f (x/J or
with an easily invertible, positive definite matrix like A^ = I.

Remark 12.5.7. Storing the approximation A^1 in memory can be costly if n is
large. There is a variant of BFGS, called limited memory-BFGS or L-BFGS, for
dealing with this problem.

12.5.5 *Sherman-Morrison-Woodbury
The Sherman-Morrison formula (12.27) is a special case of a more general formula
called the Sherman-Morris on-Woodbury formula, which has many uses in applied
and computational mathematics.

Proposition 12.5.8 (Sherman—Morrison—Woodbury). Let A be a nonsingular
n x n matrix, В an n x £ matrix, C a nonsingular £ x £ matrix, and D an £ x n
matrix. We have

(A + BCD)-1 = A-1 - A~1B(C~1 + DA~1B)~1DA~1. (12.35)

Proof. The proof is Exercise 12.32. □

Vista 12.5.9. Many techniques in machine learning boil down to choosing
parameters w G Rm for a family of functions /(x; w) in such a way that the
predictions made by the resulting function closely approximate some data set
of the form {(x*, ?/i)}^Li, meaning that yi = f(x2:w) should be close to yi,
on average. The distance between the data and the predictions is typically
measured by some “loss” function of the form £(y,y), for example, £(?/, y) =
(y — y)2. Thus the problem to solve is

1 N
minimize — £(и. f (xr, w)),

wGr- 2=1

where the dimension m of the parameter space may be large.
Low-memory BFGS and gradient descent (and a variant of it called stochas­

tic gradient descent) are very important numerical methods for optimization
in machine learning.

556 Chapter 12. Unconstrained Optimization

12.6 Conjugate-Gradient Methods
Throughout this chapter, we have seen an inverse relationship between the rate of
convergence and the amount of computing required per iteration. For example,
Newton’s method and the quasi-Newton methods usually converge faster but come
at a higher cost per iteration than gradient-descent methods, which usually converge
more slowly but at a lower cost per iteration. In this section, we consider a “middle
ground” class of algorithms called conjugate-gradient methods, which typically re­
quire more iterations than Newton methods but at less cost per iteration, and fewer
iterations than gradient descent methods, albeit at a higher cost per iteration.

One of the primary applications of conjugate-gradient methods is solving large
linear systems of the form

Ax = b, (12.36)

where A > 0. As we see in Exercise 12.3, solving such a system is equivalent to
minimizing the quadratic objective /(x) = |xTAx — bTx. There is a standard
conjugate-gradient algorithm for solving such systems, and when we refer to the
conjugate-gradient method we usually mean this standard choice. But for higher-
degree (nonquadratic) optimization problems, there are many variants of conjugate­
gradient methods (see Section 12.6.3 for more on the nonquadratic case).

In exact arithmetic (the absence of round-off error), the conjugate-gradient
method is guaranteed to minimize a quadratic objective f : Rn ч I in n iter­
ations and thus can be considered a direct method (meaning that it produces an
exact solution with a finite number of iterations). In the presence of round-off error,
however, the conjugate-gradient method will not actually terminate, but continuing
to iterate can give successively better approximations. We show in Section 12.7
that the convergence is linear with a rate (see Definition 12.2.1) that is related
to the matrix condition number ft(A), that is, a better conditioned A gives faster
convergence.

Each iteration of the conjugate-gradient method requires one matrix-vector mul­
tiplication of the form Ad for some direction d and the rest of the computations
have a cost of O(n). If the matrix A is sparse with only m entries, where m<n2,
then each matrix-vector multiplication costs only O(m) FLOPs, and thus solving
the entire system (12.36) costs only O(mn + n2) FLOPs. This can be much cheaper
than the O(n3) cost of using the LU or QR decompositions. In other words, the
conjugate-gradient method is a good sparse solver.

Fortunately, the conjugate-gradient method can usually be terminated in fewer
than n iterations, because each step moves in the direction of maximal improve­
ment, and once the most important directions have been handled, the resulting
intermediate solution is often good enough. If the algorithm can reach a satisfac­
tory approximation in К n iterations, then the total time complexity to solve
the system (12.36) is O(mK + nK).

12.6.1 Conjugate Directions
Recall that exact gradient descent can suffer from the problem of bouncing back
and forth inefficiently when the Hessian A has a large condition number ft (A); see
Figure 12.4. The conjugate-gradient method seeks to remedy this by finding better
directions of travel.

12.6. Conjugate-Gradient Methods 557

Geometric Motivation

As a first step to understanding the conjugate-gradient method, consider the special
case where the minimizer is at the origin and /(x) = |xTAx, where A is diagonal
and positive definite. The level sets of f are ellipsoids with all their axes agreeing
with the coordinate axes.

In this case, start at any point xq = (ai, «2, • • • > an), but instead of moving in the
direction of the negative gradient, move in a direction parallel to the first standard
basis vector ±ei. It is straightforward to check, and easy to see geometrically, that
the minimizer of ф(а) = f (x0+aei) occurs at a = — cq, so that Xi = (0,02,..., «n)«
Move now in a direction parallel to e2. A line search to find the optimizer gives
X2 = (0,0, «з,..., an). Continuing in this manner is called coordinate descent, and
in the special case that A is diagonal, it arrives at the minimizer (the origin) in n
steps or fewer.

Unfortunately, if /(x) = xTAx, where A is not diagonal, then coordinate de­
scent can suffer from the same bouncing phenomenon that exact gradient descent
suffers from. But a change of basis can solve this problem. Let A = FTAF for
some invertible F and a diagonal matrix A > 0. Since A is positive definite, it is
orthonormally diagonalizable, which shows that A can always be written as FTAF
for some invertible F and diagonal A, but we do not require that F be orthonormal
for the rest of this discussion.

Let di,..., dn be the columns of F-1. Changing basis in Rn from the standard
basis S = [ei,..., en] to the basis T = [di,..., dn] means that the coordinates
[x]s of x in the standard basis can be written as F-1 times the coordinates in the
eigenbasis: [x]s = F-1[x]^. Thus, f can be expressed as

/(x) = |[x]^[x]s = | (F-1[x]T)TPTAF(F-1[x]T) = |[x]£A[x]t

in the new coordinates. This means that coordinate descent, performed in terms of
the new basis, must reach the optimizer in n steps or fewer. Expressed in terms of
the original coordinates, this means that moving first in the direction di and then
the direction d2 and so forth, will reach the optimizer in n steps or fewer.

Conjugate Directions

Any two of the vectors dz and dj described above satisfy

djAcL = d7FTAFd7 = ej Ae, = 0 L J L J I J

whenever i j. This property is important enough to deserve a name and a formal
definition.

Definition 12.6.1. Assume A G Mn(R) is positive definite. Nonzero vectors
di,..., dfc are called А-conjugate if

d]Adj=0 (12.37)

for all i ф j.

558 Chapter 12. Unconstrained Optimization

Remark 12.6.2. Condition (12.37) is equivalent to saying the vectors di,... ,d&
are orthogonal in the weighted inner product (x, y)A = xTAy. Thus, any set of
А-conjugate vectors is linearly independent by Corollary 3.2.5 of Volume 1.

Conjugate directions are useful because, as the previous discussion suggests,
moving toward the minimizer in direction di, followed by moving in direction d2,
and so forth, must reach the minimizer in n steps or fewer.

Proposition 12.6.3 (Conjugate Directions). Assume the objective function
f : Rn —> R is quadratic

/(x) = ^xTAx — xTb + c, (12.38)

with A > 0, b G Rn, and c G R. Given any starting point xq and a sequence
di,..., dn of A-conjugate directions, define Tk, (*k, and Xk iteratively for each к G
{1,..., n} as

rfc = b - Axfc_i, ak = ’ an(^ Xfc = Xfc-1 + Ofcdfc. (12.39)

The vector Yk is called the kth residual. For each к the quantity &k is the minimizer
of the function фк(а) = /(xfc-i + ctd^), and xn is the unique minimizer of f, that
is, xn = x* .

Proof. The proof is Exercise 12.35. □

Remark 12.6.4. The algorithm only requires the use of x^-i and d& at step k.
None of the points xq, ... , Xfc_2 and none of the other directions d; for j к is
needed to compute г&, c^, and x^. This means this algorithm can be used without
remembering or knowing any of the other dj, provided we know that each d^ is
А-conjugate to all the other d;.

Given the А-conjugate vectors di,... ,dn, this algorithm determines the mini­
mizer of f in n steps or fewer. Thus we need a fast way to compute the A-conjugate
vectors. A naive way to produce these would be, as discussed above, to factor A as
PTAP for some diagonal A with invertible P, and then let the directions di,..., dn
be the columns of P-1. But doing this is at least as difficult as solving the system
Ax = b.

Alternatively, one could start with any basis and use the Gram-Schmidt process
with the inner product (•, -)л, as described in Volume 1, Section 3.3. If the initial
basis is the standard basis, doing this is essentially equivalent to finding the QR
decomposition of A, which could be used to backsolve for x in the system Ax = b.
Therefore, finding a basis of А-conjugate directions in this way is also not easier
than solving the system Ax = b via the QR decomposition.

In the following subsection we present a fast method, called the conjugate­
gradient method, of obtaining a sequence of А-conjugate vectors.

12.6.2 Conjugate-Gradient Method
The conjugate-gradient method is a clever approach to constructing a set of A-
conjugate directions. It does this by using, at step k, the previous direction d^-i

12.6. Conjugate-Gradient Methods 559

and the negative gradient —D/(xfc_i)T to define the next А-conjugate direction.
As discussed above, this means that for quadratic objectives in exact arithmetic, it
is guaranteed to converge in n steps. Thus, if run to completion, it solves the linear
system Ax = b exactly. But, of course, we use floating-point arithmetic, not exact
arithmetic, and on very large systems we usually cannot or do not want to let it
run all the way to completion because a good approximate solution can usually be
found in fewer than n steps.

There are three main reasons that the conjugate-gradient method works well as
an iterative algorithm:

(i) At each step there are many possible А-conjugate directions, but the algorithm
chooses the one that is closest to the current negative gradient, and moving
in that direction tends to reduce the value of f as much as possible.

(ii) The algorithm requires only the previous direction d^-i in order to compute
the next direction and the next approximation X&. This means that each
iteration is cheap to compute and only one direction needs to be stored or
computed at a time.

(iii) Because of the previous two steps, the algorithm can be terminated before all
n steps are complete—often long before.

As an iterative algorithm, the method converges linearly with each step, and
the rate of convergence is related to the condition number ft (A), where a better
conditioned A gives faster convergence; see Section 12.7.

The conjugate-gradient method merges gradient descent and the conjugate­
direction method. It constructs the А-conjugate directions di,...,dn by apply­
ing Gram-Schmidt with the inner product (•, -)A to the negative gradient sequence
—D/(xq)t, — D/(xi)T,..., —D/(xn_i)T. This differs from exact gradient descent
because instead of proceeding in the steepest direction —Df(xk)T, it projects out,
via Gram-Schmidt, the directions that have already been used.

Given an initial point xq, the algorithm moves in the direction —D/(xq)t to the
optimal point on that line (this is the same as exact gradient descent), but at each
subsequent step, it A-orthogonally projects away the directions that have already
been used before and then moves to the optimal point in the remaining direction.

Remark 12.6.5. If the objective f : Rn —> R is quadratic, then the conjugate­
gradient method reaches the minimizer in n steps or fewer. In two dimensions, as
in Figure 12.10, this means the minimizer is reached by the second step. Compare
this to Newton’s method, which always converges in a single step for a quadratic
objective; but in high dimensions that one step costs more than all of the conjugate­
gradient steps combined.

The Gram-Schmidt process normally requires computing inner products of the
new direction —D/(xfc)T with all the previous А-conjugate directions di,..., d^-i.
An important reason for the usefulness of the conjugate-gradient method is that it
completely avoids computing most of these inner products, thanks to the following
lemma.

560 Chapter 12. Unconstrained Optimization

Figure 12.10. The conjugate-gradient method (red) avoids much of the bouncing
back and forth that occurs with exact gradient descent (black). The first step of
the conjugate-gradient method is the same as exact gradient descent, but the second
step moves in a direction that is А-conjugate to the first, the third step moves in a
direction that is А-conjugate to both the first and the second, and so forth.

Lemma 12.6.6. Given a quadratic objective function /(x) = |xTAx — bTx+c and
a set of A-conjugate directions di,..., d^, the residual rk computed by the conjugate
direction method (12.39) satisfies r& = —Df(xk-i)T and

d?rfe = 0 (12.40)

for all i G {1,..., к — 1}.

Proof. The fact that = —D/(xfc-i)T is a straightforward computation. Next
we prove that for any к G {2,..., n} we have

dLirfc = 0, (12.41)

as follows:

<tLirfc = dj_x(b - 4x^1)
= dj_xb - dfc_1X(xfc_2 + afc_idfc_i)
= d^_x(b - ^xfc_2) - ak-idi^Adk-!
= d£_x(b - 4xfc_2) - dj_xrfe_i = 0.

The rest of the proof is by induction. For к = 1, there is nothing to prove,
and the case of к = 2 follows from (12.41). Assume that for some к > 2 we have
dTrfc = 0 for all i = 1, 2,..., к — 1. Since

Tfe+i - rfe = X(xfc_x - Xfc) = —akAdk and ak = Tfc , (12.42)
dfc Adk

it follows that dTrfc+1 = djrfc — akdf Adk = 0 for i = 1,..., к — 1, by the induc­
tion hypothesis and A-conjugacy of d2 with d^. Finally, d£rfc+i = 0 by (12.41).
Therefore, dTr^+i = 0 for all i = 1,2,..., k. □

12.6. Conjugate-Gradient Methods 561

The conjugate-gradient method starts with xq and computes

di = ri = —Z>/(x0)T = b - Лх0,

which gives xx = x0 + oqdi, where cti is computed by (12.42). At each subsequent
step it computes = —D/(xfc-i)T = b — Ax^-i and then performs one step of
the Gram-Schmidt process, using the inner product (•, -)A, projecting out all the
previous directions di,..., d^-i to get d^ as

dI_-,Ark
dfc = rfc-projspan(dl5„ 5dfc l) rk = rfe-projdfc_1 rk = rfc--y——-----dfc_i, (12.43)

afc-i7iafe-i

where projj^r denotes the orthogonal projection, with respect to the inner prod­
uct (•, -)л, of r onto a subspace and where the second equality follows from
Lemma 12.6.6. Note that the usual Gram-Schmidt process would also normalize
the vector d^, but that is an unnecessary step, since we do not need the A-conjugate
vectors to be orthonormal. After d^ is constructed, ak is computed by (12.42), and
Xfc = Xfc-i + akdk. The entire process is summarized in Algorithm 12.2.

If rk = 0 for any k, then Ax^-i = b, and the minimizer has been found:
Xfc-i = x*. The sequence di,...,dn in the algorithm above is А-conjugate by
construction. This fact is important enough to be its own theorem.

Theorem 12.6.7. In the conjugate-gradient method, the set {ф}™=1 is A-conjugate.

Because of Theorem 12.6.7, the conjugate-gradient method (Algorithm 12.2) is a
special case of the conjugate direction method (Proposition 12.6.3) and hence must
converge in n or fewer steps for quadratic objective functions.

Complexity of the Conjugate-Gradient Method

The computational complexity of each step involves several inner products with
complexity O(n) and two matrix-vector multiplications: Ax^+i and Adk. Sparse
matrix-vector multiplication can generally be performed in O(m) FLOPs, where m
is the number of nonzero entries of A. So each step has complexity O(m + ri), and
running the algorithm to completion would take n steps for a total of O(n2 + nm)
FLOPs. If A is not sparse or m ~ n2, then the entire process has complexity
~ 4n3, which is six times slower than solving the linear system directly by LU
decomposition. But if n is large and m ri2, this is much faster than direct
methods.

In situations where n is very large, running the algorithm to completion is not
usually advantageous because (i) the approximation is often good enough after
fewer steps, (ii) it may be prohibitively expensive to carry out all n steps, and (iii)
numerical stability issues often prevent the algorithm from giving the exact answer
after n steps anyway.

12.6.3 *Conjugate-Gradient Method for Nonquadratic Problems
The conjugate-gradient method can also be applied to more general, nonquadratic
objective functions. As with Newton’s method, the idea is to fit a quadratic

562 Chapter 12. Unconstrained Optimization

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

import numpy as np
from numpy.linalg import norm

def conjugate-gradient(A, b, xO, tol=le-8, max_iters=None):
"""Solve A x = b by minimizing 1/2 x.TAx-b.Tx using
the conjugate gradient algorithm, starting at the initial
guess of xO."""

if not max_iters:
max_iters = len(b) # Theoretical max number of steps.

Initialize
x = xO
d = r = (b - A @ x) # First conj dir is the residue.
done = (norm(r) < tol) # Stop if the reside is small,
iters = 0

while not done:
dA = d @ A # This product is used often.
alpha = r @ d / (dA 0 d)
x = x + alpha * d # Updated x.
r = b - A 0 x # Updated residue.
beta = (dA 0 r)/(dA 0 d)
d = r - beta * d # Next conjugate direction,
iters += 1
#Stopping criteria
done = (norm(r) < tol or iters >= max_iters)

return x

Algorithm 12.2. Implementation in Python of the conjugate-gradient method for
solving the linear system Ax = b by minimizing a quadratic objective function of
the form (12.38).

approximation to the objective function using a second-order Taylor polynomial.
The Hessian of the function is required for the Taylor polynomial. But one of the
main reasons for using the conjugate-gradient method is to avoid computing the
Hessian (otherwise we’d just use Newton’s method), so it is beneficial to use a
variant of the conjugate-gradient method that doesn’t require the Hessian.

The only places the Hessian A occurs in the basic (quadratic) conjugate-gradient
method are when computing &k and /?&. But &k can be found by minimizing the
function </>fc(a) = /(xfc + ctdfc), and this can be accomplished with a line search,
which can be done without A.

For /3k there are several approximation formulas that do not require A and can
be used in place of the original conjugate-gradient method above. We list these
formulas here but omit the proofs. For details of their derivations see the references
in the notes for this chapter.

12.7. Convergence of the Conjugate-Gradient Method 563

In each of these cases set Гк = —D/(xfc_i)T.

Hestenes-Stiefel Formula
= r^+1(rfc+i -rfc)

k dj(rfc+i-rfc)

Polak-Ribiere Formula
r^+1(rfc+i -rfc)

Pk = ----------------T------------------- •
Wk

Fletcher-Reeves Formula
_ r£+1rfc+1

Pk — у
rk*k

51 Since the minimizer of f is the same as the minimizer of f — c, it suffices to assume that c = 0.

These modifications to the conjugate-gradient method do not converge in n steps
when applied to functions that are not quadratic. Instead, they should run until
meeting a suitable stopping criterion. Moreover, the A-conjugacy of the direction
vectors tends to deteriorate over time. Thus, it is common to reinitialize the direc­
tion to the negative gradient after every n steps or so.

12.7 Convergence of the Conjugate-Gradient Method
In this section we show that the conjugate-gradient method, when considered as
an iterative algorithm for optimizing a quadratic function, converges linearly. We
assume throughout that the conjugate-gradient method has been applied to the
quadratic objective51

/(x) = |xTAx - bTx, x e Rn, (12.44)

where A > 0. Following Algorithm 12.2, we start with xq and produce nonzero
residuals iq,..., rm, the values oq,..., om, and conjugate directions di,..., dm. If
using exact arithmetic, then for some m < n, we have that rm+i = 0 and xm = x*
is the global minimizer of f. However, when using finite-precision arithmetic, the
sequence iterates, converging linearly to x*, and stops only once a terminal condition
is met. In theory m could be any positive integer, but in practice m < n.

To begin, we need the idea of a Krylov subspace of Rn; see also Volume 1,
Section 13.2.

Definition 12.7.1. For A G 7Wn(R) and у G the kth Krylov subspace of A
generated by у is

■Шу) = span(y,4y,42y,...,4fc“1y).

The residuals iq,..., i> and the conjugate directions di,..., d/, all lie in the
Krylov subspace generated by iq, as the next lemma shows.

564 Chapter 12. Unconstrained Optimization

Lemma 12.7.2. For all k G {1,..., n} we have

span(di,..., dfe) = span(ri,..., rfc) = J^(A, rj. (12.45)

Proof. First, note that left-multiplying the definition of (12.39) by A gives

rfc+i = rfc - akAdk. (12.46)

We now prove (12.45) by induction. The case к = 1 follows because di = ri. For
the induction step assume that (12.45) holds for к = £ — 1. This implies that

Ad^_i G AJ^_i(A, ri) = span(Ar,..., Ar£) C J^(A, ri),

which, when combined with (12.46), gives

Yf> e J^(A,ri)

and
span(ri, r2,..., r£) C J^(A, ri).

Since d# = r£ — /J^d^-i, we also have

span(di,..., d^) C span(ri, r2,..., 17) C J^(A, ri).

But since the dz are А-conjugate and nonzero, they are linearly independent and
thus dim(span(di,..., d^)) = £ > dim J^(A, ri), and hence

span(d!,..., d^) = span(ri, r2,..., r^) = J^(A, rx). □

Lemma 12.7.3. The point xk is the minimizer of f among all x that lie in the set
x0 + ^(А,гг) = {x0 + q | q G J^(A,ri)}; that is,

xk = argmin /(x). (12.47)
xexo+J^fc(A,ri)

Moreover, xk is also the minimizer of e(x)2 = ||x — x*||^ on that same set; that is

xk = argmin e(x)2. (12.48)
xex0+J^fc(A,ri)

Proof. Note first that Ax* = b, which implies that

e(x)2 = (x — x*) TA(x — x*)
= xTAx — 2xTAx* + (x*) TAx*
= xTAx — 2xTb + (x*) Tb
= 2/(x)+bTx*.

Therefore a point x* is the minimizer of f if and only if x* is the minimizer of e2.
Thus it suffices to prove (12.48).

Since Xfc G x0 + ^fc(A, ri) we have

x0 + J^(A,ri) = xfc + ^(A,ri) = xfc + span(di,... ,dfc).

12.7. Convergence of the Conjugate-Gradient Method 565

Therefore, any x G xq + J^(A, i*i) can be written asx = x^+v for some v G
4(A,ri) = span(di,...,dfc).

Since x* = xm for some m > к we have x* = x^ + Г™.t, cadi. By Exercise
12.39 we have

£(x*) 2=£(xfc)2 + ||v||2A, (12.49)

which shows that s2 is minimized precisely when ||v||^ = 0. Hence x^ is the
minimizer of s2. □

Lemma 12.7.4. Let 8k = s(xfc) and &k be the set of all polynomials of degree at
most к with constant term 1. If Ai,..., An are the eigenvalues of the n x n matrix
A, then

< min max|Q(Aj)|.
So 3

Proof. The Krylov subspace J^(A,ri) can be written as

Xk(A, ri) = {p(A)ri | p G R[rr; к - 1]},

where R[ж; к — 1] is the vector space of all polynomials of degree at most к — 1, and
p(A) = aiA1 for any polynomial p(x) = EiJo* агхг G R[x; к — 1]. Therefore,
another way to express Lemma 12.7.3 is to say that x& = xq + p/c(A)ri, where

Pk = argmin /(x0 + p(A)ri) = argmin s(x0 + p(A)ri). (12.50)
—1] —1]

Since ri = Axq — b = Axq — Ax* = A(xq — x*), we have

xfc - X* = x0 +pfc(X)ri - X* = (/ + Apk(A))(x0 - X*).

Therefore, xk — x* = %(Л)(хо — x*), where qk(x) = 1 + xpk(x). Since is the
set of all polynomials of degree at most к with constant term 1, we can write

£k = ||xfc - х*||д = min ||q(A)(x0 - x*)|| A.
q^&k

Exercise 12.40 shows that

4 < 1кИ)(х0-x*)||^ < £q max(^(Aj))2. (12.51)
3

Therefore we have
e2

-4 < min max(n(A?))2. □
s2 ” з 3

Lemma 12.7.5. The error в к = Цх^ — x*|| a satisfies

£k < 1
£° - 2fc-1Tfc (*±|) ’

where к = Xmax/^min is the 2-norm condition number of A (see Definition 11.2.15)
and Tk is the к th nonmonic Chebyshev polynomial (see Section 9.3.3).

566 Chapter 12. Unconstrained Optimization

Proof, By the previous lemma, it suffices to show that

min max Ig(A?-) I <---- —7-- r-
j - 2k-ifk

Since A > 0, all the eigenvalues A of A satisfy 0 < Amin < A < Amax- Recall from
Proposition 9.3.1 that the (nonmomic) Chebyshev polynomials have the property
that |7fc(a;)| < when |#| < 1. Moreover the map

Ащах T Amin 2#
\- A-----/'max /'min

takes the interval [Amin, Amax] into the interval [—1,1]. Thus, the polynomial

Tk (Amax+A min j^ / \ \ ^max ^min J
qkW = --77--7"I AmaxTAmin j

к -^max ^min J

is in since it satisfies g(0) = 1. Moreover, the numerator satisfies

1
2^i

whenever x G [Amin,Amax]- Hence,

min I max|g(Aj)|) < max|g(Aj)| < ------ ------------------c- =------ ---------- r-. □
\ j J j 2fc-1T/c (^maxH~ ^minV ^max ^min J V 1 J

Theorem 12.7.6. The error eк = ||xfc — x*|| a satisfies

(12.52)

where к is the 2-norm condition number of A.

Proof, It suffices to show that

Tk
к + 1\
к — 1J

1
2^ (12.53)

This follows from Exercises 12.41 and 12.42. □

Corollary 12.7.7. The error ek = ||xfc — x*I| a in conjugate-gradient method
converges linearly. More precisely, we have

£k

£o
(12.54)

Exercises 567

Remark 12.7.8. Corollary 12.7.7 shows that if к is close to 1, then convergence
is very fast, but as к —> oo, the corollary isn’t very helpful and we must resort to
using the theorem. Asymptotically, we have

With a little algebra (see Exercise 12.43), we can show that

This is not much less than 1 unless k is large, relative to у/к.

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

12.1. Find all the critical points of the function

f(x) = — — 25#2 + 24#
5 2 3

12.2.
on R and identify which of those is a local minimizer or maximizer.
Find all the critical points of the function

/(ж, у) = Зх2у + 4жу2 + xy

on R2 and identify which of those is a local minimizer or maximizer.
12.3. A Prove all the claims of Example 12.1.17 about minimization of a quadratic

function; that is, prove the following:
(i) For any square matrix A the matrix Q = AT + A is symmetric, and

xTQx = xTATx + xTAx = 2xTAx, so (12.2) is equal to (12.3). Thus
we may always assume that quadratic functions are of the form (12.3)
with Q symmetric.

568 Chapter 12. Unconstrained Optimization

(ii) Any minimizer x of a quadratic function f of the form (12.2) or (12.3)
is a solution of the linear equation (12.4).

*

(iii) If Q > 0, then the quadratic minimization problem (12.2) has a mini­
mizer.

(iv) If the quadratic minimization problem (12.2) has a minimizer, then Q >
0 and the minimizer is the solution of the linear system (12.4).

12.7. Fix m > 1. For each of the following convergent sequences, decide whether
the convergence is sublinear, linear, superlinear but not quadratic, quadratic,
or better than quadratic. If it is linear, determine the rate of convergence д.

(i) xk = 1 + m~k.
(ii) xk =

(iii) xk = 1 + m~2k.
(iv) xk = 2 + m~2k.

Explain why this shows that solving the system (12.4) with positive definite
Q is equivalent to solving the quadratic optimization problem (12.3).

12.4. Let A e Mmxn(>) and b e Rm. Consider the quadratic function

/(Х) = ^||Ах-Ь|||. (12.56)

Prove the following:
(i) The Hessian satisfies D2/(x) = ATA > 0.

(ii) A necessary condition for x to be a minimizer of f is that it satisfies
the linear system

*

ATAx* = ATb. (12.57)

This is called the normal equation for (12.56).
12.5. Consider the quadratic function f given in (12.56). Prove the following:

(i) If A has full column rank, then _D2/(x) > 0, and thus any solution of
the normal equation is a local minimizer of f.

(ii) If A has full column rank, the point x = (ATA)-1ATb is the unique
local minimizer of f.

*

(iii) Even if ATA is not invertible, a solution x to (12.57) always exists.
Hint: Think about the orthogonal projection of b to the subspace Я (A),
as described in Volume 1, Section 3.9.1, and consider the fundamental
subspaces of A (Volume 1, Theorem 3.8.9),

*

(iv) Even if ATA is not invertible, any solution of (12.57) can be written as
x =хЦ v, with v e c/K (A) and x^ = A^b, where A^ = ViEf C7’jr is
the Moore-Penrose pseudoinverse of A, and A = CTiEi V/ is the compact
form of the singular value decomposition (see Volume 1, Theorem 4.5.10
and Remark 4.5.14).

* *1(ii)(iii)

12.6. Prove the claim in Remark 12.1.22 that a critical point (хо,уо) of twice-
differentiable function f is a strict local minimizer if and only if (12.6) holds.
*

Exercises 569

12.8. Prove carefully that the sequence Xk = 1 + к 2 converges to 1 sublinearly.
12.9. Consider the problem of minimizing f(x) = x^\ Note that 0 is the global

minimizer of f.
(i) Write down the algorithm for Newton’s method applied to this problem.

(ii) Show that as long as the starting point is not 0, this algorithm does
not converge to 0, no matter how close to 0 it starts. Why doesn’t this
contradict Theorem 12.2.6?

12.10. Code up an implementation of Newton’s method for finding a critical point
of a function of one variable. Your code should accept a twice-differentiable
function /, an initial guess a70, a desired level of accuracy e, and a maximum
number of iterations M. It should return an approximation to a critical point
of /, provided the algorithm reaches the desired accuracy in fewer than M
iterations. For the stopping criterion, use |rrfc+i — Xk\ < e. Be sure your code
has methods for identifying and handling cases where the algorithm fails or
the sequence does not converge.

12.11. Just as Newton’s method can be used to find roots of a function, the secant
method has an obvious analogue for rootfinding.

(i) Describe the rootfinding version of the secant method and use it to devise
a method to approximate log6(a;) for any b e (1, oo) and any x > 0 using
only basic arithmetic operations and exponentiation.

(ii) Code up your algorithm without importing any libraries or modules.
Your code should accept two floats x > 0 and b > 1 and return a close
approximation to logb(#).

12.12. Prove that an unconstrained linear objective function /(x) = (a, x) +c, with
a e and с E i, either is constant or has no minimum.

12.13. Let /(x) = |xTQx — bTx, where Q e Mn(W) is positive definite (denoted
Q > 0) and b e Rn. Show that exact gradient descent (that is, gradient
descent with optimal line search) converges in one step (that is, Xi = Q-1b)
if and only if xq is chosen such that D/(xq)t = Qxq — b is an eigenvector of
Q and qq satisfies (12.15).

12.14. Assume that f e C1(Rn;R). Let {xfc}£L0 be defined by exact gradient
descent. Show that x^^i — x/~ is orthogonal to Xfc+2 — *fc+i for each к.

12.15. Write a simple implementation of the exact gradient descent method for
quadratic functions. Your code should accept a small number e, arrays xq, b
of length n, and an n x n matrix Q > 0, and your code should return a close
approximation to a local minimizer x* of /(x) = |xTQx — bTx + c. For the
stopping criterion, use the condition ||D/(x/c)T|| < e.

12.16. Construct an implementation of exact gradient descent for arbitrary func­
tions, using Newton’s method (Exercise 12.10) for the line search (you must
choose some initial value of a for Newton’s method—justify your choice).
Your method should accept a callable function /, a starting value xq (an
array of length n), and a small number e. It should return a close approx­
imation to a local minimizer x* of f. For the stopping criterion, use the
condition ||D/(xfc)|| < e.

570 Chapter 12. Unconstrained Optimization

12.17. Apply your code from the previous problem to the Rosenbrock function

f(x,y) = 100(y - x2)2 + (1 - x)2

with an initial guess of (#o,?/o) = (—2,2). Does it converge? If not, explain
why not. If it does, how many iterations does it take to get within 10“5 of
the true minimizer?

12.18. Prove Proposition 12.4.6 as follows:
(i) Let dk = —D2f(xk)~* 1 (ii) (iii)Df(xk)T and set ф(а) = f(xk + adk). Show that

^'(0) = Ddfc/(xfc) = D/(xfc)dfc.
(ii) Show that Df(xk)dk < 0. Hint: Recall that D2f(xk) > 0.

(iii) Show that there exists an a > 0 such that ф'(сф < 0 for all a e (0,ci).
(iv) Show that /(x^ + od/J < /(x^) for all a e (0,d).

12.19. Give an example of a smooth (infinitely differentiable) function f : R2 —> R
and an initial point xq such that D2/(xq) > 0 but /(xq—D2/(xo)-1D/(xo)t)
> /(xo).

12.20. Write an implementation of Newton’s method for finding a local minimizer
of a function f : Rn —> R. Your code should accept a twice-differentiable
function /, an initial guess xq, a desired level of accuracy e, and a maximum
number of iterations M. At each step it should calculate x^+i =xk —
D2f(xk)~1Df(xk>)T and then repeat until it reaches a good approximation
to a critical point of f or exceeds M iterations. For the stopping criterion,
use ||xfc_|_i — Xfc|| < e. Be sure your code has methods for identifying and
handling cases where the algorithm fails or the sequence does not converge.

12.21. Apply your Newton code from Exercise 12.20 to the Rosenbrock function
with an initial guess of xq = (^o, 2/o) = (—2,2). Does it converge? If not,
explain why not. If it does, how many iterations does it take to get within
10“5 of the true minimizer?

12.22. Prove that if A e Mn(F) has eigenvalues A1?..., Xn and В = A + then
the eigenvectors of A and В are the same, and the eigenvalues of В are

+ Ai, /1 + A2,..., /л + An.
12.23. Code up an implementation of the Gauss-Newton algorithm for solving NLS

problems. Your code should accept a differentiable function r : Rn —> Rm,
defining an objective function /(x) = r(x)Tr(x), an initial guess xq E Rn, a
desired level of accuracy e, and a maximum number of iterations M. At each
step it should calculate J(xk) = Dr(xfc)T and compute xk+1 via (12.23), and
then repeat until it reaches a good approximation to a critical point of /, or
exceeds M iterations. For the stopping criterion, use ||x/c+i — x/J| < e.
Apply your code to the range finder problem (Example 12.4.10 and Fig­
ure 12.9) with the data given in the example. Verify that when starting at
x0 = (2,0) your code converges in eight steps to the minimizer (2.9546367,
2.88618843).

12.24.* Adapt your code from Exercise 12.20 to check at each iteration whether the
Newton step descends, and then use backtracking to guarantee that each step
descends.

Exercises 571

Apply your adapted Newton code to the Rosenbrock function with the initial
guess of x0 = (жо,1/о) = (—2, 2). Compare the results to those of Exercise
12.21.

12.25. Prove Proposition 12.5.1 (the Sherman-Morrison formula). Hint: Recall that
to prove X = У-1 it suffices to show XY = YX = I.

12.26. Prove that for the BFGS method, as given in (12.29), the matrix Ak is sym­
metric whenever Ak-i is symmetric.

12.27. Prove that for the BFGS method, as given in (12.29), we have Ak&k — Ук,
and Ak satisfies the constraint (12.28).

12.28. Apply (12.27) twice to derive (12.33).
12.29. Consider the problem of minimizing the function

/(x, y) = x - у + 2x2 + 2xy + y2.

Apply the BFGS algorithm by hand to this problem for two steps (compute
xi and X2), starting at xq = (0,0) and taking Aq = I.
Note: Since f is quadratic, if we had taken Ao = D2/(x0), then the method
would converge to the minimizer in a single step, because BFGS would have
been identical to Newton’s method at that initial step. But since Aq = I ф
D2/(xq), there is no reason to expect convergence in a single step.

12.30. Write an implementation of the BFGS algorithm or use the code in
Algorithm 12.1.

(i) Apply your code to the function in Example 12.5.3 with an initial guess
of x0 = (zo,Z/o) = (4,4) and Ao = £>2/(x0) = [q8 £]. How many
iterations does it take to get within 10“5 of the true minimizer?

(ii) Repeat the previous step with the initial point xq = (4,4) and Aq = I.
(iii) Repeat the previous step with the initial point xq = (10,10) and Aq =

Я2/(х0) = [504 ^
(iv) Repeat the previous step with the initial point xq = (10,10) and Aq = I.
(v) What happens when the algorithm begins at the initial point x0 = (0,0)?

Explain.
12.31. The Davidon-Fletcher-Powell (DFP) method is a quasi-Newton method

that is similar to the BFGS method. Like BFGS, the DFP method makes
a rank-two update to maintain a positive definite Hessian approximation.
Suppose that f e C1(Rn;R). The DFP algorithm for minimizing f is as
follows:

*

(i) Initialize a starting matrix Bq and starting position x0 and let к = 0.
(ii) dfc = —BkDf(xk)T (search direction).

(iii) ak = argmina>0 f(xk + afcdfc) (line search).
(iv) xfc+i = xfc +afcdfc.
(v) pfc = xfc+i -xfc.

(vi) qfc = D/(xfc)T - D/(xfc+i)T.
(vii) If I |D/(xfc+i) 11 < e for some predetermined e > 0, then stop.

572 Chapter 12. Unconstrained Optimization

(viii) Bfc+i = Bk + PTPfc — Bfcqt qfcBfc (DFP inverse-Hessian approximation).*

12.33. Prove that in the special case of where the minimizer is at the origin in Rn
and /(x) = |xTAx, where A is diagonal and positive definite, then coordi­
nate descent (as described on page 557) converges in no more than n steps,
regardless of the starting point xq.

12.34. Let A e Mn(W) satisfy A > 0, and let f be the quadratic function

/(x) = ^xTAx — bTx + c. (12.58)

Given a starting point xq and А-conjugate directions di,..., dn in Rn, show
that the optimal line search solution for x/~ = Xk-i + ctfcdfc, that is, the a
which minimizes ^(o) = /(x^-i + ad^), is given by ak = > w^ere
rk = b — Axfc_i.

12.35. Let A e Mn(R) satisfy A > 0, and let f be the quadratic function (12.58).
Assume a starting point x0 and А-conjugate directions d15..., dn in Rn. For
each к > 0 let xk = ^k-i + «fcdfc, with ak as in the previous problem.

(i) Let the A;th error vector be ek = x& — x*, where x* is the minimizer of f.
Writing so in terms of the basis {do, di,..., dn~i} as So =
show that d^Aso = <5fcd^Adfc and hence

4=4^-

djAdfe

(ii) Show that = £q + ajdj and use this to show that

dkAek = dTkAe0
d[Adk dTkAdk k'

(iii) Use the results of the previous problem to show that ak = —6k.
(iv) Show that en = 0, hence for the quadratic function f this method

converges to the minimizer in no more than n steps.

x ' * 1 (ii) (iii) PfcQfc q/.

(ix) Set к = к + 1 and go to step (ii).
Prove the following:

(i) Show that if Bq is symmetric, then Bk is symmetric.
(ii) Use the DFP method to minimize/(#i, #2) = — £2 + 2^ + 2a?ij;2 +^2

from the starting point xq = [O 0]T with Bq = [j and e = 0.01.

(iii) Show that if the function is quadratic with Hessian Q > 0 (i.e., /(x) =
|xTQx — xTb + c), then Bk+iQpi = p for 0 < i < к.*

(iv) Show that if the function is quadratic with Hessian Q > 0, then pjQpj =
0 for 0 < i < j < к.

(v) If f is quadratic with Hessian Q > 0, how many steps will it take, at
most, for DFP to converge?

12.32. Prove the Sherman-Morrison-Woodbury formula (12.35).*

Exercises 573

12.36. Prove that all the equalities in (12.43) hold.
12.37. For the conjugate-gradient method prove that the vectors r$ and d satisfy

the following relations for all к E {2,..., n}:
*

12.39.* Prove that (12.49) holds as follows:
(i) Show that for all i > к the vector djAv = 0 for all v E J^(A, iq).

(ii) Expand out ||x — x*||^, using the relations x = х& + v for some v E
J^(A, ri) = span(di,..., dfe) and x* = xfc + YT=k+i

(iii) Combine the first two parts to get e(x*)2 = e(xfc)2 + ||v||^.
12.40.* Prove (12.51) as follows:

(i) Show that A = UTAU for an orthonormal matrix U and a diagonal
matrix Л = diag(Ai,..., An).

(ii) Set у = J7(x0—x*) and show that ||q(A)(xo-x*)||^ = уЩчМ)2-
(iii) Show that E”=1 J/2 Ai(?(A»))2 e(* (i) (ii) (iii) * * * * * * xo)2 maXj (q(A3))2.

12.41.* For к E Z+, let be the /cth monic Chebyshev polynomial. Prove that

/ z + _ zk + z~k
lk V 2 J = 2* ’

Hint: Use induction via (9.20).
12.42.* Prove Theorem 12.7.6 by showing the following:

(i) If^ = ^±i,then^ = ^l.

(ii) Use the previous exercise to prove (12.53).
12.43.* Derive the expansion in Remark 12.7.8.

(i) rjrfc = 0 for all i < k.
(ii) Generalize (12.42) to prove that for all £ < к we have

k-l
Гк~ге = -52а>Л<1*'

j=e

(iii) For each £ < к prove that
k-l k-l

rkrk = - 52 «id^Ffc = - 52 ai (di> rk)A ■
i—l i—£

12.38. A For each of the multivariable optimization methods discussed in this chap­
ter, list the following:

(i) The basic idea of the method, including how it differs from the other
methods in the list. Include any geometric description you can give of
the method.

(ii) What types of optimization problems it can solve and cannot solve.
(iii) Relative strengths of the method.
(iv) Relative weaknesses of the method.

574 Chapter 12. Unconstrained Optimization

Notes
Useful references for the optimization techniques in this chapter include [CZ01]
and [NW99]. For details on the limited-memory BFGS algorithm, see [NW99, Sec­
tion 7.2]. For a detailed discussion of the use of Levenberg-Marquardt methods in
NLS problems, see [TMS10]. The NLS range finder example was inspired by [Vanl8].
It is closely related to the geodetic problem of updating geographic survey data (mea­
suring distances, angles, and altitudes), which was the problem for which Gauss de­
veloped the method of least squares. For more on this, see [Dem97, Example 3.3].
For more on conjugate-gradient methods see [GS92, Dan67, Dan70, She94]. For
more about the conjugate-gradient method for nonquadratic objectives, see [CZ01].

Linear Optimization

The simplex method is so easy I could even teach it to MBA students.
—Emily Evans

If the objective function in an unconstrained optimization problem is linear and
nontrivial, then, as shown in Exercise 12.12 it has no minimum nor maximum.
But many interesting and important problems correspond to minimizing a linear
function with some additional constraints. Problems where the objective and the
constraints are all linear are called linear optimization problems. Linear optimiza­
tion problems arise in many important applications, including resource allocation,
production planning, labor scheduling, transportation, portfolio management, mar­
keting, and military logistics, to name just a few.

We begin this chapter with a discussion of convex and affine sets, which play
an important role in linear optimization problems. We then state and prove the
fundamental theorem of linear optimization, which guarantees that if there is an
optimizer for a linear problem, then one of the vertices of the feasible set is an
optimizer. Thus, one strategy to finding an optimizer is to search among the vertices
of the feasible set. This is the key idea for the most famous and widely used method
for solving a linear optimization problem, namely, the simplex method, which was
developed by George Dant zig in 1947. It remains one of the most notable algorithms
of our time.

13.1 Convex and Affine Sets
Before beginning the subject of linear optimization, we need a little background
about convex sets and affine sets. Throughout this section assume that V is a
given vector space.

13.1.1 Convex Sets

Definition 13.1.1. A nonempty set С С V is convex if for each x, у € C, we have

Ax + (1 - A)y e C

575

576 Chapter 13. Linear Optimization

Figure 13.1. The set E (left) is not convex because the line segment (red) between
a and b is not contained in E. But the set C (right) is convex because the line
segment between any two points x, у e C is always contained in C.

for all A with 0 < A < 1. Said differently, C is convex if for each x, у e C the line
segment £(x, y) = {Ax + (1 — A)y | A e [0,1]} between x and у is contained in C
for every x.yE C; see Figure 13.1.

Example 13.1.2. If (V, || • ||) is a normed linear space, then the open ball
B(v,r) centered at v G V is convex. To see this, consider x,y G B(v, r), and
let 0 < A < 1. We have Ax + (1 — A)y 6 B(v,r), since

||Ax + (1 - A)y - v|| = ||A(x - v) + (1 - A)(y - v)||
< A||x - v|| + (1 - A)||y - v||
< Ar + (1 — A)r = r.

Proposition 13.1.3. The intersection of a collection {Ca}aEj С V of convex sets
is convex if it is not empty.

Proof. Let С = If x,у e C and 0 < A < 1, then x,у e Ca for each
q E J, which implies Ax+ (1 — A)y e Ca for each a e J. Thus, Ax+ (1 — A)y e C.
□

13.1.2 Convex Combinations and Convex Hulls

Definition 13.1.4. Let S be a nonempty subset of V. The convex hull of S,
denoted conv(S), is the set of all convex combinations of elements of S, that is, the
set of all finite sums of the form

AiXi 4-------h AfcXfc for Xi e S and к E Z+,

where each A* > 0 and Ai + • • • + A& = 1. This set is also sometimes called the
convex span of S.

Proposition 13.1.5. If S is a nonempty subset ofV, then conv(S) is convex.

Proof. See Exercise 13.2. □

Proposition 13.1.6. If C is a convex subset ofV, then conv(C) = C.

13.1. Convex and Affine Sets 577

Proof, It is immediate from the definition that С C conv(C), so it suffices to
show conv(C) С C; this follows by induction on the number of terms in the convex
combination. The cases n = 1 and n = 2 follow by the definition of a convex set.

Suppose that all convex combinations of C of length n are in C, and consider a
convex combination of length n +1, say, x = AiXi + A2X2 4------ H Anxn + An+ixn+i,
where, after possibly reindexing, we may assume 0 < An+i < 1. Rewrite x as

/1 \ \ (^ixi . . Anxn \x — (1 — An+i) I ----- -------- I- • • • 4- - ---- г---- I +An_|_ixn_|_i.
\ 1 An_|-i 1 An_|-i J

w

Thus, if w = + • • • + , then by the inductive hypothesis, we have
w e C. This implies x = (1 — An+i)w + An+ixn+i e C, by the definition of
a convex set. Hence, all convex combinations of n 4- 1 elements are also in C.
Therefore, by induction, all finite convex combinations of elements of C are in C,
and conv(C) С C. □

Theorem 13.1.7. Assume S С V is not empty. The convex hull of S is the
smallest convex set that contains S, meaning that if D is any convex set containing
S, then conv(S) C D. Moreover, conv(S) is equal to the intersection of all convex
sets containing S.

Proof, If D is any convex set with S C D, then conv(S) C conv(D) = D, by
Proposition 13.1.6. This also implies that conv(S) is a subset of the intersection
of all convex sets containing S. Conversely, since conv(S) is itself a convex set
containing S, it must contain the intersection of all such sets. □

13.1.3 Affine Sets and Functions

Definition 13.1.8. A set AcV is called affine if there exist some linear subspace
W С V and a point v e V such that A = W + v = {x e V | 3 w e W,x = v + w}.
In other words, A is affine if A is a translate (a coset) of a linear subspace W of
V; see also Volume 1, Section 1.5.1. The dimension of an affine space A = W + v
is the dimension of the linear subspace W.

Example 13.1.9.

(i) Any linear subspace is an affine set (with translation 0).

(ii) A single point {c} is an affine set of dimension 0 because it is a translate
of the zero subspace: {c} = {0} 4- c.

(iii) For any matrix A E AfmXn and any b E Rm the set С = {x E Rn | Ax =
b} is an affine set if it is not empty. To see this, let xy be any element
of C and observe that C = jV (A) + x0 = {w 4- x0 E Rn | Aw = 0},
and the kernel c# (A) of A is a subspace of Rn.

578 Chapter 13. Linear Optimization

Proposition 13.1.10. If an affine set A can be written in two ways as A =
W + v = W' + v', with W and W both linear subspaces of V, then W = W' and
v — v' e W. Thus the dimension of A is well defined.

Proof. The proof is Exercise 13.9. □

Proposition 13.1.11. An affine set is convex.

Proof. The proof is Exercise 13.1 (ii) □

Affine functions are those that differ only by a constant from linear transfor­
mations. We (and everyone else) often call these linear functions. Beware that this
name is easily confused with linear transformations.

Definition 13.1.12. Let V and W be vector spaces. A function f : V —> W is
affine if there is a linear transformation L : V —> W and a constant c e W such
that /(x) = L(x) + c for all x e V.

Example 13.1.13.

(i) Any linear transformation is an affine function.

(ii) Any constant function is affine.

(iii) The function / : R2 —> R given by f(x,y) = 3x + Ay + 6 is not a linear
transformation because it does not map the origin to 0, but it is affine,
because /(ж, у) — 6 is linear.

Proposition 13.1.14. If С С V is a convex set and f : V —> W is an affine
function, then f(C) is convex. Also, if D C W is convex, then f-1(D) = {v e V |
/(v) e D} is convex.

Proof. The proof is Exercise 13.3. □

Proposition 13.1.15. If А С V is an affine subset of V and f : V —> W is an
affine function, then f(A) is an affine subset of W. Similarly, if В C W is an
affine subset ofW, then /-1(B) is affine subset ofV.

Proof. The proof is Exercise 13.10. □

13.1.4 Hyperplanes and Half Spaces
Throughout the rest of this chapter, unless otherwise indicated, let (V, (•, •)) be a
given inner product space over R, and let ||x|| = у/(x, x) be the corresponding
norm.

13.1. Convex and Affine Sets 579

Definition 13.1.16. A hyperplane in V is a set of the form {x e V | (a, x) = b},
where a eV is not zero, and b e R.

Remark 13.1.17. Algebraically, the hyperplane H = {x e V | (a, x) = b} is the
solution set of the linear system (a, x) = b, which is

a±xi 4-------h anxn = b,

where a = (ai,..., an) and x = (aq,..., xn). This is the same as the zero locus
{x e V | /i(x) = 0} of the affine function /z(x) = (a, x) — b. Sometimes people call
a function of the form /z(x) = (a, x) — b a hyperplane, but this is a little sloppy.

Remark 13.1.18. Geometrically, H is the set of all vectors that have a constant
inner product with a. If xq E H is given, then we may write the hyperplane as H =
{x e V | (a, x — xq) = 0}. This implies that H is a translate of the orthogonal com­
plement W = span(a)± of a, which is the linear subspace of V consisting of vectors
orthogonal to a; see Figure 13.2. If V is finite dimensional, then every such W has di­
mension dim(V) — 1, and so the dimension of a hyperplane in V is always dim(V) — 1.

Example 13.1.19. Given two points c,d E V, the perpendicular bisector is
the unique hyperplane that goes through the midpoint m = |(c + d) of c
and d and is perpendicular to the line segment €(c, d) joining the two points.
The perpendicular bisector is given by the hyperplane (d — c, x — m) = 0, or,
alternatively, (a, x) = b. where a = d — c and

6=/d-c,|(c + d)\ = |(||d||2-||c||2);

see Figure 13.3.

Figure 13.2. A set of the form H = {x | (a, x) = b} is called a hyperplane
(see Definition 13.1.16). Any hyperplane is an affine set because it is a translate
(coset) of the linear subspace W = span(a)1- of all vectors orthogonal to a; see
Remark 13.1.17.

580 Chapter 13. Linear Optimization

Figure 13.3. The perpendicular bisector ofc and d is the hyperplane (red) through
the midpoint |(c + d) (yellow) that is perpendicular to d — c, as described in
Example 13.1.19. This can also be described as the set {x | (d — c,x — m) = 0}.

Figure 13.4. The half space S = {x e V | (a, x) < b} (gray) is “half” of the space
determined by the supporting hyperplane H = dS = {x e Rn | (a, x) = b} (red). If
b is positive, then the half space lies on the side of the hyperplane that contains the
origin.

Definition 13.1.20. A half space in V is a set of the form S = {x e V | (a, x) <
b}, where a eV is not zero, and b e R. The hyperplane H = dS = {x e V | (a, x) =
b} is called the supporting hyperplane of S. See Figure 13. f. for an illustration.

Remark 13.1.21. The set {x | (a, x) > b} is also a half space, since it can be
written as {x | (—a, x) < —b}.

13.2 Projection, Support, and Separation
Throughout this section we assume that (V, (•, •)) is a finite-dimensional inner prod­
uct space. Many of the results of this section also hold in the infinite-dimensional
case, but their proofs would take us beyond the scope of this text. Details on the
infinite-dimensional case can be found in any good book on functional analysis.

13.2.1 Projection to a Convex Set
The notion of a projection in linear algebra extends in a very natural way to convex
sets. This is a very powerful concept.

13.2. Projection, Support, and Separation 581

P = projcx

Figure 13.5. The projection projcx of the point x onto the convex set C is the
point p E C nearest to x.

Definition 13.2.1. Let С С V be nonempty, closed, and convex, and let x E
V. The projection of x onto C, denoted projcx, is the point p E C satisfying
||x — p|| < ||x — у|| for all у E C. In other words, projcx is the closest point in C
to x. See Figure 13.5.

The problem of finding the projection of a point x onto a convex set C is a
constrained optimization problem of the form

minimize ||x — p||
subject to p E C.

(13.1)

Remark 13.2.2. Since the squaring function is strictly increasing, (13.1) is equiv­
alent to the problem of minimizing ||x — p||2 subject to p E C, which is generally
easier to compute.

Theorem 13.2.3. If С С V is a nonempty, closed, and convex set, then every
x e V has a unique projection p E C.

Proof. Let x e V be given. Since C is not empty, there exists at least one z E C.
Consider the closed and bounded subset

C' = {yeC:||y-x||<||z-x||}.

Since V is finite dimensional, the Heine-Borel theorem (Theorem 5.5.4 of Volume
1) guarantees that C" is compact. Let f : C —> R be the function /(y) = ||y — x||.
Notice that infyec/(y) = infyec' /(y)- Since f is continuous and C" is compact,
the extreme value theorem guarantees that some p E Cl is a minimizer of f on C.
and thus also a minimizer of f on all of C.

To prove uniqueness, suppose there exists another minimizer q E C of f with
q ф p. Since p and q are minimizers of f on C, it follows that the midpoint
m = 1 (p + q) E C is also a minimizer, since x — m = | (x — p) + | (x — q), and thus

582 Chapter 13. Linear Optimization

However, x — m is orthogonal to m — q, since

I p + q
\ 2 2 /

x — q x — p x — q
2 ’ 2

It follows from the Pythagorean law (Theorem 3.1.20 of Volume 1) that

l|x - q||2 = ||x - m + m - q||2 = ||x - m||2 + ||m - q||2 > ||x - m||2,

which is a contradiction, since q and m are equidistant from x. □

Example 13.2.4. Since every subspace of a vector space is convex, an orthog­
onal projection of a vector to a subspace is the same as the convex projection
of the vector to the subspace.

The following theorem gives a very useful condition for deciding when a point
is a projection.

Theorem 13.2.5 (Convex Projection Formula). Assume С С V is nonempty,
closed, and convex. A point p e C is the projection of x onto C if and only if

(x - p, p - y) > 0 for all у &C. (13-2)

Proof, The proof is Exercise 13.13. □

13.2.2 Support and Separation
An important concept in convex analysis is that of a supporting hyperplane.

Definition 13.2.6. Let C be a set in V. The hyperplane H = {v e V | (a, v) = b}
supports C if

(i) С П H + 0, and

(ii) C lies entirely in only one of the two half spaces {v e V | (a, v) < b} or
{v e V | (a, v) > b} defined by H. In this case, the half space containing C
is also said to support C.

If D С V is another set, then C and D are separated by H if (a, x) < b for all
x e C and (a, x) > b for all x e D, or vice versa. The sets are strictly separated
if (a, x) < b for all x e C and (a, x) > b for all x e D, or vice versa.

13.2. Projection, Support, and Separation 583

Figure 13.6. The separation lemma (Lemma 13.2.7) guarantees that for any
nonempty, closed, and convex set C, and any x C, there exists a hyperplane
H (red) separating C from {x} and supporting C, meaning that one of the half
spaces (pink) defined by H contains all of C, that H itself contains at least one
point (here that point is p/ and that x is not in the half space containing C.

Lemma 13.2.7 (Separation Lemma). Assume C eV is nonempty, closed, and
convex. Ifx £ C and p = projc x, then the hyperplane H = {z | (x — p, z — p) = 0}
supports C and the half space S = {z | (x — p, z — p) <0} contains C but not x,
as illustrated in Figure 13.6.

Proof, The proof is Exercise 13.12. □

Theorem 13.2.8 (Supporting Hyperplane Theorem). Assume С С V is
closed, convex, and not empty. If p e C and there exists a sequence (xfc)£L0 C Cc
outside of C that converges to p, then there exists a supporting hyperplane of C that
contains p.

Proof. For each к e N let p^ = projcx&, let afc = (x/, — pfc)/||xfc — Pfc||, and let
bk = (afc,pfc). Since ||а&|| = 1 the vector а& lies in the closed unit sphere, which is
compact. Therefore, the sequence (а&)£Т0 must have a subsequence that converges
to some a e V with ||a|| = 1. Passing to that subsequence, we may assume that
a^ a. Let x = a + p. Since р& is the projection of х& to C for every к e N,
Lemma 13.2.7 shows that

(xfc -Pfc,z-pfc) < 0

and every z e C. This shows that

(a^,z) < (aj-jP/c) (13.3)

for all к e N and z G C. Taking the limit of (13.3) gives (a, z — p) <0, which
can be rewritten as (x — p, p — z) > 0. This implies p is the projection of x onto
C by Theorem 13.2.5. Moreover, the hyperplane H = {z e V | (a, z) = b}, with
b = (a,p), is the desired hyperplane containing p. □

584 Chapter 13. Linear Optimization

Figure 13.7. Minkowski’s theorem (Corollary 13.2.9) guarantees that any closed
convex set C can be described as the intersection of supporting half spaces. Here
several of the supporting hyperplanes are drawn.

Corollary 13.2.9 (Minkowski). Any nonempty, closed, convex set in С С V
is equal to the intersection of all half spaces that support it. Figure 13.7 gives an
illustration of this.

Proof. Let be the set of all half spaces that support C, and let К be the
intersection of all half spaces in Clearly, С С K, so it suffices to show that
К С C. Suppose there exists x e К \ C. By the separation lemma (Lemma 13.2.7),
there exists a supporting half space containing C but not x. It follows that x К,
a contradiction. Therefore, С = К. □

13.2.3 Separating Hyperplanes
Given any convex set C and point x C, the separation lemma (Lemma 13.2.7)
guarantees that there is a hyperplane H supporting C that separates C and x. Since
H supports C, the separation is not strict. However, a much stronger separation
result holds, namely, any two disjoint convex sets, where one is compact and the
other closed, can always be strictly separated by a hyperplane. This is an important
result, called the separating hyperplane theorem or the Hahn-Banach separation
theorem. This is illustrated in Figure 13.8.

Theorem 13.2.10 (Separating Hyperplane Theorem). For any nonempty,
disjoint, convex subsets C and D with C compact and D closed, there exists a strictly
separating hyperplane.

Proof. Since C and D are disjoint subsets, with C compact and D closed, Exercise
5.33 of Volume 1 shows that

dist(C, D) = inf{||u — v|| | u e C, v e D} > 0.

Moreover, there exist points с e C and d e D that achieve the minimum distance,
that is, ||c — d|| = dist(C, D). Consider the hyperplane (a,x) = b defined by the
perpendicular bisector of the points c and d; see Example 13.1.19 and Figure 13.8,

13.3. Fundamentals of Linear Optimization 585

Figure 13.8. Construct a strictly separating hyperplane for the convex sets C and
D by taking the two distance-minimizing points с E C and d e D and choosing the
perpendicular bisector (red) through the midpoint (yellow).

that is, let

a — d c and. о —--------------- .
2

Set h(x) = (a, x) — b. It suffices to show that h is negative on C and positive on D.
Suppose there exists u e D such that /z(u) < 0. We have

h(. Zd HdH2-||c||2 Л „„ d + c\n\u) = \d — c, u)------------------- = (d — c, u------- -— }

/, d —c\ ||d — c||2
= \ d — c, u — d H------— \ = (d — c, u — d) + -—.

