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Preface

Overview
Why Algorithms, Approximation, and Optimization?

Moore’s Law! has given us a half century of persistent and rapid innovation, where
technological devices have been continually getting smaller, cheaper, and faster. As
a result, our world today is stocked with computers. Not just desktops, laptops,
cell phones, and tablets, but also digital health and wearable devices, video game
consoles, smart appliances, and countless embedded systems.

Taking a broad view, we see a computer as a machine or network of machines that
executes instructions in a systematic way to process and communicate information.
When organized formally, these instructions take the of form of algorithms that are
encoded into hardware or software. The process of executing algorithms is called
computing.

Beyond the many and assorted electronic computing devices, algorithms are
also found in biological systems. For example, the instructions for cell creation and
reproduction are genetically encoded in DNA, which gets transcribed into RNA
and then translated into rules for producing proteins—the building blocks of cells.
These transcription and translation processes are also a type of computing.

Algorithms are also found in collective behavior. Sports teams call and execute
plays with instructions so that every player knows what to do and how to adapt to
varying circumstances on the field. Honey bees communicate the location of nectar
to other bees through a waggle dance that encodes and transmits a recommended
flight plan. In financial markets, a market maker on a trading floor clears trades
and continuously reports prices for a variety of goods and securities being traded
through a type of auctioning process. Wandering ants leave trails of home-finding
pheromones when foraging so they can return the way they came, and when bringing
back food to the nest, they leave food-finding pheromones to communicate to other
ants where the food source is. As more ants follow the trail, they contribute to
an increasingly stronger scent, which results in large self-organized trails of ants

1This refers to the observation that the number of transistors in computer chips has doubled

approximately every two years for several decades. Although the doubling rate has slowed in
recent years, there is still persistent growth in available computing power that is said to “extend”
Moore’s law in practical terms.

Xiii
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devouring the food source. In all of these cases, the collective behavior is really just
collective computing of algorithms.

In each of the examples above, information is processed and communicated in
a systematic way that can be codified into an algorithm. This broad and holistic
view of algorithms encompasses electronic computing devices, biological systems,
and collective behavior under a common umbrella of computational science and
allows us to use the tools of mathematical and statistical analysis to explore the
performance, complexity, and accuracy of algorithms. Algorithms are the focus of
the first part of this book.

An important part of studying and using algorithms is the recognition that
the world is too complex to be represented exactly. And most problems are too
complex to be solved exactly. The way we make sense of the world is through
imperfect representations, that is, through approrimation. Every representation
we make is an approximation that encodes some information without encoding all
information. Knowing what information to keep and what to lose is essential to
making an approximation useful.

For example, a map of a city is a very rough approximation of the reality it
represents, containing only the essential information about locations and spatial
relationships for key landmarks. But the very fact that it does not contain all the
details of reality is what makes it useful. When I am lost, a map allows me to
quickly identify where to go, whereas the full reality of all the buildings, streets,
cars, people, noise, and lights can actually overwhelm me with unnecessary infor-
mation and interfere with my ability to navigate. In this case the approximation
is much more suitable for computing than a perfect representation of reality would
be. The imperfection of the approximation is part of what allows it to be useful.
As Leonard Cohen sings in “Anthem,” “There is a crack in everything. That’s how
the light gets in.” The second part of this book is focused on approximation and
on using powerful mathematical tools for constructing, analyzing, and evaluating
approximations.

Finally, the end goal of all our computing and approximating is to make the world
better. Whether we want things to be faster, stronger, cheaper, smarter, easier,
healthier, or kinder, we are perpetually engaged in the process of optimization.
Nearly every problem in the world can be formulated as an optimization problem,
so algorithms for optimization are almost universal in their applicability.

Most optimization algorithms are iterative in nature. This means that they start
with an initial guess (or approximate solution) and compute incremental improve-
ments with each iteration giving increasingly more accurate approximate solutions,
repeating, again and again, until the solution is close enough that it is essentially
indistinguishable from the exact solution. Thus, optimization requires a solid un-
derstanding of approximation and, of course, algorithms.

These three topics of algorithms, approximation, and optimization form the core
of modern computational science, giving us a wide-angle lens to lift our attention
beyond the latest devices and platforms. And computational science allows us to
peer beyond the jargon-filled barriers of various disciplines and expose the funda-
mental ideas uniting and driving the world of science and technology. Our world is
one of algorithms, approximation, and optimization.
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To the Instructor
About This Text

This text gives a modern approach to computational science, by which we mean the
fundamental mathematical ideas and tools of computing. The three main topics of
algorithms, approximation, and optimization form the core.

The intent of this text and the associated computer labs is to attract students
into the mathematical sciences and retain them by modernizing the curriculum and
connecting theory to application in a way that makes them want to understand the
theory, rather than just tolerate it. In short, a major goal of this text is to entice
them to hunger for more.

The content in this volume could be reasonably described as upper-division
undergraduate or first-year graduate-level mathematics. The mathematical prereg-
uisites are vector calculus and linear algebra. The computational prerequisite is
the equivalent of at least one semester of computer programming. Most of our stu-
dents also have had a semester of undergraduate-level, single-variable real analysis
as well.2 However, mastery of the details of the undergraduate analysis class is less
important than the mathematical maturity and mental discipline that comes from
a rigorous study of analysis.

This volume can be taught as a stand-alone, two-semester sequence for advanced
undergraduates or beginning graduate students. But it can also be part of a larger
curriculum in applied and computational mathematics (for example, as currently
used at Brigham Young University), taught in conjunction with the first volume of
this series, Foundations of Applied Mathematics: Volume 1, Mathematical Analysis
[HJE17], as two parallel, year-long courses.

There is a supplementary computer lab manual, containing over 25 computer
labs to support this text. This text focuses more on the theory, while the labs
cover application and computation. Although we recommend that the manual be
used in a computer lab setting with a teaching assistant, it can be used without
instruction. The concepts are developed thoroughly, with numerous examples and
figures as pedagogical breadcrumbs, so that students can learn this material on their
own, verifying their progress along the way. The labs and other classroom resources
are open content and are available at

https://bookstore.siam.org/ot166/bonus.

Teaching from the Text

In our courses we teach each section in a 50-minute-long lecture. We require students
to read the section carefully before each class so that class time can focus on the
parts they find most confusing, rather than on just repeating to them the material
already written in the book.

There are roughly five to seven exercises per section. We believe that students
can realistically be expected to do all of the exercises in the text, but some are
difficult and will require time, effort, and perhaps an occasional hint. Exercises

28pecifically, we assume the reader has had exposure to a rigorous treatment of continuity, con-
vergence, differentiation, and Riemann integration in one dimension, as covered, for example, in
[Abb15].


https://bookstore.siam.org/otl66/bonus
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that are unusually hard are marked with the symbol {. Some of the exercises are
marked with * to indicate that they cover advanced material. Although these are
valuable, they are not essential for understanding the rest of the text, so they may
safely be skipped, if necessary. Exercises not marked with * should generally not
be skipped.

Throughout this book the exercises, examples, and concepts are tightly inte-
grated and build upon each other in a way that reinforces previous ideas and pre-
pares students for upcoming ideas. We find this helps students better retain and
understand the concepts learned and helps achieve greater depth. Students are en-
couraged to do all of the exercises, as they reinforce new ideas and also revisit the
core ideas taught earlier in the text.

Courses Taught from This Book
Full Year-Long Sequence

At BYU we teach a year-long advanced undergraduate-level course from this book,
proceeding straight through the book, skipping only the sections marked with *.
But this would also make a very good course at the beginning graduate level as well.
Graduate students who are well prepared could be further challenged by covering
advanced sections (marked with *) along the way.

One Semester: Algorithms with an Option of Approximation

The first seven chapters of the book make a good one-semester course on algorithms,
including probabilistic algorithms.

As an alternative to the full algorithms course, Chapters 1-4 with 8-9 give a good
one-semester course on classical algorithms and approximation without probability.
This could be supplemented, as time permits, with some of the fundamentals of
numerical computation from Chapter 11.

One Semester: Theory of Optimization

Chapters 11-17 (with a review of Chapter 10, as necessary, for those who are rusty
on multivariate differentiation) form a good one-semester course on optimization.
We have taught this course several times in various settings.

Advanced Sections

Some problems and sections are marked with the symbol * to indicate that they
cover more advanced topics. Although this material is valuable, it is not essential
for understanding the rest of the text, so it may safely be skipped, if necessary.

Instructors New to the Material

We’ve taken a tactical approach that combines professional development for faculty
with instruction for the students. Specifically, the class instruction is where the
theory lies and supporting media (labs, etc.) are provided so that faculty need not
be computer experts nor be familiar with the applications in order to run the course.
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Professors can teach the theoretical material in the text and use teaching assis-
tants, who may be better versed in the latest technology, to cover the applications
and computation in the labs, where the “hands-on” part of the course takes place.
In this way professors can gradually become acquainted with the applications and
technology over time, by working through the labs on their own time, without the
pressures of staying ahead of the students. This approach has worked well for fac-
ulty at BYU who were unfamiliar with the material before they were assigned to
teach from this book.

A more technologically experienced applied mathematician could flip the class
if they wanted to, or change it in other ways. But we feel the current format
is most versatile and allows instructors of all backgrounds to gracefully learn and
adapt to the program. Over time, instructors will become familiar enough with the
content that they can experiment with various pedagogical approaches and make
the program theirs.

To the Student

Each section of the book has several exercises, all collected at the end of each chap-
ter. Horizontal lines separate the exercises for each section from the exercises for
the other sections. We have carefully selected these exercises. You should work
them all (but your instructor may choose to let you skip some of the advanced exer-
cises marked with *)—each is important for your ability to understand subsequent
material.

Although the exercises are gathered together at the end of the chapter, we
strongly recommend that you do the exercises for each section as soon as you have
completed the section, rather than saving them until you have finished the entire
chapter. Learning mathematics is like developing physical strength. It is much
easier to improve, and improvement is greater, when exercises are done daily, in
measured amounts, rather than doing long, intense bouts of exercise separated by
long rests.

Origins

This curriculum evolved as an outgrowth of lecture notes and computer labs that
were developed for a six-credit summer course in computational mathematics and
statistics. This was designed to introduce groups of undergraduate researchers to
a number of core concepts in mathematics, statistics, and computation as part of
a National Science Foundation (NSF) funded mentoring program called CSUMS:
Computational Science Training for Undergraduates in the Mathematical Sciences.
This NSF program sought out new undergraduate mentoring models in the
mathematical sciences, with particular attention paid to computational science
training through genuine research experiences. Our answer was the Interdisciplinary
Mentoring Program in Analysis, Computation, and Theory (IMPACT), which took
cohorts of mathematics and statistics undergrads and inserted them into an in-
tense summer “boot camp” program designed to prepare them for interdisciplinary
research during the school year. This effort required a great deal of experimenta-
tion, and when the dust finally settled, the list of topics that we wanted to teach
blossomed into eight semesters of material—essentially an entire curriculum.
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After we explained the boot camp concept to one visitor, he quipped, “It’s the
minimum number of instructions needed to create an applied mathematician.” Our
goal, however, is much broader than this. We don’t want to train or create a
specific type of applied mathematician; we want a curriculum that supports all
types, simultaneously. In other words, our goal is to take in students with diverse
and evolving interests and backgrounds and provide them with a common corpus of
mathematical, statistical, and computational content so that they can emerge well
prepared to work in their own chosen areas of specialization. We also want to draw
their attention to the core ideas that are ubiquitous across various applications so
that they can navigate fluidly across fields.

Python and Pseudocode

Throughout the book we give examples of algorithms. We generally use Python
instead of pseudocode because it gives a certain degree of precision that pseudocode
lacks, because it is useful for students to learn, and because it reads a lot like most
pseudocode anyway. Most of the Python syntax we use should be clear to someone
who has learned another programming language. When unusual syntax is used, we
give a brief explanation.
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Introduction to
Algorithms and
Analysis

The fundamental law of computer science: As machines become more powerful, the
efficiency of algorithms grows more important, not less.
—Nick Trefethen

Before the advent of the modern computer, many mathematicians focused on find-
ing closed-form solutions to highly idealized problems arising from such fields as
classical mechanics, electromagnetism, quantum theory, thermodynamics, and fluid
dynamics. Today, university libraries are still littered with dusty old volumes of
encyclopedic texts of special functions and general solutions to these kinds of prob-
lems.

Over the last several decades, it has become increasingly clear that most of the
important problems of modern science, technology, and even mathematics have no
hope of a closed-form solution. In some cases this is because real-world problems
are too messy or complex, but there are surprisingly many problems that are simple
to state and yet it has been proved that no closed-form solution can exist.

As an example, recall that the quadratic equation

ar’ +bzx+c=0

has the closed-form solution

—b =+ Vb2 — 4ac

Similar, but more complicated, formulas exist for the cubic and quartic equations;
however, Abel’s theorem guarantees that no general algebraic solution exists for the
quintic or for any higher-order polynomial equations [Art91, Theorem 9.9]. Thus,
for example, there is no closed-form algebraic solution for solving the equation

2° 4+ 22" —2® — 32 + 2 - 6 =0, (1.2)

but the intermediate value theorem easily shows that a root exists in the interval
[0, 2] because the polynomial gives a negative value when evaluated at z = 0 and a
positive value when evaluated at = = 2.
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Newton’s method is an algorithm that accurately approximates a zero of a
smooth function. It is an iterative procedure that, under fairly general conditions,
converges to the zero and is terminated when the desired accuracy is met. Given
an estimate x,, of the zero, the algorithm returns a new estimate x,41 given by

With f(z) as the left-hand side of (1.2) and using the initial guess zo = 1.0, the
algorithm (1.3) produces the following sequence, computed to 15 digits of accuracy:

xo = 1.000000000000000,
z1 = 2.200000000000000,
o = 1.804654426169757,
x3 = 1.549707343960059,
x4 = 1.431481800966775,
x5 = 1.406763770052249,
g = 1.405779606478647,
x7 = 1.405778093756038,
xg = 1.405778093752469,
g9 = 1.405778093752469.

Notice that the ninth iterate is the same as the eighth because the difference between
the two is smaller than the 15 decimals of accuracy provided. This gives us a
natural stopping rule, since we cannot improve the approximate solution without
first increasing the decimal length. In other words, to 15 decimal places, xg is the
best approximate solution of this zero of the polynomial.

The point of this example is to demonstrate that there are situations where an
iterative algorithm can provide an arbitrarily close approximation to the solution of
a problem even when there is no formula or closed-form expression. This situation
is actually very common; thus we should adjust our thinking to accept an algorithm,
even an iterative algorithm such as (1.3), as a “solution” to a problem.

What Is an Algorithm?

An algorithm is an unambiguous set of instructions for solving a problem or accom-
plishing a task. The set of rules taught to elementary school children for adding
two integers is an algorithm, as is Newton’s method for finding zeros of a function,
as described above.

There are often many different algorithms for accomplishing the same task. For
example, to compute the value of the polynomial 22 4+ 3z + 5 at a given point x, one
naive algorithm is to compute 22 and then compute 3z and then sum the results
and add 5. A faster algorithm that accomplishes the same task is to compute 3+ x,
multiply that by x, and add 5. The result® is the same, because (z + 3)z + 5 =
22 + 3z + 5, but the algorithms are different.

3This other algorithm is called Horner’s method. In this case Horner’s method requires only three
arithmetic operations, while the naive method requires four.



Any closed-form solution to a problem defines an algorithm in the sense that a
formula gives a sequence of operations. For example, the quadratic formula (1.1) can
be interpreted as the algorithm: compute b2, subtract 4ac, take both the positive
and negative square roots, subtract b from each, and divide the results by 2a. This
illustrates a fundamental, but often underappreciated, idea of modern mathematics:

An algorithm is the natural extension of a formula.

Closed-form solutions are rare, since the limited vocabulary of polynomial and
basic transcendental functions is woefully inadequate to reasonably describe the
many functional relationships that exist in the world. Since so few problems have
closed-form solutions, we suggest that the notion of a “solution” should be gen-
eralized to include more general algorithms, including iterative procedures, like
Newton’s method.

There is a caveat, however. For us to accept an algorithm as a solution, we
must analyze it and prove that it will return the correct solution to the problem at
hand. We may also want to know that the algorithm is computationally feasible,
given the resources available. To prove such things, one must access the arsenal of
mathematical analysis and leverage the theory of algorithms, approrimation, and
optimization. That is what this text is about.

What Do We Want from an Algorithm?

When adopting this algorithmic view, we should not consider a problem to be
“solved” until we can rigorously demonstrate that the algorithm is both correct and
feasible to employ. If an approximate solution isn’t sufficiently close to the exact
solution, or if the resources required to execute the algorithm are too great, then the
algorithm is of little use and a better algorithm is needed. Until a better algorithm
is found, we should think of the problem as unsolved.

Moreover, we don’t just want algorithms that work—we want the best algo-
rithms. Speaking broadly, the performance of an algorithm is usually characterized
in terms of its accuracy and its efficiency. We want algorithms that are both accu-
rate and efficient.

Accuracy

A high-quality algorithm should give a good approximation to the correct answer.
Although solutions to some problems can be computed exactly, many cannot. Many
important and useful algorithms instead compute numerical approximations, by
which we mean finite-precision approximations (such as 0.666667 as an approxi-
mation for % or 3.14159 as an approximation of 7). Finite-precision arithmetic
introduces small errors, called round-off errors, into almost every step of every com-
putation. In some algorithms, these errors can compound into large, catastrophic
errors in the final results. Such algorithms are said to be numerically unstable.
We discuss floating-point arithmetic and stability in Chapter 11. A high-quality
algorithm should be resistant to such errors and consistently give answers that are

sufficiently close to the correct answer.
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Example 1.0.1. One can show by hand that
450 x 4054.5* — 50 x 7022.6* + 7022.6> = 0.005.

But executing this on most computers gives a result of —33.24. This is an
example of catastrophic round-off error. This is discussed in more depth in
Section 11.3.

Efficiency

The cost of an algorithm could be measured in many ways, such as money, time,
computer memory, labor, etc. We are generally most interested in how long an
algorithm takes to run and its memory requirements. An algorithm is of no use
if it takes too long to run or requires more memory than we have available. How
long the algorithm takes to run depends on the specific computer being used, so
instead of talking about run time, we often use as a proxy the number of primitive
operations that must be executed. We call this the temporal complezity, and we
call the amount of memory required the spatial complexity. Temporal and spatial
complexity are discussed in more detail in Section 1.1 and are a major theme of this
and the next several chapters.

1.1 Complexity

The complexity of a given algorithm is a measure of the resources required for it
to execute. This could refer to execution time, memory requirements, the cost in
dollars to pay for the equipment, the time or cost of programming labor necessary
to develop the algorithms into software, or even the amount of electricity required.
Generally speaking, however, complexity focuses on two main issues: the number
of primitive operations required and the amount of memory required.

We define primitive operations* to be basic operations such as assigning a value
to a variable (like x = 5), basic integer arithmetic (like x+y, but not log(x) or
cos(x)), comparisons (like x<y) and basic Boolean operations (like and, and or),
looking up an indexed value in an array (like A[3]), calling a method (like myFunc
(x,y)),® returning from a method, and so forth. We treat accessing the values of
scalar variables as having no cost (so if x=5 and y=6, then computing x+y costs only
one operation—the addition). We assume all primitive operations take approxi-
mately the same time to execute. Of course this is not true, but it gives a useful
approximation.

40ur definition of primitive operations here is similar but not identical to some of the other
standard models, such as the RAM model of [CLRSO01, Section 2.2]. Our goal here is primarily
pedagogical rather than computing the precise run time of an algorithm on a specific machine,
so we don’t want to get too bogged down in technical details.

5Note that this does not include all the primitive operations required by the method itself—just
the cost of finding the method in memory and starting to execute it.
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We define the temporal complezity of an algorithm to be the number of primitive
operations needed for it to execute. This is a proxy for the execution time, but since
execution time varies so much across platforms and hardware specifications, it is
generally preferable to use this definition. We define spatial complezity to be the
amount of memory required to execute the algorithm.

