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Preface

Overview
Why Algorithms, Approximation, and Optimization?
Moore’s Law1 has given us a half century of persistent and rapid innovation, where 
technological devices have been continually getting smaller, cheaper, and faster. As 
a result, our world today is stocked with computers. Not just desktops, laptops, 
cell phones, and tablets, but also digital health and wearable devices, video game 
consoles, smart appliances, and countless embedded systems.

1This refers to the observation that the number of transistors in computer chips has doubled 
approximately every two years for several decades. Although the doubling rate has slowed in 
recent years, there is still persistent growth in available computing power that is said to “extend” 
Moore’s law in practical terms.

Taking a broad view, we see a computer as a machine or network of machines that 
executes instructions in a systematic way to process and communicate information. 
When organized formally, these instructions take the of form of algorithms that are 
encoded into hardware or software. The process of executing algorithms is called 
computing.

Beyond the many and assorted electronic computing devices, algorithms are 
also found in biological systems. For example, the instructions for cell creation and 
reproduction are genetically encoded in DNA, which gets transcribed into RNA 
and then translated into rules for producing proteins—the building blocks of cells. 
These transcription and translation processes are also a type of computing.

Algorithms are also found in collective behavior. Sports teams call and execute 
plays with instructions so that every player knows what to do and how to adapt to 
varying circumstances on the field. Honey bees communicate the location of nectar 
to other bees through a waggle dance that encodes and transmits a recommended 
flight plan. In financial markets, a market maker on a trading floor clears trades 
and continuously reports prices for a variety of goods and securities being traded 
through a type of auctioning process. Wandering ants leave trails of home-finding 
pheromones when foraging so they can return the way they came, and when bringing 
back food to the nest, they leave food-finding pheromones to communicate to other 
ants where the food source is. As more ants follow the trail, they contribute to 
an increasingly stronger scent, which results in large self-organized trails of ants 
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devouring the food source. In all of these cases, the collective behavior is really just 
collective computing of algorithms.

In each of the examples above, information is processed and communicated in 
a systematic way that can be codified into an algorithm. This broad and holistic 
view of algorithms encompasses electronic computing devices, biological systems, 
and collective behavior under a common umbrella of computational science and 
allows us to use the tools of mathematical and statistical analysis to explore the 
performance, complexity, and accuracy of algorithms. Algorithms are the focus of 
the first part of this book.

An important part of studying and using algorithms is the recognition that 
the world is too complex to be represented exactly. And most problems are too 
complex to be solved exactly. The way we make sense of the world is through 
imperfect representations, that is, through approximation. Every representation 
we make is an approximation that encodes some information without encoding all 
information. Knowing what information to keep and what to lose is essential to 
making an approximation useful.

For example, a map of a city is a very rough approximation of the reality it 
represents, containing only the essential information about locations and spatial 
relationships for key landmarks. But the very fact that it does not contain all the 
details of reality is what makes it useful. When I am lost, a map allows me to 
quickly identify where to go, whereas the full reality of all the buildings, streets, 
cars, people, noise, and lights can actually overwhelm me with unnecessary infor­
mation and interfere with my ability to navigate. In this case the approximation 
is much more suitable for computing than a perfect representation of reality would 
be. The imperfection of the approximation is part of what allows it to be useful. 
As Leonard Cohen sings in “Anthem,” “There is a crack in everything. That’s how 
the light gets in.” The second part of this book is focused on approximation and 
on using powerful mathematical tools for constructing, analyzing, and evaluating 
approximations.

Finally, the end goal of all our computing and approximating is to make the world 
better. Whether we want things to be faster, stronger, cheaper, smarter, easier, 
healthier, or kinder, we are perpetually engaged in the process of optimization. 
Nearly every problem in the world can be formulated as an optimization problem, 
so algorithms for optimization are almost universal in their applicability.

Most optimization algorithms are iterative in nature. This means that they start 
with an initial guess (or approximate solution) and compute incremental improve­
ments with each iteration giving increasingly more accurate approximate solutions, 
repeating, again and again, until the solution is close enough that it is essentially 
indistinguishable from the exact solution. Thus, optimization requires a solid un­
derstanding of approximation and, of course, algorithms.

These three topics of algorithms, approximation, and optimization form the core 
of modern computational science, giving us a wide-angle lens to lift our attention 
beyond the latest devices and platforms. And computational science allows us to 
peer beyond the jargon-filled barriers of various disciplines and expose the funda­
mental ideas uniting and driving the world of science and technology. Our world is 
one of algorithms, approximation, and optimization.
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To the Instructor
About This Text
This text gives a modern approach to computational science, by which we mean the 
fundamental mathematical ideas and tools of computing. The three main topics of 
algorithms, approximation, and optimization form the core.

The intent of this text and the associated computer labs is to attract students 
into the mathematical sciences and retain them by modernizing the curriculum and 
connecting theory to application in a way that makes them want to understand the 
theory, rather than just tolerate it. In short, a major goal of this text is to entice 
them to hunger for more.

The content in this volume could be reasonably described as upper-division 
undergraduate or first-year graduate-level mathematics. The mathematical prereq­
uisites are vector calculus and linear algebra. The computational prerequisite is 
the equivalent of at least one semester of computer programming. Most of our stu­
dents also have had a semester of undergraduate-level, single-variable real analysis 
as well.2 However, mastery of the details of the undergraduate analysis class is less 
important than the mathematical maturity and mental discipline that comes from 
a rigorous study of analysis.

2 Specifically, we assume the reader has had exposure to a rigorous treatment of continuity, con­
vergence, differentiation, and Riemann integration in one dimension, as covered, for example, in 
[Abbl5|.

This volume can be taught as a stand-alone, two-semester sequence for advanced 
undergraduates or beginning graduate students. But it can also be part of a larger 
curriculum in applied and computational mathematics (for example, as currently 
used at Brigham Young University), taught in conjunction with the first volume of 
this series, Foundations of Applied Mathematics: Volume 1, Mathematical Analysis 
[HJE17], as two parallel, year-long courses.

There is a supplementary computer lab manual, containing over 25 computer 
labs to support this text. This text focuses more on the theory, while the labs 
cover application and computation. Although we recommend that the manual be 
used in a computer lab setting with a teaching assistant, it can be used without 
instruction. The concepts are developed thoroughly, with numerous examples and 
figures as pedagogical breadcrumbs, so that students can learn this material on their 
own, verifying their progress along the way. The labs and other classroom resources 
are open content and are available at

https://bookstore.siam.org/otl66/bonus.

Teaching from the Text
In our courses we teach each section in a 50-minute-long lecture. We require students 
to read the section carefully before each class so that class time can focus on the 
parts they find most confusing, rather than on just repeating to them the material 
already written in the book.

There are roughly five to seven exercises per section. We believe that students 
can realistically be expected to do all of the exercises in the text, but some are 
difficult and will require time, effort, and perhaps an occasional hint. Exercises 

https://bookstore.siam.org/otl66/bonus
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that are unusually hard are marked with the symbol f. Some of the exercises are 
marked with * to indicate that they cover advanced material. Although these are 
valuable, they are not essential for understanding the rest of the text, so they may 
safely be skipped, if necessary. Exercises not marked with * should generally not 
be skipped.

Throughout this book the exercises, examples, and concepts are tightly inte­
grated and build upon each other in a way that reinforces previous ideas and pre­
pares students for upcoming ideas. We find this helps students better retain and 
understand the concepts learned and helps achieve greater depth. Students are en­
couraged to do all of the exercises, as they reinforce new ideas and also revisit the 
core ideas taught earlier in the text.

Courses Taught from This Book
Full Year-Long Sequence

At BYU we teach a year-long advanced undergraduate-level course from this book, 
proceeding straight through the book, skipping only the sections marked with *.  
But this would also make a very good course at the beginning graduate level as well. 
Graduate students who are well prepared could be further challenged by covering 
advanced sections (marked with *)  along the way.

One Semester: Algorithms with an Option of Approximation

The first seven chapters of the book make a good one-semester course on algorithms, 
including probabilistic algorithms.

As an alternative to the full algorithms course, Chapters 1-4 with 8-9 give a good 
one-semester course on classical algorithms and approximation without probability. 
This could be supplemented, as time permits, with some of the fundamentals of 
numerical computation from Chapter 11.

One Semester: Theory of Optimization

Chapters 11-17 (with a review of Chapter 10, as necessary, for those who are rusty 
on multivariate differentiation) form a good one-semester course on optimization. 
We have taught this course several times in various settings.

Advanced Sections

Some problems and sections are marked with the symbol * to indicate that they 
cover more advanced topics. Although this material is valuable, it is not essential 
for understanding the rest of the text, so it may safely be skipped, if necessary.

Instructors New to the Material
We’ve taken a tactical approach that combines professional development for faculty 
with instruction for the students. Specifically, the class instruction is where the 
theory lies and supporting media (labs, etc.) are provided so that faculty need not 
be computer experts nor be familiar with the applications in order to run the course.
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Professors can teach the theoretical material in the text and use teaching assis­
tants, who may be better versed in the latest technology, to cover the applications 
and computation in the labs, where the “hands-on” part of the course takes place. 
In this way professors can gradually become acquainted with the applications and 
technology over time, by working through the labs on their own time, without the 
pressures of staying ahead of the students. This approach has worked well for fac­
ulty at BYU who were unfamiliar with the material before they were assigned to 
teach from this book.

A more technologically experienced applied mathematician could flip the class 
if they wanted to, or change it in other ways. But we feel the current format 
is most versatile and allows instructors of all backgrounds to gracefully learn and 
adapt to the program. Over time, instructors will become familiar enough with the 
content that they can experiment with various pedagogical approaches and make 
the program theirs.

To the Student
Each section of the book has several exercises, all collected at the end of each chap­
ter. Horizontal lines separate the exercises for each section from the exercises for 
the other sections. We have carefully selected these exercises. You should work 
them all (but your instructor may choose to let you skip some of the advanced exer­
cises marked with *) —each is important for your ability to understand subsequent 
material.

Although the exercises are gathered together at the end of the chapter, we 
strongly recommend that you do the exercises for each section as soon as you have 
completed the section, rather than saving them until you have finished the entire 
chapter. Learning mathematics is like developing physical strength. It is much 
easier to improve, and improvement is greater, when exercises are done daily, in 
measured amounts, rather than doing long, intense bouts of exercise separated by 
long rests.

Origins
This curriculum evolved as an outgrowth of lecture notes and computer labs that 
were developed for a six-credit summer course in computational mathematics and 
statistics. This was designed to introduce groups of undergraduate researchers to 
a number of core concepts in mathematics, statistics, and computation as part of 
a National Science Foundation (NSF) funded mentoring program called CSUMS: 
Computational Science Training for Undergraduates in the Mathematical Sciences.

This NSF program sought out new undergraduate mentoring models in the 
mathematical sciences, with particular attention paid to computational science 
training through genuine research experiences. Our answer was the Interdisciplinary 
Mentoring Program in Analysis, Computation, and Theory (IMPACT), which took 
cohorts of mathematics and statistics undergrads and inserted them into an in­
tense summer “boot camp” program designed to prepare them for interdisciplinary 
research during the school year. This effort required a great deal of experimenta­
tion, and when the dust finally settled, the list of topics that we wanted to teach 
blossomed into eight semesters of material—essentially an entire curriculum.
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After we explained the boot camp concept to one visitor, he quipped, “It’s the 
minimum number of instructions needed to create an applied mathematician.” Our 
goal, however, is much broader than this. We don’t want to train or create a 
specific type of applied mathematician; we want a curriculum that supports all 
types, simultaneously. In other words, our goal is to take in students with diverse 
and evolving interests and backgrounds and provide them with a common corpus of 
mathematical, statistical, and computational content so that they can emerge well 
prepared to work in their own chosen areas of specialization. We also want to draw 
their attention to the core ideas that are ubiquitous across various applications so 
that they can navigate fluidly across fields.

Python and Pseudocode
Throughout the book we give examples of algorithms. We generally use Python 
instead of pseudocode because it gives a certain degree of precision that pseudocode 
lacks, because it is useful for students to learn, and because it reads a lot like most 
pseudocode anyway. Most of the Python syntax we use should be clear to someone 
who has learned another programming language. When unusual syntax is used, we 
give a brief explanation.
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Algorithms





Introduction to 
Algorithms and 
Analysis

The fundamental law of computer science: As machines become more powerful, the 
efficiency of algorithms grows more important, not less.
—Nick Trefethen

Before the advent of the modern computer, many mathematicians focused on find­
ing closed-form solutions to highly idealized problems arising from such fields as 
classical mechanics, electromagnetism, quantum theory, thermodynamics, and fluid 
dynamics. Today, university libraries are still littered with dusty old volumes of 
encyclopedic texts of special functions and general solutions to these kinds of prob­
lems.

Over the last several decades, it has become increasingly clear that most of the 
important problems of modern science, technology, and even mathematics have no 
hope of a closed-form solution. In some cases this is because real-world problems 
are too messy or complex, but there are surprisingly many problems that are simple 
to state and yet it has been proved that no closed-form solution can exist.

As an example, recall that the quadratic equation

ax2 + bx + c = 0

has the closed-form solution

—b ± y/b2 — 4ac
x =-------- 2a-------- ’ (L1)

Similar, but more complicated, formulas exist for the cubic and quartic equations; 
however, Abel’s theorem guarantees that no general algebraic solution exists for the 
quintic or for any higher-order polynomial equations [Art91, Theorem 9.9]. Thus, 
for example, there is no closed-form algebraic solution for solving the equation

ж5 + 2rr4 — x3 — 3rr2 + x — 6 = 0, (1.2)

but the intermediate value theorem easily shows that a root exists in the interval 
[0,2] because the polynomial gives a negative value when evaluated at x = 0 and a 
positive value when evaluated at x = 2.

3
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Newton’s method is an algorithm that accurately approximates a zero of a 
smooth function. It is an iterative procedure that, under fairly general conditions, 
converges to the zero and is terminated when the desired accuracy is met. Given 
an estimate xn of the zero, the algorithm returns a new estimate ^n+i given by

_ tl o\^n+1 -- ХП /»/ / \ •
J \xn)

With f(x) as the left-hand side of (1.2) and using the initial guess = 1-0, the 
algorithm (1.3) produces the following sequence, computed to 15 digits of accuracy:

Xv = 1.000000000000000, 
X1 = 2.200000000000000, 
x2 = 1.804654426169757, 
xz = 1.549707343960059, 
x± = 1.431481800966775, 
хь = 1.406763770052249, 
xg = 1.405779606478647, 
x7 = 1.405778093756038, 
x% = 1.405778093752469, 
xv = 1.405778093752469.

Notice that the ninth iterate is the same as the eighth because the difference between 
the two is smaller than the 15 decimals of accuracy provided. This gives us a 
natural stopping rule, since we cannot improve the approximate solution without 
first increasing the decimal length. In other words, to 15 decimal places, x% is the 
best approximate solution of this zero of the polynomial.

The point of this example is to demonstrate that there are situations where an 
iterative algorithm can provide an arbitrarily close approximation to the solution of 
a problem even when there is no formula or closed-form expression. This situation 
is actually very common; thus we should adjust our thinking to accept an algorithm, 
even an iterative algorithm such as (1.3), as a “solution” to a problem.

What Is an Algorithm?
An algorithm is an unambiguous set of instructions for solving a problem or accom­
plishing a task. The set of rules taught to elementary school children for adding 
two integers is an algorithm, as is Newton’s method for finding zeros of a function, 
as described above.

There are often many different algorithms for accomplishing the same task. For 
example, to compute the value of the polynomial x2 + 3x + 5 at a given point x, one 
naive algorithm is to compute x2 and then compute 3x and then sum the results 
and add 5. A faster algorithm that accomplishes the same task is to compute 3 + x, 
multiply that by x, and add 5. The result3 is the same, because (x + 3)x + 5 = 
x2 + 3x + 5, but the algorithms are different.

3This other algorithm is called Homer’s method. In this case Horner’s method requires only three 
arithmetic operations, while the naive method requires four.
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Any closed-form solution to a problem defines an algorithm in the sense that a 
formula gives a sequence of operations. For example, the quadratic formula (1.1) can 
be interpreted as the algorithm: compute 62, subtract 4ac, take both the positive 
and negative square roots, subtract b from each, and divide the results by 2a. This 
illustrates a fundamental, but often underappreciated, idea of modern mathematics:

An algorithm is the natural extension of a formula.

Closed-form solutions are rare, since the limited vocabulary of polynomial and 
basic transcendental functions is woefully inadequate to reasonably describe the 
many functional relationships that exist in the world. Since so few problems have 
closed-form solutions, we suggest that the notion of a “solution” should be gen­
eralized to include more general algorithms, including iterative procedures, like 
Newton’s method.

There is a caveat, however. For us to accept an algorithm as a solution, we 
must analyze it and prove that it will return the correct solution to the problem at 
hand. We may also want to know that the algorithm is computationally feasible, 
given the resources available. To prove such things, one must access the arsenal of 
mathematical analysis and leverage the theory of algorithms, approximation, and 
optimization. That is what this text is about.

What Do We Want from an Algorithm?
When adopting this algorithmic view, we should not consider a problem to be 
“solved” until we can rigorously demonstrate that the algorithm is both correct and 
feasible to employ. If an approximate solution isn’t sufficiently close to the exact 
solution, or if the resources required to execute the algorithm are too great, then the 
algorithm is of little use and a better algorithm is needed. Until a better algorithm 
is found, we should think of the problem as unsolved.

Moreover, we don’t just want algorithms that work—we want the best algo­
rithms. Speaking broadly, the performance of an algorithm is usually characterized 
in terms of its accuracy and its efficiency. We want algorithms that are both accu­
rate and efficient.

Accuracy

A high-quality algorithm should give a good approximation to the correct answer. 
Although solutions to some problems can be computed exactly, many cannot. Many 
important and useful algorithms instead compute numerical approximations, by 
which we mean finite-precision approximations (such as 0.666667 as an approxi­
mation for | or 3.14159 as an approximation of тг). Finite-precision arithmetic 
introduces small errors, called round-off errors, into almost every step of every com­
putation. In some algorithms, these errors can compound into large, catastrophic 
errors in the final results. Such algorithms are said to be numerically unstable. 
We discuss floating-point arithmetic and stability in Chapter 11. A high-quality 
algorithm should be resistant to such errors and consistently give answers that are 
sufficiently close to the correct answer.
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Example 1.0.1. One can show by hand that

450 x 4054.54 - 50 x 7022.64 + 7022.62 = 0.005.

4 Our definition of primitive operations here is similar but not identical to some of the other 
standard models, such as the RAM model of [CLRS01, Section 2.2]. Our goal here is primarily 
pedagogical rather than computing the precise run time of an algorithm on a specific machine, 
so we don’t want to get too bogged down in technical details.

5Note that this does not include all the primitive operations required by the method itself—just 
the cost of finding the method in memory and starting to execute it.

But executing this on most computers gives a result of —33.24. This is an 
example of catastrophic round-off error. This is discussed in more depth in 
Section 11.3.

Efficiency

The cost of an algorithm could be measured in many ways, such as money, time, 
computer memory, labor, etc. We are generally most interested in how long an 
algorithm takes to run and its memory requirements. An algorithm is of no use 
if it takes too long to run or requires more memory than we have available. How 
long the algorithm takes to run depends on the specific computer being used, so 
instead of talking about run time, we often use as a proxy the number of primitive 
operations that must be executed. We call this the temporal complexity, and we 
call the amount of memory required the spatial complexity. Temporal and spatial 
complexity are discussed in more detail in Section 1.1 and are a major theme of this 
and the next several chapters.

1.1 Complexity
The complexity of a given algorithm is a measure of the resources required for it 
to execute. This could refer to execution time, memory requirements, the cost in 
dollars to pay for the equipment, the time or cost of programming labor necessary 
to develop the algorithms into software, or even the amount of electricity required. 
Generally speaking, however, complexity focuses on two main issues: the number 
of primitive operations required and the amount of memory required.

We define primitive operations4 to be basic operations such as assigning a value 
to a variable (like x = 5), basic integer arithmetic (like x+y, but not log(x) or 
cos(x)), comparisons (like x<y) and basic Boolean operations (like and, and or), 
looking up an indexed value in an array (like A [3]), calling a method (like myFunc 
(x,y)),5 returning from a method, and so forth. We treat accessing the values of 
scalar variables as having no cost (so if x=5 and y=6, then computing x+y costs only 
one operation—the addition). We assume all primitive operations take approxi­
mately the same time to execute. Of course this is not true, but it gives a useful 
approximation.
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We define the temporal complexity of an algorithm to be the number of primitive 
operations needed for it to execute. This is a proxy for the execution time, but since 
execution time varies so much across platforms and hardware specifications, it is 
generally preferable to use this definition. We define spatial complexity to be the 
amount of memory required to execute the algorithm.

Example 1.1.1. If L is a list, then the number of primitive operations in­
volved in the command a = L[5] + 7 is three, corresponding to one lookup 
L [5], one addition, and one assignment.

Example 1.1.2. Algorithm 1.1 is a simple implementation of a method for 
finding the largest element in a list L of integers. Because of the if-statement 
on Line 12, we cannot determine the exact number of primitive operations 
this algorithm will use without knowing more about the input list L, but we 
can compute the best- and worst-case complexity.

Setting the initial value of max_val on Line 7 requires two primitive opera­
tions, namely one lookup L [0] and one assignment. Line 8 involves computing 
len(L), which we assume is one primitive operation, and one assignment. Ini­
tializing the counter i on Line 9 is one more primitive operation.

The while-statement on Line 11, involves just one comparison. But this 
comparison happens n times (the condition is true n — 1 times and fails once, 
when i = ri). Thus Line 11 contributes n primitive operations.

Inside the loop, we have an if-statement on Line 12 involving one lookup 
and one comparison, and if the comparison is true, then Line 13 contributes 
two more primitive operations (a lookup and an assignment). Thus if the 
conditional is true, the if-statement contributes four primitive operations, 
and otherwise it contributes two.

Finally, the incrementation of i on Line 14 requires two more operations 
(an addition i + 1 and an assignment). Thus, the loop consists of either six 
or four operations, repeated n — 1 times, for a total of 6n — 6 (worst case) or 
4n — 4 (best case) from the loop.

The total number of operations, therefore, has temporal complexity of 
either 5 + n + 6n — 6 = 7n — 1 (worst) or 5 -h n + 4n — 4 = 5n + 1 (best).

Note that spatial complexity influences the execution time, since it takes time to 
move data into and out of the CPU registers, various memory caches, random access 
memory (RAM), hard-disk space, and memory on other computers and storage de­
vices that are accessed over an internet connection or through some communication 
port. To truly represent execution time, we would need to factor in the particu­
lar hardware and operating system specifications and understand how memory is 
managed by the system. If the CPU is sitting idle because it is waiting for a hard 
disk to retrieve a value, then time is being consumed even though no additional
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def find_max(L): 
и и и

Find the largest element in a list L of integers.

# Set initial values 
max_val = L[0] # Max value. 
n = len(L) # List length.
i = 1 # Counter to iterate through L.

while i < n:
if L[i] > max.val: 

max_val = L[i]
i += 1 # Increment i.

return max_val

Algorithm 1.1. Python implementation of a routine for finding the largest value 
in a list L of integers, as discussed in Example 1.1.2.

operations are being executed. Despite this (or because of it), we focus our study 
on the temporal and spatial complexity as defined above.

Remark 1.1.3. It is important to recognize that temporal complexity can often 
be traded for spatial complexity and vice versa; that is, we can often make an 
algorithm use fewer primitive operations by having it store more values in memory. 
This reduces the temporal complexity but increases the spatial complexity of the 
algorithm.

1.1.1 Big-0 and Little-o Notation
Since many algorithms are too intricate to easily account for the exact number 
of primitive operations or memory requirements, our primary interest is to give a 
reasonably sharp upper bound on how the various complexities increase as a function 
of the size of the inputs. This upper bound is what we need to understand how a 
given algorithm scales temporally and spatially as the size of the inputs grows.

As a simple example, consider the usual grade school algorithms for arithmetic. 
The standard long-addition algorithm (see Algorithm 1.2) has the property that 
when the number of digits to be added is doubled, the memory required also doubles, 
as does the number of primitive operations required. In contrast, doubling the 
number of input digits in a multiplication problem (see Algorithm 1.5) quadruples 
the number of primitive operations required. For small problems this quadrupling 
is not a big deal, but as the length of the inputs increases, it can quickly become 
significant.

It is often useful to think about the asymptotic growth of the temporal and 
spatial complexity, that is, how fast the time and space requirements of a problem 



1.1. Complexity 9

grow as the size of the inputs grow. We typically quantify asymptotic growth with 
big-О and little-o notation.

Definition 1.1.4. Let f and g be real-valued functions on either the positive 
real numbers or the positive integers. We say that f(x) is big-0 of g(x) as x co, 
denoted f(x) G O(g(xf), if there exist M > 0 and N > 0 such that |/(rr) | < M\g(x) | 
whenever x > N. Similarly, we say that f(x) is little-o of g(x) as x co, denoted 
f(x) G o(g(xf), if for each e > 0 there exists N > 0 such that |/(ж)| < б|^(ж)| 
whenever x > N.

Remark 1.1.5. When analyzing algorithms with discrete inputs, we typically use 
/(n) instead of f(x) to denote the discrete nature of the function.

Example 1.1.6. If the complexity of an algorithm is T(n) = 3n2 + 2n + 100, 
where n is the size of the input, then

T(ri) = 3n2 + 2n + 100 < 3.3n2

whenever n > 22. Thus T(n) G O(n2). There’s nothing special about 3.3. In 
fact, given any e > 0 there exists an n > N so that T(n) < (3 + s)n2 whenever 
n > N. The smaller the e, the sharper the bound, but the big-0 rate of T is 
O(n2) regardless of the choice of e.

Unexample 1.1.7. In the previous example T\ri) O(ri) because for any 
M > 0 we have

T(ri) = 3n2 + 2n + 100 > Mn

whenever n > ~.

Example 1.1.8. Since the total number of primitive operations needed for 
Algorithm 1.1 is at most 7n — 1 (see Example 1.1.2), the temporal complexity 
of this algorithm is O(n).

Remark 1.1.9. Many computer science texts use the convention f(ri) = O(g(ri)) 
instead of f(ri) e O(g(n)), but this is a problematic abuse of notation. For example, 
it would imply that O(n) = O(n2), but O(n2) / O(n). Therefore, we use set 
membership instead of the equal sign to signify membership in a class of functions. 
Hence, we write O(ri) C O(n2) and O(n2) O(n), denoting that the class of linear
functions is properly contained in the class of quadratic functions.
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Example 1.1. 10. The leading coefficient of a polynomial doesn’t affect the 
big-0 or little-o rate. For example:

(i) Let /(n) = an + b. Note that

|/(n)| = \an + b\ < (|a| + l)n

whenever n > |b|, and therefore f(n) E O(n). Moreover, f(n) E о(п1Л) 
because for each e > 0, once n > (|a| + l)/e10 we have

| f(n)| = \an + b\ < (|a| + l)n < en1,1.

This argument can be extended to show that f(n) E o(n1+<5) for any 
8 > 0.

(ii) Let /(n) = an2 + bn + c. Note that

|/(n)| = |an2 + bn 4- c| < (|a| + 2)n2

whenever n > max{|6|, x/T^T}- Thus, f(ri) E O(n2). Also, for every s > 0 
as n gets large we also have n > |(a + 2)/б|10, at which point

|/(n)| = |an2 + bn + c| < |(a + 2)|n2 < sn21,

so f(n) E o(n21). This can be extended to show that /(n) E o(n2+<5) 
for any 6 > 0.

Example 1.1. 11. It is straightforward to identify some additional properties 
of the big-0 and little-o notation:

(i) Let /(n) = aknk + ак-1Пк~г + • • • + a±n + a^. Exercise 1.2 shows that 
/(n) e O(nk).

(ii) If f(n) = k, then f(n) € O(n2) because

n n

f(n) = ^,k<^n = n2. 
k=l k=l

More generally, Exercise 1.4 shows that if f(n) = then f(n) E
O(nm+1).

(iii) If f(x) E O(g(x\) as x —> oo, then /(ж) E o(x5g{x)} for every 8 > 0.

(iv) Clearly f(x) E о(д(хУ) implies f(x) E О(#(#)), but the converse is false; 
that is, o{g) is a proper subclass of O(g).
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Common examples of big-0 and little-o notation include powers, exponentials, 
and logs.

Definition 1.1.12. If a real-valued function f on Z+ (or is in

(i) O(logn), then we say it is logarithmic;

(ii) o(n), then we say it is sublinear;

(iii) O(n), then we say it is linear;

(iv) O(n2), then we say it is quadratic;

(v) O(n3), then we say it is cubic;

(vi) O(nc) for some c e N, then we say it is polynomial;

(vii) O(cn) for some c > 1, then we say it is exponential.

Proposition 1.1.13. Let f and g be real-valued functions on either the positive 
real numbers or the positive integers. If there exists M > 0 such that

limж—>00
l/(x)| 
|р(ж)| M,

then f(x) G O(g(xf). Also, we have 

limx—>oc
I/WI = 0

if and only if f(x) G o(g(xf). Finally, if

lim

then f (x) £ O(g(xf).

Proof, The proof is Exercise 1.3. □

Example 1.1.14. Let f(n) = an2 + bn + c with a > 0. To see that f O(n),
we observe that

/(n) c
----- = an+ b-\-------- >oo

n n
as n —> oo. Thus, for large n there is no M such that f(ri) < Mn. But it is 
straightforward to verify that f(n) G O(n2).
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1.1.2 Example: Complexity of Long Addition
One of the first algorithms taught in grade school is the standard algorithm (long 
addition) for adding two multidigit integers. It iterates through each column, from 
right to left, adding the corresponding single-digit numbers together, carrying a 1 to 
the next column as necessary. Algorithm 1.2 is an implementation of this algorithm 
in Python. For illustrative purposes we treat each positive integer as a list of digits 
so that we can manage arbitrarily long numbers. We assume that the rightmost 
entry in each list represents the ones digit, the next the tens digit, and so on.

Assume the longer of the two lists has length n. The algorithm begins by 
identifying which of the lists is shorter and prepending zeros to it so both lists are 
the same length and the place value of each digit matches the corresponding digit 
in the other list. Prepending d elements onto a list of length к requires O(d + k) 
operations: first initializing a new list with d + к entries, and then copying all the 
d-\-k elements into the new list. In our case, we have d + к < n, so this contributes 
O(n) to the temporal complexity.

After some key variables are initialized (in constant time), the while-loop (Lines 
22-26) adds each digit in the second list to the corresponding digit of the first and 
accounts for the carrying digit as necessary. The number of primitive operations in­
side the loop is independent of the lengths of the lists, and therefore the n iterations 
of the loop contribute O(n) to the temporal complexity of the algorithm. The final 
step is to prepend the carried digit, if necessary, at the beginning of the list. This, 
too, costs at most O(n) primitive operations. Therefore, the temporal complexity 
of the algorithm is O(n).

The data that must be stored are the two inputs, each of length at most n, 
the output list, of length at most n + 1 (in this algorithm the output is stored in 
the same list as one of the inputs), one constant-length variable carry and two 
other variables i and delta. The values of i and delta are no more than n, so 
the memory required to store those values is bounded by the number of digits it 
takes to represent n, that is, log10n in decimal notation or log2(n) in binary. In 
either case, each of these contributes at most log2 n < n to the spatial complexity, 
and thus the overall spatial complexity is no more than a constant times n, that is, 
O(n).

Remark 1.1.15. As discussed above, if n G N is arbitrarily large, then storing an 
integer (like the counter i) that is bounded by n requires |’log2(n)'| digits6 and hence 
adds O(logn) to the spatial complexity. However, for calculating spatial complexity 
of algorithms, we almost always assume that loop counters, array indices, and other 
such integers have a fixed size. This is not an unreasonable simplification because 
standard 64-bit integers (signed) can be as large as 263 — 1, which is not likely to 
be very restrictive.

6The notation |\f| denotes the least integer greater than or equal to q, also known as the ceiling 
function.

Remark 1.1.16. If your language of choice has a built-in data type for arbitrarily 
long integers, the addition algorithm for that data type has probably been care­
fully optimized and, therefore, should be much more efficient than the algorithm
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def add(a, b): 
и и и

Add two numbers, where each number is input as a list of 
single-digit integers, e.g., [1,2,3] = 123.

Returns a list of single-digit integers, 
и и и

# Prepend zeros to the shorter list to 
# align with the longer list.
delta = abs(len(a)-len(b)) 
if len(a) <= len(b):

a = delta * [0] + a
else:

b = delta * [0] + b

# Set initial values.
carry = 0
i = len(a) - 1

# Add each pair of digits from right to left 
while i >= 0:

a[i] = a[i] + b[i] + carry
carry = a[i] // 10
a[i] = a[i] % 10
i -= 1 # decrement i by 1

# Prepend the final carry digit 
if carry > 0:

a = [carry] + a

return a

Algorithm 1.2. Routine for adding two positive integers of arbitrary size. Here 
the integers are represented as lists, where each entry is a single digit. For example, 
add([l, 2, 3], [4, 5, 6]) returns [5,7,9]. Note that in Python, the addition 
operator concatenates strings (that is, [0] + [1,2,3] returns [0,1,2,3] J and mul­
tiplication is repeated addition (thus, 3 * [0] produces [0,0,0]/ Also a//b is the 
integer part of a divided by b and a%b is the remainder of a when divided by b. 
Finally, note that Python indexing starts at 0, so the index of the last element of 
list a is len(a) — 1 (see Line 19/

presented here. However, it will still have temporal complexity O(ri), since every 
one of the n digits must be added to find the correct sum. An algorithm with an 
input of length n can only have complexity less than O(n) if some input data can 
be skipped.
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1.2 Leading-Order Behavior
In many situations we want to know more than just the big-0 growth rate—we also 
want to know the leading coefficient of the growth rate. There’s a big difference 
between an algorithm that requires 3n2 primitive operations and one that requires 
3000n2 primitive operations. In this section we begin by defining leading-order 
behavior and giving several examples of how to analyze an algorithm for its leading­
order complexity.

1.2.1 Leading-Order Behavior

Definition 1.2.1. Let f and g be real-valued functions defined on the positive real 
numbers or the positive integers. We say that f(n) is asymptotically equivalent to 
g(n), denoted f(ri) ~ g(n) as n co, if

Informally one often says, “/ grows like g,” or “/ is g to leading order,” to mean 
f ~ g as n oo. Sometimes we drop the n oo designation when it is clear from 
the context.

Example 1.2.2. The function T(n) given in Example 1.1.6 satisfies T(ri)
3n2 since

T(n) л 2 100v — = 14------- 1----- -
3n2 3n 3n2

as n —> oo.

Remark 1.2.3. It is straightforward to show that the relation ~ is an equivalence 
relation; that is, it is reflexive, symmetric, and transitive (see Exercise 1.10). For 
more about equivalence relations, see Volume 1, Appendix A. 1.2.

Example 1.2.4. Since the maximum number of operations needed for 
Algorithm 1.1 is 7n — 1, the leading order of the temporal complexity of this 
algorithm is ~ 7n.

1.2.2 Merging and Sorting
In this section we discuss how to merge two sorted lists and evaluate the complexity 
of this algorithm to leading order. Then we use the merging algorithm as the basis 
of a very naive and inefficient sorting algorithm. Despite the inefficiencies of this 
sorting algorithm, it is an instructive example. In Section 1.10 we construct an 
efficient sorting algorithm from a simple recursive variant of this algorithm.
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def merge(K, L):
"""Merge two sorted lists into a new sorted list.
For example, merge([1, 4], [2, 3]) returns [1, 2, 3, 4]. 

и и и

# Initialization
merged = [None]*(len(K) + len(L)) # Preallocate output list 
i = 0; j = 0 # Pointers to track location in each list

# Iterate over the two lists, terminate when one is empty 
while i < len(K) and j < len(L):

if K[i] <= L[j] :
merged [i+j] = K[i] 
i += 1 

else:
merged [i+j] = L[j]
j += 1

merged[i+j:] = К[i:] + L[j:] # One of these is empty 
return merged

Algorithm 1.3. Routine for merging two sorted lists of numbers together into a 
single sorted list. This algorithm fails if the lists К and L are not sorted. Note that 
K[i:] refers to the list [K[i] ,K[i+l],...] of the elements of К starting from the 
element indexed by i and proceeding to the end of K.

Merging

Merging combines two already sorted input lists into a single sorted output list. 
Although we allow the length of the lists to be arbitrarily long, the entries in the 
lists are assumed to be of a fixed size, so each takes the same, fixed, amount of 
memory. The basic merging algorithm compares the leading entries in each input 
list and extracts the smaller of the two entries, placing it into the resulting output 
list. The process then repeats, extracting the smaller of the leading entries of what 
remains of the two input lists into the output list, one at a time, until both input 
lists are empty.

A Python implementation of this merging procedure is given in Algorithm 1.3. 
Rather than actually extracting the smallest entry at each step, this implementation 
simply maintains placeholders on each of the input lists to track the leading entries 
in each remaining sublist; this is done with the variables i and j. At some point the 
end of one of the lists is reached and we append the remainder of the other input 
list to the final list. This is done in Line 19. Rather than trying to decide which of 
the two remaining lists is empty, we append both to the final list, which works fine 
because one of them is empty.

To evaluate the spatial complexity of this algorithm, note that the only data 
that must be stored are the initial lists L and K, whose combined storage is assumed 
to be n numbers; the merged list merged of length n; and the counters i and j. The 
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counters have length no more than the number of digits required to represent i and 
j, respectively, and these are O(logn) C o(n). Thus the total spatial complexity is 
~ 2n e O(n).

The temporal complexity is also O(n). To analyze the algorithm to leading 
order, first consider the loop. In Line 11, the while-loop computes two list lengths, 
makes two comparisons, and performs a conjunction for each iteration. Since one 
of i and j is incremented each iteration, the maximum number of iterations for 
which the condition could hold is n — 1, after which the condition must fail, which 
terminates the loop. Hence Line 11 could cost as many as 5n primitive operations. 
Line 12 has two lookups and a comparison. That’s three primitive operations in the 
loop, which iterates up to n — 1 times. When the conditional is successful, the loop 
executes Lines 13-14; otherwise it executes Lines 16-17. In either case the first line 
is a sum, a lookup, and an assignment, while the next line is an incrementation, 
which is a sum and an assignment. Thus, after the conditional on Line 12, there 
are 5(n — 1) ~ 5n more primitive operations. Adding these to the 3(n — 1) ~ 3n 
from Line 12, and the 5n from Line 11, gives ~ 13n.

The operations outside of the loop that depend on n are the initial construction 
of merged, which costs n + 1 ~ n primitive operations (initialize the list, and make 
n assignments), and putting the lists К [i: ] and L [j : ] into the end of merged, which 
takes at most n lookups and n assignments. Thus the total temporal complexity of 
this algorithm is ~ 16n.

Naive Sorting (Insertion Sort)

Sorting rearranges the entries of a list to produce a list that is arranged in order from 
least to greatest. Using the merging algorithm, we can design a sorting algorithm 
whose temporal complexity is O(n2) when the original list has length n.

We start with a list sorted.list consisting of just the first element L[0] of the 
input list L. For each successive entry of L, make a new list of length one (which 
is trivially sorted) and merge the new single-element list with sorted.list. The 
algorithm repeats until it runs out of new entries to merge; see Algorithm 1.4. This 
is a slight modification of the algorithm often called insertion sort.

Since merging two lists of total length к has temporal complexity ~ 16A;, the 
naive sorting method has temporal complexity 0(1 + 2 + • • • + n) = O(n2); see 
Example l.l.ll(ii). More careful analysis (using the standard summation formula 
(1.9)) shows that to leading order, this is

~ 16(1 + 2 + • • • + n) = 16~ 8n2.

The spatial complexity of this sorting algorithm is ~ 2n because we need only store 
the lists L and sorted.list, each of length n, and one additional integer i whose 
value is bounded by n (and hence whose size is O(logn) C o(n)).

Nota Bene 1.2.5. This naive sorting method is not a good algorithm. Other 
sorting algorithms are much faster—for example, the merge sort algorithm, 
which we discuss in Section 1.10, is O(nlogn).
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def naive_sort(L):
"""Sort a nonempty list L. 
и и fi

# Initialize values 
sorted.list = [L [0]] 
i = 1 
n = len(L)

# Merge in the rest, one at a time 
while i < n:

sorted.list = merge(sorted.list, [L[i]]) 
i += i

return sorted.list

Algorithm 1.4. A naive routine for sorting a list L. The sorted list begins as a 
single element and then is successively merged with single-element lists until every 
element in L has been merged into the sorted list.

1.2.3 Leading Order for Long Addition and Multiplication
Long Addition

To analyze the leading-order temporal complexity of the addition problem in 
Algorithm 1.2, assume again that the longest list has length n. First, the ini­
tial prepending of delta zeros onto the front of the shorter list requires defining a 
new empty list of length n (one operation), putting the new zeros at the front of 
that list (delta assignments) and putting the remaining elements of the old, shorter 
list into the remaining positions in the new list (n — delta lookups and n — delta 
assignments), for a total 2n + 1 — delta ~ 2n primitive operations.

The loop contained in Lines 22-26 executes 14 operations for each iteration. 
Specifically, Line 22 has a conditional operation, and Line 23 performs two lookups, 
adds three numbers together (two operations), and makes an assignment (one op­
eration). That’s six operations. Line 24 requires one lookup, computing an integer 
part, and making an assignment. That’s three operations. One lookup, computing 
the remainder, and making an assignment gives three operations on Line 25. Fi­
nally the decrement in Line 26 is a subtraction and an assignment and therefore 
two operations. Hence, to leading order, the loop is ~ 14n primitive operations.

At the end of the algorithm, in the worst case, the carry is positive and the 
carry digit is prepended to the list. This amounts to one conditional (Line 29) 
and a prepend operation (Line 30). Prepending an element onto a list of length n 
requires defining a new list of length n +1 (one operation), putting the new element 
at the front of that list (one assignment), and then moving all elements of the old 
list into the new list (n lookups and n assignments). Therefore, Lines 29-30 require 
2n+3 ~ 2n additional operations. Combining this with the initial ~ 2n for padding 
the short list, and the ~ 14n operations of the earlier loop, makes this algorithm 
~ 18n primitive operations.
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Long Multiplication

Algorithm 1.5 (below) gives an algorithm for long multiplication that is similar to 
the one taught in grade school, except that it has a small efficiency built in. To 
analyze the leading-order behavior, we must count the operations in the double

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

def mult(a, b): 
и и и

Multiply two numbers, where each number is input as a list 
of single-digit integers, e.g., [1,2,3] = 123.

Returns a list of single-digit integers, 
и и и

# Set initial values
tens_shift = 0
product = [] 
j = len(b)-l

# Iterate over digits of b from right to left 
while j >= 0:

sumstep = [None]*len(a)  #preallocate list of len a 
carry = 0

# Iterate over digits of a from right to left 
i = len(a) - 1 
while i >= 0:

temp = a[i] * b[j] + carry 
sumstep[i] = temp % 10 
carry = temp //10 
i -= 1

if carry > 0:
sumstep = [carry] + sumstep

# Shift sumstep by tens_shift places and add to 
# final product, using the previous algorithm 
product = add(product, sumstep + ([0]tens_shift) ) 
tens_shift += 1 
j -= 1

*

return product

Algorithm 1.5. Routine for multiplying two positive integers of arbitrary length. 
Numbers are represented as lists of single-digit integers. For example, 12 x 34 is 
calculated as mult([l, 2], [3, 4]). Line 31 uses the previously defined function 
add. Also in that line the Python syntax [0] *tens_shift  constructs a list [0,0,...] 
with tens.shift zeros in it, which is then appended to the list mult_a using +. 
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loop of Lines 15-33. The inner loop (Lines 21-25) consists of two parts. First, the 
while-statement of Line 21 has one comparison that is evaluated n = len(a) times 
(n — 1 successes and 1 failure). The second part (Lines 22-25) consists of 5 + 3 + 
2 + 2 = 12 operations and is repeated n — 1 times. Thus, the inner loop contributes 
12(n — 1) + n 13n operations for each iteration of the outer loop (Lines 15-33).

Preallocating the empty list sumstep in Line 16 requires initializing the list (one 
operation) and making n assignments for the list entries. Prepending carry to 
sumstep in Line 27 requires 2n + 2 operations, and the long addition of Line 31 
requires ~ 16n operations (see the previous subsection). The other operations in 
the outer loop contribute at most a constant number of operations. Therefore, the 
total number of operations in each iteration of the outer loop, including the inner 
loop, is ~ 32n.

The outer loop is repeated at most n times, so the total number of operations 
required by the outer loop is ~ 32n2. The remaining operations outside the loop 
are repeated at most O(n) times, so they don’t contribute to the leading order. 
Therefore, the overall temporal complexity of Algorithm 1.5 is ~ 32n2.

7We use F to denote a field that could be either R or C. For more about fields, see Volume 1, 
Appendix B.2.

The spatial complexity of this algorithm is O(n). Recall that the standard grade 
school algorithm constructs a stack of n summands that are summed at the end of 
the algorithm. That would have a spatial complexity O(n2), but our little efficiency 
is that we don’t build the long stack of addition problems. Instead, the addition 
steps are done one at a time and thus don’t need to be stored separately—we can use 
the same space in memory each time, as we add the running total. To analyze the 
leading order of the spatial complexity, we note that the spatial complexity is dom­
inated by the inputs ~ 2n, the intermediate list sumstep, of size ~ n, and the result 
product, of size ~ 2n (note that ten_shift can be as large as n), for a total of ~ 5n.

1.3 Summation
Analysis of the spatial and temporal complexity of an algorithm typically requires 
breaking it up into parts and then summing the costs of each part. As algorithms 
become increasingly sophisticated, it becomes increasingly important to have good 
tools for managing complicated sums. This section and the next three sections after 
it are dedicated to developing some of the most useful techniques of summation.

1.3.1 Basic Sums and Differences
Various types of sums occur in algorithm analysis, and the ability to work with 
these sums, including the ability to identify simple, closed-form expressions for 
many sums, is an important skill.

Definition 1.3.1. Let E = {ei,..., en}. The summation operator 22 maps any 
function f : E F into7 F via the rule

n

/(e) = У2 = Ле1) + /(e2) 4-------h
eEE k—1

If E = 0, then the sum is defined to be 0.



20 Chapter 1. Introduction to Algorithms and Analysis

Remark 1.3.2. In the case that E = {к \ a < к <b} tor integer values of a 
and 6, we also write this as /W or Ha<k<b

Remark 1.3.3. A sequence (^)^=1 of (not necessarily distinct) numbers also de­
fines a function by f(k) = xk for each к e E = {1,..., n}. The sum x± + • • • + xn 
is equal to f(k) = xk.

Nota Bene 1.3.4. The notation 52 Xi + у is ambiguous, because it could 
mean either (522= i %t) + y or 522=1 + у)- In this text, it means the former.
In other words, if the rightmost term does not have any dependence on the 
index, we assume that it is not part of the sum. If we want it to be part of 
the sum, then we use parentheses.

Proposition 1.3.5 (Summation Is Linear). If E = {ei,...,en} and f,g are 
F-valued functions defined on E, then

52 A/(e) + sp(e)) = r 52 Ae) + « 52 
eGE? eGE? e£E7

for any r,s e F.

Proof. The commutative, associative, and distributive laws give

52(r/(e) + s^(e)) = (r/(ei) + sp(ei)) + • • • + (r/(en) + sg(en)) 
eG E

= +------1- r/(en)) + (s5(ex) H-------1- sg(en))
= + ■■■ + f(en\) + s(p(ei) + • • • + p(en))

= r52 Ae)+ s52Ae)- □ 
eCE? e£E7

1.3.2 Difference Operator
Summation can be thought of as the finite analogue of the definite integral. There 
is also a finite analogue of the derivative, namely the difference operator A, which 
takes a function (or sequence) f and defines a new function that is the difference of 
the consecutive terms.

Definition 1.3.6. Let E = {a, a +1,..., b} and let Ef = {a, a +1,..., b — 1}. The 
difference operator A takes any function f : E F and maps it to a new function 
A[/] : E' F by

Of course, this definition can also be modified in an obvious way to work for the 
case when the domain E is infinite, like N or Z.

Remark 1.3.7. It is straightforward to show that the difference operator is linear; 
see Exercise 1.16.
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Example 1.3.8.

(i) If f(k) = rk for some fixed r, then

A[/](A?) = rfe+1 -rk = rk(r - 1). (1.4)

Notationally, we also write this as Arfc = rk(r — 1).

(ii) If g(k) = rk for fixed r, then

A[^](fc) = r^+1^2 — rk* = rfc2(r2/c+1 _ 1). (1.5)

Notationally, we also write this as Arfc = rk (r2fc+1 — 1).

Example 1.3.9. The derivative operator and the difference operator have 
many similarities. If f is constant, so that f(k) = c for all /с, then A[/](A?) = 
c — c = 0. So we have Ac = 0, just as = 0. Conversely, if A[/] = 0, 
then for every A;, we have f(k + 1) — f(k) = 0, so f must be constant on 
the whole domain (here the domain must be something likea N, Z, Z+, or a 
single, connected, interval [a, b] AZ). This is analogous to the fact that when 
-f- f = 0, then f is constant.

Similarly, if /(A;) = A;, then A[/](A;) = (A; + 1) — к = 1. Hence we have 
AA; = 1. just as 4-x = 1.

“Note our convention that the natural numbers N = {0,1,2,...} include 0. We denote the 
positive integers by Z+.

1.3.3 Fundamental Theorem of Finite Calculus
Taking summation as the analogue of definite integration and the difference operator 
as the analogue of differentiation, the next theorem is an almost perfect match for 
the usual fundamental theorem of calculus. Its proof, however, is much easier.

Theorem 1.3.10 (The Fundamental Theorem of Finite Calculus). Let
E = {a, a+1, ...,6} and letE' = {a, a+1,..., 6—1}. Given any function f : E 
we have

b-l

£A[/](fc)=/(6)-/(a). (1.6)
к—a

Moreover, if we define

n—1
F(n) = ^f(k) forneE, (1.7)

k—a

then &[F](k) = f(Je) for all к e E'.
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Nota Bene 1.3.11. The sum in (1.6) runs only to b — 1 (not to 6) and the 
sum in the definition of F runs only to n — 1 (not to n).

Proof. For (1.6) we have

b-l b-l
£ A[/](fc) = £(/(fc + 1) - /(£)) = (/(a + 1) - /(a)) + • • • + (/(&) - f(b - 1))
k—a k—a

= -Ж) + Ж,
where the last equality comes from the fact that all the internal terms cancel. Sums 
like this are called telescoping series. To prove (1.7), note that for any n > a we 
have 

n n—1
A[F](n) = F(n + 1) - F(n) = £ /(fc) - £ /(fc) = /(n). □ 

k—a k—a

Example 1.3.12. Recall that if f(k) = k, then A [/](&) = 1. By (1.6) we 
have b-l b-l

£ 1 = £ A/KM = /(b) - /(«) = b - a. (1.8)
k=a k=a

Of course this sum is easily computed without (1.6), but this illustrates how 
to use the fundamental theorem.

Example 1.3.13. If f(k) — k2, then A[f](A;) = 2k + 1. By (1.6) we have 

b-l b-l
£(2fe + 1) = £ A[/](fc) = /(b) - /(a) = b2 - a2. 
k=a k—a

Since summation is linear, we have

b-l b-l b-l b-l
b2 — a2 = УУ (2A; + 1) = 2 к + УУ 1 = 2 У^ к + (6 — a). 

k=a k=a k=a k=a

This gives

7 1 /l2 2 z, \ — 1) — 1)
E к = - (62 - a2 - b + a) = - 2 .
k—a
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In the special case that a = 1 and b = n + 1, this gives the familiar sum

(1-9)
k=l

Example 1.3.14. If f(k) = k3, then Д[/] (A;) = ЗА;2 + ЗА + 1. By (1.6) we
have b-1

£(3fc2 +3fc + l) = b3 - a3.
k=a

An argument like the one in the previous example shows that

(1-Ю)

Remark 1.3.15. The method of the previous examples works in general, but the 
result gets increasingly cumbersome as the order gets higher and higher. For
example,

n / ( । i \ \ 2+ m (L11)

and
= + l)(2n + l)(3n2 + 3n - 1) 12)

k—1

There is no easily discernible pattern to these power sums. In Section 1.6.2 we 
discuss a slight variation to this problem and show that there is a generalization 
that does follow a nice pattern.

Corollary 1.3.16. For any functions g and h defined on E = {a, a +1,..., b} with 
Д [<?] = Д [/z] on E' = {a, a + 1,..., b — 1}, the two functions differ by a constant:

g = h + c on E,

where c is constant on E.

Proof. Let f = g — h. Since Д[/] = Д[<? — h] = Д[д] — Д[Л] = 0, we have f(k) = c 
for some constant c (see Example 1.3.9). Thus, g = h + c. □

Equation (1.6) also gives a slick proof of the geometric series formula.



24 Chapter 1. Introduction to Algorithms and Analysis

Corollary 1.3.17. For any fixed value r^l,we have the geometric series formula

6-i ь _ i
1 +r+ ••• +rb-1 = ^rk = r—p (1-13)

fc=0

Moreover, taking the limit as b oo for |r| < 1 gives the familiar equation

fc=0
r — 1 1 — r

Proof. Note that Arfc = rfe+1 — rk = rk(r — 1). Thus, by the fundamental theorem 
we have

6-1 б-i 6-1
(r - 1) = y^rfc(r - 1) = Arfc = rb - 1,

k—Q k—Q k—Q

which gives (1.13). □

Example 1.3.18. Choosing r = 2 we have A[2fc] = 2k and (1.13) (or the 
fundamental theorem) shows that

Remark 1.3.19. Example 1.3.18 shows that 2k plays a role for differences and 
summation similar to that played by ex for differentiation and integration.

Just as with integration and differentiation, it is usually more difficult to find a 
closed form for the summation of a function f than it is to find its first difference 
A[/]. That means that even if it is difficult to write down a formula for /, it 
is usually relatively easy to identify a g such that g = /.

Example 1.3.20. Equation (1.5) gives A[rfc2] = rfc2(r2fc+1 —1), which implies 
that

6-1
У2 rfc2(r2fc+1 — 1) = rfe2 — r°2. (1-14)
k—a

1.4 Reindexing and Changing Order of Summation
Two fundamental tools for computing integrals are changing variables and changing 
the order of integration. The natural analogues of these two techniques are also very 
important tools for computing sums. In this section we describe these techniques 
and give some examples.
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1.4.1 Reindexing
When computing definite integrals in calculus, changing variables can change an 
integral into a more workable form. We can also change variables when doing 
summations. We focus here on the simplest change of variables, called reindexing.

Proposition 1.4.1 (Reindexing). For any finite set E C Z and for any с E Z, 
let E + c denote the set

E + c={xEZ\x = e + c for some e E E}.

For any function f defined on E + c, we have

E № = c)-
xEE-\-c eEE

In particular, 
b-\-c b

E /o) = E/(fc+c)- (115>
j—a-\-c k—a

Proof, This follows immediately from writing out the sum

E № = Я61 + c) + /(e2 + c) + • • • + /(en + с) = E /(e + c)- D
xEE-\-c eEE

Remark 1.4.2. Since j and к are dummy variables, it is common to reuse the 
index к and write (1.15) as

b+c b

E = E^(fc+c)-
k—a-\-c k—a

Example 1.4.3. The sum 52^=5 (^ — 4) looks a lot like (1.9), but the sum­
mands are all shifted by —4. That suggests that reindexing might be useful. 
Setting j = к — 4 means that j runs from 5 — 4 = 1 ton — 4, and we have

- 4) = £,-=<"-4+ D 
fc=5 j=1

(n — 4)(n — 3) 
2

As described in Remark 1.4.2, the name of the dummy variable doesn’t matter, 
so people often write the second sum as k=i k-

Example 1.4.4. Using (1.10) and reindexing, we compute J2^=i(^ + 3)2 as

n n+3 n+3 3

E(* +з)2 = Efc2 = Efc2 - E= ё[(n+3)(n+4)(2n+7)1 _ 14
k=l k=4 k=l k—1
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Example 1.4.5. Using (1.13) and reindexing, we compute ^2™.=rn rk as

1.4.2 Changing Order of Summation
Just as multiple integrals are often simplified by changing the order of integration, 
multiple sums are often simplified by changing the order of summation. The next 
proposition is an immediate consequence of the commutativity and associativity of 
addition.

Proposition 1.4.6. If a, b,c,d e Z7 and / : Z x Z -> F, then

b d d b

52 52 = fa,fc)-
j—ak—c k—cj—a

(1-16)

Proof. Assume a < b and c < d; otherwise both sums are zero. Consider the set 
E = {a, a +1,..., b — 1, b} x {c, c+ 1,..., d — 1, d}. We see that both sums in (1.16) 
are equivalent to ^2(j k)eE ty. This is illustrated in Figure 1.1. □

Nota Bene 1.4.7. When the sums are infinite, then (1.16) is not necessarily 
true. We need additional conditions on the convergence rate of the series 
before we can interchange the order of summation.

Notation 1.4.8. Multiple sums can sometimes be written unambiguously with a 
single summation sign. For example, we can write

52 /O’fc)= 52 52
0<j,fc<n 0<j<n0<k<n

The proposition justifies this notation. Since it does not matter which index we put 
on the outside sum and which we put on the inside sum we can combine them.

Proposition 1.4.9. Consider the domain E = elxl\0<k<j<n}
and the function f : E —>¥. We have

n j n n

££./ш) = 52 ж/о = ££ж/о-
j—Ok—O (j,k)eE k—Oj—k

(1-17)

Proof. The proof follows from Figure 1.2. The inner sum of the left side of (1.17) 
corresponds to summing over the Jth column, while the outer sum adds the columns
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5252/ол) 5212я^)
j—ak—c k—cj—a

к

Figure 1.1. The terms involved in the summation of (1.16) are those in the green 
rectangle. In the expression on the left, the inner sum runs over the terms in the 
jth column (that is, (j, c), (J, c + 1),..., (j, d), for each j), and the outer sum adds 
the results of the columns together. In the expression on the right the inner sum 
runs over the terms in the kth row (that is, (a, k), (a + 1, k),..., (6, k), for each k) 
and the outer sum adds the results of the rows together. In either case, the final 
result is the same.

к

5252M’fc)
j—0 k—0 k—Qj—k

52 52/и, *)

Figure 1.2. The terms involved in the summation of (1.17) are those in the 
shaded triangular region. In the sum on the left of (1.17), the inner sum runs over 
the terms in the jth column, that is, (j, 0), (j, 1),..., (J, J), and the outer sum adds 
the columns together. In the sum on the right of (1.17), the inner sum runs over 
the terms in the kth row, (k,k),(k + 1, k),..., (n, k), and the outer sum adds the 
rows together.
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together. The inner sum of the right side corresponds to summing the terms in the 
&th row, while the outer sum adds the rows together. In either case, every term 
corresponding to a shaded box appears exactly once in the full sum. □

Notation 1.4.10. Given E and f in the previous proposition, we can also write

52 52
(j,k)eE 0<k<j<n

Example 1.4.11. Using the identity in Exercise 1.21 (setting £ = n — /), the 
double sum 1 can computed directly as

n—1 n n—1 n

E E i = E»-> = Ef =
j=0 fc=J+l j=0 £=1

n(n + 1) 
2

But we can also compute it by changing the order of summation:

k=lk=lj=U

Example 1.4.12. Computing the double sum Y^=krk directly gives

n n n n n

E/Erk = 52 (n ~k+^rk = (n+i) 52rk - 52krk- 
k=0 j=k k=0 k=0 k=0

This last sum can be computed using summation by parts (see Section 1.6.1), 
but it is messy. However, interchanging the order of summation in the original 
problem makes the double sum easy to compute:

There is nothing special about the particular shapes of the regions in Figure 1.1 
or Figure 1.2. For any finite set E, the sum /(e) can be computed by summing 
all the terms /(e) in any order—row first or column first or even some other pattern. 
For example, the set E = {(J,k) | j, к > 0 and j + к < n} of Figure 1.3 can be 
summed either rows first or columns first. This gives the equality

n n—j n n—k

52 /о^) = 52Е/о>м = 5212/о>м.
j—0 k—0 k—0 j—Q

(1-18)
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к к

j—0 k—Q к—O j—0

Figure 1.3. Another example of changing the order of summation. Summing 
over the green region vertically first (left panel) gives the same result as summing 
horizontally first (right panel). This fact shows the two sums are equal, as given in 
equation (1.18).

Example 1.4.13. To compute the double sum £7=o£X=o (n-fc+i)(n-fc+2) 
initially appears difficult. But changing the order of summation gives

(n — к + l)(n — к + 2)

n i n—k

(n — к + l)(n — к + 2) )
k=0 V 7V 7 j=0

Example 1.4.14. Here is a more general example of changing the order of 
summation. To compute the sum 520<j<2n 52j/2<fc<n r^rk , begin by inter­
changing the order of summation. To do this, note that the smallest value 
that к can ever take is 0 (when j = 0), and the largest value that к can take is 
n. so the new outer sum will range over all values of к € {0,..., n}. The inner 
variable j is bounded above by the constraints j < 2n (from the old outer 
sum) and j/2 < к (from the old inner sum), so the new inner sum ranges over

1 (n — к + l)(n — к + 2)
fc + l)(n- A;+ 2) T~
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all values of j € {0,..., 2A;}. This gives

E E ^' = E E
0<J<2n j/2<k<n 0<k<n0<j<2k

,2
Notice that rK is independent of the index j, so it factors out of the sum to
give

E S E
0<fc<n 0<j<2A:

The inner sum is the geometric series (1.13), so the double sum reduces to

____ 9 r2fc+l _ i i __У rk - --------- -d = ^- У rk\r2k+1-l).
r — 1 r — 1

0<k<n 0<k<n

By (1.14) this sum becomes

1 v- л fc2 Hn+1>2-1 
--------- > Ar = . 
r — 1---------------------------------- r — 1

0<fc<n

8A bit is a single binary digit (taking only a value of 1 or 0). A group of eight bits is commonly 
called a byte. Single-precision floating-point numbers are stored in 32-bit (4-byte) form, but 
there is little benefit to using single precision on modern computers, which mostly have 64-bit 
architectures. For that reason we focus on 64-bit (double-precision) floating-point arithmetic.

1.5 Nested Loops
One important application of the double sums of the previous section is the analysis 
of nested loops, where one loop occurs within another. Nested loops occur frequently 
in scientific computing, especially in the algorithms of numerical linear algebra. 
We typically represent vectors and matrices as arrays of floating-point numbers, 
and moving through these arrays to perform the operations of matrix-vector and 
matrix-matrix multiplication uses nested loops. Thus, to analyze many algorithms 
in numerical linear algebra, we must understand how to analyze nested loops.

1.5.1 Aside: Floating-Point Operations
The long addition and long multiplication algorithms (Algorithms 1.2 and 1.5) dealt 
with integers of arbitrary size, but in most computational settings, including nu­
merical linear algebra, we use floating-point numbers. Floating-point numbers are 
represented in a manner similar to scientific notation, except everything is carried 
out in base 2 instead of base 10, and they are all rounded to fit into 64 bits8 (8 
bytes) of memory; for details see Section 11.1.

Basic arithmetic operations for floating-point numbers are built into the hard­
ware and can be performed in one or two clock cycles each. These include the 
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standard arithmetic operations -+, —, x, and 4- and are called floating-point opera­
tions (FLOPs).9

9The acronym FLOPs should not be confused with FLOPS, which means floating-point operations 
per second. The latter is a measure of performance in hardware, namely, the number of floating­
point operations a given computer can perform each second.

When analyzing the temporal complexity of many numerical algorithms, it is 
customary to count only the FLOPs, instead of using primitive operations. For 
example, when adding two vectors x = (#i,..., xn) and у = (?/i,..., yn) of floating­
point numbers, the sum x + у = + ?/i,..., xn + yn) requires n FLOPs (addi­
tions), and we ignore the other primitive operations like variable assignments, array 
lookups, and loop overhead. Similarly, scalar multiplication ax = (a#i,...,axn) 
requires n FLOPs (multiplications), and the additional primitive operations of as­
signment, lookup, and loop overhead are likewise ignored. Generally each FLOP 
requires roughly two array lookups (the inputs) and one variable assignment (for 
the output), so those primitive operations are assumed to be part of the cost of 
performing one FLOP, whereas loop overhead is generally very small compared to 
the cost of all the FLOPs. Thus counting FLOPs can give a good measure of to­
tal complexity, at least to leading order, even without counting all the primitive 
operations.

The spatial complexity of both vector addition and scalar multiplication is O(n) 
because the size of each floating-point number is fixed, and there are n of these 
numbers in each vector. The only other variables that depend on n are the indices 
required to loop through the vectors, and these have size at most O(logn), the num­
ber of digits required to represent n. As in the case of temporal complexity, when 
computing the spatial complexity of a numerical algorithm we usually track only 
the memory needed for floating-point numbers but ignore the memory needed for 
other aspects of the algorithm, like loop counters. These other, neglected, memory 
requirements are usually much smaller than the number of floating-point numbers 
used, so they rarely contribute anything to the leading order of the spatial com­
plexity.

1.5.2 Matrix-Vector and Matrix-Matrix Multiplication
The inner product (x, y) = хгуг of two vectors in Rn is one of the most widely 
used operations in numerical linear algebra and scientific computing in general. 
Calculating it requires n multiplications and n — 1 additions, for a total of 2n — 1 
FLOPs.

Example 1.5.1. If x = (1,2, 3,4) and у = (5,6, 7,8), then the usual inner 
product (x,y) = 1x5 + 2x6 + 3x74-4x8 requires four multiplications 
and three additions, for a total of seven FLOPs. Spatially, the algorithm must 
store the two vectors (eight values), and one more number for output (which 
can also be used for the intermediate calculation of the running total), for a 
total of nine floating-point numbers.

In matrix-vector multiplication, a matrix A G MmXn(^) and a vector x G 
are multiplied together to form a new vector Ax G Rm. This can be thought of 
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as m inner products between the rows of A and the vector x. Thus, its temporal 
complexity is m(2n — 1) ~ 2mn FLOPs. Spatially, the inputs require (m + l)n 
floating-point numbers, and the resulting vector requires m more. Thus the spatial 
complexity of matrix-vector multiplication is ~ mn + n + m.

In matrix-matrix multiplication, two matrices A E Mpxrn and В E Mmxn are 
multiplied together to create a new matrix AB E Mexn. This can be thought of 
as Ln inner products between the rows of A and the columns of B. Thus, the 
temporal complexity of this algorithm is £n(2m — 1) ~ 2Lmn. For the spatial 
requirements, beyond the inputs (which have size ~ Lm + mn), we need only store 
the output, which has spatial complexity ~ Ln. Thus the total spatial complexity 
is ~ Lrn + Ln + mn.

Remark 1.5.2. The basic operations in numerical linear algebra, including matrix­
vector and matrix-matrix multiplication, are included in numerical libraries that are 
highly optimized for performance and therefore run much faster than a naive im­
plementation of the algorithms mentioned above. For this reason, it is rarely a 
good idea to code these algorithms yourself from scratch. One of the most famous 
numerical libraries is Basic Linear Algebra Subprograms (BLAS), which is at the 
core of nearly every computing environment for numerical linear algebra. Numer­
ical libraries like BLAS optimize the workflow of the algorithm by making clever 
use of the cache and pipelining. This allows for vectorization, meaning that several 
primitive and floating-point operations can be performed at once by different regis­
ters in the CPU. It also minimizes the latency, that is, the time wasted waiting for 
memory calls.

Vista 1.5.3. There are asymptotically faster algorithms for matrix-matrix 
multiplication than the one described here. For example, when £ = m = n 
Strassen’s algorithm requires only O(nlog2 7) ~ O(n2,8074) FLOPs, whereas 
the regular algorithm is ~ 2n3 E <9(n3). As a trade-off, Strassen’s algorithm 
has greater spatial complexity and generally more round-off error than the 
regular algorithm. Also, the overhead in Strassen’s algorithm is large enough 
that the matrices must be rather large before it’s actually faster to use it; see 
Section 1.10 for more details.

Row Reduction

Assume A E Mn(R) is an invertible matrix and b E Rn. The canonical approach to 
solving a linear system of the form Ax = b is to use row reduction (see Volume 1, 
Section 2.7). This process consists of first performing a series of row operations 
to turn the augmented matrix [A|b] into an upper triangular matrix (row echelon 
form), and then performing back substitution to get the solution. For example, the 
row reduction step for solving the system

1
1
4

1 1 Xi

4 2 x2
7 8 x3

1
3
9
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looks like

1111 1
1 4 2 3 —> 0
4 7 8 9 4

1111
0 3 12
0 3 4 5

1111
0 3 12
0 0 3 3

1 1
3 1
7 8

1
2
9

Back substitution looks like

1 1
0 3
0 0

11 11
1 2 —> 0 3
11 0 0

1 0 0
0 1 0 I
0 0 1 1

1
1
0

0
0
1

0
0
1

1
0
0

0
1 
з
1

Now we show that row reduction as given in Algorithm 1.6 has a FLOP count 
of ~ |n3. Back substitution is O(n2) because it requires a multiplication and an 
addition for each entry in the top half of the matrix, of which there are |n(n + 
1). Thus, back substitution does not add to the leading-order behavior, and n- 
dimensional linear systems can be solved in ~ |n3 FLOPs. It can be shown that 
this is roughly a third the cost of inverting A and computing x = A-1b. For 
this reason (and for numerical stability10 reasons) it is almost always preferable to 
compute the row reduction of a matrix rather than compute its inverse.

10Stability of an algorithm has to do with round-off error. For more on this see the introduction 
to Chapter 1 (page 5) and Section 11.3.

To add up all the FLOPs in Algorithm 1.6, we look at Lines 13-18. Inside 
the two loops one FLOP is needed for computing c (Line 15), and then the row 
operation on Line 17 is really another loop that repeats n — к times and requires 
two FLOPs per iteration.

Summing the FLOPs over all the loops gives

n—2 n—1 / n \

EE 1+E4
k—Oj—k-\-l \ i—k-^-1 /

2 , 1 2 7
= 3П +2П ’б71’ (1-19)

The proof of the equality in (1.19) is Exercise 1.28. It is straightforward to see that 
the remaining parts of the algorithm require only O(n2) FLOPs, so they do not 
contribute to the leading order. Thus, row reduction costs ~ |n3.

Remark 1.5.4. The industrial-grade approach to solving the linear system is to 
use the LU decomposition, which overwrites A with a lower triangular matrix L 
(with all ones on the diagonal) and an upper triangular matrix U that satisfies 
A = LU. Note that we can store the key parts of L and U in the space provided 
by A, dovetailing the two matrices together. For example,

111
1 4 2
4 7 8

1 1
3 1
0 3

1
1
4

1 1
3 1
1 3

0 0
1 0
1 1

L = 1 and lu(A) =

The complexity of producing this factorization is the same as row reduction (~ |n3), 
and since Ax = LUx = b, we can find x by solving Ly = b by forward substitution 
(at a cost of O(n2)) and then solving Ux = у by back substitution (also costing 
O(n2)). The total complexity is dominated by the factorization ~ |n3, but the
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

import numpy as np # module for efficient linear algebra

def row_reduction(A): 
и и и

Row-reduce an n x (n+1) matrix (without pivoting) 
and perform back substitution.

Returns A in reduced row echelon form (RREF) 
и и и

n = A.shape[0]

# Row Reduction
for к in range(n-l): # Iterate over rows except the last

for j in range(k+1,n): # Iterate over rows below к
c = A[j,k] / A[k,k] # Scalar to multiply row(k) by
# Subtract c * row(k) from row(j)
A[j,k+l:n+l] = A[j,k+l:n+l] - c * A[k,k+l:n+l] 
A[j,k] = 0

# Back Substitution
for j in range(1,n+1): # Iterate from the bottom right

# Divide row by its leading term (assume nonzero)
A[n-j,n] = A[n-j,n] / A[n-j,n-j]
A[n-j ,n-j] =1 # leading term always becomes 1
for к in range(0,n-j): # Rows above row(n-j)

# Adjust the n-j th and n th columns 
A[k,n] = A[k,n] - A[k,n-j] * A[n-j,n] 
A[k,n-j] = 0 

return A

Algorithm 1.6. A row reduction algorithm for an nx (n+1) matrix. This simplified 
method assumes the pivots (the diagonal elements) are nonzero so that the division 
at Lines 15 and 23 is well defined. This algorithm uses NumPy, a module for 
efficient linear algebra. The matrix A must be a NumPy array (for example, A = 
np. array ([[1,1,1,1],[1,4,2,3], [4,7,8,9]])/ The syntax A [j , k] gives the j , к 
element of k, and A [j , к: n] gives the elements of the j th row of A from к up to (but 
not including) n. Note that range(n-1) iterates through the values {0,1,... ,n — 2}, 
while range(k+1 ,n) iterates through the values {fc + l,fc + 2,...,n — 1}.

main advantage is that we can get this factorization without needing additional 
memory, which is vital when the size of the matrix is really big.

To improve numerical stability, most LU decomposition algorithms actually find 
a permutation matrix P that reorders the rows of A before doing the row reduction, 
so that PA = LU. Since a permutation matrix is equal to a reordering of the rows 
of the identity matrix, it can be stored as an array of length n, and thus it does not 
contribute to the leading-order spatial complexity of the LU decomposition.
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Remark 1.5.5. There is a decomposition called the QR decomposition (see Volume 
1, Sections 3.3-3.4), which is more stable than the LU decomposition and has 
complexity ~ |n3. This can be used when stability is critical, but usually the LU 
decomposition is sufficient, at half the cost.

Example 1.5.7. In the loop

for j in range(n): 
x += ham(j,k) + spam(k)

the function spam(k) is independent of the variables that change in the loop 
(like the counter j), but it is recomputed n times because it is inside the loop. 
A better approach would be to compute it only once, outside the loop, as 
follows:

spam_val = spam(k)
for j in range(n):

x += ham(j,k) + spam_val

Vista 1.5.6. When the matrix A is sparse (that is, when most of the entries 
are zero), or when the matrix has some other special structure, there are 
some excellent iterative methods for solving the linear system Ax = b. The 
asymptotic complexity of these algorithms is sometimes nearly as small as the 
number of nonzero entries in A, which is much less than n2. Krylov subspace 
methods provide several of these solvers (see Chapter 13 of Volume 1).

The solution of a linear system can also be transformed into a quadratic 
optimization problem. This leads to some other powerful iterative methods 
for solving linear systems. We discuss some of these methods in Chapter 12, 
especially in Section 12.6.

1.5.3 *Loop  Interchange
As shown in Section 1.4.2, changing the order of summation in a double sum can 
make the sum easier to compute. Similarly, changing the order of a nested loop 
(called loop interchange) can often reduce the complexity of the nested loop. To 
see how this works, we first must understand loop-invariant code motion.

Loop-Invariant Code Motion

A fundamental principle for designing efficient code is that no operation should be 
performed unnecessarily. In particular, no operation that can be performed outside 
a loop should be performed inside the loop. Otherwise, it is executed many more 
times than it needs to be.
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If computing spam(k) costs s(k) FLOPs, then moving the computation outside 
the loop has reduced the temporal complexity by (n — l)s(fc) FLOPs. Even 
better would be to recognize that we can replace the n additions of spam.val 
inside the loop with one multiplication and one addition outside the loop:

x += n * spam(k) 
for j in range(n): 

x += ham(j,k)

This further reduces the complexity by n — 2 FLOPs.

Example 1.5.8. In the following loop, the value 3 * x**2  + 2 is computed 
with each iteration.

while 3 * x**2  + 2 < N:
spam(x)
x += 1

But the condition 3 * x**2  + 2 < N is equivalent to x < ((N - 2) / 3) 
**0.5. Therefore, we can avoid computing 3 * x**2  + 2 each time and, in­
stead, compute the value ((N - 2) / 3)**0.5  just once:

M = ( (N - 2) / 3)**0.5  
while x < M: 

spam(x) 
x += 1

This gives a savings of 3M — 3 FLOPs. Of course, if M is small, this is not 
meaningful, but if M is large, this could be a significant improvement in the 
temporal complexity of the algorithm.

Remark 1.5.9. In Example 1.5.8 we consider computing the square root of a 
floating-point number to be a single FLOP. This is a common practice because 
the square root function is often built into the hardware and can be computed in 
about the same amount of time as a floating-point multiplication.

The process of moving code outside of loops, as described in Examples 1.5.7 and 
1.5.8, is called loop-invariant code motion because the part of the code that is 
independent of the loop (loop invariant) is moved out of the loop. In compiled 
languages this is often performed automatically by an optimizing compiler, but it 
does not happen automatically in interpreted languages like Python.
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Loop Interchange

Loop interchange can allow us to move operations out of the inner loop or even 
eliminate the inner loop entirely, thereby reducing the complexity of the nested 
loop.

Example 1.5.10. In the double nested loop

for j in range(n):
for к in range (m): 

x += ham(j,k) + spam(k)

the functions ham(j ,k) and spam(k) are computed nm times. Changing which 
loop is inside and which is outside has no effect on the final result.

for к in range(m):
for j in range(n):

x += ham(j,k) + spam(k)

But now spam(k) does not depend on j, so spam(k) can be moved outside of 
the inner loop, as in Example 1.5.7, and we get the final result more efficiently:

for к in range(m):
x += n * spam(k)
for j in range(n):

x += ham(j,k)

Changing the loop order and moving operations out of the inner loop has 
saved — l)s(k) + n — 2) = m(n — 2) + (n — 1) s(k) FLOPs,
where s(k) is the number of FLOPs required by spam(k).

Remark 1.5.11. While good optimizing compilers automatically consider loop in­
terchange for the purpose of improving the efficiency of memory access, they do 
not usually consider the other potential benefits of loop interchange, such as those 
shown in Example 1.5.10.

1.6 Additional Techniques of Summation
In this section we discuss several additional techniques of summation. Many of these 
are discrete versions of fundamental techniques in traditional calculus, including 
discrete versions of the product rule and integration by parts. We also discuss 
the Pochhammer symbols, which provide the identities needed to adapt the power 
formulas in calculus to the difference and summation operators, as alluded to in 
Remark 1.3.15. We conclude this section with a discussion of the inclusion-exclusion 
principle, which generalizes the counting formula for unions of sets.
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1.6.1 Product Rule and Summation by Parts

Just as the derivative has a product rule, the difference operator Д also has a 
product rule. But to write this in a clean way, we must first define the translation 
operator T.