Hence (d — c, u — d) <0. However, since

-7-||(l — *)d + tu — c||21 = 2 (d — c, u — d) < 0,
dt h=o

there exists some 0 < t < 1 such that ||(1 — t)d + tu — c||2 < ||d — c||2. In other
words, (1 — £)d + tu lies in D and is closer to c than d is. This is a contradiction
since d is the point in D that is closest to c. Thus h(u) > 0 for all u e D. The
proof follows similarly for C. □

Corollary 13.2.11. If C eV is closed, convex, and not empty, then for any к C
there exists a hyperplane that strictly separates {x} and C.

Remark 13.2.12. It is important that one of the sets be compact for the strict
separation in the theorem to hold. In the noncompact case it can still be shown
that there exists a separating hyperplane, but the separation might not be strict.
In Exercise 13.14 you are asked to give an example of two nonempty closed convex
disjoint sets that cannot be strictly separated.

13.3 Fundamentals of Linear Optimization
A linear optimization problem is one where both the objective and the constraints
are all linear (affine) functions.

586 Chapter 13. Linear Optimization

13.3.1 Standard Form for Linear Optimization
Many seemingly different optimization problems are actually equivalent. In order to
avoid having to talk about all the different equivalent forms of a linear optimization
problem every time we want to prove a result, we usually assume that our problem
has been put into the following standard form.

Definition 13.3.1. An optimization problem is linear if the objective function and
the constraint functions are linear functions. A linear optimization problem is in
standard form if it can be written as

minimize cTx
subject to Ax b,

x 0,
(13-4)

where A e MmXn(^); b e and c e Rn. The symbols and >z denote entrywise
inequality. Written out in coordinates, this takes the form

minimize CiXi + C2X2 H-------h cnxn
subject to ацх± + 0-12^2 + • • • + a±nxn < bi,

&21^1 + ®22^2 + • • • + <^2n^n < &2,
(13.5)

®ml^l T ®m2^2 “h ' ’ ’ “h O'mn^n < bm,
X± > 0, X2 > 0, . . . , Xn > 0.

The inputs xi,...,xn are called the decision variables. A point x is said to be
feasible if it satisfies the constraints. The set & of feasible points is called the
feasible set. If & = $, the problem is infeasible; otherwise it is feasible.

Nota Bene 13.3.2. Linear optimization is often called linear programming.
The word programming here is an old-fashioned way of referring to the tables
that were traditionally made to solve linear optimization problems. We avoid
this usage of the term programming in this book to prevent confusion with
computer programming.

Example 13.3.3. The linear optimization problem

maximize
subject to

5^i — X2 + 6а?з + 7
4a?i + X2 + X3 < -2,
X2 - + 8 > 1,
Ж1 > 0, X2 < О, Ж3 > 0

can be rewritten in standard form as follows. First, the constant 7 in the
objective does not change the optimizer, so it may be dropped. Second, the
problem may be converted to a minimization problem by changing the sign of

13.3. Fundamentals of Linear Optimization 587

the objective. Third, the constant 8 in the constraint may be combined with
the bound of 1 and that constraint multiplied by —1 to change the constraint
from > to <, giving

minimize — 5a?i + X2 — 6^3
subject to 4^i + X2 + #3 < -2,

#1 - X2 < 7,
^1 > 0, X2 < 0, x% > 0.

Finally, replacing X2 by — X2 gives

minimize —5a?i — X2 — 6ж3
subject to 4a?i — X2 + X3 < —2,

xi + X2 < 7,
a?i > 0, X2 > 0, X3 > 0.

This has the matrix form (13.4), where

4 -1 1
1 1 0

Remark 13.3.4. In the standard form the two constraints Ax 22 b and x >2 0 can
be combined into one inequality with x [£]. Thus, we sometimes write a
linear optimization problem as

minimize cTx

subject to Ax b,
(13.6)

where A = [J] and b = [£].

13.3.2 The Fundamental Theorem
The feasible set of a linear optimization problem is an intersection of finitely many
half spaces. Such an intersection is called a polyhedron. The fundamental theorem
of linear optimization (Theorem 13.3.13) guarantees that every linear optimization
problem with a nonempty, bounded feasible set always has a minimizer that is a
vertex of the feasible polyhedron. In other words, the search for a minimizer boils
down to only searching among the vertices, and there are only finitely many of
these.

Definition 13.3.5. A polyhedron P in Rn is the intersection of finitely many half
spaces. In other words, a polyhedron P is a set that can be written in the form

P = Q{x e Rn I ajx < bi} = {x e ИГ I Ax b},
2=1

588 Chapter 13. Linear Optimization

Figure 13.9. The intersection of half spaces forms a polyhedron. The intersection
of the half spaces a^x < b± with ajx < 62 and ajx < 63 is the triangle T.

where A is the mx n matrix whose ith row is af and b is the column vector whose
ith entry is bi; see Figure 13.9 for a graphical depiction. The dimension of P,
denoted dim P, is the dimension of the smallest affine subset of Rn containing P.

Remark 13.3.6. A polyhedron is a closed, convex set, since it is the intersection
of closed (convex) half spaces.

Definition 13.3.7. Let С C be a convex set. An extreme point, or vertex, ofC
is a point v E C that cannot be written as the midpoint of any two distinct points in
C. In other words, a point v e C is an extreme point if the equality v = j(xi +X2)
for xi,X2 6 P implies that v = Xi = X2. This is depicted in Figure 13.10. We
denote the set of vertices of C by vert(C).

A vertex of a polyhedron can be identified by the space of constraints that are
active at that vertex.

Definition 13.3.8. Let P = x{x e | a^x < bi} be a polyhedron defined by
each of the half spaces ajx < bi. For any p e P, the ith constraint a^x < bi is
active (or binding^) at p if it satisfies the equality

a^P = bi;

Figure 13.10. A point (yellow) that is the midpoint of two other distinct points in
a polyhedron P (gray) is not a vertex of P. The vertices (red) of P are the points
that cannot be written as the midpoint of two other distinct points in P.

13.3. Fundamentals of Linear Optimization 589

Figure 13.11. The active constraints at a vertex v of a polyhedron are those
which are equalities at v. The active constraints are a^x < b± and ajx < b^,
corresponding to the two red hyperplanes. The active set is Av = {ai,a2}, which
spans R2, as required by Theorem 13.3.9.

otherwise it is inactive, or nonbinding; see Figure 13.11. The active set ofpEP
is the set Ap = {a* | ajp = bi for some i = 1,..., m}.

Theorem 13.3.9. Let P C Rn be a polyhedron. A point v e P is a vertex of P if
and only if the active set Av spans all ofW1, that is, span Av = Rn.

Proof. Suppose Av spans Rn but v is not a vertex. This implies v = |(vi + v2)
for distinct points vi,v2 6 P. Let a* e Av. Since vi,v2 e P, we have that
ajvi < bi and ajv2 < bi. However, if either of the inequalities is strict, then
ajv = |(aTvi + aTv2) < bi, which is a contradiction, and thus we have that
both a^vi = bi and ajv2 = bi. Let M be the matrix whose rows are af for each
аг 6 Av. Since a^Vi = ajv2 for all a* 6 Av, it follows that Mv1 = Mv2, which
implies that the null space of M is not trivial, and thus M is not of full rank. This
is a contradiction, since the row space of M was assumed to span Rn.

Now suppose that Av does not span Rn, and so there exists a nonzero u 6
(span Av)-1-. This implies that aj(v + cm) = bi for each a* e Av. For any a* Av,
we have a^v < bi, and thus there exists some e > 0 so that v + eu, v — eu e P.
Note that v = |((v + eu) + (v — eu)), and thus v is not a vertex of P. □

Corollary 13.3.10. Ifv e P C Rn is a vertex, then |AV| > n, that is, v must lie
on at least n hyperplanes defining P.

Corollary 13.3.11. The number of vertices of a polyhedron P C Rn defined by the
intersection of к half spaces is at most Q).

Proof. Every vertex must lie on at least n of the к hyperplanes defining P, and
there are ways to choose a collection of n things from among the к hyperplanes
defining P. □

The following theorem (Minkowski-Stemitz) is key to proving the fundamental
theorem of linear optimization. Although we prove it only for Rn, the Minkowski-

590 Chapter 13. Linear Optimization

Steinitz theorem also holds in the infinite-dimensional case, where it is called the
Krein-Milman theorem.

Theorem 13.3.12 (Minkowski—Steinitz). Every nonempty compact convex set
C cRn is the convex hull of its vertices, that is, C = conv(vert(C)).

The proof of the Minkowski-Steinitz theorem is given in Section 13.3.4.

Theorem 13.3.13 (Fundamental Theorem of Linear Optimization). If the
feasible set & of a linear optimization problem is bounded and not empty, then there
exists a vertex v e which is optimal. See Figure 13.12 for an illustration.

Proof. The intersection of closed half spaces is closed, so & is both closed and
bounded and thus compact. By the extreme value theorem (Volume 1, Corol­
lary 5.5.7) there exists a minimizer x* E that is, cTx > cTx* for all x e &.

Suppose that no vertex of & is a minimizer. In this case, cTv > cTx* for each
vertex v in the finite set V = {vi,..., v/,} of all vertices &. Since & is a polyhedron,
it can be written as the convex hull of its vertices (by Minkowski-Steinitz), hence
the minimizer x* can be written as

x* = Aivi 4--------- h AfcVfc,

where A* > 0 and A$ = 1. This gives

cTx* = AicTvi 4--------- h AfcCTvfc > (Ai 4--------- h Afc)cTx* = cTx*,

which is a contradiction. Thus, cTx* = cTv for some v e V. □

Figure 13.12. The fundamental theorem of linear optimization says that a
nonempty, bounded feasible set has a vertex that is a minimizer. The level sets
of the objective function for a linear optimization problem are hyperplanes. Of all
level sets that intersect the feasible set, the one with the smallest value must inter­
sect at either a vertex or along a face of the feasible set. In either case, there is an
optimizer at a vertex.

13.3. Fundamentals of Linear Optimization 591

Remark 13.3.14. This theorem is fundamental to solving linear optimization prob­
lems because it guarantees that once feasibility and boundedness are established,
one of at most vertices must be a minimizer. One of the main methods for find­
ing a minimizer is the simplex method, which moves along adjacent vertices with
decreasing values of the objective function until a minimizing vertex is found. This
is described in detail in the next section.

13.3.3 Applications
Linear optimization problems arise in many real-world settings. We consider two
examples here.

Application: Production Schedules

A company produces n different products using m different raw materials. Let Tj
denote the revenue associated with the production of one unit of product j, and let
Xj denote the number of units of product j produced. Thus, the total revenue is En

Let denote the cost of purchasing one unit of the zth raw material and assume
that there are at most bi units of the zth raw material available for purchase. Assume
that producing one unit of product j requires units of raw material i, so that
the cost of producing one unit of product j is given by Cj = 52$ii &aij-

The net profit pj for each unit of product j is pj = rj — 52™ i and the total
profit is ^=iPjxj- Therefore, the production planner should solve

n
minimize — pj Xj

" (13.7)
subject to L dijXj <bi, i = 1,2,..., m,

j=i
Xj >0, j = 1,2,..., n.

Application: Network Flow

Consider a directed graph G = (V,E), where each node represents a producer or
consumer of a given product and edges are transportation channels for the product.
To make things concrete, we assume the product is cheese, and edges correspond to
trucking routes for transporting cheese.

Let bi denote the amount of cheese produced or consumed at the г th node, where
a negative value means demand. Assume that bi = 0 so that the system does
not grow or shrink over time (economists would say the market clears). For each
edge (i,j) 6 E, let Cij denote the cost of transporting one unit cheese from node
i to node j, and let Xij denote the number of units moved from node i to node j.
The total transportation cost is therefore

COSt — Ci j X ij.

We want to move all the cheese from the producers to the consumers as cheaply as
possible. We also want to do this in such a way that there is no surplus cheese left

592 Chapter 13. Linear Optimization

at any node, that is, so that the flow is balanced at each node, which means that

for each v G V. Moreover, assume that each Xij > 0 so that the flow goes with the
direction of the edge. This is important because flowing backward on edge (г, J)
would be the same as flowing forward on edge (J, г), which should incur a positive
cost at the rate of Cji per unit of cheese, instead of a negative cost (namely x^Cij,
if x^ < 0). There may also be some upper bound x^ < aij on the flow along each
edge—for example, if the number of trucks available on each route is limited.

This gives the linear optimization problem of finding x 6 R^l to

minimize У CijXij

subject to xVj — XiV = bv \/v G V,
(v,j)EE (i,v)EE
0 x a,

where x is the vector of all the x^ and is the vector of all the a^.

13.3.4 *Proof of Minkowski-Steinitz
We now prove the Minkowski-Steinitz theorem (Theorem 13.3.12); however, we first
need the following lemma.

Lemma 13.3.15. Let С C Rn be nonempty, compact, and convex. If H is a
supporting hyperplane of C, then vert(C ПЯ) = vert(C) П H.

Proof. Let v G vert(C)C\H. If x,у G CC\H satisfy v = |(x + y), then v = x = y,
which implies v G vert(C П H). Thus, vert(C) A H C vert(C A H). Conversely,
suppose v G С A H is not an extreme point of C. Thus we can find x, у G C,
with x y, such that v = |(x + y). Assume without loss of generality that
H = {x G Rn | (a, x) = b} and С C {z G Rn | (a, z) < b}. If x H or у H,
then (a, x) < b or (a, y) < b, which implies b = (a, v) = |((a, x) + (a, y)) < b, a
contradiction. Hence, x, у 6 H, which implies that v is not an extreme point of
СПН. It follows that vert(C A H) C vert(C) A H. □

The proof of the Minkowski-Steinitz theorem now proceeds by induction on the
dimension n. In the case of n = 1, a nonempty compact convex set C in R is an
interval of the form C = [a, b\. It is clear that vert(C) = {u, b} and C = conv({u, 6}).

For n > 1, assume by induction that the theorem holds for Rn-1 and consider a
nonempty closed convex set С C Rn. Let x G C be a point that is not a vertex. If
x lies in a supporting hyperplane H of C, then С A H is convex. Translating this
set by —x gives a convex set (С A H) — x in the (n — 1)-dimensional linear subspace
H — x C Rn. By the induction hypothesis the conclusion of the theorem holds on
the set (С А Я) - x. It is straightforward to check that it also holds on С A H.

13.4. The Simplex Method I 593

Combining this with the lemma gives x 6 conv(vert(CnU)) = conv(vert(C)nU) C
conv(vert(C)).

If x does not lie in the boundary of any supporting half space, then since x is
also not a vertex, there must be distinct r, s e C such that x = |(r + s). Let L be
the one-dimensional affine set L = {tr + (1 — t)s | t e R} = s + span(r — s). The
set (L П C) — s is a compact and convex subset of a one-dimensional vector space,
hence the conclusion of the theorem applies to (L П C) — s, and also to L П C. Let
r' and s' denote the vertices of L П C. Thus x lies in the convex span of r' and
s'. For each of the points r' and s' there is a sequence of points outside of C that
converges to the point, so by the supporting half space theorem (Theorem 13.2.8),
r' and s' lie in the boundary H of a supporting half space and thus lie in the convex
span conv(vert(C П Hf) = conv(vert(C)) П H C conv(vert(C)). Therefore x lies in
conv({r', s'}) C conv(vert(C)), as required. □

13.4 The Simplex Method I
The fundamental theorem of linear optimization (Theorem 13.3.13) says that an
optimizer can be found among the vertices of the feasible set. The simplex method
is an algorithm for searching through the set of all vertices to find the minimizer.
In most cases it performs very well, but it is possible to design pathological cases
where it visits every single vertex before finding the optimizer.

The geometric idea behind the simplex method is to start at any feasible vertex
v and examine the vertices neighboring v to see if one improves the objective f;
that is, find a neighbor w of v such that f(yv) < /(v). If such a neighbor can
be found, then move to the neighbor (set v = w) and repeat. If /(w) > /(v) for
every neighbor w, then stop and return v as a minimizer. See Figure 13.13 for an
illustration.

This is the main idea of the simplex method, but there are a few technical details
to work out, including how to find an initial feasible vertex, and what to do when
/(w) = f(y) in order to ensure that the algorithm does not visit the same vertex
more than once. The rest of this section and the next give the details of how to
execute the algorithm.

Figure 13.13. The feasible set for a linear optimization problem is a polyhedron.
If an optimal point exists, then an optimal point occurs at a vertex of the polyhe­
dron. The simplex method searches for optimal points by moving among adjacent
vertices in a direction that decreases the value of the objective function until it finds
a minimizing vertex x* .

594 Chapter 13. Linear Optimization

13.4.1 Slack Variables and Vertices
Corollary 13.3.10 gives a method for identifying vertices, namely, look for points
that lie on at least n of the hyperplanes defining the feasible set. While these points
may not always be vertices (in the unlikely case that the hyperplanes are linearly
dependent), every vertex is of this form.

Feasible points lie on a bounding hyper plane when the inequality in the corre­
sponding constraint is an equality. To track these more easily, we introduce nonneg­
ative variables wi,..., wm, called slack variables, and rewrite the linear optimization
problem as a system with equalities:

minimize
subject to

cTx
Ax + w = b,
x >2 0,
w 4 0.

(13.8)

This system is equivalent to the original problem, since Ax 2^ b if and only if
Ax + w = b and w 4 0. We summarize this idea in the following proposition.

Proposition 13.4.1. For a linear optimization problem with n variables and m
constraints in standard form (13.4), a point x e is feasible if and only if there
exists w 6 such that x 4 0. w > 0. and Ax + w = b.

We call any assignment of x and w a configuration. Note that we can always
solve for w in terms of x as w = b — Ax.

Example 13.4.2. Adding slack variables to the problem

minimize x^ — x%
subject to 2a?i + X2 < 4,

x\ 4- 2a?2 < 3,
X2 >0

gives an equivalent problem

minimize x\ — X2
subject to wi 4- 2a?i 4- X2 = 4,W2 4” Xi + 2x2 — 3, #1, X2, Wi, W2 > 0.

This polyhedron is depicted in Figure 13.14.

The advantage of this new formulation is that it gives a simpler description of
the bounding hyperplanes. In the original version (13.4), the hyperplanes bounding
the feasible set are given by the equations x± = 0, #2 = 0, ..., xn = 0 and by

13.4. The Simplex Method I 595

Figure 13.14. The polyhedron of Example 13.4’2. The locus where wi = 0 is the
hyperplane 2x± + x^ = 4, and the locus w% = 0 is the hyperplane x± + 2x2 = 3. The
red point is the intersection = W2, and at that point both x± and X2 are strictly
positive. Similarly, the yellow point is the intersection x± = X2 = 0 and at that
point wi and W2 are both strictly positive.

each of the rows of the equation Ax = b. But in the new description, the bounding
hyperplanes are given by each of the equations x± = 0, X2 = 0, xn = 0 and
wi = 0, W2 = 0, ..., Wm = 0. So, in the previous example the equation = 0
corresponds to the hyperplane 2#i + X2 = 4 in R2.

Nota Bene 13.4.3. Although a configuration of x and w lies in Rn+m, when
we discuss the hyperplane given by W} = 0, we mean the hyperplane in Rn
defined by the zth row of Ax = b and not a hyperplane in the larger space
Rn+m.

13.4.2 The Simplex Method
As outlined in the introduction to this section, the simplex method starts at a
feasible vertex v, examines the vertices neighboring v to see if one improves the
objective /, and if such a neighbor can be found, it moves to the neighbor and
repeats.

We begin with an example of how this method is actually executed, solving
the linear optimization problem in Example 13.4.2. Using the formulation of the
problem with slack variables, we wish to choose Xi,X2,Wi,W2 in order to

minimize
subject to

xr - x2
Wi + 2a?i + x2 = 4,
W2 + Xi + 2x2 = 3,
Xi, ^2, Wi,W2 > 0.

Let f be the objective function. Note that setting Xi = 0 and x2 = 0 gives Wi = 4
and W2 = 3, which is a feasible configuration, so (^1,^2) = (0,0) is a vertex of the
feasible polyhedron see Figure 13.14. We can solve for w in terms of x and

596 Chapter 13. Linear Optimization

write the following system of equations, called a dictionary'.

f = 0 + Xi - x2

W1 = 4 - 2®i - x2 (139)
w2 = 3 — Xi — 2x2

dependent independent

Since all the variables must be nonnegative, we don’t bother including that infor­
mation in the dictionary. The objective function and the variables and W2 are
written on the left and they are expressed in terms of the variables and xz-

Choosing a vertex of & corresponds to choosing two variables from the set
{a?i, #2, wi, wz} to set to 0; we call these the independent variables and solve for the
other, dependent, variables in terms of the independent variables.52 In the preceding
dictionary, the independent variables are x± and xz, while the dependent variables
are wi and wz-

52The dependent variables are often called basic variables, and the independent variables are often
called nonbasic variables. But we find these names confusing, since the nonbasic variables are
the ones defining the basis of hyperplanes active at the current vertex.

Each step of the simplex method starts at a given vertex, corresponding to a
choice of n independent variables, and moves to a new vertex by trading one of the
independent variables with a dependent variable. That means one of the formerly
independent variables may become nonzero (hence positive) and one of the formerly
dependent variables must be set to 0. In the current example, that means we may
choose one of x± or xz to allow to become positive (and be dependent) and choose
one of wi or wz to set to 0 (and be independent).

Since the coefficient of x± in f is positive, allowing x± to become positive (hence,
dependent) would increase the value of the objective, which is undesirable, whereas
the coefficient of xz is negative, so allowing xz to increase would decrease the ob­
jective, as desired. Thus xz must become dependent, and either or wz must
become independent. Keeping x± = 0, the requirement > 0 gives xz < 4, and
the requirement wz > 0 gives xz < |. Therefore, the largest xz can be is |, and
Wz = 0 gives the binding constraint on rr2. Thus w2 must be the new independent
variable.

Solving for xz in terms of x± and wz gives xz = j — — |w2- Substituting
this into the equations of (13.9) for wi and f gives the following new dictionary:

f = “I + hi + >2

Wi = I - I Xi + |w2
X2 = | - - |w2.

dependent independent

Setting the independent variables, x± and W2, to 0 corresponds to the vertex on the
upper left of Figure 13.14, and the objective has the value — j at this point. Since
the objective f is now a positive linear combination of the independent variables
Xi and W2, and those two variables must always remain nonnegative, the vertex
corresponding to Xi = wz = 0 must be a minimizer of f. So, x* = (0, |).

13.4. The Simplex Method I 597

Remark 13.4.4. Both the slack variables wi,...,wm and the original variables
#i,..., xn are all treated the same way throughout this process, so it makes notation
simpler if we relabel the slack variables to be a?n+i,..., xn+rn by writing xn+i = Wi.
We do this from now on. This means that each of the hyperplanes bounding & is
of the form {xt = 0} for some i E {1,..., n + m}, and the corresponding equation
is given by the zth row of Ax = b in (13.6).

In Algorithm 13.1 we give a more detailed description of how the simplex method
is executed in general.

Begin at a feasible vertex, defined by hyperplanes

xi± = • • • = xin = 0.

Let I = {fy,... ,zn} be the set of indices of these independent variables and
D = {di,..., drri} be the indices of the dependent variables, so that I U D =
{1,..., n + m}.

(i) Solve for the objective f and all the Xj with j E D in terms of the
independent variables (all Xi with i E I), and write the corresponding
dictionary, whose top row is the expression for f in terms of the inde­
pendent variables, and each remaining row is the expression for some Xj
with j E D in terms of the independent variables.

(ii) Identify an independent variable хг for which the coefficient of Xi in / is
strictly negative, so that increasing Xi would decrease f. If none exists,
then stop: the current vertex, defined by /, is a minimizer.

(iii) For each j E D, the inequality Xj > 0 combined with the conditions
хр = 0 for all i' E I \ {г} gives a bound on x± that must be satisfied.

(a) If none of these is an upper bound for X{, then xi may increase
arbitrarily, the feasible set & for this problem is unbounded, and
f has no minimizer because it approaches — oo. Stop.

(b) Otherwise, the smallest of these upper bounds is called the binding
(or active) constraint. Let j E D be an index corresponding to the
binding constraint (there may be more than one dependent variable
that yields the same constraint).

(iv) Trade the positions of i and j; that is, remove i from I and put it into
D, and remove j from D and put it into I. The variable Xi is called
the entering variable, as it enters Z), and the variable Xj is the leaving
variable.

(v) Repeat from step (i).

Algorithm 13.1. Outline of the basic simplex method for solving linear optimiza­
tion problems, beginning at a feasible vertex. The problem should be of the form
(13.8) but where the slack variables wi,... ,wm are renamed to rrn+i,..., a?n+m.
Coding up this algorithm is an exercise in the computing labs for this volume.

598 Chapter 13. Linear Optimization

Nota Bene 13.4.5. In the basic simplex method there are two choices to be
made with each iteration. First, one independent variable must be chosen as
the entering variable. Any independent variable Xi for which the coefficient of
Xi in f is strictly negative in the objective f will do, but there may be some
choices that improve the objective more than others. Second, once the entering
variable is chosen, the leaving variable must be chosen. Again, there may be
more than one candidate, and usually any dependent variable that imposes a
binding constraint may be used (but see the next section for a discussion of
cycling, where not just any choice will work).

There are many rules for choosing which variables to take as the entering
and leaving variables. In the next section we discuss one of these rules, called
Bland’s rule. But in many cases the simplex method works well with just
choosing the first variables you find that can be used; that is, choose as the
entering variable the first variable you find that has a negative coefficient in
the objective, and choose as the leaving variable the first variable you find
that imposes a binding constraint on the entering variable.

The basic version of the simplex method converges in most cases, as described
in the following proposition.

Proposition 13.4.6. Assume that the feasible set of a linear optimization problem
is bounded and not empty. If no vertex is visited more than once by the simplex
method (for example, if the objective function strictly decreases at every step of the
algorithm), then the simplex method terminates at a minimizer of the objective.

Proof. Since the feasible set is bounded, it has a finite number of vertices. Since no
vertex is visited more than once, the algorithm must terminate. The terminating
vertex corresponds to a choice of n independent variables Xir,..., Xin. Because the
algorithm terminates at this vertex, the coefficient of each independent variable
Xi£ in the objective function f = £ + <ЧкХ{к (where £ is the constant term) is
nonnegative. But every feasible point must satisfy Xi£ >0, and hence f is minimized
at the vertex xi± = • • • = xin =0. □

Remark 13.4.7. Usually, every step of the simplex method strictly decreases the
objective, but there are settings where that is not the case. Theorem 13.5.4 in
Section 13.5.3 gives a method to ensure that no vertex is visited more than once,
even in the case the objective is not strictly decreased.

Remark 13.4.8. Although we have worked out the steps of the simplex method
in the examples of this section by hand, these are straightforward to program using
standard methods of numerical linear algebra (see the accompanying labs for this
volume). Except for the purpose of learning the method, executing these steps by
hand is as silly as solving a large linear system of equations by hand.

13.4. The Simplex Method I 599

13.4.3 Another Example
Consider the problem of choosing Х1,Х2,хз to

minimize —x\ — 2x2 + Зхз
subject to 2xi + X2 + X3 < 4,

-xx - 2x2 + 4x3 < 2,
Xi, x2,x3 > o.

Adding slack variables x± and x5 gives an equivalent linear optimization problem

minimize — Xi — 2x2 + 3x3
subject to 2xi + X2 + X3 + x± = 4,

-xx - 2x2 + 4x3 + x5 = 2,
Xi, X2, X3, X4, x$ > 0.

The point Xi = x2 = x3 = 0 is feasible because plugging these values into the equa­
tions above gives x± = 4 and x5 = 2 (both positive). Starting at this configuration,
and solving for the objective /, as well as x^ and x$ in terms of the independent
variables Х1,Х2,хз, gives the initial dictionary

f = 0 - Xi - 2x2 + 3x3

a?4 = 4 — 2xi — X2 — X3

x5 = 2 + Xi + 2x2 ~ 4x3.

Since the coefficients of Xi and X2 in f are negative, increasing either Xi or X2
will decrease f. It doesn’t matter which we choose, so take Xi. The constraint
on Xi given by X4 > 0 (and all other independent variables set to 0) is Xi < 2.
The constraint of x$ > 0 implies that Xi > —2, which always holds, since Xi is
nonnegative. Thus the only binding constraint is given by x± > 0, so swap Xi with
#4, making x± independent and Xi dependent.

Solving the first equation for Xi in terms of x± gives

Xi = 2 - - |.r3 - ^x4. (13.10)

Replace the first constraint with (13.10), and substitute this expression for Xi ev­
erywhere else Xi occurs in the first dictionary. The resulting dictionary is

f = -2 - |x2 + ^хз + |x4

Xi = 2 - |x2 - |x3 - |x4
X5 = 4 + |x2 - 1^3 -

Only X2 has a negative coefficient in the objective function, so X2 is the new entering
variable. The first constraint Xi > 0 gives X2 < 4, and the second constraint X3 > 0
gives X2 > — |, which is not binding. Therefore, Xi is the leaving variable.

Solve the first equation for X2 to get X2 = 4 — 2xi — X3 — X4, and substitute this
into the previous dictionary to get

f = — 8 + 3xi + 5хз + 2x4

X2 = 4 — 2xi — Хз — X4
хз = 10 — 3xi — 6x3 — 2x4.

600 Chapter 13. Linear Optimization

The independent variables Xi, X3, and correspond to the vertex =
0, which gives x2 = 4 and x$ = 10.

Since all coefficients in the objective function are positive, the objective function
cannot be further decreased by swapping a variable. Thus the solution to the original
problem is x* = (0,4,0).

The final dictionary corresponds to the minimization problem

minimize
subject to

—8 + 3^i + 5^3 + 2a?4
2^i + хз + x± < 4,
3^i + бжз + 2x4 < 10,
Ж1, хз, x± > 0,

which is equivalent to the initial optimization problem. But now it is easy to see
that = хз = x± = 0 is optimal, because increasing any of these variables increases
the objective.

13.4.4 *An Unbounded Example
Consider the following linear optimization problem:

minimize — X\ + 2x2 + X3
subject to -Ж1 + x2 < 5,

2x2 - хз < 2,
Ж1, х2,хз > 0.

Adding slack variables x± and x$ gives the following dictionary representation:

f = 0 - X1 + 2x2 + хз

X4 = 5 + Xi — x2
хз = 2 - 2x2 + X3.

To decrease the objective function, x± must be the entering variable, since it is the
only independent variable with a negative coefficient in f. The constraint x$ > 0
does not bound #1, and so the only constraint on x 1 is given by £4 > 0, which implies
that x\ > —5. Since there is no upper bound on sq, it may be arbitrarily large,
which means that the feasible set is unbounded. The objective has no minimizer
because setting x± = z > 0 gives the valid configuration x± = z,x2 = 0, Ж3 = 0, £4 =
5 + г, Хз = 2 with /(x) = —z.

13.5 The Simplex Method II
The simplex method works by proceeding from one known feasible vertex to another.
So the simplex method needs a feasible vertex from which to start. In this section
we discuss how to find such a vertex. We also discuss how to ensure that no vertex
is visited more than once, thereby ensuring that the algorithm terminates. Finally,
we discuss some aspects of the temporal complexity of the simplex method.

13.5. The Simplex Method II 601

Figure 13.15. The left panel illustrates a well-posed linear optimization problem
(bounded and feasible) where the feasible set (yellow triangle) does not contain the
origin. This occurs whenever an entry in b is negative. In this case the negative
value of bi corresponds to the green half space. The first step to using the simplex
method to solve a problem like this is to use an auxiliary problem to find a feasible
point. The right panel illustrates a linear optimization problem that is infeasible
because the half spaces have no mutual intersection. There can be no optimizer if
there is no feasible point at all.

13.5.1 Determining Feasibility
The feasible set may actually be empty, and even if it is not empty, the simplex
method needs a feasible starting vertex. So far we have always initialized the simplex
method by starting at the origin: x± = x% = • • • = xn = 0. If this point is feasible,
then the feasible set must be nonempty.

Determining whether the origin is feasible is easy. Recall that the constraints
take the form Ax b. When x = 0, the left-hand side is 0. Therefore, the origin
is feasible whenever b >2 0, that is, whenever all the entries of b are nonnegative.
However, if any entry of b is negative, the origin is not feasible. See Figure 13.15
for an illustration.

When the origin is not feasible, we need to find a feasible starting point or
determine that no such point exists. To accomplish this we use an auxiliary problem
constructed by adding a new variable (increasing the dimension of the original
problem), as we now describe.

Definition 13.5.1. Given a linear optimization problem in standard form (13.4)
the auxiliary problem is the problem

minimize Xq

subject to Ax — #O1 b, ^3 U)
^0 > 0,
x 0.

Here 1 = (1,1,..., 1) denotes the all-ones vector, so if aj denotes the ith row of A,
then each of the original constraints a^x < bi is replaced by a^x — x0 < bi in the
auxiliary problem.

Three important properties of the auxiliary problem can be seen immediately:

(i) Feasible points of the form (xQ, x±,..., xn) with xq = 0 correspond to points
(a?i,..., Xn) of the original feasible set, and

602 Chapter 13. Linear Optimization

(ii) The point (6,0,0,..., 0) is feasible for the auxiliary problem, where b =
— пищ bi (note that this is positive, since at least one of the bi is negative).

(iii) The auxiliary objective я?о is bounded below by 0.

The first fact means that the original problem has a feasible point if and only if
the auxiliary problem has a feasible point with xq = 0. The second fact gives an
explicit feasible starting vertex for the auxiliary problem. The last fact implies that
the problem is not unbounded and so the simplex method applied to the auxiliary
problem will terminate (assuming vertices are visited at most once). We summarize
this in the following proposition

Proposition 13.5.2. A linear optimization problem in standard form is feasible if
and only if either

(i) all the entries ofb are nonnegative, in which case the origin is feasible for the
original problem; or

(ii) some entries are negative, but the associated (bounded) auxiliary problem has
an optimal value of 0 with optimizer (0, x± ,..., x+), in which case the point
(x+, ...,#+) is a feasible vertex for the original problem.

Remark 13.5.3. Geometrically, the set Hi = {(a?o, ..., xn) | a^x — a?o < bi} in
Rn+1 is a half space containing the point (6*, 0,0,..., 0). The set {(0, x) | a^x < bi}
also lies in H, where we have written (0, x±,..., xn) as (0, x) for convenience. The
feasible set & of the auxiliary problem is the intersection of half spaces Hid - • -ПЛШ
with the half spaces a? о > 0, ..., xn > 0, which is a polyhedron in Rn+1 having the
property that a point (a;o,x) e Rn+1 lies in & if and only if the point x e lies
in the feasible set & for the original problem.

13.5.2 Example of an Auxiliary Problem
Consider the problem of finding a?i,a;2 to

minimize — 2x± — a?2
subject to — Xi + x2 < — 1,

—xi — 2x2 < —2,
a?2 < 1,
Xi, X2 > 0.

Since there are negative values on the right-hand side of the constraints, the origin
is not feasible for this problem. The auxiliary problem is

minimize x$
subject to —+ a?2 — xq < — 1,

—— 2x2 — a?o < —2,
X2 - < 1,
#0, Xi, X2 > 0.

A feasible starting vertex for the auxiliary problem is a?o = 2, with x± = X2 = 0.

13.5. The Simplex Method II 603

Introduce slack variables a?3,a?4, Ж5 for the constraints to get the relations

-xx + x2 - + x3 = -1,
—Xi — 2x2 — + X4 = —2,

+ x5 = 1

and substitute the values at the vertex into these equations to get x3 = 1, X4 = 0,
and x$ = 3. Thus this vertex corresponds to choosing xi,x2? £4 as the independent
variables and gives the dictionary

f = 2 - xx - 2x2 + x4

x3 = 1 — 3x2 + ^4
Xq = 2 — Xi — 2X2 + ^4

= 3 — Xi — 3rr2 + ^4-

The coefficients of Xi and x2 are both negative, so we may choose Xi as the entering
variable. The binding variable for Xi is a?o, so we choose that as the leaving variable,
which yields the dictionary

f = 0 rr0

x3 = 1 - Зж2 + X4
Xi = 2 — 2x2 + £4 —
x$ = 1 - X2 + XQ.

None of the coefficients of the objective function is negative, so this point is optimal
and the optimal value is 0, as desired. This gives #1 = 2, z2 = 0 as a feasible point
for the original problem.

Removing a?o from the dictionary above gives a valid dictionary for the origi­
nal problem, except that the objective function for the auxiliary problem must be
replaced with the objective function — 2a? 1 — x2 for the original problem. But the
objective function must be rewritten in terms of the independent variables, a?2,^4-
This can be done using the second constraint, which gives an expression for Xi in
terms of the independent variables. This gives the dictionary

f = — 4 + 3a?2 — 2a?4

a?3 = 1 - Зж2 + X4
Xi = 2 — 2x2 + X4
x5 = 1 - x2-

This dictionary is feasible for the original problem and has an objective function
value —4. From this point the simplex method continues in the normal fashion until
it finds an optimal point or determines that the problem is unbounded.

13.5.3 Cycling and Degeneracy
As proved above, the simplex method terminates and returns a minimizing vertex
provided it never visits the same vertex twice. In most cases the objective function

604 Chapter 13. Linear Optimization

(i) If every entry in b is nonnegative, then the origin is feasible. Use the
basic simplex method (Algorithm 13.1) instead of this one. Otherwise
(if at least one entry of b is negative) the origin is infeasible.

(ii) Begin phase one: Set up the auxiliary problem by introducing a vari­
able Xq

(a) Set the objective function equal to xq.

(b) Subtract xq from each of the inequality constraints.
(c) Add a new constraint that xq > 0.

(iii) Introduce slack variables, and set up the initial dictionary.

(iv) To make the dictionary feasible, pivot on the row with the minimal (most
negative) entry of b: that is, make xq the entering variable and take as
leaving variable the slack variable corresponding to the most negative
entry of b.

(v) Proceed as usual for the simplex method until either:

(a) The objective function is zero and the dictionary is feasible. This
indicates a feasible dictionary has been found. Go to step (vi).

(b) An optimal value has been reached with (no negative coefficients
in the objective function) but the value of the objective function is
positive. This indicates an infeasible dictionary. Stop. There is no
solution.

(vi) Begin phase two: Delete the column with the variable xq from the
dictionary. Replace the objective function with the original objective
function, replacing all dependent variables with independent variables

(vii) Continue with the basic simplex method (Algorithm 13.1) until an op­
timizer is found.

Algorithm 13.2. A summary of the two-phase simplex method. The first phase
uses the simplex method to solve an auxiliary problem that gives a feasible point
for the original problem. The second phase uses the simplex method, starting at
the feasible point found in phase one, to solve the original problem. Coding up this
algorithm is an exercise in the computing labs for this volume.

strictly decreases with each step, so it does not cycle back to a previously visited
vertex, but unfortunately, it is possible for the value of the objective function to
remain unchanged after a step of the simplex method.

The following dictionary gives an example:

f = 0 + - 2x2 +

a?4 = 1 — — |x3
x5 = 0 + xr - x2 + x3.

13.5. The Simplex Method II 605

The only negative coefficient is that of a?2, so that must be the entering variable.
The constraint induced by x5 > 0 is binding and implies x2 < 0, so x2 cannot
increase at all without making x$ negative. Nevertheless, we can still pivot (make
a new choice of entering and leaving variables) to get

f = 0 - |#i - + 2д;5

ж4 = 1 -
x2 = 0 + - ^5-

While the dependent and independent variables have changed, the value of the
objective function has not. Moreover, the actual configuration of x± = x2 = x3 = 0,
#4 = 1, #5 = 0 is the same for both this and the previous dictionaries, so we have
not moved to a different vertex.

This situation is called degeneracy. A degenerate dictionary is one in which the
constant term of one of the constraints is 0. In this case, some dependent variables
are equal to zero, in addition to the n independent variables. This corresponds
to being on the intersection of more than n hyperplanes. See Figure 13.16 for an
illustration.

Figure 13.16. Degeneracy occurs when more than n hyperplanes intersect at a
single vertex. Moving from n of these hyperplanes to n others does not result in
moving to a different feasible point or decreasing the value of the objective function;
it only changes which variables are considered dependent and which are considered
independent.

Degeneracy seems problematic, but making the right choices of entering and
leaving variables (pivots) eventually moves to a new vertex. In the previous example,
choosing as the entering variable makes x± binding and moves to a new vertex
with an improved objective.

One way to escape a degenerate vertex is to apply Bland’s rule.

Theorem 13.5.4 (Bland’s Rule). If the entering variable is always chosen to
be the independent variable with smallest index having a negative coefficient in the
objective function and the leaving variable is chosen to be the dependent variable with
the smallest index among all dependent variables that impose a binding constraint
on the entering variable, then the simplex method never cycles.

606 Chapter 13. Linear Optimization

The proof of Bland’s rule is long and somewhat unenlightening, so we do not
include it here, but the interested reader can find a proof in [Vanl4].

Nota Bene 13.5.5. Bland’s rule is just a tie-breaking rule for the usual sim­
plex method. The entering variable must still be one with a negative coefficient
in the objective function; see Nota Bene 13.4.5. There is no need to invoke
Bland’s rule unless there is more than one such variable. Similarly, once the
entering variable is chosen, the leaving variable must be chosen from among
those dependent variables that impose a binding constraint on that chosen
entering variable. Often there is only one of these, and again, Bland’s rule
needs to be invoked only if there is more than one dependent variable that is
binding.

Since the total number of configurations is finite, we have the following corollary.

Corollary 13.5.6. If the simplex method is implemented using Bland’s rule, then
it is guaranteed to terminate after a finite number of iterations and produce the
correct result for a linear optimization problem in standard form.

An alternative approach to preventing cycling is the lexicographic perturbation
rule. This approach chooses a small 6i, a much smaller 62, a still smaller e3, and so
on, and then shifts bi to bi + £$. This removes all degeneracy and, if ei is sufficiently
small, it does not change the optimal choice of dependent and independent variables.

Neither Bland’s rule nor lexicographic perturbation is necessarily the fastest
route to the optimizer. Indeed, there are often other choices that result in a much
greater decrease in the objective function. Note also that Bland’s rule could easily
result in very small pivot values (the coefficient of the entering variable), which
reduces the stability of the algorithm.

Finally note that cycling is actually a rare phenomenon. It often makes more
sense to use another selection rule and worry about cycling only if it actually occurs.

13.5.4 Complexity of Linear Optimization
The worst-case run time of the simplex method is exponential because the number
of potential vertices to check is (m+n)« In 1972 Klee and Minty constructed a
pathological example in n variables and m = n constraints where the feasible region
is a slightly tilted n-dimensional hypercube with one vertex at the origin [КМ72].
Choosing the starting vertex to be the origin and following standard pivoting rules,
the simplex method on this example visits every other vertex of the hypercube
before reaching the optimizer. There are 2n vertices, so the simplex method makes
2n — 1 pivots before finding the optimizer. Soon after the Klee-Minty paper was
published, several other authors produced similar examples for many other pivoting
rules, including Bland’s rule. So in the worst case, the simplex method can perform
very poorly.

However, these worst cases are very unusual. It can be shown that on average
very few of the vertices need be to examined, and the average-case performance is

13.6. Duality 607

generally very good, typically taking 2m to 3m iterations (where m is the number
of constraints) and converging in expected polynomial time for certain distributions
of random inputs.

Remark 13.5.7. The dual problem, described in the next section, interchanges the
number of constraints and the number of variables, so the dual problem is typically
solved in 2n to 3n iterations. If the number m of constraints is much larger than
the dimension n, then switching to the dual problem can significantly reduce the
complexity of solving the problem with the simplex method.

Remark 13.5.8. In Section 15.6 we describe a very different class of methods for
solving linear and other optimization problems. These solve linear optimization
problems in polynomial time, namely O(^/nLlogL), where L is the number of bits
of input to the problem. It can be shown that L e O(mn + log2(|P|)), where P is
the product of all nonzero coefficients of A, b, and c. Despite the fact that these
methods are polynomial and the simplex method is exponential in the worst case,
the simplex method in practice usually takes only O(m) or O(n) iterations to find
the optimizer.

13.6 Duality
In this section we discuss duality for linear optimization problems. The weak duality
theorem guarantees that for every linear minimization problem there is another,
dual linear maximization problem with the property that every feasible value of
the dual objective is bounded above by every feasible value of the original (primal)
objective. The strong duality theorem guarantees that the minimal value of the
primal problem is equal to the maximal value of the dual problem. Moreover, the
optimizers for the primal and dual problems are closely related. Indeed knowledge
about one of these usually gives useful knowledge about the other. One of the most
important connections between the primal and dual problems is the property of
complementary slackness, which is discussed in Section 13.6.3.

In some cases the dual problem is easier to solve than its corresponding primal
problem and in other cases the primal problem is easier to solve. In either case, once
one of the optimizers is known, the other can be computed quickly. As shown in
Chapter 15, some of the best methods for solving large linear optimization problems
rely heavily on the interplay between the primal and dual problems.

13.6.1 Weak Duality
Every linear minimization problem has a natural dual problem that is formulated
as a linear maximization problem.

Definition 13.6.1. Let A e Mmxn(R), b e and c e Rn. The linear
optimization problem

minimize cTx
subject to Ax b, (13.12)

x > 0

608 Chapter 13. Linear Optimization

has the following dual problem:

maximize — bTy
subject to — Лту c, (13.13)

У >r o.

We call the original problem (13.12) the primal problem to distinguish it from the
dual problem (13.13).

Remark 13.6.2. Following Example 13.3.3, it is sometimes helpful to write the
dual as a minimization problem in standard form

minimize bTy
subject to — Лту c, (13.14)

У o.

The next proposition shows that, as one might expect from the name dual, the
dual of the dual is the primal.

Proposition 13.6.3. For a linear optimization problem in standard form, the dual
of the dual optimization problem is again the primal problem. Stated more precisely,
if the dual problem is recast as the minimization problem (13.14), then its dual is a
maximization problem that, when recast as a minimization problem, is the original
problem (13.12).

Proof. The proof is Exercise 13.33. □

Nota Bene 13.6.4. Many textbooks develop linear optimization theory with
maximization problems being their “standard form.” In these cases, the primal
problem is the maximization problem and the corresponding dual problem is
a minimization problem.

The weak duality theorem guarantees that every feasible value of the primal
objective is an upper bound for every feasible value of the dual objective.

Theorem 13.6.5 (Weak Duality Theorem). If x e is feasible for the
primal problem (13.12) and у e is feasible for the dual problem (13.13), then
the objective for the dual problem is bounded above by the objective for the primal
problem, that is, the following inequality holds:

—bTy < cTx. (13.15)

Proof. It is straightforward to see that

—bTy = —yTb — yTAx = — xTATy xTc = cTx. □

13.6. Duality 609

Corollary 13.6.6. If the dual problem is unbounded, then the primal problem is
infeasible. Similarly, if the primal problem is unbounded, then the dual problem is
infeasible.

Proof. If the primal problem is feasible and the dual problem is unbounded, then
weak duality fails, since cTx is an upper bound for all feasible values of — bTy.
Similarly, if the dual problem is feasible and the primal problem is unbounded,
then weak duality fails, since — bTy is a lower bound for all values of cTx. □

The converse of the corollary is not true. When the primal is infeasible, we do
not know that the dual is necessarily unbounded. Both problems could be infeasible.

Example 13.6.7. The linear optimization problem

minimize 2x2 ~
subject to —Xi + X2 <2,

^2 < -1,

X±, > 0

is infeasible because the constraints require that X2 > 0 and X2 < —1. The
dual problem

maximize — 2y± + у 2
subject to У1 < -1,

-yi ~У2<2,
У1,У2 > 0

is also infeasible, since the constraints require that y± > 0 and y± < — 1.

13.6.2 Strong Duality
The weak duality theorem only guarantees that feasible points of the dual problem
provide lower bounds for the primal problem. It does not indicate how tight that
bound is. The strong duality theorem guarantees that the bound is sharp and that
the minimal value of the primal is equal to the maximal value of the dual.

Theorem 13.6.8 (Strong Duality). If the primal problem (13.12) has a mini-
mizer x* e and the dual problem (13.13) has a maximizer y* e then the
following equality holds:

—bTy* = cTx*. (13.16)

Remark 13.6.9. The proof of strong duality is given in Section 13.6.5. Strong
duality gives us a certificate of optimality, meaning that if a primal feasible solution
x* and a dual feasible solution y* satisfy (13.16), then they are guaranteed to be,
respectively, a primal optimizer and a dual optimalizer.

610 Chapter 13. Linear Optimization

13.6.3 Complementary Slackness
Strong duality also implies a very useful relation called complementary slackness
between the optimizer x* of the primal problem and the optimizer y* of the dual
problem.

Theorem 13.6.10 (Complementary Slackness). Suppose that x = (#i,..., xn)
is a feasible point of the primal problem (13.12) and у = (?/i,..., ym) is a feasible
point of the dual problem (13.13). Let w = (wi,..., wm) >z 0 be the slack variable
for the primal problem so that Ax + w = b, and let z = (zi,..., zn) >z 0 be the
slack variable for the dual problem so that —ATy + z = c. The points x and у are
both optimal for their respective problems if and only if

XiZi = 0 Vi e {1,... ,n} and yjWj = 0 Vj e {1,..., m}. (13.17)

Proof. Assume x and у are, respectively, optimizers for the primal and dual
problems. As in the proof of Theorem 13.6.5, strong duality implies

—yTb = —yTAx = cTx. (13.18)

This gives

0 = yT(b — Ax) = yTw and 0 = (c + ATy)Tx = zTx. (13.19)

The right-hand sides of (13.19) are sums of nonnegative products, so each term уги)г
and ZjXj must be zero.

Conversely, if (13.17) holds, then so does (13.19), which implies (13.18). Since
equality of the primal and dual objective functions can occur only at optimal points,
x and у must be optimal. □

If the optimizer of either the primal or the dual problem is known (but not
both), then complementary slackness gives some linear relationships that help solve
the other problem.

Example 13.6.11. Suppose it is known that x* = (11,1/2) is an optimizer
for the primal problem

The corresponding dual problem is

minimize 24a; i + 60a?2
subject to —1^1 — x2 < —6,

—2a?i — 2x2 < —14,
—xi — 4a72 < ~13,
a?i, X2 > 0.

maximize 6yi + 14y2 + 13уз
subject to jj/i + 2у2 + Уз < 24,

У1 + 2У2 + 4уз < 60,
У1,У2,Уз > 0.

13.6. Duality 611

Computing Ax + w = b. it is easy to see that = 0 and W2 = 9.
Complementary slackness implies that y± > 0, у2 = 0, and у % > 0 and that
zx = Z2 = 0. Computing — ATy + z = c we have

_i
2
1

2
2

24
60j ’

which simplifies to
24
60

This can be solved to give y* = (36, 6).
To check that this is an optimizer, we verify strong duality (13.16) and see

that —bTy* = cTx* = 294.

13.6.4 An Economic Interpretation of Duality

Recall the production-schedule problem described in Section 13.3.3. In this situ­
ation, the factory scheduler wants to maximize total profit subject to
the constraints that it requires units of material i to make one unit of product
J, and there are at most bi units of material i available. If we set c = — p, then the
problem (13.7) can be expressed in standard primal form (13.12).

For the dual problem, assume an investor is interested in buying all the resources
that the factory has available. If she pays yi dollars for resource i, then the total
amount she will be paying is 52$li biyi = bTy dollars. She would obviously prefer
to minimize this amount, but if she offers too little, then the factory won’t be willing
to sell, because it can make more money by using the resources to make products.
Specifically, for every j e {1,... ,n} the value 52Zti a^yi that the investor offers
to pay for the materials to make one product of type j must be at least as much
as the value pj of that widget; that is, the factory will not accept the deal unless
ATy >2 —c. Also, у >2 0 because the factory won’t pay the investor to take the
resources. So the investor’s problem is to choose nonnegative prices yi to minimize
bTy (or maximize —bTy) subject to ATy >2 —c (or — ATy c). This is precisely
the dual problem (13.13).

Weak duality — bTy < cTx is equivalent to saying pTx < bTy for all feasible x
and y; that is, the total value of any feasible offer the investor makes will be no less
than the factory’s profit making products, no matter what combination of products
it makes. Strong duality guarantees that the investor’s optimal (cost-minimizing)
offer will cost her exactly the same amount of money that the factory could earn
by making products in the optimal (profit-maximizing) way.

The investor’s optimal prices y* are often called shadow prices. At the shadow
price, the factory should be willing to buy or sell (a small number of) its resources,
because selling would bring in the same amount of profit as making more products
would. Note, however, that selling or buying a large number of resources could
change the optimal values of x* and y* and thus change the shadow prices.

612 Chapter 13. Linear Optimization

Complementary slackness also has an interpretation in this economic setting. If
an optimal primal slack variable w* is positive, then not all of resource i is used in
the optimizer. Thus, the factory has a surplus of that resource that it cannot use,
and this extra resource is of no value to the factory. Therefore, the shadow price of
resource i should be 0. This shows that w*y* = 0 for all г E {1,..., m}.

Similarly, if the optimal dual slack variable Zj is positive, that means the investor
is paying more for the resources needed to make one widget of type j than the profit
the factory can make by producing a widget of type j. Thus, the factory would
make more money by making fewer widgets of type j. But since x* is optimal, this
means x* must be zero. This shows that z*x* = 0 for all j e {1,..., n}.

13.6.5 *Proof of Strong Duality
We conclude the section by proving Theorem 13.6.8, which guarantees that when­
ever the primal problem has an optimizer x* E Rn, then the dual also has an
optimizer y* E such that —bTy* = cTx*. The first step in the proof is Farkas’
lemma.

Lemma 13.6.12 (Farkas’ Lemma). Given A E 7Wmxn(R) and b E denote
P = {x E Rn | x 0, Ax b} and D = {у E | у >2 0, ATy >2 0,bTy < 0}.
The set P is not empty if and only if the set D is empty.

Proof. If F 0, then there exists x >z 0 with Ax b. For any у 0 satisfying
ATy 0, we have~0 < xTATy = yTAx < yTb. Thus, D = 0.

If F = 0, let A = [A Im] be the matrix constructed by adjoining A and the
m x m identity matrix. The set

К = {Aw I w E Rn+m with w >2 0}

is convex and closed. Suppose b E K, meaning b = Aw for some w >2 0. Write

w = Wi
w2 with wi e and w2 E Rm.

This implies Awi 2^ Awi + w2 = b, so wi E F, which is a contradiction. Therefore
b^K.

Since К and {b} are disjoint, then by the separation lemma (Lemma 13.2.7),
there is a hyperplane that separates К from b; that is, there is a vector у and a
real number d such that yTx > d for all x E К and yTb < d. In particular, since
0 E K, we have 0 = yT0 > d.~

Finally, suppose that yTA has a negative value in the zth coordinate. Hence,
ayTAei < d for some a > 0. This implies that утА(аег) < d, but this is a
contradiction since А(оег) E K. Thus, yTA has only nonnegative entries. Taking
the transpose gives ATy >2 0 and у >2 0, which implies that у E D. □

We can now prove the strong duality theorem.

Proof. Assume that x* is a minimizer for the primal problem (13.12) so that cTx*
is the minimal value. Therefore, for any e > 0 the system of inequalities Ax b,

Exercises 613

стх < стх* — е has no solution with x 0. Writing this in matrix notation gives
the system

b
cTx* — e with x >2 0,

which has no solution. By Farkas’ lemma, there must exist у E with у 0 and
£ > 0 satisfying

У ^0 cTx* — e] У
e

[Лт c] and [bT <0.

Thus we have

Лту + Cc t ° and bTy + £(cTx* - e) < 0.

If £ = 0, then we have ATy >2 0 and bTy < 0, so by Farkas’ lemma, there is no
point x 0 satisfying Ax b; but x* is such a point, so £ > 0.

Rescaling у by l/£, we may assume that £ = 1. Simplifying gives

-Лту c and — bTy > cTx* — e.

This implies that у is a feasible point for the dual problem (13.13). Since there
is a feasible point to the dual problem and all values of the objective function are
bounded above, there is a maximizer y* satisfying cTx* — e < —bTy* < cTx*. Since
this holds for all e > 0, it follows that (13.16) holds. □

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

13.1. Prove that each of the following sets is convex:
(i) A half space.

(ii) An affine set.

614 Chapter 13. Linear Optimization

(iii) The positive orthant {x e Rn | x >2 0}.
(iv) The set {x e Rn | xTAx < c} for any c > 0, where A E 7Wn(R) and

A > 0. Hint: Since A > 0, the function x д/хтАх defines a norm on
Rn. Use the triangle inequality applied to Ax + (1 — A)y.

(v) The set {x E | xTAx + bTx + c < 0} where A E Mn(R), A > 0,
b E Rn, and с E R.

13.2. Prove Proposition 13.1.5.
13.3. Prove Proposition 13.1.14.
13.4. Provide an example showing that the union of two convex sets need not be

convex. Given a nondecreasing sequence Kq G Ki C • • • of convex sets, prove
that the union |J^ Ki is convex.

13.5. Define the convex cone cone (S') of a set S to be the set of all nonnegative
linear combinations of elements of S:

{k

aiSi I ai > 0, Si E S
2 = 1

Prove that the convex cone of any set S is convex.
13.6. Let PSDn(R) C Mn(R) be the set of all positive semidefinite (and hence

symmetric) n x n matrices over R. Prove that PSDn(R) is a convex cone,
meaning that cone(PSDn(R)) = PSDn(R), and hence PSDn(R) is convex.

13.7. Two hyperplanes in Rn are parallel if they never intersect.
(i) What is a necessary and sufficient algebraic condition for two hyper­

planes to be parallel? (Warning: The inner product representation of
the hyperplane is not necessarily unique.)

(ii) Find a formula for the distance (assume the Euclidean metric || • ||2)
between two parallel hyperplanes.

(iii) Describe necessary and sufficient algebraic conditions for one half space
to contain another.

13.8. Let 5i, S2 С V be subsets of a vector space V. The Minkowski sum Si + S2
of Si and S2 is the set

*

Si + S2 = {Si + S2 I 83 E Sa}.

Prove the following:
(i) The Minkowski sum of convex sets is convex.

(ii) The Minkowski sum of affine sets is affine.
(iii) conv(Si) + conv(S2) = conv(Si + S2).
(iv) cone(Si) + cone(S2) = cone(Si + S2).

13.9. Prove Proposition 13.1.10.*
13.10. Prove Proposition 13.1.15.*
13.11. Prove that if S is compact, then conv(S) is compact.*

Exercises 615

13.12. Prove the separation lemma (Lemma 13.2.7).
13.13. Prove the convex projection theorem (Theorem 13.2.5). To do this, first prove

the statements below, and then write a complete proof of the theorem.

(О II* * * * х-yll2 = IIx-pII2 + Up — y||2 + 2 <x — p,p — y).

13.17. Consider the linear optimization problem

minimize — 5x + 4y
subject to 2x — 3y < 4,

x — 6y < 1,
x + у < 6,
x, у > 0.

Draw (or plot) the feasible set. Graph the objective function over the feasible
set. Find an optimizer for this problem.

(ii) If (13.2) holds, then ||x — у|| > ||x — p|| for all у E С, у p. Hint: Use
the identity in (i).

(iii) If z = Ay + (1 — A)p, where 0 < A < 1, then

IIх - ZH2 = IIх - Pll2 + 2A (x - p, p - у) + Л2||y - p||2. (13.20)

(iv) If p is a projection of x onto the convex set C, then (x — p, p — y) > 0
for all у E C. Hint: Use (13.20) to show that

0 < 2 (x — p, p — y) + A||y - p||2 Vy € С, A e [0,1].

13.14. Give an example of convex sets C and D that are disjoint and both closed
(but not compact) that have no strictly separating hyperplane.