Example 1.1.1. If L is a list, then the number of primitive operations in-
volved in the command a = L[5] + 7 is three, corresponding to one lookup
L[5], one addition, and one assignment.

Example 1.1.2. Algorithm 1.1 is a simple implementation of a method for
finding the largest element in a list L of integers. Because of the if-statement
on Line 12, we cannot determine the exact number of primitive operations
this algorithm will use without knowing more about the input list L, but we
can compute the best- and worst-case complexity.

Setting the initial value of max_val on Line 7 requires two primitive opera-
tions, namely one lookup L[0] and one assignment. Line 8 involves computing
len(L), which we assume is one primitive operation, and one assignment. Ini-
tializing the counter i on Line 9 is one more primitive operation.

The while-statement on Line 11, involves just one comparison. But this
comparison happens n times (the condition is true n — 1 times and fails once,
when ¢ = n). Thus Line 11 contributes n primitive operations.

Inside the loop, we have an if-statement on Line 12 involving one lookup
and one comparison, and if the comparison is true, then Line 13 contributes
two more primitive operations (a lookup and an assignment). Thus if the
conditional is true, the if-statement contributes four primitive operations,
and otherwise it contributes two.

Finally, the incrementation of i on Line 14 requires two more operations
(an addition i + 1 and an assignment). Thus, the loop consists of either six
or four operations, repeated n — 1 times, for a total of 6n — 6 (worst case) or
4dn — 4 (best case) from the loop.

The total number of operations, therefore, has temporal complexity of
either 5+ n+6n — 6 ="7Tn—1 (worst) or 5+ n+4n —4 =5n+ 1 (best).

Note that spatial complexity influences the execution time, since it takes time to
move data into and out of the CPU registers, various memory caches, random access
memory (RAM), hard-disk space, and memory on other computers and storage de-
vices that are accessed over an internet connection or through some communication
port. To truly represent execution time, we would need to factor in the particu-
lar hardware and operating system specifications and understand how memory is
managed by the system. If the CPU is sitting idle because it is waiting for a hard
disk to retrieve a value, then time is being consumed even though no additional
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def find_max(L):

nun

Find the largest element in a list L of integers.

nun

# Set initial values
max_val = L[0] # Max value.

n = len(L) # List length.

ol = 1 Counter to iterate through L.

1+

while i < n:
if L[i] > max_val:
max_val = L[i]
i+=1 # Increment i.

return max_val

Algorithm 1.1. Python implementation of a routine for finding the largest value
in a list L of integers, as discussed in Example 1.1.2.

operations are being executed. Despite this (or because of it), we focus our study
on the temporal and spatial complexity as defined above.

Remark 1.1.3. It is important to recognize that temporal complexity can often
be traded for spatial complexity and vice versa; that is, we can often make an
algorithm use fewer primitive operations by having it store more values in memory.
This reduces the temporal complexity but increases the spatial complexity of the
algorithm.

1.1.1  Big-O and Little-o Notation

Since many algorithms are too intricate to easily account for the exact number
of primitive operations or memory requirements, our primary interest is to give a
reasonably sharp upper bound on how the various complexities increase as a function
of the size of the inputs. This upper bound is what we need to understand how a
given algorithm scales temporally and spatially as the size of the inputs grows.

As a simple example, consider the usual grade school algorithms for arithmetic.
The standard long-addition algorithm (see Algorithm 1.2) has the property that
when the number of digits to be added is doubled, the memory required also doubles,
as does the number of primitive operations required. In contrast, doubling the
number of input digits in a multiplication problem (see Algorithm 1.5) quadruples
the number of primitive operations required. For small problems this quadrupling
is not a big deal, but as the length of the inputs increases, it can quickly become
significant.

It is often useful to think about the asymptotic growth of the temporal and
spatial complexity, that is, how fast the time and space requirements of a problem
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grow as the size of the inputs grow. We typically quantify asymptotic growth with
big-O and little-o notation.

Definition 1.1.4.  Let f and g be real-valued functions on either the positive
real numbers or the positive integers. We say that f(x) is big-O of g(z) as z — oo,
denoted f(z) € O(g(z)), if there exist M > 0 and N > 0 such that | f(z)| < M|g(z)|
whenever x > N. Similarly, we say that f(z) is little-o of g(z) as x — oo, denoted
f(x) € o(g(x)), if for each € > 0 there exists N > 0 such that |f(z)| < e|g(z)|
whenever x > N.

Remark 1.1.5. When analyzing algorithms with discrete inputs, we typically use
f(n) instead of f(z) to denote the discrete nature of the function.

Example 1.1.6. If the complexity of an algorithm is T'(n) = 3n? + 2n + 100,
where n is the size of the input, then

Tln) = 3n° L 2n + 100 < 3.3n°

whenever n > 22. Thus T'(n) € O(n?). There’s nothing special about 3.3. In
fact, given any £ > 0 there exists an n > N so that T(n) < (3+¢)n* whenever
n > N. The smaller the £, the sharper the bound, but the big-O rate of T is
O(n?) regardless of the choice of &.

Unexample 1.1.7. In the previous example T'(n) ¢ O(n) because for any
M > 0 we have
T(n) = 3n? + 2n + 100 > Mn

whenever n > %

Example 1.1.8. Since the total number of primitive operations needed for
Algorithm 1.1 is at most 7n — 1 (see Example 1.1.2), the temporal complexity
of this algorithm is O(n).

Remark 1.1.9. Many computer science texts use the convention f(n) = O(g(n))
instead of f(n) € O(g(n)), but this is a problematic abuse of notation. For example,
it would imply that O(n) = O(n?), but O(n?) # O(n). Therefore, we use set
membership instead of the equal sign to signify membership in a class of functions.
Hence, we write O(n) C O(n?) and O(n?) ¢ O(n), denoting that the class of linear
functions is properly contained in the class of quadratic functions.
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Example 1.1.10. The leading coefficient of a polynomial doesn’t affect the
big-O or little-o rate. For example:

(i) Let f(n) = an + b. Note that
|F(n)] = lan + 8] < (Ja| + 1)n

whenever n > |b|, and therefore f(n) € O(n). Moreover, f(n) € o(n'!)
because for each € > 0, once n > (|a| + 1)/£? we have

|f(n)| = |an +b] < (Ja] + 1)n < en'?

This argument can be extended to show that f(n) € o(n'*®) for any
6> 0.

(ii) Let f(n) = an? 4+ bn + c. Note that
|f(n)] = |an® + bn + | < (Ja| + 2)n?

whenever n > max{|b|, /|c|}. Thus, f(n) € O(n?). Also, for every ¢ > 0
as n gets large we also have n > |(a + 2)/¢|!?, at which point

|f(n)| = |an® + bn + ¢| < |(@ + 2)|n® < en??,

so f(n) € o(n*'). This can be extended to show that f(n) € o(n?*?)
for any § > 0.

Example 1.1.11. It is straightforward to identify some additional properties
of the big-O and little-o notation:

(i) Let f(n) = akn +ar_1n" 1+ .-+ ayn + ag. Exercise 1.2 shows that
f(n) € O(nk).

(ii) If f(n) = > p_, k, then f(n) € O(n?) because

More generally, Exercise 1.4 shows that if f(n) = Y_}_, k™, then f(n) €
O( m+1)

(iii) If f(z) € O(g(x)) as x — oo, then f(z) € o(z?g(z)) for every & > 0.

(iv) Clearly f(z) € o(g(z)) implies f(z) € O(g(x)), but the converse is false;
that is, o(g) is a proper subclass of O(g).
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Common examples of big-O and little-o notation include powers, exponentials,
and logs.

Definition 1.1.12. If a real-valued function f on Z* (or R ) is in
(i) O(logn), then we say it is logarithmic;
(i1) o(n), then we say it is sublinear;
(iii) O(n), then we say it is linear;
(iv) O(n?), then we say it is quadratic;
(v) O(n?), then we say it is cubic;
(vi) O(n®) for some c € N, then we say it is polynomial;
(vil) O(c™) for some ¢ > 1, then we say it is exponential.

Proposition 1.1.13. Let f and g be real-valued functions on either the positive
real numbers or the positive integers. If there exists M > 0 such that

@)l _

lim
z=o0 |g(z)|

then f(z) € O(g(zx)). Also, we have

@)
o e@)] ~°

if and only if f(z) € o(g(x)). Finally, if

o @)
w15 [g(a)

?

then f(z) ¢ O(g(z)).

Proof. The proof is Exercise 1.3. 0O

Example 1.1.14. Let f(n) = an®+bn +c with a > 0. To see that f ¢ O(n),
we observe that
) —an+b+= o0
n n

as n — oo. Thus, for large n there is no M such that f(n) < Mn. But it is
straightforward to verify that f(n) € O(n?).
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1.1.2 Example: Complexity of Long Addition

One of the first algorithms taught in grade school is the standard algorithm (long
addition) for adding two multidigit integers. It iterates through each column, from
right to left, adding the corresponding single-digit numbers together, carrying a 1 to
the next column as necessary. Algorithm 1.2 is an implementation of this algorithm
in Python. For illustrative purposes we treat each positive integer as a list of digits
so that we can manage arbitrarily long numbers. We assume that the rightmost
entry in each list represents the ones digit, the next the tens digit, and so on.

Assume the longer of the two lists has length n. The algorithm begins by
identifying which of the lists is shorter and prepending zeros to it so both lists are
the same length and the place value of each digit matches the corresponding digit
in the other list. Prepending d elements onto a list of length k& requires O(d + k)
operations: first initializing a new list with d + & entries, and then copying all the
d + k elements into the new list. In our case, we have d + k < n, so this contributes
O(n) to the temporal complexity.

After some key variables are initialized (in constant time), the while-loop (Lines
22-26) adds each digit in the second list to the corresponding digit of the first and
accounts for the carrying digit as necessary. The number of primitive operations in-
side the loop is independent of the lengths of the lists, and therefore the n iterations
of the loop contribute O(n) to the temporal complexity of the algorithm. The final
step is to prepend the carried digit, if necessary, at the beginning of the list. This,
too, costs at most O(n) primitive operations. Therefore, the temporal complexity
of the algorithm is O(n).

The data that must be stored are the two inputs, each of length at most n,
the output list, of length at most n + 1 (in this algorithm the output is stored in
the same list as one of the inputs), one constant-length variable carry and two
other variables i and delta. The values of i and delta are no more than n, so
the memory required to store those values is bounded by the number of digits it
takes to represent n, that is, log;,n in decimal notation or log,(n) in binary. In
either case, each of these contributes at most logy n < n to the spatial complexity,
and thus the overall spatial complexity is no more than a constant times n, that is,

O(n).

Remark 1.1.15. As discussed above, if n € N is arbitrarily large, then storing an
integer (like the counter i) that is bounded by n requires [log,(n)] digits® and hence
adds O(logn) to the spatial complexity. However, for calculating spatial complexity
of algorithms, we almost always assume that loop counters, array indices, and other
such integers have a fixed size. This is not an unreasonable simplification because
standard 64-bit integers (signed) can be as large as 263 — 1, which is not likely to
be very restrictive.

Remark 1.1.16. If your language of choice has a built-in data type for arbitrarily
long integers, the addition algorithm for that data type has probably been care-
fully optimized and, therefore, should be much more efficient than the algorithm

6The notation [q] denotes the least integer greater than or equal to g, also known as the ceiling
function.
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def add(a, b):
nmn
Add two numbers, where each number is input as a list of
single-digit integers, e.g., [1,2,3] = 123.

Returns a list of single-digit integers.

nwn

# Prepend zeros to the shorter list to
# align with the longer list.
delta = abs(len(a)-len(b))
if len(a) <= len(b):
a = delta * [0] + a
else:
b

delta * [0] + b

# Set initial values.
carry = 0
i = len(a) -1

# Add each pair of digits from right to left
while i >= 0:

a[i] = a[i] + b[i] + carry

carry = alil // 10

ali]l = ali]l % 10
i-=1 # decrement i by 1

# Prepend the final carry digit
if carry > O:

a = [carry] + a

return a

Algorithm 1.2. Routine for adding two positive integers of arbitrary size. Here
the integers are represented as lists, where each entry is a single digit. For example,
add([1, 2, 31, [4, 5, 6]) returns [5,7,9]. Note that in Python, the addition
operator concatenates strings (that is, [0] + [1,2,3] returns [0,1,2,3]1) and mul-
tiplication is repeated addition (thus, 3 * [0] produces [0,0,01). Also a//b is the
integer part of a divided by b and a¥%b is the remainder of a when divided by b.
Finally, note that Python indexing starts at 0, so the index of the last element of
list a is len(a) — 1 (see Line 19).

presented here. However, it will still have temporal complexity O(n), since every
one of the n digits must be added to find the correct sum. An algorithm with an
input of length n can only have complexity less than O(n) if some input data can
be skipped.
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1.2 Leading-Order Behavior

In many situations we want to know more than just the big-O growth rate—we also
want to know the leading coefficient of the growth rate. There’s a big difference
between an algorithm that requires 3n? primitive operations and one that requires
3000n2 primitive operations. In this section we begin by defining leading-order
behavior and giving several examples of how to analyze an algorithm for its leading-
order complexity.

1.2.1 Leading-Order Behavior

Definition 1.2.1. Let f and g be real-valued functions defined on the positive real
numbers or the positive integers. We say that f(n) is asymptotically equivalent to
g(n), denoted f(n) ~ g(n) as n — oo, if

. fn) _
A gy~

Informally one often says, “ f grows like g,” or “f is g to leading order,” to mean
f ~ g asn — oco. Sometimes we drop the n — oo designation when it is clear from
the context.

Example 1.2.2. The function T(n) given in Example 1.1.6 satisfies T'(n) ~
3n? since

T(n) 2 100

as n — oo.

Remark 1.2.3. It is straightforward to show that the relation ~ is an equivalence
relation; that is, it is reflexive, symmetric, and transitive (see Exercise 1.10). For
more about equivalence relations, see Volume 1, Appendix A.1.2.

Example 1.2.4. Since the maximum number of operations needed for
Algorithm 1.1 is 7n — 1, the leading order of the temporal complexity of this
algorithm is ~ Tn.

1.2.2 Merging and Sorting

In this section we discuss how to merge two sorted lists and evaluate the complexity
of this algorithm to leading order. Then we use the merging algorithm as the basis
of a very naive and inefficient sorting algorithm. Despite the inefficiencies of this
sorting algorithm, it is an instructive example. In Section 1.10 we construct an
efficient sorting algorithm from a simple recursive variant of this algorithm.
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def merge(X, L):
"""Merge two sorted lists into a new sorted list.
For example, merge([1, 41, [2, 3]) returns [1, 2, 3, 4].

# Initialization
merged = [Nonel*(len(K) + len(L)) # Preallocate output list
i =0; j =0 # Pointers to track location in each list

# Iterate over the two lists, terminate when one is empty
while i < len(K) and j < len(L):
if K[i] <= L[j]:

merged[i+j] = K[i]
i+=1

else:
merged[i+j] = L[j]
j=1

merged[i+j:] = K[i:] + L[j:] # One of these is empty
return merged

Algorithm 1.3. Routine for merging two sorted lists of numbers together into a
single sorted list. This algorithm fails if the lists K and L are not sorted. Note that
K[i:] refers to the list [K[il,K[i+11,...] of the elements of K starting from the
element indexed by i and proceeding to the end of K.

Merging

Merging combines two already sorted input lists into a single sorted output list.
Although we allow the length of the lists to be arbitrarily long, the entries in the
lists are assumed to be of a fixed size, so each takes the same, fixed, amount of
memory. The basic merging algorithm compares the leading entries in each input
list and extracts the smaller of the two entries, placing it into the resulting output
list. The process then repeats, extracting the smaller of the leading entries of what
remains of the two input lists into the output list, one at a time, until both input
lists are empty.

A Python implementation of this merging procedure is given in Algorithm 1.3.
Rather than actually extracting the smallest entry at each step, this implementation
simply maintains placeholders on each of the input lists to track the leading entries
in each remaining sublist; this is done with the variables i and j. At some point the
end of one of the lists is reached and we append the remainder of the other input
list to the final list. This is done in Line 19. Rather than trying to decide which of
the two remaining lists is empty, we append both to the final list, which works fine
because one of them is empty.

To evaluate the spatial complexity of this algorithm, note that the only data
that must be stored are the initial lists L and K, whose combined storage is assumed
to be n numbers; the merged list merged of length n; and the counters i and j. The
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counters have length no more than the number of digits required to represent i and
j, respectively, and these are O(logn) C o(n). Thus the total spatial complexity is
~2n € O(n).

The temporal complexity is also O(n). To analyze the algorithm to leading
order, first consider the loop. In Line 11, the while-loop computes two list lengths,
makes two comparisons, and performs a conjunction for each iteration. Since one
of i and j is incremented each iteration, the maximum number of iterations for
which the condition could hold is n — 1, after which the condition must fail, which
terminates the loop. Hence Line 11 could cost as many as 5n primitive operations.
Line 12 has two lookups and a comparison. That’s three primitive operations in the
loop, which iterates up to n — 1 times. When the conditional is successful, the loop
executes Lines 13-14; otherwise it executes Lines 16-17. In either case the first line
is a sum, a lookup, and an assignment, while the next line is an incrementation,
which is a sum and an assignment. Thus, after the conditional on Line 12, there
are 5(n — 1) ~ 5n more primitive operations. Adding these to the 3(n — 1) ~ 3n
from Line 12, and the 5n from Line 11, gives ~ 13n.

The operations outside of the loop that depend on n are the initial construction
of merged, which costs n + 1 ~ n primitive operations (initialize the list, and make
n assignments), and putting the lists K[i:] and L[j:] into the end of merged, which
takes at most n lookups and n assignments. Thus the total temporal complexity of
this algorithm is ~ 16n.

Naive Sorting (Insertion Sort)

Sorting rearranges the entries of a list to produce a list that is arranged in order from
least to greatest. Using the merging algorithm, we can design a sorting algorithm
whose temporal complexity is O(n?) when the original list has length n.

We start with a list sorted_list consisting of just the first element L[0] of the
input list L. For each successive entry of L, make a new list of length one (which
is trivially sorted) and merge the new single-element list with sorted_list. The
algorithm repeats until it runs out of new entries to merge; see Algorithm 1.4. This
is a slight modification of the algorithm often called insertion sort.

Since merging two lists of total length k& has temporal complexity ~ 16k, the
naive sorting method has temporal complexity O(1 + 2 + --- + n) = O(n2); see
Example 1.1.11(ii). More careful analysis (using the standard summation formula
(1.9)) shows that to leading order, this is

(n+1)(n)

5 ~ 8n2.

~16(1+2+---+n) =16
The spatial complexity of this sorting algorithm is ~ 2n because we need only store
the lists L and sorted_list, each of length n, and one additional integer i whose
value is bounded by n (and hence whose size is O(logn) C o(n)).

Nota Bene 1.2.5. This naive sorting method is not a good algorithm. Other
sorting algorithms are much faster—for example, the merge sort algorithm,
which we discuss in Section 1.10, is O(nlogn).
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def naive_sort(L):
"""Sort a nonempty list L.

nen

# Initialize values
sorted_list = [L[0]]
i=1

n = len(L)

# Merge in the rest, one at a time

while i < n:
sorted_list = merge(sorted_list, [L[il])
i+=1i

return sorted_list

Algorithm 1.4. A naive routine for sorting a list L. The sorted list begins as a
single element and then is successively merged with single-element lists until every
element in L has been merged into the sorted list.

1.2.3 Leading Order for Long Addition and Multiplication
Long Addition

To analyze the leading-order temporal complexity of the addition problem in
Algorithm 1.2, assume again that the longest list has length n. First, the ini-
tial prepending of delta zeros onto the front of the shorter list requires defining a
new empty list of length n (one operation), putting the new zeros at the front of
that list (delta assignments) and putting the remaining elements of the old, shorter
list into the remaining positions in the new list (n — delta lookups and n — delta
assignments), for a total 2n + 1 — delta ~ 2n primitive operations.