Definition 1.6.1. The translation operator T takes any function f : N —> F and 
maps it to a new function T[f] : N —> F by T[f](&) = f(k + 1). The definition also 
works if the domain is Z or Z+.

Remark 1.6.2. If I is the identity operator (that is, I[f] = f), then Д = T — I.

Theorem 1.6.3 (Finite Product Rule). For any F-valued functions f,g on N 
(or on Z+ or Tj) we have

&[fg] = Д[/] • T[p] + f • Д[5] = T[f] • Д[р] + g • Д[/]. (1.20)

Proof. The proof uses the same trick used to prove the usual product rule—adding 
a fancy form of zero (shown in red below):

A[f9]W = f(k + l)g(k + 1) - f(k)g(k)
= f(k + l)g(fc + 1) + [f(k)g(k + 1) - f(k)g(k + 1)] - f(k)g(k)
= A[f](k)g(k + 1) + f(k)A[g](k)
= A[f](k)T[g](k) + f(k)A[g](k).

The other half of (1.20) follows by applying the same argument to gf. □

Remark 1.6.4. The presence of the operator T in (1.20) is a little disappointing. 
We don’t see this in the product rule in calculus because the term T[g](A;) in the 
discrete case corresponds to g(x + h) in the infinitesimal case, and h —> 0 means 
that g(x + h) —> g(x).

Integrating the product rule gives integration by parts, and summing the discrete 
product rule gives the formula we call summation by parts.

Corollary 1.6.5. For any F-valued functions u,v on N (alternatively Z+ or %) we 
have

и(Л)Д[г?](А;) = u(b)v(b) — u(a)v(a) — T[v](&)Д[u](fc). (1-21)
a<k<b a<k<b

Proof. This follows immediately from the product rule and the fundamental 
theorem. □
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Example 1.6.6. Using summation by parts, we can compute x kak for 
a / 1. Let u(A;) = к and v(k) = ^zy, so that A[?z](fc) = 1 and A[v](fc) = ak. 
Thus,

n n

£fcafc = £«(fc)AM(fc) 
k=0 k=0

n

= u(n + l)u(n + 1) — и(0)г>(0) — A[tz](A;)u(A; + 1)
k=Q

(fl + l)«n+1 у-л Ufc+1 
a — 1 a — 1

k=0

(n + l)an+1 a — an+2
a — 1 + (u — I)2

= -—y(nun+1 - (n + l)an + 1).
\a — I)2

1.6.2 Rising and Falling Powers
Remark 1.3.15 shows that sums of powers do not yield nice formulas. But there are 
two expressions that behave like powers, called the rising and falling, or Pochham- 
mer symbols, that do behave nicely with respect to summation operators. They 
also behave nicely with difference operators.

Definition 1.6.7. Assume that m G N and x e R. The rising Pochhammer 
symbol, which reads as “x to the m rising, ” is given by the expression

xm = x(x + 1)(ж + 2) • • • (x + m — 1).

Similarly, the falling Pochhammer symbol is defined to be

x— = x(x — 1)(ж — 2) • • • (x — m + 1).

In this case, we say “x to the m falling.” For notational convenience, we define 
x° = x-= 1, since these both correspond to empty products, which are usually taken 
to be 1.

We show the following two identities for raising operators and leave the corre­
sponding properties of the lowering operators to the reader to determine.

Lemma 1.6.8. If m G N and x e R, then

Tm+1 _
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Proof.

Ax(x + 1)(ж + 2) • • • (x + m)
= (x + 1)(# + 2) • • • (x + m + 1) — x(x + 1)(ж + 2) • • • (x + m)
= ((ж + m + 1) — x)(x + 1)(ж + 2) • • • (x + m)
= (m + 1)(я + 1)(ж + 2) • • • (x + m). □

Theorem 1.6.9. If m E N, then

fc=0

nm+1 
m + 1 * (1.22)

Proof. 
have

From Lemma 1.6.8 and the fundamental theorem (Theorem 1.3.10), we

nm+i 

m + 1 m +1 k—Q

n—1 n n

= 52(fc+ir = 52fc“ = I2A:™
fc=0 fc=l fc=0

□

Example 1.6.10. Setting m = 1 we have

which agrees with (1.9). Setting m — 2, we have

52^2 = 52fc(fc+!) = n(n + l)(n + 2) n3 
з = T

Expanding gives
n(n + l)(n + 2) 

3 *

Subtracting A; gives
k=i k=i

n(n + l)(n + 2) 
~3

n(n + l) n(n + l)(2n + 1)
2 =

which agrees with (1.10).

1.6.3 Inclusion-Exclusion
The inclusion-exclusion principle is a fundamental tool for counting and for working 
with unions of sets that overlap. The basic idea for a union of two sets is to first 
consider everything in both sets (inclusion) but then remove terms that were counted 
twice (exclusion).
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Proposition 1.6.11 (Inclusion-Exclusion for Two Sets). For any finite sets 
E, F and any F-valued functions fi g defined onEUF, we have

£ /(*)  = £/(*)  + £/(*)-  £ Ж-
keEuF keE keF keEnF

Proof. We partition E U F into three sets:

E U F = (E \ (E П F)) U (F \ (E П F)) U (E П F),

which gives

£ fW= £ /(*)  + £ /(*)  + £ /(fe)

e£?uF fce(F\(FnF)) fce(F\(FDF)) fce(FDF)

= £/(*)-  £ /(*)  + £/(*)-  £ /(*)  + £ Ж)
keE ke^EHF) keF ke^EHF) ke(EQF)

= £/(M + £/(M- £ /(*)•  □
keE keF keEOF

Example 1.6.12. Choosing f to be the constant function 1 means that the 
sum f(k) is the cardinality of the finite set S. Thus, for any finite sets 
A and B, inclusion-exclusion (Proposition 1.6.11) implies that

|AUB| = \A\ + \B\ - |APB|.

This is a well-known counting formula for finite sets.

Proposition 1.6.13 (Inclusion-Exclusion for Three Sets). Given three finite 
sets A, B, and C, we have

£ /(*)  = £ /0) + £ /О) + £ f(x) - £ /(x) 
igAubuc хеА хев хес хеАпв

- £ /(*)-  £ f(x)+ £ f(x).
хеАпс хевпс хеАпвпс

Proof. This follows by writing E = AUB and F = C and applying the proposition 
twice. The details are Exercise 1.34. A graphical representation of how the three 
sets intersect is given in Figure 1.4. □

Example 1.6.14. For finite sets A, B, and C, we have the counting formula

|A U В U C\ = |A| + |B| + \C\ - |A П B| - |A П C\ - |B П C| + |A П В П C\.
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A

В C

Figure 1.4. A Venn diagram helps illustrate the ideas of inclusion-exclusion for 
three sets A, B, and C, as in Proposition 1.6.13. Including everything from A, B, 
and C means that the pairwise intersections АПВ, А П C, andВПС have all been 
included twice and the triple intersection has been included three times. Excluding 
one copy of each of the pairwise intersections means that the triple intersection, 
which was originally included three times, has now been excluded three times, so it 
must be reincluded once more.

Example 1.6.15. Let S be the set S = {1, 2,..., 1000} and let E be the 
integers in S that are divisible by any of 5, 7, or 9; that is, let E = E^UE^UEq, 
where En is the set of integers divisible by n in S. We have \En\ = [1000/nJ, 
where [я? J denotes the integer part of x > 0. Note also that En A Em = Enm 
whenever gcd(n,m) = 1. Thus

\E\ = |T?51 + \E?\ + | Eq I — IE's П E?\ — IE5 A £? 91 — |JE?7 A Eq I + I-E5 AE7A

= L1000/5J + [1000/7J + [1000/9J - [1000/(5 • 7)J - [1000/(5 • 9)J
- [1000/(7 • 9)J + [1000/(5 • 7 • 9)J

= 200 + 142 + 111 - 28- 22 - 15 + 3
= 391.

This can be extended to an arbitrary (finite) number of sets.

Theorem 1.6.16 (Inclusion-Exclusion). For any finite collection E±,... ,Em of 
finite sets and for any function f : IJZti we have

m

E zW’Ei-1)** 1 E E /и-
eE|J™i Ei eeA}=i E^j

(1-23)

Proof, This follows by induction on m. The base case is m = 1, which is trivial. 
Now assume that (1.23) holds for all m with 1 < m < n. We prove that the equation 
also holds for m = n + 1.
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Let E = иГ=1^« and F = ^n+i- By Proposition 1.6.11 and the induction 
hypothesis, we have

£ /(e) = £ /(e) = £/(e) + £/(e)- £ /(e)
Ei etEuF eEE eEF etEOF

= £ /(e) + £ /(e)- £ /(e)
eEU7=i eGBn+i e^U£i EiHEn-^i

= E(-i)‘+1 E E /(«>+ E л»)
fc=l l<.i1<---<ik<.n eenfc=1 Ei. eEEn+i

-E(-i)‘+1 E E «')■
fc=l l<ii<---<ik<n ееП^=1 Ei .ПЕп+i

The last term can be rewritten as

E E /м= E E fM-
l<i!<-<ik<n ееП^=1Е^ПЕп+1 1<г1<---<гк<гк+1^п+1 eeQ^1 Ei.

Thus, we have

£ /(e) = £(-l)fe+1 £ £ /(e) + £ /(e)
eeUrJi1 Ei l<n<-<ifc<n ебА|=1Е{. eEEn+1

+E(-i)‘+! E E Л')
fc=l l<21<-"<ifc<2fc+i=n+l eenfc+11JEi.1 b = i з

= E(-i)‘+1 E E ■№>+ E л»)
l<i1<--<ik<n еЕр\к^1Ег. eEEn+i

+ £(-i)fc+1 £ £ /(e)
fc=2 l<2i<-"<^fc=n+l ебП^=1£?г-

= E(-D‘+1 E E «')
l<i1<---<ik<n-Fl eep|fc=1 Ei.

+ E(-i)w E E
fc=l l<2i<-"<^fc=n+l eenfc=1JEi.

n+1
= £(-i)fc+1 £ £ /(e)-

fc=l l<i1<---<ik<n-Fl eE(~]k_1Eij

Thus by induction, (1.23) holds for all m > 1. □
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Example 1.6.17. For any finite collection Ei,..., Em of finite sets we have

(1-24)

Alternatively, we can write

(1-25)E (-d|j|-1

1.7 Products and Counting
Computing the temporal and spatial complexities of an algorithm is essentially a 
big counting problem. Many computations in probability theory also boil down to 
counting problems (see Chapter 5). In this section we discuss some of the key tools 
for counting, including the multiplication rule, permutations, combinations, and the 
binomial theorem.

1.7.1 The Multiplication Rule
We begin by examining the cardinality of a product of sets. Let A and В be sets 
of finite cardinality |A| and |B|, respectively. The Cartesian product of A and B, 
denoted A x B, is the set of ordered pairs

AxB = {(a,6) |aU,6eB}.

A key observation is that the cardinality of A x В is |A| • |B|. This is sometimes 
called the multiplication rule. It is a very useful concept even though its proof is 
trivial.

Example 1.7.1. Let the set of entrees be E = {pizza, hamburger, salad} and 
the set of drinks be D = {water, soda}. If a meal is defined as a pair of exactly 
one entree and exactly one drink, then the number of possible meals is the set 
of possible pairs \E x D\ = \E\ • \D\ = 3- 2 = 6.

The multiplication rule generalizes as follows: Suppose that we have the finite 
sets Ai, A2,..., An. The Cartesian product A± x A2 x • • • x An is the set of n- 
tuples (ai, a2,..., an) with each аг eAi. The cardinality of the Cartesian product 
is |Ai x A2 x • • • x An\ = |Л1| • |A2| • • • |An|.

Example 1.7.2. In the Land of Oz, a license plate has two letters followed 
by three numbers. By the multiplication rule, the total number of possible 
license plates in Oz is 26 • 26 • 10 • 10 • 10 = 676,000.



1.7. Products and Counting 45

1.7.2 Permutations
A permutation of a set S is an ordering of the elements of S. For example, there 
are six ways to permute the set {1,2,3}; they are (1,2,3), (1,3, 2), (3,2,1), (3,1,2), 
(2,3,1), and (2,1,3). More generally, a set of n objects can be permuted n\ = 
1 • 2 • • • (n — 1) • n ways. The proof follows by induction and is Exercise 1.37.

Example 1.7.3. If there are 19 students in a class, then there are 19! ways 
that the students can be ordered; that is, there are 19! permutations of the 
class. This is a very large number—approximately 1017.

Remark 1.7.4. For notational convenience, we set 0! = 1. This is a standard 
convention in mathematics.

Sometimes we are only interested in ordering r objects taken from a set of n 
elements. For example, suppose we wanted to elect a president, a vice president, 
and a secretary from the class of 19 students. In this case there are 19 choices for 
president, 18 choices for vice president after the president is chosen, and 17 choices 
for secretary after the other two are chosen. That gives 19-18-17 = ||| = 5814 
possible presidencies. This could also be thought of as taking the total number of 
orderings 19! and dividing out the unused orderings 16!. This pattern applies in 
general, as given in the following proposition.

Proposition 1.7.5. The number of permutations of r objects from a set of n 
elements (0 < r < n) is P(n, r) = ^n2?r); •

Proof, The proof is Exercise 1.38. □

1.7.3 Combinations and Rearrangements
Suppose that instead of a presidency, we want to choose a committee of three people 
from the 19 students in the class. In this case, since none of the three are ranked 
above any other, we must also divide out the number of orderings of the three 
people in a given presidency. Thus the number of combinations of students on the 
committee is = 969. This is denoted C(19,3) or (19) and is pronounced “19 
choose 3.”

Proposition 1.7.6. The number of (unordered) combinations of r objects from 
a set of n elements (0 < r < n) is C(n,r) = ♦ For notational
convenience, we set C(n,r) = (™) = 0 whenever r > n or r < 0.

Proof, The proof is Exercise 1.38. □

Remark 1.7.7. The numbers are often called binomial coefficients because of 
their role in the binomial theorem (Theorem 1.7.16), below. Note that these are 
always integers because they count the number of times something can occur.
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Example 1.7.8. The number of ways to choose two socks, not necessarily 
matching, from a drawer of 20 socks is C(20, 2) = 202!19 = 190, because we 
don’t care about the order in which the socks are chosen. But the number of 
ways to put these socks on your two feet is P(20, 2) = 20 • 19 = 380 because 
there are 20 choices for your left foot and 19 remaining for your right foot.

Example 1.7 .9. In poker a player draws five cards, without replacement, 
from a standard deck of 52 cards (four suits and 13 ranks; each card has a 
rank and a suit). A three-of-a-kind is when there are three cards of the same 
rank, plus two cards which are not of this rank nor the same rank as each 
other. How many different ways can one get a three-of-a-kind? There are 
C(13,1) = 13 possible ranks for the triple. For each possible rank, there are 
C(4,3) = 4 different ways you can have three cards of that rank. Thus, there 
are 13 • 4 = 52 different triples of the same rank.

For the two extra cards, neither of them can be the same rank as the triple 
(or else you would have four of a kind), nor can they be the same as each other 
(or else you would have a full house). The remaining two cards must be from 
the remaining 12 ranks, which gives C(12,2) = 66 possibilities. For each of 
these two ranks, there can be four different suits. Therefore, the total number 
of unique three-of-a-kind combinations is C(13,1)C(4, 3)C(12, 2)42 = 54,912.

Example 1.7. 10. In the Powerball Lottery players choose five distinct num­
bers ranging between 1 and 69 and also choose the Powerball, which is a 
single number ranging between 1 and 26. Although the balls are drawn one at 
a time, the numbers are always reported in ascending order and therefore the 
order drawn doesn’t matter. The number of possible unique lottery tickets 
is the number of Powerball choices (26) times the number of ways to choose 
five numbers from 69, or 26 • C(69,5) = 292,201,338. Since there is only one 
jackpot, the odds of winning this lottery are 1 in 292,201,338.

Example 1.7. 11. How many unique rearrangements are there of the word 
TOOTH? Five letters can be rearranged 5! ways, but there are two pairs of 
letters that are multiples; specifically, the letters О and T are represented 
twice. Thus, we must divide out the number of ways the multiple letters can 
be permuted among themselves. This gives — 30 different rearrangements.
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Example 1.7. 12. The number of rearrangements of the word MISSISSIPPI 
can be counted by noting that the letters I and S are repeated four times, and 
P is repeated twice. Thus, there are = 34,650 unique rearrangements.

Remark 1.7.13. An important generalization of the binomial coefficient is the 
multinomial coefficient. Let n± + 722 +---- 1- nr = 72, where each > 0. Define

n
721,722, . • . ,nr

n\ 
721!722! • • • 72r! (1-26)

It describes the number of ways that 72 elements can organized into r groups of 
?2i, 722, •. •, nr elements, respectively.

Example 1.7. 14. If there are nine employees at a restaurant, how many ways 
can you choose four wait staff, two cooks, two bussers, and one host (assuming 
every employee is able to perform every job)? Using the multinomial, we have 
4!2?2!1! = 3780.

1.7.4 Combinatorial Identities
The binomial coefficients satisfy some useful relations. Among the most famous is 
Pascal’s rule, which is the foundation of Pascal’s triangle (see Table 1.1). This is 
given algebraically in Lemma 1.7.15 and used in the proof of the binomial theorem 
(Theorem 1.7.16).

n = 0: 1

n = 1: 1 1

Table 1.1. Pascal’s triangle can be used to determine the coefficients in binomial 
expansions. Pascal’s lemma (Lemma 1.7.15) says that the rth element of the nth 
row can be found by adding the two elements (the rth and the (r — l)th) just above 
it on the (72 — l)th row.

72 = 2: 1 2 1

72 = 3: 1 3 3 1

72 = 4: 1 4 6 4 1

72 = 5: 1 5 10 10 5 1

Lemma 1.7.15 (Pascal’s Rule). For all n,r e Z+ with r < n we have

(1-27)
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Proof.

n — 1\ 
r — 1/

(>- 1)! (n- 1)!
(r —l)!(n —r)! r\(n — 1 — r)!

— l)!r (n — l)!(n — r 
r\(n — r)! r\(n — r)\
(n — l)!n n\ 
r\(n — r)\ r\(n — r)\

□

Theorem 1.7.16 (Binomial Theorem). For any x,y GF and n e Z+ we have

(x + yr = J2^kyn-k. (1.28)

Here, as in all similar sums, we use the convention that xQ = 1, even when x = 0.

Proof. The proof follows by induction. We first prove the case n = 1. Note that

Now, assuming by the inductive hypothesis that the theorem is true for n — 1, we 
prove that it holds for n. We have

(x + y)n = (x + y)(x + y)n 1

Thus (1.28) holds for all n e . □

Remark 1.7.17. Note that the binomial theorem gives another way to see that the 
binomial coefficients must always be integers, because each coefficient of (x + y)n 
must be an integer.
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Corollary 1.7.18. For any n e Z+ , the following combinatorial identity holds:

Proof, From the binomial theorem we have

There is also a multinomial theorem that expresses (rri +-----1- Xd)n in terms of
multinomial coefficients.

Theorem 1.7.19. For any #i,..., Xd E R and n e Z+ we have

where the sum on the right runs over all d-tuples of nonnegative integers k±,... ,kd 
that sum to n, and (fe the multinomial coefficient (1.26).

Proof. This is proved by inducting on d and using the binomial theorem. The 
details are Exercise 1.45. □

1.8 Division and Divisors
Some of the most useful algorithms depend on divisibility properties of integers. In 
this section, we develop these ideas and also discuss the Euclidean algorithm, an 
ancient and very efficient algorithm for finding the greatest common divisor of two 
positive integers.

1.8.1 Divisibility and the Division Theorem
The fundamental tool for working with integers is the well-ordering axiom of the 
natural numbers (see Volume 1, Appendix A, Sections 3-4).

Definition 1.8.1. A binary relation < on a set X is called an ordering (or a total 
order) if it satisfies the following properties:

(i) For every x,y e X either x < у or у < x.

(ii) x < x for every x e X.

(iii) If x < у and у < x, then x = y.

(iv) If x < у and у < z, then x < z.

A set X with an ordering < is well ordered if every nonempty subset S С X has 
a least element, that is, if there exists an element x e S such that x < у for every 
У e S.
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Unexample 1.8.2.

(i) The interval [0,1] 6 R with the usual ordering < is not well ordered, 
because the set (0,1] does not have a least element. For example, given 
any x E (0,1] the number | is strictly less than x.

(ii) The set of integers Z with the usual ordering is not well ordered because 
there is no least element. For every n E Z the number n — 1 E Z is less 
than n.

Axiom 1.8.3 (Well-Ordering Axiom for Natural Numbers). The set of 
natural numbers N = {0,1,2,... } with the usual ordering < is well ordered.

Example 1.8.4. Any subset of a well-ordered set is also well ordered. Hence, 
the set Z+ of positive integers is also well ordered.

The well-ordering axiom guarantees that any nonempty subset of N has a least 
element. For example, given some property of interest characterized by a Boolean­
valued function P(n) on N, that is, P(n) E {True, False} for each n E N, we can let 
S = {n E N | P(n)} be the set of all natural numbers satisfying that property. The 
well-ordering axiom guarantees that if S is nonempty, then there is a least element 
of S', and this must be the smallest natural number satisfying the desired property.

Lemma 1.8.5 (Archimedean Property). Ifa,b€ Z+, then there exists n E Z+ 
such that bn > a.

Proof. Suppose no such n exists. Thus, 0 < a — bn for each n E Z+. Let S = 
{u — bn | n E Z+} C Z+. Since S is nonempty, the well-ordering axiom guarantees 
that S has a least element, say, a — bm. It follows that a — bm < a — +1), which
implies that b < 0, which is a contradiction. Hence, there exists n E Z+ such that 
bn > a. □

The well-ordering axiom is also the key to proving several divisibility properties 
of the integers. The first of these is the division theorem.

Theorem 1.8.6 (Division Theorem). Given any integer a E Z and any nonzero 
6 E Z, there exist unique integers q,r with 0 < r < \b\ such that

a = bq + r.

Moreover, if a, b > 0, then q > 0, and if a > b > 0, then q > 0. We call a the 
dividend, b the divisor, q the quotient, and r the remainder.

Proof. Let S = {n — bx | x E Z} C Z and S+ = S П N. By Exercise 1.47 the 
subset S+ C N is nonempty, so the well-ordering axiom implies that S+ has a least 
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element r > 0. Thus, there exists a q e Z such that r = a — bq. Assume, by way 
of contradiction, that r = a — bq > \b\. If 6 > 0, then r — \b\ = a — b(q + 1) > 0 
is an element of that is less than r, a contradiction. If b < 0, then r — \b\ = 
u — b(q — 1) > 0 is an element of that is less than r, which is also a contradiction. 
Therefore, 0 < r < \b\.

To see uniqueness, consider any r' = a — bq' with 0 < r' < \b\. Without loss of 
generality, assume that r < r', and so 0 < r'—r < \b\. But r'—r = a—bq' — (a—bq) = 
b(q — q') is a multiple of 6, and the only nonnegative multiple of b less than \b\ is 0. 
Thus r' = r and q' = q.

Finally, if a > b > 0, then a — r > b — r > 0, which implies that q = (a — r)/b > 0. 
If b > a > 0, then a = 0 • b + a, so q = 0. □

1.8.2 Greatest Common Divisors

Definition 1.8.7. Given any a, b e Z with b / 0, we say that b divides a (denoted 
b\a) if there exists c e Z such that be = a. In this case, we say that b is a divisor of 
a. If b does not divide a we write b{ a.

Example 1.8.8. We have 2| 18 but 6 113.

Theorem 1.8.9. Given a,b e Z; not both zero, there is a unique d e Z+ satisfying 
the following properties:

(i) d is the least positive integer that can be written in the form ax + by for some 
x,y e Z.

(ii) The integer d divides both a and b, that is, d\a and d\b.

(iii) For any integer d' with d'\a and d'\b, we have d'\d.

(iv) d is the greatest positive integer that divides both a and b.
The integer d is called the greatest common divisor (ged) of a and b and is denoted 
gcd(a, 6).

Proof. Let S = {an + bm | n,m e Z} and let = S П Z+. It is straightforward 
to see that S+ / 0. By the well ordering of Z+, there must be a least element in 

let d be that least element.
(i) By definition, d = ax + by for some x, у e Z and is the least such element.

(ii) By the division theorem, there are integers q, r with 0 < r < d such that 
a = dq + r, but r = a — dq = u(l — xq) — byq is either 0 or an element of S+. 
If r is an element of S+, then since d is the least element in , we must have 
d < r, which is a contradiction. Therefore r = 0, and d divides a. Exchanging 
a for b in the previous argument proves that d also divides b.

(iii) Since d'\a and d'\b we must have a = d's and b = d't for some s,t e Z, and 
hence d = ax + by = d'sx + d'ty = d'(sx + ty), so d'\d.

(iv) This follows from (ii) and (iii). □
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Example 1.8.10. In elementary school, we find the gcd by factoring the two 
numbers into products of primes and then collecting the common factors. For 
example, to compute the gcd(12,20) we write 12 = 22 -3 and 20 = 22 • 5, and so 
the gcd(12, 20) = 22 = 4. But factoring is a very expensive algorithm. In fact 
its high complexity is the foundation of many cryptosystems; see Section 1.9.7 
for more on this. In Section 1.8.3 we present a much faster way to find the 
gcd.

Proposition 1.8.11. Let a,b,c e Z. If a\bc and gcd(u,6) = 1, then a\c.

Proof. Since gcd(u, b) = 1 there exist x, у e Z such that ax + by = 1. Multiplying 
by c gives axe + bye = c. Since a\bc we have az = be for some z e Z, and hence

c = axe + bye = a(xc + zy).

Therefore a\c as required. □

1.8.3 The Euclidean Algorithm
The gcd can be found very efficiently by way of the Euclidean algorithm. This is 
one of the most ancient algorithms still in modern use. It was described by Euclid 
in his book Elements around 300 BCE, but many scholars believe it was known 
earlier.

Theorem 1.8.12 (The Euclidean Algorithm). Given a,b e Z with b / 0, 
define qo,ro e Z as in the division theorem (Theorem 1.8.6) to get

a = bq0 + r0

with 0 < ro < \b\. If ro = 0, then gcd(u, b) = b. Otherwise, divide b by ro to get 
qi,r± e Z by the division algorithm; that is,

b = r0Qi + n

with 0 < Г1 < r0. Repeating the process eventually gives a remainder of zero:

a = bqo + r0, 
b = r0Qi +n, 

П) = r±q2 + r2, 
ri = r2qs + r3,

! (1.30)
rn-2 = rn-iqn + rn, 
rn-i = rnqn+1 + 0.

The penultimate remainder rn is the gcd of a and b, that is,

gcd(a, 6) = r,



1.8. Division and Divisors 53

Proof, For any two integers m and n with n / 0, let m = nq + r with 0 < r < |n|. 
Let d = gcd(m, n) and e = gcd(n, r). Notice that r = m — nq, and d\m and d\n, so 
d\r, and hence d < e. Conversely, since m = nq + r, we have e\m and e\n, so e < d. 
Therefore gcd(m, n) = gcd(n,r). Applying this result to each successive division in 
(1.30) shows that

gcd(a, 6) = gcd(6, r0) = • • • = gcd(rn_i,rn) = gcd(rn, 0) = rn.

The algorithm terminates with n < \b\ — 1, because at each stage we have 
0 < < rk, and so 0 < rn < • • • < n < r0 < \b\. □

Example 1.8.13. The gcd of 14562 and 348 is computed as follows:

14562 = 348 • 41 + 294, 
348 = 294 • 1 + 54, 
294 = 54 • 5 + 24,

54 = 24 • 2 + 6, 
24 = 6 • 4 + 0.

Thus, gcd (14562,348) = 6.

The bound n < \b\ — 1 in the previous proof can be improved a lot, as the 
following lemma shows.

Lemma 1.8.14. Following the notation in the previous theorem, we have b > 2r± 
and rk > 2r/c+2 for each к e {0,1,2,..., n — 2}.

Proof. Since rfc+i = gfc+3rfc+2 + Пс+з and rk = qk+2rk+1 + rfc+2, we have that 
rk = r/c+2(l+9fc+3Qfc+2)+Qfc+2rfc+3. Thus, rk > r/c+2(l+Qfc+3Qfc+2). Since < rj 
for every j e {0,..., n — 1}, we have qk+2 > 1 and qk+3 > 1, hence rk > 2гк±2. To 
show that b > 2r±, set r_± = b and use the same argument. □

Theorem 1.8.15. Using the notation in the previous theorem, assume a,b G Z+ 
satisfy b < a. The number n +1 of iterations of the Euclidean algorithm for gcd(a, b) 
is bounded above by 2(log2 b) + 1; that is, n < 21og2 b.

Proof. Choose m e so that 2m~1 < b <2™. Suppose that n > 2m — 1. From 
the lemma, we have

b > 2ri > 4r3 2rrt \
^2m-l >2 Г,

Thus, we have that rn < 2 < 1, which is impossible. Thus, n < 2m — 1, which
implies n < 2(m — 1) < 21og2 b. □
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Remark 1.8.16. The number of iterations of the Euclidean algorithm is at most 
~ 2 log2 b. Normally we think of complexity in terms of the number of digits required 
to store or represent the inputs, not the numerical value of the input. So in a base-2 
representation of 6, the size of the input is £ = Plog2 b]. If the complexity of each 
iteration is Q, then the temporal complexity of the Euclidean algorithm is ~ 2£Q. 
If the input is represented in base 10 instead, then

n < 2 log2 b = 21°^10 « 6.644 log10 b < 6.644 x number of digits of b. 
logio 2

Example 1.8.17. In Example 1.8.13, we computed gcd(14562, 348) = 6 as

14562 = 348-41 + 294, (1.31)
348 = 294 • 1 + 54, (1.32)
294 = 54-5 + 24, (1.33)

54 = 24-2 + 6, (1.34)
24 = 6-4 + 0. (1.35)

We work from the bottom up and solve for each remainder in terms of the 
other parts and then back substitute. Equation (1.34) gives

6 = 54 - 24 • 2 (1.36)

and (1.33) gives
24 = 294 - 54-5. (1.37)

Substituting (1.37) into (1.36) gives

6 = 54 - (294 - 54 • 5) • 2 = 11 • 54 - 2 • 294. (1.38)

Solving for 54 in (1.32) gives

54 = 348 - 294 • 1, (1.39)

and substituting (1.39) into (1.38) gives

6 = 11- (348 - 294 • 1) - 2 • 294 = 11 • 348 - 13 • 294.

This is still a crude estimate—there are much sharper bounds in the literature.

1.8.4 Extended Euclidean Algorithm
Theorem 1.8.9 guarantees that, for any nonzero integers a and 6, the element 
gcd(u, b) can be written as ax+by for some ж, у e Z. Knowing the actual values of x 
and у is useful in many applications. This can be found easily, by back-substituting 
in the original Euclidean algorithm. * 6

(1-40)
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Solving for 294 in (1.31) gives

294 = 14562 - 348-41, (1.41)

and substituting into (1.40) gives

6 = 11 • 348 - 13 • (14562 - 348 • 41) = 544 • 348 - 13 • 14562. (1.42)

This gives the desired expression for 6 = gcd(14562, 348) as an integer combi­
nation of 14562 and 348.

Writing out the equations for this procedure, we have rn = rn~2 — rn_iqn, rn_i = 
гп-з — rn-2qn-i) and so forth, up to ro = a — bqo. The initial Euclidean algorithm 
finds all the values of so back substituting gives

gcd(n, b) = rn = rn-2 - гп-^п
= 'f'n—2 n—3 ^n—2Qn— l)(7n

= (^n—4 3Qn—2) (^n—3 (^n—4 ^n—SQn—2)9n—l)(7n

and this gives an explicit expression for gcd(u, b) = rn as ax + by. This is called the 
extended Euclidean algorithm. It may feel painful to write out all the equations for 
the extended Euclidean algorithm, but it is simple to program.

1.9 Primes and Remainders
In this section, we treat basic properties of prime numbers and modular arithmetic. 
We prove Fermat’s little theorem, which follows from the binomial theorem and 
gives a very fast algorithm for determining when a given number is likely to be 
prime. We also discuss the Rivest-Shamir-Adleman (RSA) cryptosystem.

1.9.1 Primes

Definition 1.9.1. If two integers a,b e Z satisfy gcd(a, b) = 1, then we say that 
a and b are relatively prime. An integer p > 1 is prime if it is relatively prime to 
every a e {1, 2,... ,p — 1}.

Example 1.9.2.

(i) We have gcd(6,9) = 3 and gcd(4,9) = 1, so 4 and 9 are relatively prime, 
but 6 and 9 are not.

(ii) If p is any prime, and b € Z, then either gcd(p, b) = 1 or gcd(p, b) = p, 
since the only positive divisors of p are 1 and p.
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1.9.2 Modular Arithmetic

Definition 1.9.3. Given a, 5 e Z and n e Z+ , we say a is congruent to b modulo 
n, denoted a = b (mod n), if n\(a — b).

Example 1.9.4. The following statements are true:

37 = 25 (mod 12), 
37 = 1 (mod 12), 
-9 = 31 (mod 10), 
5^7 (mod 3).

Example 1.9.5. You’ve been using modular arithmetic since you learned to 
tell time. The minutes on a clock are measured modulo 60. For example, 
45 minutes after the hour is the same as 15 minutes before the hour; that is, 
45 = —15 (mod 60).

Theorem 1.9.6. Let a,b e Z and n e Z+. The relation a = b (mod n) is an 
equivalence relation on Z.

Proof, It suffices to show that = is reflexive, symmetric, and transitive. Reflexivity 
follows because n|0 always holds. Symmetry follows because n\(a — b) holds if and 
only if n\(b — d). Finally transitivity follows from the fact that if n\(a — b) and 
n\(b — c), then n|[(a — b) + (b — c)], hence n\(a — c). □

Definition 1.9.7. The set of equivalence classes in Z defined by congruence 
(mod n) is denoted Zn. The equivalence classes are also called cosets.

The equivalence class of x is denoted [[#]]. The equivalence classes are the sets

[[0]] = {0, ±n, ±2n, i3n,... },
[[1]] = {1,1 ± n, 1 ± 2n, 1 ± 3n,... },
[[2]] = {2,2 ± n, 2 ± 2n, 2 ± 3n,... },

[[n — 1]] = {n — 1, (n — 1) ± n, (n — 1) ± 2n, (n — 1) ± 3n,... }.

Each equivalence class in Zn has a unique representative in the set {0,1,..., n — 1}. 
As a result, when it can be done without introducing ambiguity, we often abuse 
notation and leave off the [[•]] and write 1 to mean [[1]], 5 to mean [[5]], etc.

Remark 1.9.8. It is important to remember that each element of Zn is an entire 
coset of numbers. We can write these cosets by choosing any element of the coset, 
e-g-, [[-1]] = h - 1J = - 1]], [[—2]] = [n - 2]] = - 2]]> etc.
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Theorem 1. 9.9. If a,b,c e Z and n e Z+, then
(i) (a + b) + c = a + (6 + c) (mod ri),

(ii) (ab)c = a(bc) (mod ri),

(iii) a + b = b + a (mod ri),

(iv) ab = ba (mod ri),

(v) a(b + c) = ab + ac (mod n).

Proof. The proof is Exercise 1.54. □

The previous theorem, combined with the substitution rule, below, makes com­
putation in Zn much simpler than computation in Z.

Theorem 1.9 .10 (Substitution Rule). Let a, b, а', У e Z, and n e Z+. Ifa = a' 
(mod n) and b = У (mod ri), then

(i) a + b = a' + У (mod n),

(ii) ab = а'У (mod n).

Proof. If a = a! (mod ri) and b = b' (mod ri), then n\(a — a') and n\(b — У). This 
implies there exist c, d e Z such that a = a' + nc and b = У + nd.

(i) Adding gives a + b = af + У + n(c + d). Thus, a + b = a1 + У (mod n).

11A little thought shows that the particular terms aj appearing in the product are determined by 
the binary expansion of k.

(ii) Multiplying gives ab = rib' + n(cb' + rid + ncd). Thus, ab = rib' (mod n). □

Example 1.9.11. Since 31 = 4 (mod 9) and 66 = 3 (mod 9), we have

97 = 31 + 66 = 4 + 3 = 7 (mod 9), 
2046 = 31 • 66 = 4 • 3 = 12 = 3 (mod 9).

1.9.3 Fast Modular Exponentiation
We can also compute mk (mod ri) using Theorem 1.9.10. For example, to compute 
3781 (mod 11), note that 37 = 4 (mod 11). So it suffices to find 481 (mod 11). We 
apply the theorem multiple times in an improvised way to get

481 = (43)27 = (—2)27 = (—2)(—2)26 = (-2) • 413 = (-8) • 412 = (-8) • 166
= (-8) • 56 = (-8) • 253 = -8 • 33 = (-8) • 5 = -40 = 4 (mod 11).

We can do this more efficiently using a technique called fast modular exponenti­
ation. To compute mk (mod ri), find m = a0 (mod n) and then square both sides 
to get m2 = («о)2 = «1 (mod n), and keep squaring to get each aj+i = a2 (mod n) 
until к < 2j+1. At this point we can write mk as a product of some combination11 
of the aj.
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Example 1.9.12. We compute 3781 = 4 (mod 11). We begin with 37 = 4 
(mod 11), which gives «q = 4. Taking powers of both sides yields

372 = 42 = 16 = 5 = Ol,

374 = 52 = 25 = 3 = «2,

378 = 32 = 9 = a3,
3716 = 92 = 81 = 4 = a4,

3732 = 42 = 16 = 5 = «5,

3764 = 52 = 25 = 3 — ^6-

Thus, 3781 = 3764+16+1 = 3764 • 3716 • 371 = a6 • u4 • «1 = 3 • 4 • 4 = 4 (mod 11).

Remark 1.9.13. Fast modular exponentiation requires O([log2A:J) integer multi­
plications. This is considered fast because it uses many fewer multiplications than 
the naive approach of multiplying by m repeatedly (which requires O(k) multipli­
cations).

1.9.4 Finding Inverses in
If a and n are relatively prime, then there exist x,y e Z such that ax + ny = 1. 
This can be rewritten as ax — 1 = —ny, and therefore ax = 1 (mod ri). This implies 
that x is a multiplicative inverse to a in Zn. In particular, given any relation of the 
form az = w (mod n), we can easily find z by multiplying both sides by x, that is, 

z = (xa)z = x(az) = xw (mod n).

Example 1.9.14. To find an integer z satisfying

31г = 17 (mod 56),

note that 31 and 56 are relatively prime, so there exist integers x and у such 
that 31rr + 56?/ = 1. We can use the extended Euclidean algorithm to find 
x = — 9 and у = 5. This implies that

(31)(—9) = 1 (mod 56),

and hence
(31)(—9)(17) = 17 (mod 56).

Therefore z = (—9) (17) = 15 (mod 56) is a solution.

1.9.5 Fermat's Little Theorem
Fermat’s little theorem is much more useful than his last theorem. It’s also much 
easier to prove.
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Lemma 1.9.15. Assume p E Z+ is prime. If к E Z+ with к < p, then р|(£). In 
other words, (£) = 0 (mod p) for к = 1,2,... ,p — 1.

Proof. We have (£) = E Z, and p divides pl = (fykl(p — fc)!. But p is
relatively prime to kl(p — fc)!, so by Proposition 1.8.11 we must have p|(£). □

Corollary 1.9.16 (Freshman’s Dream). Ifp is prime, then for a, b E Z we have 
(a + b)p = ap + bp (mod p).

Proof. By the binomial theorem and the previous lemma we have

(a + b)p = =ap + 0ap-1b+--- + 0abp~1 + bp = ap + bP (mod p). □

Theorem 1.9.17 (Fermat’s Little Theorem). If p E Z+ is prime, then ap = a 
(mod p) for all a E Z.

Proof. Assume p is prime. Define S = {u E Z | ap = a (mod p)}. We first prove 
the theorem for nonnegative integers a by using induction to show N C S. We know 
0,1 e S because 0p = 0 (mod p) and lp = 1 (mod p). Assuming к E S, we show 
that к + 1 E S. By the freshman’s dream, we have

(k + l)p = lp + kp = 1 + kp (mod p).

By the inductive hypothesis, kp = к (mod p); therefore, к + 1 E S. By induction, 
we have a E S for all a E N.

The theorem also holds for negative integers because if a < 0, then a = r 
(mod p) for some 0 < r < p; thus ap = rp = r = a (mod p). □

Corollary 1.9.18. Ifp E Z+ is prime and a E Z with gcd(u,p) = 1, then ap~r = 1 
(mod p).

Proof. By the theorem, we have that ap = a (mod p). Thus, there exists n E Z 
such that np = a(up-1 — 1). Since gcd(a,p) = 1, we must have p|(up-1 — 1) or, 
equivalently, ap~1 = 1 (mod p). □

Corollary 1.9.19. If p E Z+ is prime, and x = 1 (mod p — 1), then ax = a 
(mod p) for all a E Z.

Proof. The proof is Exercise 1.61. □

Example 1.9.20. Consider again the problem from Example 1.9.12, where 
we compute 3781 (mod 11). Since 11 is prime, Corollary 1.9.18 implies that 
3710 = 1 (mod 11). Thus, 3781 = 37 • (3710)8 = 4 • I8 = 4 (mod 11).
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1.9.6 *Application:  Primality Testing
In cryptography, it is often important to determine whether a given number n is 
prime and, if not, then to factor it into a product of primes. One obvious way 
to do both of these tasks is to attempt to factor n by each of the primes of size 
less than or equal to y/n. If none of these primes is a factor, then n is also prime. 
This algorithm is prohibitively time consuming when n is large, as are the most 
sophisticated factoring algorithms currently available.

The strength of the widely used Rivest-Shamir-Adleman public-key encryption 
method is based on the presumption that it is very time consuming to factor a 
product of two large primes. For example, if the product is a few hundred digits 
long, then the fastest factoring methods will take years to factor n with today’s 
fastest supercomputers.

But there are much faster tests that merely determine whether a given integer 
n is prime, rather than factoring it. And tests that determine whether a given 
number is likely (but not guaranteed) to be prime are faster still. One probabilistic 
test for primality is to use Corollary 1.9.18, which shows that un-1 = 1 (mod n) 
holds whenever n is prime and a < n. If this equivalence fails for even a single value 
of u, then n is composite and the test is concluded. If equivalence holds for several 
values of a, we start to gain confidence that n is likely to be prime. Of course, this 
approach does not prove that n is prime. So even though many people call this 
a test of primality, it’s really a test of whether a given number is composite, and 
repeated failure to show that a number is composite suggests that it is likely prime.

There is a class of composite numbers, called Carmichael numbers, that satisfy 
an-1 = 1 (mod ri) for all a; the smallest of these is n = 561 = 3-11-17. However, 
these numbers are very rare. For example, there are only 8,220,777 Carmichael 
numbers between 1 and IO20, but there are roughly 2.17 x 1018 prime numbers 
in the same range. Thus, even if we don’t explicitly account for the Carmichael 
numbers, the chances of accidentally getting a Carmichael number are extremely 
small when testing random integers for primality. Note that there are even better 
probable primality tests with no Carmichael equivalent.

1.9.7 *Application:  RSA Cryptography
The Rivest-Shamir-Adleman (RSA) cryptosystem is widely used in network seen- 
rity. It works by choosing a pair of distinct, large primes p and g, setting n = pg, 
and finding two positive integers e and d so that med = m (mod n) for every m e Z 
(as described below). The numbers n and e are made public, but d is kept private. 
Assuming a message is expressed as an integer m, anyone can encrypt the message 
by computing the ciphertext c = me (mod n), but only the person holding the 
secret key d can decrypt the message by computing cd = (me)d = m (mod n).

Given n = pq, the number e can be any integer that is relatively prime to 
I = (p — l)(g — 1). The private key d is chosen to satisfy de = 1 (mod £) (see 
Section 1.9.4). In the theorem below, we show that for any x = 1 (mod £) we have 
mx = m (mod ri) for all m E Z. This yields cd = (me)d = med = m (mod ri). 
Thus the original message is recovered.

The system relies upon the fact that it is easy to compute me (mod n) and 
cd (mod n) using fast modular exponentiation, but it is numerically prohibitive to 
compute m when all you know is c, e, and n. In particular, for large n there is no 
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known feasible way to factor it into the two primes n = pq, and therefore there is 
no known way to compute £.

The next theorem is the key to decoding RS A. It is an easy corollary of Fermat’s 
little theorem (or, rather, of Corollary 1.9.19).

Theorem 1.9.21. If p,q e Z+ are distinct primes and x e Z is such that x = 1 
(mod (p — l)(g — 1)), then for any mtlwe have mx = m (mod pq).

Proof. Since x = 1 (mod (p — 1)(q — 1)), we have x = 1 (mod p — 1) and x = 1 
(mod q — 1). By Corollary 1.9.19 we have mx = m (mod p), which implies that 
p\(mx — m). Similarly, we have q\(mx — m), and thus, since gcd(p,q) = 1, we must 
have pq\(mx — m). □

Example 1.9.22. Let p = 17 and q = 13, which gives n = 221 and I = 
192 = 26 • 3. We choose e = 7 and verify that gcd(7,192) = 1. The extended 
Euclidean algorithm gives 1 = (55)7 + (—2)192, which implies d = 55.

If the message is m = 191, then using fast modular exponentiation we find 
c = me = 1917 (mod 221). To do this we compute

1912 = 16 (mod 221) and 1914 = 162 = 35 (mod 221),

which implies с = 1917 = 1914+2+1 = 35 • 16 • 191 = 217 (mod 221).
To decrypt the message we compute cd = med = m (mod 221) via fast 

modular exponentiation, again, which gives

2172 = 16 (mod 221),
2174 = 162 = 35 (mod 221),
2178 = 352 = 120 (mod 221),

21716 = 1202 = 35 (mod 221),
21732 = 352 = 120 (mod 221).

Thus 21755 ее 21732+16+4+2+1 ее 191 (mod 221).

1.10 Divide and Conquer
An algorithm is recursive when it divides a larger problem into one or more sub­
problems and then reapplies itself on the subproblems, dividing them further, and 
so on, until the individual pieces are reduced to some simple base cases. Recursive 
algorithms are sometimes called divide-and-conquer algorithms because of the way 
they continually divide larger problems into smaller, more conquerable problems.

In this section we examine a few recursive algorithms and then present the 
master theorem, which gives a general rule for computing big-О bounds on divide- 
and-conquer algorithms. We prove the master theorem in the next section, after 
giving a few more examples of its use. The master theorem does not tell us anything
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about the leading-order behavior of these algorithms beyond giving a big-0 bound. 
For the leading-order behavior more in-depth analysis is necessary.

1.10.1 Examples of Recursive Algorithms
Recursive Merge

Recall the merge algorithm (Algorithm 1.3) in Section 1.2.2. We can use recursion 
to give a different algorithm for merging together two ordered lists, as follows: Take 
the first entry of each list, make a comparison, take the smaller of the two entries off 
its list, and then reapply the merge function to the two lists again; see Algorithm 1.7, 
below. The temporal complexity T(n) of this algorithm satisfies the equation

T(n) = T(n - 1) + c, (1.43)

where c is a constant representing the temporal complexity of one recursion step 
and n is the sum of the lengths of the two lists. It is easy to see that (1.43) has 
temporal complexity of O(n) (see Exercise 1.66) since we have

T(ri) = T(n - 1) + c = T(n - 2) + 2c = • • • = T(0) + nc.

The spatial complexity is a little more difficult to compute, because it depends on 
whether the algorithm makes a copy of the data each time it is called. If the data 
are duplicated each time, then the spatial complexity S(n) satisfies

S(n) = 5(n-l) + O(n). (1.44)

Here the O(n) occurs because we need to store the initial two lists and the output 
list, all of which are O(n). This shows that the total spatial complexity of this 
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def merge(K, L):
"""Merge two sorted lists К and L into a new sorted list.

# Base case: a list is empty 
if К == [] or L == [] : 

return К + L

# Recursive cases
elif K[0] <= L [0] :

return [KEO]] + merge(K[1:J , L) 
else:

return [L [0] ] + merge (K, L[l:] )

Algorithm 1.7. Recursive routine for merging two sorted lists of numbers together 
into a single sorted list.

algorithm is O(k) = O(n2). There are ways to do this more efficiently, for 
example, by passing only some pointers to a location in the original lists—this can 
bring the spatial complexity back down to O(n).

Recursive Addition

Addition can also be written as a recursive algorithm that cuts off the first two digits 
(in the ones place), adds them together, and then appends the result to the sum of 
the truncated addends, carrying if necessary; see Algorithm 1.8. If the larger of the 
two addends has no more than n digits, then the temporal complexity T(n) of this 
recursive addition algorithm satisfies (1.43). As a result, the temporal complexity 
is also O(n). It is straightforward to see that the spatial complexity S(n) satisfies 
(1.44), and thus S(n) e O(n2), but, again, this can be changed to O(n) by using 
pointers instead of duplicating the data at each step.

Binary Search

A linear search algorithm is one that starts at the beginning of the list and checks 
each entry in succession until the desired element is found or until the list is ex­
hausted. It is usually assumed that the input list is unsorted, and thus one has no 
choice but to search sequentially for the entry.

If a list is length n, then, on average, half the list must be examined in order 
to find the match and so the average run time grows linearly in n. The worst-case 
scenario is that the desired entry is either the last entry or nowhere present in the 
list. In either case, every entry is checked and thus the algorithm is O(n), both 
spatially and temporally.

Linear search is a relatively slow method for searching a list. If the input list is 
sorted, there is a much faster way to search through it, called binary search, which 
works as follows. First check whether the target value is greater than, equal to, or 
less than the middle entry in the list. If equal, terminate the search and return the
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def add(a, b, carry=0):
"""Add two numbers together recursively, where 
each input is a list of single-digit integers.

# Recursive case 1: both lists are nonempty 
if a != [] and b != [] :

# Add the rightmost digits and recurse on the rest 
temp = a[-l] + b[-l] + carry
return add(a[:-l], b[:-l], temp//10) + [temp7010]

# Recursive case 2: one list empty but must carry 
elif carry:

return add(a+b, [carry], 0)

# Base case: one list is empty and carry is 0 
else: 

return a + b

Algorithm 1.8. Recursive routine for adding two lists of digits together.

location. If less, then do a binary search on the first half of the list. If larger, then 
do a binary search on the second half. Repeat, halving the list at each step, until the 
match is found or until the list is exhausted. This is implemented in Algorithm 1.9.

This algorithm has temporal complexity O(logn) because it needs at most к 
iterations, where 2fc-1 < n < 2fe. To leading order, the spatial complexity at the 
first iteration is ~ n because the initial list must be stored, plus a few constant­
length variables (left, right, and midpoint). At each subsequent iteration the 
same list is passed to the algorithm, and, at least in Python, this does not require 
more memory, so the spatial complexity satisfies S(n) ~ n + c, where the 
number к of iterations is less than log2(n), and c is a constant (corresponding to 
the constant number of constant-length variables). Hence S(n) ~ n + clog2(n) ~ n.

Remark 1.10.1. This particular implementation of the binary search algorithm 
reuses the same list at each iteration, which makes it much more efficient than it 
would be if it passed a new list (or sublist) to each subsequent iteration (as is done 
in Algorithms 1.7 and 1.8). If, instead, it passed new sublists at each iteration 
(for example, my_list [left:midpoint-1] ), then a new copy of the sublist would be 
stored at each step and the spatial complexity would instead satisfy

к

S(n) ~ n + S = n + 2-Jn = n + n(l — 2-fe) ~ 2n.
J=i

1.10.2 Master Theorem
The master theorem gives general upper bounds on the complexity of a large class of 
recursive algorithms. This theorem applies to many of the most important classical
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def binary_search(mylist, target, left=0, right=None): 
и и и

Search a sorted list 'mylist1 for 'target'.
Return the index if a match and -1 if no match

# Set initial variables
if right is None:

right = len(mylist) - 1 
midpoint = (left + right) // 2

# Failed search of entire list 
if left > right: 

return -1

# If found the target in the list 
if target == mylist[midpoint]:

return midpoint

# Search the left half of the list 
elif target < mylist[midpoint]:

return binary.search(mylist, target, left, midpoint-1)

# Search the right half of the list 
else:

return binary.search(mylist, target, midpoint+1, right)

Algorithm 1.9. An implementation of the binary search algorithm. This is an 
example of a recursive algorithm because, after breaking the problem into two halves, 
the algorithm calls itself again on one of the halves.

algorithms in computer science. We discuss the main ideas and present several 
examples in this section. We prove the master theorem in Section 1.11.

Theorem 1.10.2 (Master Theorem). Consider a function T : Z+ —> [0, oo) 
satisfying the recursion rule 

T(n) <
+ f(ri)

Ti
if n > 1, 
if n = 1,

(1-45)

where a > 0 and T\ > 0 are real constants, b > 2 is an integer constant, and f(ri) 
is nonnegative, with f € O(nd) for some d > 0.

(i) Ifbd > a, then T(n) € O(nd).

(ii) Ifbd = a, then T(n) € O(ndlogn).

(iii) Ifbd < a, then T(n) € O(nlogi>a).
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Example 1.10.3.

(i) Let T(n) < 9Т(Г§1) + n. We have a = 9, b = 3, logba = log3 9 = 2, and 
d = 1. Since bd = 3 < 9 = a, it follows that T(n) E O(nlogb°) = O(n2).

(ii) Let T(n) < T(f^1) + 1. We have a = 1, b = 2, and d = 0. Since 
bd = 1 = a, it follows that T(n) 6 <9(n°logn) = O(logn).

(iii) Let T(n) < 3T(|’^1) + nlogn. We have a = 3 and b = 4. Note that 
nlogn E O(n1+e) for any s > 0. Thus, the master theorem applies with 
d = 1 + e. Since bd = 41+e > 3, it follows that T(n) E O(n1+e).

Remark 1.10.4. The master theorem does not give us the sharpest possible bound 
for Example 1.10.3(iii). Exercise 1.68 shows that T(n) E O(nlogn).

Unexample 1.10.5. In the case of recursive addition (Algorithm 1.8), if we 
let T(n) be the number of operations required by the algorithm for two lists of 
length n, then T(n) = T(n — 1) + c for some constant c. The master theorem 
does not apply because n — 1 / |’n/6-| for any integer b > 2. However, Exercise 
1.66 shows, without using the master theorem, that T(n) E O(n).

Example 1.10.6. The binary search of Algorithm 1.9 checks to see if the 
middle of the list is the number it is looking for, and if not, it calls itself again 
on one half of the list. The number T(n) of operations required satisfies the 
relation

T(n) <Т(Гп/2]) + с,

where c is a constant. The master theorem applies with a = 1, b = 2, and 
d = 0. Since 2d = 1 = a, the master theorem implies that T(n) E O(logn).

1.10.3 Algorithms
The master theorem is useful for understanding the asymptotics of many important 
algorithms. In this subsection we demonstrate this on a few examples.

Multiplication

One way to multiply recursively is to separate each number into right and left halves 
and multiply each half separately. Let x,y denote two numbers in base 10, each 
with n = 2m digits. Thus, x = + xr and у = ?/л10п/2 + yn, where the
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def mult(a, b):
"""Recursively multiply two numbers 'a' and 'b' 

together, where each number is given as a list 
of single-digit integers.

m = len(a); n = len(b)

# Base case 1: one of the lists is empty 
if a = [] or b = [] :

return []

# Base case 2: single digit multiplication 
elif m == 1 and n == 1:

product = a[0] * b[0]
return [product // 10, product % 10]

# Recursive case
else:

aRbL=mult(a[m//2:],b[:n//2])+[0]*(n  - n//2)
aLbR=mult(a[:m//2],b[n//2:])+[0]*(m  - m//2)
aLbL=mult(a[:m//2],b[:n//2])+[0]* (n+m-n//2-m//2) 
aRbR=mult(a[m//2:],b[n//2:])
return add(aRbL, add(aLbR, add(aLbL, aRbR)))

Algorithm 1.10. A recursive routine for multiplying two long integers together 
when represented as lists.

subscripts L and R denote the left and right halves, respectively. This gives

xy = (xL10n/2 + xR)(yL10n/2 + yR)

= XbyiAW1 + (xRyL + хлуд)10п/2 + xRyR. (1-46)

So to multiply x and y, the function calls itself four times on new numbers with 
§ digits each (see Algorithm 1.10 for details). The temporal complexity of the 
addition step is in O(n), so the complexity of this recursion satisfies the relation

T(n)<4T([n/2]) + /(n),

where f(n) E O(n). The master theorem applies with a = 4, b = 2, and d = 1, and 
since 2d = 2 < 4 = a, we have T(n) E O(nlog2 4) = O(n2).

Faster Multiplication

We can break up (1.46) differently, as follows:

xy = хьутЛМ1 + [(жь + xR}(yL + yR) - хьуь - ядуд]10п/2 + xRyR. (1.47)
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This expression consists of three long multiplications and six long additions, in­
stead of four long multiplications and three long additions. Since addition is O(n) 
and multiplication is O(n2), this is more efficient when n is large than our earlier 
multiplication algorithms. In fact, we have the recursive relationship

Т(п)<ЗТ(Гп/2]) + /(п),

where f(n) E O(ri). The master theorem applies with a = 3, b = 2, and d = 1. 
Since 2d = 2 < 3, we have T(n) E O(nlog2 3) « O(n1,585). For large values of n, this 
multiplication algorithm is much faster than the algorithms discussed earlier.

Remark 1.10.7. Note that in both (1.46) and (1.47) we assumed n = 2m. This 
made the algorithms easier to implement. They can be adapted to the more general 
case, but it’s rather messy and not very enlightening to analyze the algorithms. 
Instead, we can pad the lists with zeros until their lengths are powers of 2.

Merge Sort

Section 1.2.2 shows that the naive sorting algorithm has temporal complexity O(n2). 
A much better sorting algorithm is the merge sort. The algorithm splits the list in 
half, calls itself on each half, and then merges the two resulting lists. The details are 
given in Algorithm 1.11. Exercise 1.66 shows that the merge step has complexity 
O(n), so the complexity of this algorithm satisfies the relation 

T(n) = 2T(Pn/2B + cn, (1-48)

where c is a constant. The master theorem applies with a = 2, b = 2, and d = 1, 
and since bd = 2 = u, we have T(n) E O(nlogn).

2
3
4
5
6
7
8
9

10
11
12
13
14

def mergesort(L):
"""Recursively sort a list 1L' by merging sorted 

sublists.
и и и

n = len(L)

# Recursive case: split L into halves 
if n > 1:

return merge(mergesort(L[:n//2]), mergesort(L[n//2:]))

# Base case: L has length 1 or 0 
else: 

return L

Algorithm 1.11. Recursive routine for merge sort. This algorithm can use ei­
ther of the previously defined merge routines, that is, either Algorithm 1.3 or Algo­
rithm 1.7.
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Matrix Multiplication

Matrix multiplication can be defined recursively by subdividing each matrix into 
blocks. Let A and В be n x n matrices where n = 2m. Write A and В in block
form as

Ац Ai2
A2i A

Bn B12
B21 B22

where each Aij and Bij is a matrix of size | x We have

AB =
A21

Л12 Bn B12

Л22 B21 B22
АцВц + Ai2B2i ЛцВ12 + Л12В22
Л21В11 + A22B21 A21B12 + A22B22

Thus, the product of two n x n matrices is broken up into eight multiplications of 
x matrices and added together as above. Since addition of n x n matrices is 

O(n2), the number T(ri) of operations used by this algorithm satisfies the relation

T(n) = 8Т(Гп/2^) + сп2,

where c is a constant. The master theorem applies with a = 8, b = 2, and d = 2. 
Since 2d = 4 < 8 = a, we have that T(ri) e O(nlog28) = O(n3).

Remark 1.10.8. This recursive matrix multiplication can be adapted to matrices 
whose dimensions are not powers of 2 by padding the rows and columns A and В 
with zeros.

Faster Matrix Multiplication

Just as there is a faster multiplication algorithm (1.47) there is also a faster matrix 
multiplication algorithm due to Strassen, based on the following observation (see 
Exercise 1.63). As before, we write the n x n matrices A and B, where n = 2m, in 
block form as

A = -4ц A12 and В = Bn B12
-421 A22_ B21 B22

where each A^ and B2J is a matrix of size | x The key observation is that AB 
can be written as

An A12 Вц B12
A21 A22 B21 B22

P5 + P4 — P2 + Pq B1+B2

Рз + P4 Pi + P5 — B3 — P7 (1.49)

where

Pl = Ац(В12 — B22),

P2 = (Ац + Ai2)B22,
B3 = (A21 + А22)Вц,
P4 = A22(B2i — Вц),

B5 = (Ац + 422)(Вц + B22), 

P6 = (A12 — A22XB21 + B22), 

P7 = (An — А21)(Вц + B12).

(1.50)
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This allows us to compute AB by doing only seven matrix multiplications of half 
size and several matrix additions. Thus, the recursive equation is given by

Т(п) = 7Т(Гп/21) + /(п),

where f(n) E O(n2). The master theorem applies with a = 7, b = 2, and d = 2. 
Since bd = 4 < 7 = a, we have T(n) E O(nlog2 7) « O(n2'8074).

12 The traditional plural of the word lemma is lemmata. People will think you are smarter if you 
purse your lips and raise your eyebrows when you say it.

Nota Bene 1.10.9. It is important to remember that this is an asymptotic 
result and a smaller big-0 rate doesn’t necessarily mean the algorithm is 
always faster. Indeed, Strassen’s algorithm requires n to be moderately large 
(roughly n > 3000) before it overtakes regular matrix multiplication in run­
time performance.

1.11 Proof of the Master Theorem
In this section, we prove the master theorem (Theorem 1.10.2). We first prove it 
when n is an exact power of 6, and then we prove it generally.

Recall that the master theorem states that a function T : Z+ —> [0, oo) satisfying

T(n) = аТ(Гп/Ь)) + /(п) 
Ti

if n > 1, 
if n = 1 (1-51)

has its asymptotic bounds determined by the relationship between bd and a as

'(9(nd)
T(ri) E O(ndlogn)

O(nlogba)

if bd > a, 
if bd = a, 
if bd < a.

1.11.1 Proof for n =
In the special case that n = b™, we have the following lemmata.12

Lemma 1.11.1. Assume that (1.51) holds for some nonnegative integer b > 2, 
constants a> 0 and T± > 0, and a nonnegative function f, such that for all n = bm 
with m E N we have

аГ(рт-!) + 

T1
Т(ЬШ) =

if m > 0, 
ifm = 0.

In this case, for any exact power n = bm with m E N we have

m—1
T(brn) = am7\ + 52 akf(bm~k). (1.52)
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Proof. Expanding the recursion we get

T(bm) = aTtb™-1) + f(bm)
= a2T(bm~2) + a/(bm"1) + /(6m)
= a3T(bm~3) + a2f(bm~2) + aftb™-1) + f(bm) 

= amT(b°) + 52 akf(bm~k). □
fc=0

Remark 1.11.2. Since m = logb n = loga n • logb a, we have

am = (a^ganyogba =nlogba^

li n = brn for some m E N, then (1.52) becomes

(logfe n)-l

T(n) = nlo^“T1+ 52 «fc/(S)- (L53)
fc=0

The next lemma gives an asymptotic bound on the sum in (1.53).

Lemma 1.11.3. Let a > 0 be a real constant, b > 2 an integer, and f : Z+ —> 
[0, oo). Assume that f(ri) E O(nd) for some d > 0 and that g is a function defined 
on exact powers of b by

(logb n)-l
5(n)= 52 afc/(J) (1-54)

fc=0

for any n = brn with m E N.

(i) Ifbd>a, then g(n) E O(nd).

(ii) Ifbd = a, then g(n) E O(ndlogn).

(iii) Ifbd<a, then g(n) E O(nlogba).

Proof. If f(n) < cnd for n E N sufficiently large, then

(logbn) —1 
ff(n)<cnd 52 (^) .

fc=0

This gives the following three cases:

(i) If bd > a, then

(logbn)-l k OO к 1

g(n)<cnd 52 (p) <cn</I2(p) = cnd • e O(nd).
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(ii) If bd = u, then since m = logfe n, we have

<j(n) < cndlogbn e O(nd \ogbn) = O(ndlogn).

(iii) If bd < a, then we have

(a)logbn_l logbn_ d logba_ d
5(П) < 1 = C a = C a _/ € “). □

bd 1 bd 1 bd 1
When n is an exact power of 6, the master theorem follows from the two lemmata.

In particular, under the hypotheses of the master theorem, since

T(n) = nlogb a7\ + g(ri),

we have

(i) T(ri) e O(nlogv) + O(nd) = O(nd), when bd > a\

(ii) T(ri) e O(nlogv) + O(ndlogbn) = O(ndlogbn), when bd = a;

(iii) T(n) e O(nlogba) + O(nlogba) = O(nlogba), when bd < a.

1.11.2 Proof for General n G Z+
If T satisfies the recursion relation (1.45) (or equivalently (1.51)) for all n E , 
then the fractional values in the argument of T are rounded up with the ceiling 
operator, leading to a sequence of recursion arguments

This is a nonincreasing sequence that starts with n and goes down to 1 (and then 
is always 1 thereafter, but that part is not important). Define the sequence as 
n0,..., nm, that is,

n

[VI
= if j = 0, 

if j > 0.
(1.55)

Let m be the smallest integer such that nm = 1. We call m the recursion depth 
of T(n). In the special case that n = bm, the previous subsection shows that the 
recursion depth is m = logb n. When n is not an exact power of 6, the length of the 
sequence is not quite as simple to find, but we can still bound its size.

Proposition 1.11.4. IfT: Z+ —> [0, oo) satisfies the recursion relation (1.45), with 
integer b > 2, then the depth m of the recursion, as given by the sequence (n/c)JIL0 
defined in (1.55), is bounded above by [logbn^. In other words, m < flogbn]. 
Moreover, for any к >0, we have nk < nb~k + 1.
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Proof. Begin by bounding each term in the sequence generated by (1.55). Since 
the remainder of n divided by an integer b is at most b — 1, we have

n0 = n < n + 1,
n 
b

6—1 n 6—1 
~b~ = P + ~T

n
&

[Tlk_11 1 /1 / 1 fn 6—1\ 6—1\ 6—1\ 6—1
Пк= I “Г I - \"b[b + ~r) + ~r)'" + ~r) + ~r

n 6—1 / 1 V n 6—1 / 1 V n
bk 6 \ 6 ) < bk + 6 \ 6 J bk

j=0 4 7 j=0 4 7

Suppose, by way of contradiction, that m > piogbn^. Thus, m — 1 > flogfen] > 
logbn, which implies n < 6m-1. Since

n 
Tirn—i < ---- г T 1 < 2,rri 1 6m—1 —

we have nm_i < 1, which contradicts the minimality of m. Thus m < piogfe n]. □

Remark 1.11.5. If 6 is not an integer, the previous proof does not work, because 
\n/b~\ — n/6 is not necessarily bounded by

We now complete the proof of the master theorem. The previous two lemmata 
can be adapted to the case where n is not an exact power of 6. As in the case of 
Lemma 1.11.1, expanding the recursion step by step gives

T(n) = T(n0)
= aT(m) +/(n0)
= a2T(n2) + a/(ni) + /(n0)

= amT(nm) + am H-------1- a/(m) + /(n0)
= amT1+g(n),

where m < piog6n] is the recursion depth and

5(«) = 52 afc/(nfc)'
Note that for each к E {0,..., m} we have bk < bm < 6logb n+1 = 6n, so, by
Proposition 1.11.4, we have
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Thus, for each к e {0,...,m}, we have rik < (1 + 6)^. This implies there exists a 
constant c such that f(nk) < • This gives

fc=0 fc=0

So we have the following cases:

(i) If d > logfe a, or equivalently a < bd, then

(ii) If d = logfe a, or equivalently a = bd, then

p(n) < cndm < cndflogbn"| < cnd(logbn + 1) E O(ndlogbn).

(iii) If d < log6 a, or equivalently a > bd, then

g(n) < cnd

In Exercise 1.70, we show that < 1, which implies that

g(n) < c
am -nd

— 1bd 1

Since m < flogfe n] = log6 n + e = loga n • logfe a + e, where 0 < e < 1, and 
u > > 1, we have

am < ariogb n1 = aloga n‘logba+£ = nlog*a • a£ e O(nlogb a). (1.56)

Thus, g(n) e O(nlogbtt).

This completes the proof.

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
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this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

1.1. Prove or disprove each of the following:
(i) 3n — 1 E O(n).

(ii) 3n — 1 E o(n).
(iii) 3n — 1 E O(n2).
(iv) 1 e O(n).

1.2. A Prove the following:
(i) If /i(n), h(n) E O(g(n)) and Л(^) € О(Д(п)), then the sum satisfies 

/l(n) + /2(n) € O(fr(n)).
(ii) If h(n) E o(g(n)) and Л(п) € О(Д(п)), then the sum satisfies 

/i(n) + /2(n) € 0(5(71)).
(iii) For any к E N and any coefficients a^-i,..., uq € R, the function 

f(n) = aknk + + • • • + a±n + a0 is in O(nk).
1-3. A Prove Proposition 1.1.13.
1.4. For m E N, prove that f(n) = km E O(nm+1).
1.5. Show that for every p > 0 and every a > 1 we have

(i) O(logn) C o(np), but logn 0(1);
(ii) nlogn e o(n1+p), but nlogn O(n);

(iii) O(np) C o(un).
Hint: Use 1’Hdpital’s rule.

1.6. Consider the standard elementary school algorithm for subtraction of multi­
digit integers.

(i) Code up the algorithm. Your code should accept two lists of single-digit 
integers and return a list of single-digit integers. Explain the algorithm 
carefully in the comments of your code.

(ii) Determine the asymptotic temporal and spatial complexity (big-O) of 
this algorithm and explain why your answer is correct.

1.7.  The Fibonacci sequence {Fn}^=0 is defined by the rule Fn+i = Fn + Fn~i, 
for n E Z+, where Fq = 0 and F± = 1.

*

(i) Assuming that the sequence xn = Fn+i/Fn converges to some point in 
R, prove that it converges to the golden ratio

Ф=1±^.' (1.57)

Prove that (1.57) satisfies ф2 = </>+1, and use this to prove (inductively) 
that фРп + Fn_i = фп. Use this fact to prove that Fn E О(фп).
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(ii)t That Fn/Fn_i converges to ф is not enough to show that Fn e О(фп), 
as you will now show. Let a > 0, and let Gn = ane1+^ I-™. Prove 
that limn^oo Gn/Gn_i = a but that Gn £ O(an).

1.8. Prove the following:

(i) For any к e N and any coefficients a/c, a^-i,..., uq € R, the function 
f(n) = aknk + + • • • + a±n + uq satisfies f ~ акПк.

(ii) If g e o(/), then f + g~f.

1.9. An algorithm with leading-order temporal complexity ~ 100n2 will not nec- 
essarily take longer to run than an algorithm with leading-order temporal 
complexity ~ 1. Give an example of two functions f ~ 100n2 and g ~ 1 such 
that f(n) < g(n) for all n < 105.

1.10. Prove that ~ is an equivalence relation, as mentioned in Remark 1.2.3.
1.11. Find the leading-order spatial and temporal complexity of Algorithm 1.1 and 

explain why your answer is correct.
1.12. Find the leading-order spatial and temporal complexity of the long subtrac­

tion algorithm in Exercise 1.6 and explain why your answer is correct.
1.13. Construct an algorithm for finding the index of the smallest element in a list 

L of length n, using only primitive operations, that is, assigning a value to a 
variable or to a given position in a list, looking up the value of a particular 
element at a given position in a list, comparing two values, incrementing a 
value, etc.

(i) Code up your algorithm.

(ii) Give the leading-order temporal and spatial complexity of this algorithm 
as a function of n.

1.14. Consider the following sorting algorithm, called selection sort. Given a list L 
of length n, first find the smallest element and swap it with the element L[0]. 
Then find the second smallest element of L and swap it with the element 
L[l], and so forth for the first n — 1 elements of the list.

(i) Explain why the algorithm needs only to run through n — 1 elements 
instead of all n.

(ii) Code up this sorting algorithm without using any built-in sorting or 
indexing functions. You may use the minimum function you wrote in 
the previous problem.

(iii) Give the leading-order temporal and spatial complexity for this algo­
rithm as a function of n.

1.15.  Given n points in the plane, consider the problem of finding the pair of 
points that is closest together. One algorithm for doing this is the brute 
force method: list all the pairs, compute their Euclidean distances, and take 
the smallest one.

*

(i) Explain how this brute force algorithm can be implemented without ever 
computing a square root.
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(ii) Code up this algorithm without using square roots. Your code should 
accept a list of points as ordered pairs (х^у^) of scalars and return the 
two points that are closest together.

(iii) Show that this algorithm has temporal complexity in O(n2), where the 
primitive operations include the basic arithmetic operations +, —, x, -F, 
assigning a value to a variable or to a given position in a list, looking up 
the value of a particular element at a given position in a list, comparing 
two values, and incrementing a value.

1.16. Prove that the difference operator is linear; that is, if /, g : N —> F and 
a, b e F, then

A [af + bg](k) = aA[/](fe) + 6Д [#](£).

1.17. Prove the following:
fi') v” _ 1_ = 1____J-v1/ г(г+1) n+1 ’

(H) iXr = 2^1-

Hint: Consider using the fundamental theorem.
1.18. Prove that

6-1 / 1 \
Y lo§ (1 + ь ) = los(fe) “ 1о§(а) 
k—a '

for b > a > 1.
1.19. Derive the formula (1.11).
1.20. A For any /3 e (—1,1) show that = (1_^)2 by differentiating the

geometric series w^b respect to /3 and then taking the
limit as n сю.

1.21. Show that
f>(n-fc) = Y/(4 

fc=0 £=0

1.22. Find closed-form expressions (no summation) as a function of n for each of 
the following:

(i) П155^-5)2.

(ii) 1Хо(£ + 2)3-

R Efc=5E&(*-4).

(iv) е;!зН^з(*- з).

1.23. Compute the following double sum in two ways: first, as written, and second, 
by changing the order of summation:

n n

YY^-
k—0j—k
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1.24. Give another proof of the relation in Exercise 1.20 as follows:

(i) Show that tfr is equal to the double sum ft-

(ii) Change the order of summation.

(iii) Compute the inner sum as a geometric series.

(iv) Use the previous result to give a closed-form expression for

(v) Compute the limit as n ч x.

1.25. Show that the double sum of (1.18) satisfies

n n—j n a

52 52 b’
j—0 k—Q a—0 b—Q

Give a geometric description or picture (in the style of Figures 1.1, 1.2, and
1.3) of how this summation proceeds.

1.26. For each к = 1,2,..., 11 do the following:

(i) Define random matrices A and В of size 2fc x 2fc and a column vector x 
of length 2fc.

(ii) Time the computation of (4B)x and the computation of A(Bx).

For each A;, find the ratio of the time it takes to compute (AB)x versus A(Bx). 
When к increases by one, does the ratio of the times of the two computations 
change? By how much? Explain this in terms of what we have discussed 
about the complexity of matrix-matrix and matrix-vector multiplication.

1.27. Verify algebraically that (In + uvT)x = x + u(vTx) for any u, v, x e Rn. For 
each choice of n = 1, 2,..., 11 do the following:

(i) Create the 2n x 2n identity matrix I and random vectors u, v,x of 
dimension 2n.

(ii) Time the computation (I + uvT)x versus x + u(vTx).

(iii) Compare the computation times, describe how the ratio of the two grows 
as n gets larger, and explain this in terms of the asymptotic temporal 
complexity of the two computations.

1.28. Write out the details to prove the equality in (1.19).
1.29. Carefully compute the leading-order temporal and spatial complexity of the 

back-substitution part of Algorithm 1.6 (Lines 21-29).
1.30.  Consider the following Python code, which calculates*

n— 1 m— 1

s = 52£(*+/co),
i—0 j—Q
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where f(j) is a function that depends only on j:

S = 0
for i in range(n): 

for j in range(m):
S += i + f(j)

(i) Assuming that computing f (j) requires F FLOPs for every j, calculate 
the number of FLOPs that this code uses, as a function of n, m, and F.

(ii) Move any computations possible out of the inner loop and find the num­
ber of FLOPs used after this change is made.

(iii) Going back to the original code, change the order of the loops, so that 
the i-loop is the inner one, and move any computations possible out of 
the inner loop. Find the number of FLOPs required by the modified 
code.

(iv) Eliminate the inner i-loop entirely by finding a closed-form expression 
for the sum it computes. Find the number of FLOPs required now.

(v) The closed-form expression of the last step does not depend on j so it 
can be moved outside the j-loop. Make this change to the code and 
move any additional calculations outside the j-loop. Your new code 
should correspond to computing the sum _|_ (n _ ]_) /(j).
Find the number of FLOPs used in this version of your code.

(vi) Show that you can save two more FLOPs by factoring (n — 1) out of the 
previous expression. Adjust your code correspondingly.

1.31.  Use summation by parts to compute the sum*

fc=0 

in closed form.
1.32.  Using equation (1.22), derive equation (1.11).*
1.33.------------------------------------------------------------  Prove that 

n~1 nfc+i к = n----

*

к + 1

1.34.  Prove the inclusion-exclusion formula for three sets; that is, prove Proposition 
1.6.13.

*

1.35.  Suppose that (ufc)£T0 is a sequence of complex numbers with uniformly 
bounded partial sums; that is, there exists M > 0 such that

*

n 
Yafc 

fc=0 
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for every n E Z+. Prove: If (bfc)/Y0 С I is a monotonically decreasing13 
sequence converging to zero, then the sum

13A sequence (bfc)j*L0 is monotonically decreasing if 6fc_|_i < for all к E N.

oo
2 ®kbk

k=0

converges. Moreover, | &kbkI < 2Mb±. Hint: Use summation by parts.
1.36.  Use the previous result to prove that the sequence*

converges for any complex number |z| = 1 with z / 1.