13.15. Let C, D C Rn be disjoint closed convex sets (not necessarily compact). Prove
that if the set E = C — D = {c — d | с E C, d E D} is closed, then there
exists a strictly separating hyperplane, that is, there exist a E Rn and 6 E R
such that (a, c) < b for every с E C and (a, d) > b for every d E D.

(i) Prove that C — D is convex and 0 E.

(ii) Assume that E is closed. Prove that there exists a point z E E such
that if a = — z and bf = — aTa, then the half space H' = {x | (a, x) < bf}
supports E and does not contain 0.

(iii) Prove that supceCaTc + ||a||2 < infdeD (a, d).

(iv) Let b = supceCaTc + ||a||2, and let H = {x | (a, x) < b}. Prove that
С С H and D П H = 0.

13.16. Prove that if C, D C Rn are disjoint closed convex sets (but C — D is not
necessarily closed), then there exists a separating hyperplane, but it need not
be strict. Hint: Take an increasing sequence Cn of compact subsets of C
producing sequences (ап)пен- Normalize the vectors so that vn = an/||an||.
Show that vn converges and use the limit to define the desired half space.

616 Chapter 13. Linear Optimization

13.18. Draw the feasible polygon of the following linear optimization problem. Iden­
tify all the vertices, and use the fundamental theorem to solve the linear op­
timization problem (that is, check all the vertices). Give both the optimizer
and the optimal value of the objective function.

minimize — 3ti — x2
subject to xi + 3#2 < 15,

2#i + 3#2 < IS,
xi - < 4,
aq,x2 > 0.

13.19. Draw the feasible polygon of the following linear optimization problem. Iden­
tify all the vertices, and use the fundamental theorem to solve the linear op­
timization problem (that is, check all the vertices). Give both the optimizer
and the optimal value of the objective function.

minimize — 4a? — by
subject to — x + у < 11,

x + у < 27,
2x + by < 90,
ж, у > 0.

13.20. Kenny’s Toy Co. manufactures two types of toys: a GI Barb soldier and a
Joey doll. A GI Barb soldier sells for $12 and uses $5 worth of raw materials.
Each solider that is manufactured increases Kenny’s general overhead costs
by $3. A Joey doll sells for $10 and uses $3 worth of raw materials. Each
Joey doll built increases Kenny’s overhead costs by $4. The manufacture of
soldiers and dolls requires two types of labor: molding and finishing. A soldier
requires 15 minutes of finishing labor and 2 minutes of molding labor. A Joey
doll requires 10 minutes of finishing and 2 minutes of molding labor. Each
week, Kenny can obtain all the needed raw material but only 30 finishing
hours and 5 molding hours of labor. Demand for GI Barbs is unlimited but
at most 200 Joey dolls are bought each week. Formulate a linear optimization
problem in standard form whose solution would maximize Kenny’s profit on
these two toys.

13.21. Consider the following network, where the weights of each edge represent the
carrying cost per unit of that edge.

Assume that the supply (or demand, depending on the sign) at the nodes is
Ьа = 10, Ьв = 1, be = —2, bo = —3, Ье = 4, б/? = —10 and that the capacity
of each edge is bounded by 6. Write a linear optimization problem in standard
form whose solution gives the optimal (cheapest) flow in this network with
these constraints.

Exercises 617

13.22. For the linear optimization problem in Exercise 13.17, solve the linear problem
using the simplex method. Show the dictionary after each pivot. Give both
the optimizer and the optimal value of the objective function. Verify that
your answers agree with those of Exercise 13.17.

13.23. For the linear optimization problem in Exercise 13.18, solve the linear problem
using the simplex method. Show the dictionary after each pivot. Give both
the optimizer and the optimal value of the objective function. Verify that
your answers agree with those of Exercise 13.18.

13.24. For the linear optimization problem in Exercise 13.19, solve the linear problem
using the simplex method. Show the dictionary after each pivot. Give both
the optimizer and the optimal value of the objective function. Verify that
your answers agree with those of Exercise 13.19.

13.25. Solve the Kenny’s Toys linear problem of Exercise 13.20 using the simplex
method. Show the dictionary after each pivot. Give both the optimal choice
of how much of each toy to manufacture and the maximal profit.

13.26. Give an example of a three-dimensional linear minimization problem where
the feasible set is closed and unbounded (hence nonempty) and

(i) the objective function has no minimizer;

(ii) the objective function has a unique feasible minimizer.

13.27. Solve the following linear problems using the simplex method. Show the
dictionary after each pivot. If there is a solution, give a minimizer and the
minimal value of the objective function. If there isn’t a solution, tell whether
the problem is unbounded or infeasible.

minimize aq + 3a; 2 +
subject to -a?i - x2 - a?3 < -2,

2a; i - x2 + 37з < 1,
^1,^2, > 0-

minimize — 5a; i — 2x2
subject to 5a?i + 3a?2 < 15,

3a?i + 5x2 < 15,
4xi — 3a?2 < —12,
a?i,x2 > 0.

(iii)
minimize 3x i — x2

subject to x2 < 4,
—2xi + 3a?2 < 6,
aq,x2 > 0.

618 Chapter 13. Linear Optimization

13.28. Give an example of a three-dimensional linear optimization problem where

(i) the feasible set is empty;

(ii) the feasible set is closed, bounded, and not empty, but 0 is not feasible.
Write an auxiliary problem whose solution gives a feasible vertex for
starting the original problem.

13.29. Solve the following linear problem using Bland’s rule to resolve degeneracy.
Show the dictionary after each pivot. Give the minimizer and the minimum
value of the objective function.

minimize — lOaq + 57^2 + 9^3 + 24^4
subject to 0.5#i — 1.5^2 — 0.5^з + x± < 0,

0.5#i — 5.5^2 — 2.5^3 + 9^4 < 0,
aq < 1,
#i,#2,#3,£4 > 0.

13.30. Solve the previous problem using lexicographic perturbation to remove all
degeneracy. Note that the minimizing vertex for the perturbed problem does
not lie in exactly the same position as the minimizer for the original, unper­
turbed problem, but it is identified by the same set of independent variables in
the final, optimal dictionary, and hence those independent variables identify
the minimizing vertex for the original problem.

13.31. Consider the linear problem

minimize cTx
subject to Лх 0,

x >: 0,

with the right-hand side of each constraint equal to zero. Show that either
x = 0 is a minimizer or the problem is unbounded.

13.32. Suppose that the initial dictionary of a given linear optimization problem is
not degenerate and, when solved by the simplex method, there is never a tie
for the choice of binding constraint.

*

(i) Can such a problem have degenerate dictionaries? Explain.

(ii) Can such a problem cycle? Explain.

13.33. Prove Proposition 13.6.3 that the dual of the dual is the primal, as follows:

(i) Beginning with a linear minimization problem in the form (13.12), com­
pute its dual and recast that as a minimization problem in the form
(13.14).

(ii) Compute the dual of the new minimization problem and then recast it
as a minimization problem. Verify that this agrees with the original
primal problem.

Exercises 619

13.34. Give the dual of the linear problem

minimize
subject to

-Ж1 - x2
2xr + x2 < 3,
xi + 3^2 < 5,
2^i + 3^2 < 4,
#i, X2 > 0.

By graphing the constraints, solve both the primal and dual problems and
verify that the optimal values are equal.

13.35. Show, using the weak duality theorem, but without finding the optimizer or
using the simplex method, that the linear problem

minimize — x± — 2x2 — ^3
subject to + #2 + 2#з < 4,

a;i,a;2,^3 > 0

has an optimizer, and give upper and lower bounds on the optimal value.
13.36. Give an example of a three-dimensional linear optimization problem (n =

m = 3) where both the primal and its dual are infeasible.
13.37. For each of the linear optimization problems Exercises 13.17-13.19 provide

the dual formulations (13.13). Use the optimal solutions for those primal
problems (which you found earlier) and complementary slackness to find op­
timizers for the dual problems.

13.38. Write the dual of the linear problem Exercise 13.27(i) and solve the dual
problem using the simplex method. Use your solution to the dual problem
to construct a solution to the primal problem.

Notes
This chapter is inspired by [Vanl4], especially in the use of dictionaries instead
of the more commonly used, but more confusing, tableaux. Other useful sources
include [NW99, Biel5, Ped04] and [BV04]. The proof that Bland’s rule does not
cycle as well as Exercises 13.29, 13.31, and 13.32 are from [Vanl4]. Klee and Minty’s
famous example first appeared in [КМ72]. For more on these sorts of pathological
examples see [PSZ09]. For more on the complexity of the simplex method see
[Gol94, FS15, DS19].

For a proof of the infinite-dimensional versions of some of the theorems in
this chapter from convex analysis, including the Hahn-Banach theorem (Theorem
13.2.10) and the Krein-Millman theorem (Theorem 13.3.12), see [Con90, Pro08,
Rud91].

Nonlinear Constrained
Optimization

The more constraints one imposes, the more one frees oneself
—Igor Stravinsky

In the previous chapter, we considered optimization problems (13.4) with linear
constraints, which resulted in feasible sets characterized by convex polytopes. In
this chapter, we consider optimization problems with nonlinear constraints, which
produce much more complex geometries. For a nonempty open set Q C Rn we
consider two kinds of nonlinear constraints. One is called an equality constraint
and is defined as the set of points satisfying H (x) = 0 for some vector-valued
function H : Q —> R€. The other is called an inequality constraint and is defined as
the set of points satisfying G(x) 0 for some vector-valued function G : Q —> Rm.

Given objective function f E G1(Q;R), we define the standard form of a non­
linear constrained minimization problem to be

minimize x6Q
subject to

/(*)
G(x) 0,
Я(х) = 0.

(14-1)

Any point x G Q satisfying both G(x) 0 and 77 (x) = 0 is called a feasible point
of the problem (14.1). The set &

/ = {x e Q | G(x) 0 and Я(х) = 0} C Q (14.2)

of feasible points is called the feasible set of the problem (14.1).
Constrained optimization problems are generally more difficult to solve than

unconstrained problems. This is because the minimizer x* E / need not lie in the
interior of , and thus it need not satisfy Z?/(x*) = 0. Another complication is
that the feasible set can be nonconvex, which makes it more difficult to work with.

We begin the chapter with the problem of equality constraints and later treat
the more complicated case where there are both equality constraints and inequality
constraints.

621

622 Chapter 14. Nonlinear Constrained Optimization

14.1 Equality-Constrained Optimization
We assume Q C Rn is open and an objective function f E C* 1 (ii) (iii)(Q;R) is given. The
standard form of an equality-constrained optimization problem is given by

Example 14.1.3. If £ = 1 and n = 2, then the feasible set & = {(x,y) |
H(x, y) = 0} C R2 is a one-dimensional subset of R2. The derivative DH(x, y)
is a single row, so it has maximal row rank unless it vanishes. Here are several
examples. See Figure 14.1 for plots of these curves.

(i) If H(x, y) = x2 — y2, then & = {(ж, у) E R2 | x2 = y2} is the union of the
two lines {x = y} and {ж = — у}. The derivative DH(x, у) = [2# —2y]
only vanishes at the origin, and the origin is contained in so the
origin is a singular point of &, while every other point of & is regular.

(ii) If H(x, y) = x5 — y\ then the derivative only vanishes at the origin, and
the origin lies on the curve so the origin is a singular point of the
curve &, while every other point of & is regular.

(iii) If H(x, y) = x2 +y2, then & consists of a single point—the origin, which

(iv) If H(x,y) = x5 — y3, then & has a singular point at the origin, but &
looks “smooth.”

minimize /(x) x6Q
subject to 71 (x) = 0,

(14-3)

where H : Q —> R^ is the equality constraint and no inequality constraint G is
present. The feasible set for this problem is the set ^ = {xE Q | H(x) = 0}.

Definition 14.1.1. A point x* E & is a local minimizer for the problem (14.3)
if there exists an open neighborhood U CQ of x* such that /(x) > /(x*) for every
x E D' П &. The point x* € £ is a global minimizer for the problem (14.3) if
/(x) > /(x*) for every x E &.

14.1.1 Regular and Singular Points
A feasible set can have some special points that are not smooth. These could
correspond to a sharp cusp, a place where two or more branches intersect, or be
badly behaved in some other way. All of these “bad” points are where the derivative
of H fails to have full rank.

Definition 14.1.2. Let H E C1(Q;R£). A point x E is called a regular point
of & z/rank(Z?77’(x)) = £, that is, if DH(x) has full row rank. A point that is not
regular is called singular.

is also singular.

14.1. Equality-Constrained Optimization 623

(v) If H(x, y) = x5 — x — y3, then the derivative DH(x^ у) = (5x4 — 1,3?/2)
vanishes only at the points (x, y) = (±5-1/4,0), but these points do not
lie on &, so there are no singular points of &. Every point of & is
regular.

(vi) If H(x, y) = x5 + x — у\ then the derivative DH(x, y) = (5rr4 + 1, 3?/2)
never vanishes, so there are no singular points of &. Every point of &
is regular.

-1 о

Я(ж,?/)=ж2 + ?/2

Figure 14.1. Six plane curves, as described in Example 14-1.3. The first four ex­
amples have singular points at the origin, while the last two curves have no singular
points. In the top row the singularities are visibly obvious. But in the bottom left
case (example (iv)) the singularity is not easily visible.

Remark 14.1.4. We are primarily interested in the regular points of the feasible
set of the minimization problem (14.3). Since the rank of DH(x) is never more
than the number of columns, there can be no regular points if £ > n, that is, if
the number of constraints is greater than the dimension of the space Rn. Further,
if a regular point x e & satisfies t = n, then it is an isolated point (see Exercise
14.5), which doesn’t make for a very interesting optimization problem. Therefore,
we focus on the case where I < n. If there are n or more constraints, then it is
often the case that some of them are redundant, and eliminating the redundant
constraints may give I < n.

624 Chapter 14. Nonlinear Constrained Optimization

14.1.2 The Geometry of Feasible Sets
Consider the minimization problem (14.3), where the equality constraint function
H e C1(Q; R€) satisfies £ < n. We have £ equations, given by Zii(x) = 0, /z2(x) = 0,
..., /г^(х) = 0, and n unknowns. In the case of affine constraints, if the rows of
7?77(x) are linearly independent,53 then the feasible set is an (n — £)-dimensional
affine space.

53In the affine case DH(x) is independent of x, so all of the points in the feasible set are regular
points.

In the case of nonlinear constraints, if the rows of the derivative DH(x) at
a point x e & are linearly independent (that is, x is a regular point), then we
can express the constraints locally (meaning in a neighborhood of x) as an n — £
dimensional parametric surface (or manifold; see Volume 1, Section 10.3). In other
words, there is an open set U C Rn-€, a neighborhood V of x, and an injective
function a E C'1(t7; У) such that ot(U) = VD J.

This parameterization allows us to locally reduce the minimization problem
(14.3) to an unconstrained minimization problem. We begin with the following
lemma.

Lemma 14.1.5. Let H E (Q; R£) satisfy I < n. At any regular point x0 of the set

<F = {x E Q | Я(х) = 0}, (14.4)

there is a neighborhood o/x0 which is an (n — £)-dimensional parametric surface (or
parametrized manifold; see Volume 1, Definition 10.3.1). In other words, there is an
open set U C a point zq E U, and an injective C1 function ot : U -> Q C Rn
with Im(a) = V П &, Dot injective, and a(zo) = xq.

Proof. Near any regular point xq of <F, since

~dhi dhi dhi ~
dxi 9X2 dxn
dh2 dh2 dh2

Г»Я(х0) = dxi dx2 dxn

dht> dhg. dht>
-dxi 8X2 dxn _

has rank £, there are I coordinates zi,..., i^ such that the square submatrix

- dhi dhi
dxir dxi2
dh2 dh2
dxir dxi2

dhi -
дхг{1
dh,2
dxi(>

is nonsingular. Let у = (3/1,..., ye) = (x^,... ,xif) and let z = (zi,..., zn-e) be
the remaining x variables. Rearranging the order of the variables as necessary, we
may write x = (z,y) and H : x with 7?y77(z,y) invertible. By
the implicit function theorem (Theorem 10.3.2), there are open sets U C Rn-£ and

14.1. Equality-Constrained Optimization 625

V C Rn, a point zq of C7, and an injective C1 function /3 : U —> such that
x0 = (z0,/3(z0)) with #(z,/3(z)) = 0 for all z E U and cx(U) = V П &. Setting
a(z) = (z,/3(z)) gives the desired result. □

Remark 14.1.6. The lemma guarantees that in a neighborhood V of a regular
point there is always a parametrization ex : U —> Rn whose image is contained
in the feasible set. This allows the local optimization of an equality-constrained
problem to be reformulated into an unconstrained local optimization problem. In
other words, if the regular point x* is a local minimum of f constrained to V
then it is also a local minimum of f о ex on U. This allows us to generalize the
FONC to equality-constrained minimization problems, which we do in Section 14.2.

Remark 14.1.7. Although the implicit function theorem guarantees ex exists, it
does not provide an explicit expression for ot. Luckily, it does provide an explicit
expression for the first derivative Dex via (10.16), which is what we need to derive
a constrained FONC; see Section 14.2 for details.

14.1.3 Tangent Spaces and Normal Spaces of Parametrizations
Throughout the remainder of this section, we assume that H E C'1(Q; R£) with £ <
n, that the feasible set is (14.4), and that xq E & is a regular point. From Lemma
14.1.5, there exists an open neighborhood U C Rn-£ of xq and a parametrized
surface (or manifold) ex : U —> Rn with Im (a) = V ПД Dex injective, and a(z0) =
x0.

For any a E Rn-€, we can define a line in U of the form cr(t) = at + zq. This
defines a curve y(t) = a(cr(t)) in whose derivative defines a tangent vector of
& at Xq

V = 7'(J) = -^a(cr(£)) = Da(zo)cr'(0) = Da(z0)a.

The space of all such tangent vectors is equal to ^(Da(x0)): see Volume 1, Sec­
tion 10.3.2, for more details. This motivates the following definition.

Definition 14.1.8. The tangent space TXo^ of the parametrization ex : U —> Rn
at xq = a(zo) is the range of Do(zq) in Rn.

As an immediate consequence of the previous discussion, we have the following
proposition.

Proposition 14.1.9. If x is a regular point of and if v E Tx^, then there is
an interval (—6,6) C R and a curve 7 : (—6,6) —> in & that is differentiable at
0 and such that 7(0) = x and 7'(0) = v.

Proof. Let zq E U and let ex : Rfc —> Rn be a parametrization of & near x with
a(z0) = x0. By definition, any v E T^M is in the range of Da(z0), so there
is a vector w E Rfc such that Dn(z0)w = v. Letting = a(zo + tw) gives
7(0) = a(z0) = x0 and 7'(0) = Da(z0)w = v. □

626 Chapter 14. Nonlinear Constrained Optimization

The next lemma gives a characterization of the tangent space in terms of the
function H instead of the parametrization a.

Lemma 14.1.10. = JY (ГЯ(х0)).

Proof. Since 77(a(z)) = 0 for all z E /7, the chain rule gives

Z>(tf(a(z0))) = W(x0)Oa(z0) = 0.

Since every tangent vector v is of the form v = Da(zo)a for some a E Rn-^, we
have DH(xq)v = 0a = 0. Hence, TXo<F q jy (D77(x0)).

For equality, it suffices to show that dimTXo = dim^ (Da(xo)) = n — £. Let
a(z) = (z,/3(z)) be the parametrization given in the proof of Lemma 14.1.5. A
direct computation gives Da(zo) = J , and this clearly has rank n — £. □

Definition 14.1.11. The normal space of the regular point xq E & is
the orthogonal complement of the tangent space C Rn; that is, =
Txo^.

Corollary 14.1.12. NXo& = TXo^r = jY (рН(х0)У>~ = (Г>Я(х0)т).

Remark 14.1.13. The observation that the tangent space and normal space are
orthogonal is a generalization of the fact that the gradient of a function is orthogonal
to level sets. Here the gradient generalizes to D77(x0)T and the tangent vectors to
the level sets generalize to the tangent space at xq.

Nota Bene 14.1.14. Do not confuse the two complementary ways of think­
ing about the feasible set & and its tangent space.

One way to think about it is parametrically, that is, as a parametrized
manifold a : [7 —> Rn. This is the approach taken in Volume 1, Chapter 10.
In the parametric formulation, the tangent space at a regular point xq = ct(zo)
is

Txo^" = (Pa(z0)),

and the columns of Dn(zo) are all tangent to & at xq.
Another way to think about & is implicitly, that is, as the zero set of the

function H : Q —> В 7 This is the most natural way to think about a manifold
defined by equality constraints. In the implicit formulation the tangent space
at a regular point xq is given by

ТХо^ = еЖ(7?Я(хо)),

and the rows of DF(x0) are normal to the tangent space of & at x0.

14.2. Lagrange's First-Order Condition 627

Example 14.1.15. If H : R3 —> R is given by H(x^y^z) = 9xz — 7y2, then
the surface & = {(ж,?/,z) E R3 | H(x,y,z) = 0} can be parametrized by
a(t, u) = (t2,3izt, 7u2). The point xq = a(l, 1) = (1,3,7) E & is a regular
point of & because DH(xq) has rank one.

In the parametric formulation we have

2
3
0

0
3
14

whereas in the implicit formulation we have

Тх0^ = ^(РЯ(1,3,7)) = ^([63 -42 9]).

The columns Da((l, 1)) are orthogonal to DJ?(xq)t and span ._/K (D/f (xq)),
while the vector D7L((xq))t is normal to & at xq.

Example 14.1.16. If H : R3 —> R2 is given by H(x) = (hi(x), Zi2(x)), then

Г>Я(х0) = Di/ii(x0)
£>i/i2(x0)

(xo)
£>2/i2(xo)

z»3/ii(xo)
D3hi (x0)

has maximal row rank (two) if and only if the vectors -D/ij (x0)T and D/i2(xo)T
are linearly independent. Lemma 14.1.10 shows that each _D/i,(xq) is normal
to the surface S) = {x | hj(x) = 0} at the point xq, so a point of Si П Sz is
singular if and only if the normal to Si at xq is a scalar multiple of the normal
to Si at xq. An example of this is depicted in Figure 14.2.

14.2 Lagrange's First-Order Condition
Chapter 12 discussed the first-order necessary condition (FONC) for an optimizer
in an unconstrained optimization problem; see Theorem 12.1.6. In this section,
we generalize that result to the case of equality-constrained optimization problems
(14.3). The main result is Lagrange’s first-order condition, which gives a necessary
condition similar to that for unconstrained problems.

An important feature of Lagrange’s first-order condition is that the necessary
condition does not require an explicit parametrization of the feasible set. In other
words, it doesn’t require reducing the constrained optimization problem into an
unconstrained optimization problem.

14.2.1 Lagrange's First-Order Condition

Theorem 14.2.1 (Lagrange’s First-Order Necessary Condition). Letx* be
a local minimizer of the equality-constrained optimization problem (14.3). If x* is

628 Chapter 14. Nonlinear Constrained Optimization

Figure 14.2. Intersection of two surfaces, defined by hi = 0 (a plane) and hz = 0
(the saddle shape), respectively. The intersection is a curve in R3. At every point x
in the plane hi = 0 the vector Dhi(x)T (blue) points directly upward (normal) from
the plane. Similarly, at every point x of the surface Л2 = 0 the vector Dhz(x)T
(red) points in a direction normal to the surface. At the point xi, and at most other
points of the curve of intersection, the vector Dhz(xi)T is linearly independent of
Dhi(xi), so the matrix DH(xi) has maximal rank (rank two) at x1? and the point
is regular. But at xq the vector Dhz(xo)T (red) and the vector 2?/zi(xq) are both
vertical, and so Dhz(xo)T is a scalar multiple of 2?/zi(xq)t. This means DH(xq)
only has rank one at xq, and therefore xq is a singular point of the curve.

a regular point of the feasible set J = (x E ln I Hix) = 0} C Q, then there exists
Л* e R€ such that

Df(x*) + А* Т£>Я(х*) = 0. (14.5)

Proof, Let ct : U Rn be a parametrization of the feasible manifold near
x*, with U open, and with a(z*) = x* as given by Lemma 14.1.5. The FONC
(Theorem 12.1.6) for f о ct : U —> R guarantees that D(f о a)(z*) = 0, and the
chain rule gives

о = D(f O a)(z*) = £>/(x*)£>a(z*).

Since Я (£>a(z*)) = Tx* we have 2?/(x*) T e 7VX* by Lemma
14.1.10. Therefore 2?/(x*) T = 2?JJ(x*) Tv for some v e Rn. Setting Л* = —v gives
the result. □

The preceding theorem provides a necessary condition for a regular point x to
be a local minimizer or maximizer of f on the feasible set , namely that the
condition in (14.5) is satisfied. Such a point x is called a critical point of the
equality-constrained optimization problem (14.3). In the next section we develop

14.2. Lagrange's First-Order Condition 629

both necessary and sufficient second-derivative tests, which enable us, in many
situations, to determine whether a given critical point is a maximizer, a minimizer,
or neither.

Remark 14.2.2. We can give a nice geometric interpretation of the Lagrange first-
order condition in the special case of single equality constraint /z(x) = 0; for an
illustration, see Figure 14.3. At each feasible point x, the gradient 2?/z(x)T is
normal to the locus &. Similarly, the gradient 2?/(x)T of the objective function is
normal to the contour lines of the objective and points in the direction of greatest
increase. For a local minimizer x* , the Lagrange first-order condition guarantees
that the two gradients are parallel. They could point in either the same direction or
opposite directions, but they must be parallel. If the two gradients are not parallel
at a point x, then —2?/(x)T (which points in the direction of greatest decrease)
can be orthogonally projected onto the tangent space of and moving in that
direction along & will decrease the value of the objective function.

Figure 14.3. I/ a problem has a single equality constraint h, then for each point x
the gradient 2?/i(x)T (red arrows) is normal to the feasible set & (red curves). The
gradient Df(x)T (black arrows) of the objective is normal to the contour lines of the
objective (light purple and green). In the left panel the point x* is a local minimizer,
and the Lagrange first-order condition guarantees that the two gradients are parallel.
In the right panel, the point Xi is not a local minimizer, and the gradient 2?/(xi)T
is not parallel to Dh(xi)T. For more see Remark 14-2.2.

Remark 14.2.3. Any maximization problem of the form

maximize /(x)
subject to H(x) = 0

(14-6)

can be easily adapted to standard form (14.3) by changing the sign of the objective
f. If x* is a local maximizer of (14.6), then x* must be a local minimizer of — f
with the same equality constraint. Therefore, the Lagrange condition (14.5) holds
for equality-constrained maximizers.

630 Chapter 14. Nonlinear Constrained Optimization

Example 14.2.4. To maximize the volume V(x, ?/, z) = xyz of a rectangular
box given a fixed surface area S, we solve the minimization problem

minimize /(ж, у, z) = —xyz
subject to 77 (ж, у, z) = 2(xy + yz + xz) — S = 0.

By Lagrange’s condition (14.5), a minimizer x* = (x,y,z) must satisfy

0 = D/(x*) + A* TDH(x*) = —(yz, xz, yx)y + A*2(?/ + z, x + z, у + rr)T

or, equivalently,

yz = 2X*(y + г), xz = 2A*(rr + z), and xy = 2X*(x + y).

Multiplying the first equation by x, the second by y, and the third by z gives
three equalities for xyz. Setting these equal and simplifying gives the relations

о = x(y - z) = y(x -z) = z(x - y).

If any coordinate is equal to 0, then the volume is 0, which is not a maximizer.
Thus, x = у = z = ^/S/6 is the maximizer—a perfect cube.

Example 14.2.5. We find the points on the unit circle {x G R2 : l|x||2 = 1}
that are closest to, and farthest from, the point p = (3,4). The unit circle
corresponds to the equality constraint 77 (x) = ||x||2 — 1 = 0. The objective
function is the distance function ||x — p||2, but the optimizer of the distance
function is the same as that of its square, so we can assume that /(x) =
IIх — PII2-

We have D7f(x) = 2xT and D/(x) = 2(x —p)T, so the Lagrange condition
is equivalent to Ax = p — x. Thus for x = (ж, у), we have

 — — 7 x-------------у

which reduces to
3 _ 4
x y'

Solving for у in terms of x and substituting into the constraint 77 (x) = 0 gives

3 , 4 x = ±- and у = -x.5 3

It is straightforward to check that (|, |) is the minimizer and (— |, — |) is the
maximizer.

14.2. Lagrange's First-Order Condition 631

14.2.2 The Lagrangian

Definition 14.2.6. The Lagrangian corresponding to the equality-constrained op­
timization problem (14.3) is the function : Q x R€ —> R given by

^(х,А) = /(х) + ЛтЯ(х). (14-7)

The Lagrangian is a convenient tool for lifting the constrained optimization
problem (14.3) to a higher-dimensional space, where it becomes an unconstrained
problem. In the proof of the Lagrange condition, we used an explicit parametrization
of the feasible manifold & to convert (14.3) into an unconstrained problem, but the
Lagrangian allows us to do this without reference to an explicit parametrization of
the feasible manifold. Critical points of the Lagrangian correspond to critical points
of (14.3). More precisely, if 2Z5f(x*, A*) = 0 for some pair (x*,A*), then

Р^(х*,А ‘) = [r>/(x*) + А* Т£>Я(х*) Я(х*) т] = О,

which is a restatement of (14.5) and the constraint 77 (x*) = 0. Thus, for a regular
point x* to be a local minimizer (or maximizer), it is necessary that there exist A*
such that 2Z5f(x*, A*) = 0.

Nota Bene 14.2.7. Although the optimal points of f occur at critical points
of the Lagrangian, these critical points are not necessarily optimizers for the
Lagrangian. In fact, they are usually saddle points of the Lagrangian.

Example 14.2.8. Recall that the multinomial distribution (see Section 5.7.5)
comes from a sequence of n repeated trials of a categorical distribution with
parameters p = (pi,P2, • • • ,Pfc) t 0, such that Yli=iPi = 1- support
consists of A;-tuples of nonnegative integers x = (жь^,...,^), satisfying
Z2 xj = n- Here xj represents the number of experiments that had result
j. The p.m.f. is

Ж1,Ж2, • • • ,Xk
Xi X-2 Xl?

Pl P2 '-’Pk -

Given a draw x = (a?i,... ,rr^) from a multinomial distribution with un­
known parameters p, we wish to compute the MLE for the parameters p. To
do this we must maximize the log-likelihood of the multinomial

n
#i,#2, • . . ,Xk^(p) = log

к
+ '^xjiogpj

subject to the equality constraint 2^i=iPi = 1 and the inequality constraint
p 0. Since the first term of the log-likelihood has no p dependence, it has
no effect on the choice of maximizer, and so we can disregard it. Thus the

632 Chapter 14. Nonlinear Constrained Optimization

MLE of p is the solution of the optimization problem

minimize — xj ^o&Pj
subject to = 1, (14-8)

Pj > 0 Vj.

No pj can be zero, since that would make the objective go to infinity, and so
we can always assume each pj > 0. Thus, we assume Q = {p € I P >- 0}.
On Q we have the single equality constraint 2^j=iPj = 1- The Lagrangian is

fc / / к \ \
J?(p,A) =-^xjlogpj+A j-1 • (14-9)

j=i \ \J=i / /

The first-order condition requires

0 = Dp^(p,A) = -[^ * ••• ^]+A[l 1 ••• 1].

Thus we have Xj = Xpj for each j. Taking the sum gives

к к

n = 52^ = = A-
j=l j=l

It follows that any minimizer p must satisfy pj = for each j E {1,2,...,A:}.

Example 14.2.9. We can generalize Example 14.2.5 to the problem of finding
the points on the zero set & = {x E | Я(х) = 0} which are closest to and
farthest from a given point p . In the special case that & is a convex set
C or the boundary of a convex set C, then the minimizer x* is exactly the
projection of p to C.

Since the objective function is /(x) = ||x — p||| and the constraint is
Я(х) = 0, the Lagrangian is

&(x, A) = xTx - 2pTx + pTp + АтЯ(х).

Taking the derivative yields

ГЩх, A) = [2xT - 2pT + ATDH(x) Я(х)] .

Thus, a necessary condition for a minimizer is that РЯ(х)тА = 2(p — x),
which implies that p — x E & (ЯЯ(х)т) = In other words,
the line segment p — x must be orthogonal to the tangent space Tx^.

14.3. Lagrange's Second-Order Conditions 633

14.3 Lagrange's Second-Order Conditions
Just as in the unconstrained case, there are second-order conditions for equality-
constrained optimization. In this section we state these conditions as theorems,
provide some examples, and then rigorously prove the theorems.

14.3.1 Statement of Results and Examples
Recall that the second-order necessary and sufficient conditions relied on the Hessian
of the objective function. In the equality-constrained case, they rely on the Hessian
of the Lagrangian.

Theorem 14.3.1 (Lagrange Second-Order Necessary Condition). Letx* be
a local minimizer of the equality-constrained optimization problem (14.3), where f
and H are both C2 on a neighborhood ofx*. Ifx* is a regular point of & with corre­
sponding Lagrange multiplier A* e R€ satisfying (14.5), then vTD^(x*,A*)v>0
whenever v e Tx*

Theorem 14.3.2 (Lagrange Second-Order Sufficient Condition). Consider
the equality-constrained optimization problem (14.3). Assume there exists x* e Rn
and A* e R£ such that (14.5) holds. If f and H are both C2 in a neighborhood of
x* and vT2?2j£f(x*, A*)v > 0 for all nonzero v e Tx*̂, then x* is a strict local
minimizer.

Remark 14.3.3. As in Remark 14.2.3 with the first-order condition, we can pro­
vide second-order necessary and sufficient conditions for maximization problems of
the form (14.6). In particular, by changing the direction of the inequalities, we have
vTD^(x*, A*)v < 0 for the SONC, and vTD^(x*, A*)v < 0 for the SOSC. For
more details, see Exercise 14.13.

Example 14.3.4. Consider again the problem of finding the MLE for the
multinomial distribution (see Example 14.2.8). Recall that the Lagrangian
Jf(p, A) is given by (14.9) and has the derivative

Dp^(p,A) = -[^ £ ... ^]+A[l 1 ... 1].

Thus for all p > 0, we have

Xi/Pi o o ••• o
0 Х2/Р2 0 ... 0

Г>2^(р,Л)= 0 0 ••• 0 >0

.0 0 0 ... Xnjp2n_

Therefore, this unique critical point is a minimizer.

634 Chapter 14. Nonlinear Constrained Optimization

Remark 14.3.5. The SOSC does not require the Hessian 2?2Jjf(x) of the La­
grangian at the critical point x to be positive definite but rather that vT2?2j£f(x* ,
A*)v is positive for each v 6 . However, if the Hessian is positive definite, then
vT2?2Jjf(x*, A*)v > 0 holds for all v 0. Thus, we can think of a positive definite
Hessian as a “strong” sufficient condition.

Example 14. 3.6. Consider the problem

minimize — ~ ^2^3 — # 1^3
subject to h = Xi + X2 + £3 — 3 = 0.

The Lagrangian is

^(Ж1,Ж2,Жз,Л) = -Ж1Ж2 - #2^3 -Ж1Ж3 + A(#i +#2 +^з — 3)

with

DJzf (rrq, a?2, ^з? A)

= [A — X2 - X3 X — Xi — X3 A — Xi — X2 X\ + X2 + X3 — 3] .
A little algebra shows that the Lagrange first-order condition is satisfied only
at (1,1,1). The Hessian (in x) is

which is not positive definite, because its eigenvalues are —2, 1, and 1. How­
ever, the feasible set & is a plane in R3 with normal vector n — D^h = (1,1,1),
so a vector v 6 R3 is a tangent vector if and only if nTv = 0 or, equiva­
lently, tq + V2 + V3 = 0. For any tangent vector v, we have vTZ?2Jzfv =
V1(—V2 — v3) + V2^~Vi — V3) + ^з(—г?1 — V2) = vl + v% + V3 > 0 with equality
if and only if v = 0. Therefore the Lagrange SOSC guarantees that (1,1,1)
is a local minimizer.

Example 14. 3.7. Assume that the benefit (utility) enjoyed by consuming
the amounts x and 7/, respectively, of two goods is given by the function
U(x,y) = aln(rr) + 61п(т/). The available budget for these goods is fixed (say,
A dollars) and the unit cost of the goods is px and py, respectively, imposing
the constraint xpx + ypy = A.

To maximize utility let Q = {(ж, 7/) G R2 | (x,y) >- 0} (note that zero
consumption in either category produces —00 utility) and solve

minimize —U(x,y) = —aln(a?) — Ь1п(т/) (rr,?/)eQ
subject to xpx + ypy — A = 0.

(14.10)

14.3. Lagrange's Second-Order Conditions 635

It is easy to solve for у in terms of a?, which would turn this into an uncon­
strained optimization problem. But we leave this as a constrained problem to
illustrate how to apply the Lagrange second-order criterion.

The Lagrangian is

(x, y. A) = —a ln(a?) — 61n(?/) + X(xpx + ypy — A).

Its derivative is DS£(x, г/, A) = [—^ + Арж
critical point must satisfy

-у + xPy xPx + УРу- A]- A

A = a = and
\XPx) \УРу)

ypy = A - xpx.

Solving for X, 7/, and A gives

aA bA
рх(а + ЬУ У ру(а + ЬУ

1 ч a~\~band Л =
A

as the only critical point.
The second derivative with respect to x = (a?, y) is

D2& = afx2 0
6/?/2 for all nonzero x and г/,0 > 0

so the Lagrange SOSC guarantees that this critical point is a local minimizer
of (14.10).

Example 14. 3.8. Recall the problem of Example 14.2.9, of finding the points
on the zero set & = {x E Rn | H(x) = 0} which are closest to and farthest
from a point p 0 . In this problem, the second derivative is

D2̂ = 21 + АВ2Я(х).

Consider the case where H : R2 —> R is 7/(x) = x2 — у2 — 1, and p =
[8 2\/з]Т- In this case we haveDH(x) = [2a? —2т/] and D2 77 (x) = [q _0].
The Lagrange FONC is

D7L(x)TA = 2(p — x).

One can easily check that the point x = (2, —л/3) satisfies the FONC with
A = 3. But for the second order condition, we have = [^ _^1, which is
indefinite.

The tangent space at x is the kernel

Л (DH(x)) = JY ([4 -2^/3]) = span

636 Chapter 14. Nonlinear Constrained Optimization

Thus, every vector v G is of the form v = a(\/3, 2). Checking this in
the Lagrange second-order condition gives

vtD2J^v = a2 (24 - 16) > 0,

and so x is a local minimizer by Lagrange’s SOSC.

Example 14. 3.9. Consider again the problem in Example 14.2.9, but where
H : Rn —> R is Я(х) = xTx — 1, so that & = {x | H(x) = 0} is the unit
sphere. We have ЛЯ(х) = 2xT and D2Lf(x) = 21. The necessary condition
for an optimizer is that W(x)TA = 2(p — x), so we have x = p/(l + A) for
some A. Combining this with Я(х) = 0 gives 1 = pTp/(l + A)2 or

A = ±л/pTp — 1 and x = ±77^77.

IIpII
The Hessian is = (2+2A)7. which is positive definite if A > —1, which

occurs if we take A = ||p|| — 1, which gives x = . Therefore Lagrange’s
SOSC guarantees that x = is a minimizer. Similarly, Lagrange’s SOSC
guarantees that x = — is a maximizer.

14.3.2 Proof of the Lagrange Second-Order Necessary Condition
We prove the Lagrange SONC, Theorem 14.3.1.

Proof. Let v e Tx* where x* e^isa local minimizer. By Proposition 14.1.9,
there exists a curve 'y(t) in & with 7(0) = x* and 7,(0) = v. Moreover, t = 0 is a
local minimizer of ф(1) = /(7(f)), and thus > 0. Since

^(0) = 7'(0)T£2/(7(0))7'(0) + £>/(7(0))7"(0) = vTD2/(x*)v + D/(x*) 7"(0),

we have
vtD2/(x*) v + D/(x*) 7"(0) > 0. (14.11)

Moreover, since f/(7(t)) = 0 (and writing f/(x) = [hi(x) /гг(х) ••• /г^(х)]Т),
we have

0 = —A* TH(7(t)) _ =£A>-№(7(t))7'(t)) _
t—0 j —1 f—о

e
= £ A, (Y(0)tP2^(7(0))7'(0) + РЛД7(0))7"(0))

J=1
£ \

^2 AjvtD2/ij(x*) v + Л* ТРЯ(х*)7"(0), (14.12)
/

14.3. Lagrange's Second-Order Conditions 637

where Л* = [Ai A2 ••• A^]T. Adding (14.11) and (14.12) yields

(£ \
D2/(x’J + ^2 Aji>2Mx*) v + (w(x*) + А* Т£>Я(х*)} 7"(0) > 0.

j=i /

Lagrange’s first-order condition (14.5) gives vT2?2j£f(x*, A*)v > 0, since

e
D^?(x*, A*) = D2/(x*) + ^2 AjB2Mx*)- 0

J=i

14.3.3 Proof of the Lagrange Second-Order Sufficient Condition
We prove the Lagrange SOSC, Theorem 14.3.1.

Proof. Suppose that x* e & satisfies the hypothesis yet is not a strict local
minimizer. This implies there exists a sequence {x/c}^L1 C & \ {x*} that converges
to x* such that f (x^) < f (x*). Let

Sfc = Xfc - X and sfc = -—-.
1Ы1

Note that is bounded and thus has a convergent subsequence s^. —> s*. By
reindexing the subsequence we may assume that x/~ —> x* and —> s*. Note that
JJ(xfc) — Я(х*) = 0 for each к e N. Dividing by ||sfc|| and taking the limit gives
2?JJ(x*)s* = 0, which implies that s* e Tx*

Taylor’s theorem (Theorem 10.3.8) gives

/(xfc) - /(x‘) = £>/(x*)e fc + [(1 - t)£fc£>2/(x* + fefc)efc dt,
Jo

and if H = (/ii,..., ЛД then for every j e {1,..., m} we also have

0 = D/zj(x*)sfc + f (1 — t)e^D2hj(x* + tsk)^k dt.
Jo

The second equality holds since И(х&) = H(x*) = 0. This implies

/(xfc) -/(x*) = ||xfc - x*||£>/(x*)s fc + ||xfc - x*|| 2 f (1 -f)SfcD2/(x* + tek)skdt
Jo

and

0 = ||xfc - x*\\Dhj(x*)s k + ||xfc - x*|| 2 f (1 —t)s[D2hj(x* +tek)skdt.
Jo

Letting A* = (Ai, A2,.. •, A^) and multiplying the second equality by A7, summing
over j, and then adding to the first equality gives

/(xfc) - /(x‘) = ||xfc - X* II2 [(1 - f)sl£>2^(x* + tek, A*)s fc dt. (14.13)
0

638 Chapter 14. Nonlinear Constrained Optimization

By hypothesis, we have (s*) T2?2j£f(x*, A*)s* > 0. Since is C2 in a neighborhood
of (x*,A*), it follows that (x, A*)v > 0 holds for x in a neighborhood of
x* and v sufficiently close to s*. Thus, if к sufficiently large, then the integral is
positive. Hence, the right-hand side of (14.13) is positive, whereas the left-hand
side is nonpositive, which is a contradiction. Thus, x* e & is a strict local mini-
mizer. □

14.4 Karush-Kuhn-Tucker First-Order Conditions
We now turn to the case where the feasible set is defined by both equality constraints
and inequality constraints. Throughout this section and the next we consider con­
strained optimization problems in standard form (14.1), where / is continuously
differentiable on the open set Q C Rn. We also assume that G : Q —> Rm and
H : Q —> are continuously differentiable and have the form

G(x) =

'91 (x)'

92 (x)
and =

’/ll(x)‘
h2 (x)

5m(x) _MX).
An example of an inequality-constrained problem is depicted in Figure 14.4.

Definition 14.4.1. A point x e Q is a feasible point of the optimization problem
(14.1) if it satisfies all the constraints, that is, if G(x) 0 and H(x) = 0. The set
& of all feasible points is called the feasible set and satisfies (14.2). A point x* e &
is a local minimizer for the problem (14.1) if there exists an open set U CQ such
that /(x) > /(x*) for every x eU П . The point x* is a global minimizer for the
problem (14.1) if f(x) > /(x*) for every x e &.

The Karush-Kuhn-Tucker (KKT) conditions, given below in Theorem 14.4.5,
provide conditions for inequality-constrained optimizers analogous to the Lagrange
conditions for equality-constrained optimizers.

14.4.1 The Locus of Binding Constraints
Before we can describe the KKT conditions, we need some definitions about points
that satisfy the binding constraints.

Definition 14.4.2. Given a point x e &, an inequality constraint gj(x) < 0 is
binding (or active,) at x if gj(x) = 0. If instead gj(x.) < 0, then the constraint is
nonbinding (or inactive) at x. Let J(x) denote the index set of binding constraints
at x, that is,

Дх) = {J I %(x) = 0}.

The locus of binding constraints at x is the set

^(x) = {y e Q I H(y) = 0 and g,(y) = OVf 6 J(x)} c

14.4. Karush-Kuhn-Tucker First-Order Conditions 639

Figure 14.4. An inequality-constrained optimization problem in R2 with con­
straints #i(x) < 0 and g2(x) < 0. The minimizer is x*. For more on this figure see
Example 14-4-4-

A point x is a regular point for the optimization problem (14.1) if it is regular for
<F(x), that is, if the set

{Dhi(x)}ei=1 U {£>ft(x)}>€J(x)

is linearly independent. If x is regular, let T(x) = TxJ^(x) be the tangent space to
<F(x) at x.

Remark 14.4.3. If the inequality constraints are all affine, then the binding (ac­
tive) constraints at a point x are the same as the active constraints defined in
Definition 13.3.8.

Example 14.4.4. Figure 14.4 illustrates an inequality-constrained optimiza­
tion problem in R2 with constraints #i(x) < 0 and <72 (x) < 0. The feasible set
& = {x I g(x) < 0} is shaded in color (lower left). The objective function f is
shown as a contour plot with smaller values colored darker (more purple) and
larger values colored lighter (more yellow). The point x* is the minimizer of
this problem. The point xq is not the minimizer for this problem because it is
not feasible, but it would be the minimizer if the problem were unconstrained.

The only binding constraint at the point x* is g±, and so J(x*) = {1}
and the locus & of binding constraints at x* is the red curve {x | #i(x) = 0}.
There are no active constraints at xi, so J(xi) = 0. The binding constraints at
x2 are g\ and g^, so J (^2) — {1,2}, and the locus & of binding constraints at
x2 is the singleton set {x2} (the intersection {x | gi(x) = 0} П {x | g2(x) = 0}
of the red and blue curves).

640 Chapter 14. Nonlinear Constrained Optimization

14.4.2 The KKT First-Order Conditions
We can now give the KKT first-order conditions, which give a powerful set of
necessary conditions for a local minimizer.

Theorem 14.4.5 (KKT First-Order Conditions). Assume that x* e is
a local minimizer of the constrained optimization problem (14.1). If x* e & is a
regular point, then there exists Л* e R£ and pL* e Rm such that

(i) B/(x) + (Л) т2?Я(х) + (/z) TBG(x) = 0,* * * * *

(ii) pt 0, and*

(iii) pLgi(x) = 0 for all i e {1,... , m}.**

We refer to (i)-(iii) as the KKT conditions of (14.1).

We give the proof of the KKT first-order conditions in Section 14.4.5.

Example 14.4.6. An illustration of the KKT conditions in R2 for the case
of no equality constraints (£ = 0) and three inequality constraints G : R2 —>
R3 is given in Figure 14.5. The local optimizer is x* in that figure. The
binding constraints at the point x* are g± and g^, and the locus & of binding
constraints at x* is the singleton set {x*}. Because g% is not binding at x*,
the multiplier is 0 (by condition (iii)), which means that condition (i) does
not involve the gradient of g%. The KKT conditions guarantee that

W) + /ij^i(x*) + M2^2(x*) = 0

with /4,/4 — This is equivalent to saying that D/(x*) T = -д|Р^(х*) т —
/12^)^2(x*) t, which means that the gradient D/(x*) T (black arrow) is a nega­
tive linear combination of the two constraint gradients 79gi(x*) T (red arrow)
and D^(x*) T (blue arrow).

Contrast this with the situation in Figure 14.6. The point Xi cannot be a
minimizer because the gradient Z)/(x*) T is not a negative linear combination
of the two binding-constraint gradients D#i(x*) T and D^2(X*) T- But pro­
jecting —Df(x*) J orthogonally onto the tangent space of one of the binding­
constraint loci (the red curve) gives a vector (orange) that points in a direction
that decreases f.

Remark 14.4.7. The feasibility conditions Я(х*) = 0 and G(x*) 0 are some­
times called the primal feasibility conditions, to distinguish them from the two KKT
conditions 2?xJjf(x*, A*, /1*) = 0 and pL* 0, which are sometimes called the dual
feasibility conditions. The third KKT condition that /z*̂(x*) = 0 for all i is called
complementary slackness and is considered neither primal nor dual. Exercise 14.22
shows that these conditions correspond exactly to their counterparts of the same
name for linear optimization. We discuss duality in more depth in the next chapter.

14.4. Karush-Kuhn-Tucker First-Order Conditions 641

Figure 14.5. A local optimizer x* of an inequality-constrained optimization prob­
lem in R2 with two binding constraints. The first-order KKT constraints guarantee
that the gradient (black arrow) is a negative linear combination of the two
binding-constraint gradients 2?#i(x*)T (red arrow) and Dg2(x*y (blue arrow). For
more details, see Example 14-4-6-

Figure 14.6. The point Xi in this inequality-constrained optimization problem
in R2 cannot be a minimizer because the gradient Df(x.i)T (black arrow) is not a
negative linear combination of the two binding-constraint gradients (red
arrow) and Dg2(x.fiy (blue arrow). For more details, see Example 14-4-6-

642 Chapter 14. Nonlinear Constrained Optimization

14.4.3 Examples

Example 14. 4.8. Consider the problem

minimize
subject to

f(x, y) = (x- 2)2 + 2(y - I)2
x + 4?/ — 3 < 0,
у — x < 0.

The KKT conditions require that there exist = (/ii, /12) 0 such that

[2(z - 2)

(14.14a)
(14.14b)

(14.14c)

To solve this, consider the possible cases:

(i) If /ii = /12 = 0, then (14.14c) implies that x = 2 and у = 1. But this is
not feasible.

(ii) If /ii = 0 and /12 / 0, then (14.14b) implies that x = y. Substituting
into (14.14c) gives 2x — 4 = /12 = —4rr + 4. Hence x = у = 4/3 and
/12 = —4/3, which does not satisfy the nonnegativity condition for /1.

(iii) If /12 = 0 and /11 / 0, then (14.14a) implies that x = 3 — 4?/, and
substituting this into (14.14c) gives 2(3 — 4y — 2) = —/11 = у — 1. Hence
у = I, x = I, and /11 = i, which is feasible.

(iv) If /11 and /12 are both nonzero, then x = у and x = 3 — 4//, so x = у = |
and /1 = (||, —||). But this does not satisfy the nonnegativity condition
for /1.

Therefore, the only case with a feasible point satisfying the KKT conditions
is (iii), and the only candidate for a minimizer is (|, |).

Example 14. 4.9. Consider the problem

minimize f(x,y) = x2 + y2 + z2
subject to Л(х) = x + у + z — 1 = 0,

z < 0.

The KKT conditions require that there exist /1 > 0 and A 6 I such that

fiz = 0, (14.15a)
[2a; +A,2?/ +A,2z +A + ju]T = 0. (14.15b)

14.4. Karush-Kuhn-Tucker First-Order Conditions 643

Equation (14.15b) and a little algebra give z + -^/i = x = y. If z / 0,
then /z = 0, which gives x = у = z. Combining this with /z(x) = 0 gives
x = у = z = which is not feasible (because z > 0).

If /1 > 0, then we have z = 0 and 2x = 2y = 1, so x = у = |. This is the
only feasible solution to the KKT constraints.

Example 14.4.10.* Consider the problem

minimize /(ж, у) = x2 + у2 + xy — 3#
subject to x > 0,

У > 0.

The KKT conditions require that there exist /1 = (/zi,/Z2)T t 0 such that

—/i^x = 0,
-Ц2У = 0,

[2x + у - 3 2y + ж] + дт 1

(14.16a)
(14.16b)

(14.16c)

Again consider the different possible cases:

(i) If = /12 = 0, then (14.16c) implies that x = —2y and 3 = 2x 4- y, so
у = — 1 and x = 2. But this is not feasible.

(ii) If /Xi = 0 and /12 0, then (14.16b) implies that у = 0. Substituting
into (14.16c) gives 2x — 3 = 0 and /12 = x. Hence x = /12 = | and
у = = 0. This is feasible.

(iii) If /12 = 0 and /1^ / 0, then (14.16a) implies that x = 0, and substituting
this into (14.16c) gives у = 0 and /11 = у — 3 = —3, which does not
satisfy the nonnegativity condition.

(iv) Finally, if /11 / 0 and /12 ф 0, then x = у = 0, and 2y 4- x — /12 / 0, so
/1 does not satisfy the nonnegativity condition.

Therefore, the only case with a feasible point satisfying the KKT conditions
is (ii), and the only candidate for a minimizer is (|, 0).

Definition 14.4.11. The Lagrangian of the constrained optimization problem
(14.1) is the function T£ : Q x x Rm —> R given by

% (x, Л, /z) = /(x) + АтЯ(х) + /zTG(x). (14.17)

The Lagrangian derivative condition (x* , A* , /1*) = 0 gives the first KKT
condition (Theorem 14.4.5(i)). In contrast, the Lagrangian derivative condition

644 Chapter 14. Nonlinear Constrained Optimization

Z?A<Jzf(x*, A*, /1*) = 0 merely satisfies the constraint H(x*) = 0. The Lagrangian
derivative condition (x* , A* , /jl*) 0 satisfies the constraint G(x*) 0.
14.4.4 Lagrange as a Special Case of KKT
If an optimization problem has no inequality constraints or the optimizer does not lie
on the boundary of the inequality constraints, then the KKT first-order conditions
reduce to the Lagrange first-order conditions.

Consider first the case of no inequality constraints. Here the KKT conditions are
clearly the same as the Lagrange condition, and there are no /м, so the first-order
KKT conditions are the same as those for equality constraints.

In the case that we know that no optimizer lies on the boundary of any equality
constraint, we may work in the open subset of Q where these strict inequalities hold.
Inside that open subset, we have only equality constraints, and the KKT conditions
reduce to the Lagrange conditions.

Alternatively, we can work with the full KKT Lagrangian (14.17), but the fact
that all inequalities are strict for all optimizers implies that every дДх) 0 for
every optimizer x* and every i. Therefore, complementary slackness guarantees
that fl* = 0. The only remaining KKT first-order condition is

0 = Dx^ (x*, A*, 0) = Dxf + X*D xH + 0T DXG,

which is the same as the equality-constrained first-order Lagrange condition.

14.4.5 Proof of the KKT First-Order Conditions
We prove the KKT first-order conditions, Theorem 14.4.5.

Proof. Let & = c?(x*). Since & C the point x* G & is also a local minimizer
of f on which involves only equality constraints. Thus, by Lagrange’s first-
order condition (Theorem 14.2.1), there exist A* = (AJ,..., A^) G and constants

so that

£

£>/(х*) + 52а*£>^(х*)+ 52 д*£>^(х*) = 0.

Setting (i* = 0 for all j J(x*) gives ц* = (/4, • • •, Mm) so that

£>/(x*) + (А*) тЯЯ(х*) + (/z*) TDG(x*) = 0.
This immediately gives *̂P*(X) = 0 for every i G {1,..., m}.

Now, to show that /1* >2 0, suppose by way of contradiction that /4 < 0 for some
к G J(x*). Let be the enlargement of the feasible set obtained by removing the
constraint ^(x*) < 0 from the definition of that is,

cFfc = {x G Q I Я(х) = 0 and #j(x) = 0 VJ G J(x*), j ± к},

and let be the tangent space of at x*, that is,

= {v G Rn I M(x*)v = 0 and Bft(x)v = 0 Vj G J(x*), j ф к}.

14.5. *Second-Order KKT 645

We claim that there exists a v G Тх*̂ such that Dgk(x*)v ф 0. If not, then
2?g/~(x*)v = 0 for all v G Tx*<Ffc. Thus 2?^(x*) T G TX*<F^, that is, it is in the
normal space to at x*. Hence,

£>pfc(x*) e span ^{D/ij(x*)}f =1 U {fc}) ,

contradicting the assumption that x* is a regular point. Therefore 2?pfc(x*)v 0
for some v G Tx*jF fc.

Changing the sign of v, if necessary, we may assume 2?^(x*)v < 0. Now write
the Lagrange condition as

i

Df(x*) = - g* kDgk(x*).
i—1 j^k

Applying this to v, and using the fact that 2?/^(x*)v = 0 for all i and 2?^(x*)v = 0
for all j G J(x*) \ {k} gives

D/(x*)v = -Mfc£>Pfc(x*)v < 0.

Now, since v G Tx*̂, Proposition 14.1.9 guarantees there is a differentiable curve
7 : (—6, b) with 7(0) = x* and 7'(0) = v. We then have

^/(7(t)) = O/(x‘)v < 0,
£=0

which means that the function /(7^)) is strictly decreasing at t = 0. Moreover,

= £>pfc(x*)v < 0,
at t=o

and so the function ^(7^)) is also strictly decreasing at t = 0.
Thus, there exists 6 > 0 such that /(7(f)) < /(7(0)) = Дх*) and ^(7^)) < 0

whenever t G (0,5). Thus, we have that ^(t) G & and /(7(2)) < /(x*) for all such
t G (0,5). This contradicts the statement that x* is a local minimizer for f. □

14.5 *Second-Order KKT
Just as for the unconstrained and equality-constrained cases, there are both KKT
SONCs and KKT SOSCs.

14.5.1 Second-Order Necessary Condition

Theorem 14 .5.1 (KKT Second-Order Necessary Condition). Assume that
x G & is a regular point and a local minimizer of the optimization problem (14.1).
Let A G R£ and pb G Rm be the vectors satisfying the first-order KKT conditions,
and let

*
* *

f(x*) = {v G Rn I Dtf(x*)v = 0,2?^(x*)v = 0 VJ G J(x*)}.

646 Chapter 14. Nonlinear Constrained Optimization

If f,H,G are all C2 in a neighborhood ofx*, then for every v G T(x*) we have

vT£>^(х* ,A*,M*)v >0.

Proof. Since x* is a local minimizer in the feasible set & in (14.2), it is also a
local minimizer in & = {x G & | #(x) = 0,^(x) = OVJ G J(x*)}. Since x* is a
regular point of and since T(x*) = Tx* the second-order necessary Lagrange
condition immediately gives the result. □

Theorem 14 .5.2 (KKT Second-Order Sufficient Condition). Consider the
optimization problem (14.1), where f, H, and G are all C2. Assume that x G &
is a regular point and Л G and pb G are vectors satisfying the first-order
KKT conditions. Let

*
* *

J(x*, M*) = {zG J(x*) | > 0},

and let

f(x*) = {v G Rn | M(x*)v = 0,2?^(x*)v = OV? G J(x*, д*)}.

If for every nonzero v G T(x*) we have

vT£>2.$f(x*,A*,/z*)v>0,

then x* is a strict local minimizer for this problem.

Proof. As in the proof of the Lagrange SOSCs, if x* is not a strict local minimizer,
we can take a sequence хд. x* with /(x/J < /(x*) and construct — x*
and Sfc = Sfc/||sfc|| with S& s* for some s*.

As before, we have DH(x*)s* = 0. We now show that for every j G J(x*) we
have Dgj(x*)s* = 0. To see this, note that ^-(x*) = 0 and for every к G Z+ we have
Pj(x* + Sfc) = #j(xfc) < 0, since х& is feasible. This gives

£>ft(x*)s* ff,(x* +£fc) -gj(x*)
l|efe|| Bm a1*’-1;») <0.