The loop contained in Lines 22-26 executes 14 operations for each iteration.
Specifically, Line 22 has a conditional operation, and Line 23 performs two lookups,
adds three numbers together (two operations), and makes an assignment (one op-
eration). That’s six operations. Line 24 requires one lookup, computing an integer
part, and making an assignment. That’s three operations. One lookup, computing
the remainder, and making an assignment gives three operations on Line 25. Fi-
nally the decrement in Line 26 is a subtraction and an assignment and therefore
two operations. Hence, to leading order, the loop is ~ 14n primitive operations.

At the end of the algorithm, in the worst case, the carry is positive and the
carry digit is prepended to the list. This amounts to one conditional (Line 29)
and a prepend operation (Line 30). Prepending an element onto a list of length n
requires defining a new list of length n+1 (one operation), putting the new element
at the front of that list (one assignment), and then moving all elements of the old
list into the new list (n lookups and n assignments). Therefore, Lines 29-30 require
2n+3 ~ 2n additional operations. Combining this with the initial ~ 2n for padding
the short list, and the ~ 14n operations of the earlier loop, makes this algorithm
~ 18n primitive operations.
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Long Multiplication

Algorithm 1.5 (below) gives an algorithm for long multiplication that is similar to
the one taught in grade school, except that it has a small efficiency built in. To
analyze the leading-order behavior, we must count the operations in the double

def mult(a, b):
nwen
Multiply two numbers, where each number is input as a list
of single-digit integers, e.g., [1,2,3] = 123.

Returns a list of single-digit integers.

nun

# Set initial values
tens_shift = 0
product = []

j = len(b)-1

# Iterate over digits of b from right to left
while j >= O:
sumstep
carry =

= [Nonel*len(a) #preallocate list of len a
0

# Iterate over digits of a from right to left
i = len(a) - 1
while i >= O:
temp = al[i] * b[j] + carry
sumstep[i] = temp % 10
carry = temp // 10
i-=1
if carry > 0:
sumstep = [carry] + sumstep

# Shift sumstep by tens_shift places and add to

# final product, using the previous algorithm
product = add(product, sumstep + ([0]*tens_shift))
tens_shift += 1

j-=1

return product

Algorithm 1.5. Routine for multiplying two positive integers of arbitrary length.
Numbers are represented as lists of single-digit integers. For erample, 12 x 34 is
calculated as mult([1, 2], [3, 41). Line 31 uses the previously defined function
add. Also in that line the Python syntax [0]*tens_shift constructs a list [0,0,...]
with tens_shift zeros in it, which is then appended to the list mult_a using +.
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loop of Lines 15-33. The inner loop (Lines 21-25) consists of two parts. First, the
while-statement of Line 21 has one comparison that is evaluated n = len(a) times
(n — 1 successes and 1 failure). The second part (Lines 22-25) consists of 5 + 3 +
2+ 2 = 12 operations and is repeated n — 1 times. Thus, the inner loop contributes
12(n — 1) + n ~ 13n operations for each iteration of the outer loop (Lines 15-33).

Preallocating the empty list sumstep in Line 16 requires initializing the list (one
operation) and making n assignments for the list entries. Prepending carry to
sumstep in Line 27 requires 2n + 2 operations, and the long addition of Line 31
requires ~ 16n operations (see the previous subsection). The other operations in
the outer loop contribute at most a constant number of operations. Therefore, the
total number of operations in each iteration of the outer loop, including the inner
loop, is ~ 32n.

The outer loop is repeated at most n times, so the total number of operations
required by the outer loop is ~ 32n%. The remaining operations outside the loop
are repeated at most O(n) times, so they don’t contribute to the leading order.
Therefore, the overall temporal complexity of Algorithm 1.5 is ~ 32n2.

The spatial complexity of this algorithm is O(n). Recall that the standard grade
school algorithm constructs a stack of n summands that are summed at the end of
the algorithm. That would have a spatial complexity O(n?), but our little efficiency
is that we don’t build the long stack of addition problems. Instead, the addition
steps are done one at a time and thus don’t need to be stored separately—we can use
the same space in memory each time, as we add the running total. To analyze the
leading order of the spatial complexity, we note that the spatial complexity is dom-
inated by the inputs ~ 2n, the intermediate list sumstep, of size ~ n, and the result
product, of size ~ 2n (note that ten_shift can be as large as n), for a total of ~ 5n.

1.3 Summation

Analysis of the spatial and temporal complexity of an algorithm typically requires
breaking it up into parts and then summing the costs of each part. As algorithms
become increasingly sophisticated, it becomes increasingly important to have good
tools for managing complicated sums. This section and the next three sections after
it are dedicated to developing some of the most useful techniques of summation.

1.3.1 Basic Sums and Differences

Various types of sums occur in algorithm analysis, and the ability to work with
these sums, including the ability to identify simple, closed-form expressions for
many sums, is an important skill.

Definition 1.3.1. Let E = {e1,...,en}. The summation operator Y maps any
function f: E — F into” F via the rule

D fe) =D flex) = fler) + flea) + - + flen)-
k=1

ecE
If E =0, then the sum is defined to be 0.

"We use F to denote a field that could be either R or C. For more about fields, see Volume 1,
Appendix B.2.
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Remark 1.3.2. In the case that E = {k € Z | a < k < b} for integer values of a
and b, we also write this as Y o__ f(k) or > a<k<p f(K)-

Remark 1.3.3. A sequence (zj)}_; of (not necessarily distinct) numbers also de-
fines a function by f(k) = =4 for each k € E = {1,...,n}. Thesum z; +--- + z,

is equal to Y5, f(k) = > p_; Tk-

Nota Bene 1.3.4. The notation >, z; + y is ambiguous, because it could
mean either (3 ; z;)+yor Y ; ;(z; +y). In this text, it means the former.
In other words, if the rightmost term does not have any dependence on the
index, we assume that it is not part of the sum. If we want it to be part of
the sum, then we use parentheses.

Proposition 1.3.5 (Summation Is Linear). If E = {ej,...,en} and f,g are
F-valued functions defined on E, then

D (rfe)+sgle) =7 fle)+s) gle)

ecE ecE ecE

for any r,s € F.

Proof. The commutative, associative, and distributive laws give

Y (rf(e) +sg(e) = (rf(er) + sg(er)) + -+~ + (rf(en) + sg(en))

ecE
= (rf(e1) + - +rf(en)) + (sgler) + -+ + sg(en))
=r(f(er1) + -+ flen)) + s(gler) + - + g(en))

—r Y f(e)+sY gle). O

ecE eeE

1.3.2 Difference Operator

Summation can be thought of as the finite analogue of the definite integral. There
is also a finite analogue of the derivative, namely the difference operator A, which
takes a function (or sequence) f and defines a new function that is the difference of
the consecutive terms.

Definition 1.3.6. Let E = {a,a+1,...,b} and let E' = {a,a+1,...,b—1}. The
difference operator A takes any function f: E — F and maps it to a new function
A[f]: E' - F by

Alfl(k) = f(k+1) — f(k).
Of course, this definition can also be modified in an obvious way to work for the
case when the domain E is infinite, like N or Z.

Remark 1.3.7. It is straightforward to show that the difference operator is linear;
see Exercise 1.16.
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Example 1.3.8.

(i) If f(k) = r* for some fixed r, then
AlfJ(k) = 7% — % =rF(r - 1). (1.4)
Notationally, we also write this as Ar® = r¥(r — 1),
(i) If g(k) = r¥* for fixed r, then
Alg](k) = 1" _pk® — k¥ (241 _ 1), (1.5)

Notationally, we also write this as Ark” = k" (p2k+1 _ 1),

Example 1.3.9. The derivative operator and the difference operator have
many similarities. If f is constant, so that f(k) = ¢ for all k, then A[f](k) =
¢c—c= 0. So we have Ac = 0, just as %c = 0. Conversely, if A[f] = 0,
then for every k, we have f(k+ 1) — f(k) = 0, so f must be constant on
the whole domain (here the domain must be something like® N, Z, ZT, or a
single, connected, interval [a, b] N Z). This is analogous to the fact that when
% =0, then f is constant.

Similarly, if f(k) = k, then A[f](k) = (k+ 1) — k = 1. Hence we have
Ak =1, just as ia: = 1.

%Note our convention that the natural numbers N = {0,1,2,...} include 0. We denote the
positive integers by ZT.

1.3.3 Fundamental Theorem of Finite Calculus

Taking summation as the analogue of definite integration and the difference operator
as the analogue of differentiation, the next theorem is an almost perfect match for
the usual fundamental theorem of calculus. Its proof, however, is much easier.

Theorem 1.3.10 (The Fundamental Theorem of Finite Calculus). Let
E = {a,a+1,...,b} andlet E' = {a,a+1,...,b—1}. Given any function f : E — T,
we have

b—1
> AlfI(k) = £(b) ~ f(a). (1.6)
k=a
Moreover, if we define
n—1
F(n)=Y_ f(k) forneE, (1.7)
k=a

then A[F|(k) = f(k) for allk € E'.
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Nota Bene 1.3.11. The sum in (1.6) runs only to b — 1 (not to b) and the
sum in the definition of F' runs only to n — 1 (not to n).

Proof. For (1.6) we have

b—1 b—
> Alflk) = Z fle+1) = f(k)) = (fla+1) = fa)) +---+ (f(b) — f(b—1))
k=a k=a

= —f(a) + £(b),

where the last equality comes from the fact that all the internal terms cancel. Sums
like this are called telescoping series. To prove (1.7), note that for any n > a we
have

n—1
A[F](n) = F(n +1) Z fky =" f(k) = f(n). O
k=a

Example 1.3.12. Recall that if f(k) = k, then A[f](k) = 1. By (1.6) we

have w
ZI_ZA f) — f(a) =b—a. (1.8)

Of course this sum is easily computed without (1.6), but this illustrates how
to use the fundamental theorem.

Example 1.3.13. If f(k) = k2, then A[f](k) = 2k + 1. By (1.6) we have

b—1

D 2k +1) = ZA fh=fle) =06 —a’

k=a

Since summation is linear, we have

b—1
¥ —a —22k+1 _22k+21—22k+ —a)

This gives

1 _bh-1) afa—1)
I;lk_§(b2—a2—b+a)_ -
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In the special case that a = 1 and b = n + 1, this gives the familiar sum

Z b= "—H (1.9)

Example 1.3.14. If f(k) = k?, then A[f](k) = 3k + 3k + 1. By (1.6) we

have
b—1

> (3K* + 3k +1) = b — a®.
k=a

An argument like the one in the previous example shows that

ikQ _ (2n~|—1)€fn+1)n' (1.10)

Remark 1.3.15. The method of the previous examples works in general, but the
result gets increasingly cumbersome as the order gets higher and higher. For
example,

Zk3 (n‘"+1‘>2 (1.11)

and
n

_n(n+1)(2n+1)(3n® +3n — 1)
> k= 5 :

(1.12)
k=1

There is no easily discernible pattern to these power sums. In Section 1.6.2 we
discuss a slight variation to this problem and show that there is a generalization
that does follow a nice pattern.

Corollary 1.3.16. For any functions g and h defined on E = {a,a+1,...,b} with
Alg] = Alh] on E' = {a,a+1,...,b— 1}, the two functions differ by a constant:

g=h+c on E,

where ¢ is constant on E.

Proof. Let f = g — h. Since A[f] = Alg — h] = Alg] — A[h] = 0, we have f(k) =
for some constant ¢ (see Example 1.3.9). Thus, g=h+c. 0O

Equation (1.6) also gives a slick proof of the geometric series formula.
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Corollary 1.3.17. For any fized value r # 1, we have the geometric series formula

_rb—l
T or—1"

b—1
Lbrt =0k (1.13)
k=0

Moreover, taking the limit as b — oo for |r| < 1 gives the familiar equation

o ]
g rk = -1 = 1 .
r—1 1—r

k=0

Proof. Note that Ark = rk+1 —pk = pk(r —1). Thus, by the fundamental theorem

we have
b—1 b—1
r—l g rk = g rkr—l
k=0 k=0

which gives (1.13). O

b—1
Ark =rb—1,
k=0

Example 1.3.18. Choosing r = 2 we have A[2¥] = 2% and (1.13) (or the
fundamental theorem) shows that

b—1
D ook =2b 2o
R0

Remark 1.3.19. Example 1.3.18 shows that 2¥ plays a role for differences and
summation similar to that played by e* for differentiation and integration.

Just as with integration and differentiation, it is usually more difficult to find a
closed form for the summation of a function f than it is to find its first dlfference
A[f]. That means that even if it is difficult to write down a formula for k o LFit

is usually relatively easy to identify a g such that Zk .9=1F

Example 1.3.20. Equation (1.5) gives A[r*’] = r¥° (r26+1 _1) which implies

that
=il

3 rk? (b1 _ 1) = 7 _ po®, (1.14)
k=a

1.4 Reindexing and Changing Order of Summation

Two fundamental tools for computing integrals are changing variables and changing
the order of integration. The natural analogues of these two techniques are also very
important tools for computing sums. In this section we describe these techniques
and give some examples.



1.4. Reindexing and Changing Order of Summation 25

1.41 Reindexing

When computing definite integrals in calculus, changing variables can change an
integral into a more workable form. We can also change variables when doing
summations. We focus here on the simplest change of variables, called reindezing.

Proposition 1.4.1 (Reindexing). For any finite set E C Z and for any c € Z,
let E + ¢ denote the set

E+c={z€Z|z=e+c for someec E}.

For any function f defined on E + ¢, we have

Y f@) =D fleto).

z€E+c ecE
In particular,
b+c b
@) =Y fk+o) (1.15)
j=a+c k=a

Proof. This follows immediately from writing out the sum
S f@=fleato)+ flea+e)+-+ flentc) =) flete). O
x€E+c ecE

Remark 1.4.2. Since j and k are dummy variables, it is common to reuse the
index k and write (1.15) as

b+c b
> f) =) f(k+c).
k=a+c k=a

Example 1.4.3. The sum Y.} .(k — 4) looks a lot like (1.9), but the sum-
mands are all shifted by —4. That suggests that reindexing might be useful.
Setting j = k — 4 means that j runs from 5 —4 =1 to n — 4, and we have

n—4

- (n—4+1) _(n=4)(n-3)
M E=AE ; ——

k=5 =i

As described in Remark 1.4.2, the name of the dummy variable doesn’t matter,
so people often write the second sum as ) ;| k

Example 1.4.4. Using (1.10) and reindexing, we compute > ;_, (k + 3)?

n+3 n+3

anms Zk2 Zk2 Zkz n—|—3)(n—|—4)(2n+7)]—14.
ls=ll k=4
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Example 1.4.5. Using (1.13) and reindexing, we compute > ,_ r* as

" Ui (T n—m-+1 n+1 m
i —ab o — 7
E:TkZE:Tm—{—k:,’,,m ’I”k:’l"m' ; - ;
P = =
k=m k=0 k=0

1.4.2 Changing Order of Summation

Just as multiple integrals are often simplified by changing the order of integration,
multiple sums are often simplified by changing the order of summation. The next
proposition is an immediate consequence of the commutativity and associativity of
addition.

Proposition 1.4.6. Ifa,b,c,d € Z, and f : Z X Z — T, then

b d d b
S TFGER) =D 6 k). (1.16)

j=a k=c k=cj=a

Proof. Assume a < b and ¢ < d; otherwise both sums are zero. Consider the set
E={a,a+1,...,b—1,b} x{c,c+1,...,d—1,d}. We see that both sums in (1.16)
are equivalent to Z( jxyer (U, k). This is illustrated in Figure 1.1. [

Nota Bene 1.4.7. When the sums are infinite, then (1.16) is not necessarily
true. We need additional conditions on the convergence rate of the series
before we can interchange the order of summation.

Notation 1.4.8. Multiple sums can sometimes be written unambiguously with a
single summation sign. For example, we can write

SNoofGR= >0 > fG.k.

0<j,k<n 0<j<n 0<k<n

The proposition justifies this notation. Since it does not matter which index we put
on the outside sum and which we put on the inside sum we can combine them.

Proposition 1.4.9. Consider the domain E = {(j,k) € ZxZ |0 <k < j < n}
and the function f : E — F. We have

DGR = > fUR) =)Dk (1.17)

n J
§=0 k=0 (4,k)EE k=0 j=k

Proof. The proof follows from Figure 1.2. The inner sum of the left side of (1.17)
corresponds to summing over the jth column, while the outer sum adds the columns
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k k
A A
d d
c+1 c+1
[+ c
. TR R .
a a+l a+2 -+ b—1 b a a+l a+2 -+ b-1 b
b d d b
DDA SN 16,k
Jj=a k=c k=c j=a

Figure 1.1. The terms involved in the summation of (1.16) are those in the green
rectangle. In the expression on the left, the inner sum runs over the terms in the
jth column (that is, (j,¢),(j,c+1),...,(j,d), for each j), and the outer sum adds
the results of the columns together. In the expression on the right the inner sum
runs over the terms in the kth row (that is, (a,k),(a + 1,k),..., (b, k), for each k)
and the outer sum adds the results of the rows together. In either case, the final
result is the same.

k k
A ‘ ‘ A
n n
3 3
2 2
1 1
0 0
. T Y (O
0 1 2 3 n 0 1 2 3 n
n J n n
> 16k > k)
=0 k=0 k=0 j=k

Figure 1.2. The terms involved in the summation of (1.17) are those in the
shaded triangular region. In the sum on the left of (1.17), the inner sum runs over
the terms in the jth column, that is, (§,0),(4,1),...,(4,7), and the outer sum adds
the columns together. In the sum on the right of (1.17), the inner sum runs over

the terms in the kth row, (k,k),(k + 1,k),...,(n,k), and the outer sum adds the
rows together.
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together. The inner sum of the right side corresponds to summing the terms in the
kth row, while the outer sum adds the rows together. In either case, every term
corresponding to a shaded box appears exactly once in the full sum. 0O

Notation 1.4.10. Given E and f in the previous proposition, we can also write

S ofGk =Y. fG.k)

(4,k)EE 0<k<j<n

Example 1.4.11. Using the identity in Exercise 1.21 (setting £ = n — j), the
double sum 2?2—01 > k—j41 1 can be computed directly as

= = n(n—|—1
E - :5 = -
k=j =1

But we can also compute it by changing the order of summation:

'C*,MT
'CLMT

n—1 n n k—1 n TL+1
DD 1= D 1=) k= -
7=0 k=j+1 k=1 35=0 le=1l

Example 1.4.12. Computing the double sum >3 >, r¥ directly gives

n n

ii zin—k—k (n—i—l)Zrk—Zkr’“.
k=0 j=Fk k=0

k=0 k=0

This last sum can be computed using summation by parts (see Section 1.6.1),
but it is messy. However, interchanging the order of summation in the original
problem makes the double sum easy to compute:

n n n 3] n o 1 ’I"n+2—’l"
ZZT’“—Z;T’“ T_12<TJ+ —”:r_—l(ﬁ‘("“))'

k=0 j=k j=0

There is nothing special about the particular shapes of the regions in Figure 1.1
or Figure 1.2. For any finite set E, the sum ), f(e) can be computed by summing
all the terms f(e) in any order—row first or column first or even some other pattern.
For example, the set E = {(j,k) | j,k > 0 and j + k < n} of Figure 1.3 can be
summed either rows first or columns first. This gives the equality

n n—k

STOFGER) =)D FGER) =D FG, k). (1.18)

(G,k)EE §=0 k=0 k=0 j=0
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k k
A
n n
1 1
0 0
o L1 1] .
0 1 n 0 1 . n
n n—j n n— k
SO G k) ZZf (j, k)
j=0 k=0 k=0 j=0

Figure 1.3. Another example of changing the order of summation. Summing
over the green region vertically first (left panel) gives the same result as summing
horizontally first (right panel). This fact shows the two sums are equal, as given in
equation (1.18).

Example 1.4.13. To compute the double sum 37 ; e M_—H{;L(:l_—k“)

initially appears difficult. But changing the order of summation gives

Jardl
n—k+1)(n—k+2)

i
&

1
R D sy DOICARY

k=0 j=0
_i 1 n—k+1)(n—k+2)
kzo(n—k+1)(n—k+2) 2
:i}_nle
k:02 .