1.37. Prove that there are n\ permutations of a set with n elements. Note: An 
informal proof suffices.

1.38. (i) Prove Proposition 1.7.5. An informal proof suffices.

(ii) Prove Proposition 1.7.6. An informal proof suffices.
1.39. A group of friends, Alice, Bob, Carlos, Dan, Eve, and Fakhira, are going to 

a movie. In how many different ways can they be seated together in a single 
row of six seats if

(i) there are no restrictions on the seating assignment;

(ii) Alice and Bob must sit next to each other;

(iii) Alice, Bob, and Carlos must sit together;

(iv) the six seats must alternate between genders (Alice, Eve, and Fakhira 
are female, while Bob, Carlos, and Dan are male).

1.40. Show that there are 123,552 different ways to draw a two-pair hand in five- 
card poker; see Example 1.7.9 for details.

1.41. In a certain lottery, five distinct numbers (balls) are drawn randomly from 
the set {1,2,..., 59} and a “superball” is drawn from the set {1,2,..., 35}. 
You win the $100 prize when you match three regular balls and the superball. 
How many unique draws qualify for the $100 prize?

1.42. Prove that for any n E Z+ and any x,y E F, we have

52 ^кхк~ХУП~к =n(.x + y)n~1.

Use this to show that

Hint: Compute the derivative of the binomial formula.
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1.43. Prove that for any x, у E F and n E N with n > 2 and x / 0 we have

and use this to show that

1.44.  Prove that*

for integers r, n, and m with r < n + m. Hint: Look at the binomial 
expansions for (1 + x)m and (1 + x)n, and compare their product to the 
binomial expansion for (l + a;)m+n.

1.45.  Prove Theorem 1.7.19.*
1.46.  Prove that the Pochhammer symbols (see Definition 1.6.7) satisfy a form of 

the binomial theorem:
*

(x + yf = Q) Xn~kyk and (x + y)- = 52 Q) x—y~-

1.47. Given any integer a E Z and any nonzero b E Z, show that the set = 
{u — bx | x E Z} П N, in the proof of the division theorem (Theorem 1.8.6), is 
nonempty.

1.48. Let a = 323 and b = 204. Use the Euclidean algorithm (by hand) to find 
gcd(u, 6). Show all the intermediate steps.

1.49. Find x, у E Z such that 323# + 204?/ = 17.
1.50. Prove: If d = gcd(u, 6), then gcd(a/d, b/d) = 1.
1.51. Code up the extended Euclidean algorithm from scratch, without importing 

any additional libraries or methods. Your code should accept two integers a 
and b and return gcd(u, b) as well as x, y, satisfying ax + by = gcd(a, b).

1.52. Prove that gcd(n,n + 1) = 1 for all n E Z+. Conclude from this that if a 
prime p divides n then it does not divide n + 1.

1.53.  Using the previous exercise prove there are infinitely many prime numbers. 
Hint: If there are only finitely many primes, say pi,P2, • • • ,Pm, then set 
n = P1P2 • • • Pm and consider n + 1.

*

1.54. Prove Theorem 1.9.9.
1.55. Given an integer a = UfclOfe, prove that a is divisible by

(i) 3 if and only if the sum Ufc is divisible by 3;
(ii) 9 if and only if the sum is divisible by 9;

(iii) 11 if and only if the sum 22£=О(—l)fca/c is divisible by 11.
1.56. Prove: If a = b (mod c) and d|c, then a = b (mod d).
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1.57. Determine necessary and sufficient conditions on x and c so that

ax = bx (mod с) => a = b (mod c).

Prove your answer is correct.
1.58. By hand, find the remainder when dividing 34  by 12.34
1.59. Use the extended Euclidean algorithm to find

(i) the element a e Z72 such that 35a = 1 (mod 72);
(ii) the element b e Z72 such that 356 = 67 (mod 72).

1.60. Compute the following by hand:
(i) 14128 (mod 127).

(ii) 18  (mod 127).254
(iii) 25640 (mod 127).

1.61. Prove Corollary 1.9.19.

1.62. For each of the following recurrence relations, determine whether the master 
theorem applies. If it applies, use it to provide the big-0 bounds, and if not, 
explain why not.

(i) T(n) = 8T(r|])+n.
(ii) T(n) = 16T(r|])+n.

(iii) Т(п) = ЗТ(Г§])+п2.
(iv) Т(п)=4Т(Г§])+п2.
(v) T(n) = 5TO)+n2.

(vi) T(n) = T(n — 5) + y/n.
(vii) T(n)=T(F?l)+2".

(viii) T(n) = 2nT(^l) +nn.
1.63. Expand the terms to show that (1.49) is correct.
1.64. A sequence (жг)^0 is unimodal if it consists of an increasing sequence followed 

by a decreasing sequence; that is, there is some к e {0,..., n} such that 
Xi-i < Xi when 0 < i < к and x^ < Xi when к < i < n.

(i) Give an algorithm with temporal complexity O(logn) that finds the 
maximal element xm in a unimodal sequence.

(ii) Code up your algorithm and explain the details in the comments.
(iii) Prove the O(logn) bound on the temporal complexity.

1.65. Assume a > 0 and g is a nonnegative function. Prove that the recurrence

T(n) = aT(n — 1) + p(n), n e Z+,

with 7(0) = 7b > 0, has the solution

T(n) = anT0 + an~kg(k). (1.58)
fc=l
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1.66. Use (1.58) from the previous problem to show that the temporal complex­
ity of both recursive merge and recursive addition, Algorithms 1.8 and 1.7, 
respectively, is O(n).

1.67. Find an exact closed-form formula for T in each of the following recursions 
when n = 2m for m E Z+:

(i) T(n) = 8T(f) + n.
(ii) T(n) = 3T(^) + n.

(iii) T(n) = 3T(§) + n3.
1.68. Prove that the recurrence

T(n) = 3T n l°g

with T(l) = Ti > 0, satisfies T(n) E O(nlogn).
1.69. Assume that T(n) satisfies the recurrence (1.45) for n = for m E N. 

Generalize Theorem 1.10.2(ii) by proving the following theorem: If d = logfe a 
and f(n) E O(nd(logn)£), then T(n) E О(nd(logn)£+1). Hint: Show that 
T(n) E O(ndm£+1) and then use the fact that m = logbn.

1.70. Show that the sequence (1.55) satisfies < nk for each к E {0,1,2,..., m}. 
In particular, < nm = 1.

1.71. Prove that recursion depth m, given by the sequence (1.55), is bounded below 
by Ll°gt> n\ > that is, m > [log6 nJ.

Notes
Exercise 1.14 is from [CLRS01, Exercise 2.2-2]. Exercise 1.15 is discussed in [KT05, 
Section 5.4]; surprisingly, there is a closest pair algorithm developed by Shamos and 
Hoey that is O(nlogn). Exercise 1.64 is from [DL05, 1-3]. Our treatment of the 
master theorem is inspired by [BHS+78] and [CLRS01].

For a comparison of matrix multiplication algorithms at various dimensions, see 
[ВВ14]. For more details on solving linear systems, see [TB97, Section 20]. For more 
about loop interchange in optimizing compilers, as mentioned in Section 1.5.3, see 
[SS07, TdD14]. For more on the origins of the Euclidean algorithm, see [BBC+99, 
Hea49, vdW83].





Asymptotic Integrals

You know my methods, Watson.
—Sherlock Holmes

Big-0 and little-o notation convey important information about the limiting behav­
ior of a function or algorithm by bounding its growth relative to another function. 
The leading-order behavior provides more information about the limiting behavior 
of a function or algorithm growth in absolute terms. In this section, we expand on 
this theme by examining asymptotic behavior in richer detail.

One area of considerable interest is the asymptotic behavior of combinatorial 
functions and algorithms, that is, those having factorial terms. As a first step to 
analyzing these, we generalize the factorial function and extend it to the positive 
real numbers and beyond. Additionally, we expand on the asymptotic behavior of 
the factorial function and develop some tools for analyzing functions (and therefore 
algorithms) that are combinatorial in nature.

2.1 The Gamma Function and Stirling’s Approximation
The complexity of many algorithms is expressed most naturally in terms of binomial 
coefficients or other formulas involving factorials. For example, a binary search tree 
is an important data structure that lies at the heart of many important algorithms 
(see Section 3.3.1). One can show that the number of binary search trees with n 
nodes is ^-j- (2^); see Exercise 3.14. It is useful to compare the asymptotic growth of 
these combinatorial expressions to the growth of other expressions involving simpler 
functions, like exponentials.

In this section we study the asymptotic behavior of the factorial function, we 
define the gamma function, which is a continuous analogue and generalization of 
the factorial function, and we describe an important asymptotic formula called 
Stirling’s approximation for n\ or log(n!) when n is large. Stirling’s approximation 
is useful in many areas of mathematics, including probability theory and asymptotic 
analysis.

85
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2.1.1 Simple Approximation of the Factorial Function
It is easy to see that n\ = 1 • 2 • • • (n — 1) • n is bounded above by nn = n • n • • • n • n. 
For a lower bound, the nth term nn/n\ of the power series en = nk/k\ satisfies 
nn/n\ < en, which we can rewrite as nn/en < n!. Thus we have

77,n
-<n!<n". (2.1)
en

We can do better than this with a little more work. Since log (a;) is a strictly
increasing function on [l,oo), we can show (see Exercise 2.1) that

52iog(fc)< [ iog(z)«te < 52iog(fc),

from which we get

n рП
/ log((r) dx < Y21og(A;) < log(n) + / log(;r) dx

fc=i

and, thus, the following proposition.

Proposition 2.1.1. For any integer n E Z+ we have

nlog(n) — n + 1 < log(n!) < nlog(n) — n + log(n) + 1 (2.2)

and
nn n^1

< n! < r. (2.3)en—1 — — en~1 v 7

Proof. The proof is Exercise 2.1. □

This proposition can be reformulated as an asymptotic formula:

log(n!) — nlog(n) + n — 1 e O(log(n)). (2.4)

These expressions show up in many different places, including the calculation of 
entropy in statistical mechanics and the proof of the prime number theorem, which 
says that the number of primes less than n is ~ log^n^. Below we improve these 
approximations with the famous Stirling’s approximation.

Example 2.1.2. When n = 22,026, the approximation (2.2) for log(n!) gives 
198,235 < log(n!) < 198,245, which is correct to four digits of accuracy. This 
approximation is sufficiently close in some situations but inadequate in others. 
We get a more accurate estimate in Example 2.1.9.
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Example 2.1.3. Using (2.3) we can give upper and lower bounds for (2^)- 
We have

1 \ лп < (^n)- < f 4n
en2 J ~ (n!)2 — \ e /

This bound can be improved with Stirling’s approximation (2.6), as shown 
below in Example 2.1.10.

2.1.2 The Gamma Function
The gamma function is the continuous analogue and generalization of the factorial 
function. There are, of course, infinitely many continuous functions that match the 
factorial function at the positive integers, but the gamma function is natural in 
applications. Its graph is pictured in Figure 2.1 and it is defined as

I e^t^dt, 
о

(2.5)

which is well defined for all positive real numbers. This function can be extended to 
the complex numbers and to negative real numbers (except the nonpositive integers) 
using an important technique from complex analysis called analytic continuation, 
but the details of that extension are outside the scope of this book. The following 
proposition shows that Г(п + 1) = n\ for any nonnegative integer n, so it really is 
a generalization of the factorial function.

Figure 2.1. A plot ofV(x) (left) and log |Г(ж)| (right). Notice that the graphs have 
vertical asymptotes at zero and at the negative integers, where the gamma function 
is not defined.

Proposition 2.1.4. If x e (0, сю), then Г(ж + 1) = xV(x).

Proof. For any x > 0, integrate by parts to get

Г (ж + 1) = /* е~Чх dt = — е~Чх +x f dt = жГ(ж). □
Jo о Jo
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Corollary 2.1.5. If n G N, then Г(п + 1) = n\.

Proof, When n = 0 we have

r(l)= / e-t dt = 1 = 0!.

The desired equality Г(п + 1) = n! follows immediately by induction on n, using 
Proposition 2.1.4. □

Remark 2.1.6. The gamma function is special for many reasons, but one reason to 
think it is the right continuous version of the factorial function is the Bohr-Mollerup 
theorem, which guarantees that Г(ж) is the unique function defined for all x > 0 
that satisfies

(i) жГ(ж) = Г(ж + 1) for all x > 0;

(ii) Г(1) = 1;

(iii) ^-log(r(j:)) > 0 on x e (0, oo), that is, log(T(a;)) is twice differentiable and 
convex on the positive real numbers.

Proposition 2.1.7. Г (= д/тг.

Proof, The proof is Exercise 2.5. □

2.1.3 Stirling's Approximation
Stirling’s approximation gives a sharper estimate of the asymptotic growth of the 
factorial function than the simple bounds in (2.2).

Theorem 2.1.8 (Stirling’s Approximation). As x -y oo, we have

Г(я + 1) - xx+re~x (2.6)

Alternatively,

log(r(rr + 1)) ~ a;log(j:) — x + - log(27Er).

We give the proof of Stirling’s approximation for positive integers in Section 2.1.4 
and, more generally, for positive real numbers in Section 2.2.5.

Example 2.1.9. When n = 22,026, Stirling’s approximation for log(n!) is 
198,239.45313 (evaluated to 11 digits). The correct value is 198,239.45314 
(also evaluated to 11 digits). Compare this approximation to the one given in 
Example 2.1.2, which was accurate only to four digits.
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Example 2.1.10. Using (2.6) we can improve the bound on (2n) given in 
Example 2.1.3, at least asymptotically:

2n\ у/2тг2п(2п)2п / e” \2 _ 471
nJ e2n \у/2тт(пп) J у/тгп'

Remark 2.1.11. A more careful analysis gives an improved version of Stirling’s 
approximation, which includes an additional lower-order term. In Section 2.3.4 we 
show that

Г(а? + 1) ~ xx~^1e~x \ — fl + —7-as x 00. (2.7)
V x \ 12a; J

In Table 2.1 we compare the logarithms of the gamma function, Stirling’s approx­
imation (2.6), and the improved Stirling’s approximation (2.7). Notice how much 
more accurate the improved version is.

Table 2.1. The logarithms of Г(п + 1), Stirling’s approximation (2.6), and the 
improved Stirling’s approximation (2.7).

n logr(n + 1) Leading Order (2.6) Improved (2.7)
8 10.6046029 10.5941916 10.6045544

16 30.6718601 30.6666524 30.6718472
32 81.5579594 81.5553553 81.5579561
64 205.1681994 205.1668974 205.1681986

128 496.4054784 496.4048274 496.4054782
256 1167.2572785 1167.2569530 1167.2572785
512 2686.0604716 2686.0603088 2686.0604716

2.1.4 Proof of Stirling's Approximation
In this section we prove Stirling’s approximation for positive integers. We prove the 
general case for all real numbers in Section 2.2.5. We begin with a few lemmata.

Lemma 2.1.12. The Wallis integrals
Л7Г/2

Wn = / sinn(x)dx
Jo

form a positive, strictly decreasing sequence (Wn)^L0 satisfying

(i) Wo = 7Г/2,

(ii) Wi = 1,

(iii) Wn = ^wn_2 for all n> 2.

Proof, The proof is Exercise 2.6. □



90 Chapter?. Asymptotic Integrals

Lemma 2.1.13. The Wallis integrals (Wn)^0 satisfy the following identity:

г ГГ 4fc2 - r Wf2n+1 _ 7r

1 rfc+i / 1\ dx
-(log(A; + l) + log(A;))- / Lr - к-- -
2 Jk \ 2/ x

ЛА 11 4Д.2 _ i - 2 пДА W2n ~ 2 k—1
(2-8)

Proof. Since (Wn)^L0 is strictly decreasing, we have Wn > Wn+i > Wn+2, which 
gives

1 Wn+1 Wn+2 _ n -h 1
wn Wn ~ n+~2’

and thus by the squeeze theorem we have

By Lemma 2.1.12(iii), we have

W2n+i _ (2B1) (rn) • • • (!) _ 2 A (2k)2 2 Ar 4fe2
W2n ~ (¥) ” *iA (2fc + 1)(2fc-1) “ *fc=i4fc2-i’

and thus (2.8) holds. □

Lemma 2.1.14. For any n € N, we have

Ar 4fe2 _ (rz!)424n
11 4/c2 - 1 “ (2n)!(2n + l)! (2-9)

Proof. The proof is Exercise 2.7. □

We now finish the proof of Stirling’s approximation (2.6) for positive integers;
that is, we show

(2.Ю)

where n G Z+. The proof for real numbers is given in Section 2.2.5.
The idea of the proof is to approximate the integral log (a?) dx with trapezoids 

on the intervals [fc, k+1] (see Example 9.6.3) and integrate by parts with some clever 
choices of integration constants.

Proof of Stirling’s approximation (integer case). We have

z»n n 1 z»/c+l
nlog(n) — n + 1 = / log(a;) dx = / log(a;)da;.

71 fc=iJk

Integrating the integrals by parts (J*  udv = uv — f vdu) with u(x) = log (ж) and 
v(x) = x — к — | gives

n—1
n log(n) — n + 1 = ^2
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Integrating by parts again gives

where f(x) = | - ±(x-k- |)2. Since we have

rfc+1

к

/(ap
(fc + 1)2

dx <
x2 Jk кл

Hence, for each к G Z+, the intermediate value theorem (see Volume 1, Corollary 
5.9.14) and Exercise 2.8 show there exists some G [к, к + 1] such that

_£ fk+1 f( 1
dx — 2 / f (x) dx — 2 •

: X >>k J к

Moreover we have

IL—± IL

52 2^log^ + h + los(fc)) = ~2 log(n) + £log(fc) = ~2 log(n) + los(n!)-
k—1 k—1

Therefore, we have

yl.

nlog(n) - n + 1 = -- log(n) +log(n!) + Rn, (2-11)

where

r-TvT 1 v 1 1 
fc=l k=l

Since Rn is monotone increasing and bounded (see Exercise 2.8), it converges to 
some R. Moreover, for rn = exp(l — _Rn), we have rn r = exp(l — R). From 
(2.11) we have

n\en
Гп = nn+i/2 ’

We complete the proof by proving that rn д/2тг- Lemmata 2.1.14 and 2.1.13 give 
that

r* _ (n!)4(2n)4n+1 _ 2n +1 (n!)424n _ 2n +1 А 4A;2
(r2n)2 ~ n4n+2(2n)!2 “ ’ 2n (2п)! (2n + 1)! “ ’ 2n 4A;2 - 1 *

Thus, we have

r2 = lim
n—>oc

' n 
(r2n)2

2n + 1 т-r 4fe2
2n 11 4fc2 - 1 fc=l

= 27T.

Therefore (2.10) holds. □
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2.2 *The  Beta Function and Laplace's Method

14The capital Greek letter Beta looks identical to the Roman letter B.
15As with the gamma function, this definition can be extended to complex values of x and y, but 

treating that carefully would take us beyond the scope of this book.

In this section we describe the beta function, which provides a continuous analogue 
and generalization of the binomial coefficient. In addition to being important in 
probability and statistics, the beta function also allows for the generalization of the 
binomial theorem to real-valued powers that are not positive integers.

We also give an informal treatment of Laplace’s method, which is a very useful 
tool in asymptotic analysis. Laplace’s method is key to proving the general version 
of Stirling’s approximation. We give a rigorous treatment of Laplace’s method in 
Section 2.3.

2.2.1 The Beta Function

Definition 2.2.1. The beta function14 is defined to be

which is well defined for all real15 x,y {0, —1, —2, —3,... }. Ifx+y is a nonpositive 
integer, but x and у are not, then we set B(x,y) = 0.

The beta function can also be written as an integral, as follows.

Proposition 2.2.2. For all x,y > 0 we have

B(x,y)= [ F-^l-t^dt. (2.13)
Jo

Proof. We have

Г(х + у) f tx~1(l-ty-1dt= f°° e~zzx+y~ldz f e-^l-ty^dt
Jo Jo Jo

= ( [ e-z(zt)x-1(zO-tW~1zdtdz.
Jo Jo

Let (u, v) = (zt, z(l — t)); this function has Jacobian determinant | det D(u, v)| = z.
Using this to change variables, the previous expression becomes (see Exercise 2.9)

ПОС / roc \ / roc \
e-u-vux-ivy-idudv= (J е~иих-Чи^ (J e~vvv~1 dv^ = Г(х)Г(у).

This gives us the required identity:

/>Ч1-Ч"-‘Л=^=В(^). °
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2.2.2 Combinatorial Identities Revisited
When a and b are nonnegative integers, we have

ЛЛ _ Г(а+1) _ 1
V7 Г(а — & + l)T(b + 1) “ (a+l)B(a-& + !,&+!)’

Note that the right side of this equation is defined even when a and b are not 
integers, so this gives an extension of the binomial coefficients to all real numbers 
u, b such that a, 6, and a — b are not negative integers. Many of the properties of 
binomial coefficients hold for these generalized binomial coefficients.

Proposition 2.2.3. The following identities hold for any a,b e R, provided the 
various terms are defined.

(iv) If к E Z+ and a E R, with a > 0, then = a(a— l)(a — 2) • • • (a — k + l)/kl.

Proof, The proof is Exercise 2.10. □

Nota Bene 2.2.4. Not all properties of the integer binomial coefficients hold 
in the general case. For example, the coefficient does not vanish for b > a 
unless a — b E Z.

Theorem 2.2.5 (Binomial Series). Given any x E (—1,1) and any a > 0 the 
following series converges absolutely:

(1 + ^r (2-15)

Proof, Convergence follows from the ratio test since (“) —> —1 as к сю. Hence 
the series converges for x e (—1,1). To show that the series converges to (1 + rr)a, 
compute the Taylor series of the right-hand side and match coefficients. The details 
are Exercise 2.11. □

Remark 2.2.6. As an alternative proof of the theorem, we can show that f(x) = 
SfcLo (k)xk satisfies a simple linear differential equation; see Exercise 2.14.
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Example 2.2.7. By Proposition 2.2.3(ii) we have

Thus for any x € (—1,1) we have

This agrees with the Taylor expansion of f(x) = (1 + rr)1/2 around x = 0.

Example 2.2.8. By Proposition 2.2.3(ii) we have

Thus for any x E (—1,1) we have

This agrees with the Taylor expansion

x x2 5ж3 Юз;4
3 - T + "8f “ 243 + ’

of f(x) = (1 + ж)1/3 around x = 0.

2.2.3 Trigonometric Integrals
The beta function can be rewritten as a trigonometric integral.

Proposition 2.2.9. For any a,b> 0 we have

Ъ(а,Ъ) = 2 [ sin2a-1(?z) cos26-1(?z)du.
Jo

Proof. The proof is Exercise 2.13. □

(2-16)

As a special case of the previous proposition, we can express the Wallis integrals 
Wn (see Lemma 2.1.12) in terms of the beta function.

Corollary 2.2.10. For any n eN, we have

W2 1 /п + 1 1wn = Уо Sinn(a;)^ = -B(^-,- r(^)
2 Г(§ + 1)’

Proof. This follows immediately from (2.16) and the definition of В (ж, у). □
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2.2.4 Laplace's Method: Simple Version
Here we give a common form of Laplace’s method and a heuristic argument for it. 
A rigorous proof is given in Section 2.3.

Theorem 2.2.11 (Laplace’s Method). Assume f : [a, b] —> R is smooth and has 
a unique global maximum at t0 G (a, b). As x oo, we have

exf(M . /

Й/'Ш’ (2-17)

Rough Argument. Consider the Taylor expansion of f at t0 (see Theorem 10.3.7). 
Since f has a local maximum at to, it follows that /'(to) = 0 and /"(to) < 0. Hence, 
in a neighborhood of to, we have that /(t) « /(to) — |1/"(to)|(t — to)2. Thus,

С exfW dt « С exfW-x\f"(t0)\(t-t0)2/2 dt

a J a

rb_ exfW / e-x|/',(to)|(^-to)2/2

J a
x/(t0) ry/x\f"W\(b-to)

= / / e~u'2 du.
V^|/"(to)| J-v/x|f"(tO)|(to-a)

From Exercise 2.5 we know that f°° e *2/2 dt = л/2тг> so as x сю, we have J —oo v 7 7

I t______ e~u/2du
-\/ж17"(*о)|(4о-<1)

which yields (2.17). □

2.2.5 Proof of Stirling's Approximation (Theorem 2.1.8)
In the integral defining Г, make the substitution r = xt to get

I rxe~T dr = / exl°ST~T dr
0 Jo
[ xex log xt~xt dt = xx+1 f ex(log t-t) dt.
0 Jo

We can use (2.17) to approximate the integral with /(t) = logt — t, which has its 
maximum at to = 1 and satisfies /"(to) = — 1- For 1 we have

I ex^ogt-t)dt

0
(2-18)

Thus (2.6) holds. □
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2.2.6 Asymptotic Expansions
Remark 2.1.11 mentions an improved version of Stirling’s approximation (2.7), 
which includes a lower-order term. The leading-order version (2.6) gives the asymp­
totic limit, but the inclusion of lower-order terms provides greater accuracy for in­
termediate values of x. In this subsection we describe how lower-order terms can 
be accounted for, using what are called asymptotic expansions.

Definition 2.2.12. Let a sequence of real-valued continuous functions
defined for x sufficiently large in R, satisfying фк+1(х) E о(фк(х)) as x сю for 
each к E N. The series акФк(х) is an asymptotic expansion of the function 
f as x oo if for each n E N the remainder function rn satisfies

n—1
rn(x) = f(x) - У акфк{х) € о(фп(®)) as x -> oo. 

fc=O
(2-19)

Remark 2.2.13. The leading-order behavior of an asymptotic expansion is given 
by аофо (x). The additional terms in the series are all of lower order and do not affect 
the leading-order behavior. Therefore it is correct to write f(x) ~ Y^kLo акФк(х) as 
x oq. Throughout the remainder of this chapter, we use the symbol ~ to mean 
“has the asymptotic expansion” when aligning a function to a series.

Example 2.2.14. Although it is algebraically complicated (see Exercise 2.21) 
to compute additional lower-order terms of Stirling’s approximation, we can 
expand the gamma function even further to get

_ж /2? A 1 1 139 \Г(х + 1) ~ x e у ж (i + 12a. + 288z2 51840жз + ' ’ ’) (2.20)

as x —> oo. This is an asymptotic expansion because each term is of the form 
фк(х) — e~xxx~^2~k, which satisfies фк^(х) E о(</>^(ж)), for each к E N.



2.3. *Laplace's Method and Stirling Improved 97

2.3 *Laplace's  Method and Stirling Improved
Laplace’s method has several different formulations. Section 2.2.4 gives a fairly 
simple, yet common, version of Laplace’s method and a rough sketch of why you 
should believe it. Although that heuristic argument is commonly given as a proof, it 
is not rigorous. Here we state and carefully prove a much stronger form of Laplace’s 
method. The main tool used in this proof is Watson’s lemma, which we also prove 
carefully. We finish the section by using these results to prove the more refined 
version of Stirling’s approximation (2.7).

2.3.1 Extending Big-0 and Little-o
In order to treat Laplace’s method and Watson’s lemma, we must first extend big-0 
and little-o notation to describe the convergence of a function at a point to G R. 
We also describe the notion of an asymptotic expansion as t to.

Definition 2.3.1. Let f and g be real-valued functions defined in a neighborhood 
of to E R. We say that f(t) is big-0 of g(f) as t to, denoted f(t) G O(g(tf), 
if there exist M > 0 and S > 0 such that |/(t)| < M|^(t)| whenever \t — to I < 
Similarly, we say that f(t) is little-o of g(t) as t to, denoted f(t) G o(g(t)), if for 
each e > 0 there exists S > 0 such that |/(t)| < e|#(t)| whenever \t —10| <

Remark 2.3.2. When we talk about big-0 and little-o as x сю, we can think of 
it as convergence at infinity. In this sense, Definitions 1.1.4 and 2.3.1 are the same.

Definition 2.3.3. Let {фкbe a sequence of real-valued continuous functions 
defined in a neighborhood of to E R, satisfying </>fc+i(t) G o(</>fc(t)) as t to for 
all к G N. We say that the series «&</>&(£) is an asymptotic expansion of the 
function f in a neighborhood of to if for each n E N the remainder function rn 
satisfies 

n—1
rn(f) = /(t) - 5? € o(</>n(t)) as t to- (2.21)

fc=O

Following the justification in Remark 2.2.13, we denote this as f(t) ~ SfcLo акФк(1) 
as t to •

Example 2.3.4. We prove that

00 (_i \fc+i 
log(l +t) ~ ---- г---- as t —> 0+

rv
k=l

by showing for all n E that (see Exercise 2.16 for details)

rn(t) = log(l + t) - V---- ------tk G o(tn) as t —> 0+.
к

k=l
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2.3.2 Watson's Lemma
To give a rigorous proof of Laplace’s method, we need Watson’s lemma. This 
describes the asymptotic behavior of integrals of the form

I(x) = f e~xtf(t)dt as x oo. (2.22)
Jo

Watson’s lemma says that the main contribution of f(t) in (2.22) comes from its 
behavior near t = 0; the behavior of f(t) elsewhere is wiped out by exponential decay 
as x oo. However, before we prove Watson’s lemma, we need the following.

Lemma 2.3.5 (Small Laplace Tail). Let f : [0, oo) —> R be a continuous, real- 
valued function and x G R. If I(x) in (2.22) converges absolutely (meaning that 

e~xt\f(t)\dt is finite), then for all 6 > 0 there exists M > 0 such that

J(x) = j e-xtf(t)dt

satisfies |J(rr)| < Me~^x~x^ whenever x > x. It follows that |J(rr)| G o(xp) for all 
p G R, as x oq.

Proof. For a given 5 > 0 and each T G [J, oo), define

W) = e~xtf(t)dt.

Let e > 0 be given. Since I(x) is absolutely convergent, we choose 7b > 0 so that
z»OO

JT
e~^f(t)dt < €

whenever T > To. Since К is continuous, it is bounded on [J, 7b]. Therefore, we can 
set Mo = supTe^Toj |7f(T)|; moreover, К is bounded on [7b, oo) by M = Mo + e. 
Thus, for x > x, we have

J(x) = /'OOe-(^-s)‘e-sty(f) dt = [°°e-(x-^tK\t)dt= (x-x) pe-^-^K^dt. 
J8 J8 J8

And this gives

\J(x)\<\x-x\ [ e~(-x~x^t\K(t)\dt<\x — x\Mf e~^~x)t dt = Me~^x~x\ □ 
J 8 J 8

Theorem 2.3.6 (Watson’s Lemma). If f(t) ~ ta as t 0+, where
a > —1 and (3 > 0, then

f°° -xtf/AJi X'' «/сГ(о + /Зк + 1)/ e f(t)dt~ У Ta+/3fc+i as x °0, (2.23)
Jo x

provided the integral converges absolutely for all sufficiently large x.
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Proof. It suffices to show for each n E N that

D,. f°° -IttM A afcr(a + (3k + 1) / 1 \
Rn(x) = I e ‘/(t) dt — > -------- , ,---- - e о I —, „ ,, I as ,r —> oo.

Exercise 2.4 gives
f e-xtta+i3k dt = r(« + ^ + h (2.24)

Jo xa+/3k+l V '

which yields

pOC n лОО
I e~xt f (t) dt — e~xtta+l3k dt
° k=o J°

where n 
f(t)-ta^akt^k 

fc=0

eo(f+^n) ast->0+.

Thus, given e > 0, there exists Sn > 0 such that |rn(t)| < for all t G [0, Jn]. 
Hence, we can decompose Rn(x) as Rn(x) = In(x) + 7п(ж), where

4i(#) = [ £ xtrn(t)dt and Jn(x) = /* e xtrn(t)dt. 
Jo Jsn

From (2.24), we have

f П -xt.a+fin i. < + 1)
'o e 1 ai as ж oo,

which implies that |ln(#)| £ о ( а+зп+1) as x oo. By Lemma 2.3.5, we also have 
that | Jn(x)\ e о (^-bjL+i) asrr чоо. Thus, Rn(x) e о (жа+^+1) as x oo. □

Example 2.3.7. Using Example 2.3.4 with Watson’s lemma, we have

Ге-«М1 + .)Л~ ’ - “•
JU k=l k=l

Remark 2.3.8. As mentioned above, Watson’s lemma says that essentially all of 
the contribution to the integral (2.22) from f(t) comes from its behavior near zero. 
In the corollary below, we see that we don’t even need to integrate all the way to 
infinity to get the exact same asymptotic expansion.



100 Chapter?. Asymptotic Integrals

Corollary 2.3.9. Let 6 > 0 be given. If f(t) ~ ta^2^oak^k as t 0+, where 
a > — 1 and (3 > 0, then

T / \ _ —xt £(J.\ Jj. “I" “I" 1) /о лг\— / e Q+^fc+i asx^vo, (2.25)
Jq fc=0

provided the integral (2.22) converges absolutely for all sufficiently large x.

Proof, For each n E N the proof of Watson’s lemma gives

Rn(x) = e j(t) dt — У -------- ,д, ----- - G о I —,д ,as x oo.' J® J \ J / j.a+/3fc+l \^xa-\-pn-\-l J

From Lemma 2.3.5, we have

Js(x) = e xtf(t) dt&ol +/3ra+1 I as ж —> oo. 
J 8 \x J

Combining these gives

Jo e xa+0k+l ~ G О ^a+/3n+1 J

as x oo. Thus, (2.25) holds. □

Remark 2.3.10. When splitting up (2.22) into the two parts

z»OO p8 z»OO
/ e~xtf(f)dt = / e~xtf(t)dt+ / e~xtf(f)dt, 

Jo Jo J 8

it is remarkable that the first term on the right-hand side has the asymptotic con­
tribution as x —> oo and that the second term decays exponentially. As shown in 
the next subsection, when considering integrals of the form

[°° exh^f(t)dt, 
Jo

the relevant part, asymptotically speaking, is near the maximum of h(t). In the 
case of (2.22) with h(t) = —t, the maximum occurs when t = 0, so that’s the most 
relevant part.

2.3.3 Laplace's Method
Laplace’s method is a generalization of Watson’s lemma. There are a few variations 
in the literature. We prove a fairly general version here.
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Theorem 2.3.11 (Laplace’s Method, General Version). Let f : [a, b] R 
be continuous and h : [a, b] R be continuously differentiable. Assume that h 
has a unique maximum at a, that is, assume there exists с e (a, 6) and constant 
M such that h'(t) < 0 on (a, c] and h(t) < M < h(a) for t G [c, b\. Hence the 
function = hfa) — h(t) is strictly increasing on [a,c] and is invertible with 
a continuously differentiable inverse denoted t(£). If F(£) = /(t(O)t'(C) ^as the 
asymptotic expansion

fc=0

with a > — 1 and /3 > 0, then

dl ~ £ Т>Г^° +g,+ (2-'
fc=0

provided that the integral converges absolutely for all x sufficiently large.

Proof. Assume the integral I(x) converges absolutely for all x > L. Note that

I(x) = exh<a> Гe~xiMf(t)dt+ f exhWf(fi)dt 
J a J c

fb
= exMa} у + у

Thus, for x > L we have

/(ж)-е^(“) у e-*«F(£)d£  <e^x-L)M у eLh^\f(t)\dt<CexM,

where C > 0 is constant. Since M < h(a), we have that CexM E о(а,„+Д+1) as 
x oo for all к = N. Thus by Corollary 2.3.9, we have

Цх) ~ exh^ e-^F(£) d£ ~ exh^ £ as x °°- °
J° fc=o x

Corollary 2.3.12. For A > 0 and a > —1, we have

(2.27)

Proof. This is Exercise 2.17. □

2.3.4 Stirling's Approximation Refined
Using the more general form of Laplace’s method (Theorem 2.3.11), we can derive 
the improved version of Stirling’s approximation (2.7).
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Theorem 2.3.13 (Asymptotic Expansion of Stirling’s Approximation).

Г(я + 1) as x —> oo. (2.28)

Proof. As in Section 2.2.5, letting r = xt gives

Г(х + 1) = [°°тхе-т<1т= [°°exloST-TdT= [°°xex'°sxt-xt dt = xx+1 [°°ех^-^ dt. 
Jo Jo Jo Jo

To prove (2.28) it suffices to show that

ex(iogt-t) dt ~e-x fa A + 1 +._ A (2.29)
Jo V я \ 12ж у

Note that log/: — t has a maximum at t = 1, and the substitution s = t — 1 moves
the maximum to s = 0. Thus, we have

f°° ex(logt-t) dt = e-x f°° exh{s) ds ~ e-x f1 exh(s) ds as x

Jo J-l J-l

where h(s) = log(l-hs) —s. Write h(s) = —<s2/2+#(<s), where g(s) = —— •
Expanding the exponential eX9^ gives

ds = ds = ^6-^/2 + xg^s) + y5(s)2 + • • •) ds.

The terms of odd order in s integrate to zero, thus reducing the expansion to

Г1 _ж,2/2 Д /s4 s6 \ 1 2/s6 47s8 \ \ , ,non.
fa r1b+«+") + ? (?+»+'T"‘) 1 ’

Corollary 2.3.12 shows that the terms above that will contribute to the first lower- 
order term (|) in (2.28) are of the form

y1 e-xs2/2xas2bds, (2.31)

where b — a = 1. The only terms in (2.30) satisfying this condition have a = 1, b = 4 
or a = 2, b = 6. By even symmetry we can halve the domain and double the integral. 
Further, the asymptotic expansion is the same when we integrate from 0 to infinity 
instead of to 1. Thus we have

r1 r°° o / q4 q6 \( ex/l(s) ds ~ 2 / e~xs /2 ( 1 - x— + x2— 4-----) ds.
-i Jo \ 4 18 J
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Changing variables to £(s) = s2/2 and following Theorem 2.3.11, we have

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

2.1. Prove Proposition 2.1.1 as follows:
(i) Use the fact that log(rr) is a strictly increasing function on [l,oo) to 

show that
Y log(fc) [ log(a:) dx < ^2 log(A:).

(ii) Use the previous step to show that

nlog(n) — n + 1 < log(n!) < (n + 1) log(n) — n + 1

and hence
nn , nn+1 

------ < n\ < ------. gn—i — — en-1

2.2. Let у > 0 be fixed. Prove that the binomial coefficient satisfies
(x + y\ xy( ) ~ —- as x —> oo.

y'-X
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2.3. Find the leading-order behavior of (3^) as n —> oo.
2.4. Let p > — 1 and x > 0. Prove that

Г(р+1)
о

2.5. A Perform the following steps:
(i) Show that

Hint: Use polar coordinates to compute

\ 2 
e~x2/2 dx] e (ж2+^2)/2 dxdy.

(ii) Using the substitution t = u2/2 show that

I е~и2/2и2х~Чи.
о

(iii) Show that Г(|) = ^/тг.
(iv) Show that

dt =
1 Ftv

2 у x'

2.6. Prove Lemma 2.1.12 as follows:
(i) Prove that Wn > 0 for all n E N.

(ii) Prove that Wn — Wn+i = f^2 sinn(a?)(l—sin(rr)) dx > 0 for every n E N.

(iii) Prove that Wo = тг/2 and that W± = 1 by direct computation.
(iv) For n > 2, show that Wn = (n — l)(Wn_2 — Wn). Hint: Use integration 

by parts.
2.7. Prove Lemma 2.1.14 as follows:

(i) Show that

ГГ 4fc2 = (nl)24n ГГ ______ 1______
114J.2-! П (2fc_ 1)(2fc + i)-

(ii) Show that
n

(2n)!
2n(n!)’

(iii) Combine the previous two results to show that

-A 4fc2 _ (n!)424n
4/c2 — 1 — (2п)! (2n + 1)!'
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2.8. Complete the proof of Stirling’s approximation by justifying the following 
steps:

(i) Go through the second integration by parts argument and show that
fc+i -I

f(.x)dx = —.

(ii) Show that П is bounded.

2.9.  Complete the proof of Proposition 2.2.2 by showing that*

e Z(zt)x г(г(1 — t))y 1zdtdz = I / e-^u^v^dudv.
0 Jo

Hint: Remember the change-of-variables formula (see Volume 1, Section 8.7).
2.10.  Prove Proposition 2.2.3.*
2.11.  Give all the details for a careful proof of Theorem 2.2.5 as follows:*

(i) Prove that the series converges.
(ii) Prove that the coefficients in the Taylor series expansion of (1 + x)a 

around x = 0 satisfy the same relations as the binomial coefficients.
(iii) Prove these relations imply that the Taylor coefficients are the same as 

the binomial coefficients.
2.12.  Prove the following identities:*

(i) If к e Z+, then
/2(fc_i)\

\k) \ k-1 J 22к~гк '

(ii) As an alternative to Example 2.2.7, we have

к—0 \ / \ /

2.13.  Prove Proposition 2.2.9 by substituting t = sin2(u), 1 — t = cos2(u), and 
dt = 2sin(u) cos(u) du in the integral formula (2.13) for B.

*

2.14.  Give an alternative proof of Theorem 2.2.5 by proving that both sides of*
(2.15) satisfy the differential equation (1 + x)yf = ay subject to y(fi) = 1.

2.15.  Assuming that n G , prove the following:*
(i) If |z| < 1, then

1 X 77,-1-1 \
__ _ £(-l)^fc = (-l)n+1 (|^) . (2.33)

k—0 ' '

(ii) If |ж| > 1, then

Hint: Set x = 1/z in (2.33).
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2.16.  Integrate (2.33) from 0 to t > 0 and reindex to show that*

log(l +t) - V ^4---- tk € o(tN) as t —> 0+.
fc=l

2.17.  Prove Corollary 2.3.12.*
2.18.  Find the leading-order behavior of the integral*

y1 e-xcOSht dt

2.19.  Find the leading-order behavior of the integral*

y*  e~xt dt as x —> oo.

2.20.  Find the leading-order behavior of the integral*

/•% + £
/ e~xcostdt as rr —> oo

Jo

for any 0 < e < 7t/2. Note that this behavior does not change as e —> 0.
2.21.  Extend Theorem 2.3.13 to one more term; that is, show that*

Notes
For more on the Bohr-Mollerup theorem and the uniqueness of the gamma function 
see [BB08, Theorem 5.10] and [Art64, Theorem 2.1]. Our proof of the short form of 
Stirling’s approximation follows that of [BB08], with additional ideas about Wallis 
integrals from [Wikl8b]. For more on Stirling’s formula, see [Conl6, Wikl8a]. For 
more on the coefficients of the Stirling series, see [NemlO]. Our proofs of Watson’s 
lemma and Lagrange’s method were inspired in part by [vRB12].



Data Structures

Bad programmers worry about the code. Good programmers worry about data struc­
tures and their relationships.
—Linus Torvalds

A data structure is a specialized format for organizing, storing, and processing 
data. Seemingly inconsequential differences between similar data structures can 
have a profound impact on the complexity of the algorithms that use them. In this 
chapter we discuss a few widely used data structures and prove complexity bounds 
for several important algorithms.

One of the most fundamental low-level data structures is the array. An array 
consists of a collection of several elements of a specific data type (integer, floating­
point number, character, memory address, etc.) stored together in a contiguous 
block of allocated memory. Because the data types of the entries in an array are 
all the same, each one uses the same amount of memory, so we can easily compute 
the memory address of the &th entry, for any k. and can access or modify its value 
in constant time. Arrays are convenient to use, since most modern programming 
languages have (highly optimized) built-in functions for working with them. For 
some applications (like many linear algebra algorithms) arrays are a very efficient 
data structure.

However, arrays have the disadvantage that their length cannot be modified 
dynamically. We cannot add more data to an array than was originally allocated, 
and there’s no graceful way to make the array bigger. Instead, we must construct 
a new, larger array elsewhere in memory and copy the existing data to it, along 
with the new data being added. This can be very costly, especially if it happens 
frequently. Arrays also cannot support mixed data types in the same array.

Applications that need to accommodate collections of dynamically varying size 
often benefit from more versatile data structures that can dynamically and grace­
fully expand and contract, as needed, to accommodate the underlying application 
and can do so without having to waste time and space shuffling data around un­
necessarily.

Most dynamic data structures spread their data across several disparate blocks 
of memory and manage the blocks by keeping track of their memory addresses. Data 

107



108 Chapter 3. Data Structures

that consists of a memory address for other data is called a pointer. In some cases 
the pointers are all managed centrally in some kind of manifest or lookup table, and 
in other cases the pointers are distributed across the various blocks, forming chains, 
trees, or other network structures. In many cases these dynamic data structures 
can gracefully store and dynamically process large quantities of data in memory, on 
a hard drive, on an array of hard drives, or even in a large network of distributed 
storage devices.

The sewing together of blocks of data into a sophisticated network structure 
allows for the efficient insertion, deletion, and search across an entire collection of 
data elements. This network structure relies on the mathematical theory of graphs, 
which provides the rigorous abstraction needed to describe these data structures and 
facilitate their analysis. Graphs can also be used to describe other kinds of networks 
such as those used in communications, multiagent systems, and sophisticated supply 
chains.

3.1 Theory of Graphs
In this section we describe some basic elements of graph theory. Graph theory is a 
fundamental tool for analyzing and constructing data structures and algorithms.

3.1.1 Graphs

Definition 3.1.1. A directed graph G = (V, E) is a pair consisting of a nonempty, 
finite set V of vertices (or nodes) and a set E С V x V of ordered pairs, called the 
edges of the graph. A pair (vi,Vj) G E is an edge from vertex Vi to vertex Vj.

Example 3.1.2. Figure 3.1 depicts the directed graph G± = (Vi,Ei) with 
vertices Vi = {1, 2,3,4} and edges E± = {(1,2), (1,3), (2,1), (4, 2), (4,3)}.

Figure 3.1. Depiction of a directed graph (Gi) and an undirected graph (Gz), as 
described in Examples 3.1.2 and 3.1.6. A directed graph has arrows that identify 
the directions of the edges, but an undirected graph does not specify a direction for 
its edges.
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Remark 3.1.3. Note that we defined the collection of edges E in a graph to be 
a set of pairs, so there can be at most one edge G E from Vi to Vj. Some
definitions of graphs allow more than one edge from one vertex to another, but we 
do not consider such graphs here.

Application 3.1.4. As mentioned in the introduction, graphs can be used 
to describe a data structure where each piece of data is stored along with 
pointers identifying where to look for more of the data. Each node of the 
graph corresponds to an object in memory (for example, an integer, a string, 
a list, or even an entire data file), and each edge (v, v') of the graph corresponds 
to a pointer stored at node v, pointing to the location of node vf.

Definition 3.1.5. An undirected graph G = (V,E) is a pair consisting of a 
nonempty, finite set V of vertices (or nodes) and a set E of unordered pairs of 
elements of V corresponding to the edges of a graph. We denote the undirected 
edge16 from v to v' as A graph (whether directed or undirected) is called

16We recognize that this notation could be confusing when there is an undirected edge from a 
vertex to itself, but the meaning should be clear from context. Moreover, we rarely discuss 
graphs that are not simple.

simple if it has no edges connecting a vertex to itself

Example 3.1.6. Figure 3.1 also depicts the undirected graph G% = (V^,^) 
with vertices V2 = {1, 2,3,4, 5} and edges E% = {{1,2}, {1,3}, {3,4}, {3, 5}}.

Remark 3.1.7. As with directed graphs, we allow at most one edge between any 
two vertices in an undirected graph.

Remark 3.1.8. Every simple undirected graph has an associated directed graph, 
defined by replacing every unordered edge in the undirected graph by the 
pair of directed edges (v, vf) and (y', v). Conversely, if the set E of edges in a simple 
directed graph is symmetric (that is, (yi, Vj) G E if and only if (vj,vi) e E), then it 
naturally defines an associated undirected graph corresponding to replacing every 
matching pair (v,v'fi (v',v) of directed edges with a single unordered edge {u, v'}.

Definition 3.1.9. Let G = (V,E) and Gf = (V',Ef) be graphs (either directed or 
undirected). We say that Gf is a subgraph of G if V' С V and E' С E.

Example 3.1.10. Consider the undirected graphs represented in Figure 3.2. 
Note that G3 is a subgraph of G4, G5, and Gq. Also, G4 is a subgraph of Gq 
with the same vertices as Gq but fewer edges. However, G5 is not a subgraph 
of Gq, despite the fact that its vertices are all in Gq.
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Figure 3.2. Several graphs and subgraphs, as described in Example 3.1.10.

Remark 3.1.11. When a definition, example, proposition, etc., does not specify 
whether a graph is directed or undirected, it is usually because we want to adapt 
the statement to both cases.

3.1.2 Walks, Paths, Cycles, and Connectedness

Definition 3.1.12. Let G = (V,E) be a graph. A walk of length m is any sequence 
• • • ,vim) of vertices, where (vik,vik+1) € E (or {vik,vik+1} € E for an 

undirected graph) for each fc = 0, — 1. A walk is closed if the first and last
vertices are the same; otherwise it is open. A path is an open walk in which no 
vertex or edge is repeated. A cycle is a closed walk in which no vertex or edge is 
repeated except for the first and last vertices, which are the same.

Example 3.1. 13. In graph G$ of Figure 3.2, there are four paths from node 
2 to node 3, namely (2,3), (2,1,3), (2, 5,3), and (2,5,6,3).

Example 3.1. 14. In Figure 3.2, the walk (2, 3, 2) is not a cycle of G$ because 
the edge {2,3} is the same as {3, 2}, and edges cannot be repeated in a cycle. 
However, in Figure 3.1, the walk (1,2,1) is a cycle in Gi since in a directed 
graph the edge (1,2) is a different edge than (2,1) and therefore no edge is 
repeated.
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Example 3.1. 15. Consider the graphs in Figure 3.3. In graph G7, there 
are two paths from node 4 to node 1, namely (4,3,1) and (4,2,1). Graph 
G% has three different cycles starting (and ending) at 4, namely (4,3,5,6,4), 
(4,3,1,4), and (4,2,1,4).

Definition 3.1.16. A graph G = (V,E), is connected17 if for any two distinct 
vertices Vi,Vj G V, there exists a path from Vi to Vj. A graph is disconnected if it 
is not connected.

17Many texts call this property strongly connected to distinguish it from a lesser property called 
weakly connected. However, we do not consider weakly connected graphs in this text, and thus 
we just use the term connected.

Remark 3.1.17. A connected, directed graph G = (V,E) with more than one 
vertex must have a cycle. To see this, note that there must be at least one edge; 
denote it by (y,vf) e E. Since G is connected, there is a path connecting v' to v. 
Appending the edge (v, v') to the end of that path gives a cycle that starts and ends 
at vf.

Remark 3.1.18. For undirected graphs, combining the two paths as described in 
Remark 3.1.17 does not necessarily give a cycle, because some edges might be re­
peated; for example, the second path could just be the first path traversed backward.

Unexample 3.1.19. The directed graph G7 in Figure 3.3 has no cycles and 
hence is not connected. If G7 were changed to an undirected graph, so that 
each edge was replaced with an undirected edge, then it would be connected.

Example 3.1.20. The directed graph Gg in Figure 3.3 is connected. Note 
that G8 has several cycles.

Figure 3.3. A disconnected directed graph G?, described in Unexample 3.1.19, and 
a connected directed graph G%, with several cycles, as described in Example 3.1.20.
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Proposition 3.1.21. Any connected undirected graph with n vertices must have at 
least n — 1 edges.

Proof. We prove this by induction on n. It is trivially true if n = 1. Now suppose 
the proposition is true for all n < TV. Assume by way of contradiction that there 
exists a connected undirected graph of N vertices with at most N — 2 edges. If 
every vertex has at least two edges attached to it, then \E\ > |Vj = N. But since 
\E\ < TV, we must have at least one vertex v with a single edge (if it had no edges, 
then the graph would be disconnected). Removing v and its lone edge from the 
graph will produce a connected subgraph because any path between two vertices 
other than v could not have passed through v, and thus the path still remains after 
removing v and its edge. However, the subgraph has N — 1 vertices and no more 
than N — 3 edges, which contradicts the induction hypothesis. □

3.1.3 Adjacency Matrices
There are many ways to represent a graph. One important method is to represent 
a graph as an adjacency matrix.

Definition 3.1.22. Let G = (V,E) be a directed graph with vertices V = {vi,V2, 
..., vn}. The adjacency matrix is the n x n matrix A(G) = [aij], where

1
0

if(vi,Vj) e E, 
otherwise.

For an undirected graph we use the adjacency matrix of the corresponding directed 
graph (see Remark 3.1.8). As a result, the adjacency matrix of an undirected graph 
is always symmetric.

Example 3.1.23. The adjacency matrices for the graphs depicted in Fig­
ure 3.1 are

"0 110 0“’0110' 1 0 0 0 010 0 0
A(Gy) = 0 0 0 0 and A(G2) = 10 0 11

0 0 10 00 110 0 0 10 0

Notice that AtfG^) is a symmetric matrix, since G2 is an undirected graph.

To determine whether a walk of length к from vertex i to vertex j exists, we can 
look at the (г, j) entry of powers Ak of the adjacency matrix.

Proposition 3.1.24. Given any к e Z+ and any graph G with adjacency matrix 
A, the (i,j) entry of Ak is the number of walks of length к in G from vertex i to 
vertex j.



3.2. Trees and Tree-Based Data Structures 113

Proof, This follows by induction on k. The details are Exercise 3.5. □

Example 3.1.25. The adjacency matrix of the graph G7 from Figure 3.3 and 
the square of the adjacency matrix are

"0 0 0 o' '0 0 0 o'

A(G7) = 1
1

0 0
0 0

0
0

j л/z^ Л2 0 0 0 0and A(G7) o o o o

0 1 1 0 2 0 0 0

By Proposition 3.1.24 the 2 in the lower left corner of A(Gy)2 shows there are 
two walks of length 2 from node 4 to node 1, and the fact that all other entries 
in the matrix are zero shows there are no walks of length 2 between any other 
two nodes in the graph.

Example 3.1.26. Consider the graph Gg from Figure 3.3. The adjacency 
matrix and its eighth power are given by

'0 
1

0
0

0
0

1
0

0
0

o' 
0

'0
2

4 4 4
0 0 4

0
1

1'
2

Л(С8) = 1
0

0
1

0
1

0
0

1
0

0
0 and A(Gg)8 = 6

8
1 1 4
4 4 1

3
4

2
0

0 0 0 0 0 1 2 0 0 4 1 2
0 0 0 1 0 0 0 4 4 4 0 1

This shows there are six walks of length 8 from node 3 to node 1; that is, 
631 = 6 for A(Gg)8 = [bij]- Since the diagonals correspond to closed walks, 
633 = 1 means there is exactly one closed walk of length 8 starting and ending 
at node 3. The details of that walk are not clear from A(Gg)8, but in this case 
it is easy to verify that (3, 5,6,4, 3, 5, 6,4,3) is the length-8 walk from 3 to 3.

3.2 Trees and Tree-Based Data Structures
In this section we describe two of the most common and important kinds of graphs, 
namely undirected trees and directed rooted trees. Many of the most useful data 
structures are based on these trees, and most recursive algorithms can be described 
in terms of trees. As the godfather of algorithms, Donald Knuth, says, “Trees sprout 
up just about everywhere in computer science.”

3.2.1 Undirected Trees

Definition 3.2.1. A connected, undirected graph without cycles is called a tree. 
An undirected graph without cycles (not necessarily connected) is called a forest.
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Example 3.2.2. The graph G3 in Figure 3.2 is not connected and has no 
cycles; that is, it is a forest of two trees. The graph G4 in the same figure has 
no cycles and is connected, so it is a single tree.

Unexample 3.2.3. The connected graphs G5 and Gq in Figure 3.2 have cy­
cles and are neither forests nor trees.

Example 3.2.4. Although it may seem counterintuitive, the graph consisting 
of a single vertex and no edges is a tree, since it is a connected, undirected 
graph without cycles. It is also a forest since every tree is also a forest.

Proposition 3.2.5. An undirected graph is a tree if and only if for any two distinct 
vertices there exists exactly one path connecting them.

Proof. If G is an undirected graph having the property that any two vertices are 
connected by exactly one path, then the graph is clearly connected. If the graph con­
tained a cycle (vo, ^1, ^2, • • • > ^o)> then there would be two paths (vo, iq, • • •,
and (vv,Vk) from vq to contradicting the hypothesis of unique paths. Hence G 
has no cycles and is a tree.

Conversely, if an undirected graph G is a tree, then it is connected, and hence 
any two distinct vertices have at least one path between them. Suppose G con­
tains two distinct paths connecting the same pair of vertices v and w, say, P = 
(i?o, , Vk) and P' = (vq, ..., v#), where vq = v = vf0 and Vk = w = v[.
Let i > 1 be the smallest index such that vi ф v[. And let n be the smallest index 
greater than or equal to i such that v'n = vm for some m. Since Vk = w = v[, such 
an n must exist. The closed walk 1^-1,1^,..., vm, v'n_1,..., v'i_1 is a cycle, since
the only repeated vertex is vi-i = v^. The existence of this cycle contradicts the 
hypothesis that G is a tree. Therefore, there can be only one path between any two 
vertices. □

Proposition 3.2.6. Any tree T with more than one vertex has at least two vertices 
with only one edge each, that is, each of these vertices has only one edge connecting 
to it.

Proof. Among all paths in T there must be at least one path P of maximal 
length. Denote its endpoints by и and v, respectively. The path P has exactly one 
edge connecting to и and exactly one edge connecting to v. Suppose, by way of 
contradiction, that either и or v has more than one edge. Adding that additional 
edge in T to P cannot make a cycle, so it must connect to a new vertex not in P.
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Thus, adding the new edge to P makes a path that is longer than F, which is a 
contradiction. Hence, и and v have exactly one edge each. □

Proposition 3.2.7. Let G = (V, E) be a connected undirected graph with n vertices. 
The graph G is a tree if and only if \E\ = n — 1.

Proof. Assume that \E\ = n — 1 and suppose that G has a cycle. Removing one 
edge from the cycle will yield a subgraph G' that is still connected, with n nodes, 
but has n — 2 edges, which is a contradiction to Proposition 3.1.21. Hence G has 
no cycles and is therefore a tree.

Conversely, assume G is a tree. We proceed by induction on n, noting that 
the case n = 1 holds trivially. Assume the result holds for all graphs of at most 
n — 1 vertices, and consider one with n vertices. Since G is a tree, it follows from 
Proposition 3.2.6 that there must be at least one vertex with exactly one edge. 
Removing that vertex and its lone edge gives a new tree G' with n — 1 vertices, 
which must have n — 2 edges. Therefore G must have had n — 1 edges. □

3.2.2 Linked Lists, Stacks, and Queues
As mentioned above, using an array with n slots to accommodate a dynamic list 
of к < n objects can be problematic. Adding £ > n — к new elements to the list, 
so that the total number of elements in the list exceeds n, requires a new, larger 
array to be created, and all the elements, old and new, must be copied to the new 
array. This costs roughly O(k-\-£) « O(n) primitive operations. Similarly, removing 
an object from the list can require up to O(ri) primitive operations, depending on 
where the object is located, due to reshuffling of the remaining objects to the front 
of the array. When n is large or there are many such lists to manage, the temporal 
cost of using arrays can become prohibitively expensive. A better alternative in 
this setting is a data structure that can dynamically and gracefully expand and 
contract, as needed. One example of such a data structure links blocks together in 
a chain called a linked list.

A linked list is among the most basic of the graph-based data structures. It 
is a finite, ordered sequence of n nodes, each with an edge pointing to the next 
node in the sequence. A linked list [iq,..., vn] corresponds to the directed graph 
with n — 1 edges E = {(^1,^2), (^2,^3), • • •, as depicted in Figure 3.4(a).
The list can be searched by starting with the first node, which is called the root, 

Root Root

(b)

Figure 3.4. Depiction of two linked lists. List (a) is a singly linked list, where 
each node is a block of data (white) followed by another block (green) containing the 
address of its successor. List (b) is a doubly linked list, with an address at the end 
of each block pointing to its successor and another address at the beginning of each 
block pointing to its predecessor.
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and following the edges until the desired node is found. Since there are at most 
n nodes to visit, the temporal complexity of searching for an arbitrary node is 
bounded by O(n).

To add a node to the beginning of a linked list, create the new node and point 
it to the root of the old list. This can be done in constant time. Compare this with 
the array, where insertion is O(n). In general, a new node can be added anywhere 
in a linked list in constant time if the location of the node we wish to have precede 
it is known: make the preceding node point to the new node that’s being inserted, 
and then have the new node point where the preceding node was originally pointing. 
Note, however, that in many settings one must search the linked list to find where 
to insert the new item. Since the complexity of a search is O(n), any insertion 
requiring a search is also O(n).

Similarly, to remove a node, once the location of the node preceding it is known, 
redirect the previous node to point where the removed node had been pointing to. 
So again the operation can be performed in constant time once the predecessor of 
the desired removal location is known, but finding that predecessor may require a 
search.

Remark 3.2.8. In some applications, nodes point back to their predecessors. Such 
linked lists are called doubly linked; see Figure 3.4(b).

Linked lists can be used to define other kinds of data structures. Stacks and 
queues are special types of lists where modifications to the list are more restricted 
than a regular list.

Definition 3.2.9. A stack is a list where data may only be inserted and removed 
from the root (first node) of the list. A queue is a list where data may only be 
inserted at the tail (last node) and only removed from the root.

Nota Bene 3.2.10. Don’t confuse the abstract data structure called a stack 
with the pool of memory in the computer called the stack. The latter is an 
example of the former, but it is certainly not the only example.

Example 3.2.11. To help remember the difference between a stack and a 
queue, consider a stack of plates in the kitchen cabinet. Plates are taken from 
the top of the stack, and returned to the top of the stack (which is the root 
of the stack). This means that the last plate put in will be the first one taken 
out. Hence a stack is said to satisfy the last in, first out (LIFO) principle.

Contrast this with a queue of polite people standing in line. Here the root 
is the front of the line and the tail is the back of the line. The first one to 
arrive is the first one served. Hence a queue satisfies the first in, first out 
(FIFO) principle.
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Remark 3.2.12. It is common to use the word push to describe the operation of 
placing an element on the stack or queue and the word pop to describe the operation 
of removing an element and returning it to the user.

A stack can be implemented by creating a linked list and adding the restriction 
that all insertions and deletions must happen at the root. A queue can also be 
implemented with a linked list, where insertions happen only at the tail (whose 
location should also be stored separately), and removals happen only at the root. 
For further instruction on the coding of a linked list, see the computer labs that 
accompany this volume.

If the maximum size n of the stack is known in advance, then we can also use an 
array of size n to implement the stack. To do this, simply store a pointer that tracks 
the location of the root as a counter. Start with an empty stack and push the first 
node onto the stack by putting it in the first position in the array and setting the 
root pointer to point to that position. Push each subsequent node onto the stack 
by appending it to the existing data in the array (the immediate successor of the 
old root) and resetting the root counter to point to the new root position. Data is 
popped off the stack by removing the node at the root position and updating the 
root pointer by subtracting the counter accordingly. This makes both pushing and 
popping very efficient and avoids having to store all the links that point from one 
node to the next. But searching for a node with a specific value still has temporal 
complexity O(&), where к < n is the size of the stack.

A queue whose size never exceeds n can also be implemented as an array of size 
n, but now two counters must be kept—both the root and the tail. New elements 
are pushed at the point of the root counter (just like stacks) and then the root 
counter is increased accordingly. Elements are popped off the queue by increasing 
the tail counter. When either counter gets to n — 1 (the last entry in the array, 
assuming indexing starts at zero), incrementing it starts the counter over at zero. 
It helps to think of the counters modulo n. Of course, it is important to be careful 
when the head and the tail are the same, since that could mean the queue is either 
empty or full.

3.2.3 Directed Rooted Trees
Another type of graph that underlies many useful data structures is the directed 
rooted tree.

Definition 3.2.13. A directed rooted tree is a directed graph with no cycles, having 
exactly one node (the root) with no incoming edges, and where every other vertex 
in the graph has a unique path from the root to that vertex. The outgoing neighbors 
of a given node are called its children, and the given node is called the parent of 
those children. A node with no children is called a leaf node.

When talking about data structures and algorithms, it is common to refer to 
a directed rooted tree simply as a tree. When there is little chance of confusion, 
we also use this terminology. An example of a directed rooted tree is shown in 
Figure 3.5.
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Figure 3.5. An example of a binary directed rooted tree. It is traditional to draw 
directed rooted trees upside down, that is, with the root at the top and the leaves 
below. With this convention, it is assumed that the direction of the edge goes from 
top to bottom and we don’t need to draw arrows. This particular tree is also a binary 
search tree (see Section 3.3.1).

Data structures arising from trees give a generalization of linked lists, where 
the nodes of a tree can link to multiple children, instead of just one. A linked list 
corresponds to a tree in which every node has at most one child. We say that a tree 
is binary if every parent has at most two children.

Some of the most common tree-based data structures are search trees, which are 
organized in a way to facilitate rapid searching. Binary search trees are particularly 
important. We describe these in the next section.

A natural way to implement any data structure based on a tree is like a linked 
list: store each node separately, but have each node also store pointers to each of 
its children. This makes it easy to add and remove new nodes, provided the parent 
is known.

3.3 Search Trees
Search trees are special tree-based data structures that are designed to facilitate 
rapid searching. In a search tree, each node has a value, called a key, that uniquely 
identifies the node and is the basis upon which the tree is organized and searched. 
For example, Figure 3.5 depicts a tree with integer-valued keys. Of course, the 
keys need not be integers—they can be any objects that are ordered (for example, 
strings, ordered lexicographically).

In addition to the key, the node can contain other data relevant to the node, but 
for the purposes of searching and sorting the data, the key is all that matters. For 
example, suppose each node represents a different student’s data, such as their date 
of birth, address, student identification number, etc. Using the (unique) student 
identification number as the key would allow for rapid search for a given student’s 
data, provided we know their identification number. The other information could 
be accessed once the node is found, but it wouldn’t be relevant for purposes of the 
search or for building the tree.
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3.3.1 Binary Search Trees

A binary search tree (BST) is a tree-based data structure that allows finding any 
key in the tree in O(logn) time (assuming the tree is balanced; see Definition 3.3.6). 
A BST has a maximum of two children per node and no duplicate keys, and the 
nodes are organized so that the subtree to the left of each child contains only keys 
that are less than the parent node, whereas the subtree to the right contains only 
keys that are greater than the parent. See Figure 3.5 for an example of a BST.

One of the main benefits of a BST is that it allows for more rapid searching 
than a linked list. However, this comes at a cost for insertion and deletion, as 
shown below.

To find a certain node in a BST, start by comparing the target to the key at the 
root. If the target is greater than the root key, move to the child on the right; if 
it’s equal to the root, stop; otherwise move to the child on the left. Repeating this 
process eventually reaches the target value, if it is in the BST. If the target value is 
not in the BST, this process arrives at a leaf, at which point the search terminates 
and reports an unsuccessful search.

Example 3.3 .1. The tree in Figure 3.5 is a BST. To find the target value 75, 
compare with the root 50. Since 75 > 50, move to node 70 on the right. Since 
75 > 70 move right again to 80. Since 75 < 80, move left to the desired node.

Example 3.3 .2. One spatially efficient way of implementing a BST with n 
elements is to simply sort the keys (temporal complexity of O(nlogn) with 
mergesort of Algorithm 1.11) and store the nodes, in order, in an array. To 
find a given key in the sorted array, do a binary search (see Algorithm 1.9). 
Specifically, compare the key in the middle (position |_^J) of the array with the 
target value. If the target is less than the middle key, then compare with the 
key in the center of the left half (the key that is in position |_^J)- Similarly, if 
the target is greater than the middle key, compare now to the key at position 
L^J; continue in a similar fashion until the desired key is found. Any such 
search will terminate in at most log2 n steps.

Using a sorted array in this way is an implementation of a BST. The root 
is in position |_^J, the left child of the root is in position |_^J, the right child 
is in position and so forth. This is a space-efficient implementation, 
since pointers need not be stored. However, adding a new key to the sorted 
list requires finding the correct insertion point and shifting everything that is 
greater than the new element one place to the right (temporal complexity of 
O(n)). And, again, if the original array is not large enough to hold all the 
inserted elements, the entire array must be copied to a larger array.

To add a node to such a BST, simply move down the tree (at each stage move 
to the right if the new key is greater than the current node, and otherwise move to 
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the left) until no further movement is possible. At this point we are at a node with 
one or no children. This will be the new parent, and a new child is spawned below 
it on the appropriate side. An insertion in a BST always creates a new leaf.

Example 3.3 .3. In this example, we build a BST containing the keys 23, 17, 
97, and 28 by adding the keys consecutively to the tree.

Start with an empty tree, and add the root 
node: 23.

Now add 17. The node for 17 becomes the 
left child of 23 because 17 < 23.

Now add 97. The node for 97 becomes the 
right child of 23 because 97 > 23.

Finally add 28. Starting at the root, move 
to the right because 28 > 23. Since 28 < 
97, the new node is placed as the left child 
of 97.

To delete a node from a BST, there are three different cases to consider. First, 
if the node is a leaf, delete it. Second, if the node is a parent with only one child, 
replace it with its child. Finally, it could happen that the node is a parent with two 
children. In this case first find its in-order predecessor node, which is the rightmost 
child of the left subtree (or alternatively one can use the in-order successor node). 
This predecessor will have at most one child. Swap the node to be deleted with its 
in-order predecessor, and now the node to be deleted has at most one child, so it can 
be deleted, as in the previous two cases. Examples of these three cases are shown in 
Figure 3.6. For further instruction on the coding of a BST, see the computer labs 
that accompany this volume.

3.3.2 Balance
The order in which numbers arrive when inserting and deleting nodes in a BST 
affects the shape, or balance, of the tree, and that affects the efficiency of searching.

Definition 3.3.4. The height of a node in a directed rooted tree is the number of 
edges in the longest path from the node to a leaf The height of a directed rooted 
tree is the height of the root.
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Figure 3.6. The three cases for deleting a node (red) in a BST. In the first case 
(a), the node to delete (20) has no children. In the second case (b)? the node to 
delete (15) has exactly one child. In the last case (c) the node to delete (10) has two 
children. In this last case, swap the node to delete with its immediate predecessor 
(8, blue). The node to delete now has at most one child, so it falls into one of the 
other, easier, cases and can be removed.

Example 3.3.5. The height of the tree in Figure 3.5 is 4, corresponding to 
the path 50 < 70 < 80 < 85 < 90.

Definition 3.3.6. The balance of a given node in a BST is the height of the left 
child minus the height of the right child. A tree is balanced if every node has balance 
—1, 0? or 1.
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Figure 3.7. Depiction of (a) a well-balanced BST of height 2 and (b) a pathologi­
cally unbalanced BST of height 4, which is really just a linked list.

Example 3.3.7. The BST constructed by successively adding the sequence 
50,23,6,41,96,77,99 is shown in Figure 3.7(a). Every node in this example 
has balance 0, because for any node in the tree, its left subtree has the same 
height as its right subtree. In other words, the graph is perfectly balanced.

At the other extreme, constructing a BST by successively adding the (al­
ready sorted) sequence 6, 23, 41, 96, 99 gives the graph in Figure 3.7(b). This 
is so unbalanced that it is a linked list. The balance of the root node is —4 
since the subtree to the left has height zero and the subtree to the right has 
height 4.

Remark 3.3.8. A perfectly balanced binary tree (one whose balance at each node 
is 0) can exist only if the number of nodes is exactly 2k — 1 for some к e Z+. If the 
number of nodes is anything other than this, then at least one node must have a 
nonzero balance; that is why the definition of balanced trees allows nodes to have 
balance 1 or —1 as well.

The temporal complexity of searching a BST is determined by the height of the 
root. If the root has height /z, the search will take up to h + 1 steps. In the best 
case every node is perfectly balanced, with a total of n = 2Zl+1 — 1 nodes, so the 
best possible temporal complexity is О (Ji) = O(logzz). The closer the BST is to 
being perfectly balanced, the faster the searches will be. The worst case is a BST 
that is a linked list with n nodes and n levels. In this case the temporal complexity 
of searching the BST is O(n).

Since additions and deletions consist of a search plus a bounded number of 
operations, their temporal complexity is likewise bounded between the best case 
O(logzz) and the worst case O(tz). In the next subsection, we examine a method 
of rebalancing a BST so that the search complexity (and hence also insertions and 
deletions) is always O(logzz).

3.3.3 AVL Trees
A balanced BST is called an AVL tree, named for two Russian mathematicians, 
Adelson-Velsky and Landis, who first described them and the AVL balancing al-
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Figure 3.8. An AVL right rotation on В to correct a left-left imbalance. Here each 
circle indicates a single node, and each triangle indicates a subtree (possibly empty). 
A left-left imbalance means that the balance of C is 2 and the balance of В is not 
negative. All other subtrees are assumed to satisfy the AVL condition. To perform 
the rotation, the node C is rotated clockwise around В, and the right subtree 3 below 
В becomes the left subtree of C. This rotation reduces the balance of C so that it 
and all other nodes and subtrees in this diagram satisfy the AVL condition.

gorithm in 1962. Their algorithm allows us to rebalance the tree after adding or 
removing a node.

In an AVL tree, deleting a node or inserting a new node could throw off the 
balance, making some nodes in the new tree have balance 2 or —2. Whenever this 
occurs the tree must be rebalanced by rearranging the subtrees using an operation 
called rotation. When a rebalancing is necessary, begin at the lowest level and first 
rebalance the lowest subtrees that do not meet the AVL criterion. Then work up 
one level at a time, rebalancing any unbalanced subtrees as follows:

There are four cases to consider.

(i) If a node C has balance at least 2, then the left subtree is deeper than the 
right. Let В be the left child of C. If the left subtree of В is deeper than 
(or the same depth as) the right subtree, we call this a left-left imbalance. 
In this case perform a right rotation on B, as in Figure 3.8. This operation 
takes the node C and its left child B, moves the node В up to where C was, 
makes C the right child of B, and makes B’s old right subtree into C’s new 
left subtree. Note that the ordering of the subtrees from left to right has not 
changed, so the resulting tree is still a BST. Since we are working upward from 
the bottom, we may assume the subtrees below C are all AVL trees. Using 
this assumption, it is straightforward to check that in the new tree the nodes 
В and C satisfy the AVL condition and the balance of all the other subtrees 
has not changed; see Exercise 3.16.

(ii) If the node C has balance at least 2, but instead of a left-left imbalance the 
left child of C has its left subtree shallower than the right (so its balance 
is negative), then we call this a left-right imbalance. Denote the left child 
of C by A and the right child of A by B, as depicted in the leftmost BST 
of Figure 3.9. To correct the imbalance, first perform a left rotation on В 
(first arrow of Figure 3.9) and then a right rotation on В (second arrow of 
Figure 3.9). For the left rotation, the node A is rotated counterclockwise
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Figure 3.9. A left-right imbalance (in the tree on the left) is corrected by first 
performing a left rotation on В (first arrow) and then a right rotation on В (second 
arrow). For the left rotation, the node A is rotated counterclockwise around В, and 
the old left subtree 2 below В becomes the new right subtree of A in the center В ST. 
For the right rotation on В, the node C is rotated clockwise around В and the right 
subtree 3 of В becomes the new left subtree of C in the final В ST.

around B, and the old left subtree 2 of В becomes the new right subtree of 
A (in the center BST). For the right rotation on B, the node C is rotated 
clockwise around В and the right subtree 3 of В becomes the new left subtree 
of C (in the right BST).
Again, ordering of the subtrees from left to right has not changed, so the re­
sulting tree is still a BST. And since we are working upward from the bottom, 
we may assume the subtrees below C are all AVL trees. The intermediate 
step of this rebalancing does not meet the AVL condition, but it is straight­
forward to check that in the final BST the nodes A, B, and C all satisfy the 
AVL condition and the balance of all the other subtrees has not changed; see 
Exercise 3.17.

(iii) A right-right imbalance is the mirror of the left-left case. The node C has 
balance at most —2, and its right child В has nonpositive balance. This is 
rebalanced by a left rotation on B.

(iv) A right-left imbalance is the mirror of the left-right case. The node C has 
balance —2, and its right child A has positive balance. This is rebalanced by 
a right rotation on the left child В of A and then a left rotation on B.

Definition 3.3.9. An AVL tree is a balanced BST (every node has balance 1, 0, 
or —1).

After a node is added or deleted, the tree is rebalanced, if needed, as described 
above. This guarantees that the final BST constructed in this manner is close to 
being balanced.

Theorem 3.3.10. The minimal number m(h) of nodes possible in an AVL tree of 
height h satisfies

m(fi) = 1 + m(h — 1) + m(h — 2) > 2^2,

and the maximal height of an AVL tree with n nodes is bounded by 21og2 n.
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Proof. It is straightforward to see that the minimal number of nodes in an AVL 
tree of height 0 is m(0) = 1, and the minimal number of nodes in an AVL tree of 
height 1 is 2. Given an AVL tree of height h — 1 with m(h — 1) nodes and another 
AVL tree of height h — 2 with m(h — 2) nodes, we can construct a new AVL tree of 
height h by adding one new vertex R as the root and making the root of each tree 
into a child of R. This shows that m(h) < 1 + m(h — 1) + m(h — 2).

Conversely, given any AVL tree of height h and m(h) nodes, removing the root 
produces two subtrees. One of these must have height h — 1 and at least m(h — 1) 
nodes. The other must have height at least h — 2 by the AVL criterion and thus at 
least m(h — 2) nodes. This shows that m(li) > 1 + m(h — 1) + m(h — 2), and hence 
equality holds.

If h > 2, then m(h — 1) and m(h — 2) are both positive, and hence m(h) = 
1 + m(h — 1) + m(h — 2) > m(h — 1). Thus if h > 3 we have m(h — 1) > m(h — 2), 
which gives

rnffi) = 1 + m(h — 1) + m(h — 2) > 2m(/i — 2) > 2^2.

Since n > m(h) we have n > 2/l/2 and 21og2 n > h. □

Since an AVL tree has height at most 2 log2 n, searching it has a worst-case 
temporal complexity of O(logn). Inserting a new node or deleting a node are done 
the same way as with any BST (which requires a search), but then the result may 
no longer be balanced, so one must also rebalance. Each rotation has a constant 
time complexity, but to make the tree fully balanced may require O(logn) rotations 
(proceeding up the tree to the root from the point of the insertion or deletion); there­
fore the temporal complexity of insertion or deletion, even if the correct location is 
already known, is also O(logn).