On the other hand, since the first-order KKT conditions hold, we have

D/(x*)s* = -AT£>#(x*)s* - (/z*) TDG(x*)s* = -(/z*) TDG(x*)s*.
But each nonzero is strictly positive, and Dgj(x*)s* < 0, so 2?/(x*)s* > 0.
However,

Z>/(x*)s* = lim <0.

Therefore, 2?/(x*)s* = 0 and Dgj(x*)s* = 0 for every j G J.
The rest of the proof is essentially the same as for Lagrange, but with T(x*)

and J(x*, д*) substituted for T(x*) and J(x*). The details are Exercise 14.28. □

14.5. *Second-Order KKT 647

14.5.2 Examples

Example 14. 5.3. In Example 14.4.8 the only active constraint at the point
x = T and /z = [| 0]T is g± (x, y) = x + 4y — 3, with /zi > 0, so* *

T(x*, /z*) = e# (£h?i(x*)) = {v | [1 4] v = 0} = span([—4 1]T).

It suffices to check that vTD2 Jzf (x*,/z*)v > 0 for any such v^O. But

r>2^(x,/z)= J ° >0,

so the condition holds. This guarantees that the one feasible candidate is
indeed a minimizer.

Example 14. 5.4. In Example 14.4.10 we have

W/) = \
so the KKT SOSC guarantees that all feasible first-order candidates are indeed
minimizers.

Example 14. 5.5. Consider the problem of finding x 6R2 to

minimize ЦхЦ!
subject to 2 — ^1^2 + 3#i < 0.

The Lagrangian for this problem is

(xi, ^2, aO = x2 + x% + /z(2 — ^1^2 + 3a?i)

with DxJf(xi,X2,//) = [2^i — /л(х2 — 3) 2x2 — M^i]- It straightforward
to check that x = (2,4) where /z = 4 is a solution of the first-order KKT
conditions, and the constraint h(x) = 2 — ж 1^2 + 3a?i is active there with
/z > 0. We have

T(x) = (Dh(x)) = span 2
-1

and D2Jzf(x) =

Hence, every nonzero v € T(x) = span((2, —1)), which implies that v = q(2, —1) and

vT O2 J^v = a2 [2 -1] 2 —4
—4 2

2
-1

= 26a2 > 0.

So the KKT SOSC implies that this point is a local minimizer.

648 Chapter 14. Nonlinear Constrained Optimization

14.5.3 Second-Order Lagrange as a Special Case of KKT
The second-order Lagrange conditions are a special case of the second-order KKT
conditions, just as the first-order Lagrange conditions are a special case of the first-
order KKT conditions. To see this, note that in the case that none of the inequality
constraints are active for any optimizer, then

T (x*) = f (x*) =

Therefore, the KKT second-order conditions are identical to their equality-
constrained Lagrange counterparts.

14.6 Removing Affine Constraints
Perhaps the most straightforward way to deal with constraints is to rewrite the
problem as an unconstrained problem. This is always possible when all of the
constraints are affine equalities, because we can use the equality constraints to
solve for some of the variables in terms of the others, and then substitute those
relations into the objective, reducing the dimension of the problem and making the
constraints unnecessary. This method is easy to apply on problems like that of
Example 14.3.7. Here we give several additional examples and then discuss some
general considerations for how to do this most effectively.

Unexample 14.6.1. While affine constraints can always be removed, non-
affine constraints are trickier. In some situations removing a nonaffine con­
straint carelessly can be disastrous. Consider the problem

minimize x2 + y2
subject to (x — I)3 — y2 = 0.

It is straightforward to check that the minimizer is (1,0) with minimal value 1.
Making the naive substitution у2 = (x — l)3 turns this into the unconstrained
problem of minimizing x2 + (x — I)3, which is unbounded as x —> — oo. The
error here is that the constraint (x — l)3 — = 0 also implicitly imposes the
additional constraint (x — l)3 > 0, which was not accounted for in the naive
unconstrained version of the problem. This is not to say that one can never
remove nonaffine constraints, but doing so requires extra care.

14.6.1 Example: Line Fitting with Ordinary Least Squares
Given a set of data points {(#z, we wish to find the line that best fits the
data. Assuming that the data is only susceptible to noise (error) in the у direction
(see Figure 14.7(a)) corresponds to the model

yi + = гпхг + 6, г = 1,..., d, (14.18)

or
у + e = mx + M,

14.6. Removing Affine Constraints 649

where e is the error and 1 = is the vector of all ones. To minimize the
2-norm of the error e, we can formulate this as the constrained optimization problem

minimize ЦеЩ
e,m,5

subject to у + e = mx + bl.

Solving for e in terms of m, 6, x, and у gives the unconstrained optimization problem
of choosing m and b to

N

minimize ||mx + bl — у || 2 = / \тпхг + b — ?/*| 2.

54Note that we are not actually minimizing the sum of the distances to the line, but rather the
sum of the squares of the distances. So while we are minimizing ||<5||2 + Iklli» a related, but not
identical, problem would be to minimize ||<5||2 + ||e||2- This related problem is messier to solve
and the answer is usually not very different from summing the squares of the distances.

m,b
г=1

We have removed the equality constraints and reduced the dimension of the problem
from N + 2 to 2, thereby simplifying it substantially.

This particular problem can be written in a nicer form by taking

Xx 1
л x<2 1 , \m
A = . . and z = .

b

xN 1

so that the problem becomes that of finding z to

minimize ||Az — уЦ^. z

14.6.2 Total Least Squares
Ordinary linear regression measures error in the у variable only. It could also
happen that the data {(a^, 2/z)}f=i are susceptible to noise in both the x and у
values, corresponding to the model

Уг + = rn(xi + Si) -\-b, i = 1,..., d, (14.19)

or
у + e = m(x + S) + bl.

For an illustration of this, see Figure 14.7(6).
In this setting, the goal is to solve the following equality-constrained optimiza­

tion problem54 of choosing m, 6, 5, and e to

minimize7 e» (* I- -L \ 6 6 /
m,o,d,€

subject to mSi + mxi + b — ег = уг, i = 1,..., d,

or, in vector notation,

minimize ||<5||| + ||e|||
m,o,d,e

subject to mS — mx — bl + e = y.

650 Chapter 14. Nonlinear Constrained Optimization

Figure 14.7. The residuals for (a) ordinary least squares include only error in the
у-axis. The residuals for (b) total least squares are the (squares of the) distances
measured perpendicular to the line.

(14.20)

The constraint is affine and we can rewrite this by solving for e in terms of m, 6,
x, y, and 8 to get the unconstrained quadratic optimization problem of finding m,
6, and 8 to

minimize ||<5||2 + Ну — + шх + II2 •
m,b,S

This has turned the problem from a constrained problem to an unconstrained prob­
lem and has also reduced the dimension from 27V + 2 down to N + 2, a substantial
simplification.

14.6.3 Generalization: Removing Affine Constraints
The previous examples are special cases of the generic equality-constrained problem

minimize f(x) хек™
subject to Cx = d

where C G and d G If C has rank r < £, then the feasible set
& = {x G I Cx = d} has dimension n — r as an affine space. Here we show how
to remove the constraints by finding a bijective map ф : Rn-r —> & and reducing
the constrained problem into the unconstrained problem of choosing у G Rn-r to
minimize /(<^(y)).

We can construct a bijection ф using the reduced QR decomposition with piv­
oting to write C = QRP\ where Q is an £ x r orthonormal matrix, P is an n x n
permutation matrix (it is orthonormal with every entry equal to either 1 or 0), and
R is an r x n upper triangular matrix of the form R = [7?i R2], where R± is an
r x r upper triangular, invertible matrix and R^ is an r x (n — r) matrix. Given
such a decomposition, define an affine map ф : Rn-r —> Rn by

<^(z) = P[7?f1(QTd-P2z) z]T. (14.21)

Remark 14.6.2. The formula (14.21) may feel like it comes out of nowhere, but it
should feel more natural after reading the proof of Proposition 14.6.4. Pay particular
attention to the nice form for ф = ф-1 in that proof.

14.6. Removing Affine Constraints 651

Nota Bene 14.6.3. Given a matrix С G Mexn(W) with rank r < d, naively
performing QR decomposition on C does not necessarily yield an R in the
desired block form R = [R± R2] with R± upper triangular and invertible of
rank r. But with pivoting, this can always be done. That is, one can always
decompose C as C = QRP, where R has the desired form, Q has orthonormal
columns, and P is a permutation matrix.

Proposition 14.6.4. Assuming d G <^(C), the affine map ф : Rn r Rn in
(14.21) is a bijection from Rn-r to the feasible set = {x e Rn | Cx = d}.

Proof. To show that ф is well defined, let z G Rn-r. Thus,

C<f>(z)=Q[R1 7?2]Pt<Xz)

= <Э[Я1 P2]FTF[JRr1(<?Td - f?2z) z]

= Q[7?! fl2][/?r1(<?Td-/?2z) z]T

= <2((<?Td - P2z) + T?2z) = <2Q-1d.

Since d € ^(C), it follows that QQTd = d.55 Thus, </>(z) € Define a map
7/): > Rn-r as follows: for any x € Rn with Cx = d, write PTx = [y z]T with

55Beware that although QTQ = I, the matrix Q is not square, and QQT 7^ I.

у G Rr and z G Rn-r, and let ф(х) = z.
To prove the proposition, it suffices to prove that ф = <^-1, that is, </>(V>(x)) = x

for all x G & and ^(</>(z)) = z for all z G Rn-r. For any z G Rn-r we have
</>(z) = P[Pj"1(QTd — P2z) z]T, and thus ^(</>(z)) = z. Conversely, if x G
write PTx = [y z]T so that

d = Cx = QPPTx = Q [Pi R2] = Q(Riy+ P2z).

Thus QTd — R2z = Rfy and у = R± 1(QTd — P2z), giving x = </>(z) = ф(ф(х)).
□

Remark 14.6.5. To solve the original problem, we need only solve the uncon­
strained problem

minimize/(</>(z)) = f(P\R11(QTd — P2z) zlT),
zeRn-r L J

for the minimizer z* , and let x* = </>(z*).

Remark 14.6.6. Geometrically speaking, the affine space & is a translate of the
(n — r)-dimensional vector subspace W = {x G | Cx = 0}, and every subspace
of dimension к is isomorphic to Rfe. The map ф is the composition of a translation
& W with an isomorphism W = Rn-r. See Figure 14.8 for an illustration.

652 Chapter 14. Nonlinear Constrained Optimization

Figure 14.8. Any affine set & is the translate of a vector subspace W, so we can
write & = W + sq for any point s0 6

Example 14.6.7. Given A E Mmxn(R) and b 6 Rm, the least squares with
equality constraints (LSE) problem is given as

minimize II Ax — bll 2xeRn 2

subject to Cx = d,
(14.22)

where С E M£Xn(R) and d E R^.
Using the notation x = P[y z]T of the previous section, we rewrite the

objective function as
Лх - b = АР У

z

By writing AP = [Ai A2], we have

У
zAx - b = AP - b = AiPf 1(QTd - P2z) + A2z - b

= (A2 - AiEf 1P2)z + ArR^Q^d - b.

So the LSE problem (14.22) is equivalent to the following (unconstrained)
ordinary least squares problem:

minimize ||Az — b||n, zeRn-r 11 ll2’

where

A — A2 — Ai Rr 1R2 E AQx(n_r)(R),

b = b — AiPf1QTd E R€.

Remark 14.6.8. Although making an affine transformation to remove equality
constraints can both reduce the dimension and allow us to use the numerical meth­
ods of Chapter 12, there are situations where it might be better not to make this

14.6. Removing Affine Constraints 653

transformation. For example, in the LSE problem (14.22) if the matrix A is large
but sparse, a transformation to remove equality constraints might destroy the sparse
structure of A. This could result in an increased computational complexity that
would completely negate any benefit that might have been gained by removing the
equality constraints.

14.6.4 Application: Portfolio Optimization
Consider the problem of forming an investment portfolio of several assets. Suppose
that there are n possible assets to choose from, and assume their rates of return are
random variables r = (n, Г2,..., rn) with expected values f$ = E[r^], i = 1,2,..., n.
Assume further that the covariance matrix E = E[(r —r)(r — r)T] is positive definite
with components E^- = E[(r$ — fi)(rj — f?)].

The portfolio consists of a mix of these n assets. We characterize the mix by
choosing n corresponding weights wi, W2,..., wn which sum to one and denote the
proportion of the portfolio holdings for each of the assets. The rate of return for
the entire portfolio is given by

p = wiri + w2r2 4-------H wnrn.

The expected rate of return is given by

p = E[r] = win + w2f2 4-------1- wnfn.

The investor wants to maximize the rate of return, but that’s not the same as
maximizing the expected rate of return. Investors are usually leery of risk, which
corresponds essentially to variance in the rate of return. Two different portfolios
may have the same expected rate of return but wildly different variances. For a
given expected rate of return p, we wish to minimize the variance of the portfolio.

The variance is given by

Var p = E[(p - p)2]

= E E WiwiEt(ri “ ri^ri ~
i=ij=i
n n

= EEwiw>Ev-
i=i j=i

So given fi,..., rn and all the EZJ we have the optimization problem of choosing
wi,..., wn so as to

minimize £"=1 £”=1 WiWj^ij

subject to wi + W2 4------ 1- wn = 1,
win 4------ h wnrn = f.

654 Chapter 14. Nonlinear Constrained Optimization

If we let w = (wi,..., wn), 1 be the vector of all ones, and r = (n,..., rn), then
this problem could also be rewritten as the problem of choosing w to

minimize
subject to

wTSw
wTl = 1,
wTf = p.

(14.23)

Each choice of expected value p has a corresponding minimum possible variance
Var(p). Plotting these optimal pairs on a graph with risk Var(p) on the ж-axis
and expected return p on the ?/-axis gives a curve called the efficient frontier; see
Figure 14.9.

Figure 14.9. Graphical representation of the Markowitz model. The solid blue line
represents the efficient frontier, consisting of portfolios that minimize risk (variance)
for a given expected return p. The red star represents the portfolio with the overall
minimum variance, and the black dots represent individual assets.

■> Var(p)

This concept was developed by Harry Markowitz in the 1950s in his modern port­
folio theory, which eventually resulted in the capital asset pricing model (CAPM).
The CAPM is widely used by portfolio managers across the world. Markowitz was
awarded the Nobel Prize in economics in 1990 for his work on portfolio theory.

Using the previous techniques, we can rewrite this problem (see Exercise 14.32)
as the unconstrained quadratic optimization problem of choosing у G Rn-2 to

minimize yT Ay — vTy + p (14.24)

for some choice of p G R, and v G Rn-2, and A > 0. In this form, we can use the
techniques of Chapter 12 to find solutions to this problem.

The discussion above assumes that you can short sell an asset, which means that
you essentially borrow the asset from someone and sell it to someone else. At some
later date you buy it back again and return it to the person you borrowed it from.

14.7. Numerical Methods for Constrained Optimization 655

You would do this when you think the price of an asset is going to go down. Thus,
it is possible to have negative values of because you borrowed the asset, sold it,
and then invested that money in the other assets in the portfolio (thus keeping the
total sum of weights to one).

Prohibiting short selling corresponds to an additional requirement that Wi > 0
for each i. In this case we cannot rewrite the problem to remove all the constraints,
but it is still solvable using the techniques in this text, especially those in the
following chapter.

14.7 Numerical Methods for Constrained Optimization
In this section we describe a few common methods for computing minimizers of
a differentiable function f on a closed, convex feasible set &. That is, we are
interested in computing numerical solutions to problems of the form

minimize f(x)V 7 (14.25)
subject to x G

where & is closed and convex and / is continuously differentiable on an open set
containing &,

14.7.1 Conditional Gradient
The conditional gradient method is an iterative method for numerically solving
problems of the form (14.25). Given an initial feasible point xq G it proceeds by
choosing

Xfc+1 = Xfc + afc(xfc - Xfc), (14.26)

where
xfc = argmin £>/(xfc)(x - xfc). (14.27)

Of course, since DF(x.k) is a linear transformation, this is the same as minimizing
2?/(xfc)x over &.

Since & is convex, the point Xfc+i must also lie in & provided G [0,1]. There­
fore, this algorithm requires the constraint of 0 < Q/c < 1 on the learning rate
Aside from this constraint, the learning rate сц~ can be chosen in any of the stan­
dard ways outlined in Section 12.3, including by solving the optimization problem
ct/c = argmina€[0}1] /(x^ + o(x/c — х&)), using a constant value, or backtracking.

Geometrically, this method amounts to choosing x/~ by minimizing the linear
Taylor approximation £(x) = /(x/J + 2?/(x/c)(x — x^) of / at x^. That is, the
method moves in the direction that would be optimal if / were linear (and equal
to £(x)), but the distance it travels in that direction is determined by whatever
method is used to choose

The conditional gradient method replaces the problem of minimizing / over &
with the problem of successively minimizing the linear functions 2?/(x/c)(x—x^) over
&. These are often much easier to solve than the original problem. For example,
if & is defined by purely affine constraints, then each of the new problems (14.27)
is a linear optimization problem that can be solved using the simplex method.

656 Chapter 14. Nonlinear Constrained Optimization

Example 14. 7.1. Given Q > 0, consider the problem

minimize
subject to

У(х) = |xTQx + rTx
Ax b,
x >- 0.

We show how to take one step of the conditional gradient method to solve this
problem, given a feasible point X&. Let = {x 6 Rn | x 0, Ax b}. For
each к we have Df(xk) = x^Q + rT and so

Xfc = argmin(xjQ + rT)(x — xfc) = argminx^Qx + rTx.

Setting ck = xjQ + rT shows that the problem of finding x has been trans­
formed into the linear optimization problem

minimize c^x
subject to Ax b,

x 0,

which can be solved with the simplex method. Once х& has been found, the
learning rate ak may be found by solving

ak = argmin/(xfc + a(xfc - xfc)).
ae[o,i]

One way to do this is to find the global minimizer a* of (/?(q) = f(x-k +
a(xfc — Xfc)), using the one-dimensional optimization methods of Section 12.2
or by solving for it exactly, by hand, since cp is a quadratic function of a.
In either case, the solution of the constrained optimization problem ak =
argminaEj01j <^(a) is 0, 1, or a* , if a* G [0,1]. The computed values of ak and
хд. are now plugged into (14.26) to get the next iterate.

14.7.2 Gradient Projection
The gradient projection method is another iterative method for solving problems of
the form (14.25) with a convex feasible set &. This method chooses

Xfc+l — X& “h (^/-(x/- Xfc)
with

xfc = proj^-(xfc - sfcD/(xfc)T) (14.28)

for some choice of otk G [0,1] and sk > 0. Again, since the point x^ lies in which
is convex, the point x^+i must also lie in provided otk G [0,1].

Computing a projection proj^v is an optimization problem with a quadratic
objective:

minimize ||x — v^.

Thus, the gradient projection method replaces the problem of minimizing / over
& with the problem of successively minimizing quadratic functions of the form
||x - (Xfc - Sfc£>/(xfc)T)||^ over

14.7. Numerical Methods for Constrained Optimization 657

In some situations the projection is easy to compute. Here are some important
cases:

(i) If the constraints defining & are all of the form a x b, then the projection
projjr v has its zth coordinate (projj? v)i given by

(projjr v)i = Vi

if Vi
if at
if bi

< Vi < bi,

< Vi.

(ii) If the feasible set is a hyperplane & = {x | aTx = b}, then the projection of
v to cF is

projv = v + .. *2Va. (14.29)
IHI2

(iii) If the feasible set is a half space & = {x | aTx < b}, then the projection
of v to c? is just v if aTv < b and otherwise it is the projection onto the
supporting hyperplane (14.29).

There are two main approaches to using the gradient projection algorithm. One
approach is to make Sk = s constant. Then, once each x^ is chosen, choose &k
either as &k = argminaE[0д] /(x^ + a(5tk — xfc)) or just choose &k by backtracking
from o = l.

The other approach is to fix the learning rate &k = 1, but at each step choose
Sk judiciously. This can be done by setting x(s) = projjr(x/c — s2?/(xfc)T) and
then backtracking from s = 1 until the following analogue of the Armijo condition
(12.16) holds:

/(Xfc) - /(x(s)) > <T£>/(xfc)(xfc - x(s)) (14.30)

for some fixed choice of a E (0,1). This effectively amounts to backtracking along
the projection arc {x(s) | s E [0,1]} until 14.30 is satisfied.

Example 14. 7.2. Consider a constrained optimization problem of finding
x e Rn to

minimize /(x) = |xTQx + rTx
subject to aTx < b

for some fixed choices of b E R, a, r E Rn, and Q E Mn(W) with Q > 0. Given
a feasible point x^, the gradient projection method with fixed Sk = s first
computes v = x/~ — sDf(x.k)T = sQ’x.k — st and then finds x^ as proj& n.
This is given by

{v if aTv < 6,

v + if aTv >b-11 all 2

The learning rate &k cun be computed in the same manner as in Example 14.7.1
and xfc+i = xfc + afe(xfc - x).

658 Chapter 14. Nonlinear Constrained Optimization

Example 14. 7.3. We can also use backtracking along the projection arc for
the problem in Example 14.7.2 with fixed learning rate = 1. To do this,
let v(s) = х& — sDf(xk)\ as before, and define

x(s) = projjr v(s) =
if aTv(s) < 6,
if aTv(s) > b

for all s € [0,1]. Fix a E (0,1). Starting at s = 1, check the Armijo condition:

/(xfe) - /(x(s)) > <rD/(xfe)(xfc - x(s)) = |(x£Q - rT)(xfe - x(s)). (14.31)

If that fails, try again with s = 1/2 and then s = 1/4, and so on, until (14.31)
holds, at which point, set x/~+i = x(s).

Remark 14.7.4. The gradient projection method can suffer from the same sorts
of inefficiencies and slow convergence as unconstrained gradient descent. There
are many variations on this method to try to improve this situation, analogous
to things like conjugate gradient for improving the unconstrained case of gradient
descent.

14.7.3 Newton's Method with Constraints
Recall that the unconstrained version of Newton’s method can be thought of as
making a quadratic approximation

/(x) « q(x) = /(xfc) + r>/(x - xfc) + l(x - xfc)TZ)2/(xfc)(x - Xfc)

of /(x) near Xfc and then finding the minimizer Xfc+i = argminx q(x). This is easily
adapted to the constrained case as

Xfc+i = argminry(x). (14.32)

In the unconstrained case the minimizer of q is given by the usual Newton formula
Xfc — D2/(xfc)-1D/(xfc)T, but in the constrained case, computing Xfc+i requires
minimizing a quadratic objective over &. As with the other methods, the difficulty
of solving this problem depends heavily on the nature of . As in the unconstrained
case, a natural variant of this method is to set Xfc+i = Xfc + QfcXfc, where Xfc =
(argminxe^r q(x)) — Xfc and the learning rate € [0,1] is chosen in one of the
standard ways.

14.7.4 Initialization
Since all of the methods in this section are iterative, they require an initial point
xq. If the feasible set & is defined by affine constraints, then an initial value can

Exercises 659

be found with the help of an auxiliary linear problem, exactly as in the linear case;
see Section 13.5.1.

Alternatively, we can set up a different problem with the same minimizer, but
with a relaxed set of constraints so that it is easier to find an initial feasible point.
The key is to add a penalty to the objective for any failure to satisfy the original
constraints.

Example 14.7.5. Consider a problem of the form

minimize
subject to

У(х)
G(x) 0.

If no x is known that satisfies G(x) 0, then we can consider an alternative
problem of the form

minimize /(x) + ct
subject to G(x) tl, (14.34)

t > 0,

where 1 = (1,1,...,1) is the all-ones vector, and c > 0 is fixed. If x* is
a minimizer of the original problem, then (x*,0) is a minimizer for the new
problem. And conversely, if (x*,t*) is a minimizer for the new problem, then
t* = 0 and x* must be a minimizer of the original problem. Moreover, it is
easy to find a feasible starting point for the new problem; namely, for any xq
in the domain of /, if to = max(gi(xo),... ,gm(xo)), then (xo,to) is feasible
for (14.34). Any of the previous iterative methods for solving constrained
optimization problems may now be used to solve (14.34).

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

660 Chapter 14. Nonlinear Constrained Optimization

14.1. The unit circle S1 C R2 is defined by the equation h(x,y) = 0, where

h(x,y) = x2 + у2 — 1.

(i) Show that every point on the circle is a regular point.

(ii) Near each point, find a one-dimensional parametrization for the circle.
Hint: Remember that a parametrization is an injective map from an
open interval to the circle, so you cannot find one parametrization that
works for all the points of the circle at once. At each point, describe a
(nonzero) normal vector as a function of your parametrization near that
point.

14.2. The equation h(x, y, z) = 0, where

h(x, y, z) = \ c— y/x2 + y2j + z2 — a2, c > a > 0,

defines a torus T2 C R3.
(i) Show that every point on this torus is a regular point.

(ii) Find a two-dimensional parametrization of the torus near each point
and describe a (nonzero) normal vector at each point. Hint: Recall that
D/i(x)T is always orthogonal to TXS.

14.3. For each of the following functions h : R2 R, find all the points of the set
S = {(ж, у) G R2 | Л(х) = 0} that are singular (not regular). Plot the set S
near each singular point. For each singular point (ж,?/), identify the vector
space {v e R2 | Dh(x, ?/)v = 0} and its orthogonal complement.

(i) h(x, y) = x4 — 2ж3+ж2— у2. Hint: The implicit curve S = {x | Л(х) = 0}
corresponds to the 0-contour curve.

(ii) h(x,y) = x3 — x2 — y2. Hint: To see what is happening near the singu­
larity, try plotting the level curves {x | Л(х) = c} for very small positive
and negative values of c.

(iii) h(x, y) = x3 — y2 + 2y — 1.
14.4. For each of the following functions h : R3 R, find all the points of the set

S = {(x,y, z) e R3 | Л(х) = 0} that are singular (not regular). Plot the set
S near each singular point (if there are an infinite number of singular points,
plot the set near a large number of them).

(i) h(X) 7/, z) = z2 — x2 + y2. Hint: If you do not have tools to easily plot a
three-dimensional implicit surface, you can often just solve for one of the
variables in terms of the others (like z = ±д/ж2 — у2) and then plot the
corresponding three-dimensional graphs (in this case both the positive
and negative parts).

(ii) h(x, 7/, z) = x2y — z2.

14.5. Prove that if £ = n, then a regular point x G is an isolated point, that is,
there is a neighborhood of x in which there are no other points of &.

Exercises 661

14.6. Consider the problem

maximize xy
(x,y)ER2

subject to x2 + 4?/2 = 1.

Find all the points that satisfy the Lagrange first-order condition.
14.7. Consider the problem

maximize x2 + 2xy + Зу2 + 4x + by + 6г
(x,y,z)ER3

subject to x + 2y = 3,
4т + 5z = 6.

Find all the points that satisfy the Lagrange first-order condition.
14.8. Find the dimensions of the box of maximal volume that can be inscribed in

the ellipsoid
2 2 2

L I £ = 1a2 62 C2 K

14.9. Let A E Mmxn(R) be of maximal rank. Show that the minimizer of the
problem

minimize II Axil о
xeR™ 2

subject to ЦхЦ! = 1
is the unit-length right singular vector corresponding to the smallest singular
value of A, that is, x* satisfies ATAx* = a2x*.

14.10. Consider the problem

maximize 11 x — Xn 119
xeR2

subject to ЦхЦ! = 9,

where xq = (1, \/3). Find all the points that satisfy the Lagrange first-order
condition.

14.11. For Exercise 14.6 use the second-order conditions to determine which, if any,
of the points are local maximizers.

14.12. For Exercise 14.7 use the second-order conditions to determine which, if any,
of the points are local maximizers.

14.13. For any equality-constrained maximization problem of the form (14.6), define
the Lagrangian of the maximization problem to be

^(х,Л) = /(х) + АтЯ(х).

Use the Lagrange FONC for maximization problems (see Remark 14.2.3) and
the Lagrange second-order conditions for minimization to prove the following
corresponding second-order conditions in the case that f and H are both C2
in a neighborhood of x*:

(i) If x is a local maximizer (14.6) and a regular point of the feasible set
then the Л E of Remark 14.2.3 is such that vTD2jSf(x, A)v < 0
whenever v E Tx

*
* * *

*

662 Chapter 14. Nonlinear Constrained Optimization

(ii) If there exists x G Rn and Л G R£ such that Lagrange FONC for
maximization holds and vT, A)v < 0 for all nonzero v G
then x is a strict local maximizer.

* *
*

*
14.14. Recall the minimization problem in Exercise 14.10. In that problem, we

determined the points that satisfied the Lagrange first-order condition. Now
use the second-order conditions to determine which, if any, of the points are
local maximizers.

14.15. Let f(x,y,z) = x + у + г, and define

S = {(ж, у, z) e R3 I x2 + 2y2 + 3г2 = 1}.

Find the maximum and minimum of f on S.
14.16. Find all solutions to the optimization problem

maximize xTAx
subject to ЦхЦ! = 1,

where A = [2 3].

14.17. Find all the points that satisfy the first-order KKT conditions for the opti­
mization problem

maximize x 1X2
subject to + #2 —

#i,x2 > 0.

14.18. Consider the optimization problem of choosing (x^y) G R2 to

maximize —x2 — 2y2
subject to x + у < 4,

xy = 1,
x > 0,7/ > 0.

(i) Set up the problem in the form (14.1). Hint: Strict inequalities can be
incorporated by restricting to an open set Q rather than as constraints
of the form gi < 0.

(ii) Write all the first-order KKT conditions that any optimizer must satisfy.
(iii) Find all the candidate points that should be tested for optimality.
(iv) Plot the feasible set and all the points you identified using the KKT

conditions.
(v) Identify the global maximizer.

14.19. Find all the points that satisfy the first-order KKT conditions for the opti­
mization problem

maximize x2 + 6Ж1Ж2 — 2#i — 2x2
subject to x2 + 2x2 < 1,

2#i — 2x2 < 1-

Exercises 663

Hint: Do not feel obligated to give exact answers nor to do the entire problem
by hand—good numerical approximations are acceptable, and some of the
more tedious aspects of this problem are much easier to do using a few lines
of code.

14.20. Solve the optimization problem

minimize ||x||2
subject to cTx = 6,

x 0,

where c G Rn and b G R are given. Hint: Use the KKT conditions to relate
the signs of 6, A, and each хг, and сг.

14.21. Consider the problem

minimize ||b — Ax|||
subject to ||x||i = 1,

x 0,

where A G 7Wmxn(R) and b G Rm.
(i) Explain what it means for a feasible point x G Rn to be a regular point.

Are there feasible points that are not regular?
(ii) Write down the first-order KKT conditions.

14.22. A Write down the KKT first-order conditions for the linear problem

maximize cTx
subject to Ax b,

x 0

and show that the first two conditions (Theorem 14.4.5, items (i) and (ii)) are
equivalent to the dual linear problem (see Definition 13.6.1), while condition
(iii) is equivalent to complementary slackness (see Theorem 13.6.10).

14.23. For Exercise 14.17 write down the KKT second-order conditions and use
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*

14.24. For Exercise 14.18 write down the KKT second-order conditions and use
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*

14.25. For Exercise 14.19 write down the KKT second-order conditions and use
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*

14.26. For Exercise 14.19 write down the KKT second-order conditions and use
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*

14.27. For Exercise 14.20 write down the KKT second-order conditions and use
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*

664 Chapter 14. Nonlinear Constrained Optimization

14.28. Provide the details to finish the proof of Theorem 14.5.2.*

14.29. Given the points (1,2), (3,1), and (5,5) in R2,
(i) Assuming that only the у direction is subject to error, write an uncon­

strained linear optimization problem which is equivalent to the ordinary
least squares problem of finding the line that best (in terms of the 2-
norm) fits these three points.

(ii) Assuming that both the x and у directions are subject to error, write
an unconstrained linear optimization problem which is equivalent to the
total least squares problem of finding the line that best (in terms of the
square of the 2-norm) fits these three points.

14.30. Consider the linear optimization problem of finding x G Rn with an equality
constraint

maximize c[x
subject to Aix bi,

pTx = d.

Show that if p ф 0, then there exists a linear optimization problem

maximize cjy
subject to A2y b2

in n — 1 variables (that is, у G Rn-1) and an n x (n — 1) matrix M such
that if y* is a maximizer to the second problem, then x* = My* + xq is a
maximizer to the first problem.

14.31. For any v G Rn and any A G 7Wn(R) with A > 0, write ||v||yi = VvTAv. Let
L e Mn(R) and let W = LLA > 0. Show that the unconstrained optimization
problem

minimize ||Ax — b||^r_i

has the same solution as the constrained optimization problem

minimize ||v||2
subject to Ax + Lv = b.

14.32. Show that the portfolio minimization problem (14.23) (with short selling
allowed) is equivalent to an unconstrained quadratic optimization problem of
the form (14.24) as follows:

(i) Write the constraints as Gw = d and find A, v, and p explicitly in terms
of the QR decomposition C = Q [R± R2] FT.

(ii) Give the formula for w in terms of the solution у of the unconstrained
problem.

(iii) Prove that A is positive definite.
14.33. Consider the Markowitz portfolio optimization problem with only two assets

of known expected value ri and f2, respectively.
(i) Show that the constraints give a unique solution, so the minimum­

variance solution is the only solution.

Exercises 665

(ii) Show that the variance is always a quadratic function in the expected
return r. (Beware that E(r2) is a function of f, so writing Var(r) =
E(r2) — r2 does not, in itself, solve the problem.) Figure 14.9 shows the
graph of such a curve.

(iii) The bottom half of the curve in Figure 14.9 is dotted because no one is
interested in it. Why not?

14.34. Verify the following claims made in the text:

(i) If is convex, and x&,x G then X-k+i = k + c(x — X/J G for all
a e [0,1].

* *

(ii) If the feasible set is the hyperplane / = {x aTx = 6}, then the
projection of v to is given by (14.29).

(iii) If (x,f) is a minimizer for (14.34), then x is a minimizer of (14.7.5).** *
14.35. Consider the problem of choosing x G R3 to

minimize /(x) = | (x^ + x \ + ОДЖ3) + 0.55#з
subject to x± + X2 + = 1,

x > 0.
(i) Show that the global minimizer is x = (1/2,1/2,0).*

(ii) Given х& and x^, find a closed-form expression for the minimizer =
argminae[01] /(xfc + a(xfc - xfe)).

(iii) Write a computer program implementing the conditional gradient method
to solve this problem, using the formula for learning rate computed in
the previous step.

(iv) Verify computationally that for any starting point x0 = (а71,ж2,^з) 0
that satisfies x± 7^ ^2, we have

/(Xfc+i) - y(xfc)
/(xfc) - /(xfc-i)

Thus, this method does not converge linearly on this problem; see
Definition 12.2.1.

14.36. Write a computer program implementing the gradient projection method to
solve the optimization problem in Exercise 14.35 with constant s = 1 and
learning rate ctfc = argminaE^0 /(x^ + o(x — x/J). Compare the conver­
gence rate for various initial points to that of your implementation for the
conditional gradient method. Hint: Use (14.29) with a = (1,1,1).

14.37. Write a computer program implementing the gradient projection method to
solve the optimization problem of Exercise 14.35 with constant a = 1, but
with Sk chosen by backtracking along the projection arc to satisfy (14.30).
Compare the convergence rate for various initial points to those of your im­
plementations for the conditional gradient method and gradient projection
with fixed s and variable a.

666 Chapter 14. Nonlinear Constrained Optimization

14.38. Consider the constrained problem of minimizing /(x) subject to H(x.) = 0,
where f G C2(Q;R) and H G C1(Q;R£). When applying Newton’s method
to solve this problem, each iteration requires solving the subproblem

minimize /(xfe) + £>/(xfe)(x - xfc) + |(x - xfc)TI?2/(xfc)(x - xfc)
subject to JI(x) = 0.

(14.35)
Prove that if x G and A E are such that

Z>2/(xfc) РЯ(х/с)т1 Гх1 F-Z)/(xfc)'
W/(xfc) о] [Л] [-Я(хк)

then x is a minimizer of (14.35). Thus the Newton subproblem can be solved
by solving a linear system of dimension (n + €), provided that system is full
rank. This shows the temporal cost of each intermediate step in the equality-
constrained Newton method is O((n + £)3), where £ is the number of equality
constraints.

Notes
Much of this chapter was inspired by [CZ01], while the final section was inspired
by [Berl6]. We learned of Unexample 14.6.1 from [NW99]. Example 14.4.10 is
from [CZ01, Example 20.4], and many of the exercises on the Lagrange and KKT
conditions are also from [CZ01]. Example 14.3.6 is from [Jial8].

Other useful sources for these topics include [Biel5, BV04, NW99] and [Ped04].
An interesting history of Lagrange multipliers is given in [Bus03].

Convex Analysis and
Optimization

If we can formulate a problem as a convex optimization problem, then we can solve
it efficiently.... With only a bit of exaggeration, we can say that if you formulate a
practical problem as a convex optimization problem, then you have solved the origi­
nal problem.
—S. Boyd and L. Vandenberghe

A function is convex when any chord of the graph lies on or above the graph (see
Figure 15.1). In first-year calculus classes, we usually call such functions concave up.
In optimization, these functions are extremely nice to work with. If the objective
function is smooth and convex and the feasible set is convex, then a local minimum
is the global minimum and all that is needed to find it is the FONC (Theorem
14.2.1). There are many important problems spanning nearly every area of applied
mathematics that can be formulated and solved as convex optimization problems.
For example, linear optimization problems are convex optimization problems.

We begin this chapter by defining convex functions and describing many of their
important properties. Among the most useful concepts in the study of convex func­
tions is Jensen’s inequality and the large inventory of household inequalities that can
be derived from it. For example, using Jensen’s inequality, we prove all the inequal­
ities in Volume 1, Section 3.6, in particular, Young’s inequality, the arithmetic­
geometric mean inequality, Holder’s inequality, and Minkowski’s inequality. It is
staggering how many fundamental inequalities are simple corollaries of Jensen’s
inequality.

The remainder of the chapter focuses on convex optimization problems and
a few of the very powerful numerical methods for solving them. As with linear
optimization problems, more general minimization problems have a corresponding
dual problem that satisfies a weak duality principle similar to that of Section 13.6.
Many convex optimization problems also satisfy strong duality. This means that the
dual problem also has a global optimizer and the optimal values of the two problems
are equal. As with linear optimization problems, the dual problem is often easier
to solve than the original problem. Many of the most powerful numerical methods
for convex optimization rely heavily on both the primal and dual formulations and
the relation between them.

667

668 Chapter 15. Convex Analysis and Optimization

/(*) =

15.1 Convex Functions
In this section, we define convex functions and describe some of their properties.
Throughout this chapter we assume that V is a vector space and Q С V an open
subset.

We first show how to extend the range of a function to include +oo and —oo.
Consider the extended real numbers R^ = RU {oo}, R-oo = R U {—oo} and
R±oo = RU{oo,—oo}, where the arithmetic rules involving ±oo are as follows:

(i) If x G R, then x ± oo = ±oo.

(ii) If x > 0, then x • (±oo) = ±oo, and if x < 0, then x • (±oo) = +oo.

(iii) —oo — oo = —oo and 00 + 00 = 00.

Note that some operations such as 00 — 00 are ambiguous and not defined.

Remark 15.1.1. These rules are the same as those involving the special floating
point numbers ± INF. The operations that result in NaN such as 00 —00 are likewise
undefined; see Section 11.1.1.

Remark 15.1.2. For any function f : Q R, we can extend f to all of V by
defining the extension f :V Rqc as

/(x) if x G Q,
00 if x Q.

We can also restrict f to the points in the domain where f is finite, as follows.

Definition 15.1.3. For any function f : Q R±oc? the effective domain of f is
the set

effd(/) = {xG I —00 < /(x) < 00} C Q.

Remark 15.1.4. If f : Q R±oo, then we have that f : effd(/) R.

15.1 .1 Convex Functions
The concept of a convex function is fundamental to optimization and, indeed, to
much of real analysis.

Definition 15.1.5. Let C be a convex subset of V. A function f : C Roc is
convex if for all xi,x2 G C and 0 < A < 1, we have

/(AX1 + (1 - A)x2) < A/(X1) + (1 - A)/(x2); (15.1)

see Figure 15.1. The function f is strictly convex if strict inequality holds in (15.1)
whenever Xi x2 and 0 < A < 1. The function f is concave or strictly concave if
—f is convex or strictly convex, respectively.

15.1. Convex Functions 669

Figure 15.1. The defining feature of a convex function f is that the line segment
connecting the points (xi,/(xi)) and (x2,/(x2)) lies above the function itself for
each point of the line segment Axi + (1 — A)x2, where 0 < A < 1.

Example 15.1.6. A norm function || • || on a vector space is a convex function.
From the triangle inequality we have

||AX! + (1 - A)x2|| < A||xi|| + (1 - A)||x2||

for all xi,X2 E V and 0 < A < 1.

Remark 15.1.7. If a function takes on both the values oo and —oo, then checking
the convexity condition between these two points doesn’t make sense, because it
involves computing A • oo + (1 — A)(—oo) = oo — oo, which is not defined. For this
reason, we always require convex functions to take their values in R^. There is no
loss of generality by excluding —oo because if f : V R-oo has effd(/) 0 and
there exists some x E V with /(x) = — oo, then f cannot satisfy (15.1). To see this,
consider z E effd(/) and let у = 2z — x. If f were convex, we would have

-oo < /(z) = f Qx + iy) < iy(x) + |/(y) = -oo,

which is a contradiction.

Remark 15.1.8. If f is convex on a convex set С С V, then we can naturally
extend f to a convex R^-valued function f on all of V via Remark 15.1.2. Moreover,
we have that effd(/) = C. This shows that there is no loss of generality to assume
that convex R^-valued functions are defined on all of V. We often make this
assumption in the rest of this book.

Proposition 15.1.9. If f : V —> R^ is a convex function, then effd(/) is a convex
set.

670 Chapter 15. Convex Analysis and Optimization

Proof. Assume that f is a convex function with xi,X2 G effd(/). If 0 < A < 1,
then /(Axi + (1 — A)x2) < A/(xi) + (1 — A)/(x2) < oo, and so Axx + (1 — A)x2 G
effd(/). □

15.1.2 Characterizations of Convex Functions
The following lemma guarantees that a function is convex if and only if it is convex
when restricted to any line segment on the domain. This can be used to provide an
alternative characterization of a convex function.

Lemma 15.1.10. Let f : V Roc be a function with essential domain С С V.
The following are equivalent:

(i) The function f is convex.

(ii) For all Xi, x2 G C the map g : [0,1] R given by g(f) = f(txi + (1 — t)x2) is
convex.

(iii) For all xi,x2 G C the map g : [0,1] R given by g(f) = /(txi + (1 — £)x2)
satisfies

g(t) < t5(l) + (1 - t)ff(0) (15.2)

for every t e [0,1].

Proof.

(i) =>(ii): If f is convex, then for any a, b G [0,1] and any A G [0,1] we have

g{Xa + (1 - A)b) = /((Au + (1 - A)6)X1 + (1 - Xa - (1 - A)6)x2)
= /(A(axi + (1 - a)x2) + (1 - A)(6xi + (1 - 6)x2))
< A/(axi + (1 - a)x2) + (1 - A)/(6xi + (1 - 6)x2)
= Ap(a) + (l-A)p(6).

Therefore, g is convex.

(ii)=>(iii): If g is convex, then (15.2) is just a special case of the definition of
convexity; that is, taking a = 1 and 6 = 0, convexity gives

p(t) = g(ta + (1 - t)6) < tg(a) + (1 - f)g(6) = fp(l) + (1 - f)g(G).

(iii)=>(i): Finally, for any xi,x2 G C and A G [0,1] we have

/(Axx + (1 - A)x2) = 5(A) < AP(1) + (1 - A)P(0) = A/(xx) + (1 - A)/(x2),

so f is convex on C and can be extended to f on V via Remark 15.1.8. □

Remark 15.1.11. The previous lemma also holds with strict convexity instead of
convexity for f and g if the inequality in (15.2) is made strict for all t G (0,1). The
proof is essentially identical.

15.1. Convex Functions 671

Figure 15.2. For any differentiable function f on a convex set C, Theorem 15.1.12
shows f is convex if and only if /(x) > /(xq) + D/(xq)(x — xq) for all x0,x g C.

Theorem 15.1.12. Let f be a real-valued differentiable function on a convex open
set С С V of a finite-dimensional normed linear^6 space (V, || • ||). The function f
is convex if and only if for all x0,xEC; we have

/(x) > /(x0) + £>/(xo)(x - x0); (15.3)

see Figure 15.2. Moreover, f is strictly convex if and only if the strict inequality
holds in (15.3) whenever x0 ф x.

Proof. If f is convex, then (15.2) holds with Xi = xq and X2 = x in the definition
of g(t). Thus, setting p(A) = /(Ax0 + (1 — A)x), we have

(1-A)5(O)-(1-A)5(1)> 5(A)-5(1).

Solving for p(0) gives

Taking the limit as A —> 1“ yields 5(0) > 5(1) — which gives (15.3).
For the converse, choose xi,X2 € C and 0 < A < 1. Let xq = Axi + (1 — A)x2.

Using (15.3) twice gives

/(xi) >/(xo) + £>/(xo)(xi-x0) and /(x2) >/(x0) + £>/(x0)(x2 - x0).

Multiplying the first inequality by A and the second by (1 — A) and adding yields

A/(xi) + (1 - A)/(x2) > /(x0) + £>/(x0) (A(xi - x0) + (1 - A)(x2 - xo))
= /(xo) + £>/(xq)(Axi + (1 - A)x2 - Xq)
= /(Axi + (1 - A)x2) + £>/(x0)(O).

Thus f is convex. The proof for the strict inequality case is similar. □

56The theorem and the proof given here both hold for the more general situation where (V, || • ||)
is a Banach space (see Volume 1, Sections 5.6.2 and 6.3).

672 Chapter 15. Convex Analysis and Optimization

The preceding theorem is very useful, but it is still often difficult to verify that a
function is convex by using either the definition or this theorem. The next theorem
gives a simple method for verifying convexity in many cases.

Theorem 15.1.13. Let C be a convex open set in a finite-dimensional normed
linear57 space (V, || • ||). A function f G C2(C;R) is convex on C if and only if the
Hessian D2 /(x) is positive semidefinite for all x G C. The function f is strictly
convex if D2f(x) is positive definite for all x G C.

57As in the case of Theorem 15.1.12, this theorem and the proof given here hold for a more general
Banach space.

Proof. Taylor’s theorem (Theorem 10.3.8) guarantees that for each xq,x G C we
have

/(x) = /(x0) + r>/(x0)(x - Xo) + T?2, (15-4)

where
R2= [(1-f)(x-xo)TZ>2/(xo + f(x-x0))(x-xo)dt.

Jo
If D2/(x') > 0 for all x' G C, we have R2 > 0 and

/(x) > /(x0) + Df(x0)(x - x0).

Hence, f is convex. In the case that D2/(x') > 0, then f is strictly convex.
Conversely, suppose that f is convex but for some xq G C the Hessian D2/(xq) is

not positive semidefinite. Then there exists some h G V such that hTD2/(xo)h < 0.
Choose e sufficiently small so that x = x0 + eh G C and so that hTD2/(z)h < 0 for
all z on the line segment between x0 and x. The remainder R2 in (15.4) becomes

e2 f (1 — £)hTD2/(x0 + tehfhdt < 0,

Jo

which implies

Thus, f is not convex.

/(x) < /(x0) + Df(x0)(x - x0).

□

Example 15.1 .14. The following are examples of convex functions:

(i) Let f : R —> R be given by f(x) = eax for fixed a / 0. The function f
is strictly convex because /"(ж) = a2eax > 0.

(ii) Let f : (0, oo) —> (0, oo) be given by f(x) = xa, where either a > 1 or
a < 0. Note that f"(x) = a(a — V)xa~2 > 0, so / is strictly convex.

(iii) Let f : (0, oo) -4- R be given by f(x) = — log x. The function f is strictly
convex because /"(ж) =

15.2. Jensen's Inequality 673

Example 15.1 .15. The LogSumExp function f : Rn —> (0, oo) is given by
/(x) = log(e:E1 + • • • + еЖп), where x = (a?i, x%,..., xn). From (10.29) we can
show that the Hessian is

п2р/ x (lTz) diag(z) — zz
D /(x) = -------- (Tzp-------

where z = (еЖ1, еЖ2,..., eXn). If h = (Zii,/12, • • •, Zzn), then the Cauchy-
Schwarz inequality (with a = (y/zi,..., y/Eff) and b = (fti-y/zi, • • • >
gives

(hTz)2 = = (lTz)(hT diag(z)h),

which implies that hTD2/(x)h > 0. Therefore f is convex.

15.2 Jensen's Inequality
In this section, we show that the set of all points that lie on or above the graph
of a convex function (the epigraph of the function) is a convex set. This leads to
an easy proof of the finite form of Jensen’s inequality, which says that any convex
combination of a finite collection of points on the graph of f lies on or above the
graph.

There is also an integral form of Jensen’s inequality, where the finite sum is
replaced with an integral (see Theorem 15.2.13). To show this we first prove that
every convex function f with a closed epigraph is the supremum of all the affine
functions whose graphs lie below the graph of f; see Theorem 15.2.12.

15.2.1 Epigraphs
The set of all points on or above the graph of a function is called the epigraph of
the function; see Figure 15.3 for an illustration. Theorem 15.2.3 shows that the
epigraph is convex if and only if the function is convex.

Definition 15.2.1. The graph of a function f : V —> Roc is the set

Гу = {(x, /(x)) | x € effd(/)} C effd(/) x R.

The epigraph of the function f is the set

epi(/) = {(x,y) | x e effd(/),y > /(x)} C effd(/) x R.

Remark 15.2.2. Theorem 15.1.12 shows that if f is convex and differentiable at
x0, then the tangent plane /z(x) = /(x0) + 2?/(x0)(x — x0) supports the epigraph of
f at xq because it contains the point (xo,/(xq)) and the epigraph of the function
is in the half space supported by Л; see Figure 15.4.

674 Chapter 15. Convex Analysis and Optimization

Figure 15.3. The epigraph epi(/) (yellow) and the graph Гf of a function f.
Theorem 15.2.3 guarantees that a function is convex if and only if the epigraph of
the function is a convex set. The function and the epigraph in this figure are not
convex.

Figure 15.4. For any differentiable convex function f, Theorem 15.1.12 shows
that the tangent plane at any point (xq, /(xq)) of the graph of f is a supporting
hyperplane of the epigraph.

Theorem 15.2.3. A function f : V —> with a nonempty effective domain is
convex if and only if the epigraph epi(/) С V x R is a convex set.

Proof, If f is convex on V, then, since there exists x G effd(/), we have /(x) < сю,
and hence (x,/(x)) G epi(/). Therefore, epi(/) 0. If (xb y^, (x2, y2) € epi(/),
then /(xi) < yi and /(x2) < y2. Thus, for 0 < A < 1, we have

/(Axi + (1 - A)x2) < A/(xi) + (1 - A)/(x2) < A?/i + (1 - A)t/2,

which implies that A(xi,t/i) + (1 — A)(x2,?/2) G epi(/).
Conversely, assume that epi(/) is a convex set, that xi,x2 G V, and that 0 <

A < 1. If /(xi) = oo or /(x2) = oo, then the convexity condition (15.1) holds
immediately. Otherwise, (x1?/(xi)), (x2,/(x2)) G epi(/), and thus we have

A(xi,/(xi)) + (1-A)(x2,/(x2)) = (Axi + (1-A)x2, A/(xi) + (1-A)/(x2)) G epi(/),

which implies that /(Axi + (1 — A)x2) < A/(xi) + (1 — A)/(x2). □

15.2. Jensen's Inequality 675

Proposition 15.2.4. Let f : V -4 Rqq be convex. If effd(/) С V is a closed set
and f : effd(/) -4- R is continuous, then epi(/) is also a closed set.

Proof. Assume that ((xi,pi))£50 c epi(/) converges to G V x R. It
suffices to show that (x*,p*) G epi(/). The projection pi : V x R -4 V mapping
(x, y) i-> x is a continuous function; hence хг = pi((x*, у if) pi((x*,p*) = x*.
Since effd(/) is closed, we must have x* G effd(/). Since each (x*,p*) lies in epi(/)
we have yi > Taking limits and using the fact that f is continuous on effd(/)
implies that p* = lim^oo yi > lim^oo/(xj = /(lim^ooX^) = /(x*). Therefore,
(x*,y*) € epi(/). □

Remark 15.2.5. Exercise 15.15 shows that every convex function is continuous on
the interior of its effective domain, hence the continuity hypothesis of the previous
proposition can fail only at the boundary of effd(/).

15.2.2 Jensen's Inequality—Finite Form
Convexity of the epigraph gives us Jensen’s inequality, which is one of the most
important inequalities in analysis. An illustration of Jensen’s inequality is given in
Figure 15.5.

Theorem 15.2.6 (Jensen’s Inequality—Finite Form). Let f : V R^ be a
convex function. If Xi, X2,..., xn G V and Ai, A2,..., An G [0,1] with A* = 1,
then

/(A1X1 + A2X2 + • • • + Anxn) < Ai/(xi) + A2/(x2) + • • • + An/(xn). (15.5)

Proof. If /(хг) = oc for any i with A* > 0, then (15.5) holds immediately. Assume
now that /(x*) < oo for all i G {1,..., n}. The points (xi, /(xi)),..., (xn, /(xn))
all lie on the graph of f, and thus they lie in the epigraph of f. Theorem 15.2.3
guarantees that the epigraph of f is convex, and hence the convex combination

Ai(xb /(xi)) + A2(xi, /(x2)) 4-------H An(xn, /(xn))

must also lie in the epigraph (by Proposition 13.1.6). By definition of the epigraph,
this means that (15.5) holds. □

Corollary 15.2.7 (Young’s Inequality). If a,b > 0 and | | = 1, where
1 < p, q < oc; then

ap bq
ab<- + -. (15.6)p q

Proof. Since x 1-4 ex is convex, we have

ab = elo&ab = ep loglog69 < ielogaP + ielogb9 = — + —. □
“ P Q P q'

676 Chapter 15. Convex Analysis and Optimization

Figure 15.5. The graph of a convex function f and three points /(xi), /(x2);
/(хз) on the graph. Jensen’s inequality guarantees that a convex combination
А1/(х1)+А2/(х2)+Аз/(хз) (red) of the three function values lies above the function
evaluated at the convex combination /(AiXi + A2x2 + A3x3) (blue), and, in fact, ev­
ery point in the convex span of these points (the white triangle) lies above the graph
(gray).

Remark 15.2.8. Two other important inequalities that follow from Jensen’s in­
equality are as follows:

(i) The arithmetic-geometric mean inequality: 52Г=1 Xi — ПГ=1ЖУП- This
follows almost immediately from Jensen’s inequality applied to the convex
function — log (ж).

(ii) Holder’s inequality: \xiyi\ < (EXi Ыр)р (1X1 Ш9)9- This follows
(with a little work) from Jensen’s inequality applied to the convex function i
xp .

Holder’s and Young’s inequalities are discussed in more detail in Volume 1, Sec­
tion 3.6.

15.2.3 Jensen's Inequality—Integral Form
A version of Jensen’s inequality holds even when the finite sum is replaced with an
integral over an infinite set. To prove this we first show that if a convex function

15.2. Jensen's Inequality 677

f has a closed epigraph, then f is the supremum of all the affine functions whose
graphs lie on or below the graph of /.

Theorem 15.2.9. Given a collection {fa}&eJ of convex functions fa:V—> Rqq,
the function /(x) = supaEJ /a(x) is convex.

Proof. Let x, у G V and A G [0,1]. Since fa is convex for each q G J, we have that

/(Ax + (1 - A)y) = sup fa (Ax + (1 - A)y)
aeJ

< sup(A/Q(x) + (1 - A)A(y))
olEJ

< sup(A/Q(x)) + sup((l - A)/a(y))
a£j

= A sup A(x) + (1 - A) sup A(y)
aEJ aeJ

= A/(x) + (1 - A)/(y). □

Lemma 15.2.10. If {fa}aeJ is a collection of functions fa :V Rqq, then

epi(sup/Q) = П epi(/a). (15.7)
aEJ

Proof. Since //з(х) < supaEJ/a(x) for all /3 G J and all x G V, we have
epi(supaeJ /Q) С ер!(//з) for all /3 G J, which implies that epi(supa ej fa) C
Q/3eJepi(//3). Thus, it suffices to show that ерЦ/^) C epi(supQeJ А)- и
(x, y) G ер!(//з) for all /3 G J, then у > //?(x) for all /3 G J. This implies that

> supaeJ /Q(x) for all о G J, and hence that (x, y) e epi(supQeJ A)- □

Lemma 15.2.11. If f,g : V —> Rqq are functions with epi(/) = epi(p), then f = g.

Proof. If f ф g, then without loss of generality, there exists an x G V for which
/(x) < g(x), but then (x,/(x)) epi(g), while (x,/(x)) G epi(/), which is a
contradiction. □

Theorem 15.2.12. //(V, (•,•)) is an inner product space, then a convex function
f : V —> Rqq with a closed epigraph is the pointwise supremum of all hyperplanes
that lie below the graph of f; that is, for each x eV, we have

/(x) = sup Л(х),
кеж

where

= {/z(x) = (a, x) — b | a G V,b G R, with /z(x) < /(x) for all x G V}. (15.8)

Proof. By Lemma 15.2.11 it suffices to show that epi(/) = epi(suphEJ^ Д). By
Lemma 15.2.10 we have epi(suphE J^ Л) = epi(/z), and thus it suffices to show
that the set

н= П epi(ft)

678 Chapter 15. Convex Analysis and Optimization

is equal to epi(/). Since epi(/) C epi(/i) for each h e , we have epi(/) С H, so
all that remains is to show that H C epi(/).

Consider V x R with the inner product ((v, o), (w,/3)) = (v, w) + o/3. For any
point (xo,t/o) epi(/), we have /(xq) > yo. Since epi(/) is closed, the separation
lemma (Lemma 13.2.7) guarantees the existence of a half space containing epi(/)
but not containing (xo,t/o)« This corresponds to a pair (a, o) G V x R and b G R
such that ((a, a), (x0, yo)} = (a, x0) + ay0 > b but ((a, a), (x, y)) = (a, x) + ay < b
for all (x, y) G epi(/). In particular, we have (a, xq) + o/(x0) < b.

Combining the separating conditions gives b — af(xo) > (a, xq) > b — ayo, or
o/(x0) < ayo. But /(xq) > yo, so a < 0. Dividing the equations through by |o|
we may assume that a = — 1. Letting Zi(x) = (a, x) — b gives /z(x) < /(x) for all
x, so h G But 7z(x0) > yo, so (xo,i/o) epi(/i); hence, (x0,7/0) H. Therefore
#Cepi(/). □

Theorem 15.2.13 (Jensen’s Inequality—Integral Form). Let С C Rn be a
convex set and g : C —> R be a nonnegative integrable function with fc p(x) dx = 1.
If f : C —> R is a convex function whose epigraph is closed inVxR, then

f xp(x) dx) < f(x)g(x) dx.

Proof. Extend f and g to be Revalued functions on all of Rn. As described in
Remark 15.1.8, we have that effd(/) = effd(g) = C. Let Ж be defined as (15.8).
For any 7z(x) = (a, x) — b G we have /(x) > /г(х) for all x, which gives

[f(*)g(*)dx> f h(x)g(x)dx =
JC Jc

(15.9)

Since (15.9) holds for all h G it must also hold for the supremum, which yields

/ /(x)^(x) dx > sup h
Jc hej?

as desired. Here the final equality holds by Theorem 15.2.12. □

Recall that a function f : V R^ that is continuous and convex on its effective
domain has a closed epigraph if its effective domain is closed; see Proposition 15.2.4.