Example 1.4.14. Here is a more general example of chanzglng the order of
summation. To compute the sum ;0. > n<pan ™’ r*", begin by inter-
changing the order of summation. To do this, note that the smallest value
that k can ever take is 0 (when j = 0), and the largest value that k can take is
n, so the new outer sum will range over all values of k € {0,...,n}. The inner
variable j is bounded above by the constraints j < 2n (from the old outer
sum) and j/2 < k (from the old inner sum), so the new inner sum ranges over
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all values of j € {0,...,2k}. This gives

Y OT e 33T e

0<j<2n j/2<k<n 0<k<n 0<5<2k

Notice that r*° is independent of the index j, so it factors out of the sum to
give
5 .
DRI
0<k<n  0<j<2k
The inner sum is the geometric series (1.13), so the double sum reduces to

2 ’!"2k+1 -1 1

Z 4 r—1  r—1 Z Tkz(rzkﬂ_l)'

0<k<n 0<k<n

By (1.14) this sum becomes

1 a0l e
A ——
5 2 d¢ r—1

0<k<n

1.5 Nested Loops

One important application of the double sums of the previous section is the analysis
of nested loops, where one loop occurs within another. Nested loops occur frequently
in scientific computing, especially in the algorithms of numerical linear algebra.
We typically represent vectors and matrices as arrays of floating-point numbers,
and moving through these arrays to perform the operations of matrix-vector and
matrix-matrix multiplication uses nested loops. Thus, to analyze many algorithms
in numerical linear algebra, we must understand how to analyze nested loops.

1.5.1 Aside: Floating-Point Operations

The long addition and long multiplication algorithms (Algorithms 1.2 and 1.5) dealt
with integers of arbitrary size, but in most computational settings, including nu-
merical linear algebra, we use floating-point numbers. Floating-point numbers are
represented in a manner similar to scientific notation, except everything is carried
out in base 2 instead of base 10, and they are all rounded to fit into 64 bits® (8
bytes) of memory; for details see Section 11.1.

Basic arithmetic operations for floating-point numbers are built into the hard-
ware and can be performed in one or two clock cycles each. These include the

8A bit is a single binary digit (taking only a value of 1 or 0). A group of eight bits is commonly
called a byte. Single-precision floating-point numbers are stored in 32-bit (4-byte) form, but
there is little benefit to using single precision on modern computers, which mostly have 64-bit
architectures. For that reason we focus on 64-bit (double-precision) floating-point arithmetic.
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standard arithmetic operations 4+, —, X, and -+ and are called floating-point opera-
tions (FLOPs).?

When analyzing the temporal complexity of many numerical algorithms, it is
customary to count only the FLOPs, instead of using primitive operations. For
example, when adding two vectors x = (z1,...,2,) andy = (y1,. - ., Yn) of floating-
point numbers, the sum x +y = (1 + ¥1,...,Zn + Yn) requires n FLOPs (addi-
tions), and we ignore the other primitive operations like variable assignments, array
lookups, and loop overhead. Similarly, scalar multiplication ax = (az1,...,azy)
requires n FLOPs (multiplications), and the additional primitive operations of as-
signment, lookup, and loop overhead are likewise ignored. Generally each FLOP
requires roughly two array lookups (the inputs) and one variable assignment (for
the output), so those primitive operations are assumed to be part of the cost of
performing one FLOP, whereas loop overhead is generally very small compared to
the cost of all the FLOPs. Thus counting FLOPs can give a good measure of to-
tal complexity, at least to leading order, even without counting all the primitive
operations.

The spatial complexity of both vector addition and scalar multiplication is O(n)
because the size of each floating-point number is fixed, and there are n of these
numbers in each vector. The only other variables that depend on n are the indices
required to loop through the vectors, and these have size at most O(logn), the num-
ber of digits required to represent n. As in the case of temporal complexity, when
computing the spatial complexity of a numerical algorithm we usually track only
the memory needed for floating-point numbers but ignore the memory needed for
other aspects of the algorithm, like loop counters. These other, neglected, memory
requirements are usually much smaller than the number of floating-point numbers
used, so they rarely contribute anything to the leading order of the spatial com-
plexity.

1.5.2 Matrix-Vector and Matrix-Matrix Multiplication

The inner product (x,y) = Y., z;y; of two vectors in R™ is one of the most widely
used operations in numerical linear algebra and scientific computing in general.

Calculating it requires n multiplications and n — 1 additions, for a total of 2n — 1
FLOPs.

Example 1.5.1. If x = (1,2,3,4) and y = (5,6,7,8), then the usual inner
product (x,y) =1 x5+ 2x 6+ 3 x 7+ 4 x 8 requires four multiplications
and three additions, for a total of seven FLOPs. Spatially, the algorithm must
store the two vectors (eight values), and one more number for output (which
can also be used for the intermediate calculation of the running total), for a
total of nine floating-point numbers.

In matrix-vector multiplication, a matrix A € M,,x»(R) and a vector x € R"
are multiplied together to form a new vector Ax € R™. This can be thought of
9The acronym FLOPs should not be confused with FLOPS, which means floating-point operations

per second. The latter is a measure of performance in hardware, namely, the number of floating-
point operations a given computer can perform each second.
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as m inner products between the rows of A and the vector x. Thus, its temporal
complexity is m(2n — 1) ~ 2mn FLOPs. Spatially, the inputs require (m + 1)n
floating-point numbers, and the resulting vector requires m more. Thus the spatial
complexity of matrix-vector multiplication is ~ mn + n + m.

In matrix-matrix multiplication, two matrices A € Myx., and B € M,,x, are
multiplied together to create a new matrix AB € Mpyx,. This can be thought of
as ¢n inner products between the rows of A and the columns of B. Thus, the
temporal complexity of this algorithm is ¢n(2m — 1) ~ 2¢mn. For the spatial
requirements, beyond the inputs (which have size ~ ¢m + mn), we need only store
the output, which has spatial complexity ~ ¢n. Thus the total spatial complexity
is ~ fm + fn + mn.

Remark 1.5.2. The basic operations in numerical linear algebra, including matrix-
vector and matrix-matrix multiplication, are included in numerical libraries that are
highly optimized for performance and therefore run much faster than a naive im-
plementation of the algorithms mentioned above. For this reason, it is rarely a
good idea to code these algorithms yourself from scratch. One of the most famous
numerical libraries is Basic Linear Algebra Subprograms (BLAS), which is at the
core of nearly every computing environment for numerical linear algebra. Numer-
ical libraries like BLAS optimize the workflow of the algorithm by making clever
use of the cache and pipelining. This allows for vectorization, meaning that several
primitive and floating-point operations can be performed at once by different regis-
ters in the CPU. It also minimizes the latency, that is, the time wasted waiting for
memory calls.

Vista 1.5.3. There are asymptotically faster algorithms for matrix-matrix
multiplication than the one described here. For example, when ¢ = m = n
Strassen’s algorithm requires only O(n'°%27) ~ O(n?87) FLOPs, whereas
the regular algorithm is ~ 2n3 € O(n?). As a trade-off, Strassen’s algorithm
has greater spatial complexity and generally more round-off error than the
regular algorithm. Also, the overhead in Strassen’s algorithm is large enough
that the matrices must be rather large before it’s actually faster to use it; see
Section 1.10 for more details.

Row Reduction

Assume A € M, (R) is an invertible matrix and b € R™. The canonical approach to
solving a linear system of the form Ax = b is to use row reduction (see Volume 1,
Section 2.7). This process consists of first performing a series of row operations
to turn the augmented matrix [A|b] into an upper triangular matrix (row echelon
form), and then performing back substitution to get the solution. For example, the
row reduction step for solving the system

1 1 1f |z 1
1 4 2 o | = 3
4 7 8| |z3 9
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looks like
1 1 1|1 1 1 1|1 1 1 1|1 1 1 1|1
1 4 2|3|—]031|2|]—(03 1|2|—]0 3 1|2
4 7 819 4 7 819 0 3 4|5 0 0 3|3
Back substitution looks like
1111 1 10]0 1100 10 0|—3
03 1/2|—[030f1]|—|[010O05|—|010| 3
0 0 1|1 0 0 1{1 0 0 1|1 0 0 1 1

Now we show that row reduction as given in Algorithm 1.6 has a FLOP count
of ~ %n3. Back substitution is O(n?) because it requires a multiplication and an
addition for each entry in the top half of the matrix, of which there are %n(n +
1). Thus, back substitution does not add to the leading-order behavior, and n-
dimensional linear systems can be solved in ~ §n3 FLOPs. It can be shown that
this is roughly a third the cost of inverting A and computing x = A~'b. For
this reason (and for numerical stability ' reasons) it is almost always preferable to
compute the row reduction of a matrix rather than compute its inverse.

To add up all the FLOPs in Algorithm 1.6, we look at Lines 13-18. Inside
the two loops one FLOP is needed for computing c (Line 15), and then the row
operation on Line 17 is really another loop that repeats n — k times and requires
two FLOPs per iteration.

Summing the FLOPs over all the loops gives

n—2 n-—1 n \ 9 1 7

k=0 j=k+1 i=k+1

The proof of the equality in (1.19) is Exercise 1.28. It is straightforward to see that
the remaining parts of the algorithm require only O(n?) FLOPs, so they do not
contribute to the leading order. Thus, row reduction costs ~ §n3.

Remark 1.5.4. The industrial-grade approach to solving the linear system is to
use the LU decomposition, which overwrites A with a lower triangular matrix L
(with all ones on the diagonal) and an upper triangular matrix U that satisfies
A = LU. Note that we can store the key parts of L and U in the space provided
by A, dovetailing the two matrices together. For example,

111 100
A=1|1 4 2|, L=|1 1 0|,U=
47 8 41 1

(==

I 1
3 1|, and lu(A) =
0 3

e = =
w

1
The complexity of producing this factorization is the same as row reduction (~ %n3),
and since Ax = LUx = b, we can find x by solving Ly = b by forward substitution

(at a cost of O(n?)) and then solving Ux = y by back substitution (also costing
O(n?)). The total complexity is dominated by the factorization ~ 2n3, but the

103tability of an algorithm has to do with round-off error. For more on this see the introduction
to Chapter 1 (page 5) and Section 11.3.
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import numpy as np # module for efficient linear algebra

def row_reduction(A):
Row-reduce an n x (n+1) matrix (without pivoting)
and perform back substitution.

Returns A in reduced row echelon form (RREF)

n = A.shape[0]

# Row Reduction
for k in range(n-1): # Iterate over rows except the last
for j in range(k+1,n): # Iterate over rows below k
¢ = Alj,k] / Alk,k] # Scalar to multiply row(k) by
# Subtract ¢ * row(k) from row(j)
Alj,k+1:n+1] = A[j,k+1:n+1] - c * A[k,k+1:n+1]
Alj,k] = 0

# Back Substitution
for j in range(l,n+1): # Iterate from the bottom right
# Divide row by its leading term (assume nonzero)
A[n-j,n] = Aln-j,n] / Aln-j,n-j]
A[n-j,n-jl =1 # leading term always becomes 1
for k in range(O,n-j): # Rows above row(n-j)
# Adjust the n-j th and n th columns
Alk,n] = Alk,n] - A[k,n-j] * A[n-j,n]
Alk,n-j] =0
return A

Algorithm 1.6. A row reduction algorithm for an nx(n+1) matriz. This simplified
method assumes the pivots (the diagonal elements) are nonzero so that the division
at Lines 15 and 23 is well defined. This algorithm uses NumPy, a module for
efficient linear algebra. The matriz A must be a NumPy array (for example, A =
np.array([[1,1,1,1],[1,4,2,3],04,7,8,911) ). The syntax Alj,k] gives the j,k
element of A, and Al[j,k:n] gives the elements of the jth row of A from k up to (but
not including) n. Note that range(n-1) iterates through the values {0,1,...,n—2},
while range(k+1,n) iterates through the values {k+ 1,k+2,...,n —1}.

main advantage is that we can get this factorization without needing additional
memory, which is vital when the size of the matrix is really big.

To improve numerical stability, most LU decomposition algorithms actually find
a permutation matrix P that reorders the rows of A before doing the row reduction,
so that PA = LU. Since a permutation matrix is equal to a reordering of the rows
of the identity matrix, it can be stored as an array of length n, and thus it does not
contribute to the leading-order spatial complexity of the LU decomposition.
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Remark 1.5.5. There is a decomposition called the QR decomposition (see Volume
1, Sections 3.3-3.4), which is more stable than the LU decomposition and has
complexity ~ %n3. This can be used when stability is critical, but usually the LU

decomposition is sufficient, at half the cost.

Vista 1.5.6. When the matrix A is sparse (that is, when most of the entries
are zero), or when the matrix has some other special structure, there are
some excellent iterative methods for solving the linear system Ax = b. The
asymptotic complexity of these algorithms is sometimes nearly as small as the
number of nonzero entries in A, which is much less than n?. Krylov subspace
methods provide several of these solvers (see Chapter 13 of Volume 1).

The solution of a linear system can also be transformed into a quadratic
optimization problem. This leads to some other powerful iterative methods
for solving linear systems. We discuss some of these methods in Chapter 12,
especially in Section 12.6.

1.5.3 *Loop Interchange

As shown in Section 1.4.2, changing the order of summation in a double sum can
make the sum easier to compute. Similarly, changing the order of a nested loop
(called loop interchange) can often reduce the complexity of the nested loop. To
see how this works, we first must understand loop-invariant code motion.

Loop-Invariant Code Motion

A fundamental principle for designing efficient code is that no operation should be
performed unnecessarily. In particular, no operation that can be performed outside
a loop should be performed inside the loop. Otherwise, it is executed many more
times than it needs to be.

Example 1.5.7. In the loop

for j in range(n):
x += ham(j,k) + spam(k)

the function spam(k) is independent of the variables that change in the loop
(like the counter j), but it is recomputed n times because it is inside the loop.
A better approach would be to compute it only once, outside the loop, as
follows:

spam_val = spam(k)
for j in range(n):
x += ham(j,k) + spam_val
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If computing spam(k) costs s(k) FLOPs, then moving the computation outside
the loop has reduced the temporal complexity by (n — 1)s(k) FLOPs. Even
better would be to recognize that we can replace the n additions of spam_val
inside the loop with one multiplication and one addition outside the loop:

x += n * spam(k)
for j in range(n):
x += ham(j,k)

This further reduces the complexity by n — 2 FLOPs.

Example 1.5.8. In the following loop, the value 3 * x**2 + 2 is computed
with each iteration.

while 3 * x**2 + 2 < N:
spam(x)
x +=1

But the condition 3 * x**2 + 2 < N is equivalent to x < ((N - 2) / 3)
*%0.5. Therefore, we can avoid computing 3 * x**2 + 2 each time and, in-
stead, compute the value ((N - 2) / 3)**0.5 just once:

M= ((N - 2) / 3)%%x0.5
while x < M:

spam(x)

x += 1

This gives a savings of 3M — 3 FLOPs. Of course, if M is small, this is not
meaningful, but if M is large, this could be a significant improvement in the
temporal complexity of the algorithm.

Remark 1.5.9. In Example 1.5.8 we consider computing the square root of a
floating-point number to be a single FLOP. This is a common practice because
the square root function is often built into the hardware and can be computed in
about the same amount of time as a floating-point multiplication.

The process of moving code outside of loops, as described in Examples 1.5.7 and
1.5.8, is called loop-invariant code motion because the part of the code that is
independent of the loop (loop invariant) is moved out of the loop. In compiled
languages this is often performed automatically by an optimizing compiler, but it
does not happen automatically in interpreted languages like Python.
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Loop Interchange

Loop interchange can allow us to move operations out of the inner loop or even
eliminate the inner loop entirely, thereby reducing the complexity of the nested
loop.

Example 1.5.10. In the double nested loop

for j in range(n):
for k in range(m):
x += ham(j,k) + spam(k)

the functions ham(j,k) and spam(k) are computed nm times. Changing which
loop is inside and which is outside has no effect on the final result.

for k in range(m):
for j in range(n):
x += ham(j,k) + spam(k)

But now spam(k) does not depend on j, so spam(k) can be moved outside of
the inner loop, as in Example 1.5.7, and we get the final result more efficiently:

for k in range(m):
x += n * spam(k)
for j in range(n):
x += ham(j,k)

Changing the loop order and moving operations out of the inner loop has
saved S0 M ((n — Ds(k) +n — 2) = m(n — 2) + (n — 1) X5y s(k) FLOPs,
where s(k) is the number of FLOPs required by spam(k).

Remark 1.5.11. While good optimizing compilers automatically consider loop in-
terchange for the purpose of improving the efficiency of memory access, they do
not usually consider the other potential benefits of loop interchange, such as those
shown in Example 1.5.10.

1.6 *Additional Techniques of Summation

In this section we discuss several additional techniques of summation. Many of these
are discrete versions of fundamental techniques in traditional calculus, including
discrete versions of the product rule and integration by parts. We also discuss
the Pochhammer symbols, which provide the identities needed to adapt the power
formulas in calculus to the difference and summation operators, as alluded to in
Remark 1.3.15. We conclude this section with a discussion of the inclusion-exclusion
principle, which generalizes the counting formula for unions of sets.
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1.6.1 Product Rule and Summation by Parts

Just as the derivative has a product rule, the difference operator A also has a
product rule. But to write this in a clean way, we must first define the translation
operator 7.

Definition 1.6.1. The translation operator T takes any function f : N — F and
maps it to a new function T[f]: N = F by T[f](k) = f(k+1). The definition also
works if the domain is Z or Z7.

Remark 1.6.2. If I is the identity operator (that is, I[f] = f), then A=T —1I.

Theorem 1.6.3 (Finite Product Rule). For any F-valued functions f,g on N
(or on Z* or Z) we have

Alfgl = Alf]-Tlgl+ f - Algl = T[f] - Alg] + g - A[f]. (1.20)

Proof. The proof uses the same trick used to prove the usual product rule—adding
a fancy form of zero (shown in red below):

Alfgl(k) = f(k+1)g(k +1) — f(k)g(k)
—f(k+1)9(k+1) [f(R)g(k + 1) — f(R)g(k + 1)] — f(k)g(k)
= A[fI(k)g(k + 1) + f(k)Alg](K)
= A[f](% T[g] k) + f(k)Alg] (k).

The other half of (1.20) follows by applying the same argument to gf. 0O

Remark 1.6.4. The presence of the operator T in (1.20) is a little disappointing.
We don’t see this in the product rule in calculus because the term T'[g|(k) in the
discrete case corresponds to g(z + h) in the infinitesimal case, and h — 0 means
that g(z + h) — g(z).

Integrating the product rule gives integration by parts, and summing the discrete
product rule gives the formula we call summation by parts.

Corollary 1.6.5. For any F-valued functions u,v on N (alternatively Z* or Z) we
have

> uk)AP](k) = u®)v®) —u(@)v(a) — Y T|(K)AR)K).  (1.21)

a<k<b a<k<b

Proof. This follows immediately from the product rule and the fundamental
theorem. 0O
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Example 1.6.6. Using summation by parts, we can compute >, _, ka* for
a # 1. Let u(k) = k and v(k) = 2=, so that AfuJ(k) = 1 and Afv](k) = a*,
Thus,

— uln+ o(n + 1) — u()o(0) — > Alu](kyo(k + 1)

_ (n+ 1)an+1 i ak+1
- =1l
k=0
_(n4+1)a™!  a—ag"t?
a—1 a—1)2
(

- _“1)2 (na"* — (n+ 1)a™ + 1).

1.6.2 Rising and Falling Powers

Remark 1.3.15 shows that sums of powers do not yield nice formulas. But there are
two expressions that behave like powers, called the rising and falling, or Pochham-
mer symbols, that do behave nicely with respect to summation operators. They
also behave nicely with difference operators.

Definition 1.6.7. Assume that m € N and © € R. The rising Pochhammer
symbol, which reads as “x to the m rising,” is given by the expression

" =z(z+1)(z+2) - (z+m—1).
Similarly, the falling Pochhammer symbol is defined to be
2 =g(z—1)(z—2)---(x —m+1).
In this case, we say “z to the m falling.” For notational convenience, we define

20 = 22 = 1, since these both correspond to empty products, which are usually taken
to be 1.