The complexity of constructing an AVL tree, by inserting elements one at a time, 
involves n insertions, costing at most O(logn) each, so the total cost of constructing 
the tree is O(nlogn). For further instruction on the coding of an AVL tree, see the 
computer labs that accompany this volume.

3.4 Priority Queues and Heaps
An important problem in computing is to find the minimal element in an unordered 
collection (or list) of data.18 This is particularly challenging in a dynamic situation, 
where data are continually being added to and removed from the collection. In this 
section, we frame this problem as a priority queue and show how to solve it efficiently 
with what is called a heap.

18 Since the algorithms for deciding which element is maximal are nearly identical to those for iden­
tifying which is minimal (invert all the inequalities), all the arguments can be easily translated 
to that of finding the maximal element, but for simplicity we just consider the minimal case.

3.4.1 Priority Queues
A priority queue is a data structure where the keys have an order, and the node with 
the lowest key value is removed and returned (popped) from the queue first. Instead 
of a LIFO or FIFO rule for returning elements, as discussed in Example 3.2.11, a 
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priority queue returns the node with the minimal key, regardless of when it was 
added to the queue. In other words, first “priority” is given to the node with the 
smallest key value. The combined operation of identifying, removing, and returning 
the node with the minimal key is called pop_min or just pop. We call the operation 
of adding a node insert or put.

Naive Implementations

A naive way to implement a priority queue would be to save the data in a linked list, 
and then with each request for the minimal element, simply search the entire list 
for the minimum. This implementation has a cost of only 0(1) for each insertion, 
so it has a maximum total temporal cost of O(n) for building a priority queue with 
n elements. Unfortunately, it also has a cost of O(n) for pop_min.

Alternatively, we could implement a priority queue as a balanced BST (for 
example, as an AVL tree). The minimal element is easily found by moving down 
the tree to the leftmost leaf. In this case each pop_min costs only O(logn). But 
each insertion also costs O(logn), so constructing the tree by successively inserting 
n unordered elements has a temporal complexity of O(nlogn).

The standard implementation of a priority queue uses a different type of balanced 
tree called a heap, which we discuss in the next subsection. The advantage of a heap 
is that it can be constructed in O(n) operations and yet pop.min still costs only 
O(logn) operations.

Applications

Priority queues are very useful for handling sorting and optimization problems, like 
the problem of finding the shortest path between two locations. This and other 
examples are found in Chapter 4.

A priority queue can be used to construct a sorting algorithm as follows: Put all 
the data into a priority queue, and then pop each key back off the priority queue. 
The resulting sequence of elements will be sorted least to greatest. The temporal 
complexity of this sorting algorithm on a data set of n elements is precisely the 
cost of creating the priority queue and then the cost of removing (popping) all n 
elements.

Several well-known sorting algorithms are constructed in this way, including 
the selection sort, which uses the naive implementation of a priority queue as an 
unordered linked list (or an array); tree sort, which uses a self-balancing tree as 
the implementation of the priority queue; and heap sort, which uses a heap as the 
implementation of the priority queue. Among the priority-queue-based sorting algo­
rithms, heap sort is generally preferred.

3.4.2 Heaps
A heap19 is a special type of tree providing an efficient implementation of a priority 
queue. A heap is not a BST, but, like a BST, its temporal complexity for insertion 
and deletion is O(logn); yet the temporal complexity of constructing a heap from an 

19 This should not be confused with the pool of memory in your computer called the heap. While 
the stack is an example of a stack, the heap is not usually structured as a heap.



3.4. Priority Queues and Heaps 127

unordered array of n elements is only O(n). Moreover, the construction can happen 
in place, which means that we need only a small amount of additional memory—the 
initial array plus 0(1)—for the construction.

Definition 3.4.1. A binary heap is a binary tree satisfying the following three 
properties:

(i) Every level is full except, possibly, the lowest level.

(ii) Each parent is less than or equal to its children.

(iii) All leaves are located as far left as possible.

Remark 3.4.2. The minimal element of a heap is easy to find because it is always 
the root.

Unexample 3.4.3. The three trees in Figure 3.10 are almost, but not quite, 
heaps. The left tree fails (i). The center tree satisfies (i) and (iii) but fails (ii). 
The right tree satisfies (i) and (ii) but fails (iii).

Figure 3.10. Some trees that are almost, but not quite, heaps. The left tree fails 
condition (i). The center tree fails condition (ii). The right tree fails condition (iii).

A binary heap is often implemented as an array by storing the root (the minimal 
element) in the first position of the array (position 0), its children in the next two 
positions (positions 1 and 2), its grandchildren in the next four positions, and so 
forth, so that the node in position к has its children in positions 2k +1 and 2k + 2. 
This avoids storing pointers for each node and instead allows traversal of the tree 
with simple arithmetic computations; see Figure 3.11.

When using the array implementation of a heap, every new added node is placed 
in the leftmost empty position. However, this new node is not necessarily greater 
than its parent and so Definition 3.4.1(ii) might not be satisfied. To remedy this, 
we must sift up\ that is, the new node swaps places with its parent whenever it is 
less than its parent. Repeat this process until either the new node is greater than 
its parent or it becomes the new root. In either case, the new tree is now a heap 
and we have the following result.
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root children grandchildren great-grandchildren

Figure 3.11. An array implementation of a heap. The root (blue) is in the Oth 
position, its two children (green) are in positions 1 and 2, and, in general, the 
children of the node in the к th position are in positions 2k + 1 and 2k + 2.

Proposition 3.4.4. If a heap has one new leaf added that does not satisfy the 
condition that the leaf is greater than its parent, then sifting that leaf up until it is 
greater than its parent will produce a heap.

Proof. The proof is Exercise 3.22. □

Remark 3.4.5. The process of inserting a new entry to a heap (that is, adding 
it to the end of the heap and then sifting up until the new tree is a heap) has a 
temporal complexity of O(logn) since there are at most log2 n ancestors to swap 
with while sifting up.

To remove an element from a heap, simply replace the key to delete with the 
key in the rightmost leaf of the heap. If that rightmost key is greater than one of its 
children, sift down, by trading places with its smallest child and repeating as nec­
essary until it satisfies the ordering property in Definition 3.4.1(ii); see Figure 3.12 
for an illustration.

Proposition 3.4.6. If the key in one node of a heap is replaced with a different 
key that is greater than one (or both) of its children, then sifting that node down 
(trading places with its smallest child) until it is less than all of its children will 
produce a heap.

Proof. The proof is Exercise 3.23. □

Again, since there are at most piog2 n] levels, deletion requires at most O(logn) 
steps (down- or up-sifts). Also, updating the priority of a given node and then
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Figure 3.12. Removing a key from a heap. To remove the key 13 (red) from the 
heap at the top of the figure, trade places with the bottom rightmost key 32 (blue), 
and then remove 13. The result is no longer a heap, because the root 32 is larger 
than a child (actually, it is larger than both children). To fix this, sift down by 
trading places with the smallest child, in this case 16 (yellow). The result is still 
not a heap because 32 is still larger than one of its children, 19 (green). Sift down 
again, by trading places with 19. The process is complete because there are now no 
children of 32 that are smaller than it, thus the last tree satisfies the heap-ordering 
property of Definition 5.^.7(ii).

sifting in the appropriate way will require at most log2 n up- or down-sifts to make 
the result into a heap again.

3.4.3 Constructing a Heap
Since adding a new node to an existing heap of n nodes costs O(logn) operations, 
you might think that creating a new heap from an unordered array of n elements by 
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adding the nodes in succession would take O(nlogn) operations. In this subsection, 
we show how to grow a heap in O(n) time through a process called heapifying the 
array, which goes as follows.

Start with all n elements in an array. Treating the array as a tree with the root 
in position 0 and the children of node к in positions 2k + 1 and 2k + 2 means that 
the tree automatically satisfies (i) (all but the bottom level is full) and (iii) (all the 
nodes are as far left as possible) of Definition 3.4.1. Therefore, the only property 
that is not necessarily satisfied is the heap-ordering property, (ii). The main tool 
in the heapifying process is sifting down, and the success of the process relies on 
Proposition 3.4.6, which guarantees that if all the elements of a subtree except the 
root satisfy the heap-ordering condition (that is, the root may be larger than one 
of its children, but all other nodes in the subtree are less than their children), then 
sifting the root down until it satisfies the ordering condition ensures that the entire 
subtree satisfies the ordering condition.

The strategy is to start at the bottom and work upward, sifting each node down 
until it satisfies the heap-ordering property. The leaf nodes are those in the range 
from to the end, and all leaves vacuously satisfy the property that they are less 
than their children (since they have no children). Starting at the next level, the 
rightmost node that has a child is in position — 1. Running through the nodes 
in positions — 1 down to 0, sift each node down, as necessary. Once each node 
has been sifted, then everything below that point is a heap.

Proposition 3.4.7. The process described above of building a heap from an un­
ordered array with n elements has temporal complexity O(n).

Proof. The temporal complexity T(n) is determined by the total number of down­
sifts. The bottom layer has no more than 2fc-1 leaves, where к = piog2n^, and 
these leaves need no sifting down. The next layer has exactly 2k~2 nodes, and they 
need to be sifted down at most once. The next layer of 2fe-3 nodes need to be sifted 
down at most twice, and so forth. Therefore, we have

к—1 oo /1 \ 1
^n7T^=2n’

where the penultimate inequality follows from Exercise 1.20 and from the fact that 
2fe-i < 2log2n = n. □

Remark 3.4.8. The previous description and proposition show that a heap can 
be built in place, using the original array for memory with only a few additional 
temporary variables for the sifting process. Moreover, the total number of sift­
down operations required for the build is less than n, so the build process is very 
efficient. For these reasons this array-based binary heap is usually the preferred 
implementation for a priority queue. Indeed, many people use the terms heap and 
priority queue interchangeably, although this is not technically correct, since, as 
we have seen, there are many other (less efficient) ways to implement a priority 
queue.
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Remark 3.4.9. Since a heap can be built in O(n) time, it should not be surprising 
that, on average, a heap insertion (with all necessary up-sifting) has complexity only 
0(1)—intuitively, most of the elements of the heap belong near the bottom, since 
the bottom has exponentially more elements than the top. Thus, most elements 
inserted at the bottom need very few up-sifts after insertion to satisfy the heap 
ordering.

Remark 3.4.10. In some settings it is useful for a priority queue to have an ad­
ditional operation that allows us to update the priority of an existing node. In 
the heap implementation of a priority queue, this is easy to do if the location of 
the node is known. In that case, simply delete the node (and heapify) and then 
insert the same data back into the heap with the new priority (and heapify). The 
problem, of course, is that we generally do not know the location of the node we 
want to update, and a search for a general node in a heap costs O(n) because every 
branch of the tree must be searched.

One possible approach to this problem is to simply duplicate the data. That 
is, make a new node with the same data but with a new key matching the new 
priority. This can work in situations where the additional memory cost is not a 
problem, provided data with old priorities are not a threat to the success of the 
application. If actually updating the priorities, rather than duplicating data, is 
important, then a BST may be better suited than a heap, since finding an arbitrary 
key in a BST can be done in O(log(n)) time.

3.5 *B-Trees
In Section 3.3.3, we showed that AVL trees were of logarithmic temporal complexity 
for searches, inserts, and deletes. In this section we introduce the В-tree, which is 
a more general self-balancing tree that also allows searches, inserts, and deletes in 
logarithmic time, but each node can support several children and thus store large 
blocks of data contiguously. This allows the tree to operate more efficiently with 
some types of large data sets; for example, В-trees are used heavily to store data in 
both relational databases and many file systems.

Definition 3.5.1. Fix two positive integers m and h, and let k = 2m. A balanced 
В-tree of order к and height h is a tree where each node may contain multiple keys, 
where edges from a parent node to its children are separated by the keys of the parent, 
and where edges are arranged so that all the keys in a child lie between the keys of 
the parent that separate that edge from the other edges. Moreover, the following 
must hold:

(i) The distance from the root to every leaf is h.

(ii) Each node contains no more than к keys and no more than к + 1 children.

(iii) Every node except the root has at least m keys.

(iv) The root may never have only one child—unless the root is also a leaf, it must 
have at least two children.
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Figure 3.13. A В-tree of order к = 4 and height h = 1, as described in 
Example 3.5.2.

Example 3.5.2. An example of a В-tree is given in Figure 3.13. Note that 
all the keys (10 and 14) in the leftmost leaf are less than the first key (20) of 
the root, all the keys (24 and 34) of the middle leaf lie between the first two 
keys (20 and 48) of the root, and all the keys of the rightmost leaf (50, 75, and 
99) are greater than the last key (48) of the root. Also, every node including 
the root has at least m = 2 keys. It is allowable for the root to have fewer 
than m keys, but every other node must have at least m.

Remark 3.5.3. As with other data structures, we may associate a large amount 
of data to each key, but each datum is only identified and ordered by its key, so we 
only talk about the keys themselves, as if they were the data.

Proposition 3.5.4. The number of keys that a В-tree can hold grows exponentially 
in h. More precisely, a В-tree of order к and height h can store up to k(k + V)h keys.

Proof, The proof is Exercise 3.24. □

Example 3.5.5. A В-tree of order к = 99 and height h = 2 can store 
99(100)2 = 990,000 keys. Adding a new level (h = 3) increases the total 
capacity a hundredfold to (99)(100)3 = 99,000,000 keys.

A В-tree has spatial complexity O(n), where n is the total number of keys. 
Searching a В-tree of order к and height h has worst-case temporal complexity 
O(k(h + 1)), so if n is the total number of keys, and the order к is fixed, then 
searching has temporal complexity O(log(n)).

To insert a new key, first search for the appropriate leaf node to insert into. If 
the leaf is not full, insert the key into the correct place in the leaf (this will require 
rearranging the keys in the leaf, but will not require changing the rest of the tree). 
If the leaf is full, temporarily add the new key to the list of keys in that leaf, find 
the median of that list, and promote it to the parent node. All keys greater than 
the median key belong to the new right leaf and all keys smaller than the median 
key belong to the new left leaf; see Figure 3.14 for an example of this procedure.

If the parent node is full, split it in a similar way—by finding the median and 
promoting it—and continue this process until you reach the root of the tree. If the
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Figure 3.14. Inserting the key 5 into a full leaf makes the leaf overfull. To 
rebalance, the median 12 of the overfull leaf is moved into the parent node and the 
overfull leaf is split.

№1

20 48

О M:ill I I |60|6H|74|

Figure 3.15. Deleting from a В-tree leaf with only m keys, and taking from a 
sibling: Deleting the key 34 leaves the middle leaf (red) underfull. Since the right 
sibling can spare a key, move the right separator in the parent (48) down to the 
middle leaf. This leaves the parent (yellow) underfull. This can be repaired by 
moving the immediate successor 60 of the moved key (48) from the right sibling up 
to the parent.
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Figure 3.16. Deleting from a В-tree leaf with m keys, but siblings can’t spare keys: 
Deleting the key 48 leaves the middle leaf (red) underfull. Since neither sibling can 
spare a key, merge with the right sibling (yellow) and move the right separator 60 
in the parent down to the merged leaf (orange). This leaves the parent (purple) 
underfull. If the parent is the root, this is not a problem, but if it is not the root, 
it will have to be rebalanced by taking from (or merging with) a sibling. In this 
particular case it can also be rebalanced by moving the largest key (74) from the 
newly merged leaf to the parent.

root is full, split it and create a new root (increasing the overall height by 1), with 
the median as the only key in the new root. The number of times we must perform 
this splitting procedure for a given insertion is never more than h+1, so the temporal 
complexity of the insertion with rebalancing is at worst O(logn). Note, however, 
that insertion can increase the height of the В-tree to h + 1.

To delete a key from a leaf with at least m + 1 keys, remove the key. If the leaf 
has only m keys, removing the key will cause the leaf to be underfull. In this case 
take a key from an adjacent sibling, if the sibling can spare it. To do this, move the 
parent key down to the underfull leaf and move the sibling’s key up to the parent; 
see Figure 3.15 for an illustration. If neither adjacent sibling can spare a key, merge 
with one of the adjacent siblings. This is always possible, because the total number 
of keys in the merged leaf will be (m— 1) + 1 + m = 2m. This reduces the number 
of the parent’s keys by 1, so if the parent is underfull, it will need to be rebalanced. 
In some cases, this can be done by moving either the largest or the smallest key up 
from the newly merged leaf to the parent, but in general this requires taking from 
a sibling again; see, for example, Figure 3.16.
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Figure 3.17. Deleting from a nonleaf node of a В-tree: Deleting the key 12 leaves 
the root (red) underfull. Move 12’s immediate successor 13 up to the root. This 
leaves the affected leaf (blue) underfull. Since its sibling (yellow) can spare no keys, 
merge them (and the parent key L6 between them) to produce a completely full leaf. 
But this makes the parent (red) underfull. To remedy this, since its sibling (blue) 
cannot spare keys, merge the underfull node with its sibling and parent (purple).
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To delete a key from a nonleaf node, if the key is not separating two children, 
remove the key and rebalance as above. If the key is separating two children, then 
its immediate in-order predecessor (the largest element in the left subtree) is still 
less than the key we wish to remove, and it lies in a leaf. Similarly, its immediate 
in-order successor (the smallest element in the right subtree) is still greater than 
the key we wish to remove, and it lies in a leaf. Move one of these two keys (the 
immediate predecessor or successor) up to fill the spot vacated by the deleted key. If 
the leaf from which the key was taken is underfull, rebalance as before. An example 
of this is given in Figure 3.17.

The operation of deletion involves a search for the key to delete, and at worst 
another search for the in-order predecessor or successor and a rebalancing. Each of 
these steps has temporal complexity at most O(logn), so the entire operation also 
has temporal complexity O(logn).

Remark 3.5.6. There are several common variants of the В-tree. For example, a 
B+tree is like a В-tree, but the actual data of the tree is stored only in the leaf 
nodes; all other nodes in the tree are index nodes.

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

3.1. Let G = (V, E) with V = {a, 6, c, d} and E = {(a, 6), (a, c), (a, d), (6, c)}. List 
all the subgraphs of G.

3.2. How many distinct undirected graphs can be created with seven vertices and 
13 edges? What if the graphs are directed?

3.3. Consider the graph in the figure below. Use the adjacency matrix to deter­
mine the number of walks of length 4 from node 1 to node 4. How many of 
those walks are paths?
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3.4. Consider the graph G5 in Figure 3.2. Use the adjacency matrix to determine 
the number of closed walks of length 3 starting and ending at node 3. How 
many of those walks are cycles?

3.5. Let A be the adjacency matrix of a directed graph G.
(i) Explain why the (i,J) entry of A is the number of walks of length 1 from 

node i to node j.
(ii) Prove that the (г, J) entry of A  is the number of walks of length 2 from 

i to j.
(i)2

(iii) Complete the proof of Proposition 3.1.24. Hint: Use induction.

(i) Starting with an empty queue, show the result of each step of the fol­
lowing sequence of operations (parsed from left to right): AB * CD * *

(ii) Starting with an empty stack, show the result of each step of the follow­
ing sequence of operations (parsed from left to right): AB * CD * *

3.8. Describe how to use two stacks to implement a queue. What is the temporal 
complexity of the operations push and pop?

3.9. A double-ended queue, usually called a deque (pronounced “deck”), is a data 
structure like a queue, but where the data can be added to (pushed) or 
removed from (popped) either end of the queue. Describe how to implement 
a deque using one or more of the data structures described in Section 3.2.2. 
The temporal complexity of pushing or popping from either end should be 
0(1).

3.10. Describe how to use a stack, queue, or deque to construct a palindrome veri­
fier: Given any input (a0,..., an), your algorithm should determine whether 
ai = an_i for every i G {0,..., n}. What is the temporal complexity of your 
algorithm? Justify your answer.

3.6.  f An automorphism of a graph G = (V, E) is a bijection ф : V V such 
that for each edge (v, vf) G E the pair (0(v), ф(у')) is also in E.
*

Show that if ф is an automorphism of an undirected (finite) tree with a finite 
number of vertices, then either there exists a vertex v G V with ф(Е) = v or 
there exists an edge (u, v') G E with ф(и) = v' and ф(и') = v.

3.7. We encode a sequence of instructions using letters and asterisks—a letter 
means push that letter, and  means pop. For each operation of the se­
quence, illustrate the result of applying the operation to the corresponding 
data structure. For example, if the data structure is a stack, and the existing 
state was

*

t t 
root tail

A В c

then applying * (pop) results in

B c 
t t 

root tail
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3.11. Prove that for an undirected graph G the following statements are equivalent: 
(i) G is a tree.

(ii) G is connected, but for every edge e of G, removing the edge e makes 
the resulting graph disconnected.

(iii) G contains no cycle, but if any edge is added between any pair of vertices 
of G, the resulting graph has a cycle.

3.12. Prove that a perfectly balanced tree of height h has n = 2h+1 — 1 nodes.
3.13. Start with an empty BST.

(i) Show the result and all intermediate steps of adding the sequence 5, 3, 
7, 2, 4, 6, in order (from left to right).

(ii) Show the result and all intermediate steps of adding the sequence 2, 3, 
4, 5, 6, 7.

3.14. Let Sn = {1,2,..., n} be a space of keys. Let Cn be the distinct number of 
BSTs for Sn. By the multiplication rule, there are Ck-i • Cn_k BSTs with 
root к G Sn.

(i) Prove that
n n— 1

Gn = Gfc_ iGn_fc = GfcGn-i-fc.
fc=l fc=0

(ii) Let C(x) = C^xk. Prove that C(x) = 1 + xC(x)2.
(iii) Since G(0) = 1, we have that

1 — \/l — 4x
2x

(iv) Using (2.32), prove that

Conclude for n G Z+ that Cn =
3.15. Start with an empty AVL tree.

(i) Show each step of the process of adding and then rebalancing for the 
sequence 2, 3, 4, 5, 6, 7.

(ii) Now show each step of the process of deleting and then rebalancing for 
the sequence 2, 7, 5, 6.

3.16. For a left-left imbalance, as in Figure 3.8, prove that if all the nodes below 
G satisfy the AVL condition, but the balance of G is 2, then after a right 
rotation on В the nodes В and G in the new tree satisfy the AVL condition 
and the balance of all the other subtrees has not changed.

3.17. For a left-right imbalance, as in Figure 3.9, prove that a left rotation on B, 
followed by a right rotation on B, gives a new tree in which the nodes A, B, 
and G all satisfy the AVL condition and the balance of all the other subtrees 
has not changed.
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3.18.  Give an example to show that the order in which elements are added to an 
AVL tree, and rebalanced by the AVL algorithm, can affect the final structure 
of the tree.

*

3.19. Beginning with the following heap, insert a node with key 1 and sift, as 
necessary, until the result is a new heap. Draw the corresponding tree at 
each intermediate step of the process.

3.20. Starting with the array [7,6, 5,4,3,2,1], heapify the array, showing the status 
of the array at each intermediate step of the process.

3.21. Given the array in the previous exercise, is there a permutation of the array 
that would require more steps to heapify? What permutation would require 
the most sifting? What permutation would require the least sifting?

3.22. Prove Proposition 3.4.4.
3.23. Prove Proposition 3.4.6.

3.24.  Prove Proposition 3.5.4.*
3.25.  Starting with an empty В-tree of order к = 4, show each step resulting from 

adding (and rebalancing) the sequence 1,2,3,4,5,6, 7,8,9 (in order, from left 
to right).

*

3.26.  For the В-tree produced in the previous problem, show each step of the 
result of deleting (and rebalancing) the sequence 5,2,3,1.
*

3.27.  Consider an initially empty В-tree of order 3. Draw the В-tree after the 
insertion of the keys 27, 33, 39, 1, 3, 10, 7.
*

3.28.  Take your answer from the previous problem and then draw the tree after 
deleting the following keys: 33, 39, and 10.
*

3.29.  Find all legal В-trees of any order that contain only the keys 1, 2, 3, 4, 5.*

Notes
A standard reference for much of the material in this chapter is [CLRS01]. AVL 
trees were first described in [AVL62] and have inspired many other methods for 
balancing BSTs. Our proof of Theorem 3.3.10 on the depth of AVL trees was 
inspired by [Pat 17].

It’s easy to see how to build a priority queue out of a sorting algorithm, but it 
can also be shown that any sorting algorithm with temporal complexity of O(n s(n)) 
can be used to implement a priority queue such that the cost of the f ind.min and 
pop_min function are O(s(n)). For more on this see [Tho07, WY12]. For more 
information about the average complexity of insertion in a heap, see [PS75].





Combinatorial 
Optimization

If people do not believe that mathematics is simple, it is only because they do not 
realize how complicated life is.
—John von Neumann

Combinatorial optimization is about finding the best choice among a discrete col­
lection of choices. Many important problems, both in mathematics and in life, can 
be formulated as combinatorial optimization problems. In this chapter we describe 
a few of these problems and some common techniques for attacking them.

The problems we consider here include finding the shortest route between two 
locations in a network of roads, the most efficient way to compress a message, and 
the most efficient or valuable combination of items that meet a given budget (which 
could be time, space, money, or something else). Many real-world problems can 
be reformulated in terms of these and other standard combinatorial optimization 
problems. You will find many of the ideas from this chapter cropping up over and 
over again, not only in this text, but whenever you want to do something faster, 
cheaper, or better.

Because combinatorial optimization problems are usually finite, we could, at 
least in theory, check every possible combination and see what works best. We call 
this naive approach the brute force or exhaustive method. One example using this 
method is given in Example 4.0.1.

Example 4.0.1. Consider the change-making problem, which consists of find­
ing the smallest number n of coins necessary to achieve a given value v. We 
assume the standard American coinage system, consisting of pennies ($0.01), 
nickels ($0.05), dimes ($0.10), quarters ($0.25), half dollars ($0.50), and dollars 
($1.00).

To solve the problem for v = $0.19 by the exhaustive method, we list all 
the ways to get $0.19:

141
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Configuration n
19 pennies 19
14 pennies, 1 nickel 15
9 pennies, 2 nickels 11
9 pennies, 1 dime 10
4 pennies, 3 nickels 7
4 pennies, 1 nickel, 1 dime 6

Since this table is complete, we see that the minimum number of coins for
v = 0.19 is 6.

In practice, the exhaustive method works only in situations where there are 
relatively few possibilities to pick from. But, unfortunately, most combinatorial 
optimization problems have far too many possibilities for anyone to check them all. 
Example 4.0.2 is typical of the size of a combinatorial problem.

Example 4.0.2. The traveling salesman problem (TSP) asks for the best 
route to visit a given collection of n cities. It is straightforward to show that 
there are n!/2 possible routes. So if n = 20, then the number of possible routes 
is 20!/2 = 1,216,451,004,088,320,000. Hence, even if you had a machine that 
could check a billion routes per second, it would still take more than 38 years to 
check all the possible routes. And in many applications, we need to solve this 
problem for much larger values of n, which means that the naive, exhaustive 
approach is simply not feasible.

One of the most useful tools for solving optimization problems is called dynamic 
programming, which computes and keeps track of solutions of smaller, easier versions 
of the problem and then combines them to construct the solution of the full problem. 
We discuss dynamic programming in Section 4.1 and again in Chapter 16.

Another useful approach to solving discrete optimization problems is to use a 
greedy algorithm. These are algorithms that develop a candidate solution stepwise, 
always choosing the next step to be the option that appears at the moment to be 
best. Greedy algorithms are not always successful because the optimal solutions to 
many problems have intermediate steps that do not appear optimal at the inter­
mediate stages of development. But for a surprising number of problems, there is 
a greedy algorithm that always produces the optimal solution, and for many other 
problems, there are greedy algorithms that usually produce solutions that are nearly 
optimal. We explore some of each of these sorts of problems in this chapter.

Finally, it is important to note that reformulating problems slightly to allow the 
possibility of a small amount of error in a solution can vastly reduce the complexity 
of the algorithms required to solve them. A good approximate answer can often 
be found very rapidly, even for many optimization problems that are essentially 
impossible to solve exactly. We discuss this briefly in Section 4.5.3 and further in 
Chapter 7.
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4.1 Dynamic Programming
Some recursive algorithms are of low complexity because they “divide and conquer” 
efficiently. For example, the mergesort algorithm (see Algorithm 1.11) breaks a 
list of n elements into two subproblems of approximate size This gives us the 
recurrence relation (1.48) and results in O(logn) temporal complexity.

By contrast, in many combinatorial optimization problems the size of the sub­
problems encountered in a divide-and-conquer method is not necessarily much 
smaller than the original problem. For example, computing the lengths of all the 
paths among n cities in the TSP (see Example 4.0.2) involves a subproblem of 
computing the lengths of all the paths for n — 1 cities, and the obvious divide-and- 
conquer approach to the TSP has temporal complexity satisfying the recurrence 
relation T(n) = nT(n — 1), which results in factorial complexity O(nl). Note, how­
ever, that in this approach the various subparts of the recursive algorithm have 
substantial overlap, and we end up solving the same subproblems over and over 
again. This is common in many combinatorial optimization problems.

When problems have such an overlapping structure among their subproblems, 
the algorithms that solve them can often be improved by storing the commonly 
recomputed subproblems the first time they are computed and then looking up their 
answers the next time they are encountered. Depending on the amount of overlap 
among subproblems, this can significantly improve the temporal complexity of an 
algorithm, but it often comes at the cost of some increase in spatial complexity.

The strategy of storing solutions of subproblems, rather than recomputing, is 
called dynamic programming. The term program in this context does not refer to 
a computer program but rather a schedule or table, corresponding to the idea that 
the computed values are stored in some sort of lookup table.

Dynamic programming is primarily done in one of two ways:

(i) Top down (often called memoization2®).

(ii) Bottom up (sometimes called iterative dynamic programming).

4.1.1 Top-Down Dynamic Programming
The top-down (memoization) approach consists of running a recursive process as 
usual, but at each stage, when a subproblem is encountered in the recursion, the 
results of that subcomputation are saved for possible future use. The next time the 
same subproblem is encountered, the answer is looked up instead of recomputed.

Example 4.1.1. Consider the change-making problem of Example 4.0.1. To 
use memoization on this problem, first formulate it recursively. Let n(v) be 
the minimal number of coins required to achieve value v > 0. Denote the set 
of coins as C = {0.01,0.05,0.10,0.25,0.50,1.00}. We can write n(v) in terms 
of n(y — c) for each с E C as

n(u) = min{l + n(y — c)}. 
cEC (4-1)

20 Not to be confused with memorization. 
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Each smaller problem n(y — c) can then be attacked in the same way, repeating 
until the amount to solve for is 0.

We have

n(0.19) = 1 + minn(0.19 — c) = 1 + min{n(0.18), n(0.14), n(0.09)},

n(0.18) = 1 + minn(0.18 — c) = 1 + min{n(0.17), n(0.13), n(0.08)},
c

n(0.14) = 1 + minn(0.14 — c) = 1 + min{n(0.13), n(0.09), n(0.04)},

n(0.09) = 1 + minn(0.09 — c) = 1 + min{n(0.08), n(0.04)},
c

and so on. In a naive recursion some of the subproblems (like n(0.08)) would be 
computed multiple times. In a memoized (top-down dynamic programming) 
algorithm, these values are stored the first time they are computed and then 
just looked up each subsequent time they are needed; see Algorithm 4.1 for 
details

2
3
4
5
6
7
8
9

10
11
12
13
14

# global variables
C = [1,5,10,25,50,100] # Currency system
lookup={0:0} # Known solutions

def makechange(v):
..... Return the minimum number of coins that add to v cents, 
и и и

if v in lookup.keys(): 
return lookup[v]

else:
ans = 1 + min([makechange(v-c) for c in C if c <= v] ) 
lookup[v] = ans 
return ans

Algorithm 4.1. Implementation of the change-making algorithm; note the use 
of the dictionary lookup for memoization. As expected, calling make change (19) 
returns 6. After calling makechange(19) the dictionary lookup contains all the 

solutions for v e {0,..., 19}.

Remark 4.1.2. Knowing the optimal number of coins n(v) in the previous example 
does not necessarily tell you how to achieve that optimal number. But it is easy to 
adjust the algorithm to track the optimal configuration of coins (the optimizer) at 
each step. This is true of most combinatorial optimization problems. The approach 
to solving the problem usually produces the optimizer itself along the way, and so 
algorithms that find the optimal value (n(u) in this example) can be adapted to 
also return the optimizer as part of the solution.
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Example 4.1.3. The nth Fibonacci number F(n) is defined by the recurrence

F(n) = F(n - 2) + F(n - 1) (4.2)

with starting values F(0) = F(l) = 1. A naive divide-and-conquer algorithm 
computes both F(n — 2) and F(n — 1) recursively. Therefore it has temporal 
complexity

T(n) = T(n - 2) + T(n - 1) + 0(1) > 2T(n - 2) + 0(1) e O(2n/2),

which is terrible. Saving the result of each F(k) the first time it is computed, 
speeds up the algorithm considerably. Indeed, the computation of F(n — 1) 
computes F(n —2) along the way, so, using memoization, the value of F(n —2) 
used in the sum (4.2) requires only a single lookup (hence 0(1)), and so the 
new recurrence relation for the temporal complexity takes the form

T(n)=T(n-l) + O(l),

which means the memoized computation has temporal complexity in O(n).

Remark 4.1.4. Although memoization offers a huge temporal savings and is gen­
erally easy to implement, memoization can come at a significant memory cost. In 
any divide-and-conquer algorithm, each step must be stored while the lower steps 
are being computed. For the naive Fibonacci algorithm that means each level in­
creases the spatial complexity by at least one, and so the overall spatial complexity 
is at least O(n). Memoizing requires us to store the previously computed results, 
so it is also at least O(n). When computing F for large values like n = 106, these 
algorithms are seriously constrained by limited memory.

Example 4.1.5. Consider the problem of multiplying three matrices together. 
Matrix multiplication is associative, so we have two choices of how to compute 
the product.

ABC = (AB)C = A(BC)

Exercise 1.26 shows that the choice of grouping can have a significant effect 
on the complexity of the computation. More precisely, if A E В E
Mg>rn(lR), and С E Mm?n(R), then the temporal complexity of computing 
AB is ~ 2k£m (see Section 1.5), and the complexity of computing (AB)C, 
given (AB), is ~ 2kmn for a total complexity of ~ 2(k£m + kmri) for the 
first grouping. Performing the multiplication using the second grouping has 
complexity ~ 2(k£n + Imn).

If k, £, and m are large but not too similar in size, we can often save a lot of 
time by comparing the complexities of the two groupings and then performing 
the multiplication using the grouping with lower complexity. When there 
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are many matrices to be multiplied, careful grouping can make a significant 
improvement in efficiency.

Assume that Aq, ... An_± are to be multiplied, with € MmfeXmfc+1(R) 
for each к € {0,..., n — 1}, The optimal choice of grouping depends only on 
the dimensions mo,... , mn. Denote the complexity of the optimal choice of 
grouping by C(mo, mi,..., mn). This quantity satisfies the recursion relation

C(m0,mi,...,mn) (4.3)
= min {C(mo,..., m^) + 2тот/,тп + С(т^,..., mn)}. 

0<fc<n

This leads to a naive divide-and-conquer algorithm that involves recursively 
computing C(mo,..., rrik-i) and ..., mn) for each choice of к. But 
many of these quantities are computed more than once. For example, C(mi, m^) 
must be computed to find the quantity and again to find
C(mi, m2, m3). With memoization each of these is computed only once, which 
reduces the temporal complexity of this algorithm substantially.

4.1.2 Bottom-Up Dynamic Programming

With bottom-up dynamic programming we still take advantage of the fact that many 
of the subproblems are being solved repeatedly, but instead of using recursion, we 
use an iterative algorithm, starting with the simplest computations and then assem­
bling the results into solutions of progressively more complicated problems, until 
the desired solution has been computed. Most of the previously computed values 
need to be remembered only for a few steps, after which they can be discarded. 
This means that the spatial complexity is usually less for bottom-up dynamic 
programming than for top-down, but the temporal complexity is similar between 
the two.

Example 4.1.6. The bottom-up approach to the change-making problem of 
Examples 4.0.1 and 4.1.1 is to compute n(0) = 0 and store that value. Now use 
that to compute n(l) = n(0) + l = 1, and again store that value. Continuing in 
this way gives n(2) = n(l) + 1 = 2, n(3) = n(2) + 1 = 3, n(4) = n(3) + 1=4, 
and n(5) = 1 + min{n(0), n(4)} = 1. To solve the problem n(v) involves 
computing every value n(a) for a < v.

These values need only be stored until we are sure they are no longer 
needed. Since 1.00 is the largest coin value, the smallest that a — c could ever 
be is a — 1.00. Therefore, once a — 1.00 > m, we will never need the value 
n(m) and can safely discard it. This means we need only store at most 100 
values at a time, and the spatial complexity of this algorithm is 0(1).
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Example 4.1.7. The bottom-up approach to the Fibonacci problem first 
computes F(0) and F(l), then uses those to compute F(2) = F(0) + F(l). 
Since F(0) will never be needed again, it is discarded. Now compute F(3) = 
F(l) + F(2), at which point F(l) is discarded. The algorithm continues in this 
way until reaching F(n). This dynamic optimization algorithm still involves 
only n additions and has temporal complexity T(n) G O(n), but its spatial 
complexity is 0(1), which is much better than memoization.

Remark 4.1.8. Not all recursive algorithms can be improved with a dynamic pro­
gram. The merge sort and binary search algorithms cannot be improved by these 
techniques because no subproblem is the same as any other subproblem (usually). 
In merge sort, for example, we don’t expect any of the sublists that we must sort 
to be identical to any of the other sublists. Looking to see whether a sublist has 
already been sorted is a waste of time, and storing previously sorted sublists is a 
waste of memory.

Remark 4.1.9. Memoization is usually easy to implement, and it greatly improves 
temporal complexity if there are many repeated computations. This is often more 
than enough to achieve the performance needed from the algorithm. But it comes 
at the cost of some added spatial complexity. In many situations the spatial cost 
is not enough to matter, but when it does matter, bottom-up dynamic program­
ming is often a better choice. Bottom-up dynamic programming usually takes more 
thought to implement than memoization, but the extra thought can produce sig­
nificant savings in spatial complexity while still achieving the temporal savings of 
memoization.

4.1.3 Bellman Optimality
A fundamental idea that allows many problems to be solved rapidly with dynamic 
programming is Bellman’s optimality principle. Bellman’s principle is essentially a 
generalization of the observation that any part of a shortest path is itself a shortest 
path. For example, if the shortest path from Boston to Salt Lake City passes through 
Chicago, then the last part of that route, from Chicago to Salt Lake City, must be 
the shortest path from Chicago to Salt Lake City. More generally, many problems 
have the property that subparts of the optimal solution are optimal solutions for a 
subproblem.

Example 4.1.10. In the change-making problem, if the optimal number of 
coins n(y) for v is achieved with coins of value ci, C2,..., cn^ , then the optimal 
number of coins n(y—ci) is achieved by removing coin ci to get C2, C3,..., cn(vy 
That is the essence of the recursion relation (4.1), which we call the Bell­
man equation for the change-making problem. This relation is the key to 
using bottom-up dynamic programming to solve the problem, as described in 
Example 4.1.6.
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Example 4.1.11. The Bellman relation for the matrix-grouping problem of 
Example 4.1.5 is given by (4.3). It shows that if the best way to group n 
matrices includes a grouping of the first к < n matrices, then that group­
ing is the best grouping for those к matrices. Again, this means we can use 
bottom-up dynamic programming to solve this problem by first computing 
Cfjrii, m^i, mi+2) = for every г, and then using the relation
(4.3) to compute С(тп{, тпг+ъ mi+2, тг+з) f°r every г, and so on, using (4.3) 
to assemble the previous results into the optimal value for a slightly more com­
plicated problem, until finally reaching the optimal value C(mo, mi,..., mn) 
of the original problem.

We revisit Bellman’s optimality principle several times throughout this book, 
including in the next section, where we talk about Dijkstra’s algorithm, and again 
in Chapter 16.

Remark 4.1.12. Bellman’s optimality principle is so important in dynamic pro­
gramming that people will often say dynamic programming or dynamic optimization 
when they actually mean the optimality principle.

4.2 Graph Search Algorithms
Many important combinatorial optimization problems can be formulated as graph 
search algorithms. In this section we discuss a few important examples of graph 
search problems and the algorithms for solving them.

Two key questions about paths in a graph (including trees) are

(i) is there is a path between two given nodes? and, if so,

(ii) what is the shortest path?

These are examples of graph search problems, and the two standard methods to 
solve them are depth-first search (DFS) and breadth-first search (BFS).

4.2.1 Depth-First Search
The idea of DFS is simple: Start at the initial node, follow the first edge out of 
that node to a new node, follow the first edge out of that node to the next node 
(deeper), and so forth until arriving at a node with no neighbors that have not been 
visited. Then return up one step to the previous node, and follow the next edge and 
repeat until arriving at a node with no outgoing edges that have not already been 
traversed. Continue this process until the desired target node has been reached or 
you run out of available nodes; see, for example, Figure 4.1.

Remark 4.2.1. For a given graph there are many different ways to perform a DFS, 
depending on the different ways of ordering the outgoing edges from each node. The 
ordering is usually not important.
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Figure 4.1. Example of a DFS to find a path from A to G in an undirected graph. 
The algorithm begins at A and follows the first edge to B, and then to D (left 
panel). Since there are no edges out of D to unvisited (white) nodes, it backs up to 
B. Following the next edge out of В leads to F and then to E (center panel). Since 
there are no edges to unvisited node from E, it backs up to F, and then B, finding 
no unvisited neighbors at each step. Finally, backing up to A gives an edge to a new 
node C and then to G (right panel), where the search completes.

To construct a DFS we need ways to keep track of which nodes have been visited 
and which nodes to visit next. To do this, we use two data structures:

• A stack S of the partial paths that have been generated.

• A se£,  M (marked), of the nodes already visited.21

Begin by putting the initial (starting) node on the stack S. At each stage, pop a 
partial path off the stack S, examine the last node N of that path, and add it to M. 
For each neighbor P of N that is not in M, add a new path to the stack consisting 
of the old path (to TV) with P added to the end. Repeat the process by popping 
the next path from S and moving to its last node. If there is no neighbor for the 
last node of a path, then discard that path and pop the next path from S. Note 
that the paths in the stack S are processed in reverse order of arrival (LIFO), so 
we always move down first, as required in a DFS. The algorithm terminates when 
S has no more paths or when the target node is found; see Algorithm 4.2.

Example 4.2.2. The following table lists the main variables and their states 
at the beginning of each step of a DFS (using Algorithm 4.2), searching for 
a path from A to G in the graph in Figure 4.1. The left panel of Figure 4.1 
corresponds to step 2 here, the center panel corresponds to step 4, and the 
right panel corresponds to step 6.

21 The data type called a set is similar to a mathematical set, in that each element occurs at most 
once and there is no ordering of the elements. Most implementations of the set data type have a 
very efficient method for identifying whether an element is in the set. For more on the set data 
type, see Section 7.3.

Step 0 1 2
S [[A]] [[A,E],[A,C], [A,B]J [[A,E],[A,C],[A,B,F], [A,B,D]J
path [A] [A,B] [A,B,D]
M {A} {A,B} {A,B,D}
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def dfs(graph, start, end):
"""Find a path from start to end with the DFS algorithm.
'graph' is a dictionary mapping each node to the set of 

its neighbors.
к и и

Step 3 4______________________
S [[A,E],[A,C],[A,B,F]J [[A,E],[A,C],[A,B,F,EJ]
path [A,B,F] [A,B,F,E]
M {A,B,D,F} {A,B,D,F,E}

Step 5 6______________________
S [[A,E],[A,CJ] [[A,E],[A,C,GJ]
path [A,C] [A,C,G]
M {A,B,D,F,E,C} {A,B,D,F,E,C,GI

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

# Initialization
M = set(start) # Set of marked (visited) nodes.
S = [[start]] # Stack of partial paths.

while S: # While S is not empty:
path = S.popO
M. add (path [-1] ) # Add the path's last node to M.
if path[-l] == end: # If the end node is found.

return path
for node in graph[path[-1]] - M: # Difference of sets.

S.append(path+[node]) # Update the stack.

Algorithm 4.2. Implementation of DFS. Here graph must be a dictionary mapping 
each node of the graph to the set of its neighbors. Here the Python list S functions 
as a stack, where append () plays the role of the operation push, and pop() pops 
the last element off list (the end of the list is the top of the stack). To change 
this implementation into a BFS, simply replace pop() in Line 12 with pop(O), 
which pops the first element off the list S (instead of the last) and thus makes S 
into a queue. For details on applying this code to the graph in Figure 4-1, see 

Example 4-2.3.

Example 4.2.3. An implementation of the DFS algorithm in Python is given 
in Algorithm 4.2. In that implementation the graph is stored as a dictio­
nary graph mapping each vertex to its neighbors. For the graph in Figure 4.1 
we have graph = {’A’H’E’j’C’^B’J, ’B’^’A’j’D’}, ’С’:{’А’,’С’}, 
’D’:{’B’,’E’}, ’E’:{’A’,’D’,’F’}, ’F’: {’E’>, ’G’: {’C’}}. For this 
example, calling dfs(graph,’A’,’G’) returns the list [’A’, ’C’, ’G’].
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Figure 4.2. An example of a BFS to find a path from A to F in an undirected 
graph. First the nodes nearest to A are visited: В, C, and E. Then the nodes that 
are two steps away are visited: D, G, and finally F.

4.2.2 Breadth-First Search
BFS is very similar to DFS, except it first visits all the nodes adjacent to the starting 
node, and then visits all the nodes that are two steps away from the starting node, 
and so on. An example of a BFS is given in Figure 4.2.

From an algorithmic perspective, the only change needed to convert the DFS 
algorithm into the BFS algorithm is to replace the stack S with a queue, so that the 
nodes are processed in the order they arrived (FIFO). To implement this in Python, 
simply change Line 12 of Algorithm 4.2 to path = S.pop(O), which pops the first 
element of S instead of the last, and makes S into a queue instead of a stack.

4.2.3 BFS versus DFS
The choice of which of these two graph search algorithms to use depends on both 
the graph and the question being asked. If the goal is to determine whether the 
graph is connected, then every node that is connected to the starting node must be 
visited, and potentially every edge examined, regardless of the algorithm used. In 
this case both DFS and BFS could have complexity as bad asO(|V| + |F/|), where 
|Vj is the total number of nodes and |7£| is the total number of edges. So, in this 
case it does not matter much which algorithm is used.

If the goal is to find the shortest path between two nodes, then BFS is really 
the only choice, because the first path found using BFS will be the shortest, while 
the first path found by DFS could easily be the longest, and DFS is not well suited 
to finding another, shorter path. For example, in Figure 4.1 the path from A to 
E found by DFS has length 3, while the first path from A to E found by BFS (in 
Figure 4.2) has length 1.

If the goal is to find whether there exists a path between two given nodes of 
a graph, then both of these algorithms have worst-case temporal complexity of 
O(|Vj + \E\). They both could end up visiting every other node first, before finally 
reaching the target node. So for the existence-of-path problem the choice of which 
algorithm to use depends on which one is most likely to avoid the worst cases for 
the given graph.
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Figure 4.3. Some potential problems with DFS. Source: XKCD, Randall Munroe, 
http: //xkcd. com/ 761/

The DFS algorithm is generally most effective for graphs where the target node 
is likely to be far from the start. It also tends to perform better when the available 
memory is limited relative to the size of the graph. The BFS algorithm is generally 
better when the target node is likely to be near the starting node and sufficient 
memory is readily available.

4.2.4 Shortest Path via Dijkstra’s Algorithm
It is often useful to attach a weight to each edge of a graph. For example, these 
weights could represent physical lengths if the nodes represent locations on a map 
and the edges represent roads between them. Or they could represent costs associ­
ated to traversing the edge, if the graph represents a utility network, and some edges 
have more capacity or lower cost than others. See Figure 4.4 for an example of a 
weighted graph. In this section we always require that the weights be nonnegative.

The BFS algorithm finds the shortest path between two nodes if all the edges 
have the same weight, but now we want to extend to the case that edges have differ­
ent weights. Dijkstra’s algorithm is the canonical method for finding the minimal- 
weight path from a given starting node to a given target node in a weighted directed 
graph. It can also be easily adapted to find the minimal-weight path to every node 
in the graph from a given starting node.
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Figure 4.4. An example of a weighted graph, where each edge has a nonnegative 
weight. In this figure the weights all happen to be integers, but the algorithms of 
this section work for any nonnegative real weights.

Dijkstra’s algorithm is essentially a weighted variant of the BFS, but nodes 
are visited in a locally minimizing way. Thus it is a greedy algorithm, but it is 
still guaranteed to give the optimal solution. The key to Dijkstra’s algorithm is the 
Bellman optimality principle: any segment of a shortest path is itself a shortest path. 
The main idea uses this principle to do a sort of bottom-up dynamic programming, 
computing the minimal distance to nodes, one after another, until reaching the 
desired target.

The minimal distance to the starting node s is, of course, 0. Proceed now to the 
nodes that are adjacent to the starting node, noting that the minimal path between 
the starting node and a target node t must pass through one of these adjacent nodes. 
Let v be the node adjacent to s that has the smallest weight w(s, u). There can be 
no shorter path from s to v because the first step of any path must pass through one 
of the adjacent nodes and hence must have weight at least w(s,u). So the optimal 
path to v has weight 0 + w(s, u). Now repeat the process with the collection of all 
the nodes adjacent to either s or v (but not including s and u). Continuing in this 
way eventually gives the optimal path from s to the target node t.

The main data structure used in Dijkstra’s algorithm is a priority queue Q 
containing all the nodes whose optimal path has not yet been found, prioritized 
by the length of the current shortest path to those nodes. In detail, the algorithm 
proceeds as follows: For each node и set d(u) = oo, except for the starting node s, 
which is set to 0. The value of d(u) represents the length of the shortest path found 
so far from s to u. Push the node s onto the priority queue Q with priority d(s). 
Repeat the following steps until the minimal path is found or Q is empty. Pop the 
minimal element off of Q, and call this v. Because it is minimal, the optimal path to 
v has been found. If v is the target node, we are done. If not, then for each neighbor 
и of v whose optimal path has not been found, check whether d(y) + w(v, u) < d(u), 
where w(y,u) is the weight of the edge from v to u. If the inequality holds, then 
set the predecessor of и to v, update d(u) = d(y) + w(v, u), and push и onto Q with 
priority d(u). Repeat the process, popping the next minimal element off Q and 
evaluating its neighbors. If Q has no remaining nodes to pop, then there is no path 
from s to t.

If the node и is already in Q, the last step of the iteration, pushing и onto Q 
with priority d(u), means that Q has multiple copies of и with different priorities. In 
all future steps of the algorithm the copy with the lowest value of d will be popped 
first, so the other copies do not interfere with the identification of the best value of 
d(u), but some copies of и could be popped off Q before all the nodes have been 
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processed. These should be discarded once the first copy of и has been processed. 
Alternatively, if the priority queue also has an efficient method for updating the 
priority of an existing node, then instead of pushing a new copy of и onto Q, we 
could just update the priority of и in Q.

The optimal path from s to t is recovered by working backward from t by identi­
fying its predecessor and then the predecessor of the predecessor, and so forth until 
reaching s. An implementation of the algorithm in Python is given in Algorithm 4.3.

Remark 4.2.4. If every edge in a graph has the same weight, then Dijkstra’s 
algorithm traverses the edges in the same order as the BFS.

Example 4.2.5. We use Dijkstra’s algorithm to find the shortest path from 
A to E in the graph in Figure 4.4. Throughout this example, nodes that have 
been processed are green, while those still in the priority queue Q are white.

The algorithm is initialized with every 
node и having priority d(u) = oo, except 
the starting node A, which has d(A) = 0.

Node A is popped off Q. Distances be­
tween A and its neighbors are updated, giv­
ing d(B) = 6, d(C) = 1, and d(D) = 2. 
These nodes are pushed onto Q with prior­
ities given by d.

Node C is popped off Q. The priority of D 
remains unchanged because d(D) < d(C) + 
w(C,D).

Node D is popped off Q. The priorities 
of В and E are updated to d(B) = 3 and 
d(E) = 7, and these are pushed onto Q.

Node В is popped off Q. The priority of E 
is updated to d(E) = 5 (and E is pushed 
onto Q with this priority).
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Node E is popped off Q. The minimum 
distance between A and E is 5.

The path can be reconstructed by stepping back through the predecessors, 
which can be stored for each node and updated at each step when the priorities 
are updated. For our example, they are E В <— D A.

Example 4.2.6. An implementation of Dijkstra’s algorithm in Python is 
given in Algorithm 4.3. In that implementation the graph graph is given as a 
dictionary of dictionaries, where the outer dictionary maps nodes to neighbors 
and the inner dictionary maps nodes to weights. For example, we could let 
graph = {’A’:{’B’:6, ’D’:2}, ’C’:{’D’:2},
’ D ’: {’ В ’: 1, ’ E ’: 5}, ’ E ’: , corresponding to the graph in Figure 4.4 and
Example 4.2.5. Calling dijkstra(graph, ’A’, ’E’) returns (5, [’A’, ’D’, 
’В’, ’E’]).

Theorem 4.2.7. On a finite, weighted directed graph G, Dijkstra’s algorithm al­
ways terminates, and if there is a path from the start to the target, Dijkstra’s algo­
rithm returns the shortest path.

Proof. The algorithm always terminates because each vertex v can be added to 
the queue Q only when an edge into v is processed, and each edge is processed only 
once, so the maximum number of entries in Q is the number \E\ of edges in G, 
which is finite.

We prove by induction on the number к of visited nodes (remember that dupli­
cates are discarded, not revisited) that the following hypotheses hold:

(i) If v is the node currently being visited, then the shortest path to v has length 
d(v).

(ii) For every unvisited node u, the shortest path to и passing only through the 
visited nodes has length d(ufi if such a path exists at all. If no path exists, 
then d(u) = oo.

If к = 1, then only the starting node has been visited, and the hypotheses are 
clearly true. Assume the hypotheses hold for the first к nodes visited, and let v be 
the fcth node visited. Denote the next node to be visited as u, so d(u) < d(x) for 
every other unvisited node x.

If there is a path P to и that has length less than d(u), then by (ii) P must 
contain at least one other unvisited node. Let у be the first unvisited node in P. 
By hypothesis the shortest path to у passing only through visited nodes has length 
d(y). But this implies that the length of the subpath of P from the start to у must
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from queue import Priority-Queue 
from math import inf # Infinity

def dijkstra(graph,s,t):
""" Find shortest path from s to t in 'graph', where 
'graph' is a diet mapping each node to a diet mapping 
neighbors to weights, 
и и и

# Initialize.
Q = PriorityQueueO
Q.put((0,s)) # Start Q with only s
pred = О # Dictionary of predecessors
finished = set() 
d = {u:inf for u in graph.keys()} # Dictionary of distances 
d[s]=0

# Iterate through the nodes in Q.
while not Q.emptyO:

(_,v) = Q.getO 
if v == t: break # Success!
elif v in finished: continue # v was already done 
else:

finished.add(v)
for u in set(graph[v])-finished: # Unfinished nghbrs 

if d[v] + graph [v] [u] < d[u] :
d[u] = d[v] + graph [v] [u] # Update dist to u 
pred[u]=v # Update predecessor of u
Q.put((d[u],u)) # Push (d[u],u) onto Q

# Build the optimal path, from t back to s
path = [t] # Start at t
while path[-l] != s:

path.append(pred[path[-1] ] ) # Add predecessor to path

return d[t] , path[::-l] # Invert path to return it forward

Algorithm 4.3. Implementation of Dijkstra’s algorithm in Python to find the 
shortest path from vertex s to vertex t in a weighted graph graph. Here graph 
is given as a dictionary of dictionaries, where the outer dictionary maps nodes to 
neighbors and the inner dictionary maps nodes to weights. Example 4’2.6 gives 
details on applying this code to the graph in Figure 4-4 and Example 4’2.5. 
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be at least d(y), and hence the length of P must be at least d(y). Since и was the 
next unvisited node to visit, and у is also unvisited, we have d(y) > d(u), which is a 
contradiction. Therefore the shortest path to и must have length d(u). This shows 
that (i) holds.

Finally, after visiting u, and given any node x in the graph, if the shortest path 
to x containing only visited nodes passes through w, then x is adjacent to и and 
that path has length d(u) + w(u, x). If that path does not pass through u, then, 
by the induction hypothesis, it was already found before visiting и and has length 
d(x) < d(u) + w(u, x). Thus (ii) holds. □

The temporal complexity of Dijkstra’s algorithm is dominated by the cost of 
the priority queue operations. Let |7*7|  denote the total number of edges in the 
graph and | Vj the total number of vertices. There are at most |7£| + 1 inserts 
of new elements into Q, contributing O(|£j log(|£j)) to the temporal complexity. 
Moreover, the algorithm requires pop_min for each node in Q, including possible 
duplicates, for a total of up to |7*7|  + 1 calls to pop.min, each of cost O(log(|£j)), 
for a total complexity of O(|£j log(|£j)). Note that |F/| < (^) < |Vj2, and, if the 
graph is connected, then we also have | Vj — 1 < |7£|. Therefore, log(| V| — 1) < 
logd^l) < 2log(|Vj), so we can also write the complexity of Dijkstra’s algorithm as 
O(|E\ log(| Vj)). One can also implement the priority queue with a specialized data 
structure called a Fibonacci heap which reduces the overall complexity of Dijkstra’s 
algorithm to O(|£j + | Vj log(| Vj)).

4.3 Minimum Spanning Trees
A spanning tree is a subgraph of an undirected graph that is a tree and contains 
all vertices. For example, if the graph represents all the potential connections that 
could be made to provide electricity to customers, then a spanning tree represents 
a way to make a connection to every customer without any loops (cycles) in the 
network. A minimum spanning tree (MST) is a spanning tree in a weighted, undi­
rected graph that minimizes the total weight of the edges in the tree. For example, 
in a utility network an MST would represent a network that reaches every customer 
for the least cost. A graph may have many spanning trees (as shown in Figure 4.5) 
and even many MSTs.

Figure 4.5. A weighted graph (left) and two spanning trees (center and right). The 
tree in the center has weight 96 and the tree on the right has weight 93. Is there a 
spanning tree for this graph of weight less than 93 ?
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4.3.1 Prim's Algorithm
Prim’s algorithm is a greedy algorithm for finding an MST. At each stage it adds 
the shortest edge that connects a node in the existing tree to a node that is not 
in the tree. But despite the fact that the algorithm only looks for these locally 
minimal edges, the tree it produces actually gives a global minimum.

As with Dijkstra’s algorithm, the main data structure used in Prim’s algorithm 
is a priority queue Q, consisting of nodes adjacent to, but not contained in, the 
current tree, ordered by the length (weight) of the edge connecting the node in Q 
to a node in the tree. We also need to repeatedly identify which nodes have already 
been processed, so we put each processed node into a set V.

The algorithm is initialized as follows: For each node и set d(u) = oo. Choose 
an arbitrary starting node s and set d(s) = 0. Push node s onto Q with priority 0. 
Also set V and E to be empty sets.

As long as Q is not empty, repeat the following steps. Pop the minimal element 
off of Q. If it is in V, discard it and keep popping elements off Q until getting one, 
call it v, that is not in V. Insert v into V. If the predecessor p of v exists, then add 
the edge (p, v) into E. For each neighbor и of v that is not in V, let w(v, u) be the 
weight of the edge from v to u. If w(v,u) < d(u), then set the predecessor of и to 
v, update d(u) tow(t’,u), and push и onto Q with new priority d(u) (or update the 
priority of и in Q).

Once Q is empty, the main algorithm is finished. The MST is recovered as the 
graph whose nodes are in V and whose edges are in E. If V is not all the nodes of 
G, the graph is not connected. An implementation of the algorithm in Python is 
given in Algorithm 4.4.

Example 4.3 .1. We use Prim’s algorithm to find an MST for the leftmost 
graph in Figure 4.5. Nodes that have been processed are green, while those 
which have not been processed are white. Edges that are in the current tree E 
are orange, those that are predecessors of some node but are not yet confirmed 
members of the tree are green. Nodes that have been processed but are not 
predecessors of any node are grayed out.

Initialize by choosing an arbitrary starting node (in this case H) and setting 
d(H) = 0 and d(u) = oo for every other node u. Put H in priority queue Q.

Pop H off Q and update the neigh­
bors to give d(A) = 13, d(G) = 14 
and d(E) = 15. Push each of these 
onto Q, and set the predecessor of 
each to H. indicated by the green 
edges.
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Pop A off Q and add the edge to its 
predecessor H to the tree (orange). 
Update the neighbors of A to give 
d(B) = 12, d(D) = 16 and push 
these onto Q. Set the predecessor 
of each of these to A.

The rest of the steps are similar and are displayed here in sequence.

Example 4.3 .2. An implementation of Prim’s algorithm in Python is given 
in Algorithm 4.4. In that implementation, as in Algorithm 4.3, the graph 
graph is given as a dictionary of dictionaries, where the outer dictionary 
maps nodes to neighbors and the inner dictionary maps nodes to weights. 
The graph in Example 4.3.1 is stored as graph = f’H’:{’G’:14, ’A’: 13, 
’E’:15}, ’G’:{’H’:14, ’B’:14, ’F’:15}, ’F’:{’G’:15, ’C’:14, ’E’:14}, 
’E’:{’H’:15, ’D’:13, ’F’:14}, ’D’:{’C’:12, ’A’:16, ’E’:13}, 
’C’:{’D’:12, ’B’:16, ’F’:14}, ’B’:{’G’:14, ’A’:12, ’C’:16}, 
’A’:{’H’:13, ’B’:12, ’D’:16}}.

Running prim (graph) returns the edges (and lengths) of an MST and the 
total length of the tree: {(’A’, ’H’): 13, (’B’, ’A’): 12, (’G’, ’H’): 
14, (’E’, ’H’): 15, (’D’, ’E’): 13, (’O’, ’D’): 12, (’F’, ’E’): 14}, 
93
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from queue import Priority-Queue 
from math import inf 

def prim(graph):
Construct a minimum spanning tree of 'graph'.

# Initialize.
s = next(iter(graph)) # Arbitrary starting node
Q = PriorityQueueO
Q.put((0,s)) # Start with only s on Q
pred = О # Diet of predecessors
V = setO 
E = О
d = {x:inf for x in graph.keys()} # Dist: node to tree 
d[s] =0 

#Build the MST by iterating through nodes in Q 
while not Q.emptyO:

(_,v) = Q.getO
if v in V: continue # v was already done, retry.
V.add(v)
if v in pred: # If v has a predecessor

E[(v,pred[v])] = graph [pred [v] ] [v] # Add edge
for u in set(graph[v])-V: # Neighbors of v not in V

if graph [v] [u] < d[u] : # If wt(u,v) < old dist 
pred[u] = v # Update predecessor of u 
d[u] = graph [v] [u] # Update dist from u to tree 
Q.put((d[u] ,u)) # Push (d[u] ,u) onto Q

return E, sum(x for x in E.values()) # Edges of MST & length

Algorithm 4.4. Implementation in Python of Prim’s algorithm to find an MST in 
a weighted, undirected graph graph. As in Algorithm J^.3, the graph graph is given 
as a dictionary of dictionaries, where the outer dictionary maps nodes to neighbors 
and the inner dictionary maps nodes to weights.

Theorem 4.3.3. Prim’s algorithm applied to a finite, connected, weighted graph G 
always terminates and returns an MST.

Proof, We continue with the same notation used in the description of the algorithm, 
but we denote the queue Q and the sets V and E at the fcth stage of the algorithm 
by Qk, Vk> and Ek, respectively. Let Tk be the subgraph of G consisting of the edges 
Ek and the nodes defining those edges. The algorithm always terminates because 
each vertex v can be added to the queue Q only when an edge into v is processed, 
and each edge is processed only once, so the maximum number of entries in Q is 
the total number of edges in G, which is finite.
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We first prove by induction that Prim’s algorithm returns a tree. The induction 
hypothesis is that after the A;th step, the subgraph forms a subtree of G. The 
initial hypothesis is trivially true since E± = 0 contains no edges and hence Ti has 
no cycles. At stage к + 1, the next edge to be added connects the existing tree 
Tk to a node that is not in E^ and thus there can be no cycles in the new graph. 
Therefore the result Tk+i returned by Prim’s algorithm is a tree. By induction, the 
terminal tree T contains all the vertices of G and is thus a spanning tree.

We have shown that a spanning tree must exist. Since the graph is finite, there 
must be an MST. Let T be an MST of G. Order the vertices of G by when they 
were visited by Prim’s algorithm in the construction of T. Let v be the first vertex 
such that the edge e of T from the previous vertex и to v is not in T, and assume 
that v was the A;th vertex added to T by the algorithm. Let Тк_± be the subtree 
generated by Prim’s algorithm up to step к — 1, that is, including и but not v.

Let P be a path in T connecting и to v, and let e be an edge in P that is 
not in Zfc-i but has one vertex in Tk-i. Construct a subgraph T of G from T by 
replacing edge e in T with edge e. We claim that T is also an MST. To see that T is 
connected, first note that adding edge e to the path P makes a cycle, and removing 
the edge e = (u, b) from that cycle gives a path P from a to b that lies in T. Now 
pick any two vertices x and у. Let P be the path in T that connects them. If e P, 
then P is also in T. If e E P, then form a walk W in T by replacing e in P with P. 
The walk W lies in T and connects x to ?/, hence T is connected.

The total weight of T is less than or equal to that of T because any difference in 
weight can only be due to the edge e, but was chosen by Prim’s algorithm at stage 
к instead of e, so w(e) < w(e). The tree T is an MST, so the weight of T cannot be 
less, therefore it must be the same as that of T. Finally, we note that T is a tree. 
If it weren’t, then it would have an MST which would have fewer edges and, hence, 
less weight than T. This is a contradiction to the fact that T is an MST. Thus, T 
is a tree, and therefore an MST of G.

The new MST T has one more edge in common with T than T did. Repeating 
this process of constructing a new MST closer to T eventually gives an MST that 
is equal to T. Therefore T is an MST of G. □

The analysis of Prim’s algorithm is similar to Dijkstra’s. If a binary heap is 
used for the priority queue, then the temporal complexity of Prim’s algorithm is 
O(|P| log |P|). If a Fibonacci heap is used, then temporal complexity of Prim’s 
algorithm is O(|P| + |V| log |V|).

4.3.2 Kruskal's Algorithm

The other standard algorithm for finding an MST of a undirected weighted graph 
is called Kruskal’s algorithm, which we describe here only briefly. It is also greedy, 
and it works by choosing edges one at a time from lowest weight to highest weight 
and discarding the edge if the resulting graph has a cycle. The algorithm terminates 
when all the edges are either added to the subgraph or discarded. The resulting 
subgraph is connected with no cycles (and is therefore a tree) and by construction 
has the lowest possible total weight. Therefore, it is an MST.
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Example 4.3.4. We use Kruskal’s algorithm to find an MST for the leftmost 
graph in Figure 4.5. Edges that are in the priority queue are black. Those 
that are added to the tree are orange, and those that have been discarded are 
grayed out. The algorithm steps through as follows:

The final three black edges can also be grayed out, since the final orange 
subgraph is already an MST.

Kruskal’s algorithm can also be made to run in O(|E| log \E\) time. It tends to 
do better than Prim’s algorithm when the graph is sparse.

4.4 Huffman Encoding
In the first half of the 19th century, the invention of the telegraph changed the world. 
Communications that had previously taken days, weeks, or even months through 
the mail service became nearly instantaneous, with the main bottleneck being the 
human operators who sent, received, and relayed messages. By the second half of 
the 19th century, a transatlantic cable connected North America and Europe.

Across the world, telegraph messages were sent and received through Morse 
code, a system of dots and dashes used to encode letters and numbers. Telegraph
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a •—
b —•••

j 
к

•---- s •••
t

c —• 1 u
d m — V ••• —
e • n —• w •----
f 0 — x —
g —• P •----• у
h •••• q ----•— z----• «
i •• r 0 ------

1 •--------
2 ••------
3 •••—
4 ••••—
5 •••••
6 —••••
7 —•••
8 ••
9 ---------•

Table 4.1. Morse code chart. Note that each codeword ends with a space, and a 
space may occur only at the end of a codeword.

operators were able to send and receive messages at rates of 20 to 80 words per 
minute. This was the primary mode of long-distance and maritime communication 
for over 100 years, used even into the latter part of the 20th century.

Morse code has a built-in efficiency, some of the most commonly used letters 
having the shortest code and less used letters having longer codes. For example, 
the letters E and T are, respectively, a single dot and a single dash, whereas Z is two 
dashes and then two dots. For a chart of the entire coding scheme, see Table 4.1.

In this section, we discuss how to create efficient encodings, given knowledge 
of the relative frequencies of the symbols being encoded. This allows more effi­
cient transmission and storage of information. The most efficient of these encoding 
methods is called Huffman encoding.

4.4.1 Introduction to Coding

Encoding is the process of mapping a source alphabet S' to a set C of codewords, 
formed by combining strings from a code alphabet A. For example, in Morse code, 
the source alphabet is alphanumeric (letters and numbers used in the English lan­
guage), and the code alphabet is dots, dashes, and pauses (spaces). The codewords 
are the sequences of dots and dashes used to form the alphanumeric letters, and 
pauses go between codewords, as described in Example 4.4.1.

Example 4.4 .1. Morse code is a map f from the source alphabet

S = {a, 6, с,..., 2,0,1,2,..., 9}

to a collection of codewords constructed from the code alphabet consisting of 
three code letters: •, —, and “space.” Each codeword ends with a space, and a 
space may not appear anywhere else in any codeword. For example, the map 
sends the source letter a to the codeword •— (including the trailing space). 
The full map is given in Table 4.1.
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Example 4.4 .2. Let S = {a, b, c, d,..., z} and C = {01, 02, 03,..., 26}, with 
the obvious mapping a 01, b i—> 02,..., z i—> 26 as the (bijective) encoding. 
In this encoding scheme, the word acme maps to the code 01031305.

Definition 4.4.3. An encoding scheme (sometimes just called a code) is a bijective 
map f : S —> C from a source alphabet S to a set C of codewords constructed from 
some code alphabet A.

Remark 4.4.4. The terms alphabet and letters for the set S may be misleading. 
The elements of S need not be traditional letters—they could just as well be Chinese 
characters, Egyptian hieroglyphics, English words, or entire English sentences.

A desirable property of an encoding scheme is that it be uniquely decipherable, 
meaning that we can uniquely reconstruct any source string from its encoded form. 
Codes that are not bijective cannot be uniquely deciphered, but unless we have a 
way of distinguishing the end of one encoded letter from the beginning of the next, 
even bijectivity is not necessarily enough, because two different source strings could 
still be mapped into the same codeword.

Unexample 4.4.5. Let S = {a, b, c, d,..., z} and C = {0,1,2,..., 25}, with 
the mapping a i—> 0, b 1,..., z i—> 25. The word "RAT” maps to 17019, and 
"BHABJ” also maps to 17019; thus this encoding is not uniquely decipherable.

Another common expectation, stronger than unique decipherability, is that a 
code be instantaneous^ so that a string can be decoded as soon as a codeword 
is received, rather than needing to wait for more of the message to be received 
before decoding it. Clearly if a code is not uniquely decipherable, it cannot be 
instantaneously decipherable.

Unexample 4.4.6. Let S — {x,y,z} and C\ = {0,01,011}, with the map­
ping x i—> 0, у i—> 01, and z i—> 011. This encoding scheme is uniquely de­
cipherable, but it is not instantaneous because the string 000101101001 does 
not decipher to xxyzyxy until you get to the end of the message and then 
work backward to pick off each codeword.

The next proposition provides a useful characterization of instantaneous codes.

Proposition 4.4.7. An encoding scheme is instantaneous if and only if no code­
word is a prefix of any other codeword.
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Proof. If any codeword f(s) is a prefix of another codeword f(sf), then upon 
receiving /(s) we cannot decode it as s until we receive enough additional code 
letters to recognize that f(s') was not sent instead. Therefore instantaneous codes 
must have no codeword that is a prefix of any other codeword.

Conversely, if /(s) is not a prefix of any other codeword, then subsequent code­
words will not change how it is decoded, so if we can ever decode it, we must be 
able to decode it as soon as it is received. □

Remark 4.4.8. Because of the previous proposition, instantaneous codes are also 
often called prefix-free codes or just prefix codes.

Example 4.4.9. Let S = {x,y, z} and = {00,01,11}, with the mapping 
x 00, у i—> 01, and z i-> 11. This encoding scheme is uniquely decipherable 
and instantaneous. As an example, the code 00000111010001 deciphers to 
xxyzyxy, and you can start deciphering the code instantaneously, as soon as 
you encounter the first two digits.

The final property that we want from an encoding scheme is that it should 
be efficient, that is, we want to minimize the total number of symbols used when 
sending messages. This increases the amount of information that can be sent down 
a channel in a given amount of time or that can be stored in a given amount of 
memory. To make sense of the concept of efficiency, we need to know something 
about how frequently the various source letters occur.

Definition 4.4.10. An information scheme is an ordered pair (S,P) where S is 
a source alphabet and P : S —> [0,1] is a probability distribution on S (that is, for 
each s e S the value of P(s) is the relative frequency with which the letter s e S 
occurs or is expected to occur).

Example 4.4.11. From the words listed in the main entries of the Concise 
Oxford English Dictionary, the letter e represents 11.1607% of all letters used, 
and a represents 8.4966%. So in a setting where we expect to encounter 
words sampled uniformly from those listed in the Concise Oxford English 
Dictionary, we could define an information scheme where S is the set of letters 
a through z, and the probability distribution P would have P(e) = 0.111607, 
P(a) = 0.084966, and so forth.

Of course, words are not usually sampled uniformly from a dictionary—in 
most settings words like the are much more common than words like avuncular. 
So the dictionary-based information scheme would be a poor model for most 
English text. A better model could be constructed by sampling text that is 
typical of what you expect to encode.

The standard measure of efficiency of an encoding scheme is the average word 
length.
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Definition 4.4.12. Given an information scheme the average word length 
of an encoding scheme f : S —> C is

awl(/) = 521en(/(s))P(s). 
ses

(4-4)

Example 4.4.14. Given the encoding

a 01010, Ьн->00, c 10, d^ll

for the alphabet and frequency chart in the previous example, we have

40
17

Thus, this scheme is more efficient (has a shorter average word length) than 
the one in the previous example, despite having one codeword that is much 
longer than any codeword in the other scheme.

4.4.2 Binary Codes and Trees

One of the most common code alphabets consists of just the two symbols 1 and 0. 
Any code formed with only two symbols is called binary. Any instantaneous binary
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Figure 4.6. Representation (as binary trees) of the instantaneous binary codes of 
Examples 4-4-13 and 4-4-14- The tree on the left corresponds to the first encoding 
scheme and the tree in the center to the second scheme. To decode a codeword, 
begin at the root of the tree and follow the edges determined by the codeword until 
reaching a leaf A more efficient encoding scheme for this information scheme is 
given by the tree on the right. This last code has average word length of |y. Note 
that c has the highest probability and the shortest codeword, whereas a and b have 
the lowest probabilities and the longest codewords.

code can be represented by a binary tree, letting the leaves correspond to source 
letters and letting edges from the nonleaf nodes correspond to the various code 
letters of possible codewords. So the left and right edges out of the root correspond 
to the first letter of a codeword being 0 or 1, respectively. The edges out of the 
next node correspond to the next letter of the codeword, and so on. We show how 
this works with the codes of Examples 4.4.13 and 4.4.14 in Figure 4.6.

4.4.3 Huffman Encoding

Huffman encoding is an algorithm for creating an instantaneous code with minimal 
average codeword length. Like some of the other algorithms we have covered in this 
chapter, it is an example of dynamic programming, that is, building the desired 
solution out of the solution of smaller subproblems.

Codes of low average word length must use the shortest codewords possible, but 
there are limited numbers of codewords of each length. Therefore, the most common 
source letters must be encoded with the shortest codewords and the least common 
letters with longer codewords. Additionally, once a short codeword is assigned, it 
cannot be the prefix for any other codeword, further limiting the remaining available 
short codewords. In spite of this apparent complexity, the Huffman algorithm is 
surprisingly simple.

Begin by sorting the source alphabet in ascending order by frequency (or proba­
bility). These form the leaves of the tree. Create a parent of the two least frequent 
leaves and give the new node a weight equal to the sum of the frequencies of the 
children. Now repeat the process: reorder all parentless nodes by frequency, create 
a parent for the two least frequent nodes, and set the weight of the parent equal to 
the sum of its children. Continue until there is a unique root.
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Example 4.4.15. Consider the source alphabet S = {a, 6, c, d, 1, 2}. Assume
the following frequencies:

Symbol Frequency
a 0.35
b 0.10
c 0.19
d 0.25
1 0.06
2 0.05

0.05 0.06 0.10 0.19 0.25 n oc Form a leaf node for each letter 0.35©of the source alphabet and sort 
the leaves by increasing weight.

0.10 0.11 0.19 0.25 0.35 Give the first two leaves a par­
ent with weight equal to the 
sum of its children. Then re­
order by increasing weight.

Again, create a parent for the 
two lowest-weight nodes and 
give it a weight equal to the 
sum of its children. Then re­
sort by increasing weight.

0.25

Repeat this process for several 
more iterations.
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Finally, only one parentless 
node remains (the root) and we 
have the completed tree.

The encoding scheme given by this tree is

b 010, c 00, dH>10, 1 i—> 0111, 2^0110.

The average word length of this code is

awl = 2(0.35) + 3(0.10) + 2(0.19) + 2(0.25) + 4(0.06) + 4(0.05) = 2.32.

Remark 4.4.16. At each stage of the algorithm, there is a choice about which 
child to put on the left and which to put on the right. The length of each codeword 
for each of the resulting codes is independent of these choices, and these could be 
considered equivalent codes, even if they appear very different.

Implementation

The Huffman algorithm can be implemented with a priority queue consisting of the 
parentless nodes, ordered by weight (frequency). Each step consists of two pop_min 
operations, creation of a new parent node (constant time) and an insertion into the 
queue. Thus the temporal complexity of the algorithm is O(nlogn) for a source 
alphabet of n letters. But the temporal complexity of this algorithm is often not 
very important because the alphabets involved are typically small.