Corollary 15.2.14. Let X be a continuous random variable taking values in a
closed convex set С G Rn. If ф : C R is a continuous convex function, then

</>(E[X]) < E[<XX)]-

Proof. The proof is Exercise 15.14. □

15.3. Fundamentals of Convex Optimization 679

Example 15.2.15. The function ф(х) = ex is both continuous and convex
on R, so by Jensen’s inequality, for any univariate continuous random variable
X we have

eE[X] < E[eX],

For n G N, we generalize to ф(х) = x2n, which is also continuous and convex,
and thus E[X]2n < E[X2n]. In the special case of n = 1, we have that
E[X2] - E[X]2 = Var(X) > 0.

15.3 Fundamentals of Convex Optimization
Convexity has important consequences for optimization. Among other things, any
local minimizer of a convex optimization problem is also a global minimizer, and
that minimizer is unique. Therefore, any technique for finding a local minimizer
also yields the global minimizer of a convex function.

There are also some very good numerical methods designed specifically for find­
ing the minimizer of a convex optimization problem (some of these are described in
Section 15.6), so for practical purposes, once a problem is formulated as a convex
optimization problem it is essentially solved—at least in many cases. As a general
rule, with current techniques, most convex optimization problems are relatively
easy, whereas nonconvex problems are generally hard.

15.3.1 Definition and Examples
A convex optimization problem is one where the feasible set and the objective
function are both convex.

Definition 15.3.1. Consider an optimization problem in standard form

minimize
subject to

f(x)
G(x) 0,
Я(х) = 0,

(15.10a)
(15.10b)
(15.10c)

with f, G, H all defined on an open domain Q C Rn (f may take values in Rqo/
This is a convex optimization problem if (i) the objective f is a convex function,
(ii) the set Q is convex, (iii) all the inequality constraint functions g±,... ,gm, given
by the components of G, are convex functions, and (iv) all of the equality constraint
functions hi,... ,he, given by the components of H, are affine functions.

Remark 15.3.2. It is common to write the affine equality constraint H(x.) = 0 as
Ax — b = 0 for some A e Mexn(W) and b e

Proposition 15.3.3. The feasible set

/ = {x G Q | /(x) < oo, G(x) 0, Ax - b = 0} c Q (15.11)

of a convex optimization problem (15.10) is a convex set.

680 Chapter 15. Convex Analysis and Optimization

Proof, The proof is Exercise 15.17. □

Proposition 15.3.4. Let h : Q —> R be a given function. The functions h and —h
are both convex if and only if h is affine.

Proof, The proof is Exercise 15.18. □

Remark 15.3.5. Any equality constraint of the form /z(x) = 0 is equivalent to
the two inequality constraints /z(x) < 0 and — /z(x) < 0. Proposition 15.3.4 shows
that both /z(x) and — /z(x) are convex if and only if /z(x) is affine, so requiring
equality constraints to be affine is equivalent to requiring both the corresponding
inequality constraints to be convex. We usually find it more convenient to use
equality constraints rather than the corresponding pairs of inequality constraints.

Example 15. 3.6. In Remark 13.3.4 we showed that a linear optimization
problem in standard form (13.4) can always be rewritten as

minimize cTx

subject to Ax — b 0.

Since the objective and the constraints are all affine and thus convex, this is
a special case of a convex optimization problem.

Example 15. 3.7. An important problem in machine learning is the task of
classifying points x G Rd into one of two categories—this is called a binary
classifier. This can be formulated as finding a function f : Rd {±1}, where
/(x) is +1 for one category and —1 for the other.

A simple example of such a classifier is a function of the form /(x) =
sign(wTx — 6), which amounts to finding the hyperplane and assigning any
point x on one side of the hyperplane, say, when wTx — b < 0, to — 1 and
assigning a point on the other side, that is, when wTx — b > 0, to +1.

Given the training data D = {(x17 z/i),..., (x^, 2/^)} *n Rd x {±1}, we
want to find a suitable hyperplane {x 6 Rd | wTx = b} for the function f.
Support vector classifiers provide some methods for doing this. Specifically,
the hard-margin support vector classifier chooses w e Rd and b G R to

minimize |||w||2
subject to (1 — 2/i(wTXi + bf) < 0 Vi G {1,..., N}.

The objective is convex and the constraints are all affine in w and 6; there­
fore, this is a convex optimization problem. The data set D is called linearly
separable if the feasible set is not empty.

15.3. Fundamentals of Convex Optimization 681

Example 15. 3.8. If the data set D is not linearly separable, then the hard-
margin optimization problem is infeasible. To overcome this, we relax the
constraints and invoke a penalty for violating the constraints by using a soft-
margin support vector classifier. This is an unconstrained problem to minimize
what is called regularized hinge loss:

minimize
W.6

I Hui+c1 is max(°’1 - yi(wTx+&))
2=1

for some fixed choice of C > 0. By Exercise 15.5 this is also a convex opti­
mization problem.

15.3.2 Consequences of Convexity for Optimization
As mentioned above, one very important consequence of convexity is that any local
minimizer is also a global minimizer.

Theorem 15.3.9. If x* is a local minimizer of a convex optimization problem
(15.10), then it is also a global minimizer.

Proof, Let & be the feasible set (15.11) for the convex optimization problem
(15.10). Let x* G X be a local minimizer; that is, assume there exists 6 > 0 such
that

/(x*) = min{/(x) | x G П B(x*, <5)}.

Suppose that x* is not a global minimizer, so there exists у G J such that /(y) <
/(x*). Choose z = (1 — A)x* + Ay, where A = 5/(2||x* — y||). Thus,

IIх* - z|| = ||x* - (1 - A)x* - Ay|| = A||x* - у|| = <5/2.

By convexity of the point z must be feasible, and convexity of f implies

/(z) < (1 - A)/(x*) + A/(y) < (1 - A)/(x*) + A/(x*) = /(x‘).

This contradicts x* as a local minimizer since z G B(x*, 6). Thus x* is a global
minimizer. □

Convexity also gives a first-order sufficient condition.

Theorem 15.3.10. Assume that the objective function f in the convex optimization
problem (15.10) lies in C1(Q;R). A point x* G & is a minimizer if and only if

B/(x*)(y - x*) > 0 Vy G (15.12)

Proof, If (15.12) holds for x* G then, since f is convex, Theorem 15.1.12
guarantees that

/(y)>/(x*) + L>/(x*)(y-x*) Vye.^.

682 Chapter 15. Convex Analysis and Optimization

Combining with (15.12), we have that /(y) > /(x*) for all у G &. Thus x* is a
minimizer.

For the converse observe that for every у G convexity of & implies that the
vector x + £(y — x*) lies in & for all t G [0,1]. Assume, by way of contradiction,
that 2?/(x*)(y — x*) < 0. For the unit vector v = ||yZ**|| the directional derivative
Z?v/(x*) = 2?/(x*)v is negative. Since f is C1, there must be some small e such
that the directional derivative 2?/(x)v must be negative for all x in B(x*,e) П &.
Hence the function /(t(y — x*) + x*) is decreasing for t G [0,e), and thus x* is not
a minimizer of f on & □

Remark 15.3.11. If x* is an interior point of then 2?/(x*)(y — x*) >0 holds
for all у in a neighborhood of x* , which implies that 2?/(x*) = 0. In particular,
when the convex optimization problem is unconstrained, we have that & = Q and
every point of & is an interior point.

But if x* is not an interior point, then (15.12) implies that for every у 6 / we
have — Df(x*)y < —2?/(x*)x*. Setting a = —2?/(x*) T and b = — Df(x*)x* gives
a half space {y | aTy < b} that supports

15.3.3 Rewriting Problems as Convex Optimization Problems
As mentioned above, there are good algorithms for solving convex optimization
problems, but nonconvex problems are generally hard. It is important, therefore,
to recognize that many problems are actually convex optimization problems, even
when they are not initially formulated as such. Unfortunately, there are no off-
the-shelf methods for rewriting general problems as convex problems, but spending
a little effort to look for a way to rewrite a problem as a convex problem can
yield significant benefits. Among other things, this guarantees a unique minimizer,
which must be global, and it means that you can take advantage of the effective
numerical methods for solving convex optimization problems. We discuss some of
these methods in Section 15.6.

Example 15.3.12. Consider the problem

minimize
subject to

Although the objective function is convex, the constraints are not. However,
we can recast this as a convex problem in standard form as follows. First,
(x + y)2 = 0 is equivalent to x + y = 0, and second, l-\-y2 is always positive, so

2 < 0 is equivalent to x < 0. Therefore, the original problem is equivalent
to the convex optimization problem

minimize
subject to

2 I 2

x 4- у = 0,
x < 0.

15.3. Fundamentals of Convex Optimization 683

The following easy proposition is often used for rewriting optimization problems.

Proposition 15.3.13. If D C R with f : Rn —> D, and if ф : D —> R is a strictly
increasing function, then x* is a local minimizer for the problem

Example 15.3.15. A An important optimization problem in machine learn­
ing is the problem of computing the parameters for logistic regression. This
arises when we have data of the form D = {(xi, т/i),..., (хдг, Pn)} with
хг € Rrf and yi € {±1}, drawn from a distribution with

P(Y = 11x) =-------- z т and P(Y = -11 x) =------ A ,h.
v 1 7 X _|_ e—(wTx+b) * v 1 7 X + g(wTx+b)

for some choice of parameters w G Rd and b € R. This can be written more
cleanly as

P(Y = у I x) =---------1. T |M.
V y 1 7 X + g-2/(wTx+d)

minimize ф о /(x)
subject to G(x) 0,

Я(х) = 0

if and only if x* is a local minimizer for the problem

minimize /(x)
subject to G(x) 0,

Я(х) = 0.

Proof, The proof is Exercise 15.19. □

Example 15.3.14. The function /(#) = log |3rr — 5| is not convex, but since
log |3t — 51 = | log(3rr — 5)2 and the function | log(z) is strictly
increasing on [0, oo) we can use Proposition 15.3.13 to recast the optimization
problem. Hence the optimization problem

minimize log |3ж — 5|
subject to G(x) 0.

H(x) = 0

has the same minimizer as the problem

minimize
subject to

(3# - 5)2
G(x) 0,
Я(х) = 0,

which has a convex objective function.

684 Chapter 15. Convex Analysis and Optimization

The MLEs are
77 1

(w,6) = argmax TT----------——-rr.
wb Ц i + e-^wTxH-b)

This is not a convex optimization problem. But taking logarithms and putting
the new problem in standard form gives

w
(w, 6) = argmin log(l + e~yi^ Xi+b)).

w’b 2=1

By Exercise 15.6 each summand of the objective is convex, so the objective is
also convex. Therefore, this is an unconstrained convex optimization problem.

Remark 15.3.16. Given a solution (w, b) to this problem, we can define a classifier
f : {±1} by

fl if Р(У = 11 x) > 0.5,
Л ' [-1 if P(Y = 1 |x) < 0.5.

It is straightforward to check that this classifier satisfies /(x) = sign(wTx+6), which
looks very similar to the support vector classifiers of Examples 15.3.7 and 15.3.8.
Note, however, that w and b are computed differently and so the hyperplanes are
generally not the same.

Example 15.3.17. The Chebyshev approximation for linear regression uses
the oo-norm instead of the 2-norm; that is, given A (E Mmxn(W) and b G Rm,
we have the unconstrained optimization problem

minimize ||Ax — ЬЦ^.

This can be written as a linear (hence convex) optimization problem as follows.
For any t > ||Ax — ЬЦ^, if 1 = (1,1,..., 1) is the all-ones vector, then we

have |Ax — b| tl, so the smallest t satisfying |Ax — b| tl is ||Ax — ЬЦ^.
Therefore, the problem is equivalently given as

minimize t
subject to Ax — tl — b 0,

— Ax — tl + b 0.

Since the objective function and the constraints are both affine, this is a convex
optimization problem.

Remark 15.3.18. If we use the 1-norm in the regression problem above, instead of
the oo-norm, the problem is instead called robust regression or C-minimization. The
robust regression problem can also be formulated as a linear optimization problem;
see Exercise 15.22 for details.

15.4. Weak Duality 685

15.4 Weak Duality
Just as in the case of weak duality for linear optimization, weak duality in convex
optimization gives a lower bound on a given minimization problem in terms of a
dual maximization problem. In this section we describe the dual problem and prove
that weak duality holds. In the subsequent section we show that strong duality also
holds in many cases, which means that the optimal value of the dual problem is the
same as the optimal value of the primal problem. In some cases this dual problem
is easier to solve than the primal problem. The ideas of duality are also important
in the interior point methods for convex optimization, which we discuss at the end
of this chapter.

Throughout this section, unless otherwise stated, we assume functions take val­
ues in R±oq.

15.4.1 The Lagrange Dual
Recall from (14.1) the (not necessarily convex) constrained minimization problem

minimize /(x) (15.13a)
subject to G(x) 0, (15.13b)

Я(х) = 0, (15.13c)

where f : Q —> is C1 on effd(/), and the constraints G : Rn —> Rm and
H : Rn —> R€ form the feasible set & C Q, where Q C Rn is an open set. We
denote the inequality constraint functions gi,... ,gm from the components of G
and equality constraint functions /zi,..., hf from the components of H.

Let x* Е / be the minimizer of f with p* = /(x*). As defined in (14.17), the
Lagrangian : Q x R£ x Rm —> R can be interpreted as giving a penalty to values
of x that violate the constraints. For example, whenever the constraint G(x) 0 is
violated with Pi(x) > 0, then for any ц 0, we have //грг(х) > 0, and the larger
is, the greater the penalty for violating the constraint рДх) < 0. Following this idea,
we can use the Lagrangian to make a new unconstrained problem that is equivalent
to the original constrained problem, as follows. First, for any x observe that

supAT#(x) = (° lf = °’ (15.14)
л I oo otherwise

and
x fo ifG(x)^0,supjz G(x) = < (15.15)

I oo otherwise.

If F(x) = supM^0 AJS?(x, A, jz), then the constrained optimization problem (15.13)
can be rewritten as the unconstrained optimization problem

minimize F(x). (15.16)

One of the benefits of duality for linear optimization problems is that it gives a
bound on the optimal value. In particular, the following minimax inequality gives
a bound on the optimal value of the nonlinear problem (15.13).

686 Chapter 15. Convex Analysis and Optimization

Figure 15.6. An illustration of the minimax inequality for Ф(х,у) equal to the
Rosenbrock function. For each x G [—2,2] (right axis) let y(x) = argmin^ Ф(х, у).
The black curve is the plot of all points of the form (ж, y(x), min^ Ф(ж, у)). Similarly,
for each у e [—1,4] (lower left axis) let x(y) = argmax^ Ф(х,у). The red curve is
the plot of all points of the form (x(y), у, тахж Ф(х, у)). The minimax inequality
guarantees that the highest point of the black curve is never greater than the lowest
point of the red curve.

Proposition 15.4.1 (Minimax Inequality). For any sets X, Y and any function
Ф : X x У ч 1 the following inequality holds:

sup inf Ф(х,y) < inf sup Ф(х,у). (15.17)yeY xeX

See Figure 15.6 for an illustration.

Proof, For every x G X and every у G Y, we have

inf Ф(х,у') < Ф(х,у) < sup Ф(х',у). (15.18)
y'ev x'CX

Taking the infimum over all values of у G Y on the right gives

inf Ф(х, y') < inf sup Ф(х',у).
y'ev yeY

Taking the supremum over all values of x G X

sup inf Ф(х, y') < inf sup Ф(х',у). □
xexy'e^ yevx/eX

15.4. Weak Duality 687

Remark 15.4.2. The minimax inequality applied to the unconstrained optimiza­
tion problem (15.16) shows that the optimal value p* = /(x*) of this problem
satisfies

Example 15.4.5. Let A E Mmxn(R), b E Rm, and с E Rn. Consider the
primal linear optimization problem (see (13.12))

minimize cTx
subject to Ax b, (15.20)

x 0.

d* = sup inf Jjf(x, А,д)< inf sup Jjf(x, А, д) = p*.
M^o,AxeRTl ^Vo,a (15.19)

This motivates the following definition.

Definition 15.4.3. The Lagrange dual function f : x Rm —> R±oo

/(Л, д) = inf ^(x, Л, fi) = inf (/(x) + ЛтЯ(х) + /zTG(x)1.
xER™ xEKn X /

Example 15.4.4. Assume that A E MeXn(W) and b E Consider the
optimization problem

minimize ? Il* xll2
subject to Ax = b.

The Lagrangian is given by

J^(x.A) = |||х||22 + Ат(Лх-Ь).

For any A E the minimizer of the Lagrangian (x, A) occurs where
vanishes, so the minimizer x satisfies

Dx^(x, A) = xT + ATA = 0,

which implies x — —ATA. Thus, the dual function satisfies

/(A) = xmf (1||х||2 + Ат(4х-Ь))

= inf (h-^T^)T(-^T^) + ^T(^x-b)
xeRn \2

= —-АТАЛТА — ATb.
2

688 Chapter 15. Convex Analysis and Optimization

The Lagrangian is

(x, y, /z) = cTx + yT(Ax — b) — /zTx,

where both у and [Л are nonnegative. The Lagrange dual function is

/(у, д) = Jnf, (cTx + yT(Ax - b) - дтх)

= inf (—bTy + (с + Лту - д)тх)
xeKn
J —bTy if c 4- ATy — /z = 0,
I —oo otherwise.

Remark 15.4.6. We show below that the Lagrange dual function is always con­
cave, even if the original problem was not, since it is the pointwise infimum of affine
functions (and may equal — oo for some values of x).

When expressed in terms of the original function f and its Lagrange dual /,
Remark 15.4.2 immediately gives the following important result.

Theorem 15.4.7 (Weak Duality). For any Ae T and pt E Rm with pt 0, if
p* is the minimal value of f on the feasible set, then f(X,pt) < p* .

Remark 15.4.8. Weak duality guarantees that solving the dual optimization prob­
lem

maximize /(А, /л)
subject to pt 0

(15.21)

gives a lower bound for the original problem (15.13), hereafter called the primal
problem. In particular, if

d* = sup /(А, д)

is the solution to the dual problem, then d* <p*.

Example 15.4.9. Consider again the problem from Example 15.4.4. By the
FONC, the maximizer A* of f satisfies

Dxf = -АТЛЛТ - bT = 0,

and thus A* = — (ЛЛТ)-1Ь, so the maximal value is d* = |ЬТ(ЛЛТ)~'Ь.
Weak duality implies that d* < p* , but it is straightforward to check that
d* = p* in this example. Later in this chapter we show that a very broad class
of convex optimization problems have the property that d* = p* .

15.4. Weak Duality 689

Example 15.4.10. Consider the problem in Example 15.4.5. Maximizing the
Lagrange dual function gives d* , which is determined by solving

maximize — bTy
subject to ATy + c — /1 = 0,

y,M >Z 0
(15.22)

This is equivalent to the dual linear optimization problem (13.13). Hence, the
notion of duality given here is a generalization of that of Section 13.6 for linear
optimization.

Remark 15.4.11. In Example 15.4.10 above, the weak duality inequality d* < p*
becomes the weak duality inequality — bTy* < cTx* for linear optimization as given
in Theorem 13.6.5.

Remark 15.4.12. In the following section, we show for a large class of convex
optimization problems that the weak duality inequality can be strengthened to the
stronger equality d* = p*. This is a generalization of the strong duality theorem
(Theorem 13.6.8) for linear optimization which states that —bTy* = cTx*.

Example 15.4.13. A Consider again the hard-margin support vector classi­
fier of Example 15.3.7 with linearly separable data D = {(xi, pi),..., (xyv, pv)}
in x {±1}. The Lagrangian for this optimization problem is

1 N
b,n) = -IIw\\l + 22 /2i(l - yi(wTxj + &)),

where ц = (pi,..., pw) t 0- For any given p, 0 the Lagrangian is a convex
function of w and 6, and so the unique minimizer of <5?(w, 6, p) satisfies

N

0 = Pwj5f(w, Ь, ц) = WT - У2 L-LiVi^i-
i=l

This implies that the minimizing w satisfies w = 52/Li and the La­
grange dual function is

У(м) = inf _S?(w, b, fj.) w.b
N / / N

I 1 - Vi I + b
2 = 1 \ V=1

690 Chapter 15. Convex Analysis and Optimization

A little algebra shows that

N N n N \

-2 5252WiW&i +
i—1 j=l i=l г=1 /

But if 52^=1 УгУг / 0? then the infimum is —oo, so the feasible set for the dual
problem satisfies /ЧУ{ = 0, and the dual problem is

maximize -1 x Xj + E”=i
subject to (15.23)

/1 >2 0.

Example 15.4.14. An unconstrained problem (to minimize f on the open
domain Q) has an uninteresting Lagrangian Jjf(x) = /(x), and the dual func­
tion f = infx /(x) = p* is constant. The dual problem is silly: maximize the
constant function f = p* . Weak duality clearly holds, because /(x) > f = p*
for all x.

15.5 Strong Duality
Weak duality (Theorem 15.4.7) guarantees that d* > p*, where p* is the minimal
value of f and d* is the maximal value of the Lagrange dual f. In this section we
describe conditions under which these two optimal values are equal. The main cases
for which this is true are convex optimization problems (see Definition 15.3.1), and
we limit ourselves to convex optimization problems in this section.

Definition 15.5.1. The minimization problem (15.13) (called the primal problem)
satisfies strong duality if it and the dual problem (15.21) are both feasible and the
minimal value p* of the primal objective f is equal to the maximal value d* of the
dual objective f.

Strong duality holds for many convex optimization problems, but not all of them.
In this section we discuss some situations where strong duality can be proved to
hold.

15.5.1 Strong Duality from Weak Slater
One of the most common conditions that guarantees strong duality is called Slater’s
condition.

15.5. Strong Duality 691

Definition 15.5.2. A minimization problem (15.3.1) satisfies the weak form of
Slater’s condition if there exists a feasible e & from (15.11) that lies in the
interior o/effd(/) and gj(x!) < 0 for every gj that is not affine.

Example 15.5.3. Any feasible linear optimization problem satisfies the weak
Slater condition because effd(/) = Rn and every constraint is affine. If the
problem isn’t feasible, then the problem also fails to satisfy the weak Slater
condition, since Slater’s condition requires a feasible point.

Example 15.5.4. Any feasible convex minimization problem with effd(/)
open and with only equality constraints (no inequality constraints) satisfies
the weak Slater condition.

Unexample 15.5.5. Many feasible convex optimization problems satisfy the
weak form of Slater’s condition. But here is one that does not: let f be the
function f(x,y) = e~x if у > 0 and oo otherwise. Consider the optimization
problem

minimize /(ж, у}
subject to x21у < 0.

The condition x2/у < 0 implies that either у < 0 (in which case f is infinite
and hence not minimized) or x = 0, and thus the minimal value is p* = 1,
and it is achieved by any point in the feasible set & — {(0, у) | у > 0}
(recall that the feasible set requires f(x,y) < oo; see (15.11)). Moreover, the
inequality constraint x21 у < 0 is binding on the entire feasible set. Thus this
optimization problem does not satisfy the weak Slater condition, yet it is a
convex optimization problem.

The next theorem guarantees that strong duality holds for optimization problems
of the form (15.13) that are convex and satisfy the weak Slater condition. We prove
this in Section 15.5.5.

Theorem 15.5.6 (Weak Slater, Strong Duality). Assume the optimization
problem (15.13) is a convex optimization problem (see Definition 15.3.1) with a
finite infimum p* = infxej?/(x). If there exists a point xf satisfying the weak
Slater condition, then the dual problem has a feasible maximizer and the maximum
d* of the dual problem is equal to the infimum p* of the primal problem.

Remark 15.5.7. The hypothesis of the previous theorem does not require that a
feasible primal minimizer exists (the infimum might not be realized on J^); never­
theless, the theorem guarantees the existence of a feasible dual maximizer.

692 Chapter 15. Convex Analysis and Optimization

Unexample 15.5.8. Recall the optimization problem in Unexample 15.5.5.
The Lagrangian is

x fe~x + px2/y if у > 0,
I ос otherwise,

and the Lagrange dual function is

7(m) = inf (е-ж + цх2/у) > 0.
reElK
У>®

If у = 0, then НпЪе-юо Jzf(x, p, ff) = lim^^oo e~x = 0. If /Lt > 0, then for any
e > 0 choosing x large enough to make e~x < e/2 and choosing у large enough
to make 2fix2 /у < e/2 shows that /(jz) < £ for all £ > 0, so we have

~ Jo if/z > 0,
/(W = < -f AI —oo it /1 < 0.

Therefore, the dual problem of maximizing f has maximal value d* = 0, and
strong duality fails for this convex problem because there is a duality gap of
p* -d* = 1/

15.5.2 Strong Duality Implies KKT First Order
In Section 14.4 the KKT first-order conditions are proved to hold for regular points.
But if strong duality holds, then the KKT first-order conditions also hold for singular
points.

Theorem 15.5.9. Given a minimization problem (15.13) (not necessarily convex)
with dual problem (15.21), assume there exists a primal feasible value x* e and
dual feasible values A* : e and /Lt* E with /Lt* 0, such that

p* = = d*.

If is differentiable at (x*, A*, /Lt*) and x* lies in the interior o/effd(<if (•, A*, /Lt*)),
then the KKT first-order conditions (see Theorem Ц-4-5) hold for x* , A* , /Lt* :

(i) 2?xJ^(x,A,/Lt) = O, and***
(ii) jî(x) = 0 for all i e {1,... , m}.**

Proof. By (15.16) we have

p* = /(x*) = supJ^(x*, A,/Lt) > J^(x*, A*,/Lt*)
A,/2

> inf^(x,A*,/x*) = = d*,
X

(15.24)

15.5. Strong Duality 693

but strong duality gives p* = d* , so

/(x*) = infj^(x, А*,д*), x

and the (unconstrained) FONC gives

2?xJ^(x*,A*, m*) = 0,
which is the first KKT condition.

Moreover, since all the inequalities in (15.24) must be equalities, we have

/(x*) = ^(x‘, A*,/z*) = /(x*) + (А*) тЯ(х*) + (M*) TG(x*),

but the fact that x* is feasible gives H(x*) = 0. Hence, we have
m

0 = (м*) тС(х*) = £мЫх*)-
г=1

Since G(x) 0 and pb* 0, no term of the sum 52^ Д*<7г(х*) is positive, and
therefore every term in the sum must vanish. Thus,

M*5»(x*) = 0 Vi,

which is the KKT complementary slackness condition. □

15.5.3 Convex and KKT Imply Optimality and Strong Duality
The KKT first-order conditions are necessary conditions for a regular point to be
a minimizer. However, in the case of a convex optimization problem, the KKT
conditions are also sufficient, and strong duality automatically holds.

Theorem 15.5.10. Given a convex minimization problem of the form (15.13) with
dual problem (15.21), if there exist feasible points x* e Rn, A* e and рь* e
with рь* 0, satisfying the first-order KKT conditions (see Theorem 7^.^.5), then

p* = /(x*) = /(A*, M*) = d*.

In other words, strong duality holds for this problem, the primal optimizer is x*,
and the dual optimizer is (A* ,рь*).

Proof, By definition, we have

7(A*,/Z*) = inf (/(x) + (А*) тЯ(х) + (M*) TG(x)).

The sum (x, А*, рь*) = /(x) + (A*) T77’(x) + (/la*) tG(x) is a convex function of x
because f and all gi are convex, H(x.) is affine, and pb* >z 0.

Since x* e satisfies the first-order KKT condition DxJzf(x* , A* , рь*) = 0,
Theorem 15.3.10 (sufficiency of first-order condition for convex problems) and
Theorem 15.3.9 (local minimizers are global minimizers) combine to guarantee that
x* is a global minimizer for this problem, so

inf J^(x, A* , рь*) = Jf(x* , A* , рь*). x

694 Chapter 15. Convex Analysis and Optimization

Strong duality now follows from a straightforward computation:

= inf (/(x) + (А*) тЯ(х) + (M*) TG(x))

= /(x‘) + (А*) тЯ(х*) + (/z*) TG(x*)
= /(x‘),

where the last line follows from the feasibility of x* and complementary slackness,
so both (/la*) tG(x*) = 0 and Я(х*) = 0.

For any z e with z x*, weak duality gives /(z) > /(A*, p,*) = /(x*), so x*
must be a global minimizer of f. □

Unexample 15.5.11. In the case of Unexample 15.5.5, no minimizers (0,?/)
are regular points. This is because the constraint h(x,y) = x^/y is active
at these points, and Dh(x,y) = \^x/y —a?2/?/2]. Any point of the form
(0, y) has D/z(0, y) = [0 0], which is not of maximal rank. Therefore, the
first-order KKT conditions do not apply.

15.5.4 Equivalent Primals May Have Different Duals
As discussed earlier there may be many ways to reformulate an optimization problem
as a different, equivalent problem. Each of these different reformulations has its own
dual, and often these dual problems are very different.

Example 15.5.12. Any unconstrained optimization problem has a constant
dual function (see Example 15.4.14). But we can often rewrite an uncon­
strained problem as a constrained problem, and the new problem may have a
dual that is easier to solve or interesting in other ways.

Consider the logistic regression problem of Example 15.3.15 to minimize
Si=i l°g(l + e-2/’(w x*+ fe))5 without constraints. This can be rewritten as the
equivalent constrained problem

N

minimize log(l +ez‘)
i=l

subject to Zi + ^(wTXa + b) = 0 Vi € {1,..., N}.

The Lagrangian of this equivalent problem is

N N

b, z, A) = 57 l°g(l + eZi) + 57 ^Zi + ^(wTxi + &))>
2=1 2=1

and the dual function is

(N N N \

У log(l + eZi + XiZi) + wT V Att/,x, + bУ Хгуг I .
Z / Z / Z / /
2=1 2=1 2=1 /

15.5. Strong Duality 695

The function /(A) is —oo unless Xiyi = 0 and Хгуг^г = 0, and
otherwise it is infz 52i=1(log(l + eZi) + XiZi). Exercise 15.34 shows that this
is also —oc^unless every Xi is bounded by —1 < A < 0, in which case it takes
the value /(A) = Zi=i (U _ -M l°g(l _ _ log(Aj)). Changing the sign
of A gives the dual problem

N

maximize log(—A;) - (1 + AJ log(l + AJ
2 = 1

subject to 0 < Xi < 1 Vi G {1,..., TV},
Za=i = 0’
Zill = 0.

Example 15.5.13. A As with the previous example, the soft-margin support
vector classifier of Example 15.3.8 is an unconstrained optimization problem,
and hence it has an uninteresting dual. The original problem

N 1
minimize /(w, 6) = C max(0,1 — z/j(wTXi + 6)) -I—1|w||q

2

can be rewritten as

N 1
minimize C & + dWIi

2 (15.25)
subject to 1 — ?/i(wTXj + 6) < Vi G {1,..., N},

0<Ci Vie {1,...,7V}.

Writing /z = (a,/3) gives
N N N

^(w, b, £,a,0) = С^& + -1|w||2 - ^2Q'(C - 1 + J/i(wTxi + fe)) - 52
2=1 2=1 2 = 1

Exercise 15.35 shows that the dual problem is almost identical to that for the
hard margin:

NN n

maximize — | Xj + &i
2=1 J=1 2=1

N

subject to ^2 агУг = 0,

0~<ai<C Vz e {1,...^}.

Moreover, Slater’s conditions hold, so the KKT conditions hold for the unique
minimizer. Therefore we have

oii^i - 1 + + b)) = 0 Vi e {1,..., IV}.

This is called the soft-margin support vector classifier.

696 Chapter 15. Convex Analysis and Optimization

15.5.5 *Proof of Strong Duality from Weak Slater
We conclude this section by proving Theorem 15.5.6, that strong duality holds if
the weak Slater conditions are satisfied.

Proof, Any equality constraint in an optimization problem can be rewritten as
two inequality constraints; therefore, we may assume that the primal optimization
problem is of the form

minimize /(x)
subject to #i(x) < 0,

^m(x) < 0,
where the domain Q C Rn is open and convex, and the functions f and gi are
all convex. Slater’s condition gives an x' E such that if gi is not affine, then
Pi(x') < 0. Without loss of generality, assume that pi(x'),... ,^(x') are all strictly
negative and gk+i, • •• ,9m are all affine, with ^+1(x') = ••• = pm(x') = 0. For
convenience, we write G = (pi,..., pfc).

Define the set

V = {(u, w) E x R | 3x e Q, G(x) u, /(x) < w}.

By Exercise 15.37 the set V is convex and not empty. Moreover, given any (u, w) E
V and any (u', w') (u, w) we must have (u', w') E V, by definition of V.

The point (0,p*) is not in the interior of V because otherwise there would be
a point of the form (0,p* — e) in V for some e > 0, and this would contradict
the minimality of p* on &. Therefore (0,p*) lies on the boundary of V. By
the supporting hyperplane theorem (Theorem 13.2.8) there exists a hyperplane
/z((u, w)) = /iTu + p^w + 6, with either p 0 or p0 0, such that Zi((O,p*)) < 0
and /z((u,w)) > 0 for all (u, w) E V. This gives

/iTu + pow > PoP* (15.26)

for all (u, w) E V. If any entry pi of p were negative, then for any (u, w) E V
we could increase the corresponding component иг of u arbitrarily and still remain
in V, but this would violate (15.26) for щ sufficiently large. Therefore p >z 0. A
similar argument shows that po > 0.

If po = 0, then (15.26) shows that inf(U5W)ev /latu > 0, but p >z 0 combined
with p ф 0 imply

, inf /u < Д (x' j < 0
(u,w)ev

because рДх') < 0 for all i < к. Therefore p$ > 0.
Since po > 0 we may divide (15.26) by po to get

inf (uTu + w) > p*
(u,w)ev \ /

where p = -^p. Letting p = (Д, 0) E x gives the following bound on the
Lagrange dual function:

7(Д) = inf(/(x) + (/l)TG(x)) = inf (ATu + w) > p*.
x (u,w)ev \ /

15.6. Interior Point Methods I: The Barrier Method 697

Taking the supremum of yields

d* = sup/(/x) > f(fi) > p*,

but weak duality implies d* < p* ; therefore d* = p* and Д is the maximizer. □

15.6 Interior Point Methods I: The Barrier Method
Interior point methods originally began as an alternative to the simplex method
for solving linear optimization problems, but many of them also work very well
for general convex optimization problems. These algorithms are iterative, moving
through the interior of the feasible set and converging to an optimizer, rather than
moving among the vertices of the boundary of the feasible set

The simplex method is very effective on a large class of linear optimization
problems, but there are pathological examples where the temporal complexity of
the simplex method is exponential in the number of variables. Specifically, there
are examples where the simplex method has to visit exponentially many vertices
(exponential in the number of variables) before reaching the minimizer; see Section
13.5.4 for more on this. It was a long-standing problem to determine whether there
was any algorithm for solving linear optimization problems that was guaranteed to
have polynomial complexity.

The first interior point method was the ellipsoid method due to Shor, Nemirovski,
Yudin, and Khachiyan, who showed that their method was provably polynomial in
complexity. In particular, the temporal complexity is bounded by O(n6L) time,
where L is the number of bits of input in the problem (see Remark 13.5.8).

While the development of this algorithm was an important advance in theory,
the algorithm itself was impractical for solving real problems, due in part to a high
cost for each iteration and also due to poor numerical stability. A few years later,
Karmarkar presented the first practical algorithm, also an interior point method,
that could be proved to solve linear optimization problems in polynomial time.
The complexity of his algorithm is bounded by O(n35L). Of course, interior point
methods have continued to improve since Karmarkar and have been generalized to
handle many convex optimization problems—not just linear ones.

A nice feature of interior point methods is that they can give relatively accurate
approximations of the optimal point in very few iterations. Moreover, the number
of iterations required to give an accurate solution increases very slowly with the
dimension of the problem. At present, interior point methods are the only good
option for very large linear optimization problems (say with a million or more
constraints and variables), and they remain competitive when dealing with smaller
linear problems.

15.6.1 Formulation
Barrier methods provide a powerful class of methods for numerically computing
solutions of convex optimization problems of the form

minimize /(x) (15.27a)
subject to G(x) 0, (15.27b)

Ax - b = 0, (15.27c)

698 Chapter 15. Convex Analysis and Optimization

where f and the components g±,..., gm of G are convex functions that are C2 on
Rn, where A E Mgxn(W), and b E Moreover, the feasible set

cF = {x E | G(x) 0 and Ax — b = 0}

must have a nonempty interior /°. As in the case of unconstrained optimization
algorithms, these methods can often still work if the domain Rn is replaced with
an open convex set Q C Rn, but applied naively, there is a risk that they will step
outside the domain. One way to deal with this situation is to express the set Q
in terms of additional convex inequalities #m+i(x) < 0,... ,#m+fc(x) < 0, and then
add these inequalities to the list of constraints in G. Of course, a drawback to this
approach is that it can produce minimizers outside the feasible set (on the boundary
dQ = Q\Q).

In theory, and occasionally in practice, it is sufficient to consider the reduced
problem

minimize /(x)
subject to G(x) 0,

(15.28)

where the affine equality constraints (15.27c) are removed using the methods of
Section 14.6. However, many numerical packages follow the general form (15.27).

The idea of barrier methods is to add a small multiple of a convex barrier
function b to the objective /, where 6(x) is finite for x E <F°, but with 5(x) oo
as ^г(х) 0“ for any i E {l,...,m}. In this section, we study the logarithmic
barrier function given by

6(x) = -52log(-&(x))- (15.29)

It is straightforward to check that this 5(x) is convex if each g^(x) is; see Exercise
15.38. The optimization problem (15.28) is replaced with a new problem,

minimize /£(x) = /(x) + eb(x)
subject to x E cF°

(15.30)

for some small e > 0. Because 5(x) and /(x) are convex, the function /£(x) is also
convex. For each e let x*(e) be the unique minimizer of (15.30) on F°. The path
defined by x*(e) for e E (0, oo) is called the central path.

Example 15.6.1. Consider the problem of minimizing /(rr) = rr2, subject to
x > 0. Adding a logarithmic barrier to the objective gives the new problem
of minimizing f£(x) = x2 — slog(j:) on the set {ж E R | x > 0}. In this case
the minimizer for the new problem is ж*(е) = л/е/2, and as s —> 0+ we have
ж*(б) —> 0, which is the minimizer of the original problem. Theorem 15.6.3,
below, shows that this is a general phenomenon.

15.6. Interior Point Methods I: The Barrier Method 699

Figure 15.7. Illustration of the situation in Lemma 15.6.2. Given a point x
(yellow) in C and an interior point xq E C° (blue), let у = txo + (1 — £)x be any
point on the segment connecting x and xq. The point у lies in the interior of C,
because any point z (red) in B(y,t£) can be written as z = tzo + (1 — t)x e C for
some zq E B(xq,£).

15.6.2 Limiting Behavior
We generalize the example by showing that the minimizer x*(e) of (15.30) converges
to the minimizer x* of (15.29) as e 0+. First we have the following lemma.

Lemma 15.6.2. IfCcV is a convex set in an inner product space (V, || • ||), then
for every x E C and every xq in the interior C°, the point у = tx0 + (1 — t)x,
t E (0,1], lies in C°; see Figure 15.7. Moreover, if C° 0, then С C C°.

Proof. Let x E C, x0 E C°, and у = tx0 + (1 — t)x for some t E (0,1]. To show
that у E C°, it suffices to prove that the open ball B(y,e) С C for some e > 0.
Since x0 E C°, there exists £ > 0 with B(x0,£) С C. For any z E B(y,e), with
e = t£, the point z0 = |(z + (t — l)x) lies in the ball B(x1?£), because

||z0-x0|| = |||z +(t-l)x-fx0|| = |||z - y|| <£.

This shows that z0 E B(x0, £) С C and thus z = tz0 + (1 — t)x E B(y, e) С C.
We conclude the proof by showing x E C°, that is, for any 6 > 0, there exists

0 < t < 1 such that у E B(x,5). Setting t < min(l, J/||x — x0||) gives

lly - xll = llixo + (1 - t)x - x|| = t||x0 - x|| <6. □

Theorem 15.6.3. Let b : R be a convex function with the property that
for any point x in the boundary \ we have limk^oo b(xk) = oo for
any sequence (x/e)/ce^ in that converges to x. Fix a positive sequence {ek)ke ̂
converging to 0. For each j E N let Xj be the minimizer of (15.30) for e = ej. Any
limit point of (xj)jgn in Q lies in & and is a global minimizer of f on .

700 Chapter 15. Convex Analysis and Optimization

Proof. Let x e Q be a limit point of (xj)jGn- Passing to a subsequence, if necessary,
we may assume that xj —> x. If x E ^°, then |6(x)| < oo and lim/^^ ekb(xk) = 0.
If x /°, then by hypothesis, 6(x/c) oo, and thus for any sufficiently large к we
have

£kb(xk) > 0.

This implies that
/(Xfc) + Efcb(xfc) > /(Xfc). (15.31)

Assume by way of contradiction that x is not a global minimizer, so that there exists
x* e / such that /(x*) < /(x). By continuity of f there exists 6 > 0 such that
/(y) < /(x) for all у E B(x*,<5). By Lemma 15.6.2 we may assume that у E J^°.
The definition of x/~ as a minimizer on and (15.31) combine to give

/(y) + £kb(y) > f(xk) + £kb(xk) > f(xk)

for all sufficiently large к E N. Taking limits gives /(y) > /(x), a contradiction.
□

Example 15.6.4. Consider the optimization problem

minimize
subject to

f(x,y) = x-y2
1 + x — y2 >0,

where the minimum of the function is —1. The log barrier problem is to
minimize the function

fe(x, y)=x-y2 -e log(l + x - y2) - £ log(y).

This is an unconstrained problem, which we can solve by computing the FONC
given by

1 “ —2 = °’
1 + x — yz

V 125 7^---- 2-£-=0-
1 + x - у

We simplify to get

у2 - У - e/2 = 0,
1 + X — у2 = E.

This gives the solution

ж*(е)'
y*(e).

1 3s — 1 + \/l + 2s
2 1 + \/l + 2s

Letting s —> 0+ gives the solution (ж*, г/*) = (0,1).

15.6. Interior Point Methods I: The Barrier Method 701

Example 15.6.5. Consider the optimization problem

minimize /(x, y) = x3 + y3
subject to 1 < ж < 4,

2 < У < 5.
(15.32)

Replace the objective with f£(x, y) = f(x, у) + еЬ(ж, ?/), where

b(x, y) = - log(4 - x) - log(x - 1) - log(5 - y) - log(?/ - 2).

Take a sequence £& 0+ and for each к apply a few steps of Newton’s method
to f£k. This gives an approximation x& of the optimizer x*(^) for each &k-
This is illustrated in Figure 15.8.

Figure 15.8. The logarithmic barrier method applied to f(x,y) in (15.32). The
black curve is the central path, corresponding to the minimizer x*(e) for all e > 0.
This path approaches the minimizer x* = (1,2) as e 0+. The red dots correspond
to iterates of the method for a decreasing sequence вк 0+. Rarely does it make
sense to actually find the minimizer х*(б>)—that would correspond to red dots all
lying on the black central path. Instead, it is usually best to apply Newton’s method
for вк only until the Newton steps are sufficiently small, and then update to €k+i
and start another stage of Newton’s method, moving toward х*(б>+1).

15.6.3 Naive Implementation
Many barrier methods follow the basic idea of choosing a sequence г к 0+ and
then, for each k, approximately solving for x*(^). The important choices in such
a method are

(i) which method to use for approximating x(^);*

(ii) when to stop the search for x(^);*

(iii) how to update €k to €k+i-

702 Chapter 15. Convex Analysis and Optimization

One common barrier method uses (i) a Newton-type method on the logarithmic
barrier (15.30), (ii) stopping the search for x*(e fc) when 2?2/£(x)-12?/£(x)T < r for
some fixed r > 0, and (iii) updating by еь+i = @£k for some fixed 0 E (0,1). This
is given in Algorithm 15.1.

Begin with an initial point xq E a value of 0 E (0,1) (to decrease S&), a
value т > 0 (to decide when to stop searching for x(s&)), an initial 64 > 0,
and a final value e > 0. Now proceed as follows:

(i) Set к = 1.

(ii) Perform a Newton search (possibly using exact line search or backtrack­
ing in the Newton direction) for (15.30) in order to approximate х(е^).*

(iii) Terminate the search for x(^) once D2/£(х)-1 D/£(х)т < r and set
Xfc+i equal to the approximate solution.

*

(iv) Update ek+1 = (1 - 0)ek.

(v) If ek > e, then increment к to к + 1 and go to (ii). Otherwise return
Xfc_|_i and stop.

Algorithm 15.1. Outline of the naive barrier method to solve the optimiza­
tion problem (15.29). It can be shown that this algorithm solves linear and
quadratic (quadratic objective with linear constraints) optimization problems in
O(V^Tlog(L)) time. In the next section we examine the more general approach
and a modification that speeds things up considerably.

15.7 Interior Point Methods II: The Primal-Dual Method
Primal-dual methods are a modification of barrier methods that provide a faster and
more powerful approach to solving convex optimization problems. The general idea
is to solve both the primal and dual problems simultaneously by relaxing one of the
constraints in the barrier method. We begin with a more general implementation
of the barrier method.

15.7.1 General Implementation of the Barrier Method
Consider the convex optimization problem

minimize f(x) (15.33a)
subject to G(x) 0, (15.33b)

Ax - b = 0, (15.33c)

where f and the components g±,..., gm of G are convex functions that are C2 on a
convex open domain Q C Rn, with A E M£Xn(R), and b E R^. The feasible set is
given by

с? = {x E Rn I G(x) 0 and Ax - b = 0} c Q.

15.7. Interior Point Methods II: The Primal-Dual Method 703

We assume that strong duality holds and that the problem is solvable, that is, there
exists a feasible optimizer x*.

The Lagrangian is

(x, /Lt, A) = /(x) + /LtTG(x) + AT(Ax — b).
The KKT necessary conditions for a minimizer (Theorem 14.4.5) are as follows:

(i) Primal feasibility: Ax — b = 0 and G(x) 0.* *

(ii) Dual feasibility: /Lt 0 and*
£>/(x*) + (д*) т DG(x*) + (A*) TX = 0. (15.34)

(iii) Complementary slackness: = 0 for all i € {1,... , m}.

It is difficult to solve these conditions directly. In particular, complementary slack­
ness often causes some numerical difficulty due to the sharpness of the constraints.
Instead, we use the barrier method and solve an equality-constrained optimization
problem that relaxes complementary slackness.

For e > 0, consider instead the relaxed problem

minimize /(x) - e ^2 log(-&(x)) ц5 35)

subject to Ax — b = 0.
The Lagrangian is

-£”(x, A) = /(x) - £ 52 los(_^(x)) + -^T(^x - b).
i=l

The FONC is

£>/(x) - s V Dgi^ + ATA = 0, (15.36)S' 5i(x)
together with the constraint Ax — b = 0. We can solve this by finding a zero of the
function r : Rn+m —> Rn+m given by

r(x, A) =
Ax — b

This can be done with Newton’s method. To avoid notational clutter, let x x + a
indicate that the value of the variable x is set to the old value of x plus a. We
update

by solving the linear system

Dr(x,X) дл = —r(x, A),

704 Chapter 15. Convex Analysis and Optimization

where

and a > 0 is judiciously chosen to maintain feasibility.

Remark 15.7.1. One choice for the learning rate a is to fix some /3 E (0,1) (an
upper bound for the learning rate), and set the learning rate a > 0 as

a = /3 • min < 1, min < -—-I l < 0 (15.37)

Note that this choice ensures that the feasibility condition x + сеДх >- 0 holds.

Remark 15.7.2. The first-order necessary condition for barrier methods (15.36)
can be written as (15.34) by setting

—e —e —e

.91 (x) 92 (x) 9m (x) (15.38)

This is equivalent to enforcing a perturbed complementary slackness constraint
дбгрг(х) = — e for each i = 1,2, which, in the limit as e —> 0, gives the
original complementary slackness condition. In other words, the barrier method is
simply a relaxed form of the KKT conditions given above.

Example 15.7.3. Consider the linear optimization problem in standard form

minimize cTx
subject to Ax b, (15.39)

x 0,

where A E MmXn(R), b E Rm, and с E Rn. By adding slack variables, this
can be written as

minimize cTz
subject to Az = b, (15.40)

z 0,

where с = [cT 0T], A = [А I], and z E Rm+n. Thus, the barrier method
becomes the equality-constrained optimization problem

m+n
minimize cTz — e log(^) , .

_ i=l v • 7
subject to Az = b.

An implementation of the barrier method on this problem is given in Algo­
rithm 15.2, using the learning rate described in Remark 15.7.1.

15.7. Interior Point Methods II: The Primal-Dual Method 705

Example 15.7.4. Consider the linear optimization problem in Example 13.3.3.
The problem can be modified to fit the form of (15.40) by setting

4 -1
1 1

1 1 0
0 0 1A = and cT = [—5 —1 —6 0 0] .

Using the barrier method described in this section with (15.41), as imple­
mented in Algorithm 15.2, yields the optimizer x* = (0, 7, 5) very rapidly.

15.7.2 Formulation of the Primal-Dual Method
In the barrier method, each iteration of the Newton step requires that (15.38) hold.
As it turns out, we can often get an algorithmic improvement by keeping the relaxed
complementary slackness condition (15.38), but solving the original dual condition
(15.34), that is, solve the following system of equations:

(i) Primal feasibility: Ax — b = 0 and G(x) 0.* *

(ii) Dual feasibility: D/(x) + (/Lt) TDG(x) + (A) TA = 0 and /it 0.* * * * *

(iii) Relaxed complementary slackness: дб^(х) = — e for all i e {1,... , m}.**

We can solve this by finding a zero of the function r : Rn+m+^ —> given by

r(x,/z, A) =
D/(x)T + DG(x)T/Lt + ATA

diag(/Lt)G(x) + el
Ax — b

(15.42)

This can be done with Newton’s method where we update

Ax
fl fl + a A/l
А А ДА

by solving the linear system

Ax
Dr(x, /x, A) A/Lt = — r(x, /Lt, A),

AA
(15.43)

where

Dr(x, /Lt, A) =
£>2/(x) + £ У2 l^iD29i (x) OG(x)T AT

diag(/Lt)DG(x)
A

diag(G(x))
0

0
0

and then choosing a > 0 judiciously.

706 Chapter 15. Convex Analysis and Optimization

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

import numpy as np
import numpy.linalg.solve as solve

def linear_barrier(A,b,с,у,eps=0. 1) :
"""Use the logarithmic barrier method to minimize
c~T x subject to A x = b and x >= 0.
и и и

theta=0.9 # Decay rate for eps
beta=0.9 # Maximum learning rate
tol=le-13 # Stop once I Newton dir I <= tol
max_iter=1000
m,n = A.shape

counter =0 # which iteration
d = 1
while np.linalg.norm(d) > tol: # Execute barrier method

x = у [0: n] ; lamb = у [n: n+m]
r = np.block([-c+eps/x + A.T 0 lamb, A @ x - b])
Dr = np.block([E-eps*np.diag(l/x**2) ,A.T],

EA,np.zeros((m,m))J])
d = -solve(Dr,r) # Newton direction
ratio = x / d[0:n] # Used to compute Irning rate alpha
alpha = beta*np. min(np.block([1,-ratio[ratio<0]]))
у = у + alpha * d # Newton step
eps = theta * eps # Shrink epsilon
counter = counter + 1
if counter >= max_iter:

print('Does not converge1)
break

return y, counter

Algorithm 15.2. Python implementation of the equality-constrained barrier
method for linear optimization problems of the form (15.40), as described in
Example 15.7.3. Given an initial choice of eps and an initial guess у = (x,
lamb), where x is the primal variable and lamb is the dual variable, use the
logarithmic barrier method to solve the linear problem by approximating the ze­
ros of r(y, eps) = cT — eps ^l/xi + ATlamb as eps —> 0. Here we use the
learning rate described in Remark 15.7.1. Note that in Python 0 denotes matrix
multiplication.

Exercises 707

Remark 15.7.5. In this case, the inequality constraint fi + cuA/it 0 needs to be
preserved. Given 0 < /3 < 1, set the learning rate a > 0 to satisfy

a = 3 • min < 1, min < —— < 0I l (15.44)

It is common to also use backtracking to make sure that G(x) 0 holds and that
||r(x, д)|| decreases.

Example 15.7.6. Consider a linear optimization problem in the form (15.40).
Here we have /(z) = cTz and G(z) = —z. Thus, D/(z)T = c, DG(z) = —I.
It follows from (15.43) that

0 -I
- diag(/z) - diag(x)

A 0

АТ1 Г Ax'
A/i
AA

c — fi + ATA
— diag(/z) diag(rr)ll + si

Az — b
0
0

Putting these into code and applying the learning rate given in Remark
(15.7.5) gives Algorithm 15.3.

Remark 15.7.7. In the barrier method (Algorithm 15.2), our terminal condition
is based on the size of the step ||d||. By contrast, the terminal condition of the
primal dual method (Algorithm 15.3) is based on the norm of the residual r. This
is because the barrier method can converge to a different point as the algorithm
achieves the solution due to the asymptotic relationship between the numerator and
denominators in (15.38).

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

708 Chapter 15. Convex Analysis and Optimization

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

import numpy as np

def rpd(z, eps):
и и и

Return r and Dr for the primal-dual method
и и и

x = z[0:n]; mu = z[n:2*n]; lamb = z[2*n:2*n+m]
r = np.block([c-mu+np.dot(A.T,lamb),

-x*mu + eps*np.ones(n) ,
np.dot(A,x)-b])

Dr = np.block([[np.zeros((n,n)),-np.eye(n),A.T] ,
[-np.diag(mu),-np.diag(x),np.zeros((n,m))],
[A,np.zeros((m,m+n))J])

return r, Dr

def primal_dual(z, eps):
и и и

Primal dual iteration via Newton's method

counter = 0
r = 1
while np.linalg.norm(r) > le-6:

r, Dr = rpd(z,eps)
d = -np.linalg.lstsq(Dr,r,rcond=None)[0]
ratio = z[0:2*n] / d[0:2*n]
alpha = beta*np. min(np.block([1,-ratio[ratio<0]]))
z = z + alpha * d
eps = gamma * eps
counter = counter + 1
if counter >= N:

print('Does not converge')
break

return z, counter

Algorithm 15.3. Python implementation of the primal dual method for linear
optimization problems of the form (15.40) as described in Example 15.7.6.

15.1. Prove that any nonnegative combination of convex functions is convex. That
is, for any convex set C, for any convex functions Д,..., Д taking C to R,
and for any Ai,..., Ak € [0, oo), the function

к

/(x) = 52a*a(x)
г—1

is convex.

Exercises 709

15.2. Prove that if f : Rn —> R is a convex function, then {x E Rn | /(x) < с} C Rn
is a convex set for every с E R.

15.3. Prove that if f : Rm —> R is convex, A E Mmxn(R), and b E Rm, then the
function g : Rn —> R given by g(x) = /(Лх + b) is convex.

15.4. Prove that if g : C —> D C R is convex and f : D —> R is convex and
increasing, then f о g : C —> R is a convex function. Give an example of a
pair of convex functions /, g : R —> R such that f о g is not convex.

15.5. A For any fixed value of x E Rd and у E {±1} the hinge loss function is
/i(w,5) = max(0,1 — ?/(wTx + 6)). Show that h : Rd+1 —> R is a convex
function of (w, b).

15.6. A For any choice of x E Rd and у E {±1}, the logistic loss function is
£(w, b) = log(l + e-^(wTx+)) for w E Rd and b E R. Prove that the function
£ is a convex function of (w, 6) E Rd+1. Hint: Observe that log(l + et)
is a special case of the LogSumExp function (Example 15.1.15) and that
—?/(wTx + b) is an affine function of (w, 6).

6

15.7. If f : [a, b] —> R is convex, show that*

(i) /() < ^/(0 + ^f(b) Ух e (a, b),*

(ii) < ЩрШ < vx e (a.b).

15.8. Let К denote the positive orthant {x E Rn | x >2 0}. Consider the map
f : К —> R given by /(^i, #2, • • •, xn) = — (Щи^)1^. Show that f is convex
by the following steps:

*

(i) Let q = (X,..., Show that the Hessian of f can be written as

ndiag -qqT1 1

(ii) Use the Cauchy-Schwarz inequality to prove that for any vector v =
(vi,..., vn) E Rn we have

(iii) Show that D2 /(x) > 0 by directly checking that vTD2/(x)v > 0 for
every v E Rn.

15.9. f Exercise 13.6 shows that the set PSDn(R) of positive semidefinite matrices
in Mn(R) is convex. Prove the following:
*

(i) Prove that the set PDn(R) of positive definite matrices in Mn(R) is
convex.

(ii) The function /(X) = — log(det(X)) is convex on PDn(R). To prove
this, show the following:

(a) The function f is convex if for every Л, В E PDn(R) the function
g(t) : [0,1] —> R given by g(t) = f(tA + (1 — t)B) is convex.

710 Chapter 15. Convex Analysis and Optimization

(b) Use the fact that positive definite matrices are normal to show that
there is an S such that STS = A and

g(t) = - log(det(S'T(tl + (1 - t)(ST)-1B6'-1)S))
= - log(det(A)) - log(det(f/ + (1 - f)(ST)-1BS-1)).

(c) Show that
n

g(t) = - ^21оё(* + (1 - <)Ai) - log(det(A)),
г=1

where Ai,..., An are the eigenvalues of (ST) 1BS 1
(d) Prove that g"(t) > 0 for all t G [0,1].

15.10. Prove that if f : Rn —> R is convex and bounded above, then f is constant.
15.11. Give an example of a convex function on a convex set in Rn whose epigraph

is not closed and which is not the supremum of the hyperplanes lying below
its graph (so the conclusion of Theorem 15.2.12 does not hold).

15.12. Let »i, ci2,03 be the interior angles of a triangle. Prove that sin(«i) <
Hint: Consider using Jensen’s inequality.

15.13. Let Xi, X2,.. •, xn > 0 and Ai, A2,..., An >0 with A& = 1.
(i) Generalize the arithmetic-geometric mean inequality by showing that

n n

fc=i &=i

If Ai, A2,.. •, An > 0, prove that equality holds if and only if £1=^2 =
• • • = xn. Hint: For the equality, consider using Lagrange multipliers.

(ii) Use the arithmetic-geometric mean inequality to show that the hyper­
bolic set {(rzq, ^2, • • •, xn) E Rn I E[fc=i xk > 1} is convex.

15.14. Prove Corollary 15.2.14.
15.15. A Prove, using the following steps, that if U C is open and f : U —> R is

convex, then f is continuous on U.
(i) For any x0 G U, prove that the function p(x) = ||/(x) —/(x0)|| is convex

on U.
(ii) For any xq G U there exists a closed ball B(xq, r) C U. Prove that there

exist n points Xi,..., xn G B(xo,r) and a real number p > 0 such that
the closed ball B(xq, p) is contained in the convex hull conv(xi,..., xn).

(iii) Show that p(x) is bounded on B(xo,p) by some M < 00. Hint: Use
Jensen’s inequality.

(iv) Show that for every e > 0 if 6 = then g(x) < e. Explain why this
proves that f is continuous.

Give an example to show that if f : U —> R^ is convex, then f need not
be continuous. Give an example of a convex set C and a convex function
h : C —> R such that h is not continuous.

Exercises 711

15.16. Assume that both С C Rn and f : C —> R are convex. Show that a vertical
supporting hyperplane of epi(/) cannot contain an interior point of C (i.e.,
a point of the form (c, 0) where c is an interior point of C). Beware that
С C Rn but epi(/) C Rn+1 and all the supporting hyperplanes also lie in
Rn+1, not in Rn. Hint: Do the problem first for n = 1. For the general
case think about a line segment near c in the direction orthogonal to the
hyperplane.

*

15.17. Prove Proposition 15.3.3.
15.18. Prove Proposition 15.3.4.
15.19. Prove Proposition 15.3.13.
15.20. For each of Exercises 14.17-14.21, identify whether the problem is a convex

optimization problem (or can be rewritten as a convex optimization problem).
15.21. Show that both the objective function and the constraint in the problem

minimize 2~Li

subject to x2 > |,
0 < x < 10

are not convex. Make a change of variables to rewrite this as a constrained
convex optimization problem, and prove that the new objective and con­
straints are convex.