We show the following two identities for raising operators and leave the corre-
sponding properties of the lowering operators to the reader to determine.

Lemma 1.6.8. If m € N and z € R, then
xm+1

A = 1)™.
m+1 (z+1)
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Proof.

Az(z+1)(z+2)---(x+m)
=(z+1)(z+2)---(z+m+1)—z(z+1)(z+2)---(z+m)
=((z+m+1)—z)(z+1)(z+2) - (z+m)
=m+1)(z+1)(z+2)---(x+m). O

Theorem 1.6.9. If m € N, then

(1.22)

gk
Eon
3
[
3
+

k=0

Proof. From Lemma 1.6.8 and the fundamental theorem (Theorem 1.3.10), we
have

which agrees with (1.9). Setting m = 2, we have
- 1 2
ZkQ Zk k+1)= w:” ’
=1

Expanding gives

" g nln+llnt+2) nn+l) am+1)2n+1)
Zk _ 3 - 2 - 6 )

which agrees with (1.10).

1.6.3 Inclusion-Exclusion

The inclusion-exclusion principle is a fundamental tool for counting and for working
with unions of sets that overlap. The basic idea for a union of two sets is to first
consider everything in both sets (inclusion) but then remove terms that were counted
twice (exclusion).
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Proposition 1.6.11 (Inclusion-Exclusion for Two Sets). For any finite sets
E, F and any F-valued functions f,g defined on E U F, we have

S k=S fR+ S fR - S fk):

ke EUF keE keF keENF
Proof. We partition E U F' into three sets:
EUF=(EN(ENF))U(F\(ENF)U(ENF),

which gives

oo ofk= D) R+ D> fR+ D> f(k)

keEUF ke(E \ (ENF)) ke(F \ (ENF)) ke(ENF)
=Yt - Y s+ - S fm+ Y k)
ke€E ke(ENF) keF ke(ENF) ke(ENF)
=Y fR)+ > fk)— > f(k). O
kEE keF keENF

Example 1.6.12. Choosing f to be the constant function 1 means that the
sum Y, ¢ f(k) is the cardinality of the finite set S. Thus, for any finite sets
A and B, inclusion-exclusion (Proposition 1.6.11) implies that

|[AUB| = |A| +|B|—|ANB|.

This is a well-known counting formula for finite sets.

Proposition 1.6.13 (Inclusion-Exclusion for Three Sets). Given three finite
sets A, B, and C, we have

Y @)=Y @+ Y @+ Y fe) - Y f@)
B

r€AUBUC T€EA r€B zeC T€AN
- Yt - ¥ @+ Y @)
€ ANC x€ BNC x€ ANBNC

Proof. This follows by writing F = AUB and F = C and applying the proposition
twice. The details are Exercise 1.34. A graphical representation of how the three
sets intersect is given in Figure 1.4. 0O

Example 1.6.14. For finite sets A, B, and C, we have the counting formula

[AUBUC| = |A|+|B|+|C|—|AnB|—|ANC|—|BNC|+|AnBNC|.
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Figure 1.4. A Venn diagram helps illustrate the ideas of inclusion-exclusion for
three sets A, B, and C, as in Proposition 1.6.13. Including everything from A, B,
and C means that the pairwise intersections ANB, ANC, and BN C have all been
included twice and the triple intersection has been included three times. FEzxcluding
one copy of each of the pairwise intersections means that the triple intersection,
which was originally included three times, has now been excluded three times, so it
must be reincluded once more.

Example 1.6.15. Let S be the set S = {1,2,...,1000} and let E be the
integers in § that are divisible by any of 5, 7, or 9; that is, let £ = EsUE;UFEqy,
where E, is the set of integers divisible by n in S. We have |E,| = [1000/n|,
where || denotes the integer part of z > 0. Note also that £, N E,, = Eum
whenever ged(n,m) = 1. Thus

|E| = |Es| + |E7| + |Eo| — |E5 N E7| — |E5 N Eg| — |E7 N Eg| + |Es N E7 N Eg|
= [1000/5] 4+ | 1000/7] + [1000/9] — | 1000/(5 - 7)] — | 1000/(5 - 9)]
— [1000/(7-9)] + [ 1000/(5 -7 - 9)]
=200+ 142+ 111 —-28 —22 — 15+ 3
= J91.

This can be extended to an arbitrary (finite) number of sets.

Theorem 1.6.16 (Inclusion-Exclusion). For any finite collection E1, ..., Ep of
finite sets and for any function f:J;~, E; = F we have
m
Yo fle) = (- > > fe. (1.23)
eeUm, E; k=1 1< << <m eéﬂ}‘:l E;;

Proof. This follows by induction on m. The base case is m = 1, which is trivial.
Now assume that (1.23) holds for all m with 1 < m < n. We prove that the equation
also holds for m =n + 1.
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Let E = ., E; and F = Epy1. By Proposition 1.6.11 and the induction
hypothesis, we have

> f(e)= doofe) = fle)+d_fle— DY fle)

eeUn+1 ec EUF ecFE ecF ecENF

= Y fe+ Y flo- D> fle
ecUr, E: e€En41 ecUr, EsNEnq1

n

Yo (DE Y Yo f@+ Y fe)

k=1 1<iy<-+-<ig<n eeﬂ;;l Eij e€EEn 41

DG DY Y. [

k=1 1<i1 < <ip<n eeﬂ;?=1 Eij NEn+1

The last term can be rewritten as

> Y fle= 3 Y fe).

1<i1 << <n een;;l EijﬁEn+1 1<41 << <lpgp1=n+1 eeﬂk"’l s

Thus, we have

n

> f(e)=Z(—1)’““ > Yoo fe+ D fle)

ecUrt E k=1 1<i1 < <ix<n eeﬂ;?:l E;; e€En 41

n

+D (-1 > >, f©

=1 1S <<ip<ip=n+l eeNiH E;
.7

==y R ICEIDIRIC)

k=1 1<i1 << <n eeﬂ;?=1 Eij e€En 41

n+1

+y (-1 > Y. fle)

k=2 1< < <i=n+1 een;?:;[ Eij

=D (- > Y. f

k=1 1<i1 < <ip<n+1 een;?=1 E

+ (=1 > Y. fe

k=1 1< < <ip=n+1 6€ﬂ;€=1E

(1) > > fe).

1 lsii<<igsntl eeNf_, E

ol
Il

i

Thus by induction, (1.23) holds for all m > 1. 0O
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Example 1.6.17. For any finite collection Ej, ..., E,, of finite sets we have
m m k
U E:| =Y (-nF+? > () E:|- (1.24)
i=1 =1 1<ip<-<ig<m [j=1

Alternatively, we can write

>, U Bl (1.25)

Jc{1,2,....m} jeJ

1.7 Products and Counting

Computing the temporal and spatial complexities of an algorithm is essentially a
big counting problem. Many computations in probability theory also boil down to
counting problems (see Chapter 5). In this section we discuss some of the key tools
for counting, including the multiplication rule, permutations, combinations, and the
binomial theorem.

1.7.1 The Multiplication Rule

We begin by examining the cardinality of a product of sets. Let A and B be sets
of finite cardinality |A| and |B]|, respectively. The Cartesian product of A and B,
denoted A X B, is the set of ordered pairs

Ax B={(a,b) |ac Abec B}.

A key observation is that the cardinality of A x B is |A| - |B|. This is sometimes
called the multiplication rule. It is a very useful concept even though its proof is
trivial.

Example 1.7.1. Let the set of entrées be E = {pizza, hamburger, salad} and
the set of drinks be D = {water,soda}. If a meal is defined as a pair of exactly
one entrée and exactly one drink, then the number of possible meals is the set
of possible pairs [E x D| = |E|-|D| =3-2=6.

The multiplication rule generalizes as follows: Suppose that we have the finite
sets A1, Ag,...,A,. The Cartesian product A; x Az X --- X A, is the set of n-
tuples (a1, as,...,a,) with each a; € A;. The cardinality of the Cartesian product
is [Ap x Ag X -+ x Ay| = |A1] - |Ag] - [An].

Example 1.7.2. In the Land of Oz, a license plate has two letters followed
by three numbers. By the multiplication rule, the total number of possible
license plates in Oz is 26 - 26 - 10 - 10 - 10 = 676,000.
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1.7.2 Permutations

A permutation of a set S is an ordering of the elements of S. For example, there
are six ways to permute the set {1,2, 3}; they are (1,2,3), (1,3,2), (3,2,1), (3,1,2),
(2,3,1), and (2,1,3). More generally, a set of n objects can be permuted n! =
1-2---(n—1)-n ways. The proof follows by induction and is Exercise 1.37.

Example 1.7.3. If there are 19 students in a class, then there are 19! ways
that the students can be ordered; that is, there are 19! permutations of the
class. This is a very large number—approximately 10'7.

Remark 1.7.4. For notational convenience, we set 0! = 1. This is a standard
convention in mathematics.

Sometimes we are only interested in ordering r objects taken from a set of n
elements. For example, suppose we wanted to elect a president, a vice president,
and a secretary from the class of 19 students. In this case there are 19 choices for
president, 18 choices for vice president after the president is chosen, and 17 choices
for secretary after the other two are chosen. That gives 1918 - 17 = % = 5814
possible presidencies. This could also be thought of as taking the total number of
orderings 19! and dividing out the unused orderings 16!. This pattern applies in
general, as given in the following proposition.

Proposition 1.7.5.  The number of permutations of r objects from a set of n
elements (0 <1 < n) is P(n,r) =

n!
(n—r)!*

Proof. The proof is Exercise 1.38. O

1.7.3 Combinations and Rearrangements

Suppose that instead of a presidency, we want to choose a committee of three people
from the 19 students in the class. In this case, since none of the three are ranked
above any other, we must also divide out the number of orderings of the three
people in a given presidency. Thus the number of combinations of students on the
committee is (2% = 969. This is denoted C(19,3) or (%) and is pronounced “19
choose 3.”

Proposition 1.7.6. The number of (unordered) combinations of r objects from
a set of n elements (0 < r < n) is C(n,r) = () = T,(+lr), For notational

convenience, we set C(n,r) = (*) = 0 whenever r > n orr < 0.
Proof. The proof is Exercise 1.38. 0O
Remark 1.7.7. The numbers (':) are often called binomial coefficients because of

their role in the binomial theorem (Theorem 1.7.16), below. Note that these are
always integers because they count the number of times something can occur.
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Example 1.7.8. The number of ways to choose two socks, not necessarily
matching, from a drawer of 20 socks is C(20,2) = 219 = 190, because we
don’t care about the order in which the socks are chosen. But the number of
ways to put these socks on your two feet is P(20,2) = 20 - 19 = 380 because
there are 20 choices for your left foot and 19 remaining for your right foot.

Example 1.7.9. In poker a player draws five cards, without replacement,
from a standard deck of 52 cards (four suits and 13 ranks; each card has a
rank and a suit). A three-of-a-kind is when there are three cards of the same
rank, plus two cards which are not of this rank nor the same rank as each
other. How many different ways can one get a three-of-a-kind? There are
C(13,1) = 13 possible ranks for the triple. For each possible rank, there are
C(4,3) = 4 different ways you can have three cards of that rank. Thus, there
are 13 - 4 = 52 different triples of the same rank.

For the two extra cards, neither of them can be the same rank as the triple
(or else you would have four of a kind), nor can they be the same as each other
(or else you would have a full house). The remaining two cards must be from
the remaining 12 ranks, which gives C'(12,2) = 66 possibilities. For each of
these two ranks, there can be four different suits. Therefore, the total number
of unique three-of-a-kind combinations is C(13,1)C(4, 3)C(12,2)4? = 54,912.

Example 1.7.10. In the Powerball Lottery players choose five distinct num-
bers ranging between 1 and 69 and also choose the Powerball, which is a
single number ranging between 1 and 26. Although the balls are drawn one at
a time, the numbers are always reported in ascending order and therefore the
order drawn doesn’t matter. The number of possible unique lottery tickets
is the number of Powerball choices (26) times the number of ways to choose
five numbers from 69, or 26 - C'(69,5) = 292,201,338. Since there is only one
jackpot, the odds of winning this lottery are 1 in 292,201,338.

Example 1.7.11. How many unique rearrangements are there of the word
TOOTH? Five letters can be rearranged 5! ways, but there are two pairs of
letters that are multiples; specifically, the letters O and T are represented
twice. Thus, we must divide out the number of ways the multiple letters can
be permuted among themselves. This gives 5% = 30 different rearrangements.
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Example 1.7.12. The number of rearrangements of the word MISSISSIPPI

can be counted by noting that the letters I and S are repeated four times, and

P is repeated twice. Thus, there are #1!!2! = 34,650 unique rearrangements.

Remark 1.7.13. An important generalization of the binomial coefficient is the
multinomial coefficient. Let ny + ng + - - - + n, = n, where each n; > 0. Define

n n!
e e e Sa— 1.26
(nl,ng,...,nr) nilng! - n,! ( )

It describes the number of ways that n elements can organized into r groups of
ny,Na,...,n, elements, respectively.

Example 1.7.14. If there are nine employees at a restaurant, how many ways
can you choose four wait staff, two cooks, two bussers, and one host (assuming
every employee is able to perform every job)? Using the multinomial, we have
9!
3780.

121211 —

1.7.4 Combinatorial Identities

The binomial coefficients satisfy some useful relations. Among the most famous is
Pascal’s rule, which is the foundation of Pascal’s triangle (see Table 1.1). This is
given algebraically in Lemma 1.7.15 and used in the proof of the binomial theorem
(Theorem 1.7.16).

n=0: 1

n=1: 1 1

n=2 1 2 1

n=3 1 3 3 1
n=4 1 4 6 4 1
n=>5 1 5 10 10 5 1

Table 1.1. Pascal’s triangle can be used to determine the coefficients in binomial
expansions. Pascal’s lemma (Lemma 1.7.15) says that the rth element of the nth
row can be found by adding the two elements (the rth and the (r — 1)th) just above
it on the (n — 1)th row.

Lemma 1.7.15 (Pascal’s Rule). For all n,r € Z* with r < n we have

(:) - (::i) * (n; 1)' (1.27)
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Proof.

n—1 n—1 (n—1)! (n—1)!
(1‘—1) +( r ) - (r—1Yn—r)! +r!(n—1—1‘)!
(=Dl (n-Dln-r)
orl(n—r)! rli(n —r)!

_(a-Dn _ nl =<n) 0

Corlln—r)! i (n—1)! r

Theorem 1.7.16 (Binomial Theorem). For any z,y € F and n € Z* we have

n
n n k, n—k
= . 1.28
@i =3 (7)ats (1.28)
Here, as in all similar sums, we use the convention that z° = 1, even when z = 0.
Proof. The proof follows by induction. We first prove the case n = 1. Note that

1 1
r+y= (0):60,1;1 + (l)wlyo.

Now, assuming by the inductive hypothesis that the theorem is true for n — 1, we
prove that it holds for n. We have

@+y)"=(+y)(z+y""

> (" et

e o (o R G| E s B

;) (Z) xkyn—k‘

k

Thus (1.28) holds for all n € Z*. O

Remark 1.7.17. Note that the binomial theorem gives another way to see that the
binomial coefficients must always be integers, because each coefficient of (z + y)»
must be an integer.
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Corollary 1.7.18. For any n € Z™, the following combinatorial identity holds:
" /n
2" = .
> (1)
k=0
Proof. From the binomial theorem we have
" (n " (n
"= (1+1)" = 11—k = . O
=3 (3t =30 ()
k=0 k=0
There is also a multinomial theorem that expresses (z1 + - - + x4)™ in terms of

multinomial coefficients.

Theorem 1.7.19. For any x1,...,24 € R and n € Z* we have

d n
|l = n kygka . pka 1.2
(;x,) Z (k1k2"'kd)x1 Ty" Ty s (1.29)

ki+-t+hkg=n

where the sum on the right runs over all d-tuples of nonnegative integers kq,. .., kq
that sum to n, and (", ) is the multinomial coefficient (1.26).

Proof. This is proved by inducting on d and using the binomial theorem. The
details are Exercise 1.45. O

1.8 Division and Divisors

Some of the most useful algorithms depend on divisibility properties of integers. In
this section, we develop these ideas and also discuss the Euclidean algorithm, an
ancient and very efficient algorithm for finding the greatest common divisor of two
positive integers.

1.8.1 Divisibility and the Division Theorem

The fundamental tool for working with integers is the well-ordering axiom of the
natural numbers (see Volume 1, Appendix A, Sections 3—4).

Definition 1.8.1. A binary relation < on a set X is called an ordering (or a total
order) if it satisfies the following properties:

(i) For every z,y € X eitherzx <y ory < .
(il) z < z for everyz € X.
(iil) Ifzr <y and y < z, then x = y.
(iv) Ifr<yandy < z, thenz < z.

A set X with an ordering < is well ordered if every nonempty subset S C X has
a least element, that is, if there exists an element x € S such that x <y for every
y€S.
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Unexample 1.8.2.

(i) The interval [0,1] € R with the usual ordering < is not well ordered,
because the set (0, 1] does not have a least element. For example, given
any z € (0,1] the number § is strictly less than z.

(ii) The set of integers Z with the usual ordering is not well ordered because
there is no least element. For every n € Z the number n — 1 € Z is less
than n.

Axiom 1.8.3 (Well-Ordering Axiom for Natural Numbers). The set of
natural numbers N = {0,1,2,...} with the usual ordering < is well ordered.

Example 1.8.4. Any subset of a well-ordered set is also well ordered. Hence,
the set Z™ of positive integers is also well ordered.

The well-ordering axiom guarantees that any nonempty subset of N has a least
element. For example, given some property of interest characterized by a Boolean-
valued function P(n) on N, that is, P(n) € {True, False} for each n € N, we can let
S ={n e N| P(n)} be the set of all natural numbers satisfying that property. The
well-ordering axiom guarantees that if S is nonempty, then there is a least element
of S, and this must be the smallest natural number satisfying the desired property.

Lemma 1.8.5 (Archimedean Property). Ifa,b € Z*, then there exists n € Z*
such that bn > a.

Proof. Suppose no such n exists. Thus, 0 < a — bn for each n € Z*. Let S =
{a—bn|neZ*} CZ". Since S is nonempty, the well-ordering axiom guarantees
that S has a least element, say, a —bm. It follows that a —bm < a —b(m+1), which
implies that b < 0, which is a contradiction. Hence, there exists n € Z* such that
bn>a. 0O

The well-ordering axiom is also the key to proving several divisibility properties
of the integers. The first of these is the division theorem.

Theorem 1.8.6 (Division Theorem). Given any integer a € Z and any nonzero
b € Z, there exist unique integers q,r with 0 < r < |b| such that

a=bqg+r.

Moreover, if a,b > 0, then ¢ > 0, and ifa > b > 0, then ¢ > 0. We call a the
dividend, b the divisor, ¢ the quotient, and r the remainder.

Proof. Let S ={a—br |z € Z} C Z and ST = SNN. By Exercise 1.47 the
subset S* C N is nonempty, so the well-ordering axiom implies that ST has a least
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element r > 0. Thus, there exists a ¢ € Z such that r = a — bq. Assume, by way
of contradiction, that r = a —bg > |b|. If b > 0, then r — |b| =a —b(g+1) >0
is an element of ST that is less than r, a contradiction. If b < 0, then r — |b] =
a—b(g—1) > 0is an element of ST that is less than 7, which is also a contradiction.
Therefore, 0 < r < |b].

To see uniqueness, consider any r’ = a — bg’ with 0 < r’ < |b|. Without loss of
generality, assume that r < ', andso 0 < r’'—r < |b|. But '—r = a—bq’—(a—bq) =
b(g — ¢') is a multiple of b, and the only nonnegative multiple of b less than |b] is 0.
Thus ' =r and ¢’ = q.

Finally, ifa > b > 0, then a—r > b—r > 0, which implies that ¢ = (a—7r)/b > 0.
Ifb>a>0,thena=0-b+a,s0q=0. O

1.8.2 Greatest Common Divisors

Definition 1.8.7. Given any a,b € Z with b # 0, we say that b divides a (denoted
bla) if there exists ¢ € Z such that bc = a. In this case, we say that b is a divisor of
a. If b does not divide a we write b1 a.