Once the code is constructed, information can be encoded rapidly by looking up 
the codeword for each letter in a table, and codewords can be decoded rapidly by 
traversing the code’s binary tree.

Example 4.4.17. A very common way to store text is in the ASCII format, 
which uses 7 bits per letter. To store the string MISSISSIPPI in ASCII 
requires 77 bits. Huffman encoding for this word produces the code S H> 0, 
I 10, P 110, and M 111. With this code we can rewrite MISSISSIPPI 
as 111100010001011011010, which is only 21 bits. This is roughly 27% of the 
ASCII 77 bits.

4.4.4 *Huffman  Encoding Is Optimal
In this section we prove the following theorem, showing that Huffman encoding is 
optimal.
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Theorem 4.4.18. The Huffman algorithm produces an instantaneous binary code 
with minimal average word length.

The first steps in the proof of Theorem 4.4.18 are given in the following lemmata.

Lemma 4.4.19. The average word length of an instantaneous binary code with a 
corresponding binary tree T is given by

awl(T) = ^2 PW depth(£),
I

where the sum runs over leaves £ ofT, where P(f) denotes the probability (frequency) 
of the leaf £ and where depth(^) denotes the depth of £ in the tree.

Proof. The leaves of T are exactly the letters of the alphabet of S. The depth of 
the leaf in the tree is the number of edges lying between the leaf and the root, and 
this is exactly the length of the corresponding codeword for that leaf. □

Lemma 4.4.20. IfT is a binary tree defining an encoding of average word length 
a, and if T' is a tree obtained from T by swapping the position of two leaves x and 
y, then

awl(T) — awl(T') = (depthT(rr) — depthT(?/))(F(;r) — F(t/)). (4.5)

Proof. First note that we have depthT,(a;) = depthT(?/) and depthT,(?/) = 
depthT(rr). Moreover, the sums awl(T) and awl(T') are identical except for the 
terms involving x and y. Thus we have

awl(T) — awl(T') = depthT(#)F(;r) + depthT(?/)F(?/)
— (depthT/(rr)F(;r) + depthT/(?/)F(?/))

= (depthT(z) - depthTQ/))(F(j;) - P(yf). □

Lemma 4.4.21. There exists an optimal tree such that two leaves with lowest 
frequency are siblings and are at greatest depth among all leaves in T.

Proof. Given an optimal tree T, we create a new optimal tree having two leaves 
with lowest frequency that are siblings.

Denote the two leaves with the lowest frequency as a and b. If there are more 
than two such leaves, let a and b be two of lowest frequency with the greatest depth 
among all lowest-frequency leaves in T.

If a and b are already siblings, they must be at the greatest depth among all 
leaves in T because if not, swapping a with a leaf at greater depth would reduce 
the average word length of Г, so T could not be optimal.

If a and b are not siblings, assume (without loss of generality) that depthT(a) > 
depthT(6). This implies that F(u) < P(b), because if not, swapping a with b in the 
tree would, by (4.5), produce a new tree with strictly smaller average word length, 
and T would not be optimal. Since a and b have the lowest frequencies, we may 
assume that F(u) < P(x) for all x e T.
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We claim that depthT(a) > depthT(a?) for every leaf x in T. To see this, assume 
the contrary. We cannot have P(a) = P(x) because a was assumed to have the 
greatest depth of all minimal-frequency leaves. Therefore, P(a) < P(x). Let T' 
be the tree obtained by swapping a and x. By equation (4.5), we have awl(T) > 
awl(T'), which contradicts the optimality of T. Thus depthT(a) > depthT(rr) for 
every leaf x in T.

The leaf a cannot be an only child, because if it were, removing its parent from 
the tree (attaching a to its grandparent) would reduce the average word length of 
T, and T would not be optimal.

Therefore, a must have a sibling c, and by assumption P(6) < P(c). Let T' 
be the tree created from T by swapping b and c, so that a and b are siblings. 
Equation (4.5) gives awl(T) > awl(T'), but the optimality of T guarantees that 
awl(T) = awl(T'), so T' Is also optimal. □

Lemma 4.4.22. Let T be a tree (not necessarily optimal) for the information 
scheme (S, P) with minimal-frequency leaves a and b that are siblings at the greatest 
depth. Let T' be the tree obtained by removing a and b from T and assigning the 
frequency P(a) + P(6) to their parent c, so that T' is a tree for the information 
scheme (S\P'), where S' = (S' U {c}) \ {a, b}, and P'(x) = P(x) if x c and 
P'(c) = P(a) + P(6). We have

awl(T) = awl(T') + P(a) + P(6). (4.6)

Proof. We have

awl(T) = depthT(a;)P(a;)
xES

= depthT(a)P(a) + depthT(6)P(6) + depthT(rr)P(:r)
xGS \ {a,b}

= depthT(a)(P(a) + P(6)) + depthT(#)P(;r)
xES \ {a,fe}

= (depthT(c) + l)(P(a) + P(6)) + depthT(;r)P(rr)
xesf \ {c}

= (P(a) + P(6)) + depthT(:r)P(rr) 
xES'

= (P(a) + P(6))+awl(T'). □

Proof of Theorem We induct on the size n = |S| of the source alphabet S.
The induction hypothesis is that the Huffman algorithm applied to any information 
scheme with source alphabet of size n produces an optimal code for that information 
scheme.

This is trivial in the case that n = 1. Assume now that the induction hypothesis 
holds for all information schemes with |S| < k. Let H be a tree constructed by 
the Huffman algorithm for an information scheme (S, P) with |S| = к + 1. By 
construction, H has two lowest-frequency leaves a and b that are siblings and are 
at the greatest depth.
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By Lemma 4.4.21, there exists an optimal tree T for this information scheme 
such that two lowest-frequency leaves a' and b' are siblings and are at the greatest 
depth. Since {a, b} and {a', b'} are both lowest frequency in S, we may swap a with 
af and b with b' in the optimal tree T without changing its average word length; 
therefore we may assume that the two lowest-frequency siblings at greatest depth 
in T are a and b.

Removing a and b from T gives a tree Tf for the information scheme (5', P'), as 
in Lemma 4.4.22, so that

awl(T) = awl(T') + P(a) + P(6).

Let Hf be the tree constructed (as in Lemma 4.4.22) by removing a and b from P, 
so that we have

awl(P) = awl(P') + P(a) + P(6).

Note that Hf is constructed by the Huffman algorithm for the information scheme 
(5',P'), and so, by the induction hypothesis, H' must be optimal. Therefore 
awl(P') < awl(T'), and hence

awl(P) = awl(P') + P(a) + P(6) < awl(T') + P(a) + P(6) = awl(T).

Since T is minimal, H must also be minimal. □

Remark 4.4.23. Given a source alphabet and the frequency of each symbol, Huff­
man encoding provides a scheme that has the smallest average word length. How­
ever, there are compression and encoding concepts that go beyond Huffman encod­
ing. For example, the optimality of Huffman encoding assumes that each symbol 
in the source alphabet is independently drawn from a distribution, when in reality, 
there’s a strong statistical dependence between letters in a given language. For 
example, in English q is almost always followed by и, and taking advantage of these 
dependencies opens the door to further efficiencies.

4.5 Hard Problems
So far we have mostly focused on algorithms that run in polynomial time, that is, 
algorithms that, given an input of size n, have a worst-case temporal complexity of 
O(nk) for some fixed k. The class of all problems for which there exists a polynomial­
time solution is denoted P. But, of course, not all problems can be solved in 
polynomial time. For some problems we can actually prove there is no polynomial­
time algorithm that solves the problem. For other problems, no one knows whether 
a polynomial-time algorithm exists. In this section we briefly and informally discuss 
some of the various types of these problems and give some examples.

A large class of interesting and important problems are those for which there 
exists a polynomial-time algorithm to check any proposed solution to see whether 
it really is a solution. For such problems there might not be a polynomial-time 
algorithm to find a solution, but there is a polynomial-time algorithm to check 
whether a given candidate is a solution. The class of all such problems is denoted
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NP, short for nondeterministic polynomial time.22 Of course any problem in P 
also lies in NP, because if we can find all the solutions in polynomial time, then 
given any proposed solution, we can verify it by computing the actual solutions and 
comparing them to the proposed solution. Thus we have P C NP.

22 More formally, NP is the class of all problems for which proposed solutions can be verified as 
correct in polynomial time by a nondeterministic Turing machine. Since the goal in this section 
is just to give a quick overview of the subject, we do not go into careful detail about Turing 
machines and the formal theory of computation related to these problems.

Example 4.5.1. One NP problem that is not known to be polynomial is the 
problem of finding a Hamiltonian path in a graph, that is, finding a path in a 
graph that visits every vertex exactly once.

Given a path, it is easy to verify whether the path does indeed visit every 
vertex exactly once. To do this traverse the path and keep track of how many 
times each vertex is visited. If any vertex is visited more than once, or if any 
vertex is not visited, reject the candidate path, and otherwise accept it. This 
verification algorithm takes only O(n) steps in a graph with n vertices, so this 
problem is in NP. But there is currently no known algorithm for finding a 
Hamiltonian path in polynomial time.

A natural question to ask is whether there are any problems in NP that are not 
in P. At the time of this writing, the question is one of the Clay Math Institute’s 
millennium problems, and an answer to the question, with a proof of correctness, 
will win you a prize of one million dollars.

As a first step to attack this problem, we consider the class of NP-hard problems. 
A problem X is NP-hard if any problem in NP has a polynomial-time reduction 
to X. That is to say, given any problem Y E NP there is an algorithm f solving 
У, where f consists of a polynomial number of standard computational steps and a 
polynomial number of calls for a solution of X. An NP-hard problem need not be 
in NP, but it is at least as hard as any NP problem.

Nota Bene 4.5.2. Beware that the abbreviation NP stands for nondetermin­
istic polynomial. It does not mean “not polynomial.” In fact, all polynomial 
problems are in NP, and the million-dollar question is whether there are any 
problems in NP that are not polynomial.

Nota Bene 4.5.3. The name NP-hard is misleading. NP-hard problems are 
not necessarily hard to solve for moderately sized inputs. The initial growth 
of the problem may not be very fast, so that for smaller inputs, solutions to 
an NP-hard problem can sometimes be very computable. The word hard in 
this context means, roughly speaking, at least as hard as any NP problem 
once the size of the inputs is large enough.
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Conversely, polynomial problems are not necessarily easy. A problem that 
can be solved in <9(n1561600) is in P, but it is uncomputable in essentially 
all circumstances. An algorithm in 0(1) does not grow in complexity as the 
input size grows, but its constant complexity could be so large as to make the 
solution uncomputable for all inputs.

An especially interesting subset of the NP-hard problems is the set of NP- 
complete problems. These are problems in NP that are also NP-hard. So a proof 
that any one of these is in P would show that P = NP. Later in this section 
we discuss some problems that are known to be NP-complete (but, of course, they 
might also still be contained in P). Two possible Venn diagrams depicting these 
relations are shown in Figure 4.7.

Figure 4.7. Two possible Venn diagrams depicting the relations among P, NP, 
NP-complete, and NP-hard. The left diagram depicts the situation if P NP. 
The right diagram depicts the situation ifP = NP.

4.5.1 Knapsack Problems
One class of combinatorial optimization problems that are known to be NP-hard 
is the class of knapsack problems. The basic idea is that we are given a collection 
of objects from which to load a knapsack. The goal is to choose the combination 
of objects to put in the knapsack that will have the greatest value, given various 
constraints (for example, the total weight of the objects can’t be more than a certain 
amount, or the total volume can’t be more than a certain amount, or we can only 
take at most a certain number of each item).

In one basic form of the knapsack problem, we are given a list of values ui,..., vn 
and (positive) weights wi,..., wn e Q, and we must choose the numbers ..., xn e
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N of each item so as to maximize ^2Г=1 vixi> subject to a budget of ^2Г=1 wtxt < W. 
A common variant of this problem limits Xi to {0,1}; in this variant we can take at 
most one of each item.

Example 4.5.4. Consider a situation with four items, whose weights (in kilo­
grams) and values are listed below.

Item Weight Value
1 6 30
2 3 14
3 4 16
4 2 9

If I am not able to carry more than 10 kilos, which items should I take to 
maximize the total value? If I can only take at most one of each item, the 
optimal solution is to take item 1 and item 3, for a total value of 46. If 
multiples are allowed, I can do better by taking one of item 1 and two of item 
4, for a total value of 48.

There are a number of ways to try to attack this problem. A naive way is the 
exhaustive approach of checking every possible configuration. But this is much too 
costly if W is much larger than most of the weights Wi.

A better solution is a bottom-up dynamic programming approach; that is, find 
the solution for certain very small maximum weights, and then assemble the small 
solutions together into the solution for slightly larger weights, and so on until reach­
ing the desired result.

If m(w) is the maximum value achievable with total weight w, then we want to 
know m(W). The lowest level of the problem is easy: m(0) = 0. The trick is to 
realize that if we put item i in the knapsack, then we still have weight w — Wi left, 
and now the best value we can get is vi + m(w — wi). Therefore, the maximum 
value m(w) can be constructed from many smaller solutions as

m(w) = шах(17г + m(w — Wi)\ (4.7)Wi<W
which is another variant of Bellman’s optimality principle.

Since there are at most a finite number of weights and they are all rational, we 
may assume that all the weights Wi are integer multiples of some basic value and 
reformulate the problem with only (positive) integer values of Wi and W. Now use 
(4.7) repeatedly to construct an (n + 1) x (W + 1) array M, where M(z, w) is the 
maximum value achievable with a weight limit of w using only the first i items. The 
desired solution is M(n, W).

Some initial values are immediate: M(0, w) = 0 for all w, and 7И(г,0) = 0 for 
all i. Now compute from the bottom up; that is, starting with lower values of i and 
w and moving to higher ones, compute

M(i, w) = max(M(z — 1, w),^ + w — wi)).

Since each Wi is positive, both of the two terms on the right are already known and 
can be used to compute M(г, w). Iterating over all i from 0 to n and all w from 0 to 
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W finally reaches M(n, Ж), which is the desired solution. Of course the algorithm 
described here does not give the actual choice of which items to put in the knapsack 
to achieve the maximum value, but that can easily be added to the algorithm by 
tracking the items added at each stage.

The temporal complexity of this algorithm is О (nW). An important but subtle 
point is that complexity of an algorithm is usually measured in terms of the number 
of inputs, not the value represented by the input. Integers are usually entered as a 
sequence of binary digits, and there are d = log2 W digits of W. Thus the complexity 
of this algorithm, in terms of the number of inputs (n and d), is O(n2d)—exponential 
in d. But it is polynomial in terms of the value of the input W. Algorithms like 
this, that are polynomial in the value of their inputs rather than in the number of 
their inputs, are called pseudopolynomial.

It is known that the knapsack problem is NP-hard (measured in terms of the 
number of inputs). Of course, this does not mean the problem cannot ever be solved. 
Many specific instances of the problem can be solved in a reasonable amount of 
time, despite the fact that the best-known algorithm for the general solution takes 
exponential time.

Dynamic 
programming 
algorithms- 
0 (n*2 n)

SELLING ON EBAG 
O(')

STILL WORKING 
ON YOUR ROUTE?

Figure 4.8 . A practical approach to the traveling salesman problem. Source: 
XKCD, Randall Munroe, http: //xkcd. com/399/

4.5.2 Traveling Salesman Problem
Given a list of cities and distances between them (a weighted undirected graph), 
consider the problem of finding the shortest path that visits all the cities exactly 
once and that starts and ends at the traveler’s home city (such a path is sometimes 
called a tour or a Hamiltonian cycle). This problem was introduced in Example 
4.0.2 and is known to be NP-complete.

As in the case of the knapsack problem, there is a dynamic optimization al­
gorithm for the TSP that is better than the exhaustive approach. This is due to 
Held-Karp and (independently) Bellman. The algorithm is as follows: Let the home 
city be numbered 0 and let the remaining cities be numbered 1 through n. Denote 
the distance from city i to city j by dij. For each S C {1,..., n} and for each x e S 
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let d(S, x) be the minimum distance it takes to travel from home to all of the cities 
in 5, finishing at x.

The optimal path for the traveler has length

min d({l,..., n}, x) + d,Q,x.
xE{l,...,n}

Again we have an optimality principle that allows us to assemble solutions of simpler 
subproblems into solutions of larger problems.

d(S, x) = min d(S \ {#}, y) + dy,x. 
yes \ {x}

As with other bottom-up dynamic programming algorithms, we start with the 
smallest (singleton) subsets: for S = {ж} we have

d({x},x) = d0,x,

and we compute d(S, x) for increasing S and all x. Given any S, if d(S',y) has 
already been computed for each S' C S, then for any x e S computing d(S, x) 
is 0(151). Thus, for each S the complexity of computing d(S, x) for all x e S is 
O(|S|2), so the overall complexity is

ofcisi2) =o(f; E Й =o(L
\ S / \fc=l \S\=k J \fc=l 4 7 /

We can compute the sum O(J2^=1 (^)&2) = О(22/с=]. (^)&(& — 1)) as follows: Let

/(*)  = 12 QW _ 1)<fc~2 = QV = - i)(i+i)n-2-
This gives

iz _ =/(i)+(n - i)(n _ i)(n _ 2)+

= n(n — l)2n-2 + n(n — l)2
= O(2nn2).

So the Held-Karp algorithm has complexity O(2nn2). Compare this to the naive 
algorithm with complexity O(n!), which by Stirling’s approximation is О y/n).

4.5.3 Better Approaches
As a general rule, if you are trying to find the exact solution to an NP-hard problem 
with large inputs, then you are doing something wrong. In such cases you probably 
need to stop looking for an algorithm to always find the exact solution and instead 
think about some alternatives. Here are three options to consider:

(i) Look for a heuristic to solve a reasonable fraction of the most common cases 
efficiently.

(ii) Solve the problem approximately instead of exactly.

(iii) Solve a similar, but easier, problem.
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№ H(W
EMBEDDING NP-ОтПЕ PROBLEMS IN RESTAURANT ORDERS
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HERE, THESt PAPERS ON THE I
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Figure 4.9 . A real-world application of the change-making problem? Source: 
XKCD, Randall Munroe, http: //xkcd. com/287/

Heuristics

Heuristics are simple guidelines or strategies that can be used to try to get a good 
solution, but without guarantees of the quality of the solution. An obvious and 
common heuristic is the greedy strategy of choosing the step that looks optimal 
now.

A greedy approach to the knapsack problem is to always choose, at each stage, 
to put as much as possible of the most valuable item into your knapsack. This 
algorithm seems intuitive to many people, and it sometimes works. But sometimes 
it also gives a very bad solution, and in some cases it can give the worst possible 
solution. A better greedy algorithm is to sort the items by value per unit weight 
vilvji and add as much as possible of the highest of these. This often gives good 
results but still does very poorly in some cases (see Exercise 4.23).

A common greedy approach to the TSP is to form a path by choosing, at each 
stage, to visit the nearest unvisited city. This is called the nearest neighbor heuristic, 
and it has temporal complexity O(n2). It normally gives a path that is no more 
than 25% longer than the best solution, but it is possible to construct cases where 
the nearest neighbor algorithm gives the worst of all possible paths (see Exercise 
4.24).

A different greedy approach to the TSP is to collect the shortest edges without 
worrying about whether they form a connected path. This algorithm builds a 
collection of edges that will eventually form a path, and at each stage it sorts the 
remaining edges by length and adds to the collection the shortest one that does not 
make a short cycle and does not make any vertex have more than two edges. This 
algorithm is called the greedy algorithm for TSP, and it has temporal complexity 
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O(n2logn). It typically constructs paths that are within 15% to 20% of optimal, 
but again, there are some cases where it does very poorly.

There are several other heuristics for the TSP. Some begin with an optimal tour 
of fewer cities and try to insert additional cities into the existing tour in an optimal 
manner, while others start with an existing, suboptimal tour of all the cities and 
try to improve it incrementally. Some of these heuristic improvement algorithms 
have run times of O(n2) or better and tend to give answers no worse than 5% longer 
than optimal, but in some cases they still give answers that are much worse.

Approximation Algorithms

In many circumstances we don’t need the absolute best solution—a solution that is 
near best may be good enough. For many NP-hard problems, allowing a little bit of 
error lets us rapidly construct solutions that are guaranteed to be within a certain 
percentage of the optimal solution. Of course, there is usually a trade-off between 
speed and accuracy—the more accurate the answer must be, the more time it will 
take to compute.

Here we give one simple example of an approximation algorithm for the TSP in 
the case that the cities all lie in the plane and that the distances involved satisfy 
the triangle inequality—an edge between two cities is never longer than the length 
of any other path connecting them. In this case, we can approximate the optimal 
solution by constructing an MST. Removing one edge from any tour will produce a 
spanning tree, so the MST must have weight no more than the length of the shortest 
tour.

Since the MST lies in the plane, we can put an ordering on the vertices by 
imagining an ant starting at the home city and walking along the outside of the 
tree until returning home again. The total distance the ant walks is twice the weight 
of the MST, since the ant traverses every edge exactly twice.

Listing the vertices in the order they are first encountered on the ant’s walk 
will give a tour. For each edge e = of the tour, the ant will have to traverse 
some edges of the tree to get from v to v', and because the graph lies in the plane, 
the triangle inequality holds and e must be no longer than the sum of the lengths 
of the edges walked by the ant. Summing over all the edges in the tour, the length 
of the tour is no more than the total length of the ant’s walk, which is no more 
than twice the total weight of the tree, which is no more than twice the optimal 
tour length.

This shows that any tour produced by an MST is no more than twice the optimal 
length. But Prim’s algorithm produces an MST in O(n2 logn), so if we can accept a 
tour guaranteed to be no worse than twice optimal, this algorithm is fairly efficient.

For the TSP there are many other approximation algorithms. One of the best 
known is Cristofides’ algorithm that runs in O(n2’2) time and is guaranteed to give 
an answer no worse than 1.5 times optimal.

For the knapsack problem, there is an approximation algorithm that for any 
choice of e > 0 gives an answer that is no worse than (1 — e) times the maximum 
value and does so in better than O(n + 1/e3) time. This is an example of what 
is called a fully polynomial-time approximation scheme (FPTAS). This shows very 
clearly the trade-off between accuracy and temporal complexity: the more accurate 
an answer must be (the smaller e), the greater the run time.
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A Similar, but Easier, Problem

Finally, it is important to remember that the mathematical problems we solve in 
applications are mathematical models of real-world problems. To formulate a model, 
we typically need to make several assumptions and simplifications. Sometimes these 
assumptions and simplifications make the problems easier to solve, but in some 
cases, what we think of as a simplification actually makes the problem harder.

Some types of scheduling problems provide an example of this. For these prob­
lems one is given a collection of jobs of various (fixed) completion time and a 
collection of machines with various properties. The problem is to decide which jobs 
to schedule on which machines in order to minimize total time to completion of 
all the jobs (subject to various additional requirements). Many of these scheduling 
problems are known to be NP-hard.

But these simple models are also not completely realistic—for example, slow­
downs might occur for many reasons, causing random changes in the production 
speeds of the machines. Remarkably, in some cases, a more complicated stochastic23 
model that accounts for this randomness actually yields a version of the schedul­
ing problem that is more tractable than the “simpler” deterministic model [Leu04, 
Section 38.4.1].

23The word stochastic here means that the model involves some element of randomness.

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

4.1. Code up the naive, the memoized, and the bottom-up dynamic programming 
algorithms for computing the Fibonacci number F(n) for n G N. Time all 
three methods and compare their performance for n E {1,2,..., 40}. Exper­
iment to find the largest value of n for which each of the three algorithms 
gives an answer in less than one minute.

4.2. Code up both the naive recursion and the bottom-up dynamic programming 
algorithm to compute the optimal number n(v) of coins in the change-making 
problem for v cents (v € N) and an arbitrary coinage system C (a set of coin 
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values, in cents). Adapt your code to also return the optimal configuration of 
coins summing up to v. Time both methods and compare their performance 
on each of the values v G {1,2,..., 1999} for the current U.S. coinage system, 
where C = {1,5,10,25,50,100}. It is acceptable to stop your code for values 
that take more than one minute to run.

4.3. Code up a greedy version of the change-making problem. For the U.S. coinage 
system verify that the greedy solution is the same as the optimal solution for 
all values v G {1,2,..., 1999}. Time your code for the greedy solution on 
those values and compare your answers with those in Exercise 4.2.

4.4. Consider a coinage system with the following denominations:

C = {1,5,7,10,20,25,40,50,100}.

Provide some examples to the change-making problem in this coinage system 
where the greedy solution is not the optimal solution.

4.5.  Consider a sequence (xn)^LG defined by the recurrence relation x$ = x± = 2 
and for n > 1, 

n—2

*

k=0
We are interested in computing xn, given n.

(i) Show that implementing this recursion directly, as written, uses more 
than 2n arithmetic operations to compute xn when n > 6.

(ii) Use memoization to give an algorithm that uses only O(n2) arithmetic 
operations to compute xn (and prove the bound of O(n2)).

(iii) Use bottom-up dynamic programming to give an algorithm that only 
uses O(n) arithmetic operations to compute xn (and prove the bound 
of O(n)).

4.6.  Given two sequences x = x±, X2,..., xn and у = у2, ..., у™, let s(x, y)*
be the length of the longest possible sequence that is a subsequence of both 
x and y. So if x = 6,0,1,2,3,4, 5 and у = 5,6,2,3, then s(x, y) = 3, since 
6, 2,3 is the longest sequence appearing as a subsequence in both.

(i) Let Tx = #1,..., xn_\ and Ту = т/i,..., Ут-i- Show that if xn = ?/m, 
then s(x, y) = s(Tx, Ту) + 1.

(ii) Find a recursive formula for s(x, y) if xn ^ym.
(iii) Provide an algorithm for computing s(x, y) with temporal complexity 

O(mn) (and prove the bound of O(mn)).

4.7. In the graph in Figure 4.10, beginning at the node labeled 50:
(i) Show the sequence of nodes visited when using BFS to find the node 

labeled 90. Assume that neighbors of a node are always added to the 
queue in numerical order (smallest to largest).

(ii) Repeat the previous problem, but with the neighbors of a node added 
to the queue in reverse numerical order (largest to smallest).
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Figure 4.10. Graph for BFS and DFS of Exercise

(iii) Show the sequence of nodes visited when using DFS to find the node 
labeled 90. Assume that neighbors of a node are always added to the 
stack in numerical order (smallest to largest).

(iv) Repeat the previous problem, but with the neighbors of a node added 
to the stack in reverse numerical order (largest to smallest).

4.8. Given an undirected graph, which graph search method (BFS or DFS) would 
be most useful for finding a cycle in the graph? Describe, in detail, an 
algorithm for finding a cycle in any undirected graph, and explain why your 
algorithm is correct (meaning that it is guaranteed to find a cycle if one exists 
and will not give a false answer).

4.9. For the graph in Figure 4.11, describe what happens (and the state of all 
the various variables, queues, etc.) at each stage of Dijkstra’s algorithm, 
beginning at node A. Do not stop until every node has been processed; that 
is, find the minimum distance from A to every node in the graph.

Figure 4.11. Graph for Exercise 13 and Exercise ^.9.

4.10. For any weighted, undirected graph G with nonnegative edge weights, and 
for any vertex v G G, let d(s,v) denote the (actual) minimum distance from 
the source s to v.
Prove that if Dijkstra’s algorithm processes node и before it processes node 
v, then <5(s,u) < <5(s,v).

4.11. Give a careful justification for why Remark 4.2.4 is true.
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4.12. Let G be a connected weighted undirected graph. Prove that if all the weights 
are distinct, then the MST is unique.

4.13. For the graph in Figure 4.11, describe what happens (and the state of all the 
various variables, tables, dictionaries, etc.) at each stage of Prim’s algorithm, 
beginning at node A.

4.14. In Prim’s algorithm, for any vertex v, let denote the distance from v to 
the current minimum tree. What is the maximum number of times that 
will be updated? What is the minimum number of times it will be updated?

4.15. Let G be a connected weighted undirected graph with at least one cycle. 
Prove that if e is an edge in the cycle of strictly larger weight than the other 
edges in the cycle, then it cannot be contained in the MST of G.

4.16. Adapt Prim’s algorithm to find the MST.

4.17. Prove that if a coding scheme / : S' —> G is bijective and instantaneous, then 
it is uniquely decipherable.

4.18. Give an example of a uniquely decipherable code that is not instantaneous.
4.19. Compute a (binary) Huffman code for the source alphabet {a, 6, c, d, e} with 

the probability distribution F(a) = 0.07, P(b) = 0.05, F(c) = 0.70, F(d) = 
0.08, P(e) = 0.10.

4.20. Use Huffman encoding to compress the string “The harder I work, the luckier 
I get.” How many total bits are required to encode this string using the 
Huffman code? Compare this to the number of bits required to store the 
string in ASCII. (Remember to encode the spaces and punctuation.)

4.21. Any code can be transformed into another obviously equivalent code by per­
muting the letters of the code alphabet. For example, trading 0 and 1 in 
any binary code will give another code that is essentially equivalent to the 
first. But even accounting for these permutations, Huffman codes are not 
necessarily uniquely determined. Give an example of a source alphabet and 
probability distribution for which there are two different (binary) Huffman 
trees/codes such that neither one can be obtained from the other by permut­
ing the code letters 0 and 1.

4.22. For each of the following, explain whether proving the result would qualify 
for the one-million-dollar millennium prize for P versus NP. Justify why or 
why not.

(i) There is at least one NP-hard problem that is P.
(ii) There is at least one NP-hard problem that is not P.

(iii) There exists a problem that is NP but is neither NP-complete nor P.
(iv) Every problem that is NP is either NP-complete or P.

4.23. Give an example of a {0, l}-knapsack problem where the include-the-item- 
with-the-most-value-per-weight heuristic gives the worst solution.

4.24. Give an example of a graph where the nearest neighbor heuristic (always 
choosing at each stage to visit the nearest unvisited city) gives the worst 
solution to the TSP.
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4.25. Prove carefully that the naive, exhaustive approach to the TSP has temporal 
complexity at least O((n — 1)!), where n is the total number of cities. Explain 
how to do this exhaustive search with spatial complexity of only O(n2). Hint: 
Think about DFS.

4.26. Implement the dynamic programming algorithm for the {0, l}-knapsack prob­
lem (where no multiples are allowed). Your code should accept as input a 
maximum weight W and a list Items of tuples (weight,value). So, for example, 
the list

Items = [(20,0.5), (100,1)]

would correspond to a collection consisting of item 0 of weight 20 and value 
0.50, and item 1 of weight 100 and value 1.00.
Your code should return the maximum value that can be carried in the knap­
sack for the given Items and weight W.

4.27. Modify your code in the previous problem to also return a list of which items 
should be included to achieve the maximum value.

Notes
For more about implementing Dijkstra’s and Prim’s algorithms with a Fibonacci 
heap, see [FT87] or [CLRS01]. Prim’s algorithm is originally due to Vojtech Jarnik 
in 1930 [Jar30] and was rediscovered by Prim in 1957 and by Dijkstra in 1959. As 
a result, some people call Prim’s algorithm the Jarmk-Prim algorithm.

Our statistics on word frequency in the Concise Oxford English Dictionary are 
taken from [Mat 15].

For more details on computability and formal Turing machines, some good ref­
erences include [CLRS01, KT05], and [Macl8]. For a fun example of an essen­
tially uncomputable polynomial-time algorithm, [DDM+14] provides a polynomial­
time algorithm for a picture hanging, but the best-known bound on the size is 
^1561600).

Among computer scientists, it is generally believed that P ф NP. The main 
justification for this belief is that lots of smart people have, for a long time, tried 
and failed to find a polynomial-time algorithm for an NP-complete problem. A 
problem of similar significance for economists is the efficient market hypothesis 
(EMH), which is a question of whether markets are (weakly) efficient, meaning that 
future prices cannot be predicted from analyzing prices in the past. The great 
majority of economists believe the EMH. So it is interesting to note that, according 
to Maymin [Mayll], the EMH holds if and only if P = NP. This means either 
Maymin is wrong, or most economists are wrong about the EMH, or most computer 
scientists are wrong about P ф NP.

For more about the TSP, see [GYZ]. General references on approximation al­
gorithms include [DKH12, WS11]. For approximation algorithms specific to the 
knapsack problem, see [JK15].

Figure 4.7 is modeled after a diagram by Behnam Esfahbod [Wikl5], and 
Exercises 4.5 and 4.6 are modified versions of problems in [Prul7].



Probability

Never tell me the odds.
—Han Solo

Probability is the mathematics of uncertainty, and it plays a key role in modeling 
the world around us. We focus more on modeling with these tools in Volume 3 
(where we also treat probability in more depth), but probability is also central to 
the study of algorithms and optimization for several reasons. Probability is essential 
to analyzing algorithmic complexity, and it is useful in helping us construct better 
algorithms. It is also a source of many of the most important optimization problems.

Although probability has been used for centuries in areas such as gambling and 
insurance, a rigorous and satisfactory development did not exist until after measure 
theory was developed. In fact, it wasn’t until the 1930s that a rigorous theory was 
developed by the Russian mathematician Andrei Kolmogorov.

Although we postpone many of the details of probability theory to Volume 3, in 
this chapter we provide a lightweight version that allows us to understand and use 
basic principles of probability in a wide variety of settings. In the first five sections 
of the chapter we discuss discrete probability and discrete random variables, where 
the space of possible outcomes is countable. In subsequent sections we discuss 
how to generalize this to the continuous case, where the possible outcomes span a 
continuum.

In the subsequent chapter we discuss what is arguably the most important 
theorem in probability and statistics—the central limit theorem. The central limit 
theorem is the key behind our ability to draw inferences and is truly central to 
probability and statistics.

5.1 Probability Theory
Probability theory begins with a nonempty sample space Q, consisting of all possible 
outcomes of an experiment. In this section we begin a discussion of discrete proba­
bility, which requires the sample space to be countable. We also discuss continuous 
probability, corresponding to more general sets, later in the chapter.

185
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Example 5.1.1. If a coin is flipped three times, the sample space, or set of 
all possible outcomes, is

Q = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

The event E = “heads occurs exactly twice” is represented by the subset 
E = {HHT, HTH, THH}.

Definition 5.1.2. The power set of a set S is the set of all subsets of S. We often 
denote it by the symbol 2s.

Remark 5.1.3. In the discrete setting, any subset E C Q is called an event; that 
is, the collection of all events is 2Q. In the continuous setting, most subsets must be 
excluded from consideration, because allowing every possible subset to be an event 
constrains the theory so much as to make it uninteresting. In either case, we denote 
the collection of all events by &. In the discrete setting we have & = 2Q, but in 
the more general setting we only have & C 2Q.

5.1.1 Axioms of Discrete Probability

Example 5.1.4. If S = {a, 6}, then the power set of S is {0, {a}, {6}, S}. If 
S is finite, of order |S|, the power set of S always has 2^1 elements in it. This 
motivates the notation 2s.

Given two events A and В in Q, the event E that both A and В occur is the 
intersection E = А П В. Similarly, the event F that at least one of A or В occurs 
is the union F = A U B.

The probability of an event is a value between 0 and 1 (inclusive), where we think 
of probability as some measure of plausibility that the event will occur: a probability 
of 1 means that the event is practically guaranteed to occur and a probability of 0 
means it is practically guaranteed not to occur.

Definition 5.1.5. If a collection of events {Ei}iEi is pairwise disjoint, meaning 
that Ei П Ej = 0 whenever i j, then we say the sets are mutually exclusive. If 
the union Uze/ °f the events is the entire sample space then we say that 
the events Ei are collectively exhaustive.

Remark 5.1.6. If the subsets Ei are all nonempty, then saying they are mutually 
exclusive and collectively exhaustive is another way of saying that they form a 
partition of Q.

Definition 5.1.7. Consider a countable sample space and let = 2^. A 
function P : [0,1] is called a discrete probability measure whenever the
following conditions hold:

(i) P(Q) = 1.
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(ii) Additivity: If {Ег}гЕ1 C & is a collection of mutually exclusive events, indexed 
by a countable set I, then

p ЦЫ =Ew 

/ iei

(5-1)

In this case, the triple is called a discrete probability space. We say that
an event E G & occurs with probability P(E). In the case that E = {cj} is a 
singleton set, it is common to write P(ui) instead of P({cj}).

The two conditions on a probability measure should coincide with your intuition 
about how probability behaves. First, the event Q is the set of all possible outcomes, 
and since some outcome must occur, the probability of Q should be 1. Second, if 
A and В are mutually exclusive events, the probability P(A U B) of at least one of 
A or В occurring should be the same as the probability of A plus the probability 
of B.

Example 5.1.8. Consider the space of three coin flips from Example 5.1.1, 
together with its power set & — 2Q. A common probability measure to use in 
this setting is P(cj) = | for every ш G Q. That means P(E) = ||B| for every 
event E G &.

Since Q consists of eight elements, we have P(Q) = 1. It is easy to see that 
for a collection of mutually exclusive events {Ei}iEi we have

So P really is a probability measure on (Q, ^).
With this probability measure, we have P(HHT) = P(TTT) = |, and 

P(“heads occurs exactly twice”) = |.

Remark 5.1.9. It is common to write P(E, F) instead of P(EC\F) to indicate the 
probability that both E and F occur.

The following proposition gives some simple but useful tools for computing prob­
abilities.

Proposition 5.1.10. Let be a discrete probability space. If E,F e &
and Ec = Q\E, then

(i) P(EC) = 1 — P(E), and, in particular, P(fb) = 0;

(ii) E C F implies P(E) < P(F); and

(iii) P(E U F) = P(B) + P(P) - P(B П P).
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Proof.

(i) Since E and Ec are disjoint and E U Ec = Q, we have

1 = P(Q) = P(E U Ec) = P(E) + P(Ecfi

and thus P(EC) = 1 — P(E). Since Qc = 0, we have P(0) = 0.

(ii) The events F П E and F П Ec are disjoint and have F as their union, that is, 
(F П E) U (F П Ec) = F. If E C F, then E П F = F, and thus

P(E) + P(F П Ec) = P(F П E) + P(F П Fc) = P(F).

Since P(F П Ec) > 0 it follows that P(E) < P(F).

(iii) We have

P(F П E) + P(F П Ec) = P(F) and P(E U F) = P(E) + P(F П Fc).

Combining these equations yields P(F U F) = P(E) + P(F) — P(E П F). □

Example 5.1.11. During a particularly bad flu season, the probability you 
will have a sore throat is 0.15. The probability you will have a headache is 
0.10. If the probability of neither is 0.80, what’s the probability that you will 
have both a sore throat and a headache?

To answer this, let E be the event “you have a sore throat” and F be the 
event “you have a headache.” We are given that P(E) = 0.15, P(F) = 0.10, 
and P(fE U F)c) = 0.80. This implies that P(E U F) = 0.20. Thus, we have 
that F(E nF) = P(E) + P(F) - P(E U F) = 0.05.

5.1.2 Equally Likely Outcomes

Definition 5.1.12. Assume Q is finite and (Q, <F, F) is a discrete probability space. 
We say that all outcomes of Q are equally likely if P(w) = 1/|Q| for every

Example 5.1. 13. In the probability space of Example 5.1.8 all outcomes are 
equally likely.

In the case of equally likely outcomes, probability problems become counting 
problems.
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Example 5.1. 14. Two fair (six-sided) dice are rolled and their sum is noted. 
If the event E is “the sum of the dice is 5,” what is P(Ef? The sample space 
Q for this problem is the set of all possible pairs of rolls.

(1,1), (1,2), •• •, (1,6)
(2,1), (2,2), .. •, (2,6)

(6,1), (6,2), .. ., (6,6)

The word fair implies that all of these outcomes (but not all sums) are equally 
likely. Thus, we can answer the question by counting the number of outcomes 
where the sum is 5, that is, counting the elements of

E = {(1,4), (2,3), (3,2), (4,1)},

and comparing this to the total number of possible outcomes, which is 36. 
Therefore, we have P(E) = = |. Similarly, if the event F is “the sum of
the dice is 7,” then

F = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)},

so P(F) = = |.v ' 36 6

Example 5.1. 15. A cooler has three Diet Cokes and seven regular Cokes. If 
you randomly draw three cans from the cooler, and all the cans are equally 
likely to be drawn, what is the probability that you draw at least one of each 
type?

We solve this by realizing that there are two ways you can have one of 
each. Either you get one diet and two regular or you get two diet and one 
regular. There are C(3,1) ways to choose one diet and C(7,2) ways to get two 
regular, so C(3,1) • C(7, 2) ways to choose one diet and two regular. Similarly, 
there are C(3,2) • C(7,1) ways to choose two diet and one regular. Summing 
these gives the total number of ways to get at least one of each. To get the 
probability of this event, divide by the total number C(10, 3) of ways to draw 
three cans out of a cooler of 10 cans. Thus, the probability is given by

C(3,l)-C(7,2) + C(3,2)-C(7,l) _ 84 _ 7
C(10,3) “ 120 “ 10’
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Example 5.1.16. The cards in a standard 52-card deck of playing cards come 
in four different suits (clubs, diamonds, hearts, and spades) and 13 different 
ranks (2, 3, ..., 10, jack, queen, king, ace). What’s the probability that five 
cards, randomly selected from such a deck, will form a full house, that is, a 
three-of-a-kind and a pair? We solve this by first determining which number 
is the three-of-a-kind and which is the pair. Notice that while order within the 
three-of-a-kind or pair does not matter, order of which is the three-of-a-kind 
and which is the pair does matter. Thus we have 13 • 12 ordered pairs, where 
the first number is the rank of the three-of-a-kind and the second number is 
the rank of the pair. We then multiply by C(4,3) and C(4,2) to account for 
the number of ways we can choose the three-of-a-kind and pair, from their 
respective ranks. We find that the probability is given by

13 • 12 • C(4,3) • C(4, 2) 
C(52,5)

0.0014.

Example 5.1.17 (The Birthday Problem). In a given group of people, 
how likely is it that two or more people share the same birthday? To simplify, 
we assume there are exactly 365 days in a year (that is, no leap years) and 
that a given person is equally likely to have her or his birthday on any of these 
365 days.

In this situation, it is simpler to solve the complementary problem instead, 
namely, what is the probability that all the birthdays are distinct? In a group 
of к people, the total number of ways that birthdays might occur is 365fc. If 
к > 365, at least two people must have the same birthday, by the pigeonhole 
principle," but if к < 365, the number of ways that all the birthdays could 
be distinct is (3^5 • Thus, the probability Q(k) that a randomly selected
group of к people will have all distinct birthdays is Q(k} = (3652fcy!365fc • The 
probability that at least two people share a birthday is

P(fc) = 1 - Q(fc) = 1 - 36,5’ v (5-2)

aNo matter how you put n + 1 pigeons into n pigeonholes, at least one pigeonhole has at 
least two pigeons.

Remark 5.1.18. The number 365 is large enough that Stirling’s approximation 
is reasonably accurate for 365!, and if к is not too big, then Stirling also gives a 
reasonable approximation for (365 — k)\. Using Stirling for both of these in the

(365 — k) !365fc

The probability P(k) is plotted in Figure 5.1. A careful look at the plot reveals 
the surprising result that P(k) > 50% whenever к > 23. Thus, if birthdays 
are uniformly distributed among the days of the year, then in a room of only 
23 randomly selected people, there is a greater than 50% probability that at 
least two of them will share a birthday.
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previous example gives

365365+2 _k Л к \fc-365-i
Q(k) ~------------------------------ г = e । 1------- I365fcefc(365 — &)365-fc+2 \ 365 J

or
/ k \fc-365-j

F(fc)«l-e-fc l--£- . (5.3)
\ ООО /

The approximation (5.3) is plotted along with the actual value in Figure 5.1.

Figure 5.1. Plot of the probability P(n) (in black) and its approximation (5.3) 
(red) of a birthday collision between two or more individuals in a group of n people, 
as described in Example 5.1.17. Note that when n > 23 the probability of two or 
more people sharing a birthday is more than 50%.

5.2 Conditional Probability and Bayes’ Rule
Knowing that one event has occurred can give useful information about the probabil­
ity of another event. For example, once your roommate has the flu, the probability 
that you will also get the flu increases. Conditional probability allows us to account 
for changes in the world and to update our understanding of the situation to reflect 
new information. Conditioning is also an extremely powerful tool for solving a wide 
range of problems, including many problems that may seem at first to have nothing 
to do with conditioning.

5.2.1 Conditional Probability

Definition 5.2.1. Let E and F be events in a probability space and
assume that P(F) > 0. The probability of E occurring, given that F occurs, denoted 
P(E | F), is written as

P(E\F) = ^ip.. (5.4)

Alternatively we say that the left side is the probability of E conditioned on F. If 
P(F) = 0, then P(E | F) is undefined.
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Remark 5.2.2. One way to think about conditional probability is to think of prob­
ability as the percentage of times a given event occurs when the experiment is re­
peated a large number of times. Under this interpretation, P(E) is the percentage 
of times that E occurs, and P(F) is the percentage of times that F occurs. So if 
there are N total experiments, of which E occurs tie times and F occurs tif times,
then we have

pw - and Tip

AT
The conditional probability P(E | F) corresponds to throwing out all the trials for 
which F did not occur, so P(E | F) is the percentage of times E occurs among those 
trials where F occurred. That is, if tief is the number of times that E and F both
occurred, then

p(p\p\ - П ~ ПЕЕ_/_М_ _ nEF
P(E\F) p(F) ~ np/N np

Remark 5.2.3. Alternatively, you can think of the situation where F is known 
to occur as giving a new sample space F, replacing the original sample space Q. 
For each E in the power set & of Q we can construct a new set E' = E П F in 
the power set of F. Each of these sets Ef corresponds to an event on the new 
sample space. The collection of all such new events is the power set = 2F of 
the new sample space F. Finally, we define a new probability measure Pf on 
by P'(E') = P(E | F) = • It is straightforward to check that Pf is indeed a
probability measure on

Example 5.2.4. A cooler has four Diet Cokes, three regular Cokes, and three 
bottled waters. If someone randomly draws two drinks from the cooler and 
tells us that they are not regular Cokes, but does not show us what they are, 
what is the probability that the two choices are both Diet Cokes?

Let F be the event "Both are Diet Cokes” and F be the event “Neither is 
a regular Coke.” Note that ЕП F = E, and thus

C(4,2)-C(3,0)-C(3,0)
C(10,2) _ 6 _ 2

C(7,2)-C(3,0) ” 21 “ 7’
C(10,2)

P(B|F)=P(E-nF) = gg> = 
1 1 ' P(P) PIP)

Example 5.2.5. A doctor has six patients in the waiting room, two men and 
four women. Patients are called up in random order and seen in the order in 
which they were called. What is the probability that the second patient is a 
female given that the first is a male?

This situation is depicted by the tree in Figure 5.2. Let A be the event 
“the first patient is male,” corresponding to the yellow node and its children, 
and let В be the event “the second patient is female,” corresponding to the 
two green nodes.
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To find the conditional probability P(B | A) note that if the first patient 
is male, the number of patients remaining is 5, and there are still four women 
but only one man; so the probability that the second patient is also a man is 

while the probability that the second patient is a woman is A similar 
computation gives the probabilities for the edges in the lower half of the tree. 
Note that we did not need to use (5.4) to compute the conditional probability 
in this case.

5.2.2 The Chain Rule
Many useful results follow easily from the definition of conditional probability. One 
of these is the chain rule. The chain rule gives a way to write the probability of the 
intersection of several events in terms of conditional probabilities.

Proposition 5.2.6 (Chain Rule). If {Pi}F=i are events in a probability space 
(Q, cF, P) with P(Ei,..., Pn-i) > 0, then

P(P1,P2) = P(P1)P(P2|P1),

P(Pb P2, P3) = P(P1)P(P2 | P1)P(P3 I ^2, Pl), 
and more generally

Р(ЕЪ..., En) = P(Ei) П Р(& | Er,..., Et-i).

Figure 5.2. A tree depicting the probabilities that male and female patients are se­
lected first or second in Example 5.2.5. The yellow node and its children correspond 
to the event “the first patient is male, ” and the green node corresponds to the event 
“the second patient is female, and the first patient is male.” The leftmost edges 
are labeled with the probabilities for the first patient (male or female, respectively), 
and the rightmost edges are the conditional probabilities for the second patient. For 
example, the edge from the yellow M to the green F is labeled with the conditional 
probability that the second patient is female, given that the first is male.
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Proof, The proof is Exercise 5.11. □

Example 5.2.7. In the waiting room of Example 5.2.5, we might also ask 
what is the probability that both the first patient is a man and the second is 
a woman, or, in the notation of that example, what is P(A,B)? The event 
A A В is the upper green node. By the chain rule we have

4 2 8
P(A,B) = P(B|A)P(A) = 

5 6 30

Going one more step, what is the probability that the sequence of patients 
is MFM? Let C be the event that the third patient is male, so we want 
to find P(A, B,C). To find this we use the chain rule again but we first 
need the conditional probability P(C | A, B). In the event of A A B, there 
are four patients remaining—three women and one man—so the conditional 
probability P(C | Л, B) is |. Now the chain rule gives

18 1
Р(Д В, С) = P(C I A, B)P(B I A)P(A) =

Q OU 10

Figure 5.3. A tree depicting the probabilities of a Ford (F), Chevy (C), or Tesla (T) 
having autonomous capabilities (A) or not (N), as described in Example 5.2.8. The 
left edges, from the black node to F, C, and T, are labeled with their corresponding 
probabilities P(F), P(C), and P(T), respectively. The rightmost nodes depict the 
case of two events both occurring, so the upper right node (A) depicts the situation 
where a car is an autonomous Ford. The edge from node F to the upper right node 
is labeled with the conditional probability P(A | F) = 0.30, and the other right-hand 
edges are similarly labeled with their corresponding conditional probabilities.
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Example 5.2.8. In a large fleet of cars, 70% are Fords, 25% are Chevys, and 
5% are Teslas. Thirty percent of the Fords are autonomous (self-driving), 
while only 4% of the Chevys are. All Teslas are autonomous, obviously. If 
you insist on an autonomous car and are given one at random, what is the 
probability that it will be a Ford?

We begin to solve this by drawing a tree as in Figure 5.3, where the edges 
from the black node to the nodes F, C, and T denote the probability of each 
brand (without the constraint that the car be autonomous), and the right­
hand edges from F, C, and T to the nodes labeled A (autonomous) or N (not 
autonomous) correspond to the conditional probabilities; for example, the 
edge from F to the uppermost A is labeled with the conditional probability p(A|f).

By the chain rule, the probability that a car is an autonomous Ford is

P(F, A) = P(A | F)P(F) = 0.30 • 0.70 = 0.21.

Similarly, the probability of an autonomous Chevy is

P(C, A) = P(A | C')P(C') = (0.04)(0.25) = 0.01,

and finally
P(T, A) = P(A | T)P(T) = (l)(0.05) = 0.05.

We can now solve the problem because the three makes of car correspond 
to mutually exclusive events, so by the additivity property of probability we 
have

P(A) = P(F, A) + P(C, A) + P(T, A) = 0.21 + 0.01 + 0.05 = 0.27,

and thus
P(F|A) = P(F, A) _ 0.21

P(A) “ 07
7
9

Example 5.2.9. Assume in the previous example that 70% of the autonomous 
Chevys are also electric, and the rest use fossil fuels. By the chain rule, the 
probability that a randomly selected car is an electric, autonomous Chevy is

P(E, A, C) = P(E | A, C)F(A | C)P(C) = (0.70)(0.04)(0.25) = 0.007.

5.2.3 Law of Total Probability
The additivity property of probability, combined with the definition of conditional 
probability, gives another useful tool, the law of total probability, which allows us 
to condition on a partition in order to compute the probability of an event.
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Proposition 5.2.10 (Law of Total Probability). If {Ei}iei is a countable 
collection of mutually exclusive and collectively exhaustive events in a probability 
space (Q, P), then for any event F e we have

р(г) = £р(г|£?ат)-
iei

Here we use the convention that P(F | Ei)P(Ei) = 0 whenever P(Ei) = 0, even 
though P(F\Ei) is undefined in that case.

Proof. The proof is Exercise 5.12. □

The law of total probability provides a powerful problem-solving strategy for 
computing probabilities. The idea is to identify a collection of mutually exclusive 
and collectively exhaustive events (or just an event and its complement) having the 
property that if we knew which one occurred, the problem would be easy. We can 
get the desired probability by conditioning on each of these events and assembling 
the results using the law of total probability. This is illustrated in the following two 
examples.

Example 5.2.11. Every day one of my three daughters, Adriana, Bhavana, 
or Ciara, borrows my car for the entire day, and when she does, she sometimes 
leaves a note (event AT) to say thank you. Of the three, Adriana takes the car 
(event A) 50% of the time, and when she does, the probability she’ll leave a 
note is P(N | A) = 25%. Bhavana takes the car (event B) 30% of the time, 
and when she does, she leaves a note P(N \ B) = 10% of the time. Finally, 
Ciara takes the car (event C) 20% of the time, and she always leaves a note. I 
don’t know who borrowed my car today. What is the probability that I’ll get 
a note?

Although I don’t know who borrowed the car, if I did know that, the prob­
lem would be easy. So I can compute the conditional probabilities, conditioned 
on who borrowed the car, and then assemble the results using the law of total 
probability:

P(N) = p(N | A)P(A) + P(N | B)P(B) + P(N | C)P(C) 
= (0.25)(0.5) + (0.1)(0.3) + (1.0)(0.2) 
= 0.355.

Example 5.2.12. In the waiting room example (Example 5.2.5) what is the 
probability that the second patient is a woman? Once again, if we knew the 
gender of the first patient, the problem would be easy—it would be one of 
the conditional probabilities we already computed (listed on the edges of the 
graph in Figure 5.2). So, we use the law of total probability to assemble these 
conditional probabilities into the total probability.
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Let A be the event that the first patient is male, В be the event that the 
second patient is female, and C be the event that the first patient is female. 
Since A and С are mutually exclusive and collectively exhaustive, we have

4 2 3 4 2
F(B) = P(B | A)P(A) + P(B | C)P(C-) =

0 0 0 0 о

5.2.4 Bayes' Rule
In Example 5.2.8 we solved P(F | A) using information about P(A | F). This is a 
very useful method, and it generalizes to give a fundamental tool of conditional 
probability called Bayes ’ rule or Bayes ’ formula.

Theorem 5.2.13 (Bayes’ Rule). Let be a probability space, and let
E,F e with P(E) > 0 and P(F) > 0. We have

P(E\F) = P(F | B)F(B) 
Ж (5-5)

Moreover if {Р$}™=1 C & is a collection of mutually exclusive and collectively ex­
haustive subsets of Q with P(Ej) > 0 for each j, then for any choice of i we have

P(Ei\F) =
P[F\Ej)P(E^

(5-6)

Proof. Equation (5.4) gives

F(F, П F) = F(F, | F)P(F) = P(F | Е<)Р(Е,).

Thus

P(Ei\F) =
P(F|Bj)P(Bj) 

P(F)
P(F|BQP(B0

The last equality follows by the law of total probability. □

Example 5.2.14. Revisiting the problem in Example 5.2.8, we see that Bayes’ 
rule immediately gives

P(F|A) = P(A | F)P(F)
P(A | F)F(F) + P(A1 C)P(C') + P(A | T)P(T)

(0.3)(0.7) _ 0.21
(0.3)(0.7) + (0.04)(0.25) + (1.0)(0.05) “ 07

7
9



198 Chapters. Probability

5.3 Independence, Paradoxes, and Pitfalls
Although knowing one event often gives new information about the probability of 
another, there are also times when two events are completely independent, and 
knowing about one tells us nothing about the other. For example, the outcome of 
one coin flip generally has no impact on the outcome of another. In this section we 
treat the idea of independence and then discuss a number of paradoxes and pitfalls 
in probability theory.

5.3.1 Independence
Informally, we say two events are independent if knowing the outcome of one event 
gives no information about the probability of the other. Said more carefully, events 
E and F are independent if

P(E | F) = P(E) and P(F\E) = P(F). (5.7)

Combining (5.4) and (5.7) gives P(E)P(F) = P(E П F). This is our definition of 
independence.

Definition 5.3.1. Two events E,F in a probability space are independent if

P(EnF)=P(E)P(F). (5.8)

Remark 5.3.2. Although they are almost equivalent, (5.8) is more informative 
than (5.7) because it does not require P(E) or P(F) to be nonzero.

Example 5.3.3. A card is selected at random from an ordinary deck of cards. 
Let E be the event “the card is an ace” and F be the event “the card is a spade.” 
Since P(E) = Y3, P(F) — and P(E П F) = | the events E and
F are independent.

Unexample 5.3.4. If A and В are disjoint events, then Р(АПВ) = P(0) = 0.
If P(A) > 0 and P(B) > 0, then these events cannot be independent.

If the outcome of E has no impact on the probability of F, then it also has no 
impact on the probability of the complement of F.

Proposition 5.3.5. If E and F are independent events, then Ec and F are also 
independent.

Proof. The proof is Exercise 5.13. □

We also need to consider collections of independent events. This is a little more 
subtle than just requiring pairwise independence.
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Definition 5.3.6. Let (fl^P) be a probability space. A collection = {Ег}гЕ1 
of events is independent if for every finite subcollection of^, we have

(m \ m 
D^J = nmj. 

fc=l / k=l
(5-9)

Unexample 5.3.7. Consider the situation where two fair dice are rolled, as 
in Example 5.1.14. Let A be the event that 1 shows on the first die. Let В 
be the event that 1 shows on the second die, and let C be the event that the 
sum of the numbers showing is 7. We have

P(A) = P(B) = P(C) = - and Р(4ПВ) = Р(ВПС) = Р(СПЛ) = 1 
0 OU

so any two of these events are independent (we call this pairwise indepen­
dence). But

/1\3 
Р(АПВПС)=О^Р(А)Р(В)Р(С)= - ,

\6 J

so (5.8) fails to hold for the subcollection {A, B,C} even though it holds for 
each of the smaller subcollections {А, В}, {A, C}, and {B,C}. Thus, A, B, 
and C are not independent.

Unexample 5.3.8. Consider three outcomes x,y,z 6 Q in a discrete proba­
bility space Q with P(x) = P(y) = P(z) = The three events A = {x, y}, 
В = {?/, z} and С = {ж, z} are pairwise independent because

Р(АпВ) = P(PnC) = P(CnA) = | = P(A)P(B) = P(B)P(C) = P(C)P(A), 

but the three events are not independent because

P(A П В П C) = P(0) = 0 / | = P(A)P(B)P(C).
8

Example 5.3.9. A sequence of n independent trials is to be performed. Each 
trial results in a success S with probability 0 < p < 1 and failure F with 
probability 1 — p (these are called Bernoulli trials).

(i) If n = 3, the set of all possible outcomes is

Q = {SSS, FSS, SFS, SSF, FFS, FSF, SFF, FFF}.
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The event “success on the zth trial” corresponds to the subset Ei of all 
outcomes that have S in the zth position, so E% = {SSS, FSS, SSF, FSF}, 
and P(Ei) = p. The fact that the trials are independent implies that 
the events Ei and Ej are independent for all i / j. Thus

P(Ei П E2) = P({SSS, SSF}) = P(EX)P(E2) = p2

and

P(Ei П E%) = P(Ei \ (Ei П P2)) = P(Pi) - P(Pi П P2) 
= p - p2 = p(l - p) = P(E!)P(E2c),

so Ei and E£ are also independent.

(ii) The probability that the first trial will be a success and the others will 
be a failure is P(Ei П E^P • • • A E^) = p(l — p)n-1.

5.3.2 Some Pitfalls in Conditioning
Conditional probability can be tricky, especially if you try to skip the calculations 
and just estimate the values. In this section we give a few examples of the types of 
pit falls that lie in wait for those who are careless.

SfWSnCAUy SPEAKING, IF YOU PICK UPA 
SEA5HE1L AND ZWTHOCPITTO YOUR EAR, 

YOU CAM PR06A&Y HEAR THE OCEAN.
THE ANNUAL DEATH RATE AHONG PEOPtfl 
WHO KNOW THAT STATISTIC IS ONE IN Six.

Figure 5.4. Some pitfalls in conditional probability. Source: XKCD, Randall 
Munroe, http: //xkcd. com/1236/ and http: //xkcd. com/795/

Prosecutor's Fallacy

A common error in conditional probability is to use P(A | B) when we really want 
F(B | A). This error is sometimes called the prosecutor’s fallacy, corresponding to 
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the situation when A is the evidence of guilt and В is the event that the defendant 
is actually guilty. When written out carefully, it seems clear that we cannot expect 
P(A | B) to be equal to P(B | A), yet when encountered in the wild, it is easy to 
forget that these are not the same.

Example 5.3.10. When a large national database of DNA samples (selected 
randomly) becomes available, investigators reopen an old, unsolved murder 
case and search the database for a match with DNA found at the crime scene. 
One match is found with a person who is not too young to have committed 
the crime. DNA experts agree that the probability of a random match using 
this particular DNA test is 1 in 3 million. We write this as

P(M I /) = i x 10-6, 
О

where M indicates the event of a match and I indicates that the person is 
innocent. The prosecutor’s fallacy is to claim this means the person who 
matched has only a 1 in 3 million chance of being innocent, but the prosecutor 
has mistaken P(M | /) for P(J | M).

In the absence of any other evidence for or against this person’s guilt, we 
can use Bayes’ rule to compute P(I | M):

Р(М\Г)Р(Г) 
P(M)

P(J\M) =
Р(М\Г)Р(Г)

P(M I Г)Р(Г) + P(M I P)P(IC)'

To compute P(T) we need to know the total population of people in the country 
who could have committed the crime. Assume this is 250 million, so P(T) = 
1 — Aq x IO"6 and P(Jcy) = 2I0 x 10 6- Assume also that the DNA will always 
match if a person is guilty, so P(M | Iе) = 1. Putting this all together, we 
have

P(I I M) =
(i x iq-6)(1 _ _j_ x 1Q-6)

(I x 10’6)(l - Йо x IO’6) + (1)(Йо x 10-6)

250 - IO"6
253 - 10-6

« 0.988.

This seems counterintuitive to many people—probably because most of us 
tend to commit the prosecutor’s fallacy. But you can see it is approximately 
right by using the following argument. If we had a database of DNA for all 
250 million people, then a 1 in 3 million chance of random matching means 
that there will be about ~ 83 false matches and one real match. Thus, 
the probability that a specific one of those 84 matches is not guilty is close to 
|| ~ 0.988, matching our previous calculation with Bayes’ rule.
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Example 5.3.11. At the time of this writing (2019), the incidence of breast 
cancer among women ages 45 to 54 is about 0.3%. If a woman in this age group 
with no other symptoms, risks, or evidence of cancer has a mammogram that is 
positive, we want to know the probability that she actually has breast cancer. 
Assume the following:

(i) The probability of a positive test, given the disease is present, is 0.90.

(ii) The probability of a negative test, given there is no disease, is 0.95.

Denote the event “disease present” by D and the event “disease absent” by 
H (healthy). Let T+ denote a positive test and T~ a negative test. Thus 
P(T+ I D) = 0.90 and P(T" | Я) = 0.95.

In this situation, the prosecutor’s fallacy is to look at P(T+ | D) = 90% 
and think that P(D | T+) would also be 90%. To calculate the correct value 
of P(D | T+), we can use Bayes’ rule. We assume that D and H are mutually 
exclusive and collectively exhaustive—everyone is either healthy or diseased, 
but not both. We compute

P(D | T+) =________Р(Т+\ртР)________
{ 1 7 P(T+ I D)P(D) + P(T+ I

(0.90)(0.003)
” (0.90)(0.003) + (1 - 0.95)(l - 0.003)
« 0.051 = 5.1%.

This result is counterintuitive for many people. A positive result on this test 
that is supposed to be 90% to 95% correct only means that you have a roughly 
5% probability of actually having the disease.® Because of this, it is common 
to refer to a positive mammogram as simply abnormal.

You can make a rough estimate to see that this result is reasonable. If a 
group of 1000 people in this age group had mammograms, we would expect 
roughly 50 of them to have false positives and 3 to actually have the disease. 
So, roughly 3 in 53 people who test positive for breast cancer are expected to 
have the disease, and indeed, 3 in 53 is 5.7%—not far from the correct answer 
of 5.1%.

This does not mean that you should skip your mammogram. It only means 
that if your mammogram is abnormal, then you shouldn’t be too discouraged 
and should undergo further testing under the care of a physician.

aIn fact, the true-positive and true-negative rates of most mammograms are worse than the 
numbers we have used here [OSS+16], so the probability of disease is less likely than we 
have computed here. However, these computations are only valid assuming the absence 
of any other information about the presence of cancer—additional follow-up tests can and 
should be used to confirm or exclude the possibility of any actual disease.
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Nota Bene 5.3.12. Faculty and students at Harvard Medical School were 
asked a problem similar to that of Example 5.3.11, and fewer than 20% of 
them got it right. Almost half of them said 95%—about as far away from the 
correct answer as you could get [HLHG00]. One lesson to take from this is 
that most human beings are really bad at estimating conditional probabilities. 
In this particular case, it looks like the half that chose 95% were committing 
the prosecutor’s fallacy.

Neglecting to Condition

In most real-life situations, the probabilities we know and the probabilities we must 
think about are conditional probabilities. Using absolute probabilities, or forgetting 
to condition on all the data, gives bad results.

Example 5.3.13. A famous example of forgetting to condition on all the 
evidence is when the Center for Naval Analysis tried to minimize bomber 
losses in World War II. After looking at the bullet hole locations in returning 
bombers, they recommended putting armor in the places that showed the most 
bullet holes. The mathematician Abraham Wald pointed out that they had 
forgotten to account for the fact that the only bombers observed were those 
that had survived in combat. The holes in the bombers that did not survive 
were not observed.

For each location on the plane, the Center for Naval Analysis had not 
computed the absolute probability of being hit by a bullet in that location but, 
rather, the conditional probability of being hit by a bullet in that location, 
given that the plane survived. Moreover, what was really needed was the 
conditional probability of surviving, given that the plane is struck in that 
location, and that was clearly higher for the locations where many bullet holes 
were observed. That is, the best place to put armor was exactly the locations 
where the fewest bullet holes were observed—not where the most bullet holes 
were observed.

Written out mathematically, it is reasonable to assume bullets will hit 
almost all locations with equal probability; that is, P(hit here) is roughly the 
same for all locations. For a given location on the plane, Bayes’ rule gives

P (survive | hit here) = P(hit here | survive)P(survive)
P(hit here)

and since P(hit here) and P(survive) are independent of location, the de­
sired number P(survive | hit here) is higher at exactly those locations where 
P(hit here | survive) is highest.
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Example 5.3.14. A poll conducted by a cable TV station found that a cer­
tain political figure had an approval rating of 35%—much higher than ex­
pected. Phrased in terms of probability, the claim was that P(approve) = 0.35. 
However, this claim failed to account for some important factors, like the fact 
that the only people who responded to this poll were people who happened to 
be watching this station at 10 a.m. on Tuesday, when the poll was conducted. 
People who did not watch this particular TV station at 10 a.m. on a Tuesday 
morning, and people who, even if they were watching, were not willing to an­
swer a survey, were not included in the results. So it would be more accurate 
to say that the poll really gave the conditional probability

P(approve | watches this station & answers a survey at 10 a.m. on Tues).

Since the condition watches this station and willing to answer a survey at 10 
a.m. on Tuesday is not very representative of the general population, the result 
is unlikely to be very similar to the unconditional probability P (approve) that 
we really want to know. When we want an unconditional result, but our data 
supports only a conditional result, the difference between the unconditional 
and conditional results is called selection bias.

5.3.3 *Pitfalls  of Assuming Independence
When dealing with apparently independent events, it is important to have a clear 
understanding of the problem being solved and the questions being asked. Here we 
consider an example that teaches us to be careful in our thinking when it comes to 
independence.

Suppose that a fair die has both red and green dots on each side. Assume that 
if you shine a red flashlight on the die in a dark room, you see only the green dots, 
and if you shine a green flashlight on the die, you see only the red dots. In other 
words, the flashlight drowns out its own color so that you can see only the other 
color. When illuminated with the green light, the die has three odd-numbered red 
sides and three even-numbered red sides; when illuminated with the red light, the 
die has two odd-numbered green sides and four even-numbered green sides.

Consider an experiment where the outcome of a fair coin determines the color of 
flashlight used to illuminate the die when it is rolled: heads means the flashlight is 
green and tails means the flashlight is red. In each trial, the outcome of the coin flip 
and the observed die roll are noted; see Figure 5.5 for a description of the outcomes 
and probabilities.

Are the coin and the die roll independent? Of course they are—the coin and 
the die do not influence each other. However, the coin does influence the choice 
of flashlight, which affects the observation that is recorded. Therefore the coin 
and the observed die roll are dependent, even though the coin and the die roll are 
independent processes. We see this mathematically by noting that = |, 
P(even) = and P(P, even) = A, that is, P(P, even) P(Pr)P(even). It is 
important to recognize that independent processes can be observed in a way that 
makes the final results dependent.
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Figure 5.5. A tree diagram of the experiment described in Section 5.3.3.

5.4 Discrete Random Variables
Outcomes in a probability space don’t necessarily have to be numbers—they could 
be nearly anything, including colors, textures, or flavors. A random variable is a 
rule (function) that assigns a number (or a vector) to each possible outcome. For 
example, for a coin flip, we could define a random variable that takes the values 0 for 
tails and 1 for heads. Or for the roll of a die, we could define a random variable that 
takes the value (1 through 6) of the face showing upward. But a random variable 
can also represent many other things, like the amount of money you win in a game 
of chance, or the number of votes a candidate will receive in an election.

Random variables are a fundamental tool of probability theory. In this section, 
we define discrete random variables and their properties. We sketch how to extend 
this to more general settings (uncountable probability spaces) in Section 5.6.

5.4.1 Definition and Examples

A discrete random variable is a function X : Q ч 1 on a discrete probability space 
(Q,cF,P).

Definition 5.4.1. Let be a discrete probability space. Any function
X : Q R is called a discrete random variable or a random variable on (Q, P).
It is common to denote random variables by capital letters.
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Example 5.4.2. Let Q be the set of possible outcomes of n flips of a fair coin:

Q = {HHH... HH, THH... HH, HTH... HH,..., TTT... TH, TTT... TT}

All outcomes are equally likely, so P(cj) = 2~n for all cj G Q, and P(E) = 
2~n\E\ for all E G &. We define random variables

Xk =
1 if A;th coin flip is H, 
0 if fcth coin flip is T.

For example, XfiHHH) = X^HTH) = 1, while X^THT) = 0. The sum 
X = fc=i Xk is also a random variable, which counts the total number of 
heads.

Remark 5.4.3. We remind the reader that for any function f : A В and for 
any subset S С B, the preimage of S is the set /-1(S) = {u G A | /(a) G S'}. For 
a single element b G B, we often abuse notation and write /-1(6) when we mean
rW-

Nota Bene 5.4.4. Beware that the notation /-1(S) makes sense even if f 
has no inverse. If f does have an inverse g, then the preimage /-1(S) is what 
you might expect it to be, that is, the set /-1(S) = {g(s) | s € S}. But 
J-1 (S') exists for any function /, whether f has an inverse or not.

Example 5.4.5. In Example 5.4.2, the set X]-1(l) consists of all elements of 
Q which begin with H. The set X3 (0) consists of all elements of Q whose 
third term is T. And if n = 4, we have

^-1({3,4}) = {HHHH, HHHT,HHTH,HTHH, THHH}.

Definition 5.4.6. Let X be a random variable on a discrete probability space. 
Given a G R, define the event “X = a” to be the set X-1(a) = {cj G Q | X(w) = a}. 
This set is an element of &, so it makes sense to define the probability of this event:

P(X = a) = P(X-\a)fi

The probability mass function (p.m.f) of X is the function gx • R [0,1] given 
by

gx(a) = P(X = a).

Remark 5.4.7. The domain of a p.m.f., as we have defined it here, is all of R, but 
it is often convenient to restrict the domain to be the range of the corresponding 
random variable. This often simplifies the formulas for the p.m.f.
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Example 5.4.8. Let Q be the set of possible outcomes for n Bernoulli trials 
with probability p of success. Let

Yk =
if the A;th trial is successful, 
if the Zcth trial is a failure

and y = ^Yfc.

k=l

Example 5.3.9 shows that

,gy(r) = P(Y = r) =
'®Рг(Д~РГ

<
if r € {0,1,..., n}, 

otherwise.
(5.10)

A random variable X whose p.m.f. is equal to gy is said to be binomially 
distributed with parameters n and p.

5.4.2 Expectation
The expectation of a random variable is the sum of the values of the random variable 
weighted by probability. This is often called the mean of the random variable.

Definition 5.4.9. Let X be a random variable on a discrete probability space. The 
expectation (or expected value) of X is given by

E[X] = £x(w)F(4

provided this sum converges absolutely. If the sum does not converge absolutely, the 
expected value does not exist.

It is immediate from the definition that

E[X] = ^iP(X = г) = ^грх(г), (5.11)
i i

where the sums run over all values i in the image of X.
Thinking of probability in terms of mass is a very useful analogy here. Each x 

in the image of X corresponds to a point on the real line at position x with mass 
gx(x) = P{X = x). Under this analogy, the expected value of X is the location of 
the center of mass of the collection of all these points on the real line.

Example 5.4.10. A random variable X with range {0,1} is a Bernoulli ran­
dom variable. Note that since X can take on only the values 0 and 1, we must 
have P(X = 0) + P(X = 1) = 1. Thus, if P(X = 1) = p, then we must have 
P(X = 0) = 1 — p. This gives

E[X] = 0 • P(X = 0) + 1 • P(X = 1) = 0 • (1 - p) + 1 • (p) = p.
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Example 5.4.11. You flip a coin until it comes up heads. Let X be the 
random variable corresponding to the number of flips it takes to get heads. 
If it comes up heads on the first flip, then X — 1. If it takes two flips 
to come up heads, then X = 2, and so forth. The sample space is Q = 
{H, TH, ТТН, TTTH,... }. The probability P(X = n) is the probability of 
getting tails n — 1 times in a row, followed by heads. Since each coin flip is 
independent, we have

/l\n 1 1F(X = n)=^-J --=2-

The expected value of X is

e[x] = ^2 np(x =n) = Y n2~n
П=1 П—1

1/2
(1 - W

where the third equality follows from Exercise 1.20. Notice that the expected 
value of X is well defined and finite, even though the sample space is infinite.

Nota Bene 5.4.12. To calculate the expected value of a random variable, 
we need only the p.m.f. gx- We do not need to know the particulars of the 
sample space Q, nor do we need to know all the values of the probability 
distribution P(w) for every w 6 Q. This is a big deal, because many different 
random variables defined on many different sample spaces end up having the 
same p.m.f. This means that many different situations can be modeled and 
understood with the same p.m.f. We discuss many of the most common p.m.f.s 
in the next section. These few examples describe a surprisingly large number 
of the most important situations you will encounter in discrete probability.

Proposition 5.4.13. For any constant a e R, we have E[o] = a.

Proof. Since X = a is constant, we have P(X = a) = 1 and P(X o) = 0, so we 
have

E[o] = aP(X = o) = a. □

The next theorem shows that expectation is a linear operator on the space of 
random variables.

Theorem 5.4.14. For any constants a,/3 El and any two random variables X 
and Y on the same probability space Q, we have

E[oX + /ЗУ] = aE[X] + /ЗЕ[У].
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Proof.

E|al + pY] = ^2(aX(w) + £У(и))Р(«)

= a 52 + /3 52 r(w)p(w)
cuGQ cjGQ

= cdE[X]+/3E[Y]. □

Given a function h : R —> R and a discrete random variable X : Q —> R, the 
composition h о X : Q —> R is also a discrete random variable. By definition, the 
expected value of h о X is

E[/1oX] = 52jF(/1oX=j),
3

where j runs over all the values in the image of h о X. If we weren’t thinking 
carefully (if we were acting “unconsciously”), we might instead write

Е[Л о X] = 52 h(i)P(X = г),
i

where i runs over all values in the image of X. Surprisingly, this unconscious 
computation still gives the right answer. This fact is not very hard to prove, but it 
is very useful. It is sometimes called the law of the unconscious statistician.

Theorem 5.4.15 (The Law of the Unconscious Statistician). If X is a 
discrete random variable, and h : R —> R is any function, then ho X is a discrete 
random variable, and the expected value of h(X) is given by

Е[/г(Х)] = 52/г(г)Р(Х = г) = £ h(i)gx(i).

Proof. The proof is Exercise 5.20. □

Example 5.4.16. You are flipping coins to get heads, as in Example 5.4.11, 
and someone offers you a bet, based on the outcome of the coin flip. If X = n, 
then she will pay you A- dollars. Let Y be the random variable corresponding 
to the amount you win. Note that Y = yy, so the expected value of Y is

00 1 °° Q —П

4H = E^P(-V = ») = E— =e,/2-l
n=l n—1

by the law of the unconscious statistician.

A random variable X defines many events of the form A-1 (a) = {cj | A(cu) = a}. 
Just as events can be independent, random variables can also be independent, if 
the corresponding events they define are independent, as follows.
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Definition 5.4.17. Two discrete random variables X and Y are independent if 
the events X = a and Y = b are independent for all a,b El, that is,

P ((X = а) П (У = 0) = P(X = a)P(Y = b). (5.12)

Proposition 5.4.18. For any independent random variables X and Y on a discrete 
probability space the product XY is also a random variable, defined by
Xy(cj) = X(cj)y(cj)7 with expectation

Е[ХУ] = Е[Х]Е[У].

Proof, The fact that XY is a random variable is immediate. We compute its 
expectation as follows:

Е[ХУ] = ^2 XY(w)P(w) = ^nP(XY = n)

= У У nptx = Y = y) = 52 У xyP(x = x, y = y) 
n x,y:xy=n x у

= xyP(X = x)P(Y = y) (by independence)
X у

= [5>F(X = rr)j ( 52т/Р(У = 7/)) = Е[Х]Е[У]. □

5.4.3 Variance
The variance of a random variable is a measure of how far the random variable 
typically differs from its mean. Some random variables are spread out from the 
mean (high variance), and others are bunched up near the mean (low variance). For 
example, if all the darts on a dartboard are close to each other (but not necessarily 
close to the bull’s-eye), this is an example of a random variable (the location of a 
dart) with low variance. However, if the darts are spread all over the board, and 
maybe even on the wall surrounding the dartboard, this is an example of a random 
variable with high variance.