15.22. Show that the (A linear regression problem

minimize 11 Ax — b 111

can be expressed as a linear optimization problem. That is, for a matrix A E
Afmxn(R) and a vector b E Rm, write a linear (hence convex) optimization
problem whose optimizer y* can be used to find a vector x* E Rn that solves
the optimization problem

minimize ||Ax — b||i. (15.45)

Identify how to obtain the solution x* from y*.
15.23. Prove that the Markowitz portfolio optimization problem (see Section 14.6.4)

is a convex optimization problem. Prove that it remains a convex optimiza­
tion problem even if short selling is prohibited.

*

15.24. Let b E Rn and с E R, and let Q E Mn(W) be a symmetric matrix. The
unconstrained optimization problem
*

minimize /(x) = xTQx — bTx + c

is not convex if Q is not positive definite. Recast it as a constrained convex
optimization problem as follows:

(i) Find a change of variables x = 0(y) that converts the objective function
into the form

/(</>(y)) = yTDy - rTy + c, (15.46)
where r E Rn and D = diag(di,..., dn) is diagonal (but the di are not
necessarily positive).

712 Chapter 15. Convex Analysis and Optimization

(ii) Show that if r = (ri,..., rn) and if y = (7/1,..., yn) is any optimal point
of (15.46), then for each i we have ггуг < 0. Hint: If not, show that
changing the sign of yi gives a smaller value for the objective function.

*

(iii) Show that in a neighborhood of the optimal point y we can change
variables to z = [z± ... zn] 0 with y^ = sign(ri)A/%.

*

(iv) Show that the new objective function is a convex function of z and that
the constraints on z are also convex, so that the new problem expressed
in terms of z is a convex optimization problem.

15.25. Consider the problem of fitting an ellipse to a set {(a^, ?л)}£1 °f points in
R2.
*

(i) The general form of the ellipse can be written as

ax2 + bxy + cy2 + dx + ey = 1. (15.47)

Define the residual Ci at the point (xi,yi) by

ei = ax2 + bxiyi + cy2 + dxi + eyi — 1. (15.48)

Find a matrix A and a vector b such that the residual vector e satisfies

e = 4w — b, (15.49)

where w = (a, 6, c, d, e) is the parameter vector.
(ii) Write the problem of finding the ellipse (the parameters u, 6, c, d, and e)

that minimizes the errors e relative to the norm || • ||i as an optimization
problem in standard form (this need not be a convex problem).

(iii) Using techniques similar to those used in Exercise 15.22, rewrite the
previous optimization problem as a linear problem.

15.26. A posynomial is a function of the form*
N n

, I„) = ^2 Ci П ’
i=l j=l

where each is real and each Ci is positive. A geometric program is an
optimization problem of the form

minimize /(x)
subject to G(x) 1,

x 0,
Я(х) = 1,

where f and each gi is a posynomial and each hi has the form cxf1 • • • x^1,
with each E R and c > 0. Show that taking the logarithm of the new
objective and new constraints transforms this into a convex optimization
problem. Hint: Example 15.1.15 and Exercise 15.3 may be useful.

Remark 15.7.8. The maximum likelihood estimator for logistic regression
(see Example 15.3.15) is a geometric program. Generally speaking, geometric
programs are not convex, but the change of variables yi = log (a;*) transforms
a geometric program into a convex problem.

Exercises 713

15.27. Prove that the maximum value of — |АТАЛТА — ATb is |bT(AAT) xb, as
claimed in Example 15.4.9. This proves that strong duality holds and hence
d =p.* *

15.28. Consider the problem

minimize x2 + y2
subject to x + у > 4,

x > 0,
У > 0.

Find the Lagrangian, and the Lagrange dual function. Solve both the primal
problem and the dual problem and compare the results.

15.29. Consider the problem
n

minimize cTx — log(^)
г=1

subject to rTx = s,
X 0,

where r, x E Rn. Find the Lagrange dual function. Hint: Since the inequality
constraints are strict, you need not include the inequality constraints in the
Lagrangian, but the infimum used to compute the dual is taken only over
strictly positive values of x.

15.30. Let W E Mn(R) be positive definite. Consider the problem of choosing
x E Rn to minimize xTPFx, subject to Xi E {—1,1} (which can be rewritten
as x2 = 1) for every i. Let p be the minimum value. For every choice of
A E with (W + diag(A)) > 0 prove that p > —

*
*

15.31. In a lot of optimization textbooks, the standard form of a linear optimization
problem is to

minimize cTx
subject to Ax = b, (15.50)

x 0.

(i) Find the Lagrange dual function.
(ii) Find the dual problem for this problem.

15.32. Consider the optimization problem

• • • o/x J ifx^O.minimize 5(x) = <
I oo otherwis

subject to Ax b,
lTx = 1.

(i) Find the Lagrange dual of S and the corresponding dual optimization
problem.

(ii) Under what circumstances would the weak Slater condition fail to hold
for this problem?

714 Chapter 15. Convex Analysis and Optimization

15.33. For each of Exercises 14.17-14.21, identify whether it satisfies the weak Slater
condition.

15.34. For the logistic regression problem of Examples 15.3.15 and 15.5.12 show that
the dual function

(N NN

£(log(l + e2i) + XiZi) + wT 57 Aij/iXj + Ь^Хгуг

15.38. Assuming that each gi is convex, prove that the logarithmic barrier (15.29)
is also convex. Hint: It suffices to show that each — log(—g(x)) is convex.

15.39. Compute the derivative and the Hessian of f£ as defined in (15.30). More
precisely, show that

(i)
7?А(х) = Г>/(х)-££^^, (15.51)

(ii)

n2 f M n2 f M D29i (x) Dgi (x^Dgi (x) \
+ ------)■ (15.52)

From (15.52) show that if f is convex and each gi is also convex, then
so is f£.

15.40. Show that the gradient (15.51) of f£ is equivalent to the FONC from the
KKT conditions (Theorem 14.4.5(i)) for a special choice of /it 0.

i— 1 i—1 2=1

is — oojmless every A* is bounded by — 1 < A* < 0, in which case it takes the
value /(A) = (A*log(—AJ — (1 + A*)log(l + AJ). Note: Assume that
tlog(^) = 0 when t = 0.

15.35. Prove the claim in Example 15.5.13 that the dual problem (15.25) of the
(reformulated) soft-margin linear support vector machine primal is to choose
w, 6, £ in order to

N N n

maximize — | 52 52 + 52
i—lj—l 2=1

N

subject to 52 = 0’
2 = 10 a Cl.

15.36. Consider again the linear optimization problem (15.50) of Exercise 15.31.
(i) Find the dual of the dual.

(ii) Show that (15.50) satisfies strong duality.
15.37. Prove the claim in the proof of Theorem 15.5.6 that V is convex and not

empty.
*

Exercises 715

15.41. Consider the minimization problem

minimize f(x) = x2 + 1
subject to 2 < x < 4.

What is Д? Show that the only root of fe(x) that is in the feasible set is
slightly larger than x = 2 when e is slightly larger than zero. Hence, the
minimizer ж*(б) converges to x = 2 (which is the solution).

15.42. Consider the problem in Exercise 15.32. Implement the logarithmic barrier
method to solve this optimization problem as follows:

(i) Start with e0 = 1 and xq = (3.5,4.5). For each Newton step, given
Xj choose the learning rate a by backtracking from 1 until the next
step x' = Xj — aD2/£fc(xj)-1 Df£k(xj)T. This satisfies x' e & and
/(x') + £fc6(x') < /(xj) + £fcb(xj). Once such an a has been found, set
xj+1 = x' with that choice of a. Take also r = 0.01 and 0 = 0.25.
Terminate the algorithm when < Ю-6.

(ii) Plot in the plane all the values of x^ that you found in the previous
step.

15.43. Consider the simple minimization problem

minimize x3 + 2
subject to 1 < x < 4.

Set up the primal-dual algorithm by completing the following steps:
(i) Write the KKT conditions for this problem in the form r(a;,/Lt) = 0 as

given in (15.42).
(ii) Find Dr (ж, д).

(iii) Plot the region in R3 corresponding to all ж, /it- satisfying the primal and
dual feasibility constraints. Plot all the points (ж, д) that satisfy the
KKT conditions. These are the points to which we expect the algorithm
to converge.

* *

(iv) Identify and plot the points of the feasible set satisfying complementary
slackness, that is, gig^x) = 0 for each i = 1,2.

15.44. Continuing with Exercise 15.43, complete one step of the primal-dual algo­
rithm, as outlined here. Hint: The algebra may become unpleasant, so feel
free to use numerical or symbolic computing tools, or your own code whenever
convenient.

(i) Plot the point (3,1,1) on the feasible set of Exercise 15.43 corresponding
to the starting point x = 3 and = (1,1).

(ii) For this starting point and small e > 0, compute the steps Ax and A/it.
(iii) Compute a using Remark 15.7.5 for /3 = 0.9.
(iv) Show that the residual ||r(xr, д)|| decreases as a result of this step.

15.45. Implement the two methods in Algorithms 15.2 and 15.3, applying them to
the problem in Example 15.7.4.

716 Chapter 15. Convex Analysis and Optimization

15.46. Consider the quadratic optimization problem

minimize |xTQx + cTx
subject to Ax b, (15.53)

where Q e Mn(R) is positive definite and A e Afmxn(R).
(i) Prove that (15.53) is a convex optimization problem.

(ii) By taking the “relaxed” KKT conditions (15.42), determine r(x, д) and
Dr(x, fl).

(iii) Write a program to compute the minimizer.
15.47. Apply the code from the previous exercise to solve the following problem:

minimize 2x^ + x% — — 5^i — 2x2
subject to 3^i + 2x2 < 20,

—5^1 + 3^2 < 4,
x± > 0, X2 > 0.

Notes
Our treatment of convexity and convex optimization was partially inspired by
[BV04, Ber09]. Other references consulted on convex optimization include [Ber79,
Biel5, BL06, CV13, Nes04, Becl4]. Exercise 15.24 is modeled after [Becl4, Section
8.2.7]. Important references for the theory of duality include [BV04, CV13]. Our
proof of strong duality from weak Slater is inspired by [Tanl5]. Our main source for
the logarithmic barrier is [Ber09]. For a detailed analysis of the logarithmic barrier
see [dH94].

"Л f Dynamic OptimizationIo
Let them eat cake.
—Marie Antoinette58

58Some historians contend that it is unlikely that Marie Antoinette ever actually said this, but the
allegations that she did fueled revolutionaries and ultimately contributed to her demise. Had
she been aware of Blackwell’s theorem, perhaps things would have gone better for her.

The previous chapters on optimization discuss how to make a single decision given
a well-formulated problem. This chapter treats sequential decision making, or dy­
namic optimization, where a sequence of decisions are made at various points in
time. Naturally, the decisions made at one point in time affect the later decisions,
and so the goal in sequential decision making is to optimize over the entire time
horizon of the problem, not just the immediate decision before us.

We begin by considering finite-horizon problems, where decisions are made at
a finite number of points in time. Then we move to infinite-horizon problems,
where time marches on forever. One of the hallmark achievements in the theory
of dynamic optimization is Blackwell’s theorem, which gives a necessary condition
for the unique solution to a general class of infinite-horizon dynamic optimization
problems.

Many dynamic optimization problems fall under the category of investment­
consumption problems, where an economic agent has capital that is consumed at
fixed periods over time. At each period, a portion of the capital is consumed,
giving the consumer a certain amount of utility \ whatever is not yet consumed is
usually invested so that it can grow, giving the agent more to consume later on. In
variations of investment-consumption models, there can be an income, or inflow of
capital, the ability to borrow and repay money, and sophisticated investment options
with a portfolio of choices having uncertain (or probabilistic) outcomes. There can
even be hazards, such as medical events or large capital purchases, corresponding
to instantaneous costs or shifts in utility or income. Some models even allow for
insurance and other derivative securities to be purchased. Indeed, many modern
and widely used economic and financial models can be considered as variations of
investment-consumption models.

717

718 Chapter 16. Dynamic Optimization

We begin by making considerable simplifications and idealizations of behavior.
First, we assume that economic agents are rational,59 meaning that they will choose
the sequence of decisions that maximizes their overall utility. To make this work,
we make some assumptions on the mathematical properties of utility functions.

59There is some debate about whether this is a rational assumption to make.

We assume the agent’s utility is a smooth function и that takes as input the
amount c of capital consumed. The output value u(c) represents the amount of
utility enjoyed. This is quantified by a fictitious unit called utils. We assume that
the more you consume, the happier you are, and so we require that u'(c) > 0.
However, that happiness also diminishes as consumption increases, so twice the
consumption does not give you twice the happiness. This observation is called the
law of diminishing returns, and it essentially requires that u"(c) < 0. In other
words, the utility function is increasing and concave; see Figure 16.1 for examples.

Another assumption is that, all things being equal, people prefer immediate
gratification over delayed gratification, that is, I’d rather consume now (while my
mouth is watering) than later. Mathematically this is expressed as saying that
there is some /3 G (0,1] for which u(c) utils tomorrow is as desirable as /3u(c) utils
today. The value (3 is called the discount factor and it varies from person to person
depending on how well they can delay gratification. A value of (3 = 1 corresponds
to someone who has no preference for anything today versus tomorrow, which is
the same as not discounting at all. A value of /3 = 0 would correspond to some­
one who prefers to consume everything now, with no interest in having anything
tomorrow (a hopeless addict), whereas values of /3 greater than 1 would correspond
to people who actually prefer to wait until tomorrow (Scrooge). Since these patho­
logical extremes (J3 = 0 or /3 > 1) will result in starvation, we usually assume
/Зе (0,1].

Finally, to prevent the agents from starving themselves, it is common to assume
that u'(c) = oo as c —> 0+, which, in economics language, says that the marginal
utility of consuming at least a tiny amount gets arbitrarily large as c —> 0+. The
readers should convince themselves that this assumption guarantees it is never op­
timal to consume nothing.

16.1 Finite-Horizon Cake Eating
We begin the discussion of dynamic optimization by examining the cake-eating
problem, which is a highly idealized model that contains many of the salient features
of an investment-consumption problem. At each point in time t G {0,1,..., T}, the
agent has wt_i units of cake going into the period and wt units of cake coming out
of the period. The difference ct = wt — wt-i is the amount of cake consumed during
the period, reaping a utility of u(ct) during that period as a result; see Figure 16.1.
We constrain ct to be nonnegative, corresponding to the assumption that we can’t
eat a negative amount of cake.

As indicated in the introduction, we assume that и is smooth, strictly increasing,
and strictly concave. We also assume that iz'(c) —> oo as c —> 0+.

A sequence of decisions c = (cq, ..., cr) on how much cake to eat at each period
in time is called a policy. The value of the policy is the present value (discounted

16.1. Finite-Horizon Cake Eating 719

Figure 16.1. Plot of the two utility functions used in Section 16.1.2. On the left
is the logarithmic utility u(c) = log(c) and on the right is the utility for constant
relative risk aversion with 7 = |. For both of these, the utility function u(c) is
smooth, increasing, and concave, with limc^0+ u'(c) = oo.

lifetime utility) resulting from a given policy, that is,

т
v(c) = £A(Ct).

t=0

Our goal is to find the policy c with the most value for a given amount of cake w.
In other words, we seek to solve the optimization problem

maximize
£=0

subject to
T
^Ct = W,

t=0
ct>0, t = 0,l,...,T,

(16-1)

Reformulating this as the minimization problem

minimize

subject to

-52/3‘«(ct)
t=0

T
^Ct = W,

t=0
ct>0, t = 0,l,...,T,

(16-2)

shows the cake-eating problem is a convex optimization problem (see Exercise 16.1),
and hence it has a unique solution.

720 Chapter 16. Dynamic Optimization

16.1.1 Euler Conditions
The Lagrangian for (16.2) is given by

т / т \
(с, А, д) = - ^u(ct) + A I ct ~ w j “ MTc-

£=0 V=o /

Since limc^o+ ^z(c) = 00» the optimizer will satisfy Ct > 0 for all t; hence by com­
plementary slackness, each /it vanishes. Thus, we can use the simpler Lagrangian

т / т \
^(c,A) = -^/З‘и(с4) + А 52 ct-w . (16.3)

*=o v=o /
Taking the derivative of (16.3) with respect to ct and setting it equal to zero gives

ay°/ = -^ct) + X = V.
OCt

In other words, A = iz'(co) = /W(ci) = f32uf(c2) = • • • = /3Ttt'(cr). This gives

u\ct) = MM W G {0,1,..., T - 1}. (16.4)

These equations are called Euler’s conditions, and they are necessary conditions
for the maximizing solution. Since this problem is convex, the KKT first-order
conditions are also sufficient (see Theorem 15.5.10), so a policy c is a maximizer if
and only if it satisfies (16.4).

16.1.2 *Two Canonical Examples
Most dynamic optimization problems do not have a nice closed-form solution and
need to be solved numerically. Here are two special cases which do have closed-form
solutions.

Logarithmic Utility

A commonly used utility function is u(c) = logc; see Figure 16.1. We solve it for
different values of T G N.

Case T = 0. If there is only one period, then it is optimal to eat all the cake at
once. Thus, co = w.

Case T = 1. If there are two periods, then we eat all of the cake in two periods.
So we have co + ci = w. By Euler’s condition, we also have that u'(cq) = /3u'(ci),
which implies that

1 = £
Co Cl

Simplifying gives the two linear equations

cq + ci = w and ci = /3cq

with two unknowns co and ci. Hence, we have the unique solution

w _ (3w
с»=1Тз “d C1 = iTe-

16.1. Finite-Horizon Cake Eating 721

Case of general T. The same type of argument as in the previous cases shows
that the solution for general T is

w
co =

, et ft™
and ct = /3 c0 = T = • (16.5)

2^r=o P

Constant Relative Risk Aversion

A more general utility function used in many economic and financial models is the
constant relative risk aversion utility given by

u(c) = ------ i, (16.6)
1-7

where 7 > 0 is a constant that represents risk aversion. Figure 16.1 shows a plot of
this utility function for 7 = The case of 7 = 0 corresponds to u(c) = c — 1, or no
risk aversion (called risk neutral). As 7 becomes larger, u(c) becomes more concave
(since u,f(c) = —7c-7-1), corresponding to greater risk aversion. And when 7 —> 1,
1’Hopital’s rule shows that (16.6) becomes log(c).

Using Euler’s condition’s one can show that the optimal solution for constant
relative risk aversion is

W t/
C° ~ ZLo ~ @ C° - 1 - /3(т+1)/7 ’ 167

See Exercise 16.6 for details.

16.1.3 The Optimality Principle
Since closed-form solutions are special, we need tools that work more generally. We
turn to the Bellman optimality principle, which plays an important role in Dijkstra’s
algorithm (see Section 4.2.4) and many other optimization methods.

Recall that Bellman’s optimality principle says that from any point along an
optimal path, the remaining path is optimal for the corresponding problem initiated
at that point. If the shortest route from Salt Lake City to Los Angeles passes
through Las Vegas, then the last part of that route, from Las Vegas to Los Angeles,
must be the shortest route from Las Vegas to Los Angeles. We state this in cake­
eating terms with the following definition and proposition.

Proposition 16.1.1 (Finite-Horizon Optimality Principle). Let V(a, 6, w)
denote the value for the optimal policy of the cake-eating problem on {a, a + 1,... ,6}

b

maximize /3*iz(c t)
t—a

h' н (16.8)subject to > ct = w,
t—a

ct > 0 Vt G {u, a + 1,..., b}.

722 Chapter 16. Dynamic Optimization

For any к G {0,..., T — 1} we have

V(0,T,w)= sup (V(O,Aj,t/) +V(fc + l,T,w -?/)). (16.9)
?/e[o,w]

Proof. Given any у G (0, w), let Cq, ..., c£ be the optimal policy for V(0, k, y), and
let c£+1,...,cj be the optimal policy for V(k + 1, T, w — y). The tuple Cq, ..., cj
satisfies

т к т
Ct =^2Ct + 52 c*t=y + w-y = w

t—0 t—0 t—k-^-1

and
т к т

52/3‘U(Ct*) = l?u(c* t) = V(O,fc,y) + V(fc + l,T,w-y).
t—0 t—0 t—k-^-1

This implies

т
1/(0, T, w) = sup > sup (1/(0, k, y) + V(k + 1, T, w — yf),

c-° t—0 ?/e[0,w]

where the supremum is taken over all policies c / 0 with Q = w. Conversely,
given any c 0 with ct = w, let у = 52t=o We have ct =w ~У,
which yields

т
<V(O,k,y)+V(k+l,T,w-y) < sup (V(0,k,y) + V(k + l,T,w - y)).

t=o ?/e[o,w]

Taking the supremum on the left gives

V(0,T,w)< sup (V(O,fc,^) + V(fc + l,T,w-</)). □
ye[o,w]

The following corollary is an important special case of the Bellman principle.

Corollary 16.1.2. For any T G N and any w > 0 the maximum value of the
objective function V(0,T,w) in problem (16.8) satisfies

1/(0, T, w) = sup u(y) + /31/(0, T — 1, w — y). (16.10)
ye[o,w]

Proof. The proof is Exercise 16.2. □

Section 16.2 describes how to use the optimality principle to compute a solution
to the cake-eating problem.

16.1.4 Optimal Growth
Suppose that, rather than cake, you have an investment portfolio that grows over
time. You must balance consuming some of your assets now (say, to pay for food,

16.1. Finite-Horizon Cake Eating 723

housing, and other comforts) against the need to save and/or invest for future
consumption. This is the optimal growth problem.

The optimal growth problem is like the cake-eating problem, but where cake
is replaced by capital. At the beginning of each period you have xt > 0 units of
capital. Assume that you cannot borrow, so that xt G [0, oo). Also assume that
investing xt units of capital at the beginning of the period gives a return of f(xt)
units at the end of the period, after which a consumption decision is made. Here
we assume the function f is continuously differentiable, strictly increasing (/' > 0),
and concave (/" < 0). Further, assume that /(0) = 0.

After the investment outcome is realized, you may choose to consume Ct units,
where 0 < ct < f(xt)- After consumption, you have xt+i = — Ct for the next
period. Finally, the utility function u(c) depends only on the amount of capital con­
sumed. As before, assume that и is continuously differentiable, strictly increasing
(u' > 0), and strictly concave (u" < 0) with limc^0+ iz'(c) = oo.

Assuming an initial capitalization of x^^ solve the dynamic optimization problem

maximize c
subject to

52
t=0
0 < Ct < f(xt)
Xt+l = f(xt) - Ct

Vf e {o, 1,... ,T},
Vt e 1}.

(16.11)

Specifying the amount ct to consume is equivalent to specifying the amount xt+i
to invest at the next period, so we can reformulate the problem as that of choosing
{a?i,..., xt} to

т
maximize ftulflxt) — #t+i)

£=0
subject to 0 < Xt+\ < \/t G {0,1,..., T — 1}.

Reformulating the problem as a minimization problem gives

т
minimize - ’V frufJtxt) - xw) X ' t=0

subject to 0 < xt-\-i < f(xt) Vt G {0,1,..., T — 1}.

(16.12)

Example 16.1.3. If f(x) = x, then this model is the same as the cake-eating
problem. In this case, unconsumed capital does not grow or shrink.

The Lagrangian is

т т т
^(х,Д,р) = -^/futffxt) -Xt+1) +52Mt(®t+1 - /(xt)) - 52^4+1-

£=0 £=0 £=0

Since limc^0+ u'(c) = oo, it is never optimal to choose ct = 0 (or = f(xt)).
Moreover, since /(0) = 0, choosing xt+i = 0 means that xt-\~k = 0 for all к > 0;
this would be equivalent to setting T = t. Finally, since u'(c) > 0 for all c > 0, it

724 Chapter 16. Dynamic Optimization

is never optimal to allow #t+i >0- So we always assume that 0 < xt+\ < f(xt)
for t G {0,... ,T — 1} and x?+i = 0. Therefore, by complementary slackness, we
have fjLt = 0 = vt for all t, and the first-order KKT conditions reduce to the usual
unconstrained FONC, which gives60

60 Note that terms corresponding to and q^^+1 <^° n°t s^ow UP these equations because
#0 is the initial capitalization, hence fixed, and жт+1 = 0.

0 = j3s~lu'(f(xs-i) - Xs) - /3sf'(xs')u'(J(xs') - xs+i) Vs € {1,... ,T},

where хт+i = 0. These give the Euler conditions

Pf'(xa)u\f(xa) - xs+i) = u'(f(xa-i) - xs) Vs € {1,... ,T}.

Expressed in terms of x and c, the Euler equations are usually called the envelope
condition'.

/3/'(^+1)tz'(cs+1) = u\cs) Vs G {0,..., T - 1}, (16.13)

where ст = xt (at the end, all remaining capital must be consumed).
Translated into economics jargon, the envelope condition states that the marginal

benefit u'(cs) of extra consumption today is equal to the discounted marginal cost
/3/'(a;s+i)?z'(cs+i) in terms of lost production (and hence consumption) tomorrow.
In some cases the Euler equations or envelope condition can be solved explicitly,
but in most cases we must turn to the Bellman principle.

For the optimal growth problem, one case of Bellman optimality (the analogue
of Corollary 16.1.2) is the following.

Proposition 16.1.4. Define V(a,b,w) to be the value of the optimal policy for the
optimal growth problem on {a, a + 1,..., b}

b

maximize - xt+l)
t—a

subject to 0 < xt+! < f (xt), t G {a + 1,..., 6},
Xa = w.

Thus for any к G {0,..., T — 1} we have

V(0, T, w) = sup - у) + /3V(0, T - 1, y)), (16.14)
ye[o,/(w)]

and the maximum value V (0, T, w) is realized with the policy x^,... ,x? if and only
if the maximum value V(0,T — 1,y) is realized with the policy x^... ,x? and the
supremum is realized with у = x±.

Proof. The proof is Exercise 16.5. □

The next section describes how to use the optimality principle to compute a
solution to the optimal growth problem.

16.2. Dynamic Optimization Problems and Value Iteration 725

16.2 Dynamic Optimization Problems and Value Iteration
In this section, we describe a general setting for a large class of dynamic optimization
problems and show how Bellman’s principle can be applied to solve these problems,
using a method called value iteration.

16.2.1 The General Framework
As discussed in the introduction of this chapter, there are many variations of
investment-consumption problems. Here we create a framework that includes many
of these variations and many other types of dynamic optimization problems. In all
cases, we seek the policy that maximizes the present value.

Many dynamic optimization problems can be described in the following terms:
• A discrete set T of time periods (often called decision epochs). In this section

(and the previous section) we use T = {0,1,... ,7}, but in Section 16.3 we
also consider T = N.

*

• A set S' of states (for example, the amount of cake remaining).
• A set As of allowable actions for each state s G S (for example, the amount

of cake one can choose to eat).
• A law of motion, or transition function

^t+i = 9^t-> at)
that describes how the state changes, depending on the previous state and the
action.

• A time discount factor /3 G (0,1].
• A reward ut(s,a) for taking action a while being in state s at time t. Often

и only depends on a and the state s affects и only by its effect on the set of
allowable actions.

Given an initial state so and a law of motion g, dynamic optimization is about
choosing a policy of action a = (at)tej to

maximize / /^u^s^at)
ter

subject to $t+i = g(st,at) \ft G T.

Problems in this general framework will have a set of Euler equations. The Bellman
optimality principle can be applied to give an algorithm (called value iteration,
which we describe in Section 16.2.5) for solving the problem.

Example 16. 2.1. In the cake-eating problem with an initial amount of cake
equal to wq, the state wt at time t is the amount of cake available, and the state
space S is [0, wq] C R. For a given state (amount of cake) w, the allowable
actions are to eat some amount of cake c G [0,w], so Aw = [0, w]. Finally, the
law of motion is

wf+i = wt - ct. (16.15)

726 Chapter 16. Dynamic Optimization

Example 16. 2.2. In the optimal growth problem we take T = {0, ...,T},
and the state of the system at each period is the amount of capital Xt- We
can assume that xt € [0,oo), so the state space is S = [0, oo). The set of
allowable actions Ax for state x is Ax = [0, After consumption, we have
я^+i = f(xt) — Ct units, so the transition function is g(x, c) = /(^) — c.

Remark 16.2.3. These models can account for multiple states at once (say we
have both cake and pie to eat) by taking S to be a higher-dimensional space like
Rn.

16.2.2 Example: Human Capital
Consider an individual entering the workforce whose pay at time period t is based
on the product of the hours ht > 0 worked during that period and her level st > 0
of skill. Assuming that she retires after T periods, the present value of her lifetime
earnings is given by

Assume that the worker can increase her skill level by spending some hours
training instead of working. The state of this system at time t is the worker’s skill
level st G S = [0, oo). We take the ratio of skill increase at = as the action
at time t. Assume that if she spends all her time working and not training, then
her skill level depreciates at a rate of 6 >0, so at > 1 — 6. She can grow her skill
level at a rate of A > 0 if she devotes all her time to training, so at < 1 + A. Thus,
the set of allowable actions As = A = [1 — J, 1 + A] is the same for every state s,
and the transition function is = g(st,at) = atst.

Assume that the hours available to work in a given period are given by a C1,
decreasing function ф of the ratio at = St+i/st. Therefore, the reward for taking
action a at state s is u(s, a) = зф(а). We normalize so that ф(1 — 5) = 1 and
</>(1 + A) = 0.

We write this as the dynamic optimization problem

maximize
(<o (16.16)

subject to (1 — < s*+i < (1 + A)st Vf G {0,..., T},

where the initial skill level is so > 0. As in the case of optimal growth, we have
written this problem so that the state variables St are also the decision variables.

16.2.3 Motion on a Grid
Dynamic optimization has many applications beyond economics problems. One
simple example is the problem of motion on a grid. Consider a robot that moves
around on the following grid until it reaches the yellow square, at which point it
stops moving:

16.2. Dynamic Optimization Problems and Value Iteration 727

and it may move either horizontally or vertically to an adjacent square. Each move
has a cost of 1, but entering the red square also gives a reward of 1.7. The goal is
to choose a sequence of actions that maximize the total reward.

The state space of this problem is the set of the nine squares of the grid, and
the allowable actions for a given state are the horizontally and vertically adjacent
squares.

A = {2,4},
A4 = {1,5,7},
Л7 = {4,8},

A2 = {1,3,5},
A5 = {2,4,6,8},
Л8 = {5,7,9},

Аз = {2,6},
А6 = {3,5,9},
Ад = 0.

The transition function is simply g(s, a) = a. The reward u(a) for action a is

u(a) = -1
0.7

if a 1,
if a = 1.

(16.17)

And, of course, the reward for no action (in state 9) is 0.
To write the Bellman equation, let V(to, f i, s) be the maximal reward achievable

from time to to time ti starting in state s. We have

V(0, T, s) = sup (u(a) + 0V(O, T - 1, a)).
aEAs

16.2.4 *Example: Inventory Management

61 Transaction costs are costs paid regardless of the size of the order—for example, the cost paid
to a broker for facilitating the purchase, or the cost of paying a truck driver to go pick up the
order in your truck.

62Marginal costs are the price paid per unit in addition to the fixed transaction costs.

Consider a merchant who can sell, at a fixed price p, up to one unit each day of a
certain product (she can buy or sell fractions of a unit). If less than one unit is in
inventory in a given day, she will sell all her remaining inventory that day. In other
words, if she has x > 0 units in stock, she will sell min{a;, 1} units each day.

Assume that she can order у units for inventory at the beginning of a day, paying
immediately and then receiving delivery at the end of the day. We assume that the
cost of that order is my + 6, where b > 0 is the transaction cost61 and m > 0 is the
marginal cost.62

She doesn’t want to order too often because of the transaction costs, and she
doesn’t want to order too much at once because of the storage costs involved in
holding inventory—assume she must pay rx for storing x units for one day, at some
fixed rate r > 0.

728 Chapter 16. Dynamic Optimization

We further assume that 0 < m < p/(l + r), because if m > p/(l + r), then
no orders will ever be placed, and if m = 0, then the optimal choice would be a
one-time infinite order. Assume also that b > 0; otherwise the optimal policy is to
order one unit per day.

Here the state of the system at time t is the amount of inventory, measured by
the state variable Xt, and the decision to make each time is the amount to order,
measured by the decision variable yt. So the state space is S = [0, oo), and the set
of allowable actions A = [0, oo) is the same for all states. The transition function
is the amount of inventory available at the beginning of time t + 1:

xt+i = Xt + yt - min{a;t, 1}.

The reward in a given period t is the profit:

u(xt,yt) =pmin{l,£t} - rxt -
b + myt
0

if Vt > 0,
if yt = 0.

See Exercise 16.11 for more details on this problem.

16.2.5 Value Iteration
The optimality principle gives a general method for solving finite-horizon dynamic
optimization problems called value iteration, namely, first solving the problem for
T = 0, and then for T = 1, and so forth, until reaching the desired value of T. In
other words, the solution is computed using bottom-up dynamic programming (see
Section 4.1).

Example 16.2.4. In the cake-eating problem, the first step of the algorithm
is to find V(0,0, w) for every w. Since it is not optimal to leave any cake
remaining, we have Cq = w and V(0,0, w) = u(w). The second step is to
compute V(0,1, w) for every w, using (16.10).

V(0, l,w)= sup (u(y) + /?V(0,0, w — p)) = sup (u(y) + /3u(w — p)).

The problem becomes more complicated as more time steps are considered.
To make it more computable, we discretize w; that is, we assume that the cake
is initially cut into N equal pieces and that each decision involves choosing a
whole number of pieces to consume or leave for later. This means the state
space is {0, and the set of allowable actions for state is
Ak = {0, ^,..., A;^}. Thus, the problem becomes that of computing

V fo, 1, k^\ = max (и (n^z\ + /3V fo, 0, (k — n)^^
\ NJ ne{o,...,fc} v V NJ \ v JNJJ

for each к G {0,1,...,7V}. This is a straightforward discrete optimization
problem that can be solved by brute force—just compute

u (n v)+ (°’ °’ ~v)

16.2. Dynamic Optimization Problems and Value Iteration 729

for every n G {0,..., k} and choose the largest. Continuing in the same
manner for each consecutive t € {2,..., T} gives

V max и
nE{0,...,/c} v)+(fc -n) v)

for each к G {0,..., N}. At each step, after computing all the V(0, t, & the
values of V(0, t — 1, k^) are no longer needed and may be discarded.

Remark 16.2.5. Value iteration is formulated in terms of the optimal value, rather
than in terms of the policy that achieves that optimal value. But each step of the
algorithm involves solving the optimization problem

V(0, T, w) = sup (u(y) + /ЗУ(0, T — 1, w — y)),
у

and the optimizer у can be saved at each step to identify the overall optimizing
policy.

Nota Bene 16.2.6. As mentioned in Nota Bene 13.3.2, the word program­
ming is used to mean many things in applied mathematics (we could say it is
overloaded). Optimization problems are often called programs, and program­
ming is often used to mean solving these programs. For example, linear opti­
mization problems are often called linear programs, and the simplex method
is often called linear programming.

Dynamic optimization problems are also often called dynamic programs,
and the various methods (especially value iteration) for solving a dynamic
optimization problem are often called dynamic programming. The confusion is
heightened by the fact that using value iteration to solve dynamic optimization
problems is an example of dynamic programming in the sense of Section 4.1.
Conversely, many important algorithms that use dynamic programming in
the sense of Section 4.1 rely, at heart, on Bellman’s optimality principle, and
the problems they solve can often be reformulated as dynamic optimization
problems.

Of course, not all solutions to dynamic optimization problems rely on dy­
namic programming. For example, the analytic solutions to the cake-eating
problems described in Section 16.1.2 do not use dynamic programming. Also,
Blackwell’s theorem, described in Section 16.3, leads to two other methods,
called successive approximation and policy iteration, for computing the opti­
mizer.

16.2.6 Example: Value Iteration for Motion on a Grid
The problem of optimal movement on a grid can be solved with value iteration. For
simplicity of exposition we assume that /3 = 1 for the rest of this section (so the

730 Chapter 16. Dynamic Optimization

robot feels no loss from delayed consumption), but the case of general /3 G (0,1) is
no harder to compute.

If T = 0, then there is only one move, and V(0,0, s) = maxaeAs so the
optimal choice is to move into the red square if possible, earning a reward of 1.7—1 =
0.7. All other moves have reward of —1. Thus, if the robot is in squares 1, 3, or 5,
then its optimal move is 1 and its reward for that move is 0.7. If it is in the yellow
square, then it has no moves, and the reward is 0. If it is in any other square,
all moves have reward —1. Below we have labeled each square s with the value
V(0,0,s):

0.7 -1 0.7

-1 0.7 -1

-1 -1 0

Considering the case of T = 1, we have

V (0,1,1) = max (u(a) + V(0,0, a)) = max(0.7 — 1, —1 — 1) = —0.3,
ae{2,4}

V (0,1,2) = max + V(0,0, a)) = -1 + 0.7 = -0.3,
ae{l,3,5}

V (0,1,7) = max (u(a) + V(0,0, a)) = -2,
a€{4,8}

V (0,1,8) = max (u(a) + V(0,0,a)) =-0.3,
a€{5,7,9}

V (0,l,9) = 0.

Labeling each square s with V(0,1, s) gives

-0.3 -0.3 -0.3

-0.3 -0.3 -0.3

—2 -0.3 0

Similarly, for V(0,2,s) we have

0.4 -1.3 0.4

-1.3 0.4 -1.0

-1.3 -1 0

16.2. Dynamic Optimization Problems and Value Iteration 731

Vista 16.2.7. Many dynamic optimization problems, especially those with
a random aspect (see the next chapter), are called reinforcement learning
problems. These are an important topic in machine learning. When the ideas
of this chapter and the next are combined with other methods of machine
learning, like deep neural networks, they become even more powerful. For
example, such reinforcement learning methods have been successful in training
robots, such as self-driving cars, to navigate complex environments, as well
as training a computer to dominate humans and other computer systems in
chess, go, and other complex strategy games.

16.2.7 *Variants and Applications of Investment-Consumption
Dynamic investment-consumption problems can go in many directions. The prob­
lems could includes uncertain or risky growth, in which case they are called stochas­
tic investment-consumption problems. We discuss these in Section 17.1. There are

TtME C05T
STRfHESTA

STRffiEW В

Rtwyaic UHETH3?
3IKft1ES-/A OR В
6 MORE. EFROENT

THE REASONI PM SO INEFFICIENT
Figure 16.2. Efficient decision making. Source: XKCD, Randall Munroe, http:
//xkcd. com/1445/

732 Chapter 16. Dynamic Optimization

also situations where a person may have a one-time decision to make, and so the
solution to the investment-consumption problem tells them when to pull the trigger
on that decision. For example, you might have an annuity or pension that you can
start drawing an income from. The longer you wait, the more the monthly payout,
but the less time you will have to enjoy that payout, since you will be that much
closer to death. These are called optimal starting or optimal stopping problems.
There are also problems with uncertain horizons, such as when you are going to die.
You don’t want to outlive your wealth, since you can’t live comfortably without
money. But you can’t take it with you, so you also want to enjoy as much as you
can before you die.

Investment-consumption problems are pervasive in finance and economics. For
example, a government can use these same ideas to think about how to reallocate
money through taxation to maximize social welfare. And companies can use these
ideas to make decisions about using marketing and capital investment budgets to
increase sales.

16.3 Infinite-Horizon Dynamic Optimization
The previous two sections considered dynamic optimization problems where the
horizon is finite, signifying that the problems have an end. In some situations,
however, we want an infinite horizon. For example a corporation, a government,
or a large nonprofit foundation may want to make decisions that are optimal in
perpetuity. In these cases, the present value (or discounted lifetime utility) is an
infinite series instead of a finite sum. What’s remarkable about these problems is
that they are often simpler to solve than finite-horizon problems. In this section,
we examine a few infinite-horizon problems and prove Blackwell’s theorem, which
gives general conditions for when an infinite-horizon solution exists.

16.3.1 Cake Eating
Consider the infinite-horizon cake-eating problem

oo
maximize

K. (16.18)
subject to 2 ct —

£=0
ct > 0 Vt e N.

This is just (16.1) in the limit that T —> oc. Here we define the value function of
the infinite-horizon cake-eating problem to be V(w) = Iw^oo V(0,T, w). This is
the maximum discounted infinite-horizon utility that comes from an initial quantity
w of cake.

Reindexing (16.18) gives

oo oo oo
52 ^u(ct) = «(co) + /3 52 /3t-1«(ct) = «(co) + /3 52 ^U(C‘)’
£=0 £=1 f=0

16.3. Infinite-Horizon Dynamic Optimization 733

where ct = Q+i. Note that

oo oo
W - Co = ^Ct = ^Jct.

Thus, by the principle of optimality, the infinite-horizon version of the Bellman
equation can be expressed as

V(w) = sup (u(c) + /3V(w — c)). (16.19)
cE[0,w]

Note that the same result occurs if we let the finite horizon T go to infinity in the
finite-time Bellman equation (16.10).

Remark 16.3.1. It is often convenient to replace today’s consumption with the
difference between today’s cake and tomorrow’s cake. Specifically, we can denote
tomorrow’s inventory of cake as w' = w — c and rewrite (16.19) as

V(w) = sup (u(w — wf) + ftV(w'Y). (16.20)
wzE[0,w]

Remark 16.3.2. The expressions (16.19) and (16.20) cover a broad class of prob­
lems, not just cake eating. Hence one should consider what follows to be of broad use
in dynamic optimization even though the primary focus is the cake-eating problem.

Remark 16.3.3. A policy for a finite-horizon dynamic optimization problem is a
choice of values for each of the control variables in the problem. But in the case
of a cake-eating problem with infinite horizon, the Bellman equation shows that
the optimal policy boils down to deciding how much cake to consume now, given w
units of cake. This means that a policy is determined by a function 7Г : R+ —>
where 7r(w) G [0, w] is the amount of cake this policy dictates should be consumed
if the current amount of cake is w.

16.3.2 *A Canonical Example Revisited
In some special cases the Bellman equation can be solved explicitly. Here are two
examples of how that can be done in the special case of cake eating with logarithmic
utility.

Limiting Solution as T oo

Consider the dynamic optimization problem (16.19) with the log-utility function
ti(c) = logc. This can be thought of as the limiting case as T —> oo in the finite-
horizon problem in Section 16.1.2. Taking this limit gives Ct = /3* (1 — /3)w, and thus

734 Chapter 16. Dynamic Optimization

the total utility is
oo oo

V(w) = 52^u(c‘) = /3* log (/3*(1 - /3)w)

63The word ansatz (pronounced ON-zahts) is German, meaning an initial setup, a starting point,
or an approach.

£=0 £=0
oo

= 52 log /? + log (1 - /3) + log w)
£=0
(oo \ / oo \ / oo \
52^*) log i3 +152^*) i°g(1 + (52^)logw
t=o / v=o / v=o /

= /1 log^+-^ log (1-^) + -^ logw. (16.21)
(1 ~ P) 1 - P 1 - P

Note that we weren’t really precise in the analysis here. We implicitly passed
the limit through the sum by taking the limiting solution for the consumption
and then summing it infinitely many times. This can be done rigorously, but even
without being rigorous about these limiting operations, it is straightforward to check
that the solution we found satisfies the infinite-horizon optimality principle (16.19).
Blackwell’s theorem (Theorem 16.3.4) shows that this is the unique solution to that
equation, so it must be the optimal solution.

Undetermined Coefficients

Consider again the dynamic optimization problem (16.19) with the log-utility func­
tion u(c) = log c. Another approach to finding a solution is to guess the form using
the method of undetermined coefficients (sometimes called the method of inspired
guessing), where we make an assumption (called an ansatz63) about the form of
the solution, and solve for the coefficients. It is not always clear how to choose
an ansatz (hence the inspired guessing), but in this case it is not unreasonable to
guess that since the utility of eating w units of cake now is log(w), then the optimal
utility might also be of the form V(w) = a + b log w for some positive values of a
and b. This is our ansatz. If there exist a and b that satisfy the equation

a + blogw = sup (logc + P (a + 6log (w — c))), (16.22)
ce[o,w]

then we have a solution. Take the derivative of the right-hand side (without the
sup) with respect to c and set it equal to zero. This gives

oJ-Д
c w — c

which yields c = Plugging the optimal c back into (16.22) gives
71 1 W (7 1 \

a + blog w = log + /3 la + blog I .

Expanding and simplifying gives

a + 6 log w = logw — log (1 + /36) + /За + /36 log/36 + /36 log w — /36 log (1 + /36).

16.3. Infinite-Horizon Dynamic Optimization 735

Since this must hold for all w, we assume that

b log w = log w + /3b log w,

or equivalently that b = 1 + /36, which simplifies to b = Consider now the
terms that are independent of w:

a(l — /3) = — log (1 + /36) + /36 log /36 - /36 log (1 + /36)
= /36 log /36 — 6 log 6,

which simplifies, after substituting 6 = to give

“=(Г^р1О1!в+гЬ1О|!(1-'’)-

Thus, the ansatz works and we have a solution

VW = (i lo§ U - /?) + log w>

which is the same as (16.21).

16.3.3 Blackwell’s Theorem
The previous two examples give a candidate solution to the infinite-horizon cake­
eating problem, but they do not guarantee that this candidate is actually optimal.
Blackwell’s theorem guarantees that such a solution is unique and hence it must
be optimal. In fact, Blackwell’s theorem gives fairly general conditions for proving
both existence and uniqueness of a solution. Moreover, it provides another general
approach, called successive approximation, for finding the solution numerically. The
proof follows from the contraction mapping principle (see Volume 1, Section 7.1).

Theorem 16.3.4 (Blackwell’s Theorem). For any set X C Rn, let L°°(X;R)
denote the set of all bounded functions f : X —> R with sup-norm ||/||oo •=
supxex |/(x)| • IfT: L°°(X;R) —> L°°(X;R) is an operator satisfying

(i) (monotonicity) If f,g e L°°(X;R) satisfy f < g, then T[f] < T[g\.

(ii) (discounting) There exists some /3 G (0,1) such that for all a > 0 and all
f G L°°(X;R) we have T[f + a] < T[f]+/3a.

Then T is a contraction mapping with constant /3.

Proof. Given the hypothesis, for any f,g€ L°°(X; R), we have f < g + \\f — <j||oo-
Thus,

T[f] < т[д + II/ - pU] < T[g] + (3\\f - д\\ж,
which implies T[f] — T[g] < /3||/ — <j||oo. Interchanging f and g gives the other
direction, and thus

\\T[f] -П?]||оо < /W-<7l|oo. □

Recall that L°°(X;R) is a Banach space (Volume 1, Theorem 5.7.6), and so
the contraction mapping principle (Volume 1, Theorem 7.1.7) guarantees that any
contraction mapping has a unique fixed point. Combined with Blackwell’s theorem,
this proves there is a unique solution to the Bellman equation (16.19).

736 Chapter 16. Dynamic Optimization

Theorem 16.3.5. The Bellman equation for the infinite-horizon cake-eating prob­
lem (16.20) on a compact interval X = [0, M] (that is, for any w G [0, M]) has a
unique solution V G L°°(X;R).

Proof, Following (16.20), consider the map T : L°°(X;R) —> L°°(X;R) given by

T[/](w) = SUP (u(w — wf) + /3f(w')). (16.23)
w'E [0,w]

We call this the Bellman operator] see Exercise 16.13 for details. Note that a
function V is a fixed point of T if and only if it satisfies

V (w) = sup (u(w — w') + /3V (w'ffi (16.24)
w'E[0,w]

that is, it is a fixed point of T if and only if it satisfies the optimality principle.
We claim that I is a contraction, and thus it has a unique fixed point V. It

suffices to show that T is monotonic and discounting.
(i) Monotonicity: If /i(w) < /2^) for all w, then

sup (u(wf — w) + /3/i(w')) < sup (u(wf — w) + /3/2(w'))
w'E[0,w] w'E[0,w]

for all w] that is, T[/i](w) < T[/2](w) for all w.

(ii) Discounting: Note that

T[/ + a](w) = sup (u(wf - w) + /3(/(w') + a))
w'E[0,w]

= sup (u(wf — w) + /3f(wf) + /За)
w'E[0,w]

= T[/](w)+/3a. □

16.3.4 Successive Approximation
Blackwell’s theorem and Theorem 16.3.5 suggest an iterative method, to maximize
the infinite-horizon utility V in the cake-eating problem (16.20). We call this suc­
cessive approximation, but it is also the infinite-horizon version of value iteration.
Start with any guess Vq € L°°(X;R) and define Vi(w) = T[VJ)](w). By iterating,
we have

Vfc+1(w) = m](w). (16.25)
In the limit, we have the unique solution V(w) = lim/c-^ 14 (w). The limit V is
guaranteed to exist by the contraction mapping principle (Volume 1, Theorem 7.1.7),
and V G L°°(X;R) by completeness.

Performing successive approximation by hand can get really gross really fast and
when there’s a nice closed-form solution, it’s usually easier to solve (16.24) directly
than it is to carry out successive approximations by hand. However, successive
approximation does lend itself nicely to numerical approximation. One easy way
to approximate the sequence (I4)fceN numerically is by discretizing the state space
X = [0, М]. We do this by choosing a number N and dividing X into N intervals
of length M/N. The optimization problems defining T and the final optimal policy
are now reduced to searching over a set of N values of the form w = kM/N for
к G {0,..., N — 1}. Generally, this approximation method converges linearly, at a
rate equal to the contraction coefficient /3.

16.3. Infinite-Horizon Dynamic Optimization 737

Example: Cake Eating by Successive Approximation

Consider the infinite-horizon cake-eating problem with utility u(c) = y/c. Let the
initial guess be Vb = 0. Iterating gives

Vi(w) = sup (u(w — w') + 0) = \/w
w'E[0,w]

with a maximizer of wf = 0. The Bellman operator (16.23) on this function is

V2(w) = T[Vi](w) = sup (u(w — w') + /3Vi(w')) = sup (д/w — w' + /Зл/й/).
w'E[0,w] w'E[0,w]

A little calculus shows that the maximizer is

B2
w> = (16,26)

which yields
V2(w) = T[Vi](w) = 0 + ^^.

Iterating again (see Exercise 16.14) gives

Va(w) = T[V2](w) = sup (iz(w - w') + /3V2(w')) = л/1 + Д2 + /34\/w
w'E[0,w]

with a maximizer of

w 1 + I32+^W' (16.27)

Indeed we can show that i:

/к-1 \ V2
Vfc(w) = I j y/w,

\t=0 /

then

Vfe+1(w) = T[Vfc](w) =

where the maximizer is

sup (u(w — wf) + (3Vk (w'))
»'e[o,w]

■ fc \ V2

t=o /

/32 + /34 + • • • + /32fc
-------------------------------- II)
1 + /32 + /3* + --- + /32к ■

(16.28)

In the limit, we have

V(w)
w

1-/32'

738 Chapter 16. Dynamic Optimization

16.3.5 Policy Iteration
From Remarks 16.3.1 and 16.3.3, we know a value function V has a corresponding
policy % satisfying

7r(w) = argmax (u(w — y) + (3V (?/)), (16.29)
?/e[o,w]

which gives
V(w) = u(w — 7r(w)) + /3V(tt(w)). (16.30)

As with the infinite-horizon value iteration (given by successive approximation) we
can also iterate on the policy function and get convergence.

Starting with an initial guess 7r0, we solve for the value function Vo, which is
given by

V0(w) = u(w - 7Г0(м)) + ^Vb(7T0(w))
= u(w - 7r(w)) + /3 (u(w - 7To(7rO(w))) + j3V(7To(7To(w))))

oo
= 52^tw(7ro(w)-7ro+1(w))> (16.31)

where 7Tq denotes the £-fold composition 7Tq ° ttq ° • • • ° ttq. Since the policy 7Tq is
unlikely to be optimal the value function Vo is also unlikely to be optimal. Hence
we can identify a better policy 7Ti by solving

7Ti(w) = argmax (u(w - y) + /3VG(y)).
?/e[o,w]

We then find V± by either computing

oo
Vi (w) = 52 /3*и(тг{ (w) - 7rJ+1 (w)) (16.32)

or by computing

Vi(w) = T[V0](w) = sup (u(w - у) + Ж(у))- (16.33)
ye[o,w]

Repeating gives a sequence of policy functions (iVk)keN and value functions (Vfc)fceN-
Blackwell’s theorem does not apply directly to policy iteration, but these sequences
can be shown generally to converge to the optimal policy 7r and corresponding value
function V.

Example: Cake Eating by Policy Iteration

Assume as before that u(c) = y/c. Given the initial guess 7Tq = 0, we have that
(16.31) simplifies to

Vq(w) = y/w.

16.3. Infinite-Horizon Dynamic Optimization 739

We improve the policy by solving

7Ti(w) = argmax (u(w - у) + /3V0(y)),
?/e[o,w]

which we can show is
Д2

%1(w) = T+^w-

Hence we update the value function (see Exercise 16.15), using either (16.32) or
(16.33), to get

Vl(w) = д/1 +

This example of policy iteration is the same as value iteration, except that the
indices are offset by one (for example, 7Ti is the same as (16.26)). In deterministic
problems this can be the case, in particular if the initial guess with policy iteration
7Tq corresponds to the initial guess with value iteration Vo, but in stochastic cases
or if the initial policy is randomly selected, they are usually different, and policy
iteration often converges much faster.

Example: Motion on a Grid

Consider again the case of a robot moving on a 3 x 3 grid described in Section 16.2.3.
Each move gives a reward of —1, but entering the red square gives a reward of 1.7.
Once the robot enters the yellow square, it stops moving, but until then it must
move with every time step.

The infinite-horizon version of this problem can be attacked in at least two
ways. The first is to use finite-time value iteration repeatedly, for longer and longer
horizons, until the system stabilizes and gives the same answers with each iteration.
In this specific example, the system stabilizes at step t = 19, meaning that the
optimal value function is the same for all time t > 19.

Alternatively, we can use policy iteration with random initialization, which
works well for this problem. As indicated, let 7r0 be randomly initialized, where
the policy at each square is to move in the direction of the unique arrow pointing
out of the square. The value Vb(s) is also indicated in this diagram at each square
s. Note that there is no discounting for this problem (so (3 = 1).

The value function Vo(5) was computed here for each s by simply starting at s and
following the policy 7To(s), recording the reward tt(7To(s)) as the value, and then
taking action 7ro(7ro(s)) and adding и(тго(тго($))) to the value, and so on, to get

oo
V0(S) = £u(ir*(S)).

740 Chapter 16. Dynamic Optimization

Now compute the new policy 7Ti(s) = argmaxaeAs (u(a) + Vo(s)), as follows.
The policy for states 1, 4, and 7 does not change because every action for these
states gives the value — oo. But for some states a change in policy improves the
value:

711(2) = argmax(—1 + /3V0(«)) = 3,
aE{l,3,5}

71*1(5) = argmax (—1 + ^Vb(a)) = 6,
aE{2,4,6,8}

71*1(8) = argmax(—1 + /3V0(«)) = 9.
ae{5,7,9}

Here we show the new policy 7Ti, together with the new value function Vi:

-4
1

-3 H ► -2
I1

-3
1

—2 -
1

► -1
I1

—2 - ► -1 -
I

-> 0

Repeating the process gives a new policy tt2 and a new value function V2:

-2.3:► -3 H ► -2
I

-3
I

—2 -
1

► -1
I1

—2 - ► -1 -
1

♦ 0

It is straightforward to check that V2 = T[Vi] = T[V2], so U2 is a fixed point of T
and thus must satisfy the Bellman equation.

Since we used /3 = 1, Blackwell’s theorem does not guarantee that the value
function obtained by this policy is the unique solution of the Bellman equation, but
it can be verified that it agrees with the optimal value found using value iteration.
Note that policy iteration converges to an optimal policy in only two steps in this
example, while value iteration for the same problem takes 19 steps to converge.

Not a Bene 16.3.6. Although the optimal value is unique when /3 € (0,1),
the optimizing policy need not be unique. Under discounting, Blackwell’s
theorem guarantees that the optimal value function is the unique fixed point
of T, but it does not uniquely determine which policy achieves that value. In
the motion-on-a-grid example there are many different policies that produce
the same optimal value function. For example, the arrow from 4 to 7 could
be replaced with an arrow from 4 to 5 and still yield the same optimal value
function.

Exercises 741

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

16.1. Assuming that a given smooth utility function и satisfies и' > 0 and u" < 0,
with limc^0+ u'(c) = oo, reformulate the finite-horizon cake-eating problem
as a convex optimization problem, and prove that it is convex.

16.2. Prove Corollary 16.1.2.
16.3. Let u(c) = let w > 0, and let /3 G (0,1). Use the Euler conditions to

solve the cake-eating problem for this и and for general T.
16.4. Assume you are given a general smooth utility function и satisfying u' > 0 and

u" < 0, with limc^0+ u'(c) = oo, and a smooth technology function f (that is
strictly increasing (/' > 0) and concave (/" < 0), with /(0) = 0 as described
in Section 16.1.4). Reformulate the finite-horizon optimal growth problem
(16.11) as a convex optimization problem, and prove that it is convex.

16.5. Prove Proposition 16.1.4.
16.6. Carefully write out the details of the proof of (16.7) and verify that letting

7 —> 1 gives (16.5).
*

16.7. Find the Euler conditions for the human capital problem (16.16) and write
the Bellman optimality equation (the analogue of (16.10)) for this problem.
To simplify the problem, you may assume that (1 — S)st < < (1 + X)st
for all t < T and that s^+i = (1 — S)st.

16.8. Suppose that utility in period t of the cake-eating problem depended on
the consumption in both the current and the previous time period; that is,
suppose the utility is given by u(ct, Describe how this could be fit into
the general form of Section 16.2.1. Identify the state space, allowable actions,
transition function, and reward function. Hint: Consider a two-dimensional
state space. What is the corresponding Bellman equation (the analogue of
(16.10))?

16.9. Verify all of the details of the value-iteration example in Section 16.2.6: For
each of the nine states s in the table, explicitly compute V(0, T, s) for each

742 Chapter 16. Dynamic Optimization

T G {0,..., 3}. Also compute the optimal policy for each initial state and
each choice of T G {0,..., 3}.

16.10. Code up the value iteration method for finding the optimal value function
V(0, T, s) in the 3x3 grid motion problem. Your code should accept a time
T and a dictionary и of rewards for each action and return the value function
V(0, T, s) for every s G {1,..., 9}. Apply your method to the example in the
text with utility given by (16.17). Compare your results to those in the text,
and find the value of T where V(0, t, s) = V(0, t + 1, s) for all t > T.

16.11. Formulate the inventory management problem as a dynamic optimization
problem (like (16.16) or (16.11)). Write out the Euler conditions and the
Bellman equation (the analogue of (16.10)) for this problem.

*

16.12. Solve the infinite-horizon version of the cake-eating problem with the utility
function given in Exercise 16.3.

16.13. Prove that the Bellman operator T in Theorem 16.3.5 actually takes bounded
functions to bounded functions; that is, show that T : L°°(A; R) —> L°°(A; R).

16.14. Consider the infinite-horizon cake-eating problem with u(c) = y/c. Compute
the following steps using successive approximation:

(i) V2(w) = y/l+l32y/w.

(ii) V3(w) = y/1 + (32 + (34y/w.

(iii) If I4(w) = ^/^t=o then I4+i(w) = \/Et=o

(iv) Show that V(w) = lim^oo Vfc(w) = satisfies (16.23).

(v) Show that 7r(w) = lim/--^ 7Tfc(w) = /32w.
16.15. Compute Vi for the infinite-horizon cake-eating problem using both methods

(16.32) and (16.33).
16.16. Prove that the Bellman equation for the infinite-horizon version of the human

capital problem has a unique solution whenever the state space S is bounded.
16.17. Code up the policy iteration method for the 3x3 grid motion problem. Your

code should accept a dictionary и of rewards for each action and a dictionary
% giving the initial policy for each state s G {1,..., 9}. It should return the
optimal value function and an optimal policy.

*

Notes
Exercise 16.8 was inspired by [AC03], which is a great resource for economic models
using dynamic optimization. More advanced books are [SLP89, LS18].