Example 1.8.8. We have 2|18 but 6 { 13.

Theorem 1.8.9. Given a,b € Z, not both zero, there is a unique d € Z™* satisfying
the following properties:

(i) d is the least positive integer that can be written in the form ax + by for some
z,y € Z.

(ii) The integer d divides both a and b, that is, d|a and d|b.
(iii) For any integer d' with d’|a and d’'|b, we have d'|d.
(iv) d is the greatest positive integer that divides both a and b.
The integer d is called the greatest common divisor (ged) of a and b and is denoted

ged(a, b).

Proof. Let S = {an+bm | n,m € Z} and let ST = SNZ*. It is straightforward
to see that ST # 0. By the well ordering of Z*, there must be a least element in
S7T; let d be that least element.

(i) By definition, d = az + by for some z,y € Z and is the least such element.

(ii) By the division theorem, there are integers ¢, with 0 < r < d such that
a=dq+r,but r =a—dg = a(l — zq) — byq is either 0 or an element of S+.
If  is an element of S+, then since d is the least element in S*, we must have
d < r, which is a contradiction. Therefore r = 0, and d divides a. Exchanging
a for b in the previous argument proves that d also divides b.

(iii) Since d'|a and d'|b we must have a = d's and b = d't for some s,t € Z, and
hence d = az + by = d'sz + d'ty = d'(sz + ty), so d'|d.

(iv) This follows from (ii) and (iii). O
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Example 1.8.10. In elementary school, we find the ged by factoring the two
numbers into products of primes and then collecting the common factors. For
example, to compute the ged(12,20) we write 12 = 22.3 and 20 = 225, and so
the ged(12,20) = 22 = 4. But factoring is a very expensive algorithm. In fact
its high complexity is the foundation of many cryptosystems; see Section 1.9.7
for more on this. In Section 1.8.3 we present a much faster way to find the
ged.

Proposition 1.8.11. Let a,b,c € Z. If albc and gecd(a,b) = 1, then alc.

Proof. Since ged(a,b) = 1 there exist z,y € Z such that az + by = 1. Multiplying
by ¢ gives axc + byc = c. Since a|bc we have az = bc for some z € Z, and hence

¢ = azc+ byc = a(zc + zy).

Therefore alc as required. 0O

1.8.3 The Euclidean Algorithm

The gcd can be found very efficiently by way of the Fuclidean algorithm. This is
one of the most ancient algorithms still in modern use. It was described by Euclid
in his book FElements around 300 BCE, but many scholars believe it was known
earlier.

Theorem 1.8.12 (The Euclidean Algorithm). Given a,b € Z with b # 0,
define qo, 0 € Z as in the division theorem (Theorem 1.8.6) to get

a=bqo+r0

with 0 < 1o < |b]. If 1o = 0, then ged(a,b) = b. Otherwise, divide b by ro to get
q1,71 € Z by the division algorithm; that is,

b=roq1 + 11
with 0 < r; < ro. Repeating the process eventually gives a remainder of zero:

a = bqo + ro,
b=roqy + 11,
o = T192 + T2,

1 =T12q3 + 13,

(1.30)
Tn—2 = Tn—1qn + Tn,

Tn—1 = Tnqnt1 +0.
The penultimate remainder r,, is the ged of a and b, that is,

ged(a, b) = ry.
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Proof. For any two integers m and n with n # 0, let m = ng+r with 0 < r < |n|.
Let d = ged(m, n) and e = ged(n,r). Notice that r = m — nqg, and d|m and d|n, so
d|r, and hence d < e. Conversely, since m = ng+ r, we have e|m and e|n, so e < d.
Therefore ged(m, n) = ged(n,r). Applying this result to each successive division in
(1.30) shows that

ged(a, b) = ged(b, ) = -+ - = ged(rp_1,7n) = ged(r,,0) =1y,

The algorithm terminates with n < |b] — 1, because at each stage we have
0<rgp1 <rg,andso0<r, <---<ry<rg<|b. 0O

Example 1.8.13. The ged of 14562 and 348 is computed as follows:

14562 = 348 - 41 + 294,
348 = 294 - 1 + 54,
294 = 54. 5 + 24,
54=24.2+86,
24— -0,

Thus, ged (14562, 348) = 6.

The bound n < |b] — 1 in the previous proof can be improved a lot, as the
following lemma shows.

Lemma 1.8.14. Following the notation in the previous theorem, we have b > 21,
and ri > 2ri42 for each k € {0,1,2,...,n —2}.

Proof. Since Tx11 = Qr43Tk+2 + Tk+s and 1y = Qgy2Tk+1 + Tkt2, We have that
Tk = Tk+2(1+qk+3qk+2) +qk+27k+3. Thus, x> rry2(1+gk+3gk+2). Sincerjpr <7
for every j € {0,...,n — 1}, we have gx4+2 > 1 and gx+3 > 1, hence 7 > 2ry2. To
show that b > 2r;, set r_; = b and use the same argument. O

Theorem 1.8.15. Using the notation in the previous theorem, assume a,b € Z*
satisfy b < a. The number n+1 of iterations of the Euclidean algorithm for gcd(a, b)
is bounded above by 2(log, b) + 1; that is, n < 2log, b.

Proof. Choose m € Z* so that 2™~! < b < 2™. Suppose that n > 2m — 1. From
the lemma, we have

b>2ry >4r3 > - >2Mrg_1 > 2™,

Thus, we have that r, < 27™b < 1, which is impossible. Thus, n < 2m — 1, which
implies n < 2(m — 1) < 2log,b. 0O
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Remark 1.8.16. The number of iterations of the Euclidean algorithm is at most
~ 2log, b. Normally we think of complexity in terms of the number of digits required
to store or represent the inputs, not the numerical value of the input. So in a base-2
representation of b, the size of the input is £ = [log, b]. If the complexity of each
iteration is @), then the temporal complexity of the Euclidean algorithm is ~ 24Q).
If the input is represented in base 10 instead, then

1
n < 2logy b= 212:—10; ~ 6.644log;, b < 6.644 x number of digits of b.
10

This is still a crude estimate—there are much sharper bounds in the literature.

1.8.4 Extended Euclidean Algorithm

Theorem 1.8.9 guarantees that, for any nonzero integers a and b, the element
ged(a, b) can be written as axz+by for some z,y € Z. Knowing the actual values of z
and y is useful in many applications. This can be found easily, by back-substituting
in the original Euclidean algorithm.

Example 1.8.17. In Example 1.8.13, we computed ged(14562, 348) = 6 as

14562 = 348 - 41 + 294, (1.31)
348 = 294 - 1 + 54, (1.32)
294 = 54 -5 4 24, (1.33)

54=24-2+6, (1.34)
24=6-4+0. (1.35)

We work from the bottom up and solve for each remainder in terms of the
other parts and then back substitute. Equation (1.34) gives

6=>54—24-2 (1.36)

and (1.33) gives
924 =294 — 54 5. (1.37)

Substituting (1.37) into (1.36) gives
6=54— (204 —54-5)-2=11-54—2- 204, (1.38)
Solving for 54 in (1.32) gives
54 = 348 — 294 - 1, (1.39)
and substituting (1.39) into (1.38) gives

6=11-(348 —294-1) —2-294 = 11348 — 13- 294. (1.40)
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Solving for 294 in (1.31) gives
294 = 14562 — 348 - 41, (1.41)
and substituting into (1.40) gives
6=11-348 — 13- (14562 — 348 - 41) = 544 - 348 — 13 - 14562. (1.42)

This gives the desired expression for 6 = ged (14562, 348) as an integer combi-
nation of 14562 and 348.

Writing out the equations for this procedure, we have r,, = r,_2 — rp_1¢n, Th—1 =
Tn—3 — T'n—2qn—1, and so forth, up to rg = a — bgg. The initial Euclidean algorithm
finds all the values of g, so back substituting gives

ng(av b) =Tpn =Tn-2 —Tn-1qn
=Tp—2 — (Tn—3 - rn—2‘1n—1)‘1n

= ("'n—4 - Tn—3‘]n—2) - ("'n—3 - (rn—4 - Tn—3q'n—2)qn—1)q'n

and this gives an explicit expression for ged(a,b) = r,, as az + by. This is called the
extended Fuclidean algorithm. It may feel painful to write out all the equations for
the extended Euclidean algorithm, but it is simple to program.

1.9 Primes and Remainders

In this section, we treat basic properties of prime numbers and modular arithmetic.
We prove Fermat’s little theorem, which follows from the binomial theorem and
gives a very fast algorithm for determining when a given number is likely to be
prime. We also discuss the Rivest-Shamir—Adleman (RSA) cryptosystem.

1.9.1 Primes

Definition 1.9.1. If two integers a,b € Z satisfy ged(a,b) = 1, then we say that
a and b are relatively prime. An integer p > 1 is prime if it is relatively prime to
every a € {1,2,...,p—1}.

Example 1.9.2.

(i) We have ged(6,9) = 3 and ged(4,9) = 1, so 4 and 9 are relatively prime,
but 6 and 9 are not.

(ii) If p is any prime, and b € Z, then either ged(p,b) = 1 or ged(p,b) = p,
since the only positive divisors of p are 1 and p.
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1.9.2 Modular Arithmetic

Definition 1.9.3. Given a,b € Z and n € Z*, we say a is congruent to b modulo
n, denoted a = b (mod n), if n|(a — b).

Example 1.9.4. The following statements are true:

37=25 (mod 12),

37=1 (mod 12),

—9=31 (mod 10),
5% 7 (mod 3).

Example 1.9.5. You've been using modular arithmetic since you learned to
tell time. The minutes on a clock are measured modulo 60. For example,
45 minutes after the hour is the same as 15 minutes before the hour; that is,
45 = —15 (mod 60).

Theorem 1.9.6. Let a,b € Z and n € Z*. The relation a = b (mod n) is an
equivalence relation on Z.

Proof. Tt suffices to show that = is reflexive, symmetric, and transitive. Reflexivity
follows because n|0 always holds. Symmetry follows because n|(a — b) holds if and
only if n|(b — a). Finally transitivity follows from the fact that if n|(a — b) and
n|(b — ¢), then n|[(a — b) + (b — ¢)], hence n|(a—c). O

Definition 1.9.7. The set of equivalence classes in Z defined by congruence
(modn) is denoted Z,. The equivalence classes are also called cosets.

The equivalence class of z is denoted [[z]]. The equivalence classes are the sets
[0] = {0, £n,+2n,£3n,...},
[[1]] = {1,1:|:n,1:|:2n,1:|:3n,...},
2] ={2,2+n,2+2n,2+3n,...},

[[n—l]];{n—1,(n—1):|:n,(n—1):I:2n,(n—1):|:3n,...}.

Each equivalence class in Z,, has a unique representative in the set {0,1,...,n—1}.
As a result, when it can be done without introducing ambiguity, we often abuse
notation and leave off the (-] and write 1 to mean [[1], 5 to mean [[5], etc.

Remark 1.9.8. It is important to remember that each element of Z, is an entire
coset of numbers. We can write these cosets by choosing any element of the coset,
eg., [-1] = [n—1]] = [-3n — 1]}, [-2] = [» — 2] = [6n — 2]}, etc.



1.9. Primes and Remainders 57

Theorem 1.9.9. Ifa,b,c € Z and n € Z*, then
(i) (@+b)+c=a+ (b+c) (mod n),
(ii) (ab)c = a(bc) (mod n),
(iii) a+b=b+a (mod n),

(iv) ab=ba (mod n),

)
)
)
(v) a(b+c) = ab+ ac (mod n).

Proof. The proof is Exercise 1.54. O

The previous theorem, combined with the substitution rule, below, makes com-
putation in Z, much simpler than computation in Z.

Theorem 1.9.10 (Substitution Rule). Leta,b,a’,b’ € Z, andn € Z*. Ifa=d’
(mod n) and b=¥b (mod n), then

(i) a+b=d + b (mod n),

(ii) ab = a’t! (mod n).
Proof. If a = a’ (mod n) and b =¥ (mod n), then n|(a — a’) and n|(b—b’). This
implies there exist c,d € Z such that a = a’ + nc and b = b’ + nd.

(i) Adding gives a+b=a'+b +n(c+d). Thus,a+b=a’ + ¥ (mod n).

(if) Multiplying gives ab = a’b’ + n(cb' + a’d+ned). Thus, ab = a’d’ (mod n). 0O

Example 1.9.11. Since 31 =4 (mod 9) and 66 = 3 (mod 9), we have

97 =31+66=4+3=7 (mod9),
2046 =31-66=4-3=12=3 (mod 9).

1.9.3 Fast Modular Exponentiation

We can also compute m* (mod n) using Theorem 1.9.10. For example, to compute
3781 (mod 11), note that 37 = 4 (mod 11). So it suffices to find 43! (mod 11). We
apply the theorem multiple times in an improvised way to get

48 = (437 = (-2)%" = (-2)(-2)* = (-2) - 4* = (-8) - 4> = (-8) - 16°
=(-8)-5°=(-8)-25°=-8-33=(-8)-5=-40=4 (mod 11).

We can do this more efficiently using a technique called fast modular exponenti-
ation. To compute m* (mod n), find m = ag (mod n) and then square both sides
to get m? = (ap)?® = a1 (mod n), and keep squaring to get each a;1 = a2 (mod n)
until k < 2711, At this point we can write m* as a product of some combination!

of the a;.

11 A little thought shows that the particular terms a; appearing in the product are determined by
the binary expansion of k.
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Example 1.9.12. We compute 37%! = 4 (mod 11). We begin with 37 = 4
(mod 11), which gives ag = 4. Taking powers of both sides yields

TP =4 =16="5=ai,

37*=52=25=3 = ay,

A =32 =-0—q,

Sl =T ==

SPE— A2 16 =5 =,

3t =5 =5 ==

Thus, 3781 = 3764+16+1 = 3764.3716.371 = g5-.a4-a; = 3-4-4 =4 (mod 11).

Remark 1.9.13. Fast modular exponentiation requires O(|log, k|) integer multi-
plications. This is considered fast because it uses many fewer multiplications than
the naive approach of multiplying by m repeatedly (which requires O(k) multipli-
cations).

1.9.4 Finding Inverses in Z,,

If a and n are relatively prime, then there exist z,y € Z such that az + ny = 1.
This can be rewritten as az —1 = —ny, and therefore az = 1 (mod n). This implies
that z is a multiplicative inverse to a in Z,,. In particular, given any relation of the
form az = w (mod n), we can easily find z by multiplying both sides by z, that is,

z = (za)z = z(az) = zw (mod n).

Example 1.9.14. To find an integer z satisfying
3lz =17 (mod 56),

note that 31 and 56 are relatively prime, so there exist integers  and y such
that 31z + 56y = 1. We can use the extended Euclidean algorithm to find
x = —9 and y = 5. This implies that

(31)(=9) =1 (mod 56),

and hence
(31)(=9)(17) = 17 (mod 56).

Therefore z = (—9)(17) = 15 (mod 56) is a solution.

1.9.5 Fermat’s Little Theorem

Fermat’s little theorem is much more useful than his last theorem. It’s also much
easier to prove.
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Lemma 1.9.15. Assume p € Z" is prime. If k € Z with k < p, then p|(}). In
other words, (}) =0 (mod p) for k=1,2,...,p—1.

Proof. We have (?) = pik)! € Z, and p divides p! = (2)k!(p — k)!. But p is
relatively prime to k!(p — k)!, so by Proposition 1.8.11 we must have p|(}). 0O

Corollary 1.9.16 (Freshman’s Dream). If p is prime, then for a,b € Z we have
(a+ b)P = a? +b” (mod p).

Proof. By the binomial theorem and the previous lemma we have

P
(a+b)P = Z (?)ap_jbj =aP+0aP b+ +0abP "'+ 0P = aP+bP (mod p). O
7=0

Theorem 1.9.17 (Fermat’s Little Theorem). If p € Z* is prime, then a? = a
(mod p) for all a € Z.

Proof. Assume p is prime. Define S = {a € Z | a? = a (mod p)}. We first prove
the theorem for nonnegative integers a by using induction to show N C S. We know
0,1 € S because 0? = 0 (mod p) and 1? =1 (mod p). Assuming k € S, we show
that £+ 1 € S. By the freshman’s dream, we have

(k+1)?=1P+kP=1+k" (mod p).

By the inductive hypothesis, k? = k (mod p); therefore, k + 1 € S. By induction,
we have a € S for all a € N.

The theorem also holds for negative integers because if a < 0, then a = r
(mod p) for some 0 <r < p;thusa? =rP =r =a (mod p). 0O

Corollary 1.9.18. Ifp € Z* is prime and a € Z with gcd(a,p) = 1, thena?P~! =1
(mod p).

Proof. By the theorem, we have that a? = a (mod p). Thus, there exists n € Z
such that np = a(a?~! — 1). Since ged(a,p) = 1, we must have p|(a?~! — 1) or,

equivalently, a?! =1 (mod p). O

Corollary 1.9.19. Ifp € Z* is prime, and z = 1 (mod p — 1), then a* = a
(mod p) for all a € Z.

Proof. The proof is Exercise 1.61. O

Example 1.9.20. Consider again the problem from Example 1.9.12, where
we compute 375! (mod 11). Since 11 is prime, Corollary 1.9.18 implies that
3719 =1 (mod 11). Thus, 3781 =37 (3719 =4.18 =4 (mod 11).
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1.9.6 *Application: Primality Testing

In cryptography, it is often important to determine whether a given number n is
prime and, if not, then to factor it into a product of primes. One obvious way
to do both of these tasks is to attempt to factor n by each of the primes of size
less than or equal to /. If none of these primes is a factor, then n is also prime.
This algorithm is prohibitively time consuming when n is large, as are the most
sophisticated factoring algorithms currently available.

The strength of the widely used Rivest—-Shamir—-Adleman public-key encryption
method is based on the presumption that it is very time consuming to factor a
product of two large primes. For example, if the product is a few hundred digits
long, then the fastest factoring methods will take years to factor n with today’s
fastest supercomputers.

But there are much faster tests that merely determine whether a given integer
n is prime, rather than factoring it. And tests that determine whether a given
number is likely (but not guaranteed) to be prime are faster still. One probabilistic
test for primality is to use Corollary 1.9.18, which shows that a"~! = 1 (mod n)
holds whenever n is prime and a < n. If this equivalence fails for even a single value
of a, then n is composite and the test is concluded. If equivalence holds for several
values of a, we start to gain confidence that n is likely to be prime. Of course, this
approach does not prove that n is prime. So even though many people call this
a test of primality, it’s really a test of whether a given number is composite, and
repeated failure to show that a number is composite suggests that it is likely prime.

There is a class of composite numbers, called Carmichael numbers, that satisfy
a" ! =1 (mod n) for all a; the smallest of these is n = 561 = 3 - 11 - 17. However,
these numbers are very rare. For example, there are only 8,220,777 Carmichael
numbers between 1 and 10%°, but there are roughly 2.17 x 10'® prime numbers
in the same range. Thus, even if we don’t explicitly account for the Carmichael
numbers, the chances of accidentally getting a Carmichael number are extremely
small when testing random integers for primality. Note that there are even better
probable primality tests with no Carmichael equivalent.

1.9.7 *Application: RSA Cryptography

The Rivest—Shamir—Adleman (RSA) cryptosystem is widely used in network secu-
rity. It works by choosing a pair of distinct, large primes p and ¢, setting n = pgq,
and finding two positive integers e and d so that m®? = m (mod n) for every m € Z
(as described below). The numbers n and e are made public, but d is kept private.
Assuming a message is expressed as an integer m, anyone can encrypt the message
by computing the ciphertext ¢ = m® (mod n), but only the person holding the
secret key d can decrypt the message by computing c? = (m€)? = m (mod n).

Given n = pq, the number e can be any integer that is relatively prime to
¢ = (p—1)(g—1). The private key d is chosen to satisfy de = 1 (mod ¢) (see
Section 1.9.4). In the theorem below, we show that for any £ =1 (mod ¢) we have
m® = m (mod n) for all m € Z. This yields ¢ = (m¢)? = m®® = m (mod n).
Thus the original message is recovered.