Definition 5.4.19. Let X be a discrete random variable with E[X] = д. The 
variance of X is the quantity

Var(X) = E [(X - /i)2] , (5.13)

provided this expectation is defined (absolutely convergent). The standard deviation 
is the square root of the variance.

Here |X — p\ is the distance from X to its mean—how spread out it is. The 
square |X — /i|2 = (X — p)2 is even greater than that distance when |X — p\ > 1, 
but it is smaller when |X — p\ < 1. Therefore, the expected value of (X — p)2 is big 
when X is usually far from p and is small if X is usually close to p.
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Theorem 5.4.20. Let X be a random variable with E[X] = /i. Denote by X2 the 
random variable given by X2(w) = (X(cj))2. We have

Var(X) = E[X2] - E[X]2 = E[X2] - p2. (5-14)

Proof, The proof is Exercise 5.22. □

Example 5.4.21.

(i) For a Bernoulli random variable X with parameter p, we have 

E[X] = p and E[X2] = l2p + 02(l — p) = p.

It follows that

Var(X) = E[X2] - E[X]2 = p - p2 = p(l - p).

(ii) For a binomial random variable X with parameters n and p, we have 
E[X] = np and

E[JC2] = i2P(X = г) = fnV(l -p)n-i. 

2=0 2=1

It is not hard to show that z(n) = which is used to prove that

E[X2] = (np)2 — np2 + np.

It follows that

Var(X) = E[X2] — E[X]2 = — np2 + np = np(l — p).

Proposition 5.4.22. For any random variable X and constants a, /3 € R, we have

Var(oX + /3) = a2 Var(X).

Proof. Expanding the definition and collecting like terms gives

Var(oX + /3) = E[(aX + /?)2] - (E[aX + /3])2

= E[o2X2 + 2a/3X + /32] - (aE[X] + /3)2

= o2E[X2] - o2E[X]2
= a2 (E[X2] - E[X]2)
= o2Var(X). □
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Proposition 5.4.23. If X and Y are random variables and a,/3 eR are constants, 
then

Var(aX + 0Y) = a2 Var(X) + 2а/3(Е[ХУ] - Е[Х]Е[У]) + /З2 Уаг(У).

If X and Y are independent, then variance behaves like the square of a norm:

Уаг(аУ+/ЗУ) = а2 Уаг(У)+/32 Уаг(У). (5.15)

Proof, The proof is Exercise 5.23. □

5.5 Discrete Distributions
Most of the important properties of a discrete random variable X are determined 
by its p.m.f. As described in Nota Bene 5.4.12, this means we rarely need to think 
about the sample space Q or the probability distribution on Q—it is enough just 
to understand the p.m.f. When we talk about a discrete random variable having a 
particular distribution, we mean that it has a particular p.m.f.

In this section we give some important examples of probability distributions 
for discrete random variables. Many different random variables defined on many 
different probability spaces have the same p.m.f.; that is, they all have the same 
distribution. Therefore, understanding just a few distributions gives us the power 
to model and understand a large number of different probabilistic situations. Many 
more random variables can be described as a composition of some function with one 
of the basic random variables, and so by the law of the unconscious statistician, the 
most important properties of these other random variables can also be described 
using these basic distributions.

The set of values of x for which gx (ж) is nonzero is usually called the support2^ 
of the discrete distribution. It is a subset of the domain of gx and a subset of 
the range of the random variable X. Throughout this section, the values of the 
p.m.f. gx(%) are given only for x in the support of the distribution. The p.m.f. is 
always 0 for values of x that do not lie in the support.

5.5.1 Bernoulli Distribution
The Bernoulli distribution is among the most fundamental of discrete distributions. 
It typically represents the results of a Bernoulli trial—like a coin flip or a free 
throw—where the results are always in exactly one of two categories.

A random variable X has Bernoulli distribution if its support is equal to {0,1}. 
As described in Example 5.4.10, if P(X = 1) = p, then P(X = 0) = 1 — p and the 
p.m.f. of X is

5х(х)=рж(1-р)1-ж = Г (5.16)
I 1 — p it x = 0.

24 More generally, the support of a function f : X —> Y is the closure of the set of all x G X such 
that /(ж) 7^ 0. The support of a discrete distribution is just the support of the p.m.f. of the 
distribution.
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In this case we write X ~ Bernoulli(p) and say “X has a Bernoulli distribution with 
parameter p.” Example 5.4.21 shows that E[X] = p and Var(X) = p(l — p).

Example 5.5.1. Assume the probability that a basketball player will make 
a free throw is 88.08%. We can define a random variable X that is 1 with a 
successful throw and 0 with a failed throw. This is Bernoulli distributed, and 
F(X = 1) = 88.08%, while P(X = 0) = 11.92%, so

9x(x) =
I 0.8808, x = 1, 
(0.1192, x = 0, 

= (0.8808)х(0.1192)(1-:г).

If you enter a bet where you win $5 if she misses and $2 if she is successful, 
this defines a new random variable G(miss) = 5 and G (success) = 2, which 
we can rewrite as G = h о X with /z(0) = 5 and /i(l) = 2. By the law of the 
unconscious statistician, the expected return for this bet is

E[G] = E[h о X] = h(tygx(ty + /г(1)рх(1) = $5 • 0.1192 + $2 • 0.8808 = $2.36.

Definition 5.5.2 (Indicator Random Variable). Let E be any event in a 
probability space (Q, F). The function : Q —> {0,1}, given by

1£?(^) =
1 ifutE,
0 ifw&E,

is called the indicator random variable of E.

The indicator is Bernoulli distributed with parameter p = P(E) (unless 
E = Q or E = 0). Conversely, given any Bernoulli-distributed random variable X 
with parameter p, letting E = X-1(l) gives Ec = X-1(0). For any w Efi we have

1
0

1#(^) =
if (jj e F, 
if w e Ec

1
0

if X(cj) = 1, 
ifX(cj) = 0

= x(4
and thus = X. So any Bernoulli random variable X is the indicator function of 
the set E = X-1(l).

5.5.2 Binomial Distribution
The binomial distribution describes the number of successes of a sequence of n 
repeated Bernoulli trials (by repeated, we mean independent and with the same
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parameter p). For example, the binomial distribution describes the number of heads 
that occur when a coin is flipped n = 100 times.

We say that a random variable X has binomial distribution with parameters n 
and p if the support is {0,1,2,..., n} and the p.m.f. of X is

9x^= (5-17)

In this case we write X ~ Binomial(n,p). 
We will show below that

E[X] = np and Var(X) = np(l — p).

As the next two examples show, the sum of n independent Bernoulli random 
variables A\,..., Xn, all with parameter p, is a binomially distributed random 
variable with parameters n and p.

Example 5.5.3. Continuing with the situation of Example 5.5.1, assume that 
all of Kevin Durant’s free throws are independent, so his ability to make a shot 
is not affected—positively or negatively—by any previous failures or successes.

If he takes 10 free throws, let T be the total number of successes. The 
probability that T = 7 can be computed by listing each of the ways that he 
could make 7 and miss 3 and then summing the probability of all of those. 
If F denotes failure and S denotes success, we have the following possibilities
and probabilities:

FFFSSSSSSS 
FFSFSSSSSS 
FFSSFSSSSS 
FFSSSFSSSS

(1 -p)3p7,
/1 _(1 - p)2p(l - p)p6 = (1 - p)3p7, 
(1 - p)2p2(l - p)p5 = (1 -p)3p7, 
(1 - p)2p3(l - p)p4 = (1 -p)3p7,

There are (?) = 120 of these possibilities, all with the same probability, 
so summing them all up gives

Р(Т = 7) = рт(7)= 3p7 = 120 • (0.8808)7(0.1192)3.

A similar argument for any tc{0,l,...,10} shows that

P(T = t) = р‘(1-р)10-г

and hence T is binomially distributed with n = 10 and p = 0.8808.



5.5. Discrete Distributions 215

Example 5.5.4. Generalizing the previous example, for any n repeated (in­
dependent) Bernoulli trials all with the same parameter p, let Xi be 1 if the 
zth trial is successful and 0 otherwise. Each Xi is Bernoulli distributed with 
parameter p, and the sum X = x Xi is also a random variable.

Making the same sort of argument as in Example 5.5.3, we find the prob­
ability that X = x, by listing each of the possibilities that sum to x and 
summing those probabilities:

l,l,...,l,0,0,...,0
X n — x

0,l,...,l,l,0,...,0
x n—x—1

px(l — p)n x

рж(1 — p)n~x

There are of these possibilities, all with the same probability, so sum­
ming them all up gives

(77 XИ-рГ1.
ж /

This shows that X = (52™=1 Xf) ~ Binomial(n,p).

Proposition 5.5.5. If X ~ Binomial(щр), then

E[X] = np and Var(X) = np(l — p).

Proof. Note that the expected value and variance of a discrete random variable 
are completely determined by its p.m.f., and the discussion in Example 5.5.4 shows 
that X has the same p.m.f. as Xi, where each Xi ~ Bernoulli(p). Therefore 
E[X] = E[J2™=1 A*]  and Var(X) = Var(J2™=1 JQ). Since expected value is linear, 
we have 

n

E[X] = ^E[Xt] =np.
i=l

Also, by (5.15) we have

Var(X) = Var(Xj) = np(l — p). □
i=l

Figure 5.6 gives a plot of the p.m.f. of the binomial distribution for several values 
of p.

5.5.3 Poisson Distribution
The Poisson distribution is used to describe the number X of occurrences of an event 
in a given interval of time or space, where the interval is made up of many small 
subintervals in which the probability of an occurrence is low, and the occurrence of
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p = 0.12 p = 0.25 p = 0.50
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0.25-
• •
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0.15- • * • •
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0.05 - 9 ф е •
о.оо- ....................... ................ ••• •••

0 5 10 15 0 5 10 15 0 5 10 15

Figure 5.6. Graphs of the p.m.f. gx(x) for the binomial distribution with n = 15 
and with p = p = and p = respectively. For each value of x, the height of 
the point above x is the probability P(X = x). In the leftmost graph, withp = the 
probability of 7 or more successes in 15 trials is essentially zero, but the probability 
ofl success is almost 30%. The expected value is E[X] = 15p = = 1.875, which
happens to lie between the two most likely values of x = 1 and x = 2. The variance 
is 15p(l — p) = ~ 1.65, corresponding to the fact that most of the probability
(or mass) is concentrated within one or two units of the mean. In the rightmost 
graph, with p = |, the mass is more spread out, corresponding to the fact that 
Var(X) = ^ = 3.75.

an event in a given subinterval is essentially independent of the occurrence of any 
event in any other subinterval.

It is often used to describe situations like the number of radioactive particles that 
hit a detector in a second, the number of automobiles that arrive at an intersection 
in a minute, or the number of customers that come into a store in an hour.

We say that X has Poisson distribution with rate A (denoted X ~ Poisson (A)) 
if the support is N and the p.m.f. is

gx(x) = (5.18)

A = 0.80 A = 2.50 A = 9.00

0.4-

0.3-

0.2 - • *

o.i- e

o.o- •••••••••••• ••••••••• ••••

0 5 10 15 0 5 10 15 0 5 10 15

Figure 5.7. Graphs of the p.m.f. for the Poisson distribution with A = 0.8, A = 2.5, 
and A = 9, respectively.
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The expectation is

E[X] = £
fc=0

ke xXk 
k'.

Xk-i 

(fc-1)!
= Ле-Ау^ = Ле-АеА = Л

and the variance is also equal to A (see Exercise 5.32). Figure 5.7 gives a plot of 
the Poisson p.m.f. for several values of A.

Example 5.5 .6. Assume that the number X of customers buying a certain 
product at a website averages two per hour and that the customers buy in­
dependently of each other. In this situation we assume that X has a Poisson 
distribution. If the basic unit of time is an hour, then A is 2, and the p.m.f. is

9x(x) =
e 22 

x\

Thus the probability that exactly four customers will buy the product in a 
given hour is <?x(4) = —= |e-2 « 0.0902.

Example 5.5 .7. We can also find the probability of a given number of events 
in a different time period. In a period of t units, the expected number of events 
is At, so the probability of x events in a period of t units is

e~tx(tX)x 
x\

Thus in the previous example, with A = 2 per hour, the probability of 10 
customers buying the product in a 3-hour period is e~6(6)10/10! ~ 0.0413.

Example 5.5 .8. The usefulness of the Poisson distribution is not limited to 
time intervals. For example, the number of chocolate chips in a chocolate chip 
cookie is a random variable that is approximately Poisson distributed. Here 
the intervals are intervals of volume rather than of time. The average number 
of chocolate chips in one cookie is proportional to the volume of the cookie, 
and the number in one cookie is essentially independent of the number in 
another cookie. Of course this is not precisely true, because the total number 
of chips used to make one batch of cookies is probably fixed, but if there are 
lots of cookies from one batch, having a few more chips in one cookie doesn’t 
significantly affect the number in the next cookie.
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If A is the average number of chips per cubic centimeter of cookie, the 
number X of chips in a given cookie of t cubic centimeters is approximately 
Poisson distributed with

P(X , x) , «-‘W.
x\

The expected number of chips in a cookie of size t is E[X] = At, and the 
variance is also Var(X) = Xt.

5.5.4 *Negative  Binomial Distribution
The negative binomial distribution with parameters к E and p E [0,1] describes 
the number of successes that occur in a sequence of repeated Bernoulli trials with 
parameter p before к failures occur. For example, in a sequence of independent 
games played against the same opponent, this distribution describes the number of 
games you win before you lose к times (see Examples 5.5.10 and 5.5.11).

We say that X has negative binomial distribution with parameters к and p 
(written X ~ NegBin(A;,p)) if the support is N and the p.m.f. is

. . f xк — 1\ .
9x(x) =1 Ip (1 -p) . (5.19)

Exercise 5.35 shows that the expected value and variance are

E[X] = and Var(X) = - (5.20)
1-p (1-РГ

Figure 5.8 gives a graph of the negative binomial p.m.f. for several values of p.

Remark 5.5.9. The special case of к = 1 is usually called the geometric distribu­
tion.

p = 0.25 p = 0.50

0.5-

0.4-

0.3-

0.2 -

0.1 -

0.0-

p = 0.12

Figure 5.8. Graphs of the p.m.f gx(%) for the negative binomial distribution with 
n = 15, к = 5, and p = p = and p = respectively.
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Example 5.5.10. Blaise and Pierre play a game where they flip a coin re­
peatedly. Every time the coin comes up heads, Blaise gets a point, and every 
time the coin comes up tails, Pierre gets a point. They play the game un­
til Pierre has к points. Assuming the probability of heads is p, what is the 
probability px(rr) that Blaise will have exactly x points when the game ends?

We begin with the case of к = 1. The only way for Blaise to have exactly 
x points when Pierre gets his first point is if the sequence HH... H T occurs,

X
and this has probability pxq, where q = 1 — p. If fc = 2, things are a little 
trickier. If the game ends with Pierre having x points, then the second T 
occurred on coin flip number x + 2. Thus, the first я + l flips consist of exactly 
x heads and one tail, taken in any order. This implies рх(ж) = (ж+1)рж(1 — p)2.

More generally, for arbitrary A;, if Pierre ends the game with x points, then 
flip number x + к must be T, and that means the remaining flips consist of x 
heads and к — 1 tails, taken in any order. Thus we have

/ x (xк — 1\ X(
ffx(x) = I x \p (1 -p) •

Example 5.5.11. Experience shows that when you play tennis with your 
friend your probability of winning a set is p = 0.55. Your friend challenges 
you to a best-of-five tennis match, so you win the match if you win three 
sets before she wins three sets. Assuming that the outcome of each set is 
independent of the other sets, what is the probability that you will win the 
match?

One way to model this situation is with a negative binomial distribution 
with к = 3 (the number of sets your friend needs to win in order to beat you). 
You lose the match if the number x of your wins is two or fewer when she 
reaches к = 3. So we have

2

F(you win) = 1 - 9x(x)
x=0

i f x 2\ о з (x + 2)(rr + 1) x
= 1-Y( x )p (i-p) = i-u-p) E?—i—Lp

rr=O ' ' rr=O

= 1 - (1 - p)3(l + 3p + 6p2) « 0.59.

Example 5.5.12. A marketer is having a promotion where shoppers get a 
special, randomly selected card every time they spend more than $10. Cards 
come in 20 different types, and the probability of receiving any specific type 
of card is the same for every type. Anyone who gets a complete set, consisting 
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of one of each of the 20 different types, wins a big prize. You have already 
collected 19 different types. What is the expected number of $10 purchases 
you need to make in order to get the last type of card and complete your set?

This is essentially a situation where you want to know how many times 
you will lose before you win once. Thus, if X is the number of purchases you 
must make, then X = Y + 1, where Y ~ NegBin(l, ||). Here the parameter 
p is (1 — ^q) = because the roles of success and failure have been swapped 
in the story of the negative binomial distribution. Thus we have

/19\ж-1 1Р(Х = х) = Р(У = х-1)=(-)

and the expected number of additional cards you need to acquire is

v5' <19 V-1 1 120Д /19 V 1 19/20। 20 “ 2019 Yx (20) ~ 19 (1/20)2 “

Here the penultimate equality follows from Exercise 1.20.

5.6 Continuous Random Variables
Although discrete probability spaces and random variables cover many situations, it 
is important to generalize the ideas of probability to the so-called continuous case— 
where the probability space and the images of random variables are not countable. 
We do this carefully and in full detail in Volume 3, but in this section we give a 
quick sketch of the ideas and how to work with continuous random variables.

An important difference between the discrete and continuous cases is that with 
discrete distributions every subset of the sample space has a well-defined probability, 
and for any subset E, the probability of E is the sum of the probabilities of the 
individual elements in E. But in the continuous case, the uncountable sums don’t 
make sense and must be replaced with integrals, the probability of an individual 
point a) e fl is usually zero, and not every subset has a well-defined probability.

5.6.1 Continuous Random Variables
If Q is uncountable, then insisting that every subset of Q has a well-defined prob­
ability is too restrictive. Instead we only require that probability be defined on a 
subcollection / C 2Q such that & contains Q and is closed under complements, 
countable unions, and countable intersections.25

25Such a collection is called a a-algebra of sets.

For such a collection & C 2Q, the definitions of a probability measure and 
probability space (Definition 5.1.7) still make sense, and all of the basic properties 
still hold in this more general case. These include Proposition 5.1.10, the definition 
of independence, conditional probability, and Bayes’ rule (Theorem 5.2.13).
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Definition 5.6.1. Let Cl be a set, and let & C 2Q be a collection containing Cl that 
is closed under complements and countable unions.26 A function P : [0,1]

26If & is closed under complements and countable unions, then it is automatically also closed 
under countable intersections.

is a probability measure if P(Cl) = 1 and countable additivity (5.1) holds. In this 
case, the triple (Cl,&,P) is called a probability space.

We want to extend what we have done with discrete random variables to this 
more general setting. One problem is that the p.m.f. gx(x) = P(X-1(a;)) is no 
longer very useful, because in the continuous case we usually have P(X = x) = 0 
for all x e R. Instead we use something called the cumulative distribution function 
(c.d.f.). The c.d.f. of X gives the probability P(X < x) that X will be no greater 
than a given amount x. But for an arbitrary function X : Cl R, talking about 
P(X < x) might not make sense because the sets X-1((—oc,x]) might not have a 
well-defined probability if they aren’t all in &. This motivates the definition of a 
random variable to be a function for which these probabilities are always defined.

Definition 5.6.2. A function X : Cl R on a probability space (Cl, &, P) is a ran­
dom variable if X~r((—оо,ж]) e & for every x e R. The cumulative distribution 
function (c.d.f.) of X is the function Fx : R —> [0,1] given by

Fx(a) = P(X <d) = P(V1(-oo, a]).

In the case of a discrete probability space, we have & = 2Q, so every subset of 
Cl lies in & and every function X : Q —> R is a random variable. We discuss the 
details of the general case in Volume 3, but essentially every function that you are 
likely to encounter in applications will satisfy the conditions of Definition 5.6.2 and 
have a well-defined c.d.f.

Example 5.6.3. For a discrete distribution, the c.d.f. can be written as the 
sum

F%(a) = P(X < a) = 5лдх(а:), 
x<a

where the sum runs over all values of x in the range of X that are less than 
or equal to a. For example, if X ~ Binomial(n,p), then

Fx(a) = £Wpfc(l-p)"-\ 
\ rv / 

k=0 ' 7

If the range of X lies in Z, then we can reconstruct the p.m.f. of X from 
the c.d.f. as

gx(a) = Fx(a) - Fx(a - 1) = AFx(a - 1),

where A is the difference operator (see Definition 1.3.6 and Section 1.3.3).
Thus, for distributions with range in Z, the p.m.f. of X is a sort of discrete 
derivative of the c.d.f.
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Proposition 5.6.4. The c.d.f. Fx(x) of any random variable X : Q —> R is 
nondecreasing and satisfies

lim Fx(x) = 1 and lim Fx(x) = 0.
X—><X) X—^ — OQ

Proof. If a <6, then

Fx(a) = P(X < a) < P(X < a) + P(X E (a,b]) = P(X < b) = Fx(bfi 

and therefore Fx(x) is nondecreasing. Since 0 < Fx(x) = P(X < x) < 1 for all x, 
the function Fx(x) must converge to a limit as x сю, and it also must converge 
to a limit as ж —> —сю.

Let Bq = (—oo,0], and for every n E Z+ let Bn = (n — l,n]. The sets Bn are 
pairwise disjoint and their union is R. It is straightforward to check that the sets 
X-1(Bn) are mutually exclusive and collectively exhaustive. Therefore, we have

oo / \

lim Fx(n) = £ P(X e Bn) = P |jBn = 1. 
n—>oo ' \ /

n=0 \ n /

Finally, we have

lim Fx(n) = lim 1 — P(X > —k) 
— k^oa

= 1 - lim P(-X < k) < 1 - lim F_x(k - 1) = 0. □ 
fc—>oo fc—>oo

Example 5.6.3 shows that the c.d.f. of a discrete distribution is discontinuous, 
skipping upward every time x becomes larger than the next point in the image of 
X. A continuous distribution is one whose c.d.f. is not only continuous but also 
continuously differentiable.

Definition 5.6.5. A random variable X has a continuous distribution if its 
c.d.f Fx(x) is a continuously differentiable function of x, when restricted to the 
range of X. The derivative fx(x) = f^Fx(x) = F'x(x) is called the probability 
density function (p.d.f.) of X.

By the fundamental theorem of calculus, we have

Fx(ty= f fx(x)dx
J — oo

for any continuously distributed random variable X and for any b E R. Thus 
the area of the region bounded on the right by x = b and lying under the curve 
у = fx(x) is the probability P(X < b); see Figure 5.9. Exercise 5.36 shows that

/•OO
/ fx(x)dx = 1.

J —oo

More generally, for any a < b the probability P(a < X < b) is given by the integral

P(a < X < b) = f fx(x)dx-
J a
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Figure 5.9. Graphs of the p.d.f fx (left panel) and c.d.f Fx (right panel) of a 
continuous distribution on [0,1]. The value Fx(x) (the height of the black dot) at a 
point x (here x = 0.6,) is the probability P(X < x). This is the area (pink shaded) 
under the graph of fx to the left of x. The value fx(x) is not the probability of 
X = x. That probability is always 0 for a continuous distribution. For more on 
this, see Definition 5.6.5.

A useful analogy is the problem of computing the mass of a discrete collection 
of objects on a line, versus computing the mass of a solid rod of varying density. 
In either case the c.d.f. Fx(b) gives the mass (probability) of everything to the left 
of the point x = b. In the discrete case, this amounts to adding up the mass (the 
p.m.f.) at the discrete points along the line to the left of b, but in the continuous 
case, the mass varies continuously and is the integral of the density function (the 
p.d.f.) up to b.

Remark 5.6.6. Just as with discrete distributions (see Remark 5.4.7), although 
the domain of a p.d.f. is actually R, it often simplifies our formulas if we restrict 
the domain of fx to be the range of X.

For a continuous random variable, the main change we must make from discrete 
random variables is the definition of expected value, where we replace the sum with 
an integral and the p.m.f. with the p.d.f.

Definition 5.6.7. For a continuous random variable X with p.d.f. fx, the expec­
tation of X is Zoo

xfx(x)dx,
-oo

provided И fx (x) dx is finite.

For a continuous random variable, all the other definitions and results we have 
proved for discrete random variables still hold, once we make the obvious changes, 
like replacing sums by integrals:

(i) Linearity of expectation:

E[qX + /3Y] = oE[X] + /Ж[У].
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(ii) Law of the unconscious statistician: if h is continuous, then hfX) is a contin­
uous random variable and

Zoo
h(x)fx(x)dx.

-oo

(iii) Expectation of a product of independent random variables is a product:

Е[ХУ] = Е[Х]Е[У] if X and У are independent.

Note the definition of independence in the continuous case also requires a sub­
stitution of p.d.f.s for probabilities in (5.12). See Definition 5.7.8 for details.

(iv) Variance:
Var(A) = E[(X - /i)2] = E[X2] - E[X]2.

(v) If X and У are independent, then variance satisfies

Var(aA + /ЗУ) = a2 Var(X) + /З2 Уаг(У).

5.6.2 Some Important Continuous Distributions
In this subsection we describe a few important continuous distributions. The sim­
plest is the uniform distribution, which describes a continuous version of equally 
likely outcomes. Possibly the most important distribution is the normal (or Gaus­
sian) distribution. The last two distributions are the gamma and the beta distribu­
tions. These are especially important for Bayesian statistics (see Section 6.5), but 
they also occur in many other probability models.

As in the discrete case, we describe the p.d.f. of each distribution only on its 
support.27

27The support of a continuous distribution X is the support of the p.d.f. fx of the distribution.
As in the discrete case, this is a subset of the domain of fx and a subset of the range of X.

Uniform Distribution

The uniform distribution is the continuous analogue of equally likely outcomes (see 
Section 5.1.2). A random variable X has continuous uniform distribution on [a,b] 
if it has support [a, b] and p.d.f.

( 1J b—a
(0

if x G [a, b], 
otherwise.

(5.21)

This gives
'o if x < a,

Fx(x) = P(X < x) = < x—a 
b—a if x G [a, b],
1 к if x > b.

We denote this by X ~ Uniform ([a, b]). Exercise 5.37 shows that the mean and 
variance are

a + b . ? (b — a)2and <T2 = ———. (5.22)
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Normal Distribution

The normal distribution is among the most important of all distributions. This is 
primarily due to its appearance in the central limit theorem (Theorem 6.3.1) and 
its appearance in nature. The normal distribution is typically used to describe a 
value that depends on a number of other random factors, like measurement error, 
or height or weight of a randomly chosen person.

A random variable X is normally distributed if it has support (—сю, сю) and 
there exist /z E R and a > 0 such that the p.d.f. of X is

/x(l) = ^hexp( (ar-^)2\
2cr2 )' (5.23)

We denote this by X ~ <r2). This gives

Fx(x) - P(X < x) - exp ( ( j) ) dt.

The mean is /z and the variance is a2. If ц = 0 and a = 1, then X has a standard 
normal distribution.

Figure 5.10 shows graphs of the p.d.f. for the normal distribution with pt = 0 
and several values of a.

Figure 5.10. Graphs of the p.d.f. fx(%) for the normal distribution with pL = 0 
and a = 0.5, a = 1.0, and a = 2.0, respectively. The total probability (area under 
the curve, or mass) is always 1, but as the variance a2 increases, the probability 
becomes more spread out, and as the variance goes toward zero, the probability is 
increasingly concentrated near the mean.

Gamma Distribution

The gamma distribution describes the waiting time for at least a > 0 events to
occur in a homogeneous Poisson process of rate b >
the p.d.f. is

0. The support is [0, oo) and

/x(i) =
6afa-ie-tb

Г(а)
(5-24)
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for all t e [0, сю). We denote this by X ~ Gamma(o, b). The parameter a is called 
the shape, and the parameter b is called the rate. It is also common to specify the 
gamma distribution in terms of a scale parameter 0 = 1/6. The scale 0 corresponds 
to the average wait time for a single event. The mean and variance of the gamma 
distribution are a i о a/x = — and cr = —. 

b bz
Remark 5.6.8. In the special case that a = 1, the gamma distribution is usually 
called the exponential distribution. When a = § and b = | for an integer n, the 
gamma distribution is called the chi-squared distribution with n degrees of freedom. 
The chi-squared distribution is important for estimating the variance of a sample 
because it is the distribution of the sum of the squares of n independent, standard 
normal random variables.

Figure 5.11 shows graphs of the p.d.f. for the gamma distribution with several 
values of (a,b).

(a, b) = (10,1)

Г To
Figure 5.11 . Graphs of the p.d.f. fx(t) for the gamma distribution with 6 = 1 and 
a = 2, 4, and 10, respectively.

Beta Distribution

The beta distribution is an important family of distributions defined on the unit 
interval [0,1] (the uniform distribution is a special case). It plays an important 
role in Bayesian statistics, especially as a way of describing the distribution of the 
parameter p for a Bernoulli or binomial random variable; see Section 6.5 for more 
on this.

A random variable X taking all its values in the interval [0,1] has distribution 
Beta(u, 6) if its p.d.f. is

fx№ = a’6>0’ (5-25)

defined on the interval 0 < x < 1. This is denoted by X ~ Beta(cz, 6). The mean 
and variance of Beta(a, 6) are

Cl i 2 О'Ь ,£1 =----- 7 and (T = 7----- 77777----- ---- —. (5.26)a+ 6 (a + 6)2(cz + 6 + 1) v 7
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Figure 5.12 . Graphs of the p.d.f fx(x) for the beta distribution with (a,b) = 
(3,4), (a, 6) = (15,20), and (a,b) = (30,40), respectively. The mean is always 
/a = = |, but as a and b get larger, the variance gets smaller, and the peak gets
taller and narrower.

Given independent random variables A and В having gamma distributions with 
parameters a, 0 and /3,0, respectively, the random variable 

A + B

has distribution Beta(a,/3). Alternatively, a draw from a beta distribution Beta(A;, 
n + 1 — k) comes by drawing n numbers from the uniform distribution on [0,1] and 
then ordering them and taking the A;th smallest number.

Figures 5.12 and 5.13 show the graphs of the p.d.f. for the beta distribution with 
various values of a and b.

(a,b) = (l,l)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.13 . Graphs of the p.d.f. fx(x) for the beta distribution with a = b for 
various values of a. The mean for all of these is /a = = 0.5, but as a and b get
larger, the variance gets smaller. When a = b = 0.5 (blue), the distribution has a 
peak at either end of infinite height. When a = b = 1 (green), this is the uniform 
distribution on [0,1]. When a = b = 10 (red), this has a single maximum at 0.5.
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5.7 Multivariate Random Variables
We often need to think about collections of several random variables Xi,... ,Xn 
at once. We can think of such a collection as a single function from Q to Rn, that 
is, as a multivariate random variable. In this section we discuss some basic proper­
ties of multivariate random variables and some important examples of multivariate 
distributions.

5.7.1 Multivariate Random Variables

Definition 5.7.1. A function X : Q —> Rn on a probability space with
X = (Xi,... ,Xn) is a multivariate random variable if every coordinate function 
Xi : Q —> R is a random variable. If n = 2, we call the random variable bi­
variate, and when n = 1 (that is, when X is a random variable in the sense of 
Definitions 5.4-1 and 5.6.2), we call the random variable univariate.

Example 5.7.2. Consider a bag filled with blue, white, and red balls that 
are all identical except for their color. Assume there are 30 blue balls, 40 
white balls, and 15 red balls. If we choose a ball at random from the bag, 
then the probability of choosing blue is рв = Ц, choosing white pw = 
and choosing red pr = ||.

If a ball is drawn three times with replacement (with the ball being returned 
to the bag after each draw), we can model this with the discrete probability 
space

Q = {BBB, BBW,..., RRB, RRR},

where P(BBB) = p^B, P(BBW) = p2BPw, • • • • Define a multivariate random 
variable X : Q —> R3 by X = (Хв,Хц-,Хд) with Xb equal to the number of 
times that blue is drawn, X\y the number of times that white is drawn, and 
Xr the number of times that red is drawn. Therefore X(BBB) = (3,0,0), 
X(BWB) = (2,1,0), and so forth. The range of X is the set of all triples 
x = (xb,Xw,xr) £ N3 with xb + + XR = 3. This is an example of what
is called the multinomial distribution.

Each of the individual coordinates X#, Xjy, and Xr is itself a random 
variable. We have Хв ~ Втот1а1(3,рв), since Xb counts the number of 
times that blue occurs (success) versus any other color (failure). The other 
coordinates are also binomially distributed.

5.7.2 Density, Mass, and Distribution Functions
As in the single-variable case, the ideas of probability mass functions, cumulative 
distribution functions, and probability density functions are very useful.

Definition 5.7.3. If (D,^,P) is a discrete probability space and X : Q —> Rn 
is a multivariate random variable, then the function <?x(x) = P(X = x) is called 
the joint probability mass function of the univariate random variables Xi,... ,Xn
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or just the probability mass function (p.m.f.) of the multivariate random variable 
X. For a multivariate random variable X = (X1?..., Xn) on a general probability 
space (Q, P), the function

FX(x1,...,Xn) = P(X1 <xi,...,Xn <®n)
is called the joint cumulative distribution function of the univariate random vari­
ables Xi,..., Xn or the cumulative distribution function of the multivariate random 
variable X. An integrable function fx'-№n^Risa joint probability density func­
tion for the random variables Xi,..., Xn and fx is a probability density function 
(p.d.f.) for the multivariate random variable X = (X1?... , Xn) if

Fx(x1,...,xn) = ■ I fx(ti,...,tn)dti---dtn.
—oo J — oo

Example 5.7.4. The random variable X in Example 5.7.2 has p.m.f.

for any triple x = (xb,xw,xr) € N3 with xb + xw + xr = 3. This is an 
example of the multinomial distribution (see Section 5.7.5).

The value of the joint p.m.f. gx.y(x^y) of two random variables X and Y cor­
responds to the probability P(X = x,Y = y) that Y = у and X = x. But we can 
use this to find the probability that X = x, with no constraints on Y:

P(x = ж) = 52 p(x = xX = У) = Y y)-

This motivates the following definition.

Definition 5.7.5. If X is a discrete multivariate random variable with p.m.f 
gx(x), then the marginal p.m.f. gi(a) at a is the sum of the joint p.m.f. over all 
values of x with the ith coordinate equal to a:

9i(a) = 52 5x(x).
x:xi—a

Similarly, if X is a continuous multivariate random variable with probability density 
function (p.d.f.) fx, then for each i e {1,..., n} the marginal p.d.f. fi is the integral 
of the joint p.d.f. fx(fi,- • •, ti+i, • • • ,tn) over all values of t with the ith 
coordinate equal to a:

fi (&) — I fx (fl, • • • , ti—1, O, ti-n, . . . , tn) dt
jRi~1x{a}xln~i

fx(fi, • • •, ti—i, a, ti+i,.. •, tn) dti • • • dti-idt^i • • • dtn.
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Remark 5.7.6. The name marginal comes from the fact that in early statistics 
books the p.m.f. of a bivariate distribution X was often written out as a table. 
Summing all entries in each column and writing the sum in the top margin of 
the table gives a row of values corresponding to the p.m.f. of the coordinate X±. 
Similarly, summing all entries in each row and writing the sum in the right margin 
gives a column of values corresponding to the p.m.f. of the coordinate Х2.

Proposition 5.7.7. If X = (A\,..., Xn) is a random variable with p.d.f fx, then 
for each i e {1,... ,n} the marginal p.d.f fi is the p.d.f. of X^:

fi = fXi-

Proof. The proof in the discrete case is Exercise 5.46. The continuous case follows 
from standard properties of multivariable integration (see Volume 1, Chapter 8). 
□

As noted earlier, the definition of independence used for discrete random vari­
ables (Definition 5.4.17) is not quite correct in the continuous case, but the definition 
is analogous, with appropriate p.d.f.s substituted for the probabilities in (5.12). We 
now have everything we need to give the correct definition.

Definition 5.7.8. Two continuous random variables X and Y are independent if 
their joint p.d.f. factors as the product of the marginals:

fx,y(x,y) = fx(x)fy(y) ^x and y. (5-27)

5.7.3 Expected Value
The expected value of a multivariate random variable is a straightforward general­
ization of the univariate case.

Definition 5.7.9. The expected value E[X] of a discrete random variable X : Q —>
Rn with p.m.f. #x(x) is

= Y = 52 x^x(x) =
ExeiR- xxgxix)
ExeRn x2gx(x)

xer
ExGR" xngx(x\

The expected value of a continuous random variable X : Q —> Rn with p.d.f. /x(x) 
is

E[X] = I xfx(x)dx =
JRn

'fK„xifx(x)dx 
fRn x2fx(x) dx

JR„ xnfx(x) dx

Linearity of expectation follows immediately from linearity of summation and 
integration.



5.7. Multivariate Random Variables 231

Proposition 5.7.10. Expected value for functions of multivariate random variables 
is linear; that is, if (Q, , P) is a probability space and if X,Y : Q —> Rn are two
multivariate random variables, then for any constants a,b E the expected value 
of aX + bY is

E[aX + bY] = aE[X] + ЫЕ[У].

In addition to the expected value E[X] of a random variable, we can also compute 
the expected value E[X$] of each coordinate Xi. These are related in the most 
natural way.

Proposition 5.7.11. For any multivariate random variable X = (Xi,...,Xn), 
the expected value satisfies E[X] = (E[Xi],... ,E[Xn]).

Proof. The proof is Exercise 5.48. □

Example 5.7.12. The colored-ball random variable X of Example 5.7.2 has 
expected value

%b
E[X] = xw P(x), 

x Xr

which may seem a little painful to compute. But by Proposition 5.7.11 we 
have

E[XB]‘
E[X] = E[Xw] 

®[XR]

Each of the coordinate random variables X#, Xw, and Xr is binomially 
distributed with probability рв, Pw, and Pr> respectively, from which we 
conclude that

’ 90/85' 
120/85 
45/85

E[X] = 3pw 
Зрд

5.7.4 Covariance
Variance of a single random variable tells us about how much the variable fluctuates 
around the mean. When comparing two random variables, it is important to get an 
idea of how much or how little they are constrained to move together. The main 
tool for measuring this is the covariance.

Definition 5.7.13. If X and Y are univariate random variables on a probability 
space Q with expected value fix and pr, respectively, then the covariance of X and 
Y is the quantity

Cov(X, У) = E[(X - fix)(Y - fiy)].
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More generally, if Z : Q —> Rn is a multivariate random variable, then the covari­
ance matrix of Z is the following symmetric matrix:

Cov(Zi,Zi) Cov(Zi,Z2) ... Cov(Zi,Zn)‘
Cov(Z2,Z1) Cov(Z2,Z2) ... Cov(Z2,Zn)

Cov(Zn,Zi) Cov(Zn,Z2) ... Cov(Zn,Zn)

It is convenient to write p,z as a column vector nz = [/zi ... дп] and write

S = E[(Z-Mz)(Z-/zz)T],

where the expected value of the n x n matrix (Z — is taken entry by
entry.

Example 5.7.14. If У and Z are independent univariate random variables on 
Q, then we can show that the covariance Cov(K Z) is zero as follows. We define 
new random variables Y' = Y — /ay and Z' = Z — . These are independent
because X and Y are independent. Moreover, we have Е[У'] = E[ZZ] = 0. We 
compute

Cov(y, Z) = Е[(У - /zy)(Z - pz)] = ^[Y'Zf] = E[y']E[Z'] = 0.

Nota Bene 5.7.15. The previous example shows that independent random 
variables X and Y have Cov(X, У) = 0. but beware that the converse is false. 
For example, if X is uniformly distributed on [—1,1] and Y = X2, then X 
and Y are not independent, but Cov(X, У) = E[X3] — Е[Х]Е[У] = 0.

Proposition 5.7.16. For any multivariate random variable X and for any i j 
the covariance satisfies

Cov(XbXj) = E[XiXj] - Е[Х,]Е[Х;].

Proof. The proof is Exercise 5.49. □

Remark 5.7.17. The covariance of a univariate random variable Y with itself is 
the variance of Y. Therefore the covariance matrix of a multivariate random variable 
X can be written as

Var(Xi) Cov(Xi,X2) Cov(Xi,Xn)
Cov(X2, XJ Var(X2) ... Cov(X2, Xn)

Cov(Xn,Xi) Cov(Xn,X2) ... Var(Xn)
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Example 5.7.18. To compute the covariance matrix for the three-colored- 
ball random variable X of Example 5.7.2, we first use the fact that the coor­
dinates are binomially distributed (see Example 5.7.12) to find the variance 
for each coordinate; see Proposition 5.5.5.

VarpCg) = 3pB(l-pB), Var(A'iy) = 3pw(l-pw), Уаг(Хд) = Зрд(1-рд).

To compute the covariance Соу(Хв, Xw) = Е[УдУц/] — Е[Уд]Е[Уц,’], we
need

Q|
£ xBxW , ;PxbbpWpXR- 

xB\xw]-xRl
x в +xw R=%

Most of the terms are zero (whenever xB = 0 or xw = 0), so this becomes

Е[ХвА\у] — ^P^PwP^r d- ^PbPwPr

= 6pBpw(PB +Pw + Pr) = ^PbPw-

Assembling all these pieces gives

Cov(Xb, Xw) = —3pBpW-

The values of Cov(Xb, Xr) and Cov(Xw, XR) are computed similarly. As 
described in Remark 5.7.17, the covariance matrix £ can now be assembled 
from these values and the variances computed at the beginning of this example.

Proposition 5.7.19. Let X = (Xi,...,Xn) be a multivariate random variable 
X : Q —> Rn with covariance matrix E. Given a e Rn, let Y be the univariate 
random variable Y = aTX. We have Var(K) = aTEa.

Proof. The proof is Exercise 5.50. □

Since Var(y) is always nonnegative for any random variable У, we see that the 
covariance matrix is always positive semidefinite.

Corollary 5.7.20. If X : Q —> Rn is a random variable with covariance matrix E, 
then aTSa > 0 for all a.

Since E is symmetric, Rn has an orthonormal basis of eigenvectors of E that diag­
onalize it, that is, there exists an orthonormal matrix U whose columns are eigenvec­
tors of E such that if У = [У1 ... УП]Т = UX, then UTYU = diag((Ti,..., cr^) 
is diagonal (see Volume 1, Section 4.3). By Proposition 5.7.19, this means that 
the new random variables Y\,..., Yn have the property that erf is the variance of 
У*,  for each i e {l,...,n}, while Cov(Yi,Yj) = 0 for all i j. But recall from 
Not a Bene 5.7.15 that this does not necessarily imply that the new variables are 
independent.
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5.7.5 Common Multivariate Distributions
Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution that 
counts the outcomes of a sequence of n repeated (independent, identically dis­
tributed) trials of an experiment where exactly one of к outcomes can occur,28 
and for each j, the Jth outcome has probability p7, with JX=1pj = 1. The zth 
coordinate Xi represents the number of experiments that had result i. The three- 
colored-balls examples discussed throughout this section has a multinomial distri­
bution with n = к = 3.

The range of a random variable with multinomial distribution consists of A;-tuples 
of nonnegative integers (aq, #2,..., #&), satisfying xi ~ n- The p.m.f. is

(77 \

ipi'pz2 • • -Pkk- (5.28)
(Г1,3?2, • • • , J

The coordinate Xi is binomially distributed, with probability of success pi and 
probability of failure 1 — pi = ^j-^Pj, so the marginal p.m.f. of Xi is

9хЛх)=

The expected value of X is

E[X] = (E[X]1?... ,E[X]fc) = (npi,... ,npk)

as calculated in Proposition 5.5.5.
To calculate the covariance matrix of X, first note that since Xi is binomially 

distributed, we must have Var(X$) = прг(1 — pi), see Proposition 5.5.5. To find the 
covariance Cov(Xz,X^) for i j, write each Xi as a sum Xi = where
Yi^ is 1 if the £th trial results in outcome i and 0 otherwise. Since covariance is 
linear in each coordinate, we have

n n

Cov(Xl5 Xj) = Сот(^м, (5.29)
1 m—1

If £ ф m, then Yi^ and YjiTn are independent and hence have zero covariance. If 
£ = m, then Е[У$}ГПУ}}ТП] = 0, because the outcome of the mth trial cannot be 
simultaneously both i and j. This gives

Cov(Y^m, Y)5m) = K[Yi,mYj,m] — E[y?m]E[lj5m] = —piPj-

Combining this with (5.29) gives Cov (Xi,Xj) = ~PiPj = —npiPj, and hence
the covariance matrix of X is

Pi(l -pi) -P1P2 • ~PlPn

-P2P1 P2(l-P2) • ~P2Pn
S = n

—PnPl ~PnP2 • •• Pn(l-Pn)_

28A single one of these trials has a categorical distribution with parameters (pi,... , p^).
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Multivariate Normal Distribution

The multivariate normal distribution is a generalization of the single-variable normal 
distribution and has p.d.f.

... ,zn) = det(27rS)-^ exp (-^(x “ м)Т^-1(х ~ M)

where E is a positive definite n x n matrix, and fi = (/ii,...,^n) e Rn. If a 
random variable X has this distribution, we denote this by X ~ A
straightforward, but tedious, calculation shows that E[X] = fi and the covariance 
matrix of X is E.

Any coordinate Xi of a multivariate normal random variable X is itself a nor­
mally distributed random variable. Moreover, a linear combination aTX of the 
coordinates is normally distributed for any a e Rn.

Figure 5.14. Graph of the p.d.f fx(x) for the bivariate normal distribution with 
ph = 0 and E = diag(3,1).

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text.
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Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

5.1. Consider an experiment where a six-sided die is rolled twice, and for each of 
the two rolls we record the number showing, modulo 3, that is, whether the 
number is congruent to 0, 1, or 2 (mod 3).

(i) Describe the sample space Q of all possible outcomes of the experiment.

(ii) Describe the event “neither roll is congruent to 0 mod 3” as an element 
of the power set of Q.

(iii) Describe the discrete probability measure on the power set of Q if the 
die is fair. What is the probability of the event “neither roll is congruent 
to 0 mod 3” in this case?

(iv) Describe the discrete probability measure on the power set of Q if the 
die is weighted so that the probability of rolling a 1 is |, while the 
probability of rolling any other number is What is the probability of 
the event “neither roll is congruent to 0 (mod 3)” in this case?

5.2. If you draw 5 cards from a standard deck of 52 cards:

(i) What is the probability of getting at least three of a kind (so a full house 
or four of a kind might also occur)?

(ii) What is the probability of getting exactly two distinct pairs (not a full 
house nor four of a kind)?

(iii) What is the probability of getting a flush (all cards are of the same suit)?

5.3. A box contains 10 different pairs of shoes. If 8 shoes are drawn at random, 
what is the probability that there is at least one matching pair of shoes? 
What is the probability that there is exactly one pair of shoes?

5.4. Assume you’re in a room of n randomly selected people. Assume that birth 
dates are uniformly distributed among days of the year.

(i) What is the probability that exactly two people have the same birthday 
and everyone else has a distinct birthday?

(ii) What is the probability that exactly three people have the same birthday 
and everyone else has a distinct birthday?

(iii) What is the probability that there are exactly two pairs of people who 
have the same birthday?

5.5. Suppose that the probability of a married couple having n > 1 children is 
apn, where a < What is the probability that a couple has no children?

5.6. A Let (Q,<F, F) be a discrete probability space and let be a col­
lection of elements of & indexed by a finite or countable set I, such that
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{Bi}iei is a partition of Q (so Q = IJiez an<^ &j = ® f°r
Prove that for any A E /. we have

р(А) = £р(апд).
iei

5.7. Five of my friends come to dinner and take their coats off at the door when 
they arrive, and my ever-helpful son puts the coats away in his room. The 
guests leave one at a time, and when each one leaves, my son brings back a 
random coat (selected uniformly) and gives it to them. Since the guests are 
in a hurry, they each put on the coat given to them without noticing whether 
it is correct, and then they leave.

(i) What is the probability that the first guest to leave gets the right coat?
(ii) If the first to leave gets the right coat, what is the probability that the 

second to leave will get the right coat?
(iii) What is the probability that every guest will get the right coat?
(iv) If the first guest to leave gets the coat belonging to the second guest, 

what is the probability that the second guest will get the right coat?
(v) If the first coat is wrong, but it is also not the second guest’s coat, what 

is the probability that the second guest will get the right coat?
(vi) Without knowing the outcome of the first coat, what is the probability 

that the second coat will be right? Hint: Consider using the law of total 
probability.

5.8. Yann and Zoe like to play racquetball, and they both have killer serves. 
These serves are so hard to return that whoever serves first is much more 
likely to win than the person who serves second. Let F be the event that 
Zoe serves first and W be the event that Zoe wins the game. Assume that 
P(W | F) = 0.65 and P(W | Fc) = 0.45. Because of the advantage of serving 
first, they agree to flip a fair coin to decide who will serve first. Assuming 
that Zoe wins the game, what is the probability that she won the coin toss 
for that game?

5.9. In the popular 1970s TV game show Let’s Make a Deal, a contestant would 
choose one of three doors to open for a prize. Behind one of the doors was a 
car and behind the other two were goats. After the contestant picked a door 
(without opening it), the host, Monty Hall, would open one of the remaining 
two doors, revealing a goat, and then ask whether the contestant wanted 
to stay with the first choice or change doors. Show that the probability of 
winning is much better if the contestant changes to the other unopened door 
instead of sticking with the original choice. What are these probabilities? 
Hint: The problem would be much easier if you knew which door the car was 
behind. Assuming the contestant doesn’t switch doors, condition on each of 
the three possibilities and use the law of total probability to assemble them to 
get the probability of winning the car. Do the same assuming the contestant 
does switch doors.
What would the probabilities be if there were 10 doors and Monty opened 8 
with goats after the contestant’s first choice?
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5.10.

5.11.
5.12.

5.13.
5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.
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Prove the claim made in Remark 5.2.3 that P' is a probability measure on 
(see Definition 5.1.7).

Prove the chain rule (Proposition 5.2.6).
Prove the law of total probability (Proposition 5.2.10).

Prove Proposition 5.3.5.
Let {£i, £2, • • •, En} be a collection of independent events. Prove that

(n \ n

=1-П(!-т))-
k—l / k—l

A family has three children, named Alice, Bob, and Caroline. Find the 
conditional probability that Alice is older than Bob, given that Alice is older 
than Caroline. Hint: It is not |.
If a certain type of cancer has a 0.4% incidence in the population, and a 
certain test for this cancer has a 95% accuracy (meaning 5% false positive 
rate and 5% false negative rate), what is the probability that a person has this 
type of cancer given that they tested positive for it? Graph this probability 
as a function of the false positive rate, as the false positive rate ranges from 
10% down to 0.1%. Do the same for the false negative rate, ranging from 
10% down to 0.1%, and again for incidence varying from 0.1% up to 5%.
In a certain town a car was involved in a hit-and-run accident one evening, 
and a witness claimed the car was blue. In that town 90% of all cars are red 
and 10% are blue. Some tests of the witness’s ability to identify cars under 
these conditions showed that he identifies car color correctly 80% of the time; 
so the probability he will identify red when the car is actually red is 0.8, and 
similarly for blue. Under these assumptions, what is the probability that the 
perpetrator’s car was actually blue?

Let Q = {u, 6, c, d, e, f} be the sample space of a random experiment and 
assume that each outcome is equally likely. Define a random variable X : 
Q R as follows:

outcome a b c d e f
X 1 1 1 2 3.5 3.5

(i) What is the p.m.f. of X?
(ii) Find E[X] and Var[X].

Let X be the outcome of the roll of a fair six-sided die. Find the expectation 
and the variance of X.
Prove the law of the unconscious statistician (Theorem 5.4.15) in the following 
steps:

(i) Prove that for each j we have P(h о X = f) = = ^)-

(ii) Prove that for each j we have jP(hoX = j) = 22^. h{i}=j}W)P(X = i).

(iii) Prove that jP(h о X = j) = h(i)P(X = i).

(iv) Prove that Yd-.h(t)=j h(i)P(X = i) = h(i)P(X = i).
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5.21. You are flipping coins to get heads, as in Example 5.4.11, and again someone 
offers you a bet, based on the outcome of the coin flip.

(i) If X = n and n is even, then she will pay you 2n dollars. But if n 
is odd, you pay her 2n dollars. Let Y be the random variable cor­
responding to the amount you win, so that Y = (—2)x. Prove that 
E[Y] = l)n and that this sum does not converge, and therefore
the expected value is not defined.

(ii) Now she modifies the game so that you never lose—you win 2n if it 
takes n flips to get heads. Let Z be the random variable corresponding 
to the amount you win, so Z = 2х. Prove that the sum that defines 
the expected value E[Z] has only nonnegative terms and the limit of its 
partial sums is oo.

5.22. Prove Theorem 5.4.20.
5.23. Prove Proposition 5.4.23.
5.24.  Let X be a binomial random variable with parameters n and p. Prove that 

e ( 1 = i-u-p)n+1

*

\X + 1/ (n + l)p

5.25.  Let (Q, F) be a discrete probability space and let X : Q R be a discrete 
random variable. Let В E & be an event. Define the conditional expectation 
E[X | B] of X given В to be

*

E[x! в] = = ^хР(х-\х) | в),

where the last sum runs over all x in the image of X.
Prove that if {Bi}iej C & is a collection of events indexed by a countable set 
I, such that {Bi}iej is a partition of Q (mutually exclusive and collectively 
exhaustive), then

E[X] = 52 E[X | Bi] Р(В,). (5.30)
iei

5.26. Make a table of the essential information about the discrete distributions 
Bernoulli, binomial, and Poisson. Your table should include the support of 
the random variable X, the p.m.f., E[X], Var(X), and a typical situation 
where the distribution is used.

5.27.  Add all the important information about the negative binomial distribution 
to the previous table.
*

5.28. A student guesses randomly and independently on a true-false exam. If he 
answers 20 questions this way, what distribution describes the probability 
that he will get exactly five answers correct? What is that probability?

5.29. A call-in service center receives an average of 200 calls per hour.
(i) Which distribution could you use to describe the probability that the 

call center will receive exactly 100 calls in the next 20 minutes?
(ii) What assumptions should hold for that distribution to be a good model?
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(iii) Describe circumstances under which those assumptions would not hold.
(iv) Assuming the assumptions hold and the distribution can be used, what 

is the probability that the call center receives exactly 100 calls in the 
next 20 minutes? What is the probability that the call center receives 
more than 100 calls in the next 20 minutes?

5.30. A biologist is collecting kangaroo rats in the desert and she is hoping to find 
some with a certain trait that occurs in 10% of the general population of 
kangaroo rats. She collects 100 rats in total. Assuming that each sample is 
independent of the others:

(i) Which distribution describes the exact number of rats that have the 
trait?

(ii) What is the expected number of rats that will have the trait?
(iii) What is the probability that she will find exactly 30 rats with the trait?

5.31. My grandfather sits in a rocker on his front porch and counts the number of 
cars that go by. He finds that the average number of cars passing is A = 7 
per hour (he lives in a rural area). Assuming at most one car passes in any 
given minute, we can think of a car going by in that minute as a Bernoulli 
random variable (either one car passes or no car passes) with probability . 
Assuming a car in one minute has no impact on the presence of a car in 
another minute, then the number of cars passing in an hour (call this X) is 
binomially distributed with parameters n = 60 and p = A/60 = 7/60. Thus 
the probability of x cars passing in an hour is (6c°) (g^)^ (1 — ^j)6° X • 
But, of course, it is possible for two cars to pass by in the same minute, 
so this is not a perfect model. If we look at a smaller time interval, like a 
second, it seems more reasonable to assume that two cars would not pass in 
the same second, so the appearance of a car in a given second is Bernoulli 
distributed with probability and the probability of x cars in an hour 
is ( ^00) (_Т_)ж (i _ _Z_)3600 ж could happen that two cars could36
pass in the same second, so it is better to divide the hour into к intervals and 
take the limit as к oo. This gives

Prove that this limit is exactly e ж,л , corresponding to the Poisson distribu­
tion. This (partly) justifies the form of the Poisson p.m.f. It is also useful 
because, when n is large, the binomial distribution can be approximated with 
a Poisson distribution, which is sometimes much easier to work with.

5.32. Prove that the variance of a random variable with Poisson distribution of 
rate A is A. Hint: When you encounter the sum

fcA*- 1

it may be helpful to rewrite the summands as

((fc - 1) + l)Afc-1 _ A*- 1 A*- 1
(& —1)! “ (fc —2)! + (fe- 1)!’
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5.33.  Assume that each ticket in a scratch-off lottery has a one-in-a-hundred 
chance of winning some prize.
*

(i) Which distribution describes the number of tickets that must be bought 
in order to win one prize?

(ii) What is the expected number of tickets that must be bought in order 
to win one prize? Two prizes?

5.34.  In Exercise 5.30, which distribution describes the number of rats she’ll have 
to check in order to find a certain number with the trait? What is the 
probability that she’ll have to check exactly 20 rats in order to find three 
with this trait?

*

5.35.  Prove that the mean and variance of the negative binomial distribution are 
as given in (5.20). Hint: First do the case of к = 1 and then show that if 
X ~ NegBin(A;,p), then X = Ai, where Xi ~ NegBin(l,p).

*

5.36. Prove that the p.d.f. fx of any continuous distribution satisfies the following 
properties:

(i) fx (ж) > 0 for all x e R.

(ii) = 1.
5.37. Prove that the mean and variance of the uniform distribution are as given in 

equation (5.22).
5.38. Assume a call-in service center receives calls according to a homogeneous 

Poisson process on the average of 2 every 15 minutes.

(i) What is the probability that the first call of the day will arrive no more 
than 5 minutes after opening?

(ii) If the operator steps away to take a lunch break for 15 minutes, what 
is the probability that there will be no calls during his absence? This 
could be answered either with the Poisson distribution or the gamma 
distribution. Compute the answer both ways (and ensure your answers 
match).

(iii) What is the probability that there will be 3 or more calls during the 
operator’s 15 minute absence? Again, this can be computed with ei­
ther the Poisson distribution or the gamma distribution. Compute the 
answer both ways.

5.39. If x E R maximizes the p.d.f. of a random variable X, then x is called a mode 
of the distribution of X.

(i) For a normal distribution with mean ц and variance a2, show that the 
mode is /1.

(ii) Find the mode of the gamma distribution when a > 1, and prove that 
it is always less than the mean.

(iii) Find the mode of the beta distribution for a, b > 1. Give an example 
of parameters a and b where the mode of Beta(a, b) is greater than the 
mean and an example where the mode is less than the mean.
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5.40. Assume X is normally distributed with mean and variance a2. For each 
к = 1,2,3,4,5,6 compute the probability that X lies within к standard 
deviations (that is, X e [p, — kcr, fi + kcr]), as follows:

(i) Prove that the probability that X lies in the interval [p — kcr, fi + ka] 
is the same as the probability that a random variable with standard 
normal distribution (jjl = 0 and a = 1) lies in the interval [—/с, к].

(ii) For the standard normal distribution, and for each k, compute the prob­
ability that X lies in the interval [—к, к]. Hint: Many systems like 
Python and R have easily accessible modules for computing the c.d.f. of 
the normal distribution.

Your first three answers should be close to 68%, 95%, and 99.7%, respectively. 
This is sometimes called the 68-95-99.7 rule.

5.41. Suppose five numbers are drawn from a uniform distribution on [0,1] and 
placed in ascending order. What is the probability that the third largest of 
these will be less than |? Hint: Many systems like Python and R have easily 
accessible modules for computing the c.d.f. of many distributions.

5.42. Show that the p.d.f. (5.24) for the gamma distribution has integral equal to 
one.

/x(x) =

5.43. Let X = (Xi,X2,X3) be a multivariate random variable taking values in R3 
with p.d.f. defined for x = (^1,372,^3) as

I|x||2 if Xi e [0,1] Vi e {1,2,3}
0 otherwise.

(i) Verify that /Xo JXo JX M* (i) (ii) (iii) (iv) (v) (vi) * * * x)dx = L

(ii) FindP(X1<i,X2<|,X3<|)-
(iii) Find P(Xi > |,X2 < |,X3 < 1).
(iv) FindE[X].
(v) Find the marginal p.d.f. fi(x) of X±.

(vi) Find the covariance matrix of X.
5.44. Consider a bag containing 10 green, 20 red, 30 blue, and 40 white balls 

that are all identical except for color. A ball is drawn, its color recorded, 
and then it is replaced; this experiment is repeated 20 times. Let X = 
(XqXr.XbXw) be the number of times each color was drawn.

(i) Find P(X = (2,4,6,8)).
(ii) FindE[X].

(iii) Find the covariance matrix of X.
5.45. Let X : Q Rn be a multivariate random variable with covariance matrix 

E. Let ui,..., un be an orthonormal basis of eigenvectors of E such that the 
corresponding eigenvalues are Ai > • • • > An. Prove that ui is the direction of 
greatest variance of X and un is the direction of least variance of X. That is, 
prove that for all a G Rn with ||a||2 = 1, we have Var(u^X) < Var(aTA) < 
Var(u^X).
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5.46. Prove Proposition 5.7.7 in the case that X is discrete.
5.47. Prove Proposition 5.7.10.
5.48. Prove Proposition 5.7.11.
5.49.  Prove Proposition 5.7.16.*
5.50.  Prove Proposition 5.7.19.*

Notes
Remark 5.2.2 is based on [BH15, Chapter 2], which has a very nice treatment of 
conditional probability in more depth than we have given here. We first learned 
of Wald’s airplane analysis (Example 5.3.13) from [Blil3] (see also [Wikl7]). The 
dice-flashlight thought experiment in section 5.3.3 was taught to us by our colleague 
Dennis Tolley. The idea of Example 5.5.8 that chocolate chip cookies are Poisson 
distributed comes from [Albl6]. The derivation of the Poisson p.m.f. in Exercise 
5.31, using the story of car counting, is based on [Tanl7].





Probabilistic Sampling 
and Estimation

If your experiment needs statistics, you ought to have done a better experiment.
—Ernest Rutherford

Probabilistic sampling is the process of observing or experimenting on a random 
subset (or sample) of a target population. Statistical estimation is about inferring 
information about that target population based on the results of the random sample. 
For example, pollsters will sample the opinions of a random subset of likely voters 
and then estimate the averages of the overall public opinion. Mathematically, we 
view the sampling process as draws from a random variable and inference as an 
estimation of the parameters of the underlying probability distribution.

In this chapter we discuss some of the key tools of probabilistic sampling and 
estimation theory. We begin by discussing what it means to estimate parameters. 
We then prove some important inequalities that give useful bounds on certain prob­
abilities and expected values. These inequalities are particularly useful in the study 
of sums of independent, identically distributed random variables. The two main 
tools for understanding these sums are the law of large numbers and the central 
limit theorem. These results provide the mathematical framework for statistical 
inference.

The estimates performed in the first section of this chapter are called point 
estimates because they estimate specific values like the mean or the variance. By 
contrast, in Bayesian statistics, which we treat in Section 6.5, the estimates are 
distributions instead of values. This is a powerful idea that often requires a lot 
of computational power to use. As computers have become faster and cheaper, 
Bayesian statistics has become more popular for understanding the world in all its 
uncertainty.

6.1 Estimation
In a given experiment, we make observations x±, x?...., xn, which result in a body of 
data. We think of the data as draws from, or realizations of, the random variable X. 
Often, the parameters of the distribution are unknown—we only have the data from 
the sample. To estimate the parameters of the distribution, we apply a function 
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or formula to this collection of data. A function of data that is used to provide 
information about the distribution that generates the data is called a statistic.

More precisely, we assume that the data are generated by taking draws from an 
independent and identically distributed (i.i.d.) sequence Xi, X2,... ,Xn of random 
variables having the same distribution as X; the i.i.d. sequence of random variables 
is called a sample of the distribution. Any function T(Xi,..., Xn) of the sample is 
called a statistic and (assuming it is a sufficiently well-behaved function)29 is itself 
a random variable. Statistics are often used to estimate an unknown parameter of 
a distribution. Statistics that are used to estimate some quantity or parameter are 
called estimators. An estimate is the result we get when we replace each random 
variable Xi in an estimator by the given data that is, when we evaluate the 
function T(X15..., Xn) at the point X-^ = X},..., Xn = xn.

29Continuous functions are all sufficiently well behaved.

For example, we may want to estimate the mean and variance of a distribution 
to get an idea of its central tendency and variability.

Definition 6.1.1. The sample mean estimator is given by

(6.1)

The biased sample variance estimator is given by

л2 = (6-2)

We sometimes write jin and an when the length n of the sample might otherwise be 
unclear.

Example 6.1.2. An exam is an experiment where the data are the students’ 
scores a?i,..., xn on the exam. It is common to assume that these are drawn 
(approximately) from a normal distribution e/T(/i, cr2). An estimate for the 
mean /a is given by the average score

(6.3)

which is the evaluation at Xi = xi,..., Xn = xn of the sample mean estimator 
Д. Similarly, an estimate for a2 is given by evaluating the biased sample 
variance estimator (6.2) at Xi = х±,..., Xn = xn to get

(6-4)
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Remark 6.1.3. Estimators such as the sample mean and biased sample variance 
are random variables because they are functions of the random variables ..., Xn, 
not functions of the data xi,... ,xn. Drawing from the random variables (that 
is, evaluating the Xi at various points in the sample space Q), gives data x = 
(#i,... ,яп) E Rn, which we can insert into the corresponding estimator to get an 
estimate. In the previous example, a draw x from Xi,... ,Xn gave an estimate x 
of Д6, defined by (6.3), and it gave an estimate d2 defined by (6.4). A different draw 
produces a different estimate.

6.1.1 Biased and Unbiased Estimators
Some estimators are better than others for estimating a given quantity. Bias is a 
measure of the average error of an estimator.

Definition 6.1.4. Consider an estimator 0 = 0(Xi, X2,..., Xn) of a parameter 0. 
The bias of the estimator is given by bias(0) = E[0] — 0. //bias(0) = 0, then the 
estimator 0 is unbiased; otherwise, it is biased.

Example 6.1.5. Let X be a random variable with E[X] = /1. The sample 
mean estimator (6.1) is an unbiased estimator of ц since

1Е[Д] =E -Vx 
n

Example 6.1.6. Let X be a random variable with E[X] = ц and Var(X) = 
a2. We have called the estimator (6.2) the biased sample variance. To see 
that it really is a biased estimator of cr2, compute

1
Е[<?2] — <т2 = E -V ((^-Д)2-(^-/1)2) 

1=1

9 n
= E Д2-/?----

n £'= E д2-л2--£^(м n z'
1=1

= E [/z2 - /z2 - 2/z(/z - /z)]
= -Е[(Д - м)2] = - Var(/z)

E-2 = - n

This shows that d2 is indeed a biased estimator of a2, and E[d2] = ^^cr2. 
Note that as n —> oo we have E[d2] —> a2. Because of this, we say that d2 is 
asymptotically unbiased.
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Proposition 6.1.7. Let X be a random variable with E[X] = g and Var(X) = a2. 
The estimator

s2 = ^-£(Xi-/l)2 (6.5)
n — 1 2 = 1

is an unbiased estimator of the variance a2. We call this the unbiased sample 
variance of the random variable X.

Proof. The proof is Exercise 6.1. □

6.1.2 Maximum Likelihood Estimation
Perhaps the most widely used estimation method is maximum likelihood estimation, 
which chooses the parameter for which the observations are most likely to have 
occurred.

Definition 6.1.8. Let X±, X2, • • •, Xn be a sample of a discrete distribution X with 
p.m.f g(x, 0) depending on some parameter 0. Let x = (a?i,..., xn) be a draw from 
the sample. The joint probability

n n

= P(X, = xi,... ,Xn = xn) = = **)  = П<7(*Ь0)
2=1 2=1

is called the likelihood of 0. Similarly, if X is continuous with p.d.f. f(x,0), de­
pending on some parameter 0, then the likelihood of 0 is the joint p.d.f

n 
Ж) = П/(^,0)- 

2 = 1

A maximum likelihood estimate (MLE) of 0 is a point 0 that maximizes the like­
lihood. In the case that there is an estimator 0(Xi,... ,Xn) whose corresponding 
estimate 0(xi,..., xn) is always the MLE for 0 corresponding to x±,..., xn, we say 
that 0(Xi,..., Xn) is the maximum likelihood estimator of 0.

Remark 6.1.9. As a notational convention, it is common to write the likelihood 
function as L(0) = /(x | 0). We sometimes say that L(0) is the density ofx given 
0. This is justified because the Xi are i.i.d. with p.d.f. f(x,0) depending on 0, and 
thus the joint probability density function f(xi,..., xn | 0) for X±,..., Xn factors 
as /(xi,. ,.,xn I 0) = П"=1

Example 6.1.10. Consider the Bernoulli distribution g(x,p) = рж(1 — 
with unknown value of p. The likelihood of p given a draw x = (a?i, x%,..., xn) 
is

L(p) = = p^Xi(l-p)n~^Xi = pnx(l-p)n{1~s\ (6.6)
2=1
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where x = - 527=1 xi *s shorthand for the average of the data (the sample 
mean Д evaluated at the specific value x). If the maximum occurs at p, then 
derivative of L is zero at p. Thus, we solve

о = L'(p) = nxpni-\l _ n(i _ x)pn\l

= (пж(1 — p) — n(l — ®)p)p"®-1(l —

This implies that
ж(1 — p) = (1 — x)p,

which simplifies to p = x. Thus, the MLE of p is p = x and the maximum 
likelihood estimator is p(Xi,..., Xn) = 527=1

Remark 6.1.11. Since the likelihood function is nonnegative on the domain of 
the distribution and the logarithm function is strictly increasing, the log of that 
likelihood, that is, £(0) = logL(0), achieves its maximum at the same values 0 as 
the likelihood L(0) does. Thus, we can solve for the maximum likelihood by solving 
for the maximum of the log-likelihood. This usually makes calculations much easier. 
Applying this idea to Example 6.1.10, we have

£(p) = nx logp + n(l — x) log(l — p),

which reduces to
о = t'№) = ? - ,1(1~г).

p 1 -p
Solving for p gives the same result.

Example 6.1.12. Consider the normal distribution e/E(/z, a2) for an unknown 
value of p but a fixed value of a2. The likelihood of p given a draw x = 
(*̂1  ? • • • , ^n) is

Г/ ) ГГ 1 ( p, 2\-n/2 (

w=n*?“I’(—2^~J = (2to) exp(----------—1
The log-likelihood is

= -^(log(2?r) + log(cr2)) - - p)2. (6.7)
г=1

If p is a maximizer of L, then we must have = 0. This gives

= (6-8)
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and hence ji = x. Thus, for a given draw x, the MLE for /z is

i=l

and the corresponding estimator is the sample mean (6.1). * I

Example 6.1.13. As in Example 6.1.12, consider the normal distribution 
j2), but now assume that // is fixed and known. We wish to estimate 

cr2 by maximizing the log-likelihood

I n
^(o-2) = -^(log(27r) + log(<72)) - ^2 “ V)2-

i=l

If (72 is a maximizer of £, then we must have 1^.2 — 0- Note that here we 
are differentiating with respect to cr2. We treat this not as the square of a but 
rather as an awkwardly named variable in its own right. This gives

(6-9)

Solving for <72 gives

1 n-^2 + ^2)2 ^Xi ~ = °’

x 7 i=l

(6.10)

Thus, for a given draw x, the MLE for cr2 is (6.10) and the corresponding 
estimator is the biased sample variance (6.2).

Vista 6.1.14. In simple problems like those of Examples 6.1.10-6.1.13, we 
can find the maximum likelihood estimator using the standard techniques 
of calculus, but for more complex problems with lots of data, this analytic 
method becomes prohibitively difficult to implement. Usually all we can do 
for such problems is use numerical optimization methods to find the maximizer 
(MLE) for a given draw. In the second half of this text we cover many tech­
niques and algorithms for optimization. These methods are essential not only 
for maximum likelihood estimation but also for many other important prob­
lems, including linear and logistic regression, and most methods of machine 
learning.
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6.1.3 ^Comparing Estimators
There are many different kinds of estimators. One may ask, when is one estimator 
better than another? To answer this question, we must first recognize that there 
are different ways to measure “better.”

As a motivating example, consider throwing darts at a target, as in Figure 6.1. 
If all the darts are clustered tightly together but off center, then that is good, in the 
sense that the pattern is tight and the thrower is consistent, but bad, in the sense 
that the thrower isn’t hitting near the bull’s-eye. In this case we say the thrower 
is precise but not accurate. By contrast, suppose that the darts are symmetrically 
scattered on the target where the average is right on the bull’s-eye. In this case, we 
say that the thrower is accurate, but not precise.

Estimators are like dart throwers in the sense that some can be precise, but not 
accurate, while others can be accurate, but not precise. Accuracy is described by 
the bias of the estimator E[0] — 0. Precision is described by the variance of the 
estimator, that is by Var 0 = E[(0 — E[0])2].

Example 6.1.15. Consider a sample of i.i.d. random variables X^,X2,X^, 
each with mean p and variance a2. The statistic

Xi + 2X2 + ЗА3 

6

is an unbiased estimator for /1, that is, Е[У] = p. Its variance is

Var(r) = =Ul + 22 + 3>2 = -V 
oO lo

This is a larger variance than the sample mean

which has Var(/}) = |cr2. Both estimators are accurate because they are 
unbiased; however, the sample mean is more precise.

One important way to measure the overall quality of an estimator is to compute 
its mean squared error.

Definition 6.1.16. Given an estimator Y = Y(Xi,X2, ..., Xn) of the parameter 
0, the mean squared error (MSE) of the estimator Y is

MSE(F) = Е[(У — 0)2].

Proposition 6.1.17. Given an estimator Y = Y(Х17 X2,..., Xn) of the parameter 
0, the MSE of the estimator Y satisfies the relation

MSE(y) = bias(y)2 + Уаг(У).



252 Chapter 6. Probabilistic Sampling and Estimation

X

Figure 6.1. The target on the left shows a pattern that is precise (it has low 
variance) but not accurate (it is biased) because it is clustered away from the center. 
In the target on the right, the pattern is not precise (it has high variance), but it is 
accurate (unbiased) because the sample mean is centered near the bull’s-eye.

Proof.

MSE(K) = E[(0 - У)2] = E [(0 - Е[У] + Е[У] - У)2]
= E [(0 - Е[У])2 - 2(0 - Е[У])(У - Е[У]) + (У — Е[У])2]
= (0 - Е[У])2 - 2(0 - Е[У])Е[(У - Е[У])] + Е [(У — Е[У])2]
= (0 - Е[У])2 + Е [(У - Е[У])2]
= bias(y)2 + Уаг(У). □

The estimator that minimizes the MSE is called the minimum MSE estimator. 
If we restrict to unbiased estimators, then the previous proposition shows that 
MSE(y) = Уаг(У). In this case, the estimator У minimizing Уаг(У) is called the 
minimum-variance unbiased estimator of 0. But it is not always optimal to restrict 
to unbiased estimators. There can be biased estimators with a smaller MSE than 
the minimum-variance unbiased estimator, so if we wish to minimize the MSE, we 
may need to accept a biased estimator.

6.2 The Law of Large Numbers
In the previous section we showed that the sample mean

л У1 + Xz + • • • + Xn 
= П

of a sample (A\,..., Xn) of a distribution X is an unbiased estimator of the mean 
fi = E[X]. But for any given draw x = (х±,... ,xn) the resulting estimate may 
not be very close to the actual mean. In general one usually expects the estimate 
to be better as n gets larger. In this section we quantify this and discuss many 
properties of sums of i.i.d. random variables: how they are distributed, their mean 
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and variance, and how well they approximate the main parameters of the random 
variable X. We conclude this section with the law of large numbers, which gives 
information about how rapidly approaches the mean /1.

6.2.1 Important Inequalities
In order to prove the law of large numbers we need some simple inequalities that 
are important in their own right.

Lemma 6.2.1. If X,Y are random variables on a probability space with
X(uf) < Y(w) for all weft, then E[X] < E[Y],

Proof. We prove this in the discrete case; the continuous case is similar. Since 
X < Y, the difference Y — X is always nonnegative, and so

Е[У - X] =^rP(Y -X = r) = ^rP(Y - X = r) > 0. 
r r>0

This gives 0 < E[Y — X] = E[Y] — E[X] by Theorem 5.4.14, from which we have 
the desired inequality. □

Theorem 6.2.2 (Markov’s Inequality). If X is a nonnegative random variable, 
then for any a > 0, we have

P(x > a) < Ш. (6.12)
a

Proof. For u > 0, let 1ж>а : Q —> R be the composition 

m m xr fl if X > a, 
lx>a-l[a,oo)O^-|0 [{x<a

We have 1ж>а < Taking the expected value of both sides of this inequality gives

^Гп1 п ГХ1 E[X] 
Е[1ж>а] < E — = ------ ,[ a J a

and since E[lx>a] = P(X > a), we have (6.12). □

Remark 6.2.3. The last step of the previous proof involves a simple idea that is a 
fundamental tool of probability, namely, that for any E C Q the indicator random 
variable 1 e has expected value equal to the probability of E:

E[1e] = P(E). (6.13)

This fact is straightforward to prove but extremely powerful. It is sometimes called 
the fundamental bridge between expectation and probability. Similarly, for any set 
E C R and any random variable X, the expected value of о X is the probability 
that X lies in E:

E[lFoX] = P(XeE). (6-14)
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Example 6.2.4. Markov’s inequality isn’t useful when a < E[X] because in 
that case 1 < But when a is larger, it can give a useful bound. For 
example, if a = 2E[X], it gives

P(X > 2E[X]) <

For many distributions this is not a tight bound. Its utility lies in the 
fact that it holds for all nonnegative distributions. For example, if X ~ 
Binomial(n, and a = 2E[X] = n, then Markov’s inequality gives P(X > 
n) < But we can compute this probability exactly to get P(X > n) = 
P(X = n) = 2-n, which is much smaller than | when n > 2.

It should not be especially surprising that an inequality that holds for 
all nonnegative random variables is not very tight for some specific random 
variables. To get a very close bound for any particular random variable, we 
should expect to have to use specific properties of the particular distribution.