Stochastic Dynamic
Optimization

It’s not hard to make decisions when you know what your values are.
—Roy E. Disney

The previous chapter treats deterministic dynamic optimization problems, which
means that the outcomes of each decision are known and certain. In this chapter, we
consider the case where the outcomes of each decision are unknown and uncertain.
Such problems and situations are often called stochastic.

A crucial factor in the study of dynamic optimization is the agent’s knowledge
of the state of a problem. Even if the actual state is known by someone else, the
agent may not know it. For example, in a poker game, I want to know whether the
player across from me has a full house. She knows what she has, but I don’t. To her
it’s deterministic and to me its stochastic. One of the major challenges in stochastic
dynamic optimization is accounting for what is known to the decision maker at the
time the decision is to be made. This gets even more complicated when one has
to balance the cost of obtaining knowledge (exploration) with the benefit of using
knowledge to optimize a utility (exploitation). This trade-off between exploration
and exploitation is a major theme of stochastic dynamic optimization.

17.1 Markov Decision Processes
In this section, we consider uncertainty in dynamic optimization. A very natural
setting for many such problems is the Markov decision process, which we describe
here, along with several examples.

17.1.1 Markov Decision Processes
A discrete-time Markov process or Markov chain is a discrete-time stochastic process
(a sequence of random variables) Xq, ..., where each Xn+i depends only on Xn.
That is to say, the conditional probability given all earlier states is the same as the
conditional probability given only the preceding state Xn\ so, for all sequences
xq, ..., xn, rrn+i, we have

- P(An_|-i = xn+i |Xq = xq, X± = Xi,..., Xn = xn) = P(Xn+i = xn+i |Xn = xn).

743

744 Chapter 17. Stochastic Dynamic Optimization

A Markov decision process can be thought of as a Markov chain combined with
decisions and rewards. It is a stochastic dynamic optimization problem where the
states of the problem evolve according to a Markov chain and where decisions are
made along the way to maximize a utility function.

Example 17.1.1. The board game Monopoly is a Markov decision process.
The players’ movements around the board according to sequential dice rolls
can be considered a Markov chain. But the players also decide whether to buy
properties, houses, and hotels, and they pay or receive money depending on
who owns the property and how many houses or hotels are on the property.
The additional aspect of decision making with rewards and penalties makes
this game a Markov decision process.

Definition 17.1.2. A discrete-time Markov decision process (MDP) is a tuple
(T,S)As,pt(s' | s,a),rt(s, s',a),/3), where

• T is a set of discrete time periods (sometimes called decision epochs/*

• S is a set of states;

• for each s G S, the set As is the set of allowable actions;

• (3 G (0,1] is a discount factor;

• for each t G T, s, s' G S, and a G As, the transition probability pt(s' | s,u)
is the probability of ending in state s', given that the process is in state s and
action a is taken;

• rt(s, s', a) is the reward or expected reward for ending in state s' if the process
is currently in state s and action a is taken.

Finally, we require that Y^s'esP^8' I = 1? corresponding to the fact that these
are probabilities.

The process is called Markov because the probabilities pt(s' | s, a) do not depend
on any previous states or actions—only the current state s and the current action
a. Of course the current state s may be a result of previous states and actions, but
the process is still Markov as long as any effect of those previous states and actions
on current transition probabilities is completely captured by the current state s.

For convenience we normally take T = {0,1,2,..., T} or T = N. When T is
finite, we say that the problem has a finite horizon. When T is infinite, we say that
the problem has an infinite horizon.

Remark 17.1.3. Although we require T to be discrete, the state space S and the
set As need not be discrete.

17.1. Markov Decision Processes 745

For any MDP the main problem is to find the optimal policy, which is a sequence
of actions that maximize the present value of expected rewards. The dynamic
optimization methods of the previous sections can be used to solve these problems.
Consider the case where the transition probabilities are not time dependent. Let
R(t, s) be the maximum present value of the expected reward after t time periods,
starting in state s. Bellman’s optimality principle applies and takes the form

R(t + 1, s) = max (p(s' | s, a)rt(s, s', a) + /3R(t, sf)). (17.1)
s'es

In the case of a finite horizon, we can solve this recursively. In the case of an infinite
horizon, Blackwell’s theorem applies, and we may start with any initial guess for
R(t, s) and iterate the Blackwell contraction mapping to converge on the unique
solution.

17.1.2 Example: Stochastic Optimal Growth
Suppose that, as in Section 16.1.4, we have a production function f(xt), but at
each time step this is now also multiplied by a random variable Zt to give a total
output of Ztf{xt). The variable Zt is often called a random shock and is meant to
account for both good and bad outcomes that might affect output. Examples include
technological advances, crop failures, weather, and political strife. We assume that
the sequence of shocks is a Markov chain (this could also include the case where
they are i.i.d.).

To formulate this as an MDP, let the state st = (x^Zt) G S = [0, oo) x [0, oo).
In state (ж, г) an allowable action is to consume c units, where 0 < c < zf(x),
so the set of allowable actions for state (a?,z) is = [0, zf(x)\. After
consumption at time t, we have xt+\ = ztf(xt) — ct, so the transition probability is

Pt ((a/, /) | (#, z), c) = < 0
71 V h J [P(Zt^=zf\Zt = z)

if xf zf(x) — c,
if xf = zf(x) — c.

Finally, the reward is given by the utility function tt(ct), which depends only on
the amount ct of capital consumed. As before we assume that и is continuously
differentiable, strictly increasing (y! > 0), and strictly concave (u" < 0) with
limc^0+ u'(c) = oo.

We wish to maximize the expected utility over time. The problem is to find the
optimal policy ct = c{xtl zt) that determines the choice of how much to consume at
each stage, given this period’s capital xt and this period’s shock Zt = zt. That is,
assuming that the initial state (xq, zq) is given, the problem is to choose the policy
(cJteT in order to

maximize

subject to

Ef
_t=o

0 < ct < ztf(xt)
Xt+l = Ztf(xt) - Ct

VteT,
Vf e {o,...,t- i}.

(17.2)

The notation Et here means the expected value, given that we know everything up
to time t, including Zt = zt and xt. Equivalently, we can formulate the problem as
that of finding an optimal xt+i = x(xtlzt) and then compute ct = ztf(xt) — xt+i-

746 Chapter 17. Stochastic Dynamic Optimization

As with the deterministic case (16.13), we get the Euler equations (the envelope
condition):

U'(ct) = Ж [U'(ct+1)Zt+1/'(xt+1)] (17.3)

for all t G {0,..., T — 1}. The envelope condition is proved in Exercise 17.6.

Example 17.1.4. A Cobb-Douglas technology function is a technology func­
tion of the form f(xt) = xf. Assume a Cobb-Douglas technology function
and a log-utility u(ct) = logQ. The envelope condition gives

— — /Ж* ---- Zt+iaxf+i
ct Lct+i

(17.4)

This can be solved analytically with the following ansatz:

Xt+1 = 0ztXt and ct = (1 - 9)ztXt

for some в to be determined. Plugging into (17.4) gives

(1-J)^ l(l-9)Zt+1x?+lZt+iaX^
= <Л ----иг-----(1 — 0)xt+i

Since Xt+i is determined after Zt is realized, there’s no random variable in the
expectation, which gives

(l-0)ztaf (1 - 9)xt+1_ (1 - 0)xt+1 (1 - e)6ztxf'

Thus, when 0 = a/3, we have equality. It follows that the optimal policy is
given by

xt+i = a/3ztxf and ct = (1 - a/3)ztxf.

Remark 17.1.5. Following (17.1), we also have the Bellman formulation

V(xt,zt) = sup (u(ct) + /3Ef (V(j:f+i,Zt+i)))
ct,xt+1

subject to Ct + Xt+! = ztf(xt).

As in the deterministic case, this can be used to compute optimal solutions using
value iteration and policy iteration, but we don’t dive into this here. For details,
see the computer lab manual that accompanies this text.

17.1.3 Example: Unemployment and Partial Insurance
Consider a variant of the cake-eating problem where the cake is capital (money)
and the cake eaters are workers who not only have some initial amount of capital to
consume but also earn a wage each period. Since this is money and not cake, we also

17.1. Markov Decision Processes 747

assume they can earn some interest by investing the money. Finally, since the job
market is not entirely stable, there is a chance of losing one’s job. Luckily, many
workers have some access to unemployment insurance that pays a little benefit
during periods of unemployment, but the benefit is usually not sufficient, so it
makes sense to save something as an emergency fund for times of unemployment.
The goal is to find the optimal amount to consume and to save each period, in order
to maximize expected utility over all time T = {0,1,...,7*}.

The first step of this problem is to formulate this as an MDP. The evolution
of this process depends both on current wealth and current employment status,
suggesting the choice of S = [0, oo) x {1,0} as the state space, where 1 represents the
state of being employed and 0 the state of being unemployed. We assume that the
income for each period is w when employed and b (the benefit) when unemployed.
Any savings grow at a rate of r per period, so if xt is the total amount of money
available at the beginning of time t, then before we must decide the amount Ct
to consume, the money first grows to (1 + r)xt and the wage or benefit is paid.
Assuming no borrowing, the amount consumed must be nonnegative and no more
than the total (1 -\-r)xt + w, if employed, or (1 -\-r)xt + 6, if unemployed. Thus, the
set As of available actions for a state s E S' is

As
[0, (1 + r)x + w] if s = (ж, 1),
[0, (1 + r)x + 6] if s = (ж, 0).

Employment status is assumed to be a Markov chain, so the probability of being
employed or unemployed next period depends on current employment status. Let
the transition probability matrix for employment status be

Poo Poi
Pio Pn

where the probability of staying employed is рц, the probability of getting a new
job if unemployed is рю, and so forth. Further assume that the transition from one
employment status at time t to another at time t+1 occurs after wage or benefit has
been paid and after the decision ct has been made. Thus the transition probability
p(s' | s,c) for moving from state s to state s', after taking action c, is

p(s' | s, c) = <

Poo
Poi
Pio
Pn
0

if s = (ж, 0) and s' = ((1 + r)x + b — c, 0),
if s = (ж, 1) and s' = ((1 + r)x + w — c, 0),
if s = (ж, 0) and s' = ((1 + r)x + 6 — c, 1),
if s = (ж, 1) and s' = ((1 + r)x + w — c, 1),
otherwise.

The reward at each time step is determined only by the utility ?z(c), satisfying the
same assumptions as in the original cake-eating problem.

Let V1(£rt) denote the maximum expected utility attainable if the worker is
employed at time t and has wealth xt, and let VQ(xt) denote the maximum expected
utility if the worker is unemployed at time t. The Bellman equation for this situation

748 Chapter 17. Stochastic Dynamic Optimization

breaks into two cases:

Vx(o:t) = sup (u(ct) +/3(pnV1(®t+i) +pi0V0(a:t+i)))
Xt+1

with ct = (1 + r)xt + w —

V°(art) = sup (u(ct) + /3(poiV1(®t+i) +pooV°(a:t+i)))
Xt+1

with ct = (1 + r)xt + b —

17.1.4 Example: Uncertain Robot Motion
Consider a variant of the grid-motion problem of Sections 16.2.3 and 16.3.5, where
a robot moves around on the grid until it reaches the yellow square, at which point
it stops moving.

The robot may attempt to move horizontally or vertically to an adjacent square, but,
for each of the other adjacent squares, it could move to that square with probability
p instead. Each move has a cost of 1, but entering the red square gives a reward of
1.7. The goal is to choose a policy that will maximize the lifetime reward of moving
around the grid.

In this setting T = N because there is no upper bound on the number of steps
that will be taken before reaching the yellow square. The state space of this MDP
is the set of the nine squares of the grid, and the allowable actions for a given state
are the horizontally and vertically adjacent squares:

A, = {2,4}, A2 = {1,3,5}, Л3 = {2,6},
Л4 = {1,5,7}, Л5 = {2,4,6,8}, Aq = {3,5,9},
A7 = {4,8}, A8 = {5,7,9}, A9 = 0.

The transition probabilities are

P
p(s' \s,a)= < 1 - (|XS| - l)p

0

if s' e As \ {a},
if s' = a,
otherwise.

This problem is amenable to the same solution techniques as the deterministic
infinite-horizon problems of the previous chapter.

17.2. Bandit Problems 749

17.2 Bandit Problems
The bandit problem was formulated during the [Second World] War, and efforts to
solve it so sapped the energies and minds of Allied analysts that the suggestion was
made that the problem be dropped over Germany, as the ultimate instrument of in­
tellectual sabotage.
—Peter Whittle

An important class of Markov decision processes is the class of bandit problems.
These are problems that can be modeled as a row of slot machines.64 Each machine
has its own initially unknown payout distribution. Which machines should gamblers
play to maximize their total expected reward? To do this optimally they must
balance between exploration and exploitation. In other words, the gamblers must
learn while also trying to maximize their return. These types of problems arise in
many settings, ranging from testing of pharmaceuticals to Internet advertising.

64A slot machine is sometimes called a one-armed bandit.

17.2.1 Multiarmed Bernoulli Bandits
In a bandit problem the states of the system are usually not physical states but
rather information states—the state of our current knowledge about the reward
distribution of each machine. Possible actions are the choice of which machine’s
lever (arm) to pull.

First consider the case of a single machine with a Bernoulli payout distribution
of fixed, unknown probability 0. That is, the machine pays a fixed amount J with a
fixed, but unknown, probability 0, and it pays nothing with probability 1 — 0. The
state of our knowledge is the number of wins and losses already observed, so the
state space is N x N = {(a, b) | a, b e N}.

Each successful pull of the machine’s arm results in an update from state (a, b)
to state (a + 1,6), while each failed pull updates to state (a, b + 1). Thus, the
transition probability is given by

p(fa + 1,6) | (a, 6)) = 0 and p((u, b + 1) | (a, 6)) = 1 — 0.

We can estimate the value of 0 using the MLE:

0= .a -|- b

Of course if there have been no pulls, that is, if the state is (0,0), then the estimate
is undefined. If the machine is in state (a, 6), the estimated expected payout of the
next pull is JO. We also include discounting, so the estimated expected present
value of pulling the arm at time t is r = fF^JO, where /3 e (0,1] is the discount
factor.

For a collection of n independent Bernoulli machines, where machine i has actual
payout Ji and unknown probability 0г, the state space for the whole collection of
machines is the product

S = (N x N) x (N x N) x • • • x (N x N) = (N x N)n.

750 Chapter 17. Stochastic Dynamic Optimization

The set of possible actions is A = {1,..., n}, corresponding to the choices of which
machine to play.

The expected (undiscounted) reward for decision i in state (si,...,sn) is the
expected reward for playing machine i in state Si = (a^bi) at time t; so,

r((si,s2,...,sn),«) = n(Si) = e(Si)Ji.

Transitions change only the state of (our knowledge of) the one machine whose
arm was pulled, and in that case the transition probability is determined by that
one machine. So, given action г, the transition probabilities of going from state
($i,..., sn) to state (si,..., s'n) are

X) I 01,-•• = if sfm = Sm for all m г,
if sfm Sm for any m i.

Application 17.2.1. Multiarmed Bernoulli bandit problems have been used
in a medical setting to improve clinical trials. In a typical clinical trial ap­
plication, there are n treatments (arms). These treatments can be given to a
patient repeatedly, in any order. Each treatment results in either success or
failure. Discounting applies here because if a treatment succeeds, the reward
of being healed is affected by timing: patients prefer to be healed sooner than
later, and if they spend more time suffering and more money on treatments
over a longer period of time, this reduces their total utility of being healed.
Thus a success results in a reward of the form /3t~1, where /3 G (0,1] is the
discount factor. If the treatment fails, obviously the patient isn’t healed and
has no reward.

One policy for a multiarmed bandit problem is to pull the arm for which the
current expected reward is largest. An arm i e {1,..., n} in state Si = bi) has
expected reward OiJi = aa^b. Ji. Thus, this policy pulls arm j with

j = argmax OiJi. (17.5)

While this policy may seem good, it is not optimal because it is myopic—it
does not address the possibility of greater future rewards from identifying a better
machine. If there is a tie, where the means of two arms are equal and maximal, but
the estimated variance of one is much greater than the other, then it is advantageous
to select the arm with greater estimated variance, since the outcome of that pull
will give more information than pulling the low-variance arm. If the expected value
of the lower-variance arm is only slightly higher than that of the higher-variance
arm, then it should still be advantageous to select the arm with greater variance,
but the previous policy does not account for that.

A better policy would be to formulate this as a recursive dynamic optimization
problem. In the case that n = 2, setting 7?(ai, 6i, «2, Л, Л, N) to be the maximal

17.2. Bandit Problems 751

total reward obtainable starting in state ((«i,6i), («2,^2)) over N periods, we seek
to solve

7?(ai, 61, a2, b2, Ji, J2, N) =max < —Q1 [Jx + /37?(ai + 1,61, a2, b2, N — 1)]
[«1 + 01

H-------- — f3R(ai, b± + 1, a2, b2, N — 1),
«1 + Oi

—^-7—[Л + ДК(«1, bi, a2 + 1, b2, N — 1)]

69 1H-------- — f3R(ai, bi, a2, b2 + 1, N — 1) > .
a2 + b2 J

(17.6)

This can be used to recursively compute the value of R(ai,bi,a2,b2,Ji,J2,N) in
terms of four values of R, where N is replaced by N — 1, and each of those requires
four values of R, where N — 1 is replaced by N — 2, and so on, ultimately requir­
ing computation of O(4N) values of R. Computing iteratively (bottom-up dynamic
programming), instead, requires computing values of R(ai -Hi, 61 + ji,a2 + i2, b2 +
J2, Л, Л, £) for all values ofte{l,2,..., N} and all values of ii, i2, ji, j2 such that
й + ji + h + 7’2 = t, thus requiring the computation of J2^LiP4(£) = О (TV4) values
of R, where p±(t) is the number ways of writing t as a sum of four nonnegative
integers. More generally, for a bank of bandits with n arms, the corresponding iter­
ative computation requires O(7V2n) subcomputations. This becomes very difficult,
computationally, as N —> 00 even for relatively small values of n. Thus, for a very
long or infinite horizon we need another approach.

17.2.2 Indexing
Indexing gives an alternative algorithm for deciding the optimal next action for a
general Bernoulli bandit process with n arms with infinite horizon. The idea of
the index is to compare a bandit in state (a, b) to a simple bandit with known,
fixed payout. We call a one-armed bandit a simple bandit with reward r if it has an
(undiscounted) expected value of r. Here we mean that r is the true expected value
and not an estimate of its value. The expected present value (that is, the value
now, after discounting) for an infinite lifetime of playing this simple bandit is

00
52=
£=0

Г

Consider now the special case of a two-arm Bernoulli bandit, where arm 1 has a
payout of Ji and an (unknown) success probability 0, which currently we estimate
to be 0 = a/(a + b), having observed a successes and b failures. Arm 2 is a simple
bandit with reward J2. Let R(a, b, Ji, J2) denote the optimal expected reward from
playing this bandit system with infinite horizon, and with starting state (u, b) on the
first machine. Note that R(a, b, Ji, J2) = JiR(a, b, 1, J2/J1), so setting r = J2/Ji
and finding R(a, b, l,r) for all a,b,r will give the general case just by multiplying
by Ji. From now on we use the notation R(a, b, r) = R(a, b, 1, r).

752 Chapter 17. Stochastic Dynamic Optimization

The Bellman equation for this situation is

J a(l + /3R(a+ l,6,r)) +b/3R(a,b+ l,r) r 17? a, b, r) = max 7--------------------- ——-----------------------, ----- - f . 17.7
[a + b 1 — p)

A rough argument for why the Bellman equation takes this form is given at the end
of this section.

If r is very small, then the second term inside the maximum in (17.7) is
very small, while the first term is at least so the first term is larger, and pulling
the first arm is the better choice. Alternatively, if r is very large, then it should
never make sense to pull the first arm, so R(a, b, r) should be equal to the expected
reward of always pulling the second arm. If B(a, 6, r) is a continuous function
of r, then there must be some value of r where the two arms give the same expected
reward, that is, when the two inner terms of (17.7) are equal:

т a b
= —— [1 + /37?(a + l,6,r)] + —~/3R(a,b + l,r). (17.8)J. p a | о cl | о

It can be shown that there is a unique value of r that satisfies (17.8). This value is
called the Gittins index.

Definition 17.2.2. The Gittins index z/(u, 6,1) of a Bernoulli bandit in state (a, 6)
with a winning payout of 1 is defined to be the value of r that makes (17.8) hold:

v(a, b, 1) = [1 + f3R(a + 1,6, z/(a, 6,1))]

+ ^-/3R(a, 6 + 1, p(a, 6,1))
a + b

(17.9)

Define b, J) = Jv(a, b, 1) for all J.

It follows immediately from the definition that the present value of an arm in
state (a, 6) with payout J is the same as the present value of a simple bandit with
reward z/(u, 6, J).

The Algorithm

Assuming the Gittins index can be calculated in a reasonable amount of time, this
leads to an algorithm for deciding the optimal next action for a general Bernoulli
bandit process with n arms. Assume that for each i the zth arm is in state (a*, b^
and has winning payout J*. For each arm i compute the index i/(ai,bi,Ji) and
then select the arm with the greatest index. This is the optimal policy because
arm i is equivalent in expected present value to a simple bandit with reward
v(ai, bi, Ji), and thus the bandit with the highest index is the choice with the highest
expected value.

17.2. Bandit Problems 753

We approximate the Gittins index as follows. First, if a + b is large enough, then
the MLE 0 = is a good estimate of the true probability 0, so it is reasonable, in
that case, to assume that the first arm is a simple bandit with known probability 0.
Doing this amounts to replacing the first part of (17.7) with the expected present
value . Thus, it is reasonable to choose a large value M and assume that

Finally, z/(a, 6,1) must be approximated when a + b < M. This can be done with a
variant of the bisection algorithm from Section 12.2 to find a value of r that comes
close to giving equality in (17.8), but where each function evaluation R(a + 1,6, r)
or R(a, b + l,r) is computed recursively, using (17.7) and (17.10).

Alternatively z/(a, 6,1) can be computed with an exhaustive (brute force) search,
as follows: Choose a fine grid of К possible values r e (0,1), and for each a, b e
N x N with a + b < M use (17.7) and otherwise use (17.10) to compute R(u, 6, r),
recursively. Then approximate z/(a, 6,1) as the value of r in the grid that comes
closest to giving equality in (17.8).

The brute force index algorithm requires a constant number of computations
per choice of a,b,r, so it has total complexity O(KM(M + 1)) to approximate the
Gittins index, which is generally much cheaper to compute than (17.6) for large N.

Remark 17.2.3. If the computation of the Gittins index is only needed for arms
in states (u^M with ai + bi > m, then there is no need to compute the values
R(a, b, r) for a + 6 < m.

Example 17.2.4. Gittins index computation for M = 4.
We show how to approximate the Gittins indices z/(u,6,1) for all states

(a, 6) with a + b < M = 4 for a bandit process having discount factor /3 = 0.9.
First select a grid of r-values, say, {0.01, 0.02,..., 0.98,0.99}. One must

iterate through all the choices of r, but for purposes of this example, assume
that the current choice is r = 0.35. This gives

r 0.35
1-/3 1-0.9 3,5

To simplify notation for this example, since r = 0.35 is fixed here, write
R(a, b) = R.(a, b, r). To initialize, approximate 7?(a, b) for a + b = 4 by using
(17.10).

Я(0,4) = max{0,3.5} = 3.5,

7?(1,3) = max{2.5,3.5} = 3.5,
7?(2,2) = max{5,3.5} = 5,

7?(3,1) = max{7.5,3.5} = 7.5,

Я(4,0) = max{10,3.5} = 10.

754 Chapter 17. Stochastic Dynamic Optimization

Now calculate for each a 4- b = 3 using (17.7):

Л(0, 3) = max <
Го з 1
-[1 + .9(3.5)] +-.9(3.5), 3.5 > = max{3.15,3.5} = 3.5,1 о о J

7?(1, 2) = max <
fl 2 1
-[1 + .9(5)] + -.9(3.5), 3.5 > = max {3.93,3.5} = 3.93,

1 о о J

R(2,1) = max <
f 2 1 1
- [1 + .9(7.5)] + - .9(5), 3.5 } = max {6.66,3.5} = 6.66,

1 о о J

R(3,0) = max <
f з o 1
-|1 + .9(10)] + -.9(7.5), 3.5 > = max{10,3.5} = 10.

Io о

And for a 4- b = 2,

f 0 2 1
B(0,2) = max -[1 + .9(3.93)] 4- -.9(3.5), 3.5 = max {3.5,3.15} = 3.5,

7?(1,1) = max {|[1 + .9(6.66)] + |.9(3.93), З.б| = max{3.5,5.27} = 5.27,

(2 0 I
Л(2,0) = max -[1 + .9(10)] + -.9(6.66), 3.5 = max{3.5,10} = 10.

And finally for a 4- b = 1,

R(fi, 1) = max {.97?(0, 2), 3.5} = 3.5,

R(l, 0) = max {1 + .9Я(2,0), 3.5} = 10.

The case of (a, b) = (0,0) does not make sense in the formulas and is not useful
anyway, because the state (0,0) gives no information about the process.

The algorithm is finished by performing these same calculations for all r
values and all (a, b) with 1 < a 4- b < 4. For each combination of a and 6,
determine the value of r that most nearly satisfies (17.8)—this value of r is
the (approximate) Gittins index z/(u, b, 1).

17.2.3 *Rough Argument for Bellman

We give a heuristic argument, using (17.6), for why the Bellman equation (17.7)
holds. First, if N = oo, then N — 1 = TV, and a change in the number of wins or
losses on the second (known probability) machine will not change our knowledge of
r, so we have R(a±, bi, «2, ^2, TV) = 7?(ai,bi,r). Next, wherever the MLE estimate
02 = Q2+fe2 occurs in (17.6), replace it with the actual value 02 = P- Finally, the
expected value of arm 2 is r = pJ%. Making these substitutions gives

17.3. Thompson Sampling 755

R(u, 6, r) = max| ——— [1 + f3R(a + 1,6, r)] H---- /3R(a, 6+1, r),
I a + b u + b

р[Л + PR(a, b, r)] + (1 - p)fiR(a, b, r)|
J (17.11)

= max| ——— [1 + f3R(a + 1,6, r)] H------- 6+1, r),
I a + 6 a + 6

r + f3R(a, 6, r)|.

If it is optimal to pull arm 2 at any time, then it must be optimal to pull arm 2 every
time after that, since there will be no new information about arm 1, keeping the
first part of (17.11) the same. Therefore, if the maximum is attained by the second
term in (17.11), then we have R(a, 6, r) = r + f3R(a, b, r) and R(u, 6, r) = 7-/(1 — /3).
This implies, regardless of which arm is optimal, that (17.7) holds.

17.3 Thompson Sampling
Although solving bandit problems using the Gittins index is much more efficient
than value iteration, it is still costly for large-scale problems. In this section we
describe a fast and powerful heuristic method, motivated by Bayesian estimation,
for approximating the solution to a bandit problem. This method is sometimes
called Thompson sampling and is widely used to identify optimal choices of which
web pages to present to users, but it has many other applications as well.

17.3.1 The Bayesian Framework
We do not know the true values of the probabilities 0*, but given a history of
successful and unsuccessful pulls, we can say something about what range we think
they might be in. If you have had one success and two failures on machine г, the
MLE for Oi is Oi = |. But this estimate is probably not very useful, especially
when it is based on so little information. Instead of choosing a single value 0*, it is
better to quantify our current knowledge in terms of a probability distribution for
the value of Oi. This is the Bayesian framework (see Section 6.5).

In this setting, it is natural to use a prior distribution of the form Beta(u, 6) for
0^ since Beta is the conjugate prior for the Bernoulli distribution. New information
is incorporated by updating the prior to the appropriate posterior distribution. This
framework allows us to fluidly incorporate new information as we seek to determine
the true nature of Oi.

Recall from Section 5.6.2 that beta distributions Beta(a, 6) are defined on [0,1]
and parametrized by a pair (a, 6). The distribution Beta(a, 6) has most of its mass
concentrated around its mean Oi = a/(a + 6), and it becomes more concentrated
around a/(a + 6) as a + 6 gets larger. Moreover, the distribution Beta(l, 1) is the
uniform distribution UniformQO, 1]), so it is a popular choice for a prior when there
is no other information about the distribution of Oi.

Starting with the prior distribution Beta(u, 6), if the next pull is a success, the
posterior distribution becomes Beta(u + 1,6). And if the next pull is a failure, then
the posterior distribution is Beta (a, 6 + 1).

As we get more information, the sum a + 6 becomes larger, and the peak of
Beta(u, 6) gets narrower, corresponding to a lower variance. In Figure 17.1, all

756 Chapter 17. Stochastic Dynamic Optimization

Figure 17.1. Beta distributions Beta(a, 6) for various choices of a and b. All
of these distributions have expected value but the variance decreases as a + b
increases.

three distributions have expected value | and they become tighter around that
value as we gain more information.

17.3.2 Thompson Sampling
The Thompson sampling algorithms is to take a sample from the current distribution
for each arm and then pull the arm with the largest sample. Based on the outcome
of the pull, the parameters are updated and the process is repeated. Thompson
sampling is an old idea (dating to 1933) that has been rediscovered several times,
but until recently it had not received much attention as a way to solve bandit prob­
lems because of a lack of good analysis about its performance. Empirical evidence
suggests that it generally outperforms other solution methods. In some restricted
cases its performance has also been analyzed and shown to be equal to or better
than other known competitors. For an implementation of Thompson sampling, see
Algorithm 17.1.

Example 17. 3.1. In the case of a two-armed Bernoulli bandit problem in
state ((ui, 6i), («2, ^2)), with a beta distribution Beta(a,6i) for the para­
meter 9г, simply draw a sample from Beta(ai,6i) and a sample #2 from
Beta(«2,62), and then choose the arm whose sample value is greater. After
making the pull, update the distributions and repeat the process.

*

If we started with uniform priors Beta(l, 1) for each arm and have drawn
98 times from the first arm with 39 successes and 7 times from the second
arm with 2 successes, then the two current distributions are Beta(40,60) and
Beta(3,6), respectively; see Figure 17.2.

17.3. Thompson Sampling 757

Figure 17.2. Samples drawn from the two distributions Beta(40,60) and
Beta(3,6). Although the mode of the blue distribution is much less than that of
the green, the high variance of the blue and low variance of the green mean that
there is still a good chance of drawing a blue sample (blue diamond) that is greater
than the green sample (green diamond).

Example 17. 3.2. Consider a situation where a projector can take replace­
ment bulbs from various manufactures, and the manufacturers all charge the
same price for a bulb. The bulbs are expensive, so you want to buy your bulbs
from the manufacturer whose bulbs last the longest. This can be modeled as
a variant of the bandit problem, where the greedy approach would be to buy
from the manufacturer whose bulbs have the longest expected life, based on
what you have observed in the past, but it could be that some other manu­
facturer actually has bulbs that last longer, on average, and you just haven’t
gathered enough data to observe that.

We assume that bulb life has an exponential distribution Gamma(l,A),
which has an expected value of 1/A. The conjugate prior for the exponential
distribution is A ~ Gamma(a, 6), with expected value | (see (5.26)). Thus, for
the zth manufacturer, we associate a distribution of the form Gamma(n^^z)
for some choice of Oi > 0 and bi > 0.

If all the bulb manufacturers claim their bulbs have the same lifetime €,
then before sampling any bulbs it is natural to take аг and bi such that y- = |
for the prior. The more believable the manufacturers’ claims of lifetime are,
the larger ai and bi should be (corresponding to a smaller variance |£). Thus,
one choice of prior, if we are not very certain of the manufacturers’ claims,
would be Сатта(Ц), whereas if we believe the claims more strongly, we
could take Gamma(10,10£).

Each time a bulb from manufacturer i burns out, having lasted for time
t, we update the prior Gamma(a^, £>?:) to the posterior Gamma(n^ + 1, +1)

758 Chapter 17. Stochastic Dynamic Optimization

(see Section 6.5.4). To use Thompson sampling in order to choose which
manufacturer to buy from next, simply draw ti from each of the updated
distributions and select the manufacturer i with the largest value of t^. Once
the next bulb burns out, if it was made by manufacturer j and lasted for time
t, then update the corresponding aj and bj to the posterior aj + 1 and bj +1
and repeat the process.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

def thompson(theta,N):
и и и

Thompson sample to choose the arm, then simulate a pull,
then update. Repeat N times.

theta : array of true probabilities for the arms
N : total number of pulls to make

Return percentage of successes up to each time step
и и и

Initialize
n = len(theta) # Number of arms
a = np.ones(n) # Initial 'a' hyperparameters
b = np.ones(n) # Initial 'b' hyperparameters
X = np.random.random(N) # Draw from [0,1] to simulate pulls
traj = np.zeros(N) # Initial trajectory

for к in range(N):
draw = beta.rvs(a,b) # Thompson sample for all arms
index = np.argmax(draw) # Identify arm to pull
if X[k] <= theta [index] :

a[index] +=1 # Update posterior with success
traj [k] = traj [k-1] + 1 # Update trajectory

else:
b[index] +=1 # Update posterior with failure
traj [k] = traj [k-1] # Update trajectory

return traj/np.arange(1,N+1)

Algorithm 17.1. Algorithm for using Thompson sampling to choose arms in N
simulated pulls of a multiarmed Bernoulli bandit with true parameters theta and
returning the percentage of successes after each pull. Here a pull on arm i (a draw
from Bernoulli (0*),) at stage к is accomplished by taking X[k] from Uniform(0,1)
(Line 16^ and then returning success if X[k] < Oi (Line 22). Running this code 200
times with N=5000 and theta= [0.30, 0.45, 0.23, 0.4] gives the results plotted in
Figure 17.3. After a brief dip, while exploring, the average payout approaches the
largest Bernoulli probability 0.45, demonstrating a successful balance of exploration
and exploitation.

17.3. Thompson Sampling 759

Vista 17.3.3. Thompson sampling can also be used to minimize driving time
for a commuter with multiple possible routes to work. We can formulate this
problem as a stochastic graph optimization problem, where each route from
home to work is composed of various edges in the graph, and the weights (av­
erage driving times) for each edge are unknown. Thompson sampling applied
to the unknown parameters of the weight distributions can be used to find
an advantageous balance between exploring new edges and exploiting what is
already known. See [RRK017] for more on this application.

Sometimes it may be more convenient to take several samples from the distri­
butions before updating. Empirical evidence suggests that Thompson sampling is
very robust even with this delayed updating.

One could continue the experiment indefinitely, but it is often useful to have
criteria for stopping. First, we may want to run the process for a minimum period
of time, regardless of results, just to ensure that we have enough data to make a
decision and that the results are not overly influenced by a small number of random
draws. A second stopping criterion could be that there be a certain probability
(typically 95%) that one of the variations is the best.

It may seem that these two criteria should be enough, but in some cases the
experiment could last a very long time using just these criteria. For example,
consider the case that two variations have nearly the same value of 0. In this case
it is very difficult to determine which is best, but it is also not very important to
decide between them, since the results are so similar. Thus it makes sense to use
additional criteria that quantify the potential value remaining.

17.3.3 Application: Web Page Experiments

Bandit problems provide a way to balance exploration and exploitation when ex­
perimenting with variations of a web page. Suppose a business wants to test new
versions of a web page. The goal of the page might be to get the user to click a
certain link or to make a purchase. When the user does this, we call it a conversion.
The conversion rate, or CvR, is the proportion of web page visits that results in a
conversion. The site designer wants to determine which variation of the web page
has the best CvR.

We can formulate this situation as a bandit problem by considering each page
as a different arm. Each page has some unknown probability (the CvR) that a user
will perform the desired action. The company then wants to experiment with giving
different users different versions of the page in order to determine which variation
is most successful.

A more classical approach is to explore first and then exploit by using a method
called A/В testing. This involves splitting traffic between each variation for a long
enough period of time to give sufficient data to determine the best arm with some
level of confidence.

The bandit approach has significant advantages over a classical A/В test. First,
the bandit method generally converges more quickly. Second, an A/В requires that

760 Chapter 17. Stochastic Dynamic Optimization

Figure 17.3. Plot of average payout over 5000 steps for Thompson sampling for
a Bernoulli bandit with true probabilities 0q,. .., $3 = (0.30,0.45,0.23,0.4), starting
with a uniform (Beta(l, 1)) distribution for each 0i, as in Algorithm 17.1. This plot
shows the result of repeating the experiment 200 times and averaging the results at
each time step. After a brief dip while exploring, the average payout approaches the
largest Bernoulli probability o/0.45.

one generate enough data to have substantial confidence (say 95%) that there is a
real difference between the options.

Another advantage of the bandit approach is that it balances exploitation with
exploration, whereas the A/В test primarily focuses on collecting data (exploration
without exploitation) for the initial, often very long period, before it uses that data
(exploitation without further exploration). As the bandit process proceeds and we
gain more information, we allocate more visits to the variation that we believe has
a better CvR, hence gaining more conversions.

Finally, an important benefit of the Thompson sampling approach to the bandit
problem is that we can incorporate previous knowledge or beliefs into the model.
Traditionally decisions about these sorts of problems might have been made by a
marketer or a web page editor who would rely on intuition or experience to guess
which page would have a better CvR. In Thompson sampling these opinions can
still be incorporated as a prior—by choosing larger values of a and b for the arm
the marketer or editor believes to be best. If the marketers or editors are correct,
they will be rewarded with better initial CvR than starting with a naive Beta(l, 1),
but, of course, over time the data swamp the prior, so, regardless of initial beliefs,
the system should converge to the optimal solution.

Exercises
Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the

Exercises 761

first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with * *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A are especially important and are likely to be used later in
this book and beyond. Those marked with f are harder than average, but should
still be done.

17.1. Formulate the following problem as a Markov decision process. What are the
states, actions, transition probabilities, and reward function? Assume the
following:

• You have a monopoly on widgets. In month i there is demand for di
widgets. Demand changes each month as follows: If in any month i the
demand falls to zero (di = 0), then in all subsequent months, there will
be no demand (dj = 0 for all j > i). Otherwise, the demand di either
grows by one with probability p+, remains the same with probability po,
or shrinks by one with probability p_. Initially, the demand is do = 100.

• You have a factory with тг widget-making machines in month i. You
can make each machine produce either zero or one widget each month.
In addition you can buy up to К new machines each month or remove
up to К old machines, and this will determine the number rrii+i of
machines available for the subsequent month. Initially, you have no
machines (mo = 0).

• Each new machine costs b dollars to buy (one time cost), к dollars to
maintain per month, and r dollars to remove (one time cost).

• Each month, you choose to produce Wi widgets (which can be no more
than your production capacity mJ. Each widget costs c dollars to make
and sells for f dollars. Of course, you can’t sell more than the demand
di or more than you actually produce Wi. For simplicity, assume f > c
and that you cannot store unsold widgets for the next month.

• Your profit щ each month is the revenue from sales minus total operating
costs. Your goal is to maximize the present value of the profit Ргщ
for a given discount factor (3 e (0,1].

17.2. Write the Bellman optimality equation for the previous problem.
17.3. Formulate the following problem as a Markov decision process. What are the

states, actions, transition probabilities, and reward function? Assume the
following:
Let C be a set of cities which are joined by a set of roads B, where Rij e R
means you can take a road from city i to city j. However, the traffic can
prevent travel. Specifically, if you’re in city i and try to go to city J, you’ll

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

762 Chapter 17. Stochastic Dynamic Optimization

succeed with probability pij and fail with probability 1 — pij, in which case
you stay in city г, and the probability of success does not depend on previous
trials. If you fail, it takes u13 > 0 time, and if you succeed, it takes Vij > игз
time. Your goal is to go from city c 6 C to city d 6 C in the minimum
expected time (your utility is total commute time).

17.4. Write the Bellman optimality equation for the previous problem.
17.5. Explain (give an informal proof of) why the general Bellman equation (17.1)

holds for every MDP.
17.6. Prove the envelope condition (17.3) for the stochastic growth problem. Hint:

Consider using the Bellman equation.

17.7. Consider the problem of a pair (n = 2) of Bernoulli bandits having winning
payouts of Ji and J2, respectively.

(i) If you are allowed only one pull, what is the optimal choice, starting in
state ((ai,6i), (a2,62))?

(ii) What is the optimal expected reward 7?(«i, 61, a2,62,1) in this case?
17.8. Use the results of the previous problem and (17.6) to give a formula (with no

unsolved terms of the form B(«, 5,«', 6', TV)) for the optimal expected reward
B(«i, 61, «2,62,2) when you are allowed two pulls.

17.9. Code up a simulation of a single pull on an n-armed bandit system, as follows.
Write a method called pull that takes the following input:

• An array of n probabilities 0i,..., 0n corresponding to the true proba­
bility of success for each arm,

• An array of payouts (Ji,..., Jn) for each arm.
• An action i indicating that arm number i should be pulled.

This should return the amount won and a pair (Да^Дб^) e {(1,0), (0,1)},
with (1,0) corresponding to a success of the zth arm (the one that was pulled),
and (0,1) corresponding to a failure. Hint: To draw from a Bernoulli dis­
tribution with probability 0, you can draw и from a uniform distribution on
[0,1] and then return success if и < 0. Alternatively, Bernoulli is a special
case of binomial, and many computational systems already have methods for
drawing from a binomial distribution.

17.10. Code up a solution to a general Bernoulli bandit process using the Gittins
index algorithm discussed in the text.

(i) Write a method compute_R that accepts as input an integer M and
floats r, /3 and returns an (ТИ + 1) x (ТИ + 1) array R.values with
R.values [a,b] = R(a, b, r) for all a + b < M (the remaining entries
in the array can be set to zero).
(a) Initialize using the assumption of (17.10) for a + b = M.
(b) Use the recursion (17.7) to find the other values for 1 < a + b < M.
(c) Apply your code to the situation of Example 17.2.4 and compare

the results to that example.
(ii) Write a method gittins to approximate the Gittins index of each of

the different arms. Your code should accept as input an array of floats

Exercises 763

(Ji,..., Jn), an array of states ((ai, 61),..., (an, 6n)), an integer Af, and
an integer K. For each r in the grid of К points compute R(a, 6, r) and
then for each a, b find the r which most nearly satisfies (17.8). Your
method should return an array of floats z/((ui, bi), Ji),..., i/((an, bn), Jn)
corresponding to the Gittins index of each arm.

17.11. Combine your code from the previous two problems to make a simulation
for a Bernoulli bandit process/solution where one arm is pulled, the results
are recorded, the next optimal arm (with the largest Gittins index) is then
chosen and pulled, and the results are recorded, and so on for T iterations.
Your code should accept

• an array of n probabilities 0i,..., 0n corresponding to the true proba­
bility of success for each arm;

• an array of payouts (Ji,..., Jn) corresponding to the payouts for each
arm;

• an integer К number of grid points in [О, Л] to take each r from;
• an integer T number of iterations to repeat the process; and
• an integer M > T at which to initialize the method compute_R.

With these data, your code should do the following:
(i) Set the initial state as (1,1) for each arm.

(ii) For each iteration,
(a) use gittins to choose an action J;
(b) simulate the next pull on arm j using pull and record the resulting

success or failure;
(c) update the state vector.

Your code should return the estimated probabilities ,..., 0n and the total
payout gained by the actions taken.
Hint: In order to get this simulation to run in a reasonable amount of time,
you may want to memoize results from compute_R.

17.12. Run both the Thompson sampling and the Gittins index simulations for T =
100 iterations for a three-armed Bernoulli bandit process with equal payouts
(all 1) and with true probabilities (01,02,#з) = (0.2,0.5,0.7). Compare the
run times and the outcomes of each. Repeat the comparisons 20 times. Also
compare results for other values of T.

17.13. Write a program that performs A/В testing. Have each arm tested m times to
estimate each (0i,..., 0n) with the MLE estimator. Then choose the largest
0i and use the remaining N — nm pulls (where N is the total number of
pulls) to try to maximize the average payoff. Compare the average payout
with Thompson sampling in Algorithm 17.1.

17.14. As an alternative to A/В testing, try randomly choosing arms (with replace­
ment) m times and give MLE estimates for each (0i,... , 0n). Then choose
the largest 0i and use the remaining N — m pulls to try to maximize the av­
erage payoff. Compare the average payoff with A/В testing and Thompson
sampling in Algorithm 17.1.

764 Chapter 17. Stochastic Dynamic Optimization

17.15. Instead of evaluating algorithms based on average payout over time, reapply
A/В testing and Thompson sampling but assess the quality with the dis­
counted utility function 52^ where щ is the payoff. By doing multiple
runs, compute the expected utility and use that as the basis of comparison
for deciding whether Thompson sampling is better than A/В testing.

17.16. Generalize Algorithm 17.1 by coding up a simulation of a Bernoulli bandit
pro cess/solution where Thompson sampling can also accommodate an array
of payouts (Ji,..., Jn) for each arm.

Notes
The example on unemployment insurance is from [Barl2]. For more about the
Gittins index see [GGW11]. Google’s use of Thompson sampling is described in
[Scol3]. For a detailed treatment of Thompson sampling, see [RRK017, Liul8].

The Greek Alphabet

I fear the Greeks even when they bring gifts.
—Virgil

Capital Lower Variant Name
A a Alpha
В P Beta
Г 7 Gamma
Д 6 Delta
E e € Epsilon
Z c Zeta
H p Eta
0 0 Theta
I L Iota
К Av X Kappa
A A Lambda
M Mu
N У Nu
77 e Xi
О 0 Omicron
П 7Г w Pi
p P p Rho
E (У Sigma
T T Tan
T V Upsilon
Ф Ф Phi
X X Chi
Ф Ф Psi
Q lv Omega

765

Bibliography

[Abb 15] Stephen Abbott. Understanding analysis. Undergraduate Texts in
Mathematics. Springer, New York, second edition, 2015. [xv]

[AC03] Jerome Adda and Russell W. Cooper. Dynamic economics: Quantitative
methods and applications, Volume 1. MIT Press, Cambridge, MA, 2003.
[742]

[Albl6] Laura Albert. Chocolate chip cookies are Poisson distributed, https://
punkrockor.com/2016/12/07/chocolate-chip-cookies-are-poisson-
distributed/, 2016. Last accessed 21 Sept. 2017. [243]

[AMH10] Awad H. Al-Mohy and Nicholas J. Higham. The complex step approx­
imation to the Frechet derivative of a matrix function. Numer. Algo­
rithms, 53(1):113-148, 2010. [516]

[Art64] Emil Artin. The gamma function. Translated by Michael Butler. Athena
Series: Selected Topics in Mathematics. Holt, Rinehart and Winston,
New York, 1964. [106]

[Art91] Michael Artin. Algebra. Prentice-Hall, Englewood Cliffs, NJ, 1991. [3]

[AVL62] G. M. Adelson-Velsky and E. M. Landis. An algorithm for organization
of information. Dokl. Akad. Nauk SSSR, 146:263-266, 1962. [139]

[Barl2] Jorge A. Barro. Lecture notes on dynamic optimization, https: //pdfs.
Semanticscholar.org/5c7b/al83b7f777863bea3fe8f02c714f4804fell.
pdf, 2012. Last accessed 5 Aug. 2019. [764]

[BB08] Jonathan Borwein and David Bailey. Mathematics by experiment: Plau­
sible reasoning in the 21st Century. A К Peters, Ltd., Wellesley, MA,
second edition, 2008. [106]

[BB14] A. R. Benson and G. Ballard. A framework for practical parallel fast
matrix multiplication. ArXiv e-prints, Sept. 2014. [83]

[BBC+99] Evelyne Barbin, Jacques Borowczyk, Jean-Luc Chabert, Michel Guille­
mot, and Anne Michel-Pajus. A history of algorithms: From the pebble
to the microchip. Springer-Verlag, Berlin, 1999. Translated from the
1994 French original by Chris Weeks. [83]

767

punkrockor.com/2016/12/07/chocolate-chip-cookies-are-poisson-distributed/
Semanticscholar.org/5c7b/al83b7f777863bea3fe8f02c714f4804fell

768 Bibliography

[BCR91] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and
numerical algorithms. I. Comm. Pure Appl. Math., 44(2): 141-183, 1991.
[403]

[Becl4] Amir Beck. Introduction to nonlinear optimization: Theory, algorithms,
and applications with MATLAB. MOS-SIAM Series on Optimization.
SIAM, Philadelphia, Mathematical Optimization Society, Philadelphia,
2014. [716]

[Ber79] D. P. Bertsekas. Convexification procedures and decomposition meth­
ods for nonconvex optimization problems. J. Optim. Theory Appl.,
29(2): 169-197, 1979. [716]

[Ber09] Dimitri P. Bertsekas. Convex optimization theory. Athena Scientific,
Nashua, NH, 2009. [716]

[Berl6] Dimitri P. Bertsekas. Nonlinear programming. Athena Scientific Op­
timization and Computation Series. Athena Scientific, Belmont, MA,
third edition, 2016. [666]

[BH15] Joseph K. Blitzstein and Jessica Hwang. Introduction to probability.
Texts in Statistical Science Series. CRC Press, Boca Raton, FL, 2015.
[243, 280, 319]

[BHS+78] J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving
divide-and-conquer recurrences. Carnegie-Mellon University, Computer
Science Department, Defense Technical Information Center, 1978. [83]

[Biel5] Michel Bierlaire. Optimization: Principles and algorithms. EPFL Press,
Lausanne; distributed by CRC Press, Boca Raton, FL, 2015. [619, 666,
716]

[BL06] Jonathan M. Borwein and Adrian S. Lewis. Convex analysis and non­
linear optimization: Theory and examples. Volume 3 of CMS Books in
Mathematics/Ouvrages de Mathematiques de la SMC, Springer, New
York, second edition, 2006. [716]

[Blil3] Joseph Blitzstein. Conditioning is the soul of statistics. YouTube
Talk: Harvard Thinks Big 4, https://www.youtube.com/watch?v=
dzFf3rlyph8, 2013. Last accessed 16 Aug. 2017. [243]

[BN09] Albert Boggess and Francis J. Narcowich. A first course in wavelets
with Fourier analysis. John Wiley & Sons, Hoboken, NJ, second edition,
2009. [403]

[Bogl4] I. Bogaert. Iteration-free computation of Gauss-Legendre quadrature
nodes and weights. SIAM J. Sci. Comput., 36(3):A1008-A1026, 2014.
[449]

[BT04] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange inter­
polation. SIAM Rev., 46(3):501-517, 2004. [417, 459]

https://www.youtube.com/watch?v=

Bibliography 769

[Bus03] P. Bussotti. On the genesis of the Lagrange multipliers. J. Optim. The­
ory Appl., 117(3):453-459, 2003. [666]

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam­
bridge University Press, Cambridge, UK, 2004. [536, 619, 666, 716]

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif­
ford Stein. Introduction to algorithms. MIT Press, Cambridge, MA, sec­
ond edition, 2001. [6, 83, 139, 184]

[Con90] John B. Conway. A course in functional analysis. Volume 96 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.
[619]

[Conl6] Keith Conrad. Stirling’s formula, http://www.math.uconn.edu/
~kconrad/blurbs/analysis/stirling.pdf, 2016. Last accessed 23 May
2018. [106]

[Cool4] John Cook. Five tips for floating point programming. http://www.
codeproject.com/Articles/29637/Five-Tips-for-Floating-Point-
Programming, 2014. Last accessed 29 July 2019. [516]

[CV13] Erhan Cinlar and Robert J. Vanderbei. Real and convex analysis. Un­
dergraduate Texts in Mathematics. Springer, New York, 2013. [716]

[CZ01] E.K.P. Chong and S.H. Zak. An Introduction to Optimization. Wiley
Series in Discrete Mathematics and Optimization. John Wiley & Sons,
Hoboken, NJ, second edition, 2001. [536, 574, 666]

[Dan67] James W. Daniel. Convergence of the conjugate gradient method with
computationally convenient modifications. Numer. Math., 10:125-131,
1967. [574]

[Dan70] James W. Daniel. A correction concerning the convergence rate for the
conjugate gradient method. SIAM J. Numer. Anal., 7(2):277-280, 1970.
[574]

[DD10] Kenneth R. Davidson and Allan P. Donsig. Real analysis and appli­
cations: Theory in practice. Undergraduate Texts in Mathematics.
Springer, New York, 2010. [403]

[DDM+14] Erik D. Demaine, Martin L. Demaine, Yair N. Minsky, Joseph S. B.
Mitchell, Ronald L. Rivest, and Mihai Patra§cu. Picture-hanging puz­
zles. Theory Comput. Syst., 54(4):531-550, 2014. [184]

[Dem96] James Demmel. Basic issues in floating point arithmetic and er­
ror analysis, http://www.cs.berkeley.edu/~demmel/cs267/lecture21/
lecture21.html, 1996. Last accessed 11 Aug. 2015. [516]

[Dem97] James W. Demmel. Applied numerical linear algebra. SIAM, Philadel­
phia, PA, 1997. [487, 516, 574]

http://www.math.uconn.edu/
codeproject.com/Articles/29637/Five-Tips-for-Floating-Point-Programming
http://www.cs.berkeley.edu/%7Edemmel/cs267/lecture21/

770 Bibliography

[dH94]

[DKH12]

[DL05]

[DS19]

[Fav35]

[Fel71]

[FS15]

[FT87]

[GGW11]

[Gol94]

[GS92]

[GS03]

[GV15]

[GYZ]

D. den Hertog. Interior point approach to linear, quadratic and convex
programming: Algorithms and complexity. Volume 277 of Mathematics
and Its Applications. Kluwer, Dordrecht, 1994. [716]

Ding-Zhu Du, Ker-I Ko, and Xiaodong Hu. Design and analysis of ap­
proximation algorithms. Volume 62 of Springer Optimization and Its
Applications. Springer, New York, 2012. [184]

Erik D. Demaine and Charles E. Leiserson. Introduction to algo­
rithms: Problem set 1. http://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-046j-introduction-to-
algorithms-sma-5503-fall-2005/assignments/psl.pdf, 2005. [83]

Yann Disser and Martin Skutella. The simplex algorithm is NP-mighty.
ACM Trans. Algorithms, 15(1):Art. 5, 2019. [619]

J. Favard. Sur les polynomes de Tchebicheff. Comptes Rendus de
TAcademic des Sciences, 200:2052-2053, 1935. [425]

William Feller. An introduction to probability theory and its applications,
volume II. John Wiley & Sons, New York, second edition, 1971. [265]

John Fearnley and Rahul Savani. The complexity of the simplex method.
In STOCT5—Proceedings of the 2015 ACM Symposium on Theory of
Computing, pages 201-208. ACM, New York, 2015. [619]

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and
their uses in improved network optimization algorithms. J. Assoc. Com-
put. Mach., 34(3):596-615, 1987. [184]

John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed ban­
dit allocation indices. John Wiley & Sons, Chichester, UK, 2011. Second
edition; with a foreword by Peter Whittle. [764]

Donald Goldfarb. On the complexity of the simplex method. In Ad­
vances in optimization and numerical analysis (Oaxaca, 1992). Volume
275 of Mathematics and Its Applications, pages 25-38. Kluwer, Dor­
drecht, 1994. [619]

A. Greenbaum and Z. Strakos. Predicting the behavior of finite precision
Lanczos and conjugate gradient computations. SIAM J. Matrix Anal.
Appl., 13(1):121—137, 1992. [574]

Charles M. Grinstead and J. Laurie Snell. Introduction to probability.
American Mathematical Society, Providence, RI, 2003. [280]

Jonas Gomes and Luiz Velho. From Fourier analysis to wavelets. Vol­
ume 3 of IMP A Monographs. Springer, Cham, 2015. [403]

Gregory Gut in, Anders Yeo, and Alexey Zverovich. Traveling salesman
should not be greedy: Domination analysis of greedy-type heuristics for
the TSP. Discrete Appl. Math., 117:81-86. [184]

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/assignments/psl.pdf

Bibliography 771

[Hea49] Thomas Heath. Mathematics in Aristotle. Clarendon Press, Oxford, UK,
1949. [83]

[Hig96] Nicholas J. Higham. Accuracy and stability of numerical algorithms.
SIAM, Philadelphia, 1996. [487, 498, 516]

[Higl8] Nicholas J. Higham. Differentiation with(out) a difference. SIAM News,
June 2018. [516]

[HJE17] Jeffrey Humpherys, Tyler J. Jarvis, and Emily J. Evans. Founda­
tions of applied mathematics: Volume 1, mathematical analysis. SIAM,
Philadelphia, 2017. [xv]

[HLHG00] Ulrich Hoffrage, Samuel Lindsey, Ralph Hertwig, and Gerd Gigerenzer.
Communicating statistical information. Science, 290:2261-2262, 2000.
[203]

[IEE08] IEEE Task P754. IEEE 754-2008, Standard for floating-point arith­
metic. IEEE, New York, 2008. [516]

[Jar30] Vojtech Jarmk. О jistem problemu minimalmm. (z dopisu panu o.
borpuvkovi) (Czech) [on a certain problem of minimization]. Prdce
moravske pfirodovedecke spolecnosti, 6(4):57-63, 1930. [184]

[Jial8] Yan-Bin Jia. Lagrange multipliers, notes, http: //web. cs. iastate. edu/
~cs577/handouts/lagrange-multiplier.pdf , 2018. Last accessed 12
July 2019. [666]

[JK15] K. Jansen and S. E. J. Kraft. A faster FPTAS for the unbounded knap­
sack problem. ArXiv e-prints, 2015. [184]

[Kle08] Achim Klenke. Probability theory: A comprehensive course. Universi-
text. Springer-Ver lag, London, 2008. Translated from the 2006 German
original. [265, 266]

[KM72] Victor Klee and George J. Minty. How good is the simplex algorithm?,
In Inequalities III, pages 159-175. Academic Press, New York, 1972.
[606, 619]

[KT05] Jon Kleinberg and Eva Tardos. Algorithm design. Addison-Wesley,
Boston, MA, 2005. [83, 184]

[Kurl5] Will Kurt. Six neat tricks with Monte Carlo simulations, https ://www.
countbayesie.com/blog/2015/3/3/6-amazing-trick-with-monte-
carlo-simulations, 2015. Last accessed 4 Nov. 2017. [280, 319]

[Leu04] Joseph Y.-T. Leung, editor. Handbook of scheduling: Algorithms, mod­
els, and performance analysis. Chapman & Hall/CRC Computer and
Information Science Series. Chapman & Hall/CRC, Boca Raton, FL,
2004. [180]

[LeV07] Randall J. LeVeque. Finite difference methods for ordinary and par­
tial differential equations: Steady-state and time-dependent problems.
SIAM, Philadelphia, 2007. [516]

countbayesie.com/blog/2015/3/3/6-amazing-trick-with-monte-carlo-simulations

772 Bibliography

[Liul8] Che-Yu Liu. Thompson sampling for bandit problems, PhD thesis,
Princeton University, Princeton, NJ, 2018. [764]

[LM67] J. N. Lyness and С. B. Moler. Numerical differentiation of analytic
functions. SIAM J. Numer. Anal., 4:202-210, 1967. [516]

[LS18] Lars Ljungqvist and Thomas J Sargent. Recursive macroeconomic the­
ory. MIT Press, Cambridge, MA, 2018. [742]

[Macl8] J. MacCormick. What can be computed? A practical guide to the theory
of computation. Princeton University Press, Princeton, NJ, 2018. [184]

[Mat 15] Oxford dictionaries: Language matters. Which letters in the alphabet
are used most often? http://www.oxforddictionaries.com/us/words/
which-letters-are-used-most, 2015. Last accessed 11 Aug. 2015. [184]

[May 11] Philip Z. Maymin. Markets are efficient if and only if P = NP. Algo­
rithmic Finance, 1(1): 1-11, 2011. [184]

[MH03] J. C. Mason and D. C. Handscomb. Chebyshev polynomials. Chapman
& Hall/CRC, Boca Raton, FL, 2003. [459]

[NemlO] Gergo Nemes. On the coefficients of the asymptotic expansion of n\. J.
Integer Seq., 13(6):Art. 10.6.6, 2010. [106]

[Nes04] Yurii Nesterov. Introductory lectures on convex optimization: A basic
course. Volume 87 of Applied Optimization. Kluwer, Boston, MA, 2004.
[716]