The system relies upon the fact that it is easy to compute m® (mod n) and
¢? (mod n) using fast modular exponentiation, but it is numerically prohibitive to
compute m when all you know is ¢, e, and n. In particular, for large n there is no
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known feasible way to factor it into the two primes n = pq, and therefore there is
no known way to compute £.

The next theorem is the key to decoding RSA. It is an easy corollary of Fermat’s
little theorem (or, rather, of Corollary 1.9.19).

Theorem 1.9.21. If p,q € Z* are distinct primes and x € Z is such that z = 1
(mod (p — 1)(q¢ — 1)), then for any m € Z we have m® = m (mod pq).

Proof. Since z =1 (mod (p —1)(q — 1)), we have z =1 (modp—1) and z =1
(mod ¢ — 1). By Corollary 1.9.19 we have m* = m (mod p), which implies that
p|(m* — m). Similarly, we have ¢q|(m® —m), and thus, since ged(p, q¢) = 1, we must
have pq|(m* —m). 0O

Example 1.9.22. Let p = 17 and ¢ = 13, which gives n = 221 and ¢ =
192 = 25 . 3. We choose e = 7 and verify that ged(7,192) = 1. The extended
Euclidean algorithm gives 1 = (55)7 + (—2)192, which implies d = 55.

If the message is m = 191, then using fast modular exponentiation we find
c=m® = 1917 (mod 221). To do this we compute

1912 =16 (mod 221) and 191* = 162 =35 (mod 221),

which implies ¢ = 1917 = 19142+1 = 35 . 16 - 191 = 217 (mod 221).
To decrypt the message we compute c¢? = m® = m (mod 221) via fast
modular exponentiation, again, which gives
217 = 16  (mod 221),
217 = 162 = 35 (mad 221),
2175 =35 =120 (mod 221,
2l = iR =S imod 1)
i = ne = S0 ok 22118

Thus 21755 = 21732+16+4+2+1 = 191 (mod 221).

1.10 Divide and Conquer

An algorithm is recursive when it divides a larger problem into one or more sub-
problems and then reapplies itself on the subproblems, dividing them further, and
so on, until the individual pieces are reduced to some simple base cases. Recursive
algorithms are sometimes called divide-and-conquer algorithms because of the way
they continually divide larger problems into smaller, more conquerable problems.
In this section we examine a few recursive algorithms and then present the
master theorem, which gives a general rule for computing big-O bounds on divide-
and-conquer algorithms. We prove the master theorem in the next section, after
giving a few more examples of its use. The master theorem does not tell us anything
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A CRYPTO NERD'S WHAT WoLLD
| MAGINATION ¢ | ACTUALLY HAPPEN:
HIS LAFTOPS ENCRYPTED. H'S LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH
CLUSTER To CRACK IT THIS $5 WRENCH UNTIL
'\ uose -BIT R?:Pu‘_ \ GOT IT.
EUIL PLHN . }

15 FOILED! ™( O O

Figure 1.5. Cryptographic security. Source: XKCD, Randall Munroe. http:
// zkcd. com/ 538/

about the leading-order behavior of these algorithms beyond giving a big-O bound.
For the leading-order behavior more in-depth analysis is necessary.

1.10.1 Examples of Recursive Algorithms
Recursive Merge

Recall the merge algorithm (Algorithm 1.3) in Section 1.2.2. We can use recursion
to give a different algorithm for merging together two ordered lists, as follows: Take
the first entry of each list, make a comparison, take the smaller of the two entries off
its list, and then reapply the merge function to the two lists again; see Algorithm 1.7,
below. The temporal complexity T'(n) of this algorithm satisfies the equation

Tn)=TMn-1)+ec, (1.43)

where ¢ is a constant representing the temporal complexity of one recursion step
and n is the sum of the lengths of the two lists. It is easy to see that (1.43) has
temporal complexity of O(n) (see Exercise 1.66) since we have

Tn)=Tn-1)4+c=T(n—-2)+2c="---=T(0) + nc.

The spatial complexity is a little more difficult to compute, because it depends on
whether the algorithm makes a copy of the data each time it is called. If the data
are duplicated each time, then the spatial complexity S(n) satisfies

S(n) = 8S(n—1)+ O(n). (1.44)

Here the O(n) occurs because we need to store the initial two lists and the output
list, all of which are O(n). This shows that the total spatial complexity of this



11

12

13

1.10. Divide and Conquer 63

def merge(K, L):
"""Merge two sorted lists K and L into a new sorted list.

nun

# Base case: a list is empty
== Lo ==l
return K + L

# Recursive cases
elif K[0] <= L[0]:

return [K[0]] + merge(K[1:], L)
else:

return [L[0]] + merge(K, L[1:])

Algorithm 1.7. Recursive routine for merging two sorted lists of numbers together
into a single sorted list.

algorithm is O(3_;_, k) = O(n?). There are ways to do this more efficiently, for
example, by passing only some pointers to a location in the original lists—this can
bring the spatial complexity back down to O(n).

Recursive Addition

Addition can also be written as a recursive algorithm that cuts off the first two digits
(in the ones place), adds them together, and then appends the result to the sum of
the truncated addends, carrying if necessary; see Algorithm 1.8. If the larger of the
two addends has no more than n digits, then the temporal complexity T'(n) of this
recursive addition algorithm satisfies (1.43). As a result, the temporal complexity
is also O(n). It is straightforward to see that the spatial complexity S(n) satisfies
(1.44), and thus S(n) € O(n?), but, again, this can be changed to O(n) by using
pointers instead of duplicating the data at each step.

Binary Search

A linear search algorithm is one that starts at the beginning of the list and checks
each entry in succession until the desired element is found or until the list is ex-
hausted. It is usually assumed that the input list is unsorted, and thus one has no
choice but to search sequentially for the entry.

If a list is length n, then, on average, half the list must be examined in order
to find the match and so the average run time grows linearly in n. The worst-case
scenario is that the desired entry is either the last entry or nowhere present in the
list. In either case, every entry is checked and thus the algorithm is O(n), both
spatially and temporally.

Linear search is a relatively slow method for searching a list. If the input list is
sorted, there is a much faster way to search through it, called binary search, which
works as follows. First check whether the target value is greater than, equal to, or
less than the middle entry in the list. If equal, terminate the search and return the



11

12

13

14

15

16

17

18

64 Chapter 1. Introduction to Algorithms and Analysis

def add(a, b, carry=0):
"""Add two numbers together recursively, where
each input is a list of single-digit integers.

# Recursive case 1: both lists are nonempty

if a !=[] and b !'= []:
# Add the rightmost digits and recurse on the rest
temp = a[-1] + b[-1] + carry
return add(a[:-1], b[:-1], temp//10)+[temp%10]

# Recursive case 2: one list empty but must carry
elif carry:
return add(a+b, [carry]l, 0)

# Base case: one list is empty and carry is O
elisek
return a + b

Algorithm 1.8. Recursive routine for adding two lists of digits together.

location. If less, then do a binary search on the first half of the list. If larger, then
do a binary search on the second half. Repeat, halving the list at each step, until the
match is found or until the list is exhausted. This is implemented in Algorithm 1.9.

This algorithm has temporal complexity O(logn) because it needs at most k
iterations, where 251 < n < 2*. To leading order, the spatial complexity at the
first iteration is ~ n because the initial list must be stored, plus a few constant-
length variables (left, right, and midpoint). At each subsequent iteration the
same list is passed to the algorithm, and, at least in Python, this does not require
more memory, so the spatial complexity satisfies S(n) ~ n + Z§=1 ¢, where the
number k of iterations is less than log,(n), and c is a constant (corresponding to
the constant number of constant-length variables). Hence S(n) ~ n+clog,(n) ~ n.

Remark 1.10.1. This particular implementation of the binary search algorithm
reuses the same list at each iteration, which makes it much more efficient than it
would be if it passed a new list (or sublist) to each subsequent iteration (as is done
in Algorithms 1.7 and 1.8). If, instead, it passed new sublists at each iteration
(for example, my_list[left:midpoint-1]), then a new copy of the sublist would be
stored at each step and the spatial complexity would instead satisfy

k
S(n) ~n+S(g) =n+22'jn=n+n(1 —2"“) ~ 2n.
j=1
1.10.2 Master Theorem

The master theorem gives general upper bounds on the complexity of a large class of
recursive algorithms. This theorem applies to many of the most important classical
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def binary_search(mylist, target, left=0, right=None):
Search a sorted list 'mylist' for 'target'.
Return the index if a match and -1 if no match

nnn

# Set initial variables
if right is None:

right = len(mylist) - 1
midpoint = (left + right) // 2

# Failed search of entire list
if left > right:
return -1

# If found the target in the list
if target == mylist[midpoint]:
return midpoint

# Search the left half of the list
elif target < mylist[midpoint]:
return binary_search(mylist, target, left, midpoint-1)

# Search the right half of the list
else:
return binary_search(mylist, target, midpoint+l, right)

Algorithm 1.9. An implementation of the binary search algorithm. This is an
example of a recursive algorithm because, after breaking the problem into two halves,
the algorithm calls itself again on one of the halves.

algorithms in computer science. We discuss the main ideas and present several
examples in this section. We prove the master theorem in Section 1.11.

Theorem 1.10.2 (Master Theorem). Consider a function T : Zt — [0,00)
satisfying the recursion rule

v o Jal([3D) + f(n) ifn>1,
T(n) < {T1 b Fm1 (1.45)

where a > 0 and Ty > 0 are real constants, b > 2 is an integer constant, and f(n)
is nonnegative, with f € O(n?) for some d > 0.

(i) Ifb¢ > a, then T(n) € O(n%).
(ii) Ifb* = a, then T(n) € O(nlogn).
(iii) If ¢ < a, then T(n) € O(n'°8s®),
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Example 1.10.3.

(i) Let T(n) <9T([5]) +n. Wehavea =9, b =3, log,a = logz 9 = 2, and
d = 1. Since b? = 3 < 9 = q, it follows that T'(n) € O(n'°8 %) = O(n?).

L b TGl s SRR ] =5 ks W s = 1L G = 2 el = 1 i
b? = 1 = a, it follows that T'(n) € O(n°logn) = O(logn).

(iii) Let T(n) < 3T([%]) + nlogn. We have a = 3 and b = 4. Note that
nlogn € O(n'*%) for any € > 0. Thus, the master theorem applies with
d =1+ ¢. Since b% = 41+¢ > 3, it follows that T(n) € O(n'te).

Remark 1.10.4. The master theorem does not give us the sharpest possible bound
for Example 1.10.3(iii). Exercise 1.68 shows that T'(n) € O(nlogn).

Unexample 1.10.5. In the case of recursive addition (Algorithm 1.8), if we
let T'(n) be the number of operations required by the algorithm for two lists of
length n, then T(n) = T'(n — 1) + ¢ for some constant ¢. The master theorem
does not apply because n—1 # [n/b] for any integer b > 2. However, Exercise
1.66 shows, without using the master theorem, that T(n) € O(n).

Example 1.10.6. The binary search of Algorithm 1.9 checks to see if the
middle of the list is the number it is looking for, and if not, it calls itself again
on one half of the list. The number T'(n) of operations required satisfies the
relation

T(n) <T([n/2]) +e¢,

where ¢ is a constant. The master theorem applies with a = 1, b = 2, and
d = 0. Since 2¢ = 1 = a, the master theorem implies that 7'(n) € O(logn).

1.10.3 Algorithms

The master theorem is useful for understanding the asymptotics of many important
algorithms. In this subsection we demonstrate this on a few examples.

Multiplication

One way to multiply recursively is to separate each number into right and left halves
and multiply each half separately. Let x,y denote two numbers in base 10, each
with n = 2™ digits. Thus, z = £1,10"/2 4 zg and y = y10™? + yg, where the
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def mult(a, b):
"""Recursively multiply two numbers 'a' and 'b'
together, where each number is given as a list
of single-digit integers.

nun

m = len(a); n = len(b)

# Base case 1: one of the lists is empty
sl RSl Nem BRSNS
return []

# Base case 2: single digit multiplication
elif m == 1 and n ==

product = a[0] * b[0]

return [product // 10, product % 10]

# Recursive case

else:
aRbL=mult(a[m//2:]1,b[:n//2])+[0]*(n - n//2)
aLbR=mult(al:m//2],b[n//2:1)+[0]*(m - m//2)
aLbL=mult(al:m//2],b[:n//2])+[0]*(n+m-n//2-m//2)
aRbR=mult(a[m//2:],b[n//2:])
return add(aRbL, add(aLbR, add(aLbL, aRbR)))

Algorithm 1.10. A recursive routine for multiplying two long integers together
when represented as lists.

subscripts L and R denote the left and right halves, respectively. This gives
zy = (x10™? + 25)(yL10V2 + yg)
=2zpyr10"™ + (zryL + :cLyR)IO”/2 + ZRYR. (1.46)

So to multiply z and y, the function calls itself four times on new numbers with
5 digits each (see Algorithm 1.10 for details). The temporal complexity of the
addition step is in O(n), so the complexity of this recursion satisfies the relation

T(n) <4T(In/2]) + f(n),

where f(n) € O(n). The master theorem applies with a =4, b =2, and d = 1, and
since 2¢ = 2 < 4 = a, we have T'(n) € O(n'°82%) = O(n?).

Faster Multiplication

We can break up (1.46) differently, as follows:

zy =zpyr10" + [(zr + zr)(yL + Yr) — TLYL — :nRyR]IO"/2 + ZRYR. (1.47)
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This expression consists of three long multiplications and six long additions, in-
stead of four long multiplications and three long additions. Since addition is O(n)
and multiplication is O(n?), this is more efficient when n is large than our earlier
multiplication algorithms. In fact, we have the recursive relationship

T(n) <3T([n/2]) + f(n),

where f(n) € O(n). The master theorem applies with a = 3, b = 2, and d = 1.
Since 2¢ = 2 < 3, we have T'(n) € O(n'°823) ~ O(n!°®%). For large values of n, this
multiplication algorithm is much faster than the algorithms discussed earlier.

Remark 1.10.7. Note that in both (1.46) and (1.47) we assumed n = 2™. This
made the algorithms easier to implement. They can be adapted to the more general
case, but it’s rather messy and not very enlightening to analyze the algorithms.
Instead, we can pad the lists with zeros until their lengths are powers of 2.

Merge Sort

Section 1.2.2 shows that the naive sorting algorithm has temporal complexity O(n?).
A much better sorting algorithm is the merge sort. The algorithm splits the list in
half, calls itself on each half, and then merges the two resulting lists. The details are
given in Algorithm 1.11. Exercise 1.66 shows that the merge step has complexity
O(n), so the complexity of this algorithm satisfies the relation

T(n) =2T([n/2]) + cn, (1.48)

where c is a constant. The master theorem applies with a = 2, b = 2, and d = 1,
and since b = 2 = a, we have T'(n) € O(nlogn).

def mergesort(L):
"""Recursively sort a list 'L' by merging sorted
sublists.

nwun

n = len(L)

# Recursive case: split L into halves
il gl > dls
return merge(mergesort(L[:n//2]), mergesort(L[n//2:1))

# Base case: L has length 1 or O
else:
return L

Algorithm 1.11. Recursive routine for merge sort. This algorithm can use ei-
ther of the previously defined merge routines, that is, either Algorithm 1.3 or Algo-
rithm 1.7.
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Matrix Multiplication

Matrix multiplication can be defined recursively by subdividing each matrix into
blocks. Let A and B be n x n matrices where n = 2™. Write A and B in block

form as 1 "
11 A Bi1 B
= d B=
[Am Azz] o [321 322] ’

where each A;; and B;; is a matrix of size § x 5. We have

AB — A App| |Bu Bia| _ [AunBu+ A12Bar AnBiz + A12Bo
Az Axa| |Ba1 B A21B11 + A22Bo1 A21Bio + A2eBao|

Thus, the product of two n x n matrices is broken up into eight multiplications of
5 X 5 matrices and added together as above. Since addition of n X n matrices is
O(n?), the number T'(n) of operations used by this algorithm satisfies the relation

T(n) = 8T([n/2]) + cn?,

where c is a constant. The master theorem applies with a = 8, b = 2, and d = 2.
Since 2¢ = 4 < 8 = a, we have that T'(n) € O(n'°828) = O(n3).

Remark 1.10.8. This recursive matrix multiplication can be adapted to matrices
whose dimensions are not powers of 2 by padding the rows and columns A and B
with zeros.

Faster Matrix Multiplication

Just as there is a faster multiplication algorithm (1.47) there is also a faster matrix
multiplication algorithm due to Strassen, based on the following observation (see
Exercise 1.63). As before, we write the n x n matrices A and B, where n = 2™, in
block form as

A11 A12 Bll B12
A= d B=
|:A21 A22:| an |:Bgl B22:| !

where each A;; and B;; is a matrix of size § X 3. The key observation is that AB
can be written as

An Ap| |Bu Bur| _ |B+Pi— P+ P P+ Py (1.49)
A2 Ag| |Ba1 Bao Ps+Py, P+PFP—-P;— P’ ’

where

Py = Ay (B2 — B2),

Py = (A1 + A12) B,

P3 = (A21 + A2)B1a,

Py = A2(B21 — Bu1), (1.50)
Ps = (A11 + Ag2)(B11 + Bao),

Pg = (A12 — Ag2)(Ba1 + Ba2),

P; = (A11 — A21)(B11 + Bia).
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This allows us to compute AB by doing only seven matrix multiplications of half
size and several matrix additions. Thus, the recursive equation is given by

T(n) = 7T ([n/2]) + f(n),

where f(n) € O(n?). The master theorem applies with a = 7, b = 2, and d = 2.
Since b% = 4 < 7 = a, we have T'(n) € O(n!°827) ~ O(n?8074),

Nota Bene 1.10.9. It is important to remember that this is an asymptotic
result and a smaller big-O rate doesn’t necessarily mean the algorithm is
always faster. Indeed, Strassen’s algorithm requires n to be moderately large
(roughly n > 3000) before it overtakes regular matrix multiplication in run-
time performance.

1.11 Proof of the Master Theorem

In this section, we prove the master theorem (Theorem 1.10.2). We first prove it
when n is an exact power of b, and then we prove it generally.
Recall that the master theorem states that a function 7' : Z+ — [0, 0o) satisfying

T(n) = {aT(fn/bW)+f(n) ifn>1,

1.51

has its asymptotic bounds determined by the relationship between 4% and a as
J'O(nd) if b4 > a,
T(n) € < O(n%logn) if b% = a,
O(n'°ss 2) if b < a.

1.11.1 Proof for n = b™

In the special case that n = b™, we have the following lemmata.!?

Lemma 1.11.1. Assume that (1.51) holds for some nonnegative integer b > 2,
constants a > 0 and Ty > 0, and a nonnegative function f, such that for alln = b™
with m € N we have

T = aT(®™ 1) + f(O™) if m >0,
O ) if m=0.

In this case, for any exact power n = b™ with m € N we have

m—1
T(b™) =a™Ty + Y abfO™7F). (1.52)
k=0

12The traditional plural of the word lemma is lemmata. People will think you are smarter if you
purse your lips and raise your eyebrows when you say it.
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Proof. Expanding the recursion we get

T(™) = aT(H™ ") + f(0)
= a®T(™ ) +af (O™ 1)+ F(O™)
=a®T(O™ %) +a®f(b™2) +af (6™ ) + f(B™)

m—1
=a™T(%) + > _ aFf™*). 0O

k=0
Remark 1.11.2. Since m = log, n = log, n - log; a, we have

a™ = (alogan)logba — nlogb a

If n = b™ for some m € N, then (1.52) becomes

(logy n)—1

n
T(n)=n®°T + Y d*f (b—k) . (1.53)
k=0
The next lemma gives an asymptotic bound on the sum in (1.53).

Lemma 1.11.3. Let a > 0 be a real constant, b > 2 an integer, and f : Z+* —
[0,00). Assume that f(n) € O(n?) for some d > 0 and that g is a function defined
on exact powers of b by

(ogym)-1
gn)= >, df (b_k) (1.54)
k=0

for any n = b™ with m € N.
(i) Ifb® > a, then g(n) € O(n?).