Corollary 6.2.5 (Chebyshev’s Inequality). If X is a random variable with 
finite mean /z and variance a* 2, then for any e > 0 we have

Example 6.2.7. For any X with mean /a and variance cr2, Chebyshev’s in-
2

equality gives no information for e < cr, because 1 < p-. If s = 2a, then we 
have

Р(|Х-м|>2а)<1

Again, this holds for all distributions, but it is not a very tight bound for 
many specific distributions.

2
P(\x-p.\>£)<^.

Proof. Since the quantity (X — Д02 is a nonnegative random variable, we can apply 
Markov’s inequality:

F(|X-M|>e) = F((X-M)2>62)<
E[(X-M)2] _<72

£2 £2
□

Example 6.2.6. Let X be a random variable with E[X] = 50 and Var(X) = 
25. What is the probability that X lies between 40 and 60? By Chebyshev’s 
inequality, we have

25 4
P(\X - < 10) = 1 - P(\X _ > 10) > 1 - — =
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For example, if X ~ fyF(/z,a2), then by the 68-95-99.7 rule (see Exercise 
5.40) we have

P(\X - /z| > a) = 1 - P(\X - /z| < a) « 0.32

and
P(\X - /i\ > 2cr) = 1 - P(\X - pi] < 2a) « 0.05.

Both of these are much smaller than the bounds we get from Chebyshev.

6.2.2 Law of Large Numbers
We now come to the important result called the law of large numbers. Informally, 
this is often called the law of averages. It says that as n gets large, the sample 
mean is increasingly likely to be close to the mean fi of the X$, assuming the Xi 
are i.i.d. random variables. Figure 6.2 shows several plots of the estimates

1 nX = = - y^Xi
i— 1

Figure 6.2. Plot of consecutive values of x = pin(x.) for a sequence of coin flips 
(draws from Xi ~ Bernoulli(0.5)) as n ranges from 1 to 1000 (left panel). The plot 
shows Ж1+Ж2,..., X1+‘1Oqq1000 ♦ The value of x begins above pi = 0.5? rapidly ap­
proaches pi, then moves away again, then comes back and again moves away, but as 
n —> 1000 it seems to approach рь. This illustrates the fact that the random variable 
fln is not guaranteed to be close to pL, but the probability that a given realization x 
is far away gets small as n —> сю. On the right the results of that same draw are 
plotted again, along with the results of three more draws. None of these is consis­
tently close to pL, but the law of large numbers says that the probability that any one 
of these estimates x will be more than a given distance e from /z = | is less than 
пё^ = which gets small as n gets large.
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Figure 6.3. Plot of x = pn(x) for a sequence of draws x from Beta(10,30) as 
n ranges from 1 to 1000 (left side). The plot shows Ж1+Ж2,..., X1+'10qq1000 ♦ In 
this case as n —> 1000 the value of x does not seem to approach p very rapidly. 
The experiment is repeated three more times and plotted in the right panel. The 
value of x is closer to p near n = 1000 for the other three experiments (green, blue, 
and yellow) than it is for the first (red). The law of large numbers says that the 
probability that any one of these experiments will be more than a given distance e 
from p gets small as n gets large.

arising from the estimator pn for a draw x = (#i,..., xn) from a sample , Xn 
of a random variable X ~ Bernoulli(0.5) as n ranges from 1 to 1000. Figure 6.3 
shows the same thing for X ~ Beta(10,30).

Theorem 6.2.8 (Weak Law of Large Numbers). Let X±, X2,... be a sequence 
of i.i.d. random variables, each having mean p and variance a2. For each n G Z+ 
let pn be the estimator pn = ^(A\ + X2 +---- h Xn). For all e > 0, we have that

P(\pn - p\ > e) -> 0

as n —> oo. More specifically, for every e > 0

Р(|/1п-л1 >e) < (6.15)

Proof. By linearity of expectation (Theorem 5.4.14) we have

E[/xn] = E — (A”i + X2 + • • • + Xn) 
n

= 1(Е[Х1]+Е[Х2] + -.-Е[Хп]) = д
n

and by the additivity of variance (5.15) for independent random variables, we have

Var(/Zn) = Var —PG. + x2 + • • • + xn) n
= 2- Var(Xi + X2 + • • • + Xn)

= 2-(Var(Xi) + Var(X2) + • • • + Var(Xn)) = —. 
ir n (6.16)
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Using Chebyshev’s inequality, we have

—PG. + x? + • • • + xn) — n

which gives the result in the limit as n —> oo. □

There is also a stronger version of the law of large numbers called the strong law 
of large numbers.

Example 6.2.9. Flipping a fair coin n times corresponds to n i.i.d. random 
variables X^ each with expected value | and variance The law of large 
numbers tells us for any e > 0 that

1 
4ne2

This goes to 0 as n gets large; that is, the probability that Дп is any given 
distance away from | gets arbitrarily small. This corresponds to the intuition 
that the ratio jan should approach | as n gets large. This is depicted in 
Figure 6.2. More generally, in a sequence of Bernoulli trials with probability 
p of each success, we have

p(l -p)
ПЕ2

Nota Bene 6.2.10. The law of large numbers does not say that the sum 
Sn = Xi + • • • + Xn is likely to approach n/a. As an example of this, consider 
the situation with a fair coin (X ~ Bernoulli(0.5)). For any e > 0 the law of 
large numbers says that

F(|Sn - щл\ >ne)=P Sn P n
(6-17)

But for any constant к and any choice of e, as n —> oo we eventually have 
ne > k. so (6.17) tells us nothing about Р(|5П — n/i\ > k). In fact, a more 
careful analysis shows that |Sn — > oo with probability 1.

Nota Bene 6.2.11. The law of large numbers also does not say that jan must 
approach /i, only that it becomes increasingly likely to be near p. as n gets 
large.

For a fair coin, it says that the probability that is outside the range 
(|, |) is no more than 4.1001( i • While may seem unlikely (depending 
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on the circumstances), it is certainly not impossible. Similarly, the probability 
of being outside the range (|, |) if n = 1000 is no more than , which is 
also not impossible.

This can be seen in Figure 6.2, where is often moving farther away from 
// rather than getting closer, but the likelihood that it will be more than a 
certain amount £ from p gets small as n gets large.

Example 6.2.12. Let Xi be the outcome of the zth roll of a six-sided die. If 
the die is fair, then the expectation of each Xi is E[JQ] = | and Var(JQ) = -hL. 
By the law of large numbers, we should have

pfTZjXi 7 105
\ n 2 ) ЗбпЕ2

for any n and £ > 0. If the die is fair, then the probability is low that a given 
draw x = (xi,..., xn) will make x = Дп(х) very far away from Specifically, 
after 105 rolls of the die, taking £ = 1, the probability that x lies outside the 
interval [§, |1 is bounded above by ~ 0.027, and after 315 rolls it
is bounded above by « 0.009.J 36-3

6.3 The Central Limit Theorem
The [central limit theorem] would have been personified by the Greeks and deified, if 
they had known of it. It reigns with serenity and in complete self-effacement, amidst 
the wildest confusion. The huger the mob, and the greater the apparent anarchy, 
the more perfect is its sway. It is the supreme law of Unreason.
—Sir Francis Galton

As its name suggests, the central limit theorem is central to probability theory. It is 
also the key behind our ability to draw inferences. We give the proof of the central 
limit theorem in Section 6.4. In this section we state the theorem and discuss a few 
of its many applications.

6.3.1 The Central Limit Theorem
The central limit theorem says that for i.i.d. random variables X±, X2,..., Xn with 
finite mean p and variance cr2, if n is large, then the sample mean pn is approx- 2
imately distributed as еЖ(д, This is both surprising and powerful because it 
holds regardless of how Xi is distributed.

Theorem 6.3.1 (Central Limit Theorem). Let X2,..., Xn be a sequence 
of i.i.d. random variables, each having mean p and variance a2. Define random 
variables Sn = X± + X2 4------ h Xn and
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The sequence (ГупУ^=1 of c.d.f s converges pointwise to the standard normal c.d.f. as 
n —> oc. In other words, for each у E i, we have

1 (* уP(Yn<y)^-= I e~x^2dx 
v 2тг J—oo

(6.18)

as n —> сю.

The fact that the sample is i.i.d. implies that the sample mean pn = has 
mean p and variance (see (6.16)). We can reformulate the central limit theorem 
to say that as n gets large, pn approaches a normally distributed random variable 

2 
with mean p and variance —.

Corollary 6.3.2. For sufficiently large values of n the sample mean pn is approx­
imately distributed as and the sum Sn is approximately distributed as
jY(np, w2).

Proof. For large n we have

P(An < z)= P
z — p 

у/п

Making the substitution x = (y — p) gives

\/n fz — (v~py2P(pn < z) ~ / e 2(<72/n)
V27TCF2 J-oq

which is the c.d.f. for jF(p,
A similar argument (see Exercise 6.12) shows that

1 rW _ (г>~^м)2
P(Sn < W) ~ / e 2(na2)

V^Tvna2 J-oQ
and hence Sn is approximately distributed as ^Ж(пр, no2). □

A key point of the central limit theorem is that the random variables X±,..., Xn 
need not be normally distributed. They can be as unnormal as you like—for example, 
heavily skewed to one side or bimodal—but as long as they have a well-defined (and 
finite) mean and variance, the average always approaches a normal distribution as 
n —> сю. Of course, the farther away from normal the original distribution is, the 
larger n must be before the distribution of pn is approximately normal. But for n 
large enough, pn will be close to normal; see Figure 6.4.

The central limit theorem also explains the great prevalence of normal distri­
butions in many applications. Whenever a quantity is a sum of many i.i.d. effects, 
the central limit theorem (or appropriate generalizations) says that quantity will 
be approximately normally distributed, regardless of the distribution of the pieces. 
Thus we see the normal distribution in quantities like exam scores, total annual 
snowfall, and radio noise, all of which are determined by sums of many independent 
factors.
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Figure 6.4. Illustration of the central limit theorem for the distribution Beta(l,4) 
(p.d.f in black). We have sampled Xi,...,Xn from Beta(l,4) ond constructed 
рьп = For each n G {1,4,16}, the corresponding histogram (green)
shows the result of drawing from jin a thousand times, giving an approximation 
of the distribution of jin. The central limit theorem guarantees that when n is 
large, the distribution of fin is close to the normal distribution (p-d.f.
in blue).

Example 6.3.3. As discussed in Example 6.2.9, the law of large numbers 
guarantees for repeated trials of a fair coin flip, for any e > 0, we have

1
— 4ns2

In the case that s = Л=- this gives the unhelpful result that

But the central limit theorem says that Дп is approximately normally dis­
tributed with mean | and variance The 68-95-99.7 rule (see Exercise 
5.40) says that the probability that fLn is farther away than one standard 
deviation s = from | is approximately

P fin
1
2

1 - 0.68 = 0.32.
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Similarly, the law of large numbers says that the probability that p,n is 
more than two standard deviations (s = —U) away from - is bounded by

But the central limit theorem, combined with the 68-95-99.7 rule, says that

6.3.2 Approximation of Common Distributions by Normal

Many distributions correspond to sums of i.i.d. random variables. The central limit 
theorem says that when the number of terms in the sum is large enough, the dis­
tribution is close to a normal distribution. This allows us to approximate many 
distributions with a normal distribution.

Binomial

If X ~ Binomial(n, p), then X has the same distribution as a sum X^ where 
the Xi ~ Bernoulli (p) are independent. Recall that the mean and variance of the 
Xi are p and p(l — p), respectively. Therefore, when n is large enough, the central 
limit theorem says that X is approximately distributed as e/K(np, np(l — p)), that 
is,

Binomial(n,p) « e/K(np, np(l — p)).

This means that if Y ~ c/K(np, np(l — p)), then

1 (t-np)2
Fx(x) « Fy(x) — / e 2тгр(1-р) dt.

у/2ттр(1 -p) J- oo
(6.19)

See Figure 6.5 for a plot of the binomial p.m.f. and the corresponding normal p.d.f.
Although this is a good approximation for large n, we do still have a problem 

arising from the fact that X is discrete, while Y is continuous. Thus, P(X = k) is 
nonzero while P(Y = k) = 0. But observe that P(X = к) = P (к — | < X < A: + |), 
and this is well approximated by P (k — | < У < к +

P(X = k)=p(k-^<X<k+^

P (k-^<Y <k+^\ =FY (k+^\ - FY (k-^



262 Chapter 6. Probabilistic Sampling and Estimation

Figure 6.5. Plots of the p.m.f.s for Binomial(n,p) (red) and p.d.fs for 
^(np,np(l — p)) (black) for p = 0.25 and various values of n. As n grows the 
binomial distribution is increasingly well approximated by the normal distribution.

This is called the continuity correction. It also applies to larger intervals, namely, 
for any /e, £ G {0,..., n} we have

Example 6.3.4. A really bored student rolls a fair die 900 times and records 
each outcome. What is the probability that the number 6 appears between 
150 and 200 times? The number X of times that 6 appears is binomially 
distributed with parameters n = 900 and p = |, so this probability could be 
found as

200 200
P(150 < X < 200) = ^2 gx^= 52 

ж=150 re=150

Alternatively, observe that X is a sum of 900 i.i.d. Bernoulli random variables, 
with p = |, so by the central limit theorem this should be closely approximated 
by the normal distribution tyK(np, np(l — p)) = ^(150.125). Therefore, we 
have

1 Г200 5 0-150)2P(150 < X < 200) « . / e---- dt = 0.5178.
V2507T J149.5

Compare this to the exact answer of 0.5138677670284817.
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Figure 6.6. Plot of the p.d.fs for Gamma(a, 6) (red) and (black) for
various values of a (with b fixed at 1). As a grows, the gamma distribution is 
increasingly well approximated by the normal distribution.

Gamma

Recall that if X is the waiting time for a events to occur in a homogeneous Poisson 
process of rate b, then X ~ Gamma(u, 6) (see Section 5.6.2). If we let Xi be the 
waiting time from event number i — 1 to event number i, then X has the same 
distribution as Xi- Moreover, the Xi are independent and each Xi is also the 
waiting time for a single event with the same rate b to occur, so Xi ~ Gamma(l, b) 
with M = | and cr2 = ^-. By the central limit theorem, we have

Gamma(o, b) « acr2) = yf (у, 
\ b bz /

when a is large. An example of this is shown in Figure 6.6.

Poisson

The sum of two independent Poisson-distributed random variables is again Poisson 
distributed. Specifically, if X ~ Poisson(Ai) and Y ~ Poisson(A2) are independent, 
then

gx+y(z) = P(X + Y = z) = p( [J ({Х = х}П{У = ?;})] 

\x + y=Z /
z

= Y 9х ^gY = Ygx <'X',gY (z ~
x + y—Z X — Q

z \ХЮ—Al \Z—X — A2 z \x \z—x_ V Л1е л2 e _ -А,-A2 Л1 Л2
h X' ^~ХУ- ^ox\{z-x)\

_ -Ax-a2 (Ai + A2)2 
z\ '

where the last equality follows from the binomial theorem. This implies that X + 
Y ~ Poisson(Ai + A2). Therefore, if X ~ Poisson(A), we can write X as Xi 
with Xi ~ Poisson(^). The central limit theorem gives a normal approximation:

Poisson(A) «e/K(A, A).
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Figure 6.7. Plot of the p.m.fs for Poisson(A) (red) and the p.d.fs for c/K(A, A) 
(black) for various values of A. As A grows the Poisson distribution is increasingly 
well approximated by the normal distribution.

See Figure 6.7 for a plot of the Poisson p.m.f. and the corresponding normal p.d.f.
As in the case of the binomial, since the Poisson distribution is discrete, the 

approximation can be improved by using a continuity correction:

P(X = k) = p(k-1-<X<k + ^xp(k-1-< 

= Fy (к + - ) - Fy (к - -)

Y <fc+|)

and 
P(k < X < £) « Fy € + - Fy (к - I) ,

where X ~ Poisson(A) and Y ~ сЖ(А, A).

6.4 *Proof  of the Central Limit Theorem

30Those who are familiar with the Fourier transform should recognize that the characteristic 
function of a continuous random variable X is equal to the Fourier transform of the p.d.f. of X, 
up to a sign. That is, if /x(x) is the p.d.f. of X, then fx(x)eZtx dx = /x(—t).

In this section we prove the central limit theorem (Theorem 6.3.1). To complete 
this proof we first need to develop the idea of characteristic functions.

6.4.1 Characteristic Functions

Definition 6.4.1. Let X : Q —> R be a univariate random variable. The function
— P[e2tx] is called the characteristic function of the random variable X.30

Proposition 6.4.2. For any discrete or continuous random variable X : Q —> R, 
the characteristic function <^x(£) exists for all t G R.

Proof. If X is a continuous random variable with p.d.f. fx(x), then for any t G R, 
the value (px(t) exists if the integral e^fx^x) dx is absolutely convergent. This 
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is clear because \eltx\ = 1 for all x and t, giving

I \eltxfx(x)\ dx = /
R J R

fx(x)dx = 1.

The proof in the discrete case is similar. □

Example 6.4.3. Let Z have standard normal distribution with p.d.f.

fz(x) = -f=e x*/2 
X/ Z7T

By completing the square, we have
-i z*OO  2 1 7*00

= —= / eitx dx = —= / е-1(х2+2гх^ дх

= e—= f e_2(a:+lt)2 dx
J—oo

= e 2 .

The integral e 2 (ж+^) dx jn the penultimate line is equal to л/2тг, as can 
be seen with a substitution, using the results of Exercise 2.5. Thus

= e ‘2/2.

Proposition 6.4.4. For any univariate random variables X and Y, the following 
properties of characteristic functions hold:

(i) <£x(0) = 1 and |<px(t)| < 1 for all t e R.

(ii) 99-x(t) = ^x(t).

(iii) If X and Y are independent with Z = X + Y, then — ^Px^^Py^)-

(iv) For any constant a e C the function fpax (£) = Px {ot).

Proof. The proof is Exercise 6.19. □

We need one additional theorem about convergence of characteristic functions. 
This theorem says that pointwise convergence of characteristic functions implies 
pointwise convergence of the corresponding distributions. We do not include the 
proof here because it would take us too far afield, but the interested reader can 
find it in many standard books on advanced probability, such as [Fel71, Kle08] or 
[Shi84].
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Theorem 6.4.5 (Levy Continuity [Kle08, Theorem 15.23]). If Xi,X2> • • • 
a sequence of univariate random variables, and if there exists a univariate random 
variable X such that (pxi —> <Px pointwise, as n —> oo, then the c.d.fs Fxz converge 
pointwise to Fx as n —> сю.

6.4.2 Proof of the Central Limit Theorem
We can now use characteristic functions to give a proof of the central limit theorem. 
First we need two lemmata.

Lemma 6.4.6. If (wb ..., wn) and (zi,..., zn) satisfy \wi\ <1 and |^| < 1 for all 
i e {1, •. •, n}, then

n n n

IFi-Ifwi < 52 l-Zi - Wi|. (6.20)
i— 1 2=1 2=1

Proof. The proof is by induction. The base case of n = 1 is immediate. Assume 
now that the lemma holds for n — 1. A little algebraic manipulation shows that

n n /п—1 \ /n—1 n— 1
Ц Zi - Ц Wi = (zn - W„) I Ц Zi j + wn I П Zi ~ П Wi
2=1 2 = 1 \2=1 / \2 = 1 2=1

Applying the triangle inequality and the bounds \wi\ < 1 and |z*|  < 1 gives

n n

П Zi - Ц Wi
2=1 2=1

< lzn - wn| +
n—1 n—1

П*  - П
2=1 2=1

(6.21)

Applying the induction hypothesis to (6.21) gives (6.20). □

Lemma 6.4.7. Fix c > 0 and let t) = 1 — + h(n, t) be a function ofnE%+
and t e R such that \h(n, t)\ G о We have

^n,t)n^e~ct2 pointwise, as n —> oo. (6.22)

Proof. Since \hfn, t)\ G о as n —> сю, we have \hfn, t)| < |^-| < 1 for fixed t 
and large n. Therefore, |^(n,f)| < 1 for large n. Applying (6.20) with Zi = 
and Wi = (1 — ct2/n) for every i G {1,..., n} gives

|V>(n, t)n — (1 — ct2/n)n\ < n\hfn, t)\.

Taking the limit as n —> сю gives limn^oo t)n = e~ct2, as required. □

We are now ready to prove the central limit theorem (Theorem 6.3.1).

Proof. It suffices to prove the result for /i = 0 and a = 1 and Yn = Sn/y/n (see 
Exercise 6.17). Since the Xi are identically distributed, we have <pxSf} = Vx^t) 
for any i,j G {l,...,n}. Denote their common characteristic function by
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By Proposition 6.4.4 we have

^„(0 =

We rewrite the characteristic function (-f=) by expanding the exponential as a 
Taylor series (see Theorem 10.3.7) and using the fact that /л = 0 and a = 1:

\ Vn/

/»OO
1 = / e^/V^fx^dx

J —oo 

f°° itx (itx)2 (itx)3= /J1+l!^+ 2!„ +3^+^Ж(1>‘'1

/.OO / /.oo /./42 /-oo
= / fx(x)dx + —~ / xfx(x)dx + — / x2fx(x)dx

J-oo VnJ-oo 2n J-ee
+ 6 3/2 [ (x3+ ---)fx(x)dx

brZ / J—oo

d it t2 2 (if)3 Г°° . з \ J / \ j
= 1 + 9 a + 3/2 / (z3 + • • • )fx(x) dx

y/n 2n J _oo
t2

where h(n, t) G o(^). Lemma 6.4.7 gives

So the characteristic functions <PYn(t) of Yn converge to the characteristic func­
tion (pz(t) of the standard normal distribution Z ~ e/K(0,1). By Levy continuity 
(Theorem 6.4.5), we have Fyn —> Fz pointwise, as n —> oo. In particular, (6.18) 
holds for all points у G R. □

6.5 Bayesian Statistics
Probabilities do not describe reality—only our information about reality.
—E. T. Jaynes

Maximum likelihood and other methods of estimation discussed earlier in this chap­
ter are all about making a single point estimate for an unknown parameter. In 
Bayesian statistics, rather than computing a single point estimate, we compute a 
distribution for the parameter. A key feature of Bayesian statistics is recognizing 
that if a parameter is unknown, it should be treated as a random variable in its 
own right and therefore should have a corresponding distribution. New data can 
be incorporated into the model via the conditional probability of the parameter, 
given the data. This is done using Bayes’ rule, which gives an improved estimate 
of the distribution of the parameter. The initial distribution for the parameter is 
called the prior distribution and the updated distribution, accounting for the data, 
is called the posterior distribution.
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More precisely, let Xi,..., Xn be a sample of random variable X whose distri­
bution P(x | 0) = P(X = x | © = 0) depends on an unknown parameter ©. Assume 
© is a random variable with an initial (prior) distribution P(0) = F(© = 0). Given 
a draw x = (a?i,..., #n), the conditional probability F(0 | x) = P(© = 0 | X = x) 
gives an updated (posterior) distribution for © that takes into account the infor­
mation from the data. This conditional probability can be calculated using Bayes’ 
rule. If X and © have discrete distributions, then we have

= P(x I g)F(g) =
1 1 ’ (6.23)

where the sums in the denominators run over all possible values of the param­
eter 0'.

Example 6.5.1. Suppose there are two coins, one fair and one which comes 
up heads with probability 0.25. The coins look and feel identical. One of the 
coins is randomly selected and we are asked to determine whether it is the fair 
coin or the unfair coin. The natural way to approach this is by flipping the 
coin repeatedly and recording the results.

The outcome X of flipping the coin has a Bernoulli distribution with un­
known parameter ©:

P(x I 6») = P(X = X I 0 = 6») = gx(x) = 0X(1 - V)1-*.

Since the coin was chosen randomly, the probability of each of the two possi­
bilities is the same:

P(© = 0.25) = P(0 = 0.5) = 0.5.

This is called the prior distribution of ©. Flipping the coin once does not give 
enough information to determine the value of ©, but we can incorporate the 
result into the model using conditional probability. Assume the outcome of 
the first flip is T (so X± = 0). By Bayes’ rule, we have

P(© = 0.25 | X = 0)
P(X = 0 | © = 0.25)P(© = 0.25)

- P(X = о I © = 0.25)P(© = 0.25) + P(X = 0 | © = 0.5)P(© = 0.5)
= °-75-°-5____ =0.6.

0.75 • 0.5 + 0.5 • 0.5

So we have a new (posterior) distribution for ©:

0.6 if 0 = 0.25, 
0.4 if 0 = 0.5.

This procedure can now be repeated. The posterior distribution for the last 
trial becomes the prior for the next trial. Assume that flipping the coin a 

PW =
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second time gives the outcome X2 = 0. Again Bayes’ rule gives the conditional 
probability

P(0 = 0.25 I X = 0)
P(X = о I 0 = O.25)P(0 = 0.25)

" P(X = 0 I <Э = O.25)P(0 = 0.25) + P(X = 0 | 0 = O.5)P(0 = 0.5)
0.75 • 0.6—~ n GQ9

0.75-0.6 + 0.5-0.4 ’ ’

giving a new (posterior) distribution for 0: 

0.692
0.307

if 0 = 0.25, 
if F = 0.5.

For continuous distributions the corresponding version of Bayes’ rule31 replaces

31 We do not prove the continuous version of Bayes’ rule in this book, but the theorem itself is a 
straightforward generalization of the discrete case. We give the proof and a complete treatment 
in Volume 3.

probability with density functions: P(x | 0) is replaced with the p.d.f. f(x | 0) and 
the probability P(x | 0) with the likelihood ПГ=1 f(xi I ^)> the probability P(0) 
is also replaced with a p.d.f., which we still denote by P(0), and the conditional
probability P(0 | x) is replaced with a conditional p.d.f., which we also denote P(0 |
x). We have

F(0 I x) =
Дх | 0)P(0)

_/V(x|0')P(0')d0'’
(6-24)

where, as in the discrete case, the integral in the denominator runs over all possible 
values of 0'.

Remark 6.5.2. It is common to use the notation of (6.24), regardless of whether 
the distributions of X and 0 are discrete or continuous, with the understanding 
that the obvious substitutions (integrals to sums and p.d.f.s to p.m.f.s) should be 
made as needed.

Remark 6.5.3. If needed, we can take 0 to be multivariate, that is, a vector of 
parameters. For example, if the parameter distribution were normal, we would 
write 0 = (дб, cr2) to represent the two parameters and the marginalization in (6.24) 
would be an integral over the domain of both variables.

Nota Bene 6.5.4. Almost everyone who does Bayesian statistics abuses no­
tation and uses the same symbol for both 0, in the numerator, and 0', in 
the denominator, of (6.24). This is problematic because 0 is a parameter for 
which we want to find a posterior distribution, but 0' is a dummy variable that 
runs over all possible values, so the entire denominator is actually a constant, 
independent of 0. In this book we do not indulge in this notational tradition 
because we want to be able to look in the mirror without shame.
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6.5.1 Example: The Bernoulli Distribution
Suppose that we have a coin that may or may not be fair, but unlike Example 6.5.1 
the parameter p determining the probability of heads is not limited to just two 
possibilities—it could be anything in the interval [0,1]. To estimate p we draw the 
data x = (a?i, • • •, #n) by flipping the coin n times, where each Xi e {0,1}. We
have

n

। p) = n i p)=pns(i - p)n(1~s),
2 = 1

where x = For reasons explained below, we choose the beta distribution
as the prior, with some chosen values for a and b. Thus, we have

X ~ Bernoulli(p) and p ~ Beta(u, 6).

The prior density is given by

P(p) = r(Q + fc) pq-i(i -p)6-1
W Г(а)Г(6)Р 1 P> ’

and thus we have

P(p! x) = _ IT.,
Jo П”=1 f(xi I p')f(p') dp'

p^(l _p)b-l

fo(p')nS(l -P/)n(1-s)r^5)(p')a_1(l -P')6-1 dp'

pa+nx-1^2 _ p)b+n(l-x)-l 

fg(p')a+n£~1(l - p')<>+n(l-S)-l dp'

_ _____ Г(о + /> + »)_____  a+nx-li-i _ \b+n(l-x) — l
Г(а + п.г)Г(6 + n(l -x))P 1 P>

The last equality follows because the integral in the denominator is a beta function; 
see (2.13). Alternatively, note that the numerator pa+n2}-1(i — p)b+n(1-x)-1 jjffers 
from the p.d.f. fs(p) of Beta(u + nx< b + n(l — x)) by a constant multiple. Since 
F(p | x) and fs(p) are both p.d.f.s, they must both integrate to 1, and so the 
constant multiple must also be 1.

All this shows that P(p | x) is distributed as Beta(u + nx, b + n(l — ж)), so the 
posterior is also a beta distribution, but with parameters a plus the number of suc­
cesses and b plus the number of failures. This is one reason that a beta distribution 
is a preferred choice for a prior of the Bernoulli distribution—the corresponding 
posterior has a very nice form. But, of course, the fact that it is convenient does 
not necessarily mean it is good reflection of reality.

A better reason to choose one of the beta distributions as a prior is that the 
family of beta distributions can easily represent a wide range of prior beliefs about
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the parameter p of the coin. If we have reason to believe that the coin is fair, then 
we could choose values of a and b that make Beta(u, b) have mean near 0.5. Since 
/1 = (see (5.26)), this could be accomplished by choosing a « b. The more 
certain we are of the fairness, the smaller we want the variance of the prior to be. 
The variance a2 = (a+^2(a+b+1) of Beta(a, b) gets smaller as a and b get larger, and 
it goes to zero as the parameters get large. If we have great initial confidence that 
the coin is fair, we could reflect that by choosing large values of a « b in the prior, 
and if we have low initial confidence that it is fair, we can reflect that in the prior 
by taking a and b small.

If we have no prior reason to believe that the coin is any more likely to have 
one probability than any other, we can reflect that by taking a = b = 1, which 
gives Beta(l, 1) = UniformQO, 1]). Even bimodal priors are possible with the beta 
family when a, b < 1; if a = b is less than 1, then the beta distribution approaches 
infinity at each end; see Figure 5.13. Thus the beta family of distributions is fairly 
expressive and can match many different prior beliefs about p.

Now suppose that the coin was weighted so that it landed on heads 40% of the 
time; see Figure 6.8. Over the long run the posterior would look like Beta(a + 
0.4n, b + 0.6n), which is essentially indistinguishable from Beta(0.4n, 0.6n) when n 
is large enough. In other words, in the long run, regardless of the value of a and 
6, the prior becomes less and less relevant and the data dominate the shape of the 
posterior. When this happens, it is said that the data swamps the prior.

Figure 6.8. Graph of the p.d.f.s for Beta(l,l), Beta(20,32), and Beta(385,617) 
corresponding to draws of the weighted coin for n = 0, n = 50, and n = 1000, 
respectively. In the limit as n —> oo, the variance shrinks to zero and the probability 
distribution takes on the shape of an infinitely tall, infinitesimally narrow spike of 
area 1. Assuming that the coin is actually weighted to land on heads 40% of the 
time, the spike should occur at 0.4. In this example after 1000 flips, we don’t have 
exactly 400 heads, of course, but the likelihood of p = 0.4 in the corresponding 
posterior distribution is very high.
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MODIFIED BAYES’ THEOREM

P(HlX) = P(H)-(l»P(C)-(-^  ̂

\ \ ГАК/

H- HYPOTHESIS

X: OBSERVATION
P(H): PRIOR PROBABILITY THAT H I5TROE

P(X> PRIOR PROBABILITY Of OBSERVING X 

р/гч. PROBABILITY THAT YOU'RE USING
1 7 BAYESIAN STATISTICS CORRECTLY

32Not every distribution has a mode. For example, the distribution Beta(0.5,0.5) has no mode, 
because its p.d.f. approaches infinity at either end of the interval (0,1); see Figure 5.13.

Figure 6.9. Bayesian statistics can be very powerful when used correctly. Source: 
XKCD, Randall Munroe, http: //xkcd. com/2059/

6.5.2 MAP Estimate
Unlike the other estimation methods discussed earlier in this chapter, the Bayesian 
approach does not give a single point estimate of the parameter © but instead gives 
a distribution for ©. If we must choose a single value © = 0, a natural choice 
would be the mode (the value that maximizes the p.d.f.) of the posterior F(0 | x), 
assuming this exists and is unique.32 The mode of the posterior distribution, if it 
exists and is unique, is called the maximum a posteriori estimate (MAP).

Example 6.5.5. In the case of the Bernoulli distribution with Beta(a, b) as 
prior and Beta(u + nx. b + n(l — xf) as posterior, the MAP is found by maxi­
mizing the p.d.f. /(p) of the posterior. This is done by differentiating log(/):

т log(/(p)) = — ((a + nx - 1) log(p) + (i> + n(l - x) - 1) log(l - p)) dp dp
a + nx — 1 b + n(l — x) — 1

p 1 -p

Setting this to zero and solving for p gives the MAP

Pmap =
a + nx — 1

a + b + n — 2 (6.25)

The MAP depends on the choice of prior, but when the prior is uniform, the 
MAP agrees with the MLE. In the case of the Bernoulli distribution, as discussed 
in the previous subsection, the MLE for p is pmle = x = But if the 
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prior is uniform, the MAP is the mode of Beta(l + nx, 1 + n(l — #)), which is also 
x, by (6.25). That is to say, starting with the uniform distribution as the prior and 
taking the most likely value of the parameter p with the posterior distribution gives 
exactly the MLE for the parameter. The relationship between the MAP and the 
MLE is a general phenomenon for uniform priors, as the next proposition shows.

Proposition 6.5.6. For any given p.d.f. f(x,0), ifO is known to lie in the interval 
\a,b] and the prior distribution P(ff) is uniform on [a, b], then the mode of the 
posterior distribution is the MLE for 0:

0mle = mode(F(0 | x)).

Proof. The proof is Exercise 6.26. □

6.5.3 Conjugacy
As described in Section 6.5.1, the Bernoulli distribution with a beta prior results 
in a posterior distribution that is also beta distributed. But in general there is no 
reason to expect the prior and posterior distributions to be of the same type. In 
the special case that they are of the same type, we say that type of distribution 
is conjugate to the likelihood. The beta distribution (or rather the beta family of 
distributions) is conjugate to the Bernoulli likelihood; see Table 6.1 for a list of 
common likelihoods and their priors.

Conjugacy is a truly special relationship not enjoyed by most distributions. In 
general, one has to compute nasty integrals to get the posterior. Since there’s 
no simple functional form for most of these integrals, these are usually computed 
numerically using quadrature (see Sections 9.6 and 9.7) or Monte Carlo methods 
(see Section 7.1).

Only in recent years have computers become fast enough and algorithms good 
enough that it is practical to compute these integrals in general. As a result, 
Bayesian statistics wasn’t taken seriously as a reasonable way to do statistics until 
nearly the end of the 20th century. Today, however, the tide has changed, and 
Bayesian statistics has taken a dominant position in statistical estimation theory, 
particularly for highly complex problems where other methods fail miserably.

Likelihood
Bernoulli
Binomial
Negative Binomial
Poisson
Gamma (shape fixed)
Normal (variance fixed)
Normal (mean fixed)
Multivariate Normal (covariance fixed)

Conjugate Prior 
Beta 
Beta 
Beta 

Gamma 
Gamma 
Normal

Inverse Gamma 
Multivariate Normal

Table 6.1. Table of some common conjugate priors. Despite what this table may 
seem to imply, most distributions do not have a conjugate prior.
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6.5.4 Example: Gamma(r, 0) with Fixed Shape r
Let X ~ Gamma(r, 0) for some fixed shape т > 0 and an unknown rate 0 > 0. The 
density function takes the form Р^у(0тжт re вх) (see (5.24)); thus, the likelihood 
takes the form

n f)nT n i n
It* I 0} - пЯк I n<-‘.

Example 6.5.8. Assume that the lifespan of a projector bulb can be mod­
eled as a random variable X with an exponential distribution. Recall that 
the exponential distribution is a special case of the gamma distribution with 
shape 1, so X ~ Gamma(l,A). Suppose that our prior experience consists of 
observing 5 bulbs having an average lifespan of 4 months. We would like to 
estimate the distribution of the parameter A, describing the rate of failure of 
the bulbs.

Since the observed average rate of failure A is |, it is natural to choose a 
prior that has E[A] = |. Since the gamma distribution is a conjugate prior 
to the exponential distribution, it is convenient to choose Gamma(a, b) as 
the prior for A, with expected value | for example, we could choose 
Gamma(5, 20), corresponding to the 5 observed failures in approximately 5 x 
4 = 20 bulb-months.

2=1 k ' 2 = 1 k ' 2=1

Choosing the gamma distribution with some fixed parameters a and b for the prior
P(Q) gives

1 Рпт-Зпх nn т-1 . ( ьа \ na-lp-b6
D/Z)l \ r(r)"t' 6 Hi=l Xi \r(a))V ei (и x) — --------------------------------------------------- -----------------------

Г r# • (r^))

= Z6>nr+a-le-0(nx+fe) (6.26)

where Z is independent of 0 (the integral in the denominator runs over all values 
of 0f, so the denominator is independent of any particular value of 0). Notice 
that, as a function of 0, the last line of (6.26) is a constant times the p.d.f. of 
Gamma(a + nr, b + nx). Since both (6.26) and the p.d.f. of Gamma(a + пт. b + nx) 
are p.d.f.s, they must both integrate to 1, and hence they must be the same function. 
Therefore, F(0 | x) is distributed as Gamma(u+nr, b+nx). This shows that gamma 
is a conjugate prior to the distribution Gamma(r, 0) with fixed shape r > 0.

Remark 6.5.7. The expected value of the posterior Gamma(a+nr, b+nx) is
The MAP for 0 is the mode of the posterior, which is whenever a-\-nr > 1.
As in the case of the Bernoulli distribution with a beta prior, as n increases the data 
swamps the prior and the posterior look increasingly like Gamma(nr, nx), which 
has its expected value equal to its mode of J. This is the MLE estimate for 0 given 
x with the original exponential distribution.
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Sampling four more bulbs with a total lifespan of 26.93 bulb-months (an av­
erage lifespan of 6.73 months each) gives a posterior distribution of Gamma(5+ 
4,20 4- 26.93) = Gamma(9,46.93) for A. This distribution has mean 0.19 and 
mode (MAP) 0.17.

Sampling another 16 bulbs with a total lifespan of 112.57 bulb-months 
(an average lifespan of 7.04 months each) gives a posterior distribution of 
Gamma(25,159.5) for A. This has mean 0.16 and mode 0.15.

These distributions are depicted in Figure 6.10. Notice how incorporating 
more data gives distributions for A with smaller and smaller variance, and the 
mean of each distribution is equal to the average failure rate of all the bulbs 
tested.

Figure 6.10. The evolution of the p.d.f. for Example 6.5.8, beginning with a prior 
(black) o/Gamma(5, 20), incorporating data for four more bulbs (blue), and then for 
16 more bulbs (red). In this case the mean of the final posterior distribution is 0.16. 
Note how the variance shrinks and the height (likelihood) at the MAP increases as 
more data are incorporated.

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text.
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Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

6.1. Prove that s2 is an unbiased estimator of cr2, as claimed in Proposition 6.1.7.
6.2. A binomial distribution has parameters n and p. Show that for a sample 

Xi,...,Xn, the estimator p = SiLi is an unbiased estimator for p.
6.3. Given a sample Xi,..., Xn of a Poisson distribution with parameter A > 0, 

find the maximum likelihood estimator for A.
6.4. Given a sample Xi,..., Xn of the exponential distribution Gamma(l, A) with 

rate A > 0, find the maximum likelihood estimator for A.
6.5. If a small number of draws (say, two or three) from the Bernoulli distribution 

were taken and they were all equal to 1, what would be the MLE of p? 
Explain how this might be a weakness of MLE.

6.6.  Let b G N. Let Xi,..., Xn be a sample without replacement from a uniform 
distribution on S = {1, 2,..., b} (that is, the probability of drawing x± G S 
is but then, since there is no replacement, the probability of drawing 
x2 G S is ^7-j- if x2 ф Xy and zero otherwise). Let M = max(X17... ,Xn). 
For к G S show that if к < n, then P(M < k) = 0, and if к > n, then 
р(м < к) = (Ж)-Use this to show p(M = M = (tM)-

*

6.7.  If Xi,..., Xn is a sample without replacement from a uniform distribu­
tion on {1,2, ...,6}, and if M = max(Xi,..., Xn), then show E[Af] = 
(6 + l)n/(n + 1). Hint: Consider using (1.22). Use this to show that

*

b = ILdlA max(Xi,..., Xn) — 1 
n

is an unbiased estimator for b. This estimator was used by the Allies in World 
War II to estimate the number of tanks built by the Nazis, based on serial 
numbers on parts of tanks that were captured or destroyed.

6.8. Write code to sample from the Bernoulli(0.5) distribution 1000 times, simu­
lating a repeated coin flip, and compute Дюоо- Repeat the experiment 100 
times, saving the result each time. For each value of e G {0.1,0.01,0.001} do 
the following:

(i) Find the upper bound from the law of large numbers for n = 1000.
(ii) Of those 100 trials, calculate the proportion of times that |Дюоо — Ml > £ 

and compare your result to the bound from the law of large numbers.
6.9. Repeat the previous problem using the distribution Beta(l,9) instead of 

Bernoulli(0.5).
6.10. Let В ~ Binomial(n, p) be a binomial random variable for n trials with 

parameter p. Prove for any e > 0 that
В \ < p(l - p) 

J ~ ne2
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6.11. Let Xi,X2,... be a sequence of mean-zero independent random variables 
with bounded variances (for all г, ст2 < M for some M < сю). Prove that for 
any e > 0 we have

as n —> сю.

6.12. Give the details for the second part of Corollary 6.3.2 to show that if Sn = 
™=1 Хг is a sum of n i.i.d. random variables with mean /j, and variance cr2, 

then for large values of n, the distribution of Sn is approximately e/K(n/i, шт2).
6.13. An elevator can transport a maximum of 2000 pounds. The safety plate on 

the elevator says the maximum occupancy is 10 persons. Experience has 
shown that passengers on this elevator have a mean weight of 176 pounds 
and standard deviation 30 pounds. Use this information and the central 
limit theorem to estimate the probability that a full elevator will not exceed 
its safe carrying capacity. Hint: Most numerical computation software (like 
Python or R) has built-in functions or a library with the c.d.f. of the normal 
distribution.

6.14. A university wants to enroll 5000 new freshmen students each year, and the 
most they can handle is 5500. Data on past admissions and enrollments 
show that 80.1% of all students admitted to the university actually decide to 
enroll (as opposed to going elsewhere or not going to school at all). Assuming 
that each student’s decision to enroll is independent of the others, and each 
has a probability 0.801 of enrolling (that is, enrollments can be modeled as 
Bernoulli trials), use the central limit theorem to estimate the probability that 
the number of students enrolling will exceed 5500, provided the university 
admits 6242 students (so the expected number of enrollments is 6242x0.801 = 
5000).

6.15. A fair four-sided die is rolled 800 times and each outcome recorded. Using 
the central limit theorem, approximate the probability that the number 4 
appears between 150 and 250 times.

6.16. For each of the two distributions Beta( j, j) and Uniform([0,1]), and for each 
n e {1,2,4,8,16,32}, do the following:

(i) Find the mean // and variance cr2, and plot the p.d.f. of the distribution 
(the results of this problem do not depend on n, but you will need a 
separate one of these plots for each n).
Hint: Many computational systems have a built in method or a library 
for sampling from common distributions like the uniform and beta dis­
tributions, as well as prebuilt functions for the c.d.f. and p.d.f. of those 
distributions.

(ii) Plot (on the same graph as before) the p.d.f. of the normal distribution 
with mean /j, and standard deviation cr/^/n.

(iii) Do the following 1000 times:
(a) Draw x17..., xn from the distribution.
(b) Compute x = £ £”=1 x.*
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(iv) Plot a normed histogram of the results of the previous item (scaled so 
that the total area of the histogram is one—like a p.d.f.) on the same 
graph as your original distribution and the normal.

6.17.  Prove the claim at the beginning of the proof of the central limit theorem: 
“It suffices to prove the result for /z = 0 and a = 1 and Yn = Sn/y/n.”
*

6.18.  Compute the characteristic function for the following distributions:*

33Commuting expectation and derivatives is not always possible, although it works in this case. 
Differentiation under an integral on a compact region is governed by Leibniz’ integral rule 
(Volume 1, Theorem 8.6.9). Applying this to an unbounded region requires commuting limits 
with derivatives (see Volume 1, Theorem 6.5.11).

(i) Bernoulli.
(ii) Binomial.

(iii) Poisson.
6.19.  Prove Proposition 6.4.4.*
6.20.  For any univariate random variable X with a characteristic function <px(t) 

that is differentiable at t = 0, show that E[X] = —i(p'x(ff) (assume that 
derivatives and expectation commute)  and, more generally, that E[Xfc] = 
(—i)k(px\o) for any к E N, provided 9^(0) exists for all j < k.

*

33

6.21.  It can be shown that the characteristic function of an exponentially dis­
tributed random variable X ~ Gamma(l,A) is фх(1) = Use this fact 
to give a closed formula for E[Xfe] for all к G N.

*

6.22.  The Fourier inversion formula says that the characteristic function uniquely 
determines the distribution. In particular, if X and Y are random variables 
with the same characteristic function, then their c.d.f.s are equal. Use this 
fact to show that if X± ~ Poisson(Ai) and X± ~ Poisson(A2) are independent, 
then Y = Xi + X2 ~ Poisson(Ai + A2).

*

6.23.  Use characteristic functions and the Fourier inversion formula to show that 
if Xi ~ Binomial(n,p) and Xi ~ Binomial(m, p) are independent, then Y = 
Xi + X2 ~ Binomial(n + m,p).

*

6.24. A coin is flipped 8 times with the outcomes H, H, H, T, T, H, H, H. Using a 
uniform prior for the probability p of heads, what is the posterior probability 
that p < 0.6? What is the probability that p > 0.8?

6.25. Assume that the lifespan of a projector bulb can be modeled as a random 
variable X with an exponential distribution of unknown parameter A. Sup­
pose that your data consists of observing 7 bulbs which lasted 2, 3.3, 4.5, 1.8, 
3.1, 2.7, and 2.2 months, respectively.
Using the prior Gamma(2,6), find the posterior p.d.f. for A. What is the 
posterior probability that A < | (corresponding to an average lifespan of at 
least 4 months)? Hint: The syntax of some computational systems uses the 
scale j in the gamma distribution instead of the parameter b.

6.26. Prove Proposition 6.5.6, which states that whenever we start with a uniform 
prior on any interval [a, 6], the mode (the value 0 which maximizes the p.d.f.) 
of the posterior distribution is precisely the same as the MLE #mle- Hint: 
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Use Bayes’ formula to show that the likelihood L(0) only differs from the 
posterior f(0 | x) by a constant multiple.

6.27. Let ... ,Xn be i.i.d. random variables with a Poisson distribution of pa­
rameter A, and let x = (#i,..., xn) be a corresponding draw. Prove that if 
the prior for A is Gamma(a, 6), then the posterior is Gamma(a + nx. b + n). 
This shows that the gamma distribution is a conjugate prior for the Poisson 
distribution. What is the MAP in this case? Compare the MAP to the MLE 
for A, given x.

6.28. A Given a draw x = (rri,^) of a sample Xi,%2 of a random variable X 
depending on an unknown parameter 0, there are two different ways to use 
Bayes’ rule to compute the Bayesian posterior P(0 | x). The first way is to 
do it in a single step as

= P(x | QPW
' 1 1

This is the method used in Section 6.5.1. The second way is to compute it in 
two steps by first computing

P(0 | xi) = P(xi | 0)F(0)
/ F(®i | 0')F(0') dO' ’

and then taking F(0) = P(0 | Xi) as a new prior, computing

P(9112) = _
J P(n | e')P(S') M'

This two-step method was used in Example 6.5.1. Prove that for any likeli­
hood P(x | 0) and any prior F(0), the final posterior distribution P(0 | x) is 
the same, regardless of which method is used.

6.29. Let X ~ cr2) for a fixed, known value of cr2 and an unknown value of 
/1. Assume that /л ~ e/K(z/, r2) for some given, prior values of v and r2.

(i) Given a single draw x of X, show that the Bayesian posterior distribution 
of [i is

/t2x + cr2// cr2r2 \

\ cr2 + r2 ’ cr2 + T2 /

(ii) Give a formula for the posterior distribution F(/z | x) of /л for data 
x = (a?i,..., Xn) of n draws.

(iii) Show that the MAP converges to the MLE as n —> oo.

(iv) Show that for any n and any z/, the MAP converges to the MLE as 
r2 —> oo. Note that there is no uniform distribution on R, but as r2 gets 
large the distribution t2) can be thought of as a good surrogate 
for a uniform distribution, so the fact that the MAP converges to the 
MLE can be thought of as an analogue to Proposition 6.5.6 (Exercise 
6.26).
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Notes
Additional introductory references about the ideas in this chapter include [Kurl5, 
BH15, GS03, Ros07, Rosl4, Was04]. Our treatment of the law of large numbers is 
inspired in part by [GS03]. For more about the fundamental bridge, see [ВН15].



Random Algorithms

Anyone who attempts to generate random numbers by deterministic means is, of 
course, living in a state of sin.
—John von Neumann

A random algorithm is one that uses some notion of randomness as part of its 
logic. In theory, they are algorithms that use random variables; in practice, they 
are algorithms that use draws of those random variables.

Among the most important random algorithms are Monte Carlo methods, which 
give powerful tools for estimating quantities like the value of an integral or, equiva­
lently, the expected value of a random variable. These are discussed in Section 7.1. 
In Section 7.2 we discuss methods of sampling both to compute expectations (inte­
grals) and to draw samples from various nonuniform distributions.

In the rest of the chapter we discuss three other types of random algorithms, 
namely, hashing, simulated annealing, and genetic algorithms. Hashing is a funda­
mental tool for producing efficient data structures like dictionaries and sets. Sim­
ulated annealing and genetic algorithms are important methods for optimization. 
They are especially useful in situations where the function to optimize is not differ­
entiable or where its derivative is not easily calculated.

7.1 Monte Carlo Methods
Monte Carlo methods34 form a broad class of techniques that use random sampling 
to estimate various quantities, including high-dimensional integrals, parameters of 
distributions, and probabilities of various events. For example, with Monte Carlo 
sampling, one can estimate the expected value E[X] of a random variable X by 
computing its sample mean Д (see (6.1) and (6.3)). In fact, many of the Monte 
Carlo techniques boil down to computing some kind of expectation, and in most 
cases the central limit theorem can be used to analyze the convergence properties 
of these methods.

34The name comes from the Monte Carlo Casino in Monaco.

281
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Monte Carlo methods are useful in a wide variety of settings. They are often 
easy to implement in situations where analytic methods are difficult or even impos­
sible. While they are not usually considered very computationally efficient, they are 
usually parallelizable, and for many high-dimensional problems they are the only 
feasible approach. Moreover, they can be applied in almost any situation where the 
desired answer has a probabilistic interpretation. For example, integration can be 
interpreted as computing an expected value, and thus Monte Carlo methods can be 
applied. In fact, the best methods for numerical integration in high dimensions are 
Monte Carlo methods.

Example 7.1.1. Since the area of a circle of radius r is A = 7rr2, one way to 
estimate 7Г is to estimate the area of the unit circle. A Monte Carlo approach 
to this problem is to uniformly sample points in the square [—1,1] x [—1,1] 
and then count the percentage of points that land within the unit circle. The 
percentage of points within the circle approximates the percentage of the area 
occupied by the circle. Multiplying this percentage by 4 (the area of the square 
[—1,1] x [—1,1]) gives an estimate for the area of the circle.

The results of three such experiments, with 500, 2000, and 16,000 points, 
respectively, are shown in Figure 7.1. The corresponding estimates for 7Г are 
3.0880, 3.1980, and 3.1412.

500 points; 7г« 3.0880 2000 points; 7г« 3.1980

Figure 7.1. Monte Carlo estimation of the area of the unit circle. Points are 
chosen uniformly from the square [—1,1] x [—1,1]. The area of the square times 
the percentage of points landing in the circle gives an estimate for the area тг of the 
circle; see Example 7.1.1.

7.1.1 Expected Value via Monte Carlo
One of the most basic problems in the class of random algorithms is estimating the 
expected value E[X] of a random variable X. To estimate ц = E[X], we take a 
draw x = (rci,..., xn) from a sample Xi,..., Xn of X and compute the value of 
the sample mean Дх = x = The law of large numbers guarantees that
Дх —> p with probability 1 as n —> oo, and the central limit theorem gives additional 
probabilistic information on the quality of the estimate as a function of n.
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More precisely, the central limit theorem (Theorem 6.3.1) guarantees that for
2

large n the sample mean Д is approximately distributed as J%^-), so by the 
68-95-99.7-rule (see Exercise 5.40)), the probability that Д is within one standard 
deviation of у is approximately 68%, and the probability that it is within two 
standard deviations is approximately 95%.

The standard deviation of the sample mean is called the standard error (SE) 
of the mean. Of course, if the purpose of the experiment is to approximate /1, then 
we probably also don’t know cr2, but we can use the unbiased sample variance

(see (6.5)). Thus, a good estimate for the standard error is

Therefore, the result x of a Monte Carlo experiment to estimate у = E[X] with n 
samples will, with approximately 95% probability, lie within two standard errors 
(that is, ^) of the true mean /i.

More generally, to compute the expected value of h(X) for some well-behaved 
function h : R —> R, observe that Y = h(X) is itself a random variable with 
expected value Е[У] = E[/z(X)]. Again, we can estimate this value with a Monte 
Carlo experiment, by drawing у = (?/i,..., yn) from a sample Yi,..., Yn. But each 
Yi is h (ХД so to sample from Y we can apply h to a sample from X. This gives

1 n 1 n
у=Х^ = 

l—l l—l

and P(\y — E[/z(X)]| < |^) is approximately 95%, where

4 = E^*)  - уУ-
г—1 i—1

Example 7.1.2. Let X ~ Uniform([0,1]). To estimate the expected value of 
Y = X2, we sample from X and compute у = - xi- Drawing n = 106 
times, we found у = 0.333298 and s2 = 0.088995, which gives SE = -^= = 
0.0003. We conclude from this that the probability that \y — y\ is no more 
than 0.0003 is about 68%, the probability that it is less than 0.0006 is about 
95%, and the probability that it is less than 0.0009 is about 99.7%.

In many cases the expected value cannot be computed analytically, but in 
this special case the true answer can be computed as E[X2] = x2 dx = |, 
and we have \y — /i\ ~ 0.000035, which is well within one standard error of the
mean.



284 Chapter?. Random Algorithms

Example 7.1.3. Consider a game where you repeatedly roll three distinct 
six-sided dice. With each roll of the three dice, if there are no doubles or 
triples, then you win the total amount shown (the sum of the three dice); 
otherwise you lose everything you have won so far.

We can use Monte Carlo methods to estimate the expected value with very 
little work. Let the random variable Y be the value of your stake after 10 rolls. 
With only a few lines of code, we can draw from {1,..., 6} uniformly for each 
of the three dice and compute the effect of each roll on the total stake. The 
result у of repeating this 10 times constitutes one experiment. Here is an 
example:

Roll Outcome Winnings Roll Outcome Winnings
1 3 6 3 0 6 5 2 2 0
2 2 5 2 0 7 1 5 3 9
3 2 6 4 12 8 6 5 4 24
4 4 2 5 23 9 6 6 4 0
5 2 6 4 35 10 4 3 3 0

In this example, the final winnings are у = 0. Repeating the 10-roll ex­
periment n times gives a draw т/i, y%,. . •, yn from a sample У1,..., Yn of Y. 
From this we can quickly compute у and the standard error SE, increasing 
the number of samples until we are sufficiently confident in the quality of the 
estimate у ~ Е[У].

We ran this experiment 105 times and found у = 13.1, with SE « 0.06. 
So the probability that the true value of Е[У] lies in the interval (12.9,13.3) 
is greater than 99.7%; see Algorithm 7.1 for details. The analytical solution 
of this problem shows that Е[У] = 13.0882, which is very close to our Monte 
Carlo estimate.

7.1.2 Monte Carlo Integration with Uniform Distributions
In calculus, we learn that the average of a function on the interval [a, b] can be
computed via the integral

1 fb 
b- a Ja

We can connect integration to Monte Carlo methods because this quantity is equal 
to Е[У], where У = f(X) for X ~ Uniform([u, b]). This means that we can estimate 
the integral as 

( f(x) dx = (b — а)Е[У] 
a -1 г—1

where x = (aq, aq, • • •, xn) is a draw from the sample X2,..., Xn of the random 
variable X ~ Uniform ([a, 6]).

More generally, consider an integral of the form

dx,
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import numpy as np # module for efficient linear algebra

def MC_dice_game(n=10**5) :
# Monte Carlo estimate of expected value of the dice game.

def trial(n_rolls=10,n_dice=3):
nun perform a single experiment of n.rolls dice throws 
and return total_winnings (a draw у of Y)."""

total_winnings = 0
rolls = randint(1,7,[n.rolls,n.dice]) # array of rolls 
for roll in rolls:

if len(np.unique(roll)) == n_dice: # if all distinct 
total_winnings += np.sum(roll)

else:
total_winnings = 0 

return total_winnings

# run n total experiments and compute ybar
trials = np.array([trial() for x in range(n)]) # n trials 
ybar = trials.mean() # Estimate of E[Y]
svar = np.sum((trials-ybar)**2)/n  # Sample variance
SE = np.sqrt(svar/n) # Standard error
return(ybar, SE)

Algorithm 7.1. Routine for computing a Monte Carlo estimate у of the expected 
value Е[У] for the dice game of Example 7.1.3. While the analytic computation of 
Е[У] is difficult, writing and running the code for the Monte Carlo estimate is easy.

over a bounded interval [a,b] = [«i,6i] x ••• x [ad,6j] C for an integrable 
function &(x) (the symbol x here is not a draw from a sample but rather just a 
point in Rd). The p.d.f. of the uniform distribution on [a, b] is /(x) = aq2 ь]) ^[а,ь]> 

where A([a,b]) = — aj), so we have

= A([a, b])E[fc(X)] «
2—1

where Xi,..., xn is a draw from the uniform distribution on [a, b]. Geometrically, 
this is similar to computing Riemann sums, except that Riemann sums correspond 
(when d = 1) to taking one point Xi in each interval [a + г А, a + (г + 1) A] for each 
i e {0,1,..., n — 1}, with A = whereas the Monte Carlo method just takes n 
points sampled uniformly from the interval [a,b\; see Figure 7.2.
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Figure 7.2. Depiction of left Riemann sums (black/gray) versus Monte Carlo 
integration (red) to estimate the integral f(x) dx. Riemann sums take one sample 
(the leftmost point) from each interval [a + гД,а + (г + 1)Д], whereas the Monte 
Carlo method takes samples drawn uniformly from the interval [a, b].

The standard error for this Monte Carlo integration is given by (we drop the 
subscript on s)

SE » Л([а, b|) A = У) (7-1)

where у = k(x/) and s is the square root of the unbiased sample variance
for the draw &(xi),..., k(x.n/

Example 7.1 .4. Example 7.1.1 gives one way to estimate the numerical value 
of 7Г using Monte Carlo methods. Another approach to estimating 7Г is to 
numerically estimate the integral л/l — rr2 dx. which gives the area of one 
fourth of the unit circle, and then multiply by 4. This gives 

for a draw x±,... ,xn from the uniform distribution on [0,1]. Drawing 500, 
2000, and 16,000 times gave the results 3.12053, 3.13163, and 3.14146, re­
spectively, and with standard errors of approximately 0.04065, 0.02006, and 
0.00705, respectively. This is better than the results of Example 7.1.1, al­
though our error of only 0.00013 in the last case of 16,000 draws seems to 
have been rather lucky, since the standard error is more than 5 times larger 
than that.
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Example 7.1 .5. The method used in Example 7.1.1 can also be considered 
an example of Monte Carlo integration of the indicator function of the unit 
circle A on the square [—1,1] x [—1,1]. Thus, we have

7.1.3 Accuracy and High-Dimensional Integration
To improve the accuracy of the estimate у by one decimal place, we must shrink the 
standard error by a factor of 10. But because the denominator of the standard error 
is д/п, to shrink it by a factor of 10 requires that n increase by a factor of 100. For 
one-dimensional integrals, other numerical techniques, like the quadrature methods 
in Sections 9.6 and 9.7, usually give more accurate results more efficiently—for 
example, the error in Simpson’s rule shrinks like n-4 (assuming f e C4([a, 6];R)) 
rather than n~\ so to get one more digit of accuracy using Simpson’s rule requires 
only that n grow by a factor of 10 4 « 1.8 instead of 100.

In two dimensions, numerical quadrature still outperforms Monte Carlo meth­
ods, but the natural analogue of Simpson’s rule using n points only improves like 
n~2 instead of n-4, so to improve by one digit of accuracy requires д/1б times more 
points. In d dimensions the number of points needed for quadrature methods to 
achieve a given level of accuracy grows exponentially (like kd for some constant k), 
so these methods rapidly become unusable. But the standard error in Monte Carlo 
methods is always which is independent of d; see (7.1). For this reason Monte 
Carlo methods are still effective in high dimensions, even when other methods fail 
completely.

Nota Bene 7.1.6. Beware that when an integral does not converge, a Monte 
Carlo estimate still usually returns a finite number. You can often identify 
that the integral diverges by watching how the Monte Carlo estimate changes 
as the number of points increases.

7.2 Importance, Inversion, and Rejection Sampling
In this section we extend Monte Carlo integration to nonuniform distributions. We 
also discuss a method of choosing a good distribution for Monte Carlo integration 
called importance sampling. We then discuss two different methods of producing 
draws from various distributions, called inversion sampling, and rejection sampling.

7.2.1 Monte Carlo Integration with Nonuniform Distributions
Uniform distributions are not the only distributions that can be used for Monte 
Carlo integration. We can apply these ideas to any integral of the form

/ k(x)fx(x)dx
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for any distribution X with p.d.f. f%(x), provided &(x) is sufficiently well behaved, 
and provided we can sample from X. We have

fe(x)/x(x) dx = E[fe(X)]

where xi,..., xn is a draw from the distribution X instead of from the uniform 
distribution. Again, the standard error is (we drop the subscript)

S _ -y^T^iWxJ-y)2 _ /^^(xQ-y)*  

y/n y/n у n(n — 1)

where у = £ £Xi &(хД
If /x(x) never vanishes, then for any h(x) we can set fc(x) = to calculate

Г 7 / \ > f ^(X) J- / \ 7 7Г. Г ^(X) 1 1 hCXi) ./ h(x)dx = 7 /x(x)dx = E ~ f r v (7.2)
fx (x) L fx (x) J n fx (x,)

The uniform distribution is only well defined on sets of finite volume, so if the 
integration runs over an infinite domain, we cannot use the uniform distribution. A 
natural choice when integrating over Rn is the normal distribution, in part because 
many good techniques have been developed for sampling from the standard normal 
distribution.

Example 7.2.1. Let X ~ <Ж(0,1) have standard normal distribution. There 
are many efficient algorithms for sampling from the standard normal, so we 
can estimate the c.d.f. F%(a) = P(X < d) = fx(%) dx by sampling from
the standard normal:

z»a z*oc  •£ n
' fxfa) dx — I 1 (_oo,a] (^)/x (#) dx — E[l(_OO;a]] ~ 1 (_сю,а] (*̂г) •
— OO J — OO П ,

Using this method to calculate F%(1), and taking 103, 104, and 105 samples, 
we gained the estimates 0.8350, 0.8451, and 0.8422, respectively, with standard 
error of 0.012, 0.004, and 0.001, respectively.

7.2.2 Importance Sampling
One of the main reasons to use a nonuniform p.d.f. is to reduce the variance of 
the sample and hence reduce the size of the standard error of the Monte Carlo 
estimate. In the rare case that /x(x) is exactly proportional to /г(х), the ratio 

is constant for all хг, which means that s2 = 0 and SE = 0. Choosing 
/x(x) to be close to Mh(x) for some constant M makes the standard error of the 
Monte Carlo estimate small. This translates into computational efficiency gains, 
since fewer samples are required to achieve the desired accuracy.
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Integrating by sampling from a distribution whose p.d.f. is nearly proportional to 
/i(x) is called importance sampling, because the sampling favors the more important 
regions that really contribute to the integral over the less important regions.

Example 7.2.2. Let h(x) = | sech(rr2), and consider the integral h(x) dx\ 
see Figure 7.3. Since this function has a maximum at the origin and then 
drops off rapidly as x moves away from the origin, it makes sense to try sam­
pling from a normal distribution rather than from a uniform distribution. Let 
X ~ c/F(0,1) with p.d.f. We can estimate jj5 h(x) dx as

/ h(x) dx = / -i—  -fx(x)dx
J-5 J-oo fx(x)

1[_5>5] (x)h(x)
fx(x)

1- A 1[_5,5] {Xj)h{xi')

where ..., xn is a draw from X. When we run this Monte Carlo estimate 
with n = 106, we roughly find that у = 1.18361 and SE « 0.00032. This is 
better than the Monte Carlo estimate using the uniform distribution, which 
gives roughly у = 1.18558 and SE = 0.00183.

Figure 7.3. Plot of the function h(x) = jsech(rr2) (black) and the p.d.f of the 
standard normal distribution (red). Because the p.d.f. of the standard normal has 
a shape similar to h, Monte Carlo estimation of the integral h(x) dx has im­
proved accuracy when importance sampling is used with draws taken from the stan­
dard normal distribution instead of from the uniform distribution, as discussed in 
Example 7.2.2.

Unfortunately, even if the overall shape of the sampled distribution fx(x) is sim­
ilar to that of h(x), if there are places where fx(x) is much smaller than h(x), then 
for a draw x = (a?i, #2,..., xn) from those places, the ratio can be very large.



290 Chapter?. Random Algorithms

This can cause the unbiased sample variance

1 / h^Xi)
n- 1 \fx(Xi) yJ

to grow uncontrollably, especially if is large on an unbounded region, that is, 
in the tails of the distributions. Since the goal of importance sampling is to reduce 
the variance, rather than to let it grow, it is essential to choose a distribution fx (#) 
with tails that are large (fat), compared to the tails of the original function h(x).

Unexample 7.2.3. Let Y ~ Gamma(8,1). The obvious Monte Carlo method 
for computing probabilities like P(Y > c) = dx is to use the funda­
mental bridge (see Remark 6.2.3) and sample from Y to get

1 n
P(Y > c) = E[1[C1OO)] ~

i=l

where is drawn from Y. But this can work only if we have a good way to 
sample from Y. If not, it seems natural to try to use a normal distribution 
X ~ «Ж(8,8), since c/K(8,8) is a good approximation to Gamma(8,1); see 
Section 6.3.2. Trying this gives

J c J-ос fx(t) fx(Xi)

where xi,...,a;n are drawn from <уТ(8,8). Unfortunately, actually running 
the computation with n = 104, 105, and 106, with c = 8 we find completely 
nonsensical estimates 771.9, 1455.7, and 3226.4, respectively, with standard 
error 185.5, 206.6, and 810.8, respectively. So the estimates and the standard 
error are both failing to converge. This is because the tail of <Ж(8,8) is 
substantially smaller than that of Gamma(8,1). The ratio of the two is

x/27rt7e-< 
_ (t-8)2 ’

e 16

which diverges to infinity as t —> oo.
This can be remedied by sampling from a different distribution with a 

larger tail. For example, the distribution on [0, oc) with p.d.f. equal to ^^2 
will do, since

t7e_* t7(l+i)2hm ——------ — = hm ------—— = 0.
t—>00 7!/(l + t)2 t->oo 71et

We show how to sample from in Example 7.2.7.
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7.2.3 Inversion Sampling
Monte Carlo methods rely on the generation of random (or pseudorandom) sam­
ples from various distributions. Most modern computing systems have high-quality 
methods for generating uniformly distributed and normally distributed pseudoran­
dom numbers, but in many cases (for example, in importance sampling) one needs to 
sample from other distributions. A key tool for doing this is the following theorem.

Theorem 7.2.4 (Universality of the Uniform).

(i) Let F : (u, b) (0,1) be bijective and increasing, with inverse F-1. If U ~ 
Uniform((0,1)), then X = F-1(U) is a random variable with c.d.f. equal to 
F (with the obvious extension that F(x) = 0 for all x < a and F(x) = 1 for 
all x >b).

(ii) If X is a random variable with a continuous c.d.f F, then Y = F(X) is a 
random variable with Y ~ Uniform((0,1)).

Proof, (i) The function F-1 : (0,1) (a, b) exists and is both increasing and
bijective because F : (a, 6) (0,1) is increasing and bijective. We now show
that F-1 is continuous by showing that for all r, s G (a, 6) with r < s the set 
(F-1)-1(r, s) = F((r, $)) is equal to (F(r),F(s)) and hence is open in (0,1) (see 
Volume 1, Theorem 5.2.3). To see this, note that F is increasing, so for every 
x e (r, s) we have F(r) < F(x) < F(s), and, hence, F(x) G (F(r),F(s)) and 
F((r, $)) C (F(r),F(s)). But bijectivity of F implies that for every у G (F(r),F(s)), 
there exists z G (a, b) with у = F(z), and the fact that F-1 is increasing implies that 
z G (r, s); hence, F((r, $)) = (F(r),F(s)), which implies that F-1 is continuous.

Since F-1 is continuous, the function X = F-1(U) is a random variable. Since 
F(U < и) = и for any и G (0,1), the c.d.f. of X is

'o
P(X < x) = P(F-\U) <x) = P(U < F(x)) = F(x)

if F(x) < 0,
if F(x) e (0,1), 
if F(x) > 1.

(ii) If F is continuous, then Y = F(X) is also a random variable. Its c.d.f. is

F(y < y) = F(F(X) < y) = F(X < F-1(y)) = F(F-1(y)) = y.

Therefore, Y ~ Uniform((0,1)). □

This theorem is useful for sampling from a given distribution with c.d.f. equal 
to F, because whenever the inverse F-1 is known, we can generate a sample of 
the original distribution by taking a sample U of the uniform distribution and 
computing F-1(U). This is called inversion sampling.

Remark 7.2.5. Part (i) of the theorem also holds in the case that F maps to [0,1] 
instead of to (0,1). The proof is essentially identical to the one given here for (0,1).
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Example 7.2.6. The distribution Beta(a, 1) has p.d.f. equal to f(x) = axa~\ 
and thus its c.d.f. is F(x) = xa, which is strictly increasing on the support 
[0,1] of the distribution, and hence bijective there. Its inverse F-1(u) = u1^ 
is also continuous. Therefore, to sample from Beta(a, 1) we may take a sample 
U from Uniform([0,1]) and compute U^a.

Example 7.2.7. Let D be a distribution with p.d.f. equal to f(x) = 
defined on [0,oo). The c.d.f. is F(x) = f(' (j^2 = and its inverse is 

Therefore, given a sample U ~ UniformQO, 1)), taking 
gives a sample from D.

7.2.4 Rejection Sampling
Unfortunately it is not always possible to compute a closed-form expression for 
the inverse of the c.d.f. of a distribution. Hence, inversion sampling is not always 
feasible. Another approach is rejection sampling, which uses the following two main 
ideas:

(i) To sample from a continuous distribution F, one can sample uniformly from 
the region in the plane R2 bounded above by the p.d.f. fp(x) of P and then 
project each sample down to the ж-axis.

(ii) To sample uniformly from any region C, one can sample uniformly from a 
larger region containing C and throw away (reject) any samples that do not 
lie in C.

Idea (i) is illustrated in the left panel of Figure 7.4. The probability that sample 
X ~ P lies in an interval [a, b] on the ж-axis is the area P(X e [a, b]) = fp(x) dx 
under the p.d.f. This is the same as the probability that a uniformly chosen point 
with coordinates (s, t) will lie in the region below the graph of fp(x) and above the 
interval [a, b] of the ж-axis.

Idea (ii) is exactly the same idea used to approximate % in Example 7.1.1: To 
sample uniformly from a region C, sample uniformly from a larger region and discard 
(reject) any sample that does not lie in C. See the right panel of Figure 7.4 for an 
illustration.

The two ideas are combined in the following way. If we know how to sample from 
a distribution Q with known p.d.f. /ф(ж) (call this the proposal distribution), and we 
want to sample instead from a distribution P (the target distribution) with known 
p.d.f. fp(x), we can do this if there exists an M such that Mfq(x) > fp(x) for all 
ж. In this case, the region in the plane bounded above by the curve у = Mfq(x) 
contains the region bounded above by the curve у = fp(x). In the right panel of 
Figure 7.4, the black curve is the graph of M/q, the blue curve is the graph of fp. 
Now draw z from the proposal distribution Q and и from Uniform(0, Mfq(z)). The 
point (z,u) corresponds to a uniform draw from the region in the plane below the
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Figure 7.4. Illustration of the two main ideas behind rejection sampling. The first 
idea, illustrated in the left panel, is that sampling from a distribution is equivalent to 
sampling uniformly (blue dots) from the region between the graph of the p.d.f and the 
x-axis and then projecting down to the x-axis (green diamonds). The second idea, 
illustrated in the right panel, is that sampling uniformly from one region (blue) can 
be accomplished by sampling uniformly from a larger region (gray and blue) and 
rejecting any samples (red dots) that do not lie inside the smaller region.

curve у = MfQ(x). If и < fp(z), then (z,u) lies inside the region bounded above 
by fp(x) and hence the first coordinate г is a draw from X; otherwise reject z and 
repeat the process.

One minor adjustment is usually made to this process: instead of drawing и 
from Uniform(0, Mfq(z)), it is traditional (and sometimes more efficient) to draw 
u from Uniform(0,1) and then use the acceptance rule u < • Combining all
these parts gives the rejection sampling algorithm:

(i) Choose M such that Mfq(x) > fp(x) for all x.

(ii) Draw z from Q and й from Uniform(0,1).

(iii) If u < MfQ(z) i then accept г as a draw from X; otherwise reject z and go 
back to (ii).

Remark 7.2.8. A given draw z has a probability of being accepted, and one 
can show that the expected number of draws from Q needed to get one acceptable 
draw from P is proportional to M. Thus, it is generally best to choose a Q for 
which we can find a small M satisfying fp(x) < Mfq(x) for all x, and it is best to 
take the smallest M that satisfies the condition.

Example 7.2.9. Let P be a truncated exponential distribution on [0, 20] with 
p.d.f. fp(x) = ^e~x, where Z = f^°e~xdx. Since e~x < 1 for all x > 
0, one possible choice of proposal distribution is the uniform distribution Q 
on [0,20] with M = 4^, so that fp(x) < Mfq(x) = for all x E [0,20]. 
To use the method with this proposal distribution, draw z from Q and й 
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from Uniform([0,1]) and reject any z whose corresponding и is greater than 
= e~z. Implementing this and drawing one million times, we find that 

roughly 950,000 proposals are rejected and only 50,000 are accepted.
We can improve the efficiency of this rejection sampler by choosing a pro­

posal distribution with a shape that is closer to that of the target. For example, 
it is easy to check that e~x < (1 + ж)-1 for all x 6 [0, oo), and (1 -Frr)-1 has a 
shape much more like that of e~x. Define a new proposal distribution R with

where W = = log(21). Setting M = we have

fp(x) < MfR(x)

for all x € [0, 20]. It is easy to sample from R using inversion sampling. We 
have

„ z 4 1 Г dt 1 z
TT7 = iv106,1+ l)

and
= eWv - 1.

So the rejection sampling algorithm in this case consists of drawing both и and 
v from Uniform([0,1]), letting z = eWv — 1, and rejecting z if и > =

Implementing this and drawing one million times, we find that roughly 
2/3 of the proposals are rejected and 1/3 are accepted—a better success rate 
than with the uniform proposal.

7.3 Hashing
Computers can determine whether two numbers are equal in just one clock cycle. 
The ability to make such a comparison is built into the hardware. To check whether 
two strings (or two other, more general objects) are the same, however, is a much 
more intricate process. For example, to naively compare whether “John A. Smith” 
and “John A. Smyth” are the same, we would successively compare each entry in 
the first string against its corresponding entry in the second string until either we 
find a difference or we run out of entries. With this example we could conclude on 
the 11th iteration that the strings are not the same. Whenever two strings are the 
same, or differ only in the last character, we must compare every single character 
to decide whether they are equal. In applications where many strings or lists are 
likely to be compared, a more efficient way to do this is to use hashing, that is, to 
use a function (called a hash function) that assigns an integer to each string. A 
computer can compare any two hash values in a single clock cycle, so this makes it 
easy to compare different strings (assuming the hash function is easy to compute).

A related problem is that of searching for a given object in an unordered list (or 
array of pointers) of length n. This has average temporal complexity O(n), because
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the expected number of entries to examine35 is + 1) = I?2^- Of course,

35This is assuming the location of the object is uniformly distributed over all the positions, and 
assuming the number of entries we must examine is i + 1, when the target is in position i.

if the data are sorted and stored in an ordered list or in a BST, then search time 
drops to O(log(n)). But there are ways to make this process much faster, based 
on the fact that accessing the zth entry in an array is a very fast, constant-time 
operation.

Again, the idea is to hash the data, that is, to use a hash function to assign an 
integer to each object, and then use the integer as the index of the object in an 
array. Thus, each object x is placed into entry number h(x) of the array, where h 
is the hash function. This construction is called a hash table. In this section we 
discuss hashing, hash tables, and related algorithms and applications.

7.3.1 Dictionaries and Sets
Hashing is used to implement some of the most useful and important abstract data 
types in computer science, including dictionaries and sets. A dictionary (also called 
an associative array or a map) consists of a collection of objects (often called values), 
each indexed by a unique key, with the following operations:

(i) Search for a given key, and return the corresponding value if the key exists.

(ii) Add a value to the dictionary, with its key.

(iii) Delete a value and its key.

For now we assume that keys are unique, and so, for a given key, adding another 
value with that same key overwrites the old value.

Dictionaries are useful any time you need to define a rule, or a mapping, from 
one set (the keys) to another (the values). For example, they can be used for storing 
computer usernames and passwords, where each username is a key and the user’s 
password is the associated value. They could be used to store prices of entrees in a 
restaurant menu, where the name of each entree is a key and the price of that entree 
is the associated value. They could be used to store hyphenation rules for English 
words, where the keys are the English words and the associated values are the 
hyphenation rules. They are also used in compilers and interpreters for matching 
variable names (keys) to their values and for countless other applications.