[NW99] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer
Series in Operations Research. Springer-Verlag, New York, 1999. [574,
619, 666]

[OSS+16] N. Ohuchi, A. Suzuki, T. Sobue, M. Kawai, S. Yamamoto, Y.-F. Zheng,
Y.-N. Shiono, H. Saito, S. Kuriyama, E. Tohno, T. Endo, A. Fukao,
I. Tsuji, T. Yamaguchi, Y. Ohashi, M. Fukuda, and T. Ishida. Sen­
sitivity and specificity of mammography and adjunctive ultrasonog­
raphy to screen for breast cancer in the Japan strategic anti-cancer
randomized trial (J-START): A randomised controlled trial. Lancet,
387(10016):341-348, 2016. [202]

[Patl7] Rich Pattis. AVL trees. https://www.ics.uci.edu/~pattis/ICS-46/
lectures/notes/avl.txt, 2017. Last accessed 9 Aug. 2018. [139]

[Ped04] Pablo Pedregal. Introduction to optimization. Volume 46 of Texts in
Applied Mathematics. Springer-Verlag, New York, 2004. [619, 666]

[Pro08] S. David Promislow. A first course in functional analysis. Pure and Ap­
plied Mathematics (Hoboken). Wiley-Interscience, Hoboken, NJ, 2008.
[619]

[Prul7] Kirk Pruhs. Dynamic programming homework problems, http:
//people.cs.pitt.edu/~kirk/csl510/homework/dynproghw.pdf, 2017.
Last accessed 9 Aug. 2017. [184]

http://www.oxforddictionaries.com/us/words/
https://www.ics.uci.edu/%7Epattis/ICS-46/

Bibliography 773

[PS75] Thomas Porter and Istvan Simon. Random insertion into a priority
queue structure. IEEE Trans. Software Engrg., SE-l(3):292-298, 1975.
[139]

[PSZ09] Konstantinos Paparrizos, Nikolaos Samaras, and Dimitrios Zissopou-
los. In Linear programming: Klee-Minty examples, pages 1891-1897.
Springer, Boston, MA, 2009. [619]

[RN03] Stuart J. Russell and Peter Norvig. Artificial intelligence: A modern
approach. Pearson Education, London, second edition, 2003. [319]

[Ros07] Sheldon M. Ross. Introduction to probability models. Elsevier/Academic
Press, Amsterdam, ninth edition, 2007. [280]

[Rosl4] Sheldon Ross. A first course in probability. Pearson, London, ninth edi­
tion, 2014. [280]

[RRKO17] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, and Ian Osband.
A tutorial on Thompson sampling. CoRR, abs/1707.02038, 2017. [759,
764]

[Rud91] Walter Rudin. Functional analysis. International Series in Pure and Ap­
plied Mathematics. McGraw-Hill, New York, second edition, 1991. [619]

[Scol3] Steven L. Scott. Multi-armed bandit experiments, http://analytics,
blogspot.com/2013/01/multi-armed-bandit-experiments.html, 2013.
Last accessed 9 April 2019. [764]

[She94] Jonathan Richard Shewchuk. An introduction to the conjugate gra­
dient method without the agonizing pain, edition 1|. https://www.
cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf, 1994.
Last accessed 9 Feb. 2016. [574]

[Shi84] A. N. Shiryayev. Probability. Volume 95 of Graduate Texts in Mathe­
matics. Springer-Verlag, New York, 1984. Translated from the Russian
by R. P. Boas. [265]

[SLP89] N. L. Stokey, R. E. Lucas, and E. C. Prescott. Recursive methods in
economic dynamics. Harvard University Press, Cambridge, MA, 1989.
[742]

[SS07] Y. N. Srikant and Priti Shankar. The compiler design handbook: Opti­
mizations and machine code generation. CRC Press, Boca Raton, FL,
2nd edition, 2007. [83]

[ST98] William Squire and George Trapp. Using complex variables to estimate
derivatives of real functions. SIAM Rev., 40(1): 110—112, 1998. [516]

[Str93] Gilbert Strang. Wavelet transforms versus Fourier transforms. Bull.
Amer. Math. Soc. (N.S.), 28(2):288-305, 1993. [403]

[Tanl5] Vincent Y. F. Tan. Simplified proof of Slater’s theorem for strong
duality, https://www.ece.nus.edu.sg/stfpage/vtan/ee5138/slater .
pdf, 2015. Last accessed 19 June 2019. [716]

http://analytics
https://www
https://www.ece.nus.edu.sg/stfpage/vtan/ee5138/slater

774 Bibliography

[Tanl7] James Tanton. Tanton’s take on the Poisson distribution, http://
www.jamestanton.com/wp-conteiit/uploads/2012/03/Curriculum-
Essay_December-2017_Poisson-Distribution.pdf, 2017. Last accessed
4 Sept. 2018. [243]

[TB97] Lloyd N. Trefethen and David Ban, TIL Numerical linear algebra. SIAM,
Philadelphia, 1997. [83, 487, 516]

[TdD14] Sid Touati and Benoit de Dinechin. Advanced backend code optimization.
Wiley-IEEE Press, New York, 2014. [83]

[Tho07] Mikkel Thorup. Equivalence between priority queues and sorting. J.
ACM, 54(6):Art. 28, 2007. [139]

[TMS10] Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna. Why
are nonlinear fits to data so challenging? Phys. Rev. Lett., 104(2010),
Art. 060201. [574]

[Tre08] Lloyd N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis?
SIAM Rev., 50(l):67-87, 2008. [459]

[Trel3] Lloyd N. Trefethen. Approximation theory and approximation practice.
SIAM, Philadelphia, 2013. [452, 459]

[Vanl4] Robert J. Vanderbei. Linear programming: Foundations and extensions.
Volume 196 of International Series in Operations Research & Manage­
ment Science, Springer, New York, fourth edition, 2014. [606, 619]

[Vanl8] Lieven Vandenberghe. Nonlinear least squares, http: //www. seas. ucla.
edu/~vandenbe/133A/lectures/nlls.pdf, 2018. Last accessed 4 Jan.
2019. [574]

[vdW83] B. L. van der Waerden. Geometry and algebra in ancient civilizations.
Springer-Verlag, Berlin, 1983. [83]

[vRB12] Henry J.J. van Roessel and John C. Bowman. Lecture notes for math
538: Asymptotic methods. University of Alberta Edmonton, Canada.
http://www.math.ualberta.ca/~bowman/m538/m538.pdf, 2012. Last ac­
cessed 23 May 2018. [106]

[Wal06] Jorg Waldvogel. Fast construction of the Fejer and Clenshaw-Curtis
quadrature rules. BIT, 46(l):195-202, 2006. [459]

[Was04] Larry Wasserman. All of statistics: A concise course in statistical in­
ference. Springer Texts in Statistics. Springer-Verlag, New York, 2004.
[280, 319]

[Wikl5] Wikipedia. NP-hard. https://en.Wikipedia.org/w/index.php?title=
NP-hard&oldid=669029008, 2015. Last accessed 10 Aug. 2015. [184]

[Wikl7] Wikipedia. Abraham Wald, https: //en.wikipedia.org/wiki/Abraham_
Wald, 2017. Last accessed 16 Aug. 2017. [243]

http://www.jamestanton.com/wp-conteiit/uploads/2012/03/Curriculum-Essay_December-2017_Poisson-Distribution.pdf
http://www.math.ualberta.ca/%7Ebowman/m538/m538.pdf
https://en.Wikipedia.org/w/index.php?title=
file:////en.wikipedia.org/wiki/Abraham_

Bibliography 775

[Wikl8a] Wikipedia. Stirling’s approximation, https://en.wikipedia.org/?
title=Stirling7027s_approximation, 2018. Last accessed 23 May 2018.
[106]

[Wikl8b] Wikipedia. Wallis’s integrals. https://en.wikipedia.org/wiki/Wallis
%27_integrals, 2018. Last accessed 31 May 2018. [106]

[WS11] David P. Williamson and David B. Shmoys. The design of approximation
algorithms. Cambridge University Press, Cambridge, UK, 2011. [184]

[WY12] Z. Wei and K. Yi. Equivalence between priority queues and sorting in
external memory. ArXiv e-prints, 2012. [139]

https://en.wikipedia.org/
https://en.wikipedia.org/wiki/Wallis

Index

68-95-99.7 rule, 242, 255, 260, 283
cr-algebra, 220

A/В testing, 759
Abel’s theorem, 3
absolute

backward error, 498
condition number, 492
error, 487

accuracy
of a computation, 497
of an estimator, 251

active/binding constraint, 588, 596, 597,
638

adjacency matrix, 112
affine

function, 578
set, 473, 577

algorithm, 4
AVL, 122
bandit selection via Git tins, 752
BFGS, 553
binary search, 65
bisection, 529
change-making, 144
Chebyshev interpolation, 437
Clenshaw’s, 456
conjugate-gradient, 562
conjugate-gradient for quadratics,

562
depth-first search, 150
Dijkstra’s, 156
Euclidean, 52
exact gradient descent, 536
extended Euclidean, 54, 55
fast Chebyshev interpolation, 437
fast modular exponentiation, 57
fast multiplication, 68
Gauss-Newton, 547

Gittins index, 753
gradient descent, 536
greedy for TSP, 178
heap sort, 126
Huffman encoding, 167
insertion sort, 16
Kruskal’s, 161
long addition, 13
long multiplication, 18
matrix multiplication

fast, 69
recursive, 69

maximum of a list, 8
merge sort, 68, 119, 143
merge sorted lists, 15
Monte Carlo dice estimate, 285
naive sort, 17
Newton’s method, 531
periodic sampling reconstruction,

364
Prim’s, 158, 160
recursive multiplication, 67
row reduction, 34
secant method, 533
selection sort, 76, 126
Thompson sampling, 756, 758
tree sort, 126

algorithmic differentiation, 508
alias, 362
alphabet, 164
analytic

continuation, 87
function, 452, 507

annealing schedule, 305
ansatz, 734, 735, 746
antialiasing, 366
approximation algorithms, 179
Archimedean property, 50

777

778 Index

arithmetic-geometric mean inequality,
676, 710

polynomial, 406
transformation, 406

Armijo condition, 541 Beta
array data structure, 107 distribution, 224
asymptotic beta

equivalence, 14 distribution, 226, 755
expansion, 96, 97 function, 92
growth, 8 BFGS

asymptotically unbiased, 247 limited memory, 555
automorphism, 137 method, 549, 551
auxiliary problem, 601 BFS, see breadth-first search
average word length, 165 bias, 247
AVL tree, 122 biased sample variance, 246

B+tree, 136
big-O, 8, 9, 97
bilinear, 357

B-tree, 131 binary
back propagation, 508 code, 166
back substitution, 33 search, 63, 66
backtracking, 540 search tree, 118, 119
backward error, 498 binding, see active/binding
backward stability, 499 binomial
backward stable, 499 coefficients, 45
balance, 120, 121 distribution, 207, 214
balanced flow, 592 identities, 93
band limited, 325 series, 93
band-limited function, 361 theorem, 48
bandit birthday problem, 190

multiarmed Bernoulli, 749 bisection algorithm, 529
problem, 749 bit, 30
simple, 751 bivariate random variable, 228

barrier function, 698 Blackwell’s theorem, 735
barycentric Lagrange interpolation, 415 Bland’s rule, 605
base-10 floating-point, 490 BLAS, 32
Bayes’ rule, 197 Bohr-Mollerup theorem, 88, 106
Bayesian statistics, 224 bottom-up dynamic programming, 146
Bellman breadth-first search, 148, 151

equation, 147 Broyden’s method, 550
operator, 736 brute force, 141
optimality principle, 147, 148, 153, byte, 30

175, 729
Bernoulli c.d.f., see cumulative distribution func­

bandit, 749 tion
distribution, 212 cake eating, 732
random variable, 207 Carmichael numbers, 60
trials, 199, 212 catastrophic cancellation, 6

Bernstein categorical distribution, 234
ellipse, 459 ceiling, 12
operator, 408 centered difference, 506

Index 779

central limit theorem, 185
certificate of optimality, 609
chain rule

for derivatives, 471
for probability, 193

chaining, 299
change of variables, 105
change-making problem, 141
characteristic function, 264, 265
Chebyshev

approximation, 684
basis, 434
extremizers, 422, 431
polynomial, 405, 421, 423
polynomial, monic, 420
projections, 439
zeros, 422, 431

child, 117
circulant matrix, 398
Clenshaw’s algorithm, 456
Clenshaw-Curtis quadrature, 443, 448
closed walk, 110
closed-form solution, 3
Cobb-Douglas technology function, 746
code, see encoding scheme
collectively exhaustive, 186, 197
combinations, 45
complementary slackness, 607, 610, 640
complex

conjugate, 326
numbers, 326
step differentiation, 507

complexity
spatial, 6, 7
temporal, 6, 7

concave function, 668
condition

of a problem, 491
of the rootfinding problem, 434

condition number
of a function, 492
of a matrix, 495, 496

conditional
expectation, 239
gradient method, 655
probability, 191

configuration, 594
congruence, 56

conjugate
prior, 273
with respect to a matrix A > 0,

557
continuity correction, 262
continuous

distribution, 220, 222
continuously differentiable, 467
convergence

order of, 528
conversion rate, 759
convex

combination, 576
composition, 709
cone, 614
function, 668, 670, 708
hull, 576
optimization, 679
set, 575
span, 576

convolution, 355
circular, 356
linear, 360

cooling schedule, 305
coordinate descent, 557
coset, 56
cost function, see objective function
covariance, 231, 232
Cristofides’ algorithm, 179
critical point, 521, 628
cryptography, 60
cumulative distribution function, 221,

229
curvature condition, 541
cycle, 110
cycling, 598

data structure, 107
Daubechies wavelet, 380, 388
daughter wavelet, 370
decision

epochs, 725, 744
variables, 586

degrees of freedom, 226
denormalized numbers, 485
depth of recursion, 72
depth-first search, 148
deque, 137

780 Index

derivative, 467
as linear operator, 467
chain rule, 471
linearity, 468
of a parametrized curve, 463
product rule, 469
total, 467

descent direction, 543, 544
De Moivre’s formula, 327
DFS, see depth-first search
DFT, see discrete Fourier transform
dictionary

data structure, 295
degenerate, 605
in linear optimization, 596

difference operator, 20
differentiable

curve, 463
function, 467

Dijkstra’s algorithm, 152
dimension

of a polyhedron, 588
of an affine set, 577

direct address table, 298
directional derivative, 465
discount factor, 718
discounting, 718, 735, 739, 740, 749,

751
discrete

Fourier transform, 324, 346, 348
inverse, 351

inner product, 347
probability measure, 186
probability space, 187
random variable, 205

discrete probability
measure, 186

distribution
discrete, 212

divide-and-conquer, see recursive al­
gorithm

divided difference, 418
division theorem, 50
double-precision, 484
doubly linked list, 116
downsampling, 390, 392
draws, 245
dual

feasibility, 640
optimization problem, 688

linear, 607, 608
duality

gap, 692
linear, 607
strong, 690

linear, 609
weak, 685

linear, 607, 608
dynamic

optimization, 717
stochastic, 743

programming, 142, 143
bottom-up, 146
top-down, 143

edge, 108, 109
effective domain, 668
efficient

frontier, 654
market hypothesis, 184

eight queens problem, 311
ellipsoid method, 697
encoding, 163

average word length, 165
prefix codes, 165
scheme, 164
uniquely decipherable, 164

entering variable, 597
envelope condition, 724
epigraph, 673
equality constraint, 621
equally likely outcomes, 188
equivalence relation, 14
estimate, 246
estimators, 246
Euclid, 52
Euler

conditions, 720
formula, 327, 341

event, 186
exact quadrature, 446
exhaustive method, 141, 301
expectation, see expected value
expected value, 207
exploration versus exploitation, 743
exponent, 483

Index 781

exponential distribution, 226
expression swell, 504

fair, 189
falling power, see Pochhammer sym­

bol
Farkas’ lemma, 612
fast Fourier transform, 346, 351, 352
fast wavelet transform, 374, 378
father function, 367
feasibility, 586, 601, 621, 624, 638, 640,

679
Fermat’s little theorem, 55, 59
FFT, see fast Fourier transform
Fibonacci

heap, 157, 161, 184
numbers, 75, 145

FIFO, see first in, first out
financial computations, 490
finite

calculus, fundamental theorem of,
21

convolution theorem, 358
finite-horizon

cake eating, 718
optimality principle, 721

first in, first out, 116
first-order necessary condition, 521
fitness, 309, 310
floating point

arithmetic, 483
base-10, 490
in financial calculations, 490
instability

addition and subtraction, 488
numbers, normalizing, 484
operations, 30, 31, 483
testing for equality, 488

FONC, see first-order necessary con­
dition

forest, 113
forward

difference, 506
error, 497

Fourier
analysis, 323
basis, 347
series, 324, 331-333, 339

transform
continuous, 337
discrete, see discrete Fourier trans­

form
Fourier inversion formula, 278
fraction of a floating-point number, 484
freshman’s dream, 59
fully polynomial-time approximation

scheme, 179
fundamental bridge, 253, 290
fundamental theorem

of finite calculus, 21
of linear optimization, 587, 590

FWT, see fast wavelet transform

gamma
distribution, 224, 225
function, 85, 87

Gauss-Newton algorithm, 546, 547
Gaussian distribution, 224
Gaussian quadrature, 449

with other polynomials, 452
gcd, see greatest common divisor, 51
genetic algorithms, 281, 301, 307

crossover, 308
encoding, 310
mutation, 308
selection, 309

geodetic problem, 574
geometric

distribution, 218
program, 712
series, 24

Gibbs phenomenon, 338, 397
Gittins index, 752
global minimizer, 520, 622, 638
golden ratio, 75
gradient, 467

descent, 535, 536, 555
projection method, 656

graph, 673
connected, 111
directed, 108
disconnected, 111
search, 148
simple, 109
theory, 108
undirected, 109

782 Index

weighted, 152
graph of a function, 473
greatest common divisor, 51
greedy algorithm, 142, 153, 158, 161,

178, 181

Haar
daughter wavelet, 370
decomposition theorem, 377
mother wavelet, 370
scaling function, 367
wavelets, 366

Hadamard product, 358
Hahn-Banach theorem, 584
half space, 578, 580
Hamiltonian

cycle, 176
path, 173

harmonic analysis, 323
hash

collision, 297
function, 294, 295

perfect, 298
simply uniform, 298

table, 295, 296
hashing, 281, 294
heap, 125-127, 130
heapify, 130
height in a tree, 120
Hermite polynomial, 423
Hessian matrix, 476
heuristics, 178
hinge loss

function, 709
regularized, 681

horizon
finite, 717, 728
infinite, 717, 732-736, 739, 748,

751
of a Markov decision process, 744

Horner’s method, 4, 398
Huffman encoding, 163, 167
human capital, 726
hyperplane, 473, 578, 579, 595

parallel, 614

i.i.d., see independent, identically dis­
tributed

IEEE 754 standard, 484
ill conditioned, 434, 493
implicit function theorem, 474, 475
importance sampling, 287, 289
inclusion-exclusion, 37, 40, 42
independent

events, 198, 199
identically distributed, 246
random variables, 210, 230
variables in linear optimization,

596
indicator random variable, 213
inequality constraint, 621
infeasible, 586
infinite-horizon dynamic optimization,

732
insert, 126
instantaneous code, 164
interior point methods, 685, 697
interpolation, 405, 410, 411

barycentric Lagrange, 410, 415
Chebyshev, 431

fast, 434
error, 430
Lagrange, 410, 412, 414
Newton, 410, 417
polynomial, 410, 411

inventory management, 727
inversion sampling, 287, 291
iterative

programming, 143, 146
solver, 528

Jensen’s inequality, 667, 675
joint

cumulative distribution function,
229

probability density function, 229
probability mass function, 228

Karush-Kuhn-Tucker, 638
and Lagrange, 644
conditions, 640
first-order condition, 640
from strong duality, 692
second-order necessary condition,

645, 646
key, 118, 295

Index 783

KKT, see Karush-Kuhn-Tucker
knapsack problem, 174
Kolmogorov, Andrei, 185
Krein-Milman, 590
Kronecker delta, 332
Krylov

subspace, 35, 563

I1 linear regression problem, 711
Lagrange

basis functions, 412, 449
first-order condition, 627
first-order necessary condition, 627
interpolation, 410, 412, 414
second-order necessary condition,

633
Lagrange dual, 685
Lagrange dual function, 687
Lagrange-Hermite interpolation, 417
Lagrangian, 631, 643
Laguerre polynomial, 423
Laplace’s method, 92, 95
last in, first out, 116
law

of diminishing returns, 718
of large numbers, 253, 255, 257
of motion, 725
of the unconscious statistician, 209

leaf, 117
leakage, 398
learning rate, 536
least squares

nonlinear, 546, 547, 574
ordinary, 648, 650, 652, 664
total, 649, 650, 664
with equality constraints, 652

leaving variable, 597
left continuous, 367
left-left imbalance, 123
left-right imbalance, 123
Legendre polynomial, 419, 423, 449
lemmata, 70
level set, 474, 527, 539
Levenberg-Marquardt

algorithm, 548
modification, 545

lexicographic perturbation rule, 606
LIFO, see last in, first out

likelihood, 248
line fitting, 648
linear

optimization, 575, 586, 729
fundamental theorem of, 590

search, 63
systems, 32

linearly separable, 680
linked list, 115
little-o, 8, 9, 97
load factor, 299
local minimizer, 520, 622, 638
logarithmic barrier, 698
logarithms

to prevent underflow and over­
flow, 490

logistic
distribution, 315
loss function, 709
regression, 683

LogSumExp, 481, 482, 673
loop interchange, 35
loop-invariant code motion, 35, 36
loss function, see objective function
LOTUS, see law of the unconscious

statistician
LU decomposition, 33

machine epsilon, 487
mantissa, see significand
marginal, 230

probability density function, 229
probability mass function, 229

market clears, 591
Markov chain, 743
Markov decision process, 744
master theorem, 64, 65, 70
matrix

-vector multiplication, 31
multiplication, 32, 69

fast, 69
maximum

a posteriori estimate, 272
likelihood estimate, 248

MDP, see Markov decision process
mean, 207
mean squared error, 546
measure theory, 185

784 Index

memoization, 143
merging sorted lists, 15
method of undetermined coefficients,

734
millennium problems, 173
minimax

inequality, 685, 686
theorem, 430

minimizer, 520
minimum

mean squared error estimator, 252
spanning tree, 157
value, 520

Minkowski
sum, 614
theorem, 584

Minkowski-Steinitz, 590
MLE, see maximum likelihood esti­

mate
mode, 241
modular arithmetic, 56
modulo, 56
modulus

of a complex number, 326
monic

Chebyshev
polynomial, 420

Chebyshev polynomial
second kind, 432

polynomial, 420
monotonically decreasing, 80
monotonicity, 735
Monte Carlo methods, 281
Morse code, 163
mother wavelet, 366, 370
MST, see minimum spanning tree
multinomial

coefficient, 47
distribution, 228, 229
theorem, 49

multiplication rule, 44
multiresolution analysis, 379
multivariate random variable, 228
music, 336
mutation, 308
mutually exclusive, 186

naive sorting, 16

NaN, 485
nearest-neighbor heuristic, 178
negative binomial distribution, 218
network flow, 591
Newton interpolation, 417
Newton’s method, 4, 530, 541, 542
Newton-Cotes quadrature, 443

composite, 441
NLS, see nonlinear least squares
node in a graph, 108
nodes

for interpolation, 405
for numerical quadrature, 441

noise, 324
nondeterministic polynomial, 173
nonlinear least squares, 546
normal

distribution, 224, 225
equation, 568
space, 626

NP, see nondeterministic polynomial
NP-complete, 174
NP-hard, 173
numerical

approximation, 5
computing, 30
instability, 5
stability, 501

Nyquist
frequency, 361, 362, 364-366, 400
rate, 361-365

objective function, 300, 519, 520
open

addressing, 300
walk, 110

optimal growth problem
deterministic, 722, 726
stochastic, 745

optimal point, see optimizer
optimality principle, 721
optimization

basic definitions, 520
linear, 585, 591, 680

optimizer, 144, 520
orthogonal

complement, 370
polynomials, 419

Index 785

overflow, 489

p.d.f., see probability density function
p.m.f., see probability mass function
pairwise independence, 199
parallel, 614
parent, 117
partial derivative, 466
partition of unity, 406
Pascal’s

rule, 47
triangle, 47

path, 110
payoff function, see objective function
periodic

sampling theorem, 325, 363
vector, 355

permutations, 45
perpendicular bisector, 579
piecewise

continuous, 336
Lipschitz, 336

pigeonhole principle, 190, 298
Pochhammer symbol, 37, 39
point estimates, 245
pointer, 108
Poisson distribution, 215, 216
policy, 718

iteration, 729, 738
polyhedron, 587
polynomial

Chebyshev, 423
Hermite, 423
Laguerre, 423
Legendre, 423

pop, 117, 126
portfolio optimization, 653
posterior distribution, 267, 755
posynomial, 712
power set, 186
precision

of a computation, 497
of an estimator, 251

preimage, 206
present value, 718
primal

feasibility, 640
optimization problem, 688

linear, 607, 608
primal-dual

convex optimization, 702
prime, 55
primitive

operation, 6
root of unity, 330

prior distribution, 267, 268, 755
priority queue, 125, 130
probability

density function, 222
mass function, 206
measure, 221
space, 221

product
Cartesian, 44
rule, 469

production schedules, 591
projection onto a convex set, 581
proposal distribution, 292
prosecutor’s fallacy, 200
pseudopolynomial, 176
push, 117
put, see insert
pyramid scheme, see fast wavelet trans­

form

QR decomposition, 35
quadratic optimization problem, 525
quadrature, 441

Clenshaw-Curtis, 443
Gaussian, 449
Newton-Cotes, 443

composite, 443
Riemann, 442

quasi-Newton methods, 542
queue, 116
quotient, 50
quotient rule, 481

random shock, 745
random variable, 205, 221

Bernoulli, 207
bivariate, 228
multivariate, 228
realization of, 245
univariate, 228

realization of a random variable, 245

786 Index

rectified linear unit, 515
recursive algorithm, 61
regular point, 622, 639
regularization, 546
reindexing, 25
reinforcement learning, 731
rejection sampling, 287, 292
relative

backward error, 498
condition number, 492
error, 487
forward error, 497

relatively prime, 55
relax constraints, 681
relaxed problem, 703
remainder, 50
repeated trials, 213
residual

for conjugate gradient, 558
for nonlinear least squares, 546

right rotation, 123
rising power, see Pochhammer sym­

bol
risk neutral, 721
Ri vest-S hamir-Adleman cr у pt osy st em,

55
robot motion on a grid, 739
robust regression, 684
Rodrigues’ formula, 425
root

of a linked list, 115
of a tree, 117
of unity, 330, 347
simple, 494

rotation in an AVL tree, 123
round-off error, 5
row vector, notation, 467
RSA, see Rivest-Shamir-Adleman cryp­

tosystem
Runge’s phenomenon, 429

saddle point, 527
sample

from a distribution, 246
mean, 246
of a signal, 324, 346
space, 185
variance

biased, 246, 247
unbiased, 248

scalar multiplication, 31
scale

of gamma distribution, 278
scaling

function, 366, 367, 380
relation, 369

scheduling problems, 180
search tree, 118
secant method, 530, 532
second-order

necessary condition, 523
sufficient condition, 524

selection
bias, 204
in a genetic algorithm, 309
sort, 76

separated sets, 582
separating hyperplane theorem, 584
set data structure, 149, 295, 296
shadow prices, 611
Shannon sampling theorem, 364
Sherman-Morrison formula, 550
Sherman-Morrison-Woodbury, 555
sift

down, 128
up, 127

sign
of a complex number, 329
of a floating-point number, 483

signal, 323, 324
significand, 483
simple

bandit, 751
root, 494

simplex method, 575, 591, 593, 729
Simpson’s rule, 444
simulated annealing, 281, 300, 301
singular point, 622
slack variables, 594
Slater’s condition, 690, 691
softmax function, 468
son functions, 367, 381
sparse, 325, 367

matrix, 35
stability, 5, 491, 497, 501
stack, 116

Index 787

standard
deviation, 210
error, 283
form

of a linear problem, 586
of a nonlinear problem, 621
of an equality-constrained prob­

lem, 622
normal distribution, 225

statistic, 246
steepest descent, 536
Stirling’s approximation, 85, 86, 88-

90, 95
stochastic, 180, 743

dynamic optimization, 743
hill climbing, 301
hill sliding, 301
model, 180

Strassen algorithm, 32, 69
strict minimizer, 520
strictly

concave function, 668
convex function, 668
separated sets, 582

strong duality, 685, 690
linear, 609

strongly connected, 111
subgraph, 109
sublinear, 11, 528
substitution rule, 57
successive approximation, 729, 735, 736
summation

by parts, 38
changing order of, 26
linearity, 20
product rule, 38
techniques, 37

superlinear, 528
superposition principle, 323
support

of a continuous distribution, 224
of a discrete distribution, 212
of a function, 212, 367

support vector classifier, 680
hard-margin, 689
soft-margin, 695

supporting
half space, 582

hyperplane, 582
supporting hyperplane, 580
swamp the prior, 271

tangent
curve, 464
plane, 473
space, 473, 625
vector, 464

target distribution, 292
Taylor formula

multivariate, 478
univariate, 477

telescoping series, 22
Thompson sampling, 755
thrice continuously differentiable, 477
top-down dynamic programming, 143
total

derivative, 467
probability, 195

transition probability, 744
translation operator, 38
trapezoid rule, 443
traveling salesman problem, 176
tree, 117

AVL, 124
B+tree, 136
B-tree, 131
binary, 118
directed rooted, 113, 117
undirected, 113

truncated
exponential distribution, 293
Fourier series, 339

twice continuously differentiable, 476
twiddle factor, 352

unbiased sample variance, 248
unconstrained optimization, 520
underflow, 489
undetermined coefficients, 447
uniform distribution, 224
unimodal, 82
unit round-off, 487
univariate random variable, 228
utility, 520, 717

value
function, 732

788 Index

iteration, 725, 728
of a policy, 718

Vandermonde matrix, 447, 454
variance, 210
velocity, 464
vertex

of a convex set, 588
of a graph, 108, 109

walk, 110
Wallis integral, 89, 94
Watson’s lemma, 98
wavelet, 325, 366

analysis, 323
approximation, 372
decomposition, 376
detail, 372

weak
duality, 608, 688
Slater condition, 690

Weierstrass approximation, 405, 406,
409

weight
for numerical quadrature, 441
function, 423
of graph edge, 152

well-conditioned problem, 493
well-ordered set, 49
well-ordering axiom, 50
white noise, 353
Wilkinson polynomial, 428
Wolfe conditions, 541

Young’s inequality, 675

zero locus, 579

у Humpherys is a research professor at the
sity of Utah School of Medicine, the former
:hair of the SIAM Activity Group on Applied
jmatics Education, and a two-term member of
^M Education Committee. He is the recipient
ational Science Foundation CAREER award,
search spans a wide range of topics in applied
)mputational mathematics, from nonlinear
I differential equations to network sciences to
ne learning.

J. Jarvis is a professor of mathematics at
im Young University whose research has
rily been in geometric problems arising from
:s. He is the recipient of a National Science
lation CAREER award and the MMAs Deborah
■anklin Tepper Haimo Award for Distinguished
sity Teaching of Mathematics.

of Summation — 1.7 Products ar
Proof of the Master Theorem —
— 2.2 The Beta Function ant
3.1 Theory of Graphs — 3.2 Trees
Search Trees — 3.4 Priority Queue
Dynamic Programming — 4.2 Gr
Hard Problems — 5 Probability -
Paradoxes, and Pitfalls — 5.4 f
5.6 Continuous Random Variable
Estimation — 6.2 The Law of L;
— 6.5 Bayesian Statistics — 7 R<
Hashing — 7.4 Simulated Annealin
Series — 8.4 Convergence of For
— 8.8 Haar Wavelets — 8.9 Discret
9 Polynomial Approximation and
Approximation — 9.4 Interpolate

— 9.7 Clenshaw-Curtis and Gai
10.3 Implicit Function Theorem c
Floating-Point Arithmetic — 11.2 /
— 12 Unconstrained Optimizati
12.4 Newton and Quasi-Newton
Convergence of the Conjugate-G
and Separation — 13.3 Fundamet
— 14 Nonlinear Constrained Optic
Condition — 14.3 Lagrange's Sec
Second-Order KKT — 14.6 Remo

Design by Sarah Kay Miller

Optin
Dualif
16 Dy

ISBN Ч7й-1-Ы1Ч7Ь-05-2
I 40000

47А1Ы1П7Ь05В

I Convex Fun
g Duality — 1E
nation — 16.1

Ofnn Io nt I l~D\/ooooi/o Anf i mi wnf юг

	Algorithms, Approximation, Optimization

	Foundations of Applied Mathematics

	Volume 2

	Algorithms, Approximation, Optimization

	Overview

	Why Algorithms, Approximation, and Optimization?

	To the Instructor

	About This Text

	Teaching from the Text

	Courses Taught from This Book

	Instructors New to the Material

	To the Student

	Origins

	Python and Pseudocode

	Acknowledgments

	What Is an Algorithm?

	What Do We Want from an Algorithm?

	1.1 Complexity

	1.1.1 Big-0 and Little-o Notation

	1.1.2 Example: Complexity of Long Addition

	1.2 Leading-Order Behavior

	1.2.1 Leading-Order Behavior

	1.2.2 Merging and Sorting

	1.2.3 Leading Order for Long Addition and Multiplication

	1.3 Summation

	1.3.1 Basic Sums and Differences

	1.3.2 Difference Operator

	1.3.3 Fundamental Theorem of Finite Calculus

	1.4 Reindexing and Changing Order of Summation

	1.4.1 Reindexing

	E № = Я61 + c) + /(e2 + c) + • • • + /(en + с) = E /(e + c)- D

	E = E^(fc+c)-

	1.4.2 Changing Order of Summation

	52 /O’fc)= 52 52

	££./ш) = 52 ж/о = ££ж/о-

	5252/ол)	5212я^)

	5252M’fc)

	52 /о^) = 52Е/о>м = 5212/о>м.

	1.5 Nested Loops

	1.5.1 Aside: Floating-Point Operations

	1.5.2 Matrix-Vector and Matrix-Matrix Multiplication

	EE 1+E4

	1.5.3 *Loop Interchange

	1.6 Additional Techniques of Summation

	1.6.1 Product Rule and Summation by Parts

	1.6.2 Rising and Falling Powers

	= 52(fc+ir = 52fc“ = I2A:™

	1.6.3 Inclusion-Exclusion

	E zW’Ei-1)**1	E E /и-

	= E(-i)‘+1 E E /(«>+ E л»)

	-E(-i)‘+1 E E «')■

	E E /м= E E fM-

	+E(-i)‘+! E E Л')

	= E(-i)‘+1 E E ■№>+ E л»)

	= E(-D‘+1 E E «')

	+ E(-i)w E E

	1.7 Products and Counting

	1.7.1 The Multiplication Rule

	1.7.2 Permutations

	1.7.3 Combinations and Rearrangements

	1.7.4 Combinatorial Identities

	1.8 Division and Divisors

	1.8.1 Divisibility and the Division Theorem

	1.8.2 Greatest Common Divisors

	1.8.3 The Euclidean Algorithm

	1.8.4 Extended Euclidean Algorithm

	1.9 Primes and Remainders

	1.9.1 Primes

	1.9.2 Modular Arithmetic

	1.9.3 Fast Modular Exponentiation

	1.9.4 Finding Inverses in

	1.9.5 Fermat's Little Theorem

	1.9.6 *Application: Primality Testing

	1.9.7 *Application: RSA Cryptography

	1.10 Divide and Conquer

	A CRVHO NERD'S ।	

	WHAT WOULD

	ACTUALLY HAPPEN;	

	1.10.1 Examples of Recursive Algorithms

	1.10.2 Master Theorem

	1.10.3 Algorithms

	1.11 Proof of the Master Theorem

	1.11.1 Proof for n =

	1.11.2 Proof for General n G Z+

	5(«) = 52 afc/(nfc)'

	Exercises

	YY^-

	52 52	b’

	s = 52£(*+/co),

	Notes

	2.1 The Gamma Function and Stirling’s Approximation

	2.1.1 Simple Approximation of the Factorial Function

	2.1.2 The Gamma Function

	2.1.3 Stirling's Approximation

	2.1.4 Proof of Stirling's Approximation

	г ГГ 4fc2 - r Wf2n+1 _ 7r

	2.2 *The Beta Function and Laplace's Method

	2.2.1 The Beta Function

	2.2.2 Combinatorial Identities Revisited

	2.2.3 Trigonometric Integrals

	2.2.4 Laplace's Method: Simple Version

	Й/'Ш’

	2.2.6 Asymptotic Expansions

	2.3 *Laplace's Method and Stirling Improved

	2.3.1 Extending Big-0 and Little-o

	2.3.2 Watson's Lemma

	2.3.3 Laplace's Method

	2.3.4 Stirling's Approximation Refined

	Exercises

	Notes

	3.1 Theory of Graphs

	3.1.1 Graphs

	3.1.2 Walks, Paths, Cycles, and Connectedness

	3.1.3 Adjacency Matrices

	3.2 Trees and Tree-Based Data Structures

	3.2.1 Undirected Trees

	3.2.2 Linked Lists, Stacks, and Queues

	3.2.3 Directed Rooted Trees

	3.3 Search Trees

	3.3.1 Binary Search Trees

	3.3.2 Balance

	3.3.3 AVL Trees

	3.4 Priority Queues and Heaps

	3.4.1 Priority Queues

	3.4.2 Heaps

	3.4.3 Constructing a Heap

	3.5 *B-Trees

	№1

	Exercises

	Notes

	4.1 Dynamic Programming

	4.1.1 Top-Down Dynamic Programming

	4.1.2 Bottom-Up Dynamic Programming

	4.1.3 Bellman Optimality

	4.2 Graph Search Algorithms

	4.2.1 Depth-First Search

	4.2.2 Breadth-First Search

	4.2.3 BFS versus DFS

	4.2.4 Shortest Path via Dijkstra’s Algorithm

	4.3 Minimum Spanning Trees

	4.3.1 Prim's Algorithm

	4.3.2 Kruskal's Algorithm

	4.4 Huffman Encoding

	4.4.1 Introduction to Coding

	4.4.2 Binary Codes and Trees

	4.4.3 Huffman Encoding

	4.4.4 *Huffman Encoding Is Optimal

	4.5 Hard Problems

	4.5.1 Knapsack Problems

	4.5.2 Traveling Salesman Problem

	ofcisi2) =o(f; E Й =o(L

	/(*) = 12 QW _ 1)<fc~2 = QV = - i)(i+i)n-2-

	iz _ =/(i)+(n - i)(n _ i)(n _ 2)+

	4.5.3 Better Approaches

	Exercises

	Notes

	5.1 Probability Theory

	5.1.1 Axioms of Discrete Probability

	5.1.2 Equally Likely Outcomes

	5.2 Conditional Probability and Bayes’ Rule

	5.2.1 Conditional Probability

	5.2.2 The Chain Rule

	5.2.3 Law of Total Probability

	р(г) = £р(г|£?ат)-

	5.2.4 Bayes' Rule

	5.3 Independence, Paradoxes, and Pitfalls

	5.3.1 Independence

	5.3.2 Some Pitfalls in Conditioning

	5.3.3 *Pitfalls of Assuming Independence

	5.4 Discrete Random Variables

	5.4.1 Definition and Examples

	5.4.2 Expectation

	e[x] = ^2 np(x =n) = Y n2~n

	= a 52	+ /3 52 r(w)p(w)

	Е[/г(Х)] = 52/г(г)Р(Х = г) = £ h(i)gx(i).

	4H = E^P(-V = ») = E— =e,/2-l

	5.4.3 Variance

	5.5 Discrete Distributions

	5.5.1 Bernoulli Distribution

	= x(4

	5.5.2 Binomial Distribution

	5.5.3 Poisson Distribution

	5.5.4 *Negative Binomial Distribution

	5.6 Continuous Random Variables

	5.6.1 Continuous Random Variables

	5.6.2 Some Important Continuous Distributions

	Г To

	5.7 Multivariate Random Variables

	5.7.1 Multivariate Random Variables

	5.7.2 Density, Mass, and Distribution Functions

	9i(a) = 52 5x(x).

	5.7.3 Expected Value

	= Y = 52 x^x(x) =

	5.7.4 Covariance

	5.7.5 Common Multivariate Distributions

	Exercises

	=1-П(!-т))-

	Notes

	6.1 Estimation

	6.1.1 Biased and Unbiased Estimators

	E-2 = -

	6.1.2 Maximum Likelihood Estimation

	= (6-8)

	6.1.3 ^Comparing Estimators

	6.2 The Law of Large Numbers

	6.2.1 Important Inequalities

	6.2.2 Law of Large Numbers

	6.3 The Central Limit Theorem

	6.3.1 The Central Limit Theorem

	6.3.2 Approximation of Common Distributions by Normal

	6.4 *Proof of the Central Limit Theorem

	6.4.1 Characteristic Functions

	6.4.2 Proof of the Central Limit Theorem

	6.5 Bayesian Statistics

	6.5.1 Example: The Bernoulli Distribution

	P(p! x) = _ IT.,

	P(HlX) = P(H)-(l»P(C)-(-^^ \	\ ГАК/

	6.5.2 MAP Estimate

	6.5.3 Conjugacy

	6.5.4 Example: Gamma(r, 0) with Fixed Shape r

	Exercises

	Notes

	7.1 Monte Carlo Methods

	7.1.1 Expected Value via Monte Carlo

	7.1.2 Monte Carlo Integration with Uniform Distributions

	7.1.3 Accuracy and High-Dimensional Integration

	7.2 Importance, Inversion, and Rejection Sampling

	7.2.1 Monte Carlo Integration with Nonuniform Distributions

	7.2.2 Importance Sampling

	7.2.3 Inversion Sampling

	7.2.4 Rejection Sampling

	TT7 = iv106,1+ l)

	7.3	Hashing

	7.3.1 Dictionaries and Sets

	7.3.2 Hash Tables

	7.3.3 Hash Collisions

	7.4	*Simulated Annealing

	7.4.1 Stochastic Hill Sliding

	7.4.2 Simulated Annealing

	7.5 *Genetic Algorithms

	7.5.1 Crossover

	7.5.2 Mutation

	7.5.3 Selection

	GENETIC ALGORITHMS TiP:

	7.5.4 Encoding

	7.5.5 Adjusting Crossover and Mutation

	7.5.6 Additional Considerations

	Exercises

	Notes

	8.1 Complex Numbers

	8.1.1 Basics of Complex Numbers

	8.1.2 Euler's Formula and Graphical Representation

	8.1.3 Roots of Unity

	8.2 Fourier Series

	8.2.1 Complex-Exponential Fourier Series

	|(Ж) + Ж)) 1(/(T) + /(O))

	8.2.2 The Theory of Music

	8.2.3 *Gibbs Phenomenon

	8.3 *Trigonometric Fourier Series

	8.3.1 Formulation

	8.3.2 Equivalency

	8.4 Convergence of Fourier Series

	8.4.1 The Riemann-Lebesgue Theorem

	£ ы2 = надш2 < над]ii2 + и/-ад]н2 = ii/ii2 < oo,

	8.4.2 The Dirichlet Kernel

	8.4.3 Proof of Theorem 8.2.16

	Г(/(*

	± s) - /(t±))£>n(s)ds

	±s) -	ds

	8.5 The Discrete Fourier Transform

	8.5.1 Sampled Functions and the Discrete Inner Product

	8.5.2 The Discrete Fourier Transform

	f = (/0,...,/n-i) = £AwW.

	8.5.3 The Inverse DFT

	8.5.4 Fast Fourier Transform

	8.5.5 A Foray into Filtering with Fourier

	8.6 Convolution

	8.6.1 Circular Convolution

	8.6.2 The Finite Convolution Theorem

	n(f * g)fc = £ Jfc(f * g)> = £ Jk (£

	8.6.3 Fast Convolution

	8.6.4 *Linear Convolution

	8.7 Periodic Sampling Theorem

	8.7.1 Band-Limited Functions

	8.7.2 Aliasing

	8.7.3 Periodic Sampling Theorem

	8.7.4 Antialiasing

	8.8 Haar Wavelets

	8.8.1 The Haar Father and Sons

	8.8.2 Vector Space Structure

	8.8.3 Haar Mother and Daughters

	(О	=

	(iv)	ll^.fclli = 2“J-

	8.8.4 Daughters and Sons Are Complements

	8.8.5 *Uniform Approximation by Haar Sons

	original	approximation

	detail

	8.9 Discrete Haar Wavelet Transform

	8.9.1 Sampled Functions and the Discrete Inner Product

	8.9.2 Wavelet Decomposition

	/(t) = 2(^2, o(£) + 0.8(/>2,i(£) + 3.1<^2,2(£) — 2(^2,з(^)*

	8.9.3 The Fast Wavelet Transform

	8.10 *General Wavelets

	8.10.1 Scaling Function

	52h2k = i and 52/i2fc+i = 1-	(8-77)

	8.10.2 Wavelets: Mother and Daughters

	8.10.3 Wavelet Decomposition

	8.11 *General Fast Wavelet Transform and Examples

	8.11.1 Sampling for General Wavelets

	8.11.2 The FWT for General Wavelets

	f = 52	(8-87)

	8.11.3 The Daubechies Wavelet

	8.11.4 Convolutional Form of FWT

	Exercises

	ж=? (<8-95>

	fg = 52cexf' (00

	Notes

	9.1 Polynomial Approximation

	9.1.1 The Bernstein Transformation

	9.1.2 Weierstrass Approximation

	9.2 Interpolation

	9.2.1 Interpolation

	- JI _ •	(9-3)

	9.2.2 Lagrange Interpolation

	9.2.3 Barycentric Lagrange Interpolation

	v- Wj

	9.2.4 *Newton Interpolation

	9.3 Orthogonal Polynomials for Approximation

	9.3.1 Legendre Polynomials

	9.3.2 Monic Chebyshev Polynomials

	9.3.3 Chebyshev Polynomials

	9.3.4 Other Inner Products and Orthogonal Polynomials

	9.3.5 *Further Analysis of Legendre Polynomials

	9.4 Interpolation and Approximation Error

	9.4.1 Interpolation Error

	Degree 2

	Degree 4

	Degree 6

	Degree 8

	Degree 10

	Degree 14	Degree 16

	9.4.2 Monic Polynomial Approximation

	9.4.3 Error for Interpolation at Chebyshev Roots

	II(a:-zfc)

	9.4.4 Interpolation at Chebyshev Extremizers

	= 1(Ж2-1Я_1(Ж)1 = ^Т

	9.5 Fast Chebyshev Interpolation

	9.5.1 Fast Chebyshev Interpolation

	9.5.2 *Chebyshev Projections

	9.6 Integration by Interpolation

	9.6.1 Numerical Quadrature

	9.6.2 Quadrature by Polynomial Interpolation

	9.6.3 Newton-Cotes Quadrature

	9.6.4 Method of Undetermined Coefficients

	9.7 Clenshaw-Curtis and Gaussian Quadrature

	9.7.1 Clenshaw-Curtis Quadrature

	9.7.2 Gaussian Quadrature

	9.7.3 Convergence

	9.7.4 *Gaussian Quadrature with Other Orthogonal Polynomials

	Exercises

	Notes

	10.1 Directional, Partial, and Total Derivatives

	10.1.1 Curves and Tangent Vectors

	10.1.2 Directional Derivatives

	10.1.3 Partial Derivatives

	10.1.4 The Derivative

	10.2 Properties of Derivatives

	10.2.1 Linearity

	10.2.2 Product Rule

	10.2.3 Chain Rule

	10.2.4 Tangent Planes

	10.3 Implicit Function Theorem and Taylor's Theorem

	10.3.1 Implicit Function Theorem

	10.3.2 Higher-Order Derivatives

	A/(x).

	10.3.3 Taylor's Theorem

	Exercises

	/(x) = log 52 ^(x)

	g.i°^W_*WT-4 ’’ 1

	Notes

	11.1 Floating-Point Arithmetic

	11.1.1 Fundamentals of Floating Point

	11.1.2 A Model of Floating-Point Arithmetic

	11.1.3 Practical Considerations for Using Floating Point

	11.1.4 *Financial Computations

	11.2 A Brief Review of Conditioning

	11.2.1 Condition Number of a Function

	(ц-e)

	11.2.2 Condition of Finding a Simple Root of a Polynomial

	11.2.3 Condition Number of a Matrix

	« = М-11|А^Ь<цл||||л-1||.	(н.п)

	ll^xll llxll

	HA-iAyll My||

	llyll

	11.3 Stability of Numerical Algorithms

	11.3.1 Forward Error

	11.3.2 Backward Error

	f(x,y) = fl(®) ф fl(y)

	= ж(1 + <J2)(1 + <5i) + y(l + 53)(1 + *1)

	< x + у + ж(<52 + *i) + 2/(*з + *1) + (x + 2/)e machine t

	ll^ll < (^machine + ^machine) II II Il(*,?/) и _ ii(*V)ii

	— 2smachine + ^machine*

	11.3.3 Backward Stability

	11*11 llxll

	< C^machine-

	и и £ O(6machine)	^machine 0*

	^(#) — #2(1 + 2$i 4- $2 4- $3)

	o ^machine 4” О (^machine)

	I I £ О (^machine),

	g(x) = fl(#) ф 1 = (#(1 4- $2) 4- 1)(1 + $1)

	= (#(1 4- $г)(1 + ^i) 4"^i) 4" 1

	11.3.4 Numerical Stability

	и и — machine

	|д(ж + J) - g(x)| |р(ж + <5)|

	fl(xi) ® й(з/2)

	А(ж2) ® fl(y2)

	® fl(yi)

	11.3.5 *Conditioning and Stability

	IIZ?J^X)I1 e OMxkmachine).	(U-14)

	11.4 Computing Derivatives

	11.4.1 Symbolic Differentiation

	11.4.2 Numerical Difference Quotients

	11.4.3 Complex Step Differentiation

	11.4.4 Brief Overview of Algorithmic Differentiation

	11.4.5 *More on Forward and Centered Differences

	r> ti A /(xo + /zei + /ie>)-/(xo + /zei)-/(xo + /zej) + /(xo)

	H” ^machine

	2CQ	^machine

	H” ^machine*

	\f \x0) ~ f (жо)| —	।	I" ^machine-

	3/ 3	। 1	\

	у	Q “r 2 ^machine j •

	2C

	+ ^machine).

	Exercises

	^^machine

	1	ks machine

	Notes

	12.1 Fundamentals of Unconstrained Optimization

	12.1.1 Mathematical Descriptions

	12.1.2 First-Order Necessary Condition

	12.1.3 Second-Order Conditions

	o2/(x‘) =

	12.2	One-Dimensional Numerical Optimization

	12.2.1 Convergence

	12.2.2 Bisection Algorithm for Critical Points

	12.2.3 Newton's Method in One Dimension

	12.2.4 Newton as Quadratic Approximation

	12.2.5 The Secant Method

	/"(xfc) ~ Г(^)~Г(^-1)	(12 8)

	12.2.6 Stopping Criteria

	12.2.7 *Proof of Theorem 12.2.10

	12.3	Gradient Descent

	12.3.1 Gradient Descent Methods

	12.3.2 Exact Gradient Descent

	12.3.3 Exact Gradient Descent for Quadratics

	12.3.4 Other Gradient Descent Methods

	12.4 Newton and Quasi-Newton Methods

	12.4.1 Newton's Method

	12.4.2 Newton as Quadratic Approximation

	12.4.3 Descent of Newton

	12.4.4 Newton with Line Search

	12.4.5 Levenberg-Marquardt Modification

	12.4.6 Gauss-Newton for Nonlinear Least Squares

	з	з

	/(x) = 52(x)= 52 (di ~ iix - a* ii)2 г=0	i=0

	12.5 The BFGS Method

	12.5.1 Low-Rank Updating

	12.5.2 Inverting Low-Rank Updates

	12.5.3 Two Requirements

	12.5.4 BFGS

	12.5.5 *Sherman-Morrison-Woodbury

	12.6	Conjugate-Gradient Methods

	12.6.1 Conjugate Directions

	12.6.2 Conjugate-Gradient Method

	12.6.3 *Conjugate-Gradient Method for Nonquadratic Problems

	12.7	Convergence of the Conjugate-Gradient Method

	Exercises

	Гк~ге = -52а>Л<1*' j=e

	rkrk = - 52 «id^Ffc = - 52 ai (di> rk)A ■ i—l	i—£

	Notes

	13.1 Convex and Affine Sets

	13.1.1 Convex Sets

	13.1.2 Convex Combinations and Convex Hulls

	13.1.3 Affine Sets and Functions

	13.1.4 Hyperplanes and Half Spaces

	13.2 Projection, Support, and Separation

	13.2.1 Projection to a Convex Set

	13.2.2 Support and Separation

	13.2.3 Separating Hyperplanes

	13.3 Fundamentals of Linear Optimization

	13.3.1 Standard Form for Linear Optimization

	13.3.2 The Fundamental Theorem

	13.3.3 Applications

	13.3.4 *Proof of Minkowski-Steinitz

	13.4 The Simplex Method I

	13.4.1 Slack Variables and Vertices

	(13.8)

	x\ 4- 2a?2 < 3, X2 >0

	13.4.2 The Simplex Method

	13.4.3 Another Example

	13.5 The Simplex Method II

	13.5.1 Determining Feasibility

	13.5.2 Example of an Auxiliary Problem

	13.5.3 Cycling and Degeneracy

	13.5.4 Complexity of Linear Optimization

	13.6 Duality

	13.6.1 Weak Duality

	У o.

	13.6.2 Strong Duality

	13.6.3 Complementary Slackness

	13.6.4 An Economic Interpretation of Duality

	13.6.5 *Proof of Strong Duality

	c]

	Exercises

	Notes

	/(*)

	14.1 Equality-Constrained Optimization

	14.1.1 Regular and Singular Points

	14.1.2 The Geometry of Feasible Sets

	14.1.3 Tangent Spaces and Normal Spaces of Parametrizations

	14.2 Lagrange's First-Order Condition

	14.2.1 Lagrange's First-Order Condition

	14.2.2 The Lagrangian

	14.3	Lagrange's Second-Order Conditions

	14.3.1 Statement of Results and Examples

	14.3.2 Proof of the Lagrange Second-Order Necessary Condition

	D2/(x’J + ^2 Aji>2Mx*) v + (w(x*) + А*Т£>Я(х*)} 7"(0) > 0.

	14.3.3 Proof of the Lagrange Second-Order Sufficient Condition

	14.4	Karush-Kuhn-Tucker First-Order Conditions

	14.4.1 The Locus of Binding Constraints

	14.4.2 The KKT First-Order Conditions

	14.4.3 Examples

	% (x, Л, /z) = /(x) + АтЯ(х) + /zTG(x).

	14.4.4 Lagrange as a Special Case of KKT

	0 = Dx^ (x*, A*, 0) = Dxf + X*DxH + 0T DXG,

	14.4.5 Proof of the KKT First-Order Conditions

	£>/(x*) + (А*)тЯЯ(х*) + (/z*)TDG(x*) = 0.

	14.5 *Second-Order KKT

	14.5.1 Second-Order Necessary Condition

	Bm a1*’-1;»)

	D/(x*)s* = -AT£>#(x*)s* - (/z*)TDG(x*)s* = -(/z*)TDG(x*)s*.

	14.5.2 Examples

	14.5.3 Second-Order Lagrange as a Special Case of KKT

	14.6 Removing Affine Constraints

	14.6.1 Example: Line Fitting with Ordinary Least Squares

	14.6.2 Total Least Squares

	14.6.3 Generalization: Removing Affine Constraints

	14.6.4 Application: Portfolio Optimization

	= EEwiw>Ev-

	14.7 Numerical Methods for Constrained Optimization

	14.7.1 Conditional Gradient

	14.7.2 Gradient Projection

	v +	if aTv >b-

	14.7.3 Newton's Method with Constraints

	14.7.4 Initialization

	Exercises

	x > 0.

	/(Xfc+i) - y(xfc)

	Notes

	15.1 Convex Functions

	15.1	.1 Convex Functions

	15.1.2 Characterizations of Convex Functions

	15.2 Jensen's Inequality

	15.2.1 Epigraphs

	15.2.2 Jensen's Inequality—Finite Form

	15.2.3 Jensen's Inequality—Integral Form

	15.3 Fundamentals of Convex Optimization

	15.3.1 Definition and Examples

	/ = {x G Q | /(x) < oo, G(x) 0, Ax - b = 0} c Q

	15.3.2 Consequences of Convexity for Optimization

	15.3.3 Rewriting Problems as Convex Optimization Problems

	15.4 Weak Duality

	15.4.1 The Lagrange Dual

	x fo	ifG(x)^0,

	/1 >2 0.

	15.5 Strong Duality

	15.5.1 Strong Duality from Weak Slater

	15.5.2 Strong Duality Implies KKT First Order

	(i)	2?xJ^(x*,A*,/Lt*) = O, and

	p* = /(x*) = supJ^(x*, A,/Lt) > J^(x*, A*,/Lt*)

	> inf^(x,A*,/x*) =	= d*,

	15.5.3 Convex and KKT Imply Optimality and Strong Duality

	15.5.4 Equivalent Primals May Have Different Duals

	Zill = 0.

	15.5.5 *Proof of Strong Duality from Weak Slater

	^m(x) < 0,

	V = {(u, w) E x R | 3x e Q, G(x) u, /(x) < w}.

	15.6 Interior Point Methods I: The Barrier Method

	15.6.1 Formulation

	15.6.2 Limiting Behavior

	y*(e).

	15.6.3 Naive Implementation

	15.7 Interior Point Methods II: The Primal-Dual Method

	15.7.1 General Implementation of the Barrier Method

	(x, /Lt, A) = /(x) + /LtTG(x) + AT(Ax — b).

	r(x, A) =

	I l

	15.7.2 Formulation of the Primal-Dual Method

	Ax

	Dr(x, /x, A) A/Lt = — r(x, /Lt, A),

	AA

	Exercises

	, I„) = ^2 Ci П ’ i=l j=l

	0 a Cl.

	Notes

	Io

	16.1 Finite-Horizon Cake Eating

	16.1.1 Euler Conditions

	16.1.2 *Two Canonical Examples

	16.1.3 The Optimality Principle

	16.1.4 Optimal Growth

	16.2 Dynamic Optimization Problems and Value Iteration

	16.2.1 The General Framework

	16.2.2 Example: Human Capital

	16.2.3 Motion on a Grid

	u(a) =

	16.2.4 *Example: Inventory Management

	16.2.5 Value Iteration

	u (n v)+ (°’ °’ ~v)

	v)+(fc -n) v)

	16.2.6 Example: Value Iteration for Motion on a Grid

	16.2.7 *Variants and Applications of Investment-Consumption

	THE REASONI PM SO INEFFICIENT

	16.3 Infinite-Horizon Dynamic Optimization

	16.3.1 Cake Eating

	16.3.2 *A Canonical Example Revisited

	oJ-Д

	“=(Г^р1О1!в+гЬ1О|!(1-'’)-

	16.3.3 Blackwell’s Theorem

	16.3.4 Successive Approximation

	16.3.5 Policy Iteration

	Exercises

	Notes

	17.1	Markov Decision Processes

	17.1.1 Markov Decision Processes

	17.1.2 Example: Stochastic Optimal Growth

	Vf e {o,...,t- i}.

	17.1.3 Example: Unemployment and Partial Insurance

	17.1.4 Example: Uncertain Robot Motion

	17.2	Bandit Problems

	17.2.1 Multiarmed Bernoulli Bandits

	17.2.2 Indexing

	52=

	17.2.3 *Rough Argument for Bellman

	17.3 Thompson Sampling

	17.3.1 The Bayesian Framework

	17.3.2 Thompson Sampling

	17.3.3 Application: Web Page Experiments

	Exercises

	Notes