(ii) Ifb? = a, then g(n) € O(nlogn).
(iii) Ifb? < a, then g(n) € O(n'°8+9).
Proof. If f(n) < cn® for n € N sufficiently large, then

(log, n)—1 .
azes " (8)"
k=0
This gives the following three cases:
(i) If b > a, then
(logy n)—1

g(n) < en? Z (I;id)k < cndi

k=0 k=0 b
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(ii) If b% = a, then since m = log, n, we have

g(n) < entlogy n € O(ntlog, n) = O(nlogn).

(iii) If b¢ < a, then we have

a \log, n 1 d logya _ ,d
a2 —1 ogp M _ 8y & _
g(n) < en? () =2 LNAL s O(n'°&:%). 0O

a _ a a
d d d
When n is an exact power of b, the master theorem follows from the two lemmata.
In particular, under the hypotheses of the master theorem, since

T(n) = n'*% T} + g(n),
we have
(i) T(n) € O(n'°8 ) + O(n?) = O(n?), when b > q;
(ii) T(n) € O(n'&2) + O(nlog, n) = O(n?log, n), when b¢ = q;

(iii) T(n) € O(n'°82) + O(n'°8+ %) = O(n'°8+ %), when b? < a.

1.11.2 Proof for General n € Z+

If T satisfies the recursion relation (1.45) (or equivalently (1.51)) for all n € Z*,
then the fractional values in the argument of 7' are rounded up with the ceiling
operator, leading to a sequence of recursion arguments

w35

This is a nonincreasing sequence that starts with n and goes down to 1 (and then
is always 1 thereafter, but that part is not important). Define the sequence as
N0, - -+, Mm, that is,
n if j =0,
n; = ) 1.55

7 {[—"Jb-l} if § > 0. (1.55)
Let m be the smallest integer such that n,, = 1. We call m the recursion depth
of T'(n). In the special case that n = b™, the previous subsection shows that the

recursion depth is m = log, n. When n is not an exact power of b, the length of the
sequence is not quite as simple to find, but we can still bound its size.

Proposition 1.11.4. IfT : Z* — [0,00) satisfies the recursion relation (1.45), with
integer b > 2, then the depth m of the recursion, as given by the sequence (ng)j-,
defined in (1.55), is bounded above by [log,n]. In other words, m < [log,n].
Moreover, for any k > 0, we have ny < nb~* + 1.
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Proof. Begin by bounding each term in the sequence generated by (1.55). Since
the remainder of n divided by an integer b is at most b — 1, we have

ng=n<n+1,

n n -1 n
n1=[ﬂ§3+7<3+1,
— [™] Ifn b=ty b1 _mn b1/ 1N _n_
IS\ T T b b b)) ST
NEg_1 1/1 1/n b-1 b—-1 b—1 b—-1
= P il - - -
nk’-bw—b(b( b(b+b)+b> +b>+b
k—1 oo
n b-1 1\ n b-1 1\ =n
_b_k+Tj§=:O(5><b_’c+Tj§=:0(3 !

Suppose, by way of contradiction, that m > [log,n]|. Thus, m — 1 > [log,n] >
log, n, which implies n < ™1, Since

N1 < +1<2,

n
bm—l -
we have n,,,_1 < 1, which contradicts the minimality of m. Thus m < [log,n]. 0O

Remark 1.11.5. If b is not an integer, the previous proof does not work, because
[n/b] — n/b is not necessarily bounded by 271.

We now complete the proof of the master theorem. The previous two lemmata
can be adapted to the case where n is not an exact power of b. As in the case of
Lemma 1.11.1, expanding the recursion step by step gives

T(n) =T(no)
= aT'(n1) + f(no)
= a®T(ny) + af(m1) + f(no)

= a"T(nm) +a™ f(nm—1) + -+ + af(n1) + f(no)
= amTl +g(n)7

where m < [log, n] is the recursion depth and

m—1

g(n) =) a*f ().
k=0

Note that for each k € {0,...,m} we have b¥ < b™ < b€+l = pn so, by
Proposition 1.11.4, we have

£+1 bk
Z—k<(bkn )=1+—<1+b.
bF bF n
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Thus, for each k € {0,...,m}, we have ny < (14 b)z%. This implies there exists a
constant ¢ such that f(nk) < c(g%)? . This gives

[ay

m—1 m—

g(n) < ake (bﬁk)d = cn? Z (;—d)k.
k=0 k=0
So we have the following cases:
(i) If d > log, a, or equivalently a < b%, then
ek 2 /a\k 1
g(n) < cn® 2 (b_d) < cnd; (b_d) =cnd. - € O(n%).

(ii) If d = log, a, or equivalently a = b%, then
g(n) < enm < en[logyn] < end(log, n + 1) € O(nlog, n).

(iii) If d < log, a, or equivalently a > b?, then

e
N—

m™_1 %dam—nd
g(n)Scnd( — :C-(b )i_l .
b bd

rn.lp

In Exercise 1.70, we show that ;7 <1, which implies that

m _ d
g(n)Sc-%.
& —

Since m < [log,n] = logyn + ¢ = log, n - log,a + €, where 0 < € < 1, and
a > b? > 1, we have

a™ < a[logb n] _ aloga n-log, ate _ nlogba .af € O(nlOgb a)' (156)
Thus, g(n) € O(n'°8 @),

This completes the proof.

Exercises

Note to the student: Each section of this chapter has several corresponding
exercises, all collected here at the end of the chapter. The exercises between the
first and second lines are for Section 1, the exercises between the second and third
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip
some of the advanced exercises marked with *). We have carefully selected them,
and each is important for your ability to understand subsequent material. Many of
the examples and results proved in the exercises are used again later in the text.
Exercises marked with A\ are especially important and are likely to be used later in
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this book and beyond. Those marked with { are harder than average, but should
still be done.

Although they are gathered together at the end of the chapter, we strongly
recommend you do the exercises for each section as soon as you have completed the
section, rather than saving them until you have finished the entire chapter.

1.1. Prove or disprove each of the following:
(i) 3n—1 € O(n).
(ii) 3n —1 € o(n).
(ili) 3n —1 € O(n?).
(iv) 1 € O(n).
1.2. A Prove the following:
(i) If fi(n),h(n) € O(g(n)) and fa(n) € O(h(n)), then the sum satisfies
fi(n) + fa(n) € O(g(n)).
(i) If fi(n),h(n) € o(g(n)) and fa(n) € O(h(n)), then the sum satisfies
fi(n) + f2(n) € o(g(n)).
(iii) For any k£ € N and any coefficients ak,ax—1,...,a0 € R, the function
f(n) = agn® + ax_1n*"1 4 .- 4 a1n + ag is in O(n¥).
1.3. A\ Prove Proposition 1.1.13.
1.4. For m € N, prove that f(n) = > ;_, k™ € O(n™*1).
1.5. Show that for every p > 0 and every a > 1 we have
(i) O(logn) C o(nP), but logn ¢ O(1);
(ii) nlogn € o(n'*?), but nlogn ¢ O(n);
(iii) O(nP) C o(a™).
Hint: Use I’'Hopital’s rule.
1.6. Consider the standard elementary school algorithm for subtraction of multi-
digit integers.

(i) Code up the algorithm. Your code should accept two lists of single-digit
integers and return a list of single-digit integers. Explain the algorithm
carefully in the comments of your code.

(ii) Determine the asymptotic temporal and spatial complexity (big-O) of
this algorithm and explain why your answer is correct.

1.7* The Fibonacci sequence {F,}52 is defined by the rule F, 1 = F,, + Fp,_1,
for n € Z*, where Fy =0 and F; = 1.

(i) Assuming that the sequence z,, = F,11/F, converges to some point in
R, prove that it converges to the golden ratio
1 5
o= +2\/_. (1.57)

Prove that (1.57) satisfies ¢> = ¢+ 1, and use this to prove (inductively)
that ¢F,, + F,,_1 = ¢™. Use this fact to prove that F,, € O(¢").



76 Chapter 1. Introduction to Algorithms and Analysis

(ii)t That F,,/F,_1 converges to ¢ is not enough to show that F,, € O(¢™),

as you will now show. Let a > 0, and let G,, = a"el*z++=. Prove
that lim,_,o, G/Grn_1 = a but that G,, € O(a™).

1.8. Prove the following:

(i) For any k£ € N and any coefficients ag,ax—1,...,a0 € R, the function

f(n) = arn® +ap_1n*"1 + ... 4+ ayn + ag satisfies f ~ apn®.

(ii) If g € o(f), then f+ g~ f.

1.9. An algorithm with leading-order temporal complexity ~ 100n? will not nec-
essarily take longer to run than an algorithm with leading-order temporal
complexity ~ 1. Give an example of two functions f ~ 100n2? and g ~ 1 such
that f(n) < g(n) for all n < 105.

1.10. Prove that ~ is an equivalence relation, as mentioned in Remark 1.2.3.

1.11. Find the leading-order spatial and temporal complexity of Algorithm 1.1 and
explain why your answer is correct.

1.12. Find the leading-order spatial and temporal complexity of the long subtrac-
tion algorithm in Exercise 1.6 and explain why your answer is correct.

1.13. Construct an algorithm for finding the index of the smallest element in a list
L of length n, using only primitive operations, that is, assigning a value to a
variable or to a given position in a list, looking up the value of a particular
element at a given position in a list, comparing two values, incrementing a
value, etc.

(i) Code up your algorithm.

(ii) Give the leading-order temporal and spatial complexity of this algorithm
as a function of n.

1.14. Consider the following sorting algorithm, called selection sort. Given a list L
of length n, first find the smallest element and swap it with the element L[0].
Then find the second smallest element of L and swap it with the element
L[1], and so forth for the first n — 1 elements of the list.

(i) Explain why the algorithm needs only to run through n — 1 elements
instead of all n.

(ii) Code up this sorting algorithm without using any built-in sorting or
indexing functions. You may use the minimum function you wrote in
the previous problem.

(iii) Give the leading-order temporal and spatial complexity for this algo-
rithm as a function of n.

1.15* Given n points in the plane, consider the problem of finding the pair of
points that is closest together. Ome algorithm for doing this is the brute
force method: list all the pairs, compute their Euclidean distances, and take
the smallest one.

(i) Explain how this brute force algorithm can be implemented without ever
computing a square root.
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1.16.

1.17.

1.18.

1.19.
1.20.

1.21.

1.22.

1.23.

(ii) Code up this algorithm without using square roots. Your code should
accept a list of points as ordered pairs (z;,y;) of scalars and return the
two points that are closest together.

(iii) Show that this algorithm has temporal complexity in O(n?), where the
primitive operations include the basic arithmetic operations +, —, x, =,
assigning a value to a variable or to a given position in a list, looking up
the value of a particular element at a given position in a list, comparing
two values, and incrementing a value.

Prove that the difference operator is linear; that is, if f,g : N — F and
a,b €T, then

Alaf +bg](k) = aA[f](k) + bA[g] (k)
Prove the following'
(1) Zii=1 z(z+1) =1- 'n_+1

(i) Yk 4k7—1 = il
Hint: Consider using the fundamental theorem.

Prove that
b—1 1
Z log (1 + —) = log(b) — log(a)
k=a N k/
forb>a > 1.
Derive the formula (1.11).
A For any 8 € (—1,1) show that ) o, tBt = ﬁ by differentiating the

geometric series Z?:o Bt = Mﬂ% with respect to 8 and then taking the
limit as n — oo.

Show that
S fn-k) =3 f(®)
k=0 £=0

Find closed-form expressions (no summation) as a function of n for each of
the following:

1) zn+5 k— 5)2
(ii) Yk—o(k +2)°.
(iii) Zk 521_—3(k 4).

+3
(iv) zj__3 Z_J+3(k —3).
Compute the following double sum in two ways: first, as written, and second,
by changing the order of summation:

>3

k=0 j=k



78 Chapter 1. Introduction to Algorithms and Analysis

1.24. Give another proof of the relation in Exercise 1.20 as follows:
(i) Show that 37 ,tB" is equal to the double sum Y) | 241 gt
(ii) Change the order of summation.
(iii) Compute the inner sum as a geometric series.
(iv) Use the previous result to give a closed-form expression for Y, t3%.
(v) Compute the limit as n — oo.

1.25. Show that the double sum of (1.18) satisfies

n—j

DD fUik) = ZZfa—b b).

7=0 k=0 a=0 b=0

Give a geometric description or picture (in the style of Figures 1.1, 1.2, and
1.3) of how this summation proceeds.

1.26. For each k =1,2,...,11 do the following:

(i) Define random matrices A and B of size 2¥ x 2¥ and a column vector x
of length 2F.

(ii) Time the computation of (AB)x and the computation of A(Bx).

For each k, find the ratio of the time it takes to compute (AB)x versus A(Bx).
When £ increases by one, does the ratio of the times of the two computations
change? By how much? Explain this in terms of what we have discussed
about the complexity of matrix-matrix and matrix-vector multiplication.

1.27. Verify algebraically that (I, + uv')x = x4+ u(v'x) for any u,v,x € R™. For
each choice of n =1,2,...,11 do the following:

(i) Create the 2™ x 2™ identity matrix I and random vectors u,v,x of
dimension 2".

(ii) Time the computation (I + uv')x versus x + u(v'x).

(iii) Compare the computation times, describe how the ratio of the two grows
as n gets larger, and explain this in terms of the asymptotic temporal
complexity of the two computations.

1.28. Write out the details to prove the equality in (1.19).

1.29. Carefully compute the leading-order temporal and spatial complexity of the
back-substitution part of Algorithm 1.6 (Lines 21-29).

1.30* Consider the following Python code, which calculates

n—1lm-—1

S=>">"(i+fG),

i=0 j=0
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where f(j) is a function that depends only on j:

S=0
for i in range(n):
for j in range(m):
S += i + £(§)

(i) Assuming that computing £ (j) requires F' FLOPs for every j, calculate
the number of FLOPs that this code uses, as a function of n, m, and F.

(ii) Move any computations possible out of the inner loop and find the num-
ber of FLOPs used after this change is made.

(iii) Going back to the original code, change the order of the loops, so that
the i-loop is the inner one, and move any computations possible out of
the inner loop. Find the number of FLOPs required by the modified
code.

(iv) Eliminate the inner i-loop entirely by finding a closed-form expression
for the sum it computes. Find the number of FLOPs required now.

(v) The closed-form expression of the last step does not depend on j so it
can be moved outside the j-loop. Make this change to the code and
move any additional calculations outside the j-loop. Your new code
should correspond to computing the sum w +(n-1) Z;";Ol ).
Find the number of FLOPs used in this version of your code.

(vi) Show that you can save two more FLOPs by factoring (n — 1) out of the
previous expression. Adjust your code correspondingly.

1.31* Use summation by parts to compute the sum

n

St
k=0
in closed form.
1.32* Using equation (1.22), derive equation (1.11).

1.33* Prove that
k+1

; k41
i=1

1.34* Prove the inclusion-exclusion formula for three sets; that is, prove Proposition
1.6.13.

1.35* Suppose that (ax)p>, is a sequence of complex numbers with uniformly
bounded partial sums; that is, there exists M > 0 such that

n
§ak

k=0

<M<
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for every n € Z*. Prove: If (bx)2, C R is a monotonically decreasing'®
sequence converging to zero, then the sum

oo
E aiby
k=0

converges. Moreover, | Y 72 axbg| < 2Mb;. Hint: Use summation by parts.
1.36* Use the previous result to prove that the sequence

>

k=1 k

converges for any complex number |z| =1 with z # 1.

1.37. Prove that there are n! permutations of a set with n elements. Note: An
informal proof suffices.

1.38. (i) Prove Proposition 1.7.5. An informal proof suffices.

(ii) Prove Proposition 1.7.6. An informal proof suffices.

1.39. A group of friends, Alice, Bob, Carlos, Dan, Eve, and Fakhira, are going to
a movie. In how many different ways can they be seated together in a single
row of six seats if

(i) there are no restrictions on the seating assignment;
(ii) Alice and Bob must sit next to each other;
(iii) Alice, Bob, and Carlos must sit together;

(iv) the six seats must alternate between genders (Alice, Eve, and Fakhira
are female, while Bob, Carlos, and Dan are male).

1.40. Show that there are 123,552 different ways to draw a two-pair hand in five-
card poker; see Example 1.7.9 for details.

1.41. In a certain lottery, five distinct numbers (balls) are drawn randomly from
the set {1,2,...,59} and a “superball” is drawn from the set {1,2,...,35}.
You win the $100 prize when you match three regular balls and the superball.
How many unique draws qualify for the $100 prize?

1.42. Prove that for any n € Z* and any z,y € IF, we have

n

Z( )k:ck Lyn=F = n(z + y)" L.

Use this to show that
Z (Z)k: =2 1n.
k=1

Hint: Compute the derivative 3 of the binomial formula.

13 A sequence (bg)S°  is monotonically decreasing if by, < by for all k € N.
k=0 +
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1.43. Prove that for any z,y € F and n € N with n > 2 and z # 0 we have

Z (Z)k2$k—2yn—k _ (n2 4 %) (z + y)n—Q,

k=1

and use this to show that

2"3 (:) k? = n(n+ 1)2"2.

k=1

(")=5 @)

for integers r, n, and m with r < n 4+ m. Hint: Look at the binomial
expansions for (1 + z)™ and (1 + z)", and compare their product to the
binomial expansion for (1 + z)™*".

1.45* Prove Theorem 1.7.19.

1.46* Prove that the Pochhammer symbols (see Definition 1.6.7) satisfy a form of
the binomial theorem:

(z+y)" = f: (Z) a"FyF and  (z4y)= En: (Z) ok

k=0 k=0

1.44* Prove that

1.47. Given any integer a € Z and any nonzero b € Z, show that the set ST =
{a—bzx | z € Z} NN, in the proof of the division theorem (Theorem 1.8.6), is
nonempty.

1.48. Let a = 323 and b = 204. Use the Euclidean algorithm (by hand) to find
ged(a, b). Show all the intermediate steps.

1.49. Find z,y € Z such that 323z + 204y = 17.

1.50. Prove: If d = ged(a, b), then ged(a/d, b/d) = 1.

1.51. Code up the extended Euclidean algorithm from scratch, without importing
any additional libraries or methods. Your code should accept two integers a
and b and return ged(a, b) as well as z,y, satisfying azx + by = ged(a, b).

1.52. Prove that ged(n,n + 1) = 1 for all n € Z*. Conclude from this that if a
prime p divides n then it does not divide n + 1.

1.53* Using the previous exercise prove there are infinitely many prime numbers.
Hint: If there are only finitely many primes, say pi,ps,...,Dm, then set
n = piP2 - Pm and consider n + 1.

1.54. Prove Theorem 1.9.9.
1.55. Given an integer a = Y_j_, ax10*, prove that a is divisible by
(i) 3 if and only if the sum Y ,_, ay is divisible by 3;
(ii) 9 if and only if the sum >, _, ay is divisible by 9;
(iii) 11 if and only if the sum > j_,(—1)*ay is divisible by 11.
1.56. Prove: If a = b (mod ¢) and d|c, then a = b (mod d).
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1.57. Determine necessary and sufficient conditions on = and c¢ so that
az=bzx (modc) = a=b (modc).

Prove your answer is correct.
1.58. By hand, find the remainder when dividing 3434 by 12.
1.59. Use the extended Euclidean algorithm to find

(i) the element a € Z7o such that 35a =1 (mod 72);
(ii) the element b € Z72 such that 356 = 67 (mod 72).
1.60. Compute the following by hand:
(i) 14128 (mod 127).
(i) 18254 (mod 127).
(iii) 25540 (mod 127).
1.61. Prove Corollary 1.9.19.

1.62. For each of the following recurrence relations, determine whether the master
theorem applies. If it applies, use it to provide the big-O bounds, and if not,
explain why not.

(i) T(n) =8T ([51) +

(i) T(n) = 16T (f%]) +n.
(iii) T(n) = 3T(|'%])

(iv) T(n) =4T ([51) +

(v) T(n) = 5T ([31) +

(vi) T(n) =T(n—5) + \/_
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