Example 7.3 .1. In Python a dictionary can be constructed with a sequence 
of pairs of the form key rvalue, as follows:

menu = { "ham":8, "spam":7, "lobster":42}

The dictionary name is menu; the keys are "ham", "spam", and "lobster"; and 
the corresponding values are the integers 8, 7, and 42, respectively. To search 
for the "spam" key, use menu ["spam"], which returns 7. Searching for "beans" 
raises a KeyError, since that key is not in the dictionary.
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A closely related data structure is that of a set, which is essentially the same 
idea as a mathematical set. It is a collection of elements without any order, and 
with the following fundamental operations:

(i) Identify whether an object is an element of the set.

(ii) Add a new element to the set.

(iii) Remove an element from the set.

Example 7.3 .2. In Python a set can be constructed as a sequence of elements 
inside of braces, as follows:

S = { "x", 42, 3.14 }

The set name is S and the elements are "x", 42, and 3.14. To identify whether 
the element 42 is in the set, use the command 42 in S, which returns True, 
whereas "spam" in S returns False.

7.3.2 Hash Tables
If the keys have an order on them, then a dictionary or a set can be implemented 
with a BST. But searching a BST takes log(n) time if there are n entries in the 
tree. We can do much better with a hash table. A hash table consists of two things:

(i) An integer-valued hash function h whose domain includes all keys.

(ii) An array (or a list) of size at least as big as the largest possible value of the 
hash function. The value associated with the key к is placed in position h(k) 
(or a pointer to the value is placed in that location).

Example 7.3.3. The menu dictionary of Example 7.3.1 can be implemented 
as a hash table by first defining a hash function on the collection of possible 
entree names. One simple example of a hash function is the function that 
assigns each letter its position in the alphabet and then adds up the values 
of all the letters in the word and reduces modulo 48 (the number 48 is an 
arbitrary choice), thus

Д("аЬс") = 0 + 14-2 = 3,
/i("ham") = 7 + 0 + 12 = 19,

^("lobster") = 11 + 14 + 1 + 18 + 19 + 4 + 17 = 84 = 36 (mod 48).

There are problems with this particular choice of hash function (we discuss 
some of these below). But despite its problems, we can use this hash function 
to define a hash table for the menu dictionary. To do this, begin by construct­
ing a list menu of length 48 with None in each entry. For each of the foods, put
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the associated price in the position given by the hash:

/i("ham") = 19

/z("spam") = 45

/i("lobster") = 36

so menu[19] = 8,

so menu [45] = 7,

so menu [36] = 42

All remaining entries of menu are left at None. To find the price of key ж, 
calculate its hash value h(x) and retrieve the value of menu[h(x)].

If the hash function can be computed in constant time for all the possible keys, 
and if all keys have unique hash values (the hash function is injective), then finding 
a value in the hash table can also be done in constant time, since accessing a known 
position in an array is a constant-time operation. Moreover, inserting a new value 
into the table involves computing the new key’s hash, and then putting the object 
into the table at the hashed position, so this is also a constant-time operation, as 
is removing a value from the table. No matter how big the table is, if the hash 
function is injective and can be computed in constant time, then we can perform 
any of the three hash table operations (search, insert, or remove) in constant time. 
Unfortunately, however, most hash functions are not injective.

7.3.3 Hash Collisions
If the hash function is not injective, then differing keys could produce the same 
hash value and thus also be assigned to the same position in the hash table. This 
is called a hash collision.

Unexample 7.3.4. For the simple hash table menu of Example 7.3.3, if we 
try to insert the pair "beans" :5 into the table, we get a hash collision because, 
Л("beans") = 36 = /z("lobster"). Therefore, this particular implementation 
of the menu dictionary cannot accommodate entries for both "lobster" and 
"beans" simultaneously.

An injective hash function will have no hash collisions, but to use such a function 
to construct a hash table in the obvious way with no hash collisions, the table must 
have at least as many entries as the collection (also called universe) of all possible 
keys.

Example 7.3.5. If we know that all keys will consist of three-letter words, 
we can construct an injective hash function h from the universe of three-letter 
strings by sending the first letter to its position in the alphabet, the second 
letter to 26 times its position, and the third to 262 times its position, and then 
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summing these three. This hash function gives

/i("abc") = 0 + 1 x 26 + 2 x 262 = 1378, 
ft("ham") = 7 + 0 x 26 + 12 x 262 = 8119, 
/i("egg") = 4 + 6x 26 + 6x 262 = 4216.

To build a collision-free hash table with this hash function, we must allocate 
an array with 17,576 entries (as many entries as the number of possible three- 
letter words) and assign each key к to the hashed position. Such a table is 
sometimes called a direct address table.

Of course this table is guaranteed to be collision free, but it is spatially 
expensive if the total number of keys to be used is much smaller than the 
universe of all possible keys (of size 17,576).

Remark 7.3.6. Some people call an injective hash function a perfect hash function.

Usually we do not know in advance which keys will be used or even how many 
keys will be used. Consequently, the universe of possible keys could be very large, 
and it is not practical to make a hash table that is as large as that universe. For 
example, the data might consist of strings of arbitrary length. In this case the 
universe of possible objects to hash is infinite, but we don’t want to make an infinite 
hash table. When the hash table is smaller than the universe of possible keys, an 
injective hash function is impossible.

The strategy for dealing with this is to go ahead and use a hash function that is 
not injective, but then expand the algorithm to handle a hash collision. The goal 
is to choose a hash function that minimizes the probability of a hash collision, and 
then handle the collisions as efficiently as possible.

Probability of a Hash Collision

When a hash function is not injective, hash collisions can occur. Assuming that the 
hash values are uniformly distributed among the possible indices in the hash table 
(we call such a hash function simply uniform), the probability of a hash collision 
can be computed in the same way we computed the probability of a birthday match 
in the birthday problem (Example 5.1.17). If the number of possible outputs of the 
hash function (and indices of the hash table) is n and the total number of keys is 
k, then following the argument of Example 5.1.17 shows that the probability P(k) 
of a hash collision is

= 1 “ (n-fc)!nfc’

provided 0 < к < n. If к > n, then P(k) = 1, by the pigeonhole principle.
The discussion of the birthday problem shows that if a hash table has n = 365 

possible entries, then the probability of a collision is 50% or more if к > 23. So 
even with a uniform distribution of hash values, collisions are likely with relatively 
few keys. Figure 7.5 shows the probability of a hash collision for к keys in a table 
of size 105.
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Figure 7.5. Plot of the probability P(k) of a hash collision for к keys with a 
simply uniform hash function whose values are uniformly distributed among n = 105 
possible values. Note that the probability is greater than 50% when к > 372, and it 
is greater than 99% for к > 1000.

With a 32-bit hash function there are over four billion possible hash values 
(232 — 1), yet the probability of a hash collision is more than 50% if the number of 
keys is at least 77,164 (see Exercise 7.15). Again, relatively speaking, it does not 
take a very large list of keys to cause a collision. Nevertheless, hashing is usually 
much more efficient than search trees or any other table lookup method. As a result, 
hashing is used widely throughout computer science.

Handling Hash Collisions

One common way to handle hash collisions is the method of chaining. In this 
method, each position in the array corresponds to a linked list, and when a new 
key is hashed to a given position, the key and corresponding value are placed at the 
head of the corresponding linked list.

Example 7.3.7. For a chained version of the menu hash table of Example 7.3.3 
and Unexample 7.3.4, if the table is to include both "beans" and "lobster", 
then at position 36 = h("beans") = h("lobster"), we insert a linked list 
whose tail contains the data "lobster" :42 and whose head contains the data 
"beans" :5. Searching for "lobster" now involves first hashing to get position 
36 and then searching the linked list to find the key "lobster".

In the worst case, chaining can perform very poorly. If all the keys are hashed 
to the same value, then every value is contained in one linked list. Both the average 
and the worst-case complexity of searching a linked list with к keys is O(k). If, 
however, the hash function is simply uniform, taking n possible values, then the 
expected number of keys in any of the linked lists is k/n, so the average complexity 
of searching such a chained hash table is 0(1 + k/n). The number k/n is often 
called the load factor of the hash table.

If the table has a fixed size n, then as к grows, we have 0(1 + k/n) = O(&); so 
the average asymptotic complexity of searching the table is the same as searching 
a linked list, but with a much better leading coefficient (by a factor of 1/n). It is 
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common practice to resize the hash table if the load factor grows too large. Often 
the bound on the load factor is taken to be less than 1. Once the load factor 
exceeds the bound, a new array is allocated with a larger number n' of positions, a 
new hash function is chosen which produces n' hash values, and all the entries in 
the old table are hashed with the new hash function and placed in the new table. 
The construction of the new hash table has a cost of О (A;), but it need only occur 
when k/n exceeds the desired bound.

Alternatively, if rehashing the entire table to construct a new, larger table is 
too expensive, one may choose simply to build a second hash table, make all new 
additions in the new table, and then search both tables for each lookup. This 
doubles the time it takes to perform each search (at least until ongoing deletions have 
removed all the elements from the original table) but does not require a complete 
rehash of the original table.

One other method for handling hash collisions is called open addressing. In 
this method, when a hash collision occurs, the algorithm searches for another open 
address in the table to put the key into. For example, one could search for the next 
available slot after the one addressed by the hash (modulo n). A drawback of open 
addressing is that you can never have к > n. As in the case of chained hash tables, 
if all the keys hash to the same value, then searching an open-address hash table is 
no better than searching a list.

Example 7.3.8. When using open addressing for the menu hash table of 
Example 7.3.3 and Unexample 7.3.4, we add the key "beans" to position 
37, since there is a collision with lobster at position 36 = Л("beans") = 
Л("lobster"). Searching for "beans" now involves first hashing to get po­
sition 36 and then moving consecutively through the array from that point 
until finding the desired key. Note that "cheddar" also hashes to 36, so if we 
wish to add "cheddar" to the menu, it cannot go into position 36 nor into 
position 37, so we put "cheddar" into position 38. The word "pate" hashes 
to 38 (treating e the same as e), but 38 has already been taken, so we put 
"pate" in position 39.

7.4 Simulated  Annealing*
A fundamental problem in mathematics and applications is to find the optimum 
(minimum or maximum) of a function and the optimizer (the point which yields 
the optimum). For concreteness, we consider the optimization problem

minimize /(x) 
subject to x E Q

(7-3)

for some function f and some set Q. This is equivalent to maximizing —/(x) subject 
to x E Q, so we lose nothing by focusing solely on minimization. Part IV of this 
text discusses many methods for finding local minima when the objective function 
f is differentiable. Chapter 4 discusses some deterministic methods for solving 
combinatorial optimization problems, where the search space Q is discrete, where 
differentiability doesn’t even make sense.
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In this section and the next we discuss some probabilistic methods for optimizing 
functions without differentiation. One obvious way to try to find an optimizer on 
a discrete space is the brute force exhaustive method; that is, try every possible 
input and see which one gives the best solution. The exhaustive method has the 
advantage of guaranteeing the correct solution, and it does not use differentiation, 
so it makes no assumptions about differentiability or smoothness, but it is usually 
too computationally expensive to be useful.

One way to try to find an optimizer without an assumption of differentiability 
and without trying every point in Q is a Monte Carlo method—sample Q randomly 
and return the sample that produced the smallest value of the objective function. 
This is potentially much cheaper than a brute force method, and if the sample is 
dense enough in Q, it should give a good approximation to the global optimizer. But 
random sampling does not take advantage of any information gained by previous 
samples. For example, it might be better to sample near the current best estimate, 
rather than choosing each point completely at random.

Simulated annealing and genetic algorithms are two methods that use some 
randomness in their sampling but are sometimes more effective than purely random 
sampling because they try to leverage information gained by previous samples in 
choosing new samples. We discuss simulated annealing in this section and genetic 
algorithms in the next section (Section 7.5).

Neither of these methods assumes differentiability, but they work best if the 
objective function is approximately continuous, in the sense that small changes in 
the input do not produce large changes in the output. If the output of the objective 
function changes wildly with even the smallest change in the inputs, then simulated 
annealing and genetic algorithms have no significant advantage over completely 
random sampling. Finally, we note that, like random sampling, simulated annealing 
and genetic algorithms provide no guarantee of finding the optimal solution, but 
they often find a solution that is not far from optimal, which, in many cases, is 
good enough.

7.4.1 Stochastic Hill Sliding
Before discussing simulated annealing and genetic algorithms, we begin with a more 
naive sampling method that is sometimes called stochastic hill climbing when the 
objective function is being maximized, but since we are minimizing the objective, 
we call it stochastic hill sliding. This is an iterative method for minimization:

(i) Set к = 0. Choose an initial xq 6 Q.

(ii) Draw a candidate from a neighborhood ЛГ(х^) of x^.

(iii) If /(zfc) < /(xfc), then set Xfc+i = z^; otherwise set Xfc+i = X&.

(iv) Set к = к + 1 and go to (ii) (unless some stopping criterion is met).

The choice of the neighborhood N(x) and the distribution used to draw from 
that neighborhood have a large effect on the final result of the algorithm. If AT(x) 
is always a small neighborhood of x, the method will tend toward a local minimum. 
However, if the neighborhood 7V(x) is large and the sampling method tends to 
choose points far away from x, then the algorithm is unlikely to be trapped near a 
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local minimizer, but it may also have to sample many more points to find a value 
that descends (/(z^) < /(x^)). If every neighborhood is the entire feasible set, 
and if the samples are drawn from the uniform distribution, then the stochastic 
hill-sliding algorithm is just random sampling.

Example 7.4 .1. Let f(x) = x4 — x2 + this is plotted in Figure 7.6. This 
function has two local minimizers: one near x = 0.681 and the other (the 
global minimizer) near x = —0.731. We implemented the stochastic hill­
sliding algorithm for minimizing this function, with xq = 0, and drawing each 
Zk from jY^Xk, |)- The result was as follows:

жюо = 0.680 /(xioo) = -0.181

xq = 0
XI = ZQ

X2 = Xi

/(x0)= о 
/(xi) = -0.006
/(x2) = -0.006

zq = -0.041 
zi = 0.133 
z2 = 0.331

/(zo)=
/(zi) = 
/(Z2)=

-0.006
-0.004
-0.0644

accept zq 
reject zi 
accept z2

x$ = 0.6886 /(x8) = -0.180 zs = 0.395 /(zs)= -0.0922 reject z%

The algorithm arrived at an answer fairly near the positive local minimizer in 
8 steps. But it still had not reached the global minimizer after 100 steps.

We repeated the process with a larger neighborhood, by choosing Zk from 
1), again starting at Xq = 0. In the first move it went to xi = 0.759 

and remained there for 10 steps, after which it moved to —0.828 for 19 steps. 
Then it moved to —0.706, where it remained until step 100.

Figure 7.6. A plot of the function minimized in Examples 7-4-1 and 7.4-4- Starting 
stochastic hill sliding at xo = 0 and drawing each new candidate with a low variance 
(a2 = ±) in Example 7.4-1 leads us to the positive local minimizer (on the right), 
but we never approach the global minimizer (on the left). Starting at the same place 
but drawing with a higher variance (a2 = 1) allowed us to escape from the local 
minimizer on the right and get near the global minimizer on the left. But, because 
of the high variance, our experiment never got better than —0.706, while the global 
minimizer is actually at —0.731. Simulated annealing in Example 7-4-4 did better: 
starting at xq = 0 it got in the ballpark of the global minimum (x\% = —0.680,) in 
13 steps and was very close (x^q = —0.730,) after 100 steps.



7.4. *Simulated Annealing 303

Example 7.4 .2. Consider the problem of finding the MST for the graph G 
in Figure 4.5 and Example 4.3.1, which we include here again for ease of 
reference:

Of course, Prim’s algorithm (see Section 4.3.1) gives a deterministic method 
for finding an MST, but we can also apply the stochastic hill-sliding algorithm. 
Let Q be the set of all spanning trees in G. We let a neighborhood of a given 
spanning tree T be the set of all spanning trees of G that can be built from 
T by deleting one edge and inserting one edge. So, for example, if 7q is the 
spanning tree

then deleting the edge (1,8) and adding the edge (1,2) shows that the resulting 
spanning tree 7i

is in the neighborhood of Tq. The objective function is the length of the 
spanning tree. The hill-sliding algorithm is now straightforward: Given any 
spanning tree Tk randomly select a tree in the neighborhood of by selecting 
a node, an edge from that node to remove, and an edge from that node to 
add. If the result is not a tree, reject it and try again. If the result is a tree, 
compute its length. If the length is not less than the length of Т/~, reject and 
try again.

Starting with Tq, which has length 96, assume the new tree 7i (above) is 
randomly selected as a proposal. Since an edge of length 13 has been replaced 
by an edge of length 12, it has length 95, and it is accepted as the new spanning 
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tree. At the next step, suppose the edge (1,2) is chosen to be replaced by the 
edge (1,4), giving

The result is a spanning tree, but it has length 99, which is longer, so it 
is rejected. Repeating the process, now suppose edge (7,8) is chosen to be 
replaced by edge (1,8), giving the spanning tree

which has length 94, so the proposed tree is accepted. The process is repeated 
until some maximum number of iterations has been reached or until it appears 
that the proposed solution is no longer improving.

In this example there is no guarantee that every possible spanning tree 
can be reached by this process of swapping edges. So it is possible that an 
MST could not be reached if the initial starting tree was poorly (or unluckily) 
chosen.

7.4.2 Simulated Annealing
Simulated annealing differs from stochastic hill sliding by sometimes allowing Zfc+i 
to be accepted even if /(zfc+i) > /(x^). In Example 7.4.1 using larger neighbor­
hoods for stochastic hill sliding allowed the algorithm to probe farther away, but 
most of those probes were unsuccessful and the algorithm did not converge well. 
On the other hand, using small neighborhoods meant that the algorithm could 
not probe far enough away to break away from the local minimizer, but many 
of the probes did improve the result, so it converged to a good approximation of 
the local minimizer. The idea with simulated annealing is to begin by sampling 
from Q fairly broadly, by allowing more uphill moves, but as time goes on, fo­
cus near the current estimate and only accept a proposal if the result is actually 
an improvement.

Specifically, choose a monotone decreasing sequence (tfc)fceN that converges to 
zero (corresponding to temperature in the annealing process). This is called the
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* = 2

Figure 7.7. Simulated annealing might accept a even when f(zk) > /(x/J. This 
figure shows a plot of the acceptance probabilities (7.4), where the x-axis in the plot 
corresponds to the difference /(z^) — /(x^). As tk gets smaller, the values of zfc 
with f(zk) > /(xfc) are less and less likely to be chosen.

cooling schedule or annealing schedule. For each к e N let

Pfc(/(xfc), /(zfe)) = min (1, exp I. (7.4)
I \ J)

Now replace step (iii), above, with the following rule:

(iii) With probability p/c(J(x/c),/(z^)), set x^+i = z^. Otherwise, set x^+i = x^.

Note that pk = 1 whenever /(z^) < /(x^), and thus Zk is always accepted in that 
case. When /(z^) > /(х&), there is still some probability that zfc will be accepted, 
but that probability goes down as f(zk) — f(^k) increases and as tk decreases; see 
Figure 7.7 for a plot of some of these probabilities.

As the temperature tk becomes very small, the sequence (x/c)^1 will usually 
converge to a local minimizer. But this is not guaranteed to be a global minimizer, 
and it might not even be the best value seen by the algorithm. Thus, it is usually a 
good idea to remember the point with the best value seen so far. As the temperature 
decreases, it sometimes also makes sense to occasionally restart the algorithm with 
the best value seen so far.

Remark 7.4.3. One easy way to implement the rule of accepting z^ with prob­
ability pfc(/(xfc),/(zfc)) is the following: draw и from the uniform distribution on 
[0,1] and then accept Zk if и < pk(ffx.kfi /(z^)).
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Example 7.4.4. Let f(x) = ж4 — x2 + as in Example 7.4.1, and plotted in 
Figure 7.6. We implemented the simulated annealing algorithm for minimizing 
this function, with tk = 10/(к + I)2’5, starting at xq = 0, and drawing each 
Zk from сЖ(ж/с,0.5). The result was as follows:

#ioo = —0.730 /(^loo) = —0.322

xq = 0.000 ЛМ = --0.003 ZQ = 0.122 /(zo) = ■-0.003 P = 1.00 accept
xi = 0.122 flxl) = --0.121 Z! = 0.460 /(zi) = ■-0.121 P = 1.00 accept
X2 — 0.460 /Ы = --0.108 z2 = 0.430 /(22) = ■-0.108 P = 0.98 accept

Ж13 = —0.680 Л®1з) = -0.317 Z13 = -0.535 /(Z13) = -0.258 P = 0.03 reject
a?i4 = —0.680 №14) = -0.320 z14 = -0.757 /(Z14) = -0.320 P = 1.00 accept

The algorithm was in the ballpark of the global minimizer by step 13, and by 
step 100 it was close to the global minimizer of —0.731.

The results of simulated annealing depend a lot on the choice of the cooling 
schedule A slower cooling schedule, such as tk = 10/(A: +1), will leave
the algorithm bouncing around quite a bit, so it behaves more like a random 
sampler. A fast cooling schedule, such as = 10/(A;+l)4, will tend to converge 
rapidly to the local minimizer at 0.681 and never see the global minimizer.

Remark 7.4.5. The sequence pk need not be defined by (7.4)—other choices of 
Pk can be useful in some settings. The key requirement is that the probability of 
accepting Zk should decrease both as к increases and as /(z^) — /(x^) increases.

Example 7.4.6. Simulated annealing can also be used on the problem of 
finding the MST for the graph G of Example 7.4.2. As in that example, let Q 
be the set of all spanning trees in G; let the neighborhood of a given spanning 
tree T be the set of all spanning trees of G that can be built from T by deleting 
one edge and inserting one edge; and let the objective function be the length 
^(T1) of the spanning tree T.

As in the hill-sliding algorithm, given any spanning tree 7&, the algorithm 
randomly selects a new spanning tree Zk in the neighborhood of Tk, com­
putes its length £(zk)i and accepts Zk as the next tree Tk+i with probability 
Pk(zk,Tk). Otherwise it sets Tk+i = Tk.

As an explicit example, assume the cooling schedule is tk = and start 
again with To,
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which has length £ = 96. Assume the new tree zq

is randomly selected as a proposal. Since an edge of length 13 has been 
replaced by an edge of length 14, it has length 97, so po(/o, To) = exp(—(97 — 
96)) = e-1 ~ 0.368. Thus the algorithm has a 37% chance of accepting zq 
as the next spanning tree, despite the fact that its length is greater than To. 
Assuming that zq is accepted, we have Ti = zq. Assume that the spanning 
tree zy

is proposed for the next step. The length of z\ is 98, but it could still be 
accepted with probability p1(^i,Ti) = exp(—2(98 — 97)) = e-2 « 0.135. This 
process is repeated until some maximum number of iterations has been reached 
or until it appears that the algorithm has converged.

As in the case of stochastic hill sliding, there is no guarantee that every 
possible spanning tree can be reached by this process.

Remark 7.4.7. If it is known that the objective has only one local minimum, which 
is also the global minimum, then stochastic hill sliding is probably a more efficient 
search method than simulated annealing. But if there are likely to be many local 
minima that are not global minima, then stochastic hill sliding can easily get stuck 
near a local minimum, while simulated annealing has a better chance of avoiding 
that trap.

7.5 *Genetic  Algorithms
Genetic algorithms are the third best way to do almost anything.
—John Denker

Genetic algorithms provide another stochastic method for optimization on some 
discrete domains. Rather than choosing sample points from a neighborhood of 
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one previous sample point, they use an idea inspired by genetics to construct new 
samples from a collection (the current population) of several previous points. They 
are applied to domains where every point can be described as a finite sequence of 
symbols, analogous to DNA in genetics.

At each iteration (generation) some members of the population are paired as 
parents to produce children that should have characteristics of each of the parents. 
These children are added to the population, and some less fit individuals are selected 
out of the population.

There are three main ingredients in a genetic algorithm:

(i) Crossover: children that are a mixture of their parents.

(ii) Mutation: random variation in the genetic information.

(iii) Selection: elimination of inferior species.

Genetic algorithms that incorporate all three of these tend to be more successful 
than those that omit one or two of them.

7.5.1 Crossover
Given two points (parents) from the current population, crossover produces two new 
points (children) that are a mixture of their parents. If each parent is represented 
by a string of length n, a random point к is chosen and two children are created 
by taking the first к terms of one parent and the remaining n — к terms of the 
other.

Example 7.5 .1. If two parents are described as the 8-bit sequences

01101110 and 10111101

and к = 4, then the two children resulting from crossover are a mix of the 
parents, taking the first four digits from one parent and swapping them with 
the last four from the other parent.

01101101 and 10111110.

It is not essential that two parents produce exactly two children—they may produce 
any number through mixing their sequences in some prescribed manner.

7.5.2 Mutation
With mutation, terms in the sequence can occasionally be changed at random to 
allow for greater diversity in the population and thus allow the algorithm to sample 
the domain more broadly.
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Example 7.5 .2. Assume the domain consists of strings of five binary digits 
and the current population is

01010, 11101 11111, 10010.

If the second bit of the third 
generation would be

child is chosen to be mutated, then the new

01010, 11101 10111, 10010.

7.5.3 Selection
To prevent the population from growing too large, one could simply replace all 
parents by their children after each generation, but it is usually helpful to remove 
less fit individuals from the population. This is called selection.

With each generation, each individual in the population is evaluated in terms 
of the objective function and those that have a better objective function value are 
considered more fit. A successful genetic algorithm normally includes some sort of 
selection method to remove less fit candidates from the gene pool and to increase 
the likelihood that a fit candidate will mate with another fit candidate.

Example 7.5 .3. Suppose that the domain of an optimization problem is Q = 
{0,1, 2,..., 31} and we want to maximize the function f(x) = (x — 15)2.

Representing each point as a sequence of five binary numbers provides a 
binary encoding.a

Suppose that the initial population is 13,27, 30,17, encoded as

01101, 11011 11110, 10001.

The fitness of these individuals is given by the objective function /:

(—2)2 = 4, 122 = 144, 152 = 225, 22 = 4.

Suppose we choose to pair the most fit individual 11110 with the second most 
fit 11011 and also with 10001, and we randomly choose crossover points for 
each pair. Suppose the first crossover point is 3 and the second is 2. This 
generates the following children:

11111, 11010 11001, 10010.

Mutation now randomly chooses a few bits to change. Suppose the second bit 
of the first child is chosen and the first bit of the fourth child is chosen, to give

10111, 11010 11001, 00010.
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So, starting with 13, 27,30,17, we applied selection, then crossover and finally 
mutation to get the children 23, 26, 25, 2. To avoid doubling the population at 
each step we can either replace all the parents by their children (remembering 
also that the point 11110 is the most fit individual seen so far), or we can 
select the four most fit individuals to keep, discarding the others.

“Both this problem and the binary encoding are ill suited for a genetic algorithm. Never­
theless, this simple example gives a good illustration of some of the main ideas of genetic 
algorithms.

GENETIC ALGORITHMS TiP:
/fo/AYS INOWETHIS IN Y0UR FITNESS FUNCTION

Figure 7.8. In a genetic algorithm individuals are selected based on their fitness.
Source: XKCD, Randall Munroe, http: //xkcd. com/53^.

7.5.4 Encoding
Typically the domain of an optimization problem is not given in the form of a 
set of sequences. So we need some sort of genetic encoding that represents each 
possible optimal point as a sequence and each sequence as a legitimate point in the 
domain Q.

For example, if the domain has (or can be endowed with) a natural binary tree 
structure, then a suitable encoding might be binary, where each binary address 
represents a terminal branch of a tree. Or if the domain corresponds to corners 
of a hypercube, then a possible encoding might represent each corner as a binary 
address.

It is also important that the encoding reflect meaningful aspects of the problem. 
The types of variation in the encoding that occur with each new generation should 
also correspond to children that have some characteristics in common with the 
parents. In other words, genetic changes seen in just one or two generations should 
not produce large changes in the objective function.

It is not essential that every point in the domain be represented by the encoding, 
provided the points that are left out are guaranteed not to be optimal.
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Example 7.5.4. Suppose you are asked to put all the integers from 1 up to 
n into two sets, call them A and B, in such a way that 10 times the sum 
of the numbers in A is as close as possible to the product of the numbers 
in B. To encode the sets as sequences for use with a genetic algorithm, we 
can write each choice of sets as a binary sequence of length n, where the A;th 
term of the sequence is 1 if the number к is included in A and 0 otherwise. 
Thus [1,1,1,0,1,0,0,1] corresponds to the two sets A = {1,2,3,5,8} and 
В = {4,6,7}.

Example 7.5.5. The eight queens problem is to place eight queens on a stan­
dard chessboard in such a way that no queen threatens another. To try to 
solve this using a genetic algorithm, we must choose an objective function 
and find an encoding of all the possible configurations. A natural choice 
of objective function is the number of pairs of queens that threaten each 
other.

One way to encode the configurations as sequences is to first restrict the 
domain by assuming that no two queens will be placed in the same column 
(otherwise they would be threatening each other) and then observe that every 
column must contain exactly one queen (because there are eight of them placed 
in eight columns). Now encode a configuration by listing the position of the 
queen in each column. So, for example, the configuration

would be encoded as [1, 2,8, 7,4,3,6,5]. To compute the objective function f 
we must identify threatening pairs. In a configuration coded as a list L, queens 
in a pair (corresponding to two positions i and j in L) threaten each other 
if they lie in the same row (L[z] = В [J]) or if they are on the same diagonal
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If the domain consists of integers or floating-point numbers and the objective 
function depends on the input values, then the usual binary (or decimal) representa­
tion of these numbers is usually a poor choice of encoding, and a genetic algorithm 
is unlikely to successfully combine two good points to produce another good point. 
This is because changing even a single bit of the representation can result in a 
huge change in the value of the represented number and hence of the objective 
function.

Unexample 7.5.6. As in Example 7.5.3, suppose that the domain is

Q = {0,1,2,..., 31}

and we want to maximize the function /(#) = (x — 15)2. Representing each 
point as a sequence of five binary numbers provides an encoding, but this 
encoding, and indeed the entire problem, is poorly suited to genetic algorithms, 
because the types of changes that occur are not likely to produce offspring that 
are at all like the parents.

For example, suppose that we have an initial population of two individuals

00000, 11110.

The objective function at these points takes the values (—15)2 and 152, so 
both are very fit. To create the next generation, choose a crossover point— 
say 2—for the pairing, and combine the two parents at that point. This gives 
a new population

00110, 11000

with objective function values (—9)2 and 92. Neither of the offspring is any­
where near as fit as the parents. The problem is that crossover of the binary 
representations has no real meaning in terms of the objective function. In a 
situation like this, a genetic algorithm is usually a poor choice, and simulated 
annealing (and possibly even a Monte Carlo method) would probably perform 
much better.
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7.5.5 Adjusting Crossover and Mutation
For some encodings the crossover and mutation operations described in Sections 7.5.1 
and 7.5.2 do not result in valid children. In these situations the operations must be 
adjusted.

Example 7.5.7. In the traveling salesman problem (see Section 4.5.2), if the 
n cities to be visited are labeled 1 through n, then we can encode a tour simply 
as a permutation of these n integers. Thus [3,1,2] corresponds to first visiting 
city 3, then city 1, and finally city 2. But using this encoding, both crossover 
and mutation fail to produce valid tours, if they are done as described in 
Sections 7.5.1 and 7.5.2.

Instead, we define a mutation by taking a random pair of indices (i,j) 
with i j and swap the positions of the corresponding cities. This produces 
a legitimate tour. For example, if the original tour is [5,4, 3, 2,1,0] and the 
indices chosen at random are 0 and 3, then the new tour is [2,4, 3, 5,1, 0].

To perform a crossover between tours T and 71', choose a random value 
/с, as in the usual crossover, and start the child with the first к terms of T. 
The remaining cities are then put into the child tour in the same order that 
they appear in T'. For example, if T = [5,4,3,2,1,0] and T' = [1,2, 5,3,0,4], 
with к = 3, then the child is [5,4, 3,1, 2, 0]. Both the modified mutation and 
the modified crossover operation clearly produce legitimate tours if they begin 
with legitimate tours.

7.5.6 Additional Considerations

Stopping Criteria

Stopping criteria for genetic algorithms depend on the problem. In some cases we 
may know that the objective is nonnegative (as in the eight queens problem), and 
so when the algorithm gets to an input that yields 0, it must be a global minimizer. 
But in many cases we have no way to identify that we have actually found the 
optimizer. In these cases the algorithm must continue generating populations for 
some fixed number of generations, always remembering what the best candidate is 
so far. Alternatively, the algorithm could run until a feasible point is found that 
meets some standard of quality—for example, the objective function falls below 
some predetermined threshold.

Other Methods

The quote at the beginning of this section, that “genetic algorithms are the third 
best way to do almost anything,” reflects the fact that genetic algorithms can be 
used to produce a passable solution for many problems, but for a given problem, 
there are often other (usually more specialized) methods that work better.
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Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

7.1. Let X = Z2, where Z ~ Лф,1) is standard normal. The random variable 
X has a chi-squared distribution with 1 degree of freedom. For each of the 
following problems calculate the answer in the following two ways:
(A) Using Monte Carlo methods, sampling from a standard normal distri­

bution, and taking the number of samples equal to 10fe for each value of 
к = 2,4,6.

(В) Using the appropriate built-in functions from your preferred computa­
tional tool.

Compare the results of the various computations.
(i) Plot the p.d.f. of the random variable X (experiment to find a good 

number of bins for your histogram).
(ii) Compute the c.d.f. Fx(x) for x e {0.5,1.0,1.5}.

(iii) Compute the expected value E[X].
(iv) Compute the variance Var(X).

7.2. Write code to approximate 7Г using the Monte Carlo methods in the reading, 
by sampling pairs from the uniform distribution on [—1,1] x [—1,1] and count­
ing the proportion that lie inside the circle x2 + y2 < 1. Sample 10fc times 
for к G {2,4,6} and compare the results to the true value of 7Г. Calculate the 
(approximate) standard error for each of these estimates.

7.3. There are at least two different Monte Carlo methods you could use to ap­
proximate the area under the curve у = ecos^ ) for x G [0,2].

(i) Estimate the integral
z»2 z»2
I /г(ж) dx = 2 I /i(^)/uniform([0,2]) (*^) = 2E[/i о A]

JO JO

by approximating Е[Л о X], with sampling from Uniform([0,2]) at least 
105 times. What is the (approximate value of the) standard error?

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter. * (i)
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(ii) Estimate the area under the curve by taking a 2d-sample

Z ~ Uniform([0, 2]) x Uniform([0, b])

for some b with b > max^^]} ecos^2^ and then count (and scale ap­
propriately) the samples that lie under the curve. This corresponds to 
estimating a multiple of E[k о Z], where к = 1a and A = {(x,y) | 0 < 
у < ecos(x )}. Sample at least 5 x 104 times. What is the (approximate 
value of the) standard error?

Compare the results of the two methods.
7.4. Use Monte Carlo methods to estimate the probability that a sample from 

Beta(2,5) will be less than a sample from Beta(20,55). How many samples 
are required to give 95% confidence that your answer is correct to three 
decimal places?

7.5. Consider a game where you roll a fair four-sided die with sides labeled 1, 2, 
3, and 4. You win $1 if the die shows 1 or 2, you win $2 if the die shows 3, 
and you lose $1 if the die shows 4. Use Monte Carlo simulation methods to 
estimate the probability that your winnings will be negative after 10 rolls of 
the die. Justify your choice of the number of samples to use.

7.6. Sampling from the standard normal distribution 105 times, calculate a Monte 
Carlo estimate of the value of e~^~ dx, and estimate the standard error. 
Repeat the problem, sampling instead from c/K(3,1), as in (7.2).

7.7. Use importance sampling, drawing from Beta(u, 6) for various values of a and 
6, to estimate the integral жз_^+1. Find values of a and b and sample 
size n that will give a standard error less than 10-3.
Hint: The domain of Beta(u, b) is [0,1], but the integral is to be evaluated 
over [0, 2tt] , so you’ll need to do a change of variables to be able to calculate 
this with samples from Beta(u, 6).

7.8. The c.d.f. of the exponential distribution Gamma(l, A) is F(x) = 1 — e~Xx.
(i) Show that the inverse is F~r(y) = — los(i~?d.

(ii) Prove that if Y ~ Uniform(0,1), then 1 — Y ~ Uniform(0,1).
(iii) Thus, a draw from the exponential distribution can be constructed by 

drawing и from Uniform(0,1) and computing — . Write code to
implement this, and use your code to draw 105 times from Gammafl, 2). 
Plot a normed histogram of your results, and, on the same graph, plot 
the p.d.f. of the exponential distribution for comparison.

7.9. The logistic distribution has p.d.f. f(x) = and c.d.f. F(x) = 1+^-ж.

(i) Compute the inverse of F.
(ii) Code up the inversion sampling algorithm to sample from the logistic 

distribution, and use your code to draw from the logistic distribution 
105 times. Plot a normed histogram of your results, and on the same 
graph plot the p.d.f. of the logistic distribution for comparison.

(iii) Using your sample, estimate the mean and variance of the distribution.
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7.10. Code up a method for estimating the volume of the unit ball in d-dimensional 
space using rejection sampling. Compute estimates for these values for d e 
{1,..., 10} using enough samples to get a standard error less than 10-2.

7.11. Let P be a distribution on [0, oo) with p.d.f. equal to fp(x) = ^e~x2~x3 for 
some constant Z > 0 (the constant is Z = e~x^~x3 dx). Use rejection
sampling with proposal distribution Q ~ Gamma(l,l) to sample from this 
distribution as follows:

(i) Find the smallest m for which e~x2~x^ < me~x.
(ii) Find the smallest M (expressed in terms of m and Z) for which fp(x) < 

MfQ(x) for all x e [0,oo). Show that the quantity can
computed without knowing Z.

(iii) Code up a rejection sampler that draws z from Gamma(l,l) (using 
either the sampler you wrote for Exercise 7.8 or another sampler), draws 
и from Uniform([0,1]), and rejects any z such that the corresponding и 
is greater than .

(iv) Use your sampling method to draw 105 times from F, and plot a normed 
histogram of the results, along with a plot of the p.d.f. fp(x) (this last 
plot will require you to approximate Z).

7.12. Insert the sequence of keys F О R G I V E, in that order, into an initially 
empty hash table using chaining with linked lists. Assume the table consists 
of n = 4 linked lists, and use the hash function that maps the J th letter in 
the alphabet to 3J (mod ri). Start counting at 0, so, for example, hash (A) 
= 3 ♦ О X 4 = 0 and hash(B) = 3  1 % 4 = 3. Give the contents of the 
table at each step.

*

7.13. Let S be the set consisting of all 10 digits and all upper- and lowercase 
letters. Let U be the set of all (ordered) strings consisting of exactly four 
elements from S. Construct an injective hash function h : U —> N with 
the smallest possible value of max[/ h(u). Modify your hash function to give 
a simply uniform map hf to the set {0,..., 30}. In other words, if U is a 
probability space with F(u) = F(u') for all u, u' e U, then the random 
variable h! :U —> {0,..., 30} should have a uniform distribution.

7.14. Hashing is important for computer security. Rather than store passwords in a 
file, many systems only store hashed passwords. To check if a user has entered 
a correct password, the system hashes the entered password and compares it 
to the hashed password in the file. This makes checking the password easy, 
but it can also make the password file more secure.

(i) Assuming the hash function is easy to evaluate but hard to invert, if you 
had access to the entire file of hashed passwords, how could you try to 
find a password to break into the system?

(ii) Assuming the number of possible hash values is much larger than the 
universe of possible passwords, that the hash function can be evaluated 
in constant time, and that the hash function is injective, what is the 
temporal complexity of your password search, as a function of the size 
К of the universe of all possible passwords?
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(iii) Calculate the complexity of the search if passwords consist of only lower­
case letters and are only six characters long. Compare this to the com­
plexity if passwords are eight characters long and may include both 
upper- and lowercase letters, as well as digits (but no special charac­
ters).

7.15. Prove that the probability of a hash collision with a simply uniform 32-bit 
hash function is at least 50% if the number of keys is at least 77,164. Hint: 
Naive application of the obvious formula will probably not work (why not?).

7.16. Let S be a finite set (the universe of possible keys for a hash table) of size 
A, and assume that all keys in S are equally likely. Thus any hash function 
h : S —> {0,..., n — 1} is a random variable with a discrete distribution

gh(x) = P(h(s) = x) = -l|{s € S | /i(s) = x}|.

(i) Prove that if two keys are chosen at random (uniformly in S'), the prob­
ability Р/г (2) of a hash collision is

Ph(2) = 1-^2 52 9h(x1)gh(x2) = ^gh(x)2.
Xi—0x2^X1 x—Q

(ii)*  prove that P^(2) is minimized when h is simply uniform (that is, 
gh(x) = for all x), Hint: You can either use Lagrange multipliers 
to account for the constraint J2^Zq^(j:) = 1 or use the constraint to 
solve for дь(п — 1) in terms of each of the other values of gh(x) and then 
find where the gradient of Ph (2) (as a function of the values of Ph(^) for 
x e {0,..., n — 2}) vanishes.

7.17. Implement the stochastic hill-sliding algorithm on Q = R, where at stage к 
the proposal Zk is drawn from ^Ж(хк, cr2). Your code should accept an initial 
guess xq, a callable function /, the variance cr2, and an integer n. At each 
stage it should draw Zk from e/K(a?fc, cr2) and accept it only if f(zk) < ki­
lt should terminate after n iterations and return its best estimate xn of the 
minimizer. For each choice of ст2 e {2-3,2-2,2-1, 2°, 21}, apply your code to 
the function f in Example 7.4.1, starting at xq = 0, and running for n = 100 
steps. Plot the value of f(xk) as a function of k. Compare the results. 
Explain.

7.18. Implement simulated annealing on = R, where at stage к the proposal Zk 
is drawn from ^Ж(хк, сг2). Your code should accept an initial guess xQl a 
callable function /, the variance cr2, an integer n, and a monotone decreasing 
cooling schedule (A)fceN defined as a function of k. At each stage it should 
draw Zk from jK(xk, cr2) and accept Zk with probability pk(zk, Xk}- It should 
terminate after n iterations and return its best estimate of the minimizer 
(not necessarily the final point xn). For each of the cooling schedules tk = 
10/(A; + 1), tk — 10/(fc + l)2, tk = 10/(fc + l)3, and tk = 2_(fe+1\ apply your 
code to the function f in Example 7.4.1, with cr2 = |, starting at xq = 0, 
and running for n = 100 steps. Plot the value of f(xk) as a function of k.
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Compare the results for the different cooling schedules to each other and to 
the results of the previous problem. Explain.

7.19. Adapt your code from the previous problem to work in R2 and use it to find 
the global minimizer of the function

f(x, y) = exp (sin (50#)) + sin (GOe27) + sin (70 sin x) + sin (sin (80?/))

- sin (10 (x + y)) + (x2 + y2).

Hint: The current best-known estimate of the minimum value is —3.3068686.
7.20. Implement the stochastic hill-sliding algorithm for solving the TSP (see Sec­

tion 4.5.2) in the plane. Assuming that the distance between any two cities 
is the Euclidean distance

d = У(Ж2 - Ж1)2 + (y2 - У1)2.

Your code should accept an integer n, representing the maximum number of 
iterations, and a list L = [(ж0, ?/o)5 • • •, (#n, Уп)] of ordered pairs, representing 
Cartesian coordinates of the city locations in the plane, listed in the current 
order that the cities will be visited, assuming the traveler’s home is located at 
the point (жо,?/о)- Given one route (list of cities), construct a new proposed 
route by choosing a pair of indices at random and swapping the position 
of the two cities at those indices. Your code should return a list corresponding 
to the route that minimizes the total distance traveled. Hint: Remember that 
the traveler must also return home at the end of the trip.
Use your code to find the best route you can for a list of 15 pairs of random 
integers drawn uniformly from {—20, —19,..., 19,20}. Let the code run until 
it stops improving. Plot the cities, the initial route, and the final route.

7.21. Modify your code in the previous problem to implement the simulated an­
nealing algorithm for solving the TSP (see Section 4.5.2) in the plane. (In 
addition to the inputs from the previous problem, your code should also ac­
cept a cooling schedule (ffc)fcGN, represented as a function of k.) 
Apply your code to the same list used in the previous problem. Plot the 
cities, the initial route, and the final route. Compare the results and the 
number of steps it takes to converge for a variety of cooling schedules.

7.22. Consider a genetic algorithm on binary sequences of length 4 that allows 
only crossover, but never mutation or selection (so the population grows 
at every generation). Give a population of two individuals from which it 
would not be possible for the algorithm to generate all possible length-4 
binary sequences; that is, no matter how long the algorithm runs and no 
matter which choices of к are chosen at each step, no amount of crossover (as 
described in Section 7.5.1) could ever generate all of the 16 possible sequences. 
Are there two individuals from whom all the sequences could be generated? 
Prove or disprove.

7.23. Describe the primary benefits and disadvantages of having a very large pop­
ulation or a very small population in each generation. What if there is a 
very large population, but only the fittest individuals in that population are 
allowed to cross?
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7.24. Implement the genetic algorithm described in Example 7.5.3 to maximize the 
function f(x) = (x — 15)2 on the domain Q = {0,1,2,..., 31}. Show the 
population and the value of the objective f on the most fit individual after 
each generation.

7.25. Implement the genetic algorithm described in Example 7.5.5, starting with 
a population of four configurations. At each generation cross the two most 
fit individuals and also the most fit individual with one (randomly selected) 
of the two remaining individuals, resulting in four new children for a total 
of eight individuals. Then perform random mutation on one of the eight. 
Finally, evaluate all eight for fitness and keep only the four best to start the 
next generation. Use your code to solve the eight queens problem. Show the 
results of each generation and the value of the objective function for the most 
fit individual in each population.

7.26. Implement a genetic algorithm for solving the TSP in the plane using the 
encoding, mutation, and crossover operations described in Example 7.5.7. 
Apply your code to the same list of cities used in Exercise 7.21 and compare 
the results, as well as the speed of convergence.

Notes
Sections 7.1 and 7.2 are inspired in part by [BH15] and [Was04]. For more on 
importance sampling, see [Was04, Section 25.3]. Exercise 7.4 and Exercise 7.5 are 
inspired by [Kurl5]. We are grateful to Chris Grant for showing us a slick way to 
compute the exact solution of the problem in Example 7.1.3 using a nice symmetry 
argument.

A more complete version of John Denker’s quote, as cited in [RN03], is “Neural 
networks are the second best way to do almost anything, and genetic algorithms 
are the third.”
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Approximation





Harmonic Analysis

If you want to find the secrets of the universe, think in terms of energy, frequency, 
and vibration.
—Nikola Tesla

The field of harmonic analysis is concerned with both the representation and the 
approximation of functions, including signals36 and images, as linear combinations 
of basic waves. In this chapter we consider two branches of harmonic analysis 
corresponding to two different classes of “basic waves.” The first comes from the 
class of trigonometric functions (sines and cosines) and is called Fourier analysis. 
The second deals with self-similar waves and is called wavelet analysis.

36 In many quantitative disciplines a signal is a function that contains information about the 
behavior or attributes of some phenomenon. In this text, when we say signal we mean a 
function that depends on time.

Fourier analysis shows how to represent, or closely approximate, most well- 
behaved functions as sums of trigonometric functions with varying frequencies and 
amplitudes. This allows us to decompose a signal into different frequencies and 
analyze the contribution of each frequency toward a given signal. The net result is 
a powerful set of tools that can be used in myriad applications.

For example, wireless communication relies on the ability to isolate and extract 
the part of a transmitted signal corresponding to a specific frequency or narrow 
band of frequencies. The electromagnetic spectrum includes signals of all frequencies 
from the various wireless devices that transmit and receive information, both across 
the world and throughout space and time, as well as interference from the sun, 
microwave ovens, and other sources of radiation. The superposition principle states 
that when waves of differing frequencies travel through the same medium at the 
same time, the net displacement of the medium at any point in space or time is the 
sum of the individual wave displacements. Or, said more simply, the resulting wave 
is just a sum of the individual frequencies. This is what allows a cell phone to pick 
up a broad range of signals from countless sources of electromagnetic energy and 
filter out all the frequencies except those specific to the cell tower. Fourier analysis 
is the mathematical tool that allows the design and optimization of the algorithms 
and circuits used to filter out all the undesired frequencies.

323
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More generally, the field of signal processing deals with taking readings that 
come from various electronic devices or sensors (known as the signal), and separat­
ing out and analyzing the desired part of that signal from the undesired part (called 
noise). For example, when producing music in a recording studio, one usually wants 
to filter out and discard background noises such as the hum from air conditioning 
and ventilation systems. Before the age of digital electronics, both audio recordings 
and long-distance phone calls contained a lot of static noise, or interference, that 
often made it difficult to hear what someone was saying. Today, signal processing 
algorithms are able to remove the interference and provide crisp, clear communica­
tions that are mostly free of distortions or noise. It should be of no surprise that 
much of the theory of signal processing came out of the telephone industry, most 
notably Bell Labs.

Applications of Fourier analysis go well beyond the physics of light and sound. 
For example, stock market analysts may want to separate out intraday trading 
effects, which have a 1-day frequency, from day-of-week effects, which have a 7- 
day frequency, and seasonal effects, which have an annual frequency. This may 
help them understand whether a particular decline in market activity is signaling a 
change in investor interest or whether it’s just lunchtime.

Regardless of the application, a good rule of thumb is that oscillatory signals 
are likely to be amenable to Fourier analysis. In other words, greater understanding 
will likely come from decomposing the signal into trigonometric functions of varying 
frequency and amplitude.

We begin this chapter by showing how to represent or approximate a function 
as a linear combination of trigonometric functions of varying frequencies. These 
sums are called Fourier series. There are two conventions for representing Fourier 
series. The first represents functions as sums of exponential functions with imagi­
nary exponents. The second convention represents functions as sums of sines and 
cosines. Because of Euler’s identity (8.1), these two conventions are equivalent, 
but, as we show in Section 8.5, the exponential form is better for computation. 
With either convention, the process of mapping a signal into a Fourier series corre­
sponds to an orthogonal projection into a certain function space, where the Fourier 
series is the image expressed in an orthonormal basis with respect to a certain 
inner product.

A second important topic in this chapter is the idea of approximating a function 
by sampling37 at equally spaced points in time, that is, going from a continuous­
time signal to an equally spaced discrete-time signal. In Section 8.5, we introduce 
the discrete Fourier transform (DFT), which computes a Fourier series of a given 
discrete-time signal. Because there are infinitely many possible Fourier series that 
could produce the same discrete-time signal, we give the “best” Fourier series, in a 
sense to be described in Section 8.7.

37To sample means to observe or measure. In Chapter 7, we used the term sampling to mean 
observing realizations (or draws) from a random process like flips of a coin or rolls of a die. In this 
chapter, there is no randomness or variation in the observations, and thus repeated experiments 
yield identical observations—it’s the same signal each time—but we still use the term sample to 
indicate we are observing or measuring something.

Transforming a discrete-time signal into a Fourier series with the DFT provides a 
powerful way to analyze, filter, and compress the signal. The naive way to compute 
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the DFT on a sample of n data points takes O(n2) time. However, there is a very 
fast algorithm for computing the DFT called the fast Fourier transform (FFT), 
which takes only O(nlogn) time. For large n, this makes a substantial difference 
in computing times. This is especially the case for data-rich fields like medical 
imaging, where the FFT has profoundly sped up computations (and, consequently, 
aided in the saving of countless lives). Indeed, the FFT is considered to be one of 
the most important algorithms of all time and is ubiquitous in signal and image 
processing.

A third major topic considered in Fourier analysis is an important theorem called 
the periodic sampling theorem, which guarantees that, for periodic functions, the 
original signal can be perfectly reconstructed from a finite number of samples, pro­
vided that the signal is sampled often enough and is band limited. More precisely, 
the theorem states that perfect reconstruction of a band-limited signal is guaran­
teed whenever the sampling frequency is more than double the highest frequency 
occurring in the signal.

In spite of the great usefulness of Fourier analysis, it does have weaknesses be­
cause trigonometric functions do not gracefully approximate discontinuous signals. 
As we show in several examples in this chapter, in the presence of a discontinuity 
the coefficients of the Fourier series do not converge to zero very quickly, resulting 
in poor approximations. Hence, for signals with many discontinuities and especially 
for images of objects with sharp edges, Fourier analysis is probably not the best 
way to proceed.

As an alternative, we consider another class of basic waves that are useful in 
signal and image processing, called wavelets. Wavelet analysis uses rescaling and 
translation of the basic wavelets to build an orthonormal basis that forms a func­
tion space capable of representing or approximating most well-behaved functions. 
Wavelet bases can usually be chosen so that the wavelet representation is sparse, 
meaning that it has only a small number of nonzero entries. One of the big advan­
tages of wavelets is that they can be made to gracefully and efficiently approximate 
functions with discontinuities; see Sections 8.8 and 8.10 for details. Hence, they are 
great for analyzing signals with many discontinuities and images of objects with 
sharp edges.

There are many similarities between wavelet analysis and Fourier analysis. Just 
as the trigonometric functions in Fourier analysis, wavelets form an orthonormal 
basis, so that an inner product can be used to identify the coefficients for each basis 
function. In fact, in Sections 8.9 and 8.11, we discuss the discrete wavelet transform 
(DWT), which is an algorithm used to represent a discrete signal in a wavelet basis, 
just as the DFT represents a discrete signal in the Fourier basis. Finally, just as 
the DFT can be made fast with the FFT, the DWT can be made fast with the fast 
wavelet transform (FWT), which requires only O(n) time.

But there are some key differences between wavelet analysis and Fourier analy­
sis. In addition to being able to gracefully deal with discontinuities, wavelet basis 
functions are well suited to representing local behavior. Their ability to easily ex­
press both local properties and discontinuities make wavelets very useful for analyz­
ing nonperiodic, piecewise-continuous functions, such as those observed in images, 
videos, and other digital media. By contrast, Fourier basis functions are periodic 
on R (and therefore not of compact support), and thus they are better suited to 
representing global behavior.
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8.1 Complex Numbers
In this section38 we briefly review some fundamental properties of the complex 
numbers, which are essential in Fourier analysis. The main results that we need 
are Euler’s identity (8.1), the “inverse” of Euler’s identity (8.3), a relation on sums 
of roots of unity (Proposition 8.1.6), and a relation for powers of roots of unity 
(Proposition 8.1.7). Students who are already familiar with complex numbers, in­
cluding these four results, may skip to the next section.

38 This section has also been published as an appendix in Volume 1.

8.1.1 Basics of Complex Numbers

Definition 8.1.1. Let i be a formal symbol (representing a square root of —1). Let 
C denote the set

C = {u + bi | a,b e R}.

Elements ofC are called complex numbers. We define addition of complex numbers 
by

(a + bi) + (c + di) = (a + c) + (b + d)i

and we define multiplication of complex numbers by

(a + bi) (c + di) = (ac — bd) + (ad + bc)i.

Example 8.1.2. Complex numbers of the form а + Ог are usually written just 
as a, and those of the form 0 + bi are usually written just as bi.

We verify that i has the expected property:

i2 = (0 + 1г)2 = (0 + 1г)(0 + 1г) = (0 - 1) + (0 + 0)г = -1.

Definition 8.1.3. For any z = a + bi e C we define the complex conjugate of z 
to be z = a — bi, and we define the modulus (sometimes also called the norm) of 
z to be |z| = y/~zi = \/a2 + 62 e R. We also define the real part Ж(г) = a, and the 
imaginary part ^s(z) = b.

Proposition 8.1.4. Addition and multiplication of complex numbers satisfy the 
following properties. For any z,w,v e C we have

(i) associativity of addition: (v + w) + z = v + (w + z);

(ii) commutativity of addition: z + w = w + z;

(iii) associativity of multiplication: (vw)z = v(wz);

(iv) commutativity of multiplication: zw = wz;

(v) distributivity: v(w + z) = vw + vz;

(vi) additive identity: 0 + z = z = z + 0;
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(vii) multiplicative identity: 1 • z = z = z • 1;

(viii) additive inverses: if z = a + bi, then —z = —a — bi satisfies z + (—г) = 0;

(ix) multiplicative inverses: if z = a + bi / 0, then |z|-2 E R and so

Proof. All of the properties are straightforward algebraic manipulations. We give 
one example and leave the rest to the reader.

For (ix) first note that since z^Owe have |z|2 = a2-\-b2 / 0, so its multiplicative 
inverse (a2 + 62)-1 is also in R. We have

z (z|z|-2) = zz(zz)-1 = 1,

so (z|z|-2) is the multiplicative inverse to z. □

8.1.2 Euler's Formula and Graphical Representation
Euler's Formula

For any z e C we define the exponential ez using the Taylor series
oo

One of the most important identities for complex numbers is Euler’s formula 
(see Proposition 11.2.12 in Volume 1):

ezt = cos(t) + zsin(t), t e R. (8.1)

As a consequence of Euler’s formula, we have De Moivre’s formula:

(cos(f) + i sin(£))n = (e2f)n = eirit = cos(nt) + i sin(nf), n e N, t e R. (8.2)

Inverting Euler's Formula

By taking the real and imaginary parts of ezt we can invert Euler’s identity and 
write the sine and cosine formulas in terms of exponentials. Thus we have

cos(£) = SR(e2t) = e — and sin(£) = %(еи) = -——-—. (8.3)
2 2г

Trig Identities

Using (8.1), we can derive some key identities from trigonometry. Expanding 
ег(х±у) _ егхе±гу |n^o rea] anJ imagjnary parts gives

cos(a? ± y) + i sin(a; ± y)
= (cos(rr) + zsin(a;)) (cos(?/) ± zsin(?/))
= cos(a?) cos(?/) ± sin(rr) sin(?/) + i [sin (a;) cos(?/) ± cos(a?) sin(?/)].



328 Chapters. Harmonic Analysis

Thus taking the real and imaginary parts gives the following identities:

сов(ж ± y) = соз(ж) cos(?/) =F зт(ж) sin(?/), 
sin (ж ± y) = зт(ж) cos(?/) ± соз(ж) sin(?/).

From here it’s not hard to get the following three identities:

(8.4а)
(8.4b)

2 соз(ж) cos(?/) = cos (ж + у) + cos (ж — у), 
2 sin (ж) cos(?/) = sin (ж + у) + sin (ж — у), 
2зт(ж) sin(7/) = cos (ж — у) — cos (х + у).

(8.5а)
(8.5b)
(8.5с)

Graphical Representation

The complex numbers have a very useful graphical representation as points in the 
plane, where we associate the complex number z = a-\-bi with the point (u, ti) E R2; 
see Figure 8.1. In this representation real numbers lie along the ж-axis and imaginary 
numbers lie along the t/-axis. The modulus |z| of z is the distance from the origin 
to z in the plane and the complex conjugate z is the image of z under a reflection 
through the ж-axis.

Figure 8.1. A complex number x + iy with x,y G R is usually represented graphi­
cally in the plane as the point (x,y). This figure shows the graphical representation 
of the complex numbers i (red), 1 (blue), and 3 + 2г (orange).

Addition of complex numbers is just the same as vector addition in the plane, 
so geometrically, the complex number z + w is the point in the plane corresponding 
to the far corner of the parallelogram whose other corners are 0, z, and w; see 
Figure 8.2.

Using (8.1), we can represent any point in the plane in polar form as z = 
r(cos(0) + isin(0)) for some 0 e [0,2%) and some r e R with r > 0. Combining this 
with Euler’s formula means that we can write every complex number in the form 
z = гегв. In this form we have

|z| = |гег<9| = |r(cos(0) + zsin(0))| = r

and
z = r(cos(0) — zsin(0)) = re
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Figure 8.2. Graphical representation of complex addition. Thinking of complex 
numbers z = a + bi (red) and w = c + di (blue) as the points in the plane (a, b) and 
(c, d), respectively, their sum z + w = (a + c) + (b + d)i (purple) corresponds to the 
usual vector sum (a, b) + (c, d) = (a + c, b + d) in the plane.

We define the sign of z = гегв e C to be

sign(z) =
ле _ _z_ 
e - и
1

if z 0, 
if z = 0.

(8-6)

The polar form gives a geometric interpretation for multiplication of complex 
numbers. If z = гег1 and w = pezs, then

wz = грег^+^ = |z| | w\(cos(f + s) + zsin(t + $)).

This shows that multiplication of two complex numbers in polar form multiplies the 
moduli and adds the angles; see Figure 8.3.

Figure 8.3. Complex multiplication adds the polar angles (s +1) and multiplies 
the moduli (rp).

Similarly, г-1 = z|z|-2 = re~ltr~2 = r~1e~'bt, so the multiplicative inverse 
changes the sign of the angle (t — t) and inverts the modulus (r r-1). But 
the complex conjugate leaves the modulus unchanged and changes the sign of the 
angle; see Figure 8.4.
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(b)

Figure 8.4. Graphical representation of multiplicative inverse (a), and complex 
conjugate (b). The multiplicative inverse of a complex number changes the sign of 
the polar angle and inverts the modulus. The complex conjugate also changes the 
sign of the polar angle but leaves the modulus unchanged.

8.1.3 Roots of Unity

Definition 8.1.5. For n e Z+ an nth root of unity is any solution to the equation 
zn = 1 in C. The complex number wn = е27гг/п js called the primitive nth root of 
unity.

By the fundamental theorem of algebra there are exactly n of these nth roots of 
unity in C. Euler’s formula tells us that

= cos(2?r/n) + zsin(27r/n)

is the point on the unit circle in the complex plane corresponding to an angle of 
2?r/n radians, and

— е27гг/с/п = cos(2?rA;/n) + zsin(27rA:/n).

Thus we have
“п = e = 1,

so cjk is a root of unity for every к e Z; see Figure 8.5.
If к1 = к (mod n), then к' = к + mn for some m G Z, and thus

, ,k' _ . (k-\-mn) _ . ,k(. n\m _ ,k

The nth roots of unity are uniformly distributed around the unit circle, so their 
average is 0. The next proposition makes that precise.
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Figure 8.5. Plots of all the third (on the left) and tenth (on the right) roots of 
unity. The roots are uniformly distributed around the unit circle, so their sum is 0.

Proposition 8.1.6. For any n e Z+ and any к E Z we have

n—1
^2Trik£/n

£=0

ifk^O (mod ri), 
if к = 0 (mod ri).

(8-7)

Proof. The sum is a geometric series, so if к 0 (mod n) we have

n—1

£=0

= o.

But if к = 0 (mod ri), then

0
1

-1 _ (Ofc -1
4 - 1 Wn - 1

We conclude this section with a simple observation that turns out to be very 
powerful. The proof is immediate.

Proposition 8.1.7. For any divisor d of n and any к e Z, we have

= “n/d- (8.8)

The relation (8.8) is key in the derivation of the FFT; see Section 8.5.4.

8.2 Fourier Series
The idea of Fourier series is to use an orthonormal basis of trigonometric functions 
to efficiently represent or approximate a broad class of well-behaved functions (to be 
made precise in Section 8.4). By writing functions as a linear combination of these 
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basis functions, we can process and transform a signal in many useful ways. As 
discussed above, there are many situations where one may want to isolate certain 
frequencies in a signal or, alternatively, filter out unwanted frequencies that add 
noise or interference to the signal. But the implications of Fourier analysis are 
much farther reaching, and deep insights can often come from analyzing the different 
frequencies that contribute to a signal. For example, if a machine is rattling at a 
certain frequency, one may be able to identify the specific cause of the problem 
inside the machine, based in part on the frequency of the rattle.

In this section we develop Fourier series on the interval [0,7*].  As mentioned 
in the introduction to this chapter, there are two different, but equivalent, ways of 
expressing Fourier series. The first and more modern version is expressed in terms 
of complex-exponential functions of the form e±za}kt with к E Z, whereas the second, 
more classical, version is expressed in terms of the trigonometric functions sin(cjA^) 
and cos (ш kt) with к e N. Throughout this section, we assume that

2% Ш = ---
T

for both versions.

8.2.1 Complex-Exponential Fourier Series
Recall that F refers to the field of either real or complex numbers. Throughout 
this chapter let L2([0, T];F) denote the vector space of F-valued square-integrable 
functions; that is, we assume every f e L2([0,T];F) satisfies

ll/H2= [T\f(t)\2dt<OO. (8.9)
Jo

And we assume this space is endowed with the inner product

= (8.10)

We show that E = is an orthonormal set in the space L2([0,T];C).
The Fourier series of a function f e L2([0,T];C) is just the orthogonal projection 
of f onto the subspace X = span(E).

Theorem 8.2.1. The set E = with w = 2тг/Т, is orthonormal in
L2([0,T];C).

Proof, A straightforward integration (see Exercise 8.2) shows that

/ ii^kt iutt\ = f iu(£-k)t fa = x к —
) TJQ ke [Oiffc^,

where дщ. is the Kronecker delta. □
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Corollary 8.2.2. If f e L2([0, T];F) satisfies
oo

/(£) = 52 ckeiM 
k— — OG

(8-11)

for some coefficients (ck)kez in C, then for each к F Z we have

(8-12)

This corollary inspires the following definition of the Fourier series of a given 
function to be its projection onto the span of the basis vectors.

Definition 8.2.3. Given f e L2([0,T];F) and к e Z we define the kth Fourier 
coefficient of f to be Ck, as given in (8.12). We define the nth truncated Fourier 
series (also called the nth partial sum of the Fourier series) to be 

n
Sn[f](t) = 52 cke^kt. (8.13)

k——n

where each c^ is the к th Fourier coefficient of f. Taking n —> oo gives the complete 
Fourier series

oo

S[f](t) = 52 ckeiLukt. (8.14)
k——oo

Remark 8.2.4. The definition of the Fourier coefficients and the Fourier series 
makes sense even if f cannot be written as a series of the form (8.11). As indicated 
above, the truncated and complete Fourier series are simply orthogonal projections 
of f onto the subspaces Xn = span(E'n) and X = span(B), respectively, where 
En = {^kt}k^-n c E. In other words,

Pr°ix„ f = Sn [/] and projx f = £[/].

Remark 8.2.5. Since the complex exponentials e±tbjkt are periodic on [0, T], so 
are the truncated and complete Fourier series (8.13) and (8.14), respectively, even 
if the original function is not.

Example 8.2.6. Consider the function /(t) = t defined on [0, 2тг]. To find 
the Fourier series we must find its Fourier coefficients. For к / 0, we have

e~ikttdt= 2- 
27Г

te lkt
—ik

and for к = 0 one can check that co = 7r. Thus we have

00 00 „ikt   p—ikt

Slf](t)= 52 скем=тг + Г£------ -k------ • (8.15)
k=—oo k=l
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Using (8.3), this can be rewritten as

S[/](i) = 7r-2£^. (8.16)
k=l

Figure 8.6 shows the wave and some of the partial sums of its Fourier series.

Figure 8.6. Graphs (in red) of the nth partial sums of the Fourier series for the 
function f(t) = t (black) on the interval [0,2%], as in Example 8.2.6.

Remark 8.2.7. Example 8.2.6 shows that the Fourier series (8.15) isn’t identical 
to the underlying function f. In particular, we have 5[/](0) = 5[/](2%) = %, 
but /(0) = 0 and /(2%) = 2%. However, as we show in Theorem 8.2.16, the two 
functions match everywhere else on the interval; that is,

S[/](t)=P -f^o0’2?’ 2 <8-17)

Remark 8.2.8. Recall that applying any projection twice is the same as applying 
it once. Since S[f] is the projection of f onto X, as described in Remark 8.2.4, the 
Fourier series of f is S[f] and the Fourier series of S[f] is also 5[/].

In the case of the series (8.15), it is straightforward to verify this property if 
(8.17) holds, because then f and S[f] differ only at the endpoints. Changing the 
values of the function at the endpoints does not change the values of the integrals 
in Example 8.2.6, and thus the coefficients Ck remain the same.
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Remark 8.2.9. Since the function S[f] in (8.15) is periodic, it can be extended to 
the entire real line; the resulting function is a sawtooth wave.

Example 8.2.10. Let f : [0, 2тг] R satisfy

if t E (0,7r), 
if t e (тг, 2тг), 
if t E {0,тг, 2tt}.

Recall that e г7гк = (—l)fc for к E Z. For к / 0 we have

For к = 0 one can show that co = Thus we have

if к is odd, 
if к is even.

1 1 / “°0

wi(‘) = 5 + - E 
\fe=-l

„j(2fc+l)t 00 
2fc + 1 +^-' 

k=l

ei(2k-l)t 

2k — 1

Using (8.3) and Exercise 8.1 shows that (8.19) is the same as

1 2 sin((2fc - 1)£)
2 + 7Г 2-^ 2fc — 1 

k=l
(8.20)

Remark 8.2.11. Since the function S[f] in (8.19) is periodic on the interval [0,2тг], 
it can be extended to the entire real line, and the resulting function is a square wave.

In both Examples 8.2.6 and 8.2.10, the complex Fourier series simplifies to a 
real-valued function. This is not coincidence, and, in fact, it happens whenever the 
original function is real valued.

Proposition 8.2.12. If f E L2([0, T]; R), then Ck = c~k for each к E Z.

Proof. Since f(t) = /(t) and e~iajkt = we have

f(ty“ktdt = c_k. □

Remark 8.2.13. When computing the Fourier coefficients {ckjkez of a real-valued 
function, we need only compute the coefficients Ck for nonnegative values к E N, 
because .

As mentioned above, not every function is equal to its Fourier series. One useful 
sufficient condition for equality is given in Theorem 8.2.16, below. To state the 
theorem we first need one definition.
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Definition 8.2.14. A function f : [a, b] —> F is piecewise continuous if it is 
continuous on [a, b] except at finitely many points and the limit at each point of 
discontinuity exists and is finite. We say that f : [a, b] —> F is piecewise Lipschitz 
if it is piecewise continuous on [a, b] and there is a constant L such that on every 
interval I of continuity, we have

\f(x)-f(y)\ < L\x — y\ (8.21)

for all x,y e I.

Example 8.2.15. If / : [a, &] —> R is continuously differentiable, meaning 
that f exists and continuous on [a, b] and both f'(a) and f'(b) are well defined 
in the sense of left and right limits, respectively, then by the mean value 
theorem (8.21) holds where

L = sup |/'(ж)|.

Theorem 8.2.16. For any function f : [0,T] —> F, denote f(t+) = limT^t+ /(r) 
and f(t~) = 1ш1т_^- f(r). If f is piecewise Lipschitz, then

limn—>ocsn[№ = |(Ж) + Ж)) 
1(/(T) + /(O))

ifte (0,T), 
ift e {0,T}.

(8.22)

In particular, if f is continuously differentiable on (0, T) with finite right and left 
derivatives at t = 0 and t = T, respectively, with /(0) = f(T), then for each 
t e [0,T] we have [/](£) —> /(t) as n —> oo.

Proof. The proof is given in Section 8.4. □

8.2.2 The Theory of Music
A pure note is a sinusoid playing at a frequency in the audible range. For example, 
the A note just above middle C can be represented by the signal sin(27r440£) (with t 
measured in seconds), which means that the signal cycles 440 times per second (440 
Hz). This note is often called A4 because it’s in the fourth octave of a standard 
88-key piano.

Increasing the frequency increases the pitch of the note. The A note that’s one 
octave higher is A5, corresponding to the signal sin(27r880t) with twice the frequency 
(880 Hz). The signal sin(27r660£) with 3/2 the frequency of A4 corresponds to E4, 
which is the E above A4.

Increasing the amplitude (the modulus of the coefficient in front) of the signal 
increases the volume of the note we hear without changing the pitch. Thus the 
signal 2 sin(27r440t) is an A4 that sounds louder than the signal sin(27r440t), which 
is the same A4, but softer.

When we hear a sound wave of the form

f(t) = 4sin(27r440t) + 6 sin(27r660£) + 2sin(27r880£), (8.23)
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Time

Figure 8.7. A plot of the signal in (8.23), where time is measured in seconds and 
T = 0.05. This signal is the sum of three separate pure sinusoidal tones, one of 
frequency 440 Hz, one of frequency 660 Hz, and one of frequency 880 Hz. A trained 
musician can hear and identify the separate tones in the signal, which essentially 
corresponds to doing a Fourier decomposition.

we hear (or at least an experienced musician hears) a three-note chord, consisting 
of A4, E4, and A5, with the E4 sounding louder and the A5 sounding softer than 
the A4. For a plot of this signal, see Figure 8.7.

Most humans cannot hear frequencies outside the range of 20 to 20,000 Hz. So 
if we decompose an audio signal into its Fourier series and discard any frequencies 
outside the audible range, the simplified signal will sound identical to the original, 
but it will require less data to store the signal, and less energy to reproduce it.

Once we have the Fourier decomposition of the signal, we can adjust the am­
plitudes of the various frequencies. This is what a sound system’s equalizer does. 
Some misguided teenagers like to increase the bass (low frequencies) on their sound 
systems and decrease the treble (higher frequencies).

In some settings a signal may have unwanted noise. For example, the electrical 
power source in a typical American home is an alternating current with a frequency 
of 60 Hz, and this sometimes introduces an undesirable hum into the audio system. 
This can be filtered out of a signal by setting the Fourier coefficient corresponding 
to 60 Hz (and the others near 60 Hz) to zero and leaving all the other coefficients 
unchanged.

Vista 8.2.17. The ideas of Fourier series can be extended by taking a limit 
as the interval [0, T] is expanded to the entire real line R. This extension is 
called the Fourier transform. Fourier transforms are an essential tool in many 
areas of applied mathematics and are discussed in Volume 4.

In Fourier series the collection of coefficients {ckjkez can be thought of as 
a function f : Z —> C, where f(k) = c^. In the Fourier transform, the index 
к € Z is replaced with a continuous variable £ G R, and the new function takes 
the form / : R -> C, given by /(C) = dt.
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8.2.3 *Gibbs  Phenomenon
A careful look at Figure 8.6 shows that the distance from the graph of f down to 
the bottom of the lowest valley does not shrink as the number of terms in the ap­
proximation increases. Although the valleys and peaks get narrower as the number 
of terms increases, the valleys and peaks nearest the endpoints don’t actually get 
closer to the graph of f. This is called the Gibbs phenomenon.

Extending a function from the interval [0, T] to the whole line by making it 
T-periodic causes a discontinuity if /(0) f(T). Near such a discontinuity, any
finite Fourier series will overshoot the graph of the function being approximated; 
that is, it will have a neighborhood where the series is a fixed distance a > 0 away 
from the desired function. Adding more terms in the series will not shrink ct, but 
it will shrink the size of the bad neighborhood. For more on this phenomenon, see 
Exercises 8.21-22.

8.3 *Trigonometric  Fourier Series
In this section we develop the theory of trigonometric Fourier series, using a basis 
of trigonometric functions of the form cos(cjA^) and sin(cjA;t) instead of complex­
exponential functions. It should not be surprising that the complex-exponential 
version is equivalent to the trigonometric version. Indeed Euler’s identity (8.1) 
allows us to express any of the basis functions in E = {егшкъ}ке% in terms of 
trigonometric functions of the form cos(cjA^) and sin(cjA;t); see, for example, (8.16) 
and (8.20). Moreover, Euler’s identity can be inverted to express sine and cosine in 
terms of complex exponentials (see (8.3)). The details of the equivalence are given 
in this section.

Throughout this section, we assume that functions are contained in the space 
L2([0, T];R) of real-valued functions satisfying

Jo

But for convenience we use the weighted inner product

2 Гт
(f,g} = ^J f(t)g(t)dt, (8.24)

which has a different scaling coefficient than the inner product used in the complex­
exponential Fourier series (8.10).

8.3.1 Formulation

Theorem 8.3.1. The set

cos (cut), sin (cut),..., cos(cjAJ), sin(cu/ct),... (8.25)

is orthonormal in L2([0,T];R). Here the set (8.25) includes only positive integer 
values ofk.
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Proof, It is straightforward to check that the first vector has unit length, and the 
inner product of the first vector with any of the others is zero. The other inner 
products all follow from the trigonometric identities (8.5), which give the following 
integrals for &,£ e Z+:

2 rT i rT
— / sin(cj/et) cos(ozft) dt = — [sin(cu(fc + €)t) + sin(cu(A; — £)t)] dt = 0,
d Jo d Jo
2 rT i rT
— / cos(cj/et) cos(w£t)dt = — I [cos(cu(fc + F)t) + cos(cu(& — £)t)] dt =
T Jo T Jq
2 rT 1 rT
— / sin(cu/ct) sin(cj£t)dt = — / [cos(cu(A; — F)t) — cos(cu(& + £)t)] dt = 6k£- □ 
d Jo d Jq

Corollary 8.3.2. If f can be expressed in the form

00
f(t) = -^= + (a/, cos(cuA^) + bk sin(cuAtf)), (8.26)

v2 fc=l

then the coefficients satisfy the following relations:

2 fT
ak = (cos(cuAtf), f) = — / f(t) cos(cuA^) dt, 

Jo
2 Гт

bk = (sin(cvAtf),/) = — / f(t) sm(wkt) dt, 
1 Jo

for /0 G Z+, and
/1 \ \/2 1

ao = \-^’f) = ^ f(t)dt.
\V2 / J- Jo

(8.27a)

(8.27b)

(8.28)

As with the complex-exponential case, Corollary 8.3.2 inspires the following 
definition of the Fourier series of a given function f as the projection of f onto the 
span of the basis vectors.

Definition 8.3.3. Given f e L2([0,T];R), we define the nth truncated Fourier 
series (also called the nth partial sum of the Fourier series) to be

Sn [/](*)  = -y= + ffik cos((jjkt) + bk sin(cufct)), (8.29)
v2 fc=l

where each ak and bk satisfy (8.27) and (8.28). Taking the limit as n —> 00 gives 
the complete Fourier series

S [/](£) = -y= + ffik cos(cufct) + bk sin(cufct)). (8.30)
v2 fc=l

Remark 8.3.4. As with the complex-exponential case, the truncated and com­
plete Fourier series defined here are also the orthogonal projections of f onto the 
corresponding truncated and complete subspaces of trigonometric functions.



340 Chapters. Harmonic Analysis

Remark 8.3.5. Note that the constant term in (8.30) satisfies 

which is the average value of f on the interval [0, Т]. Some authors write (f) for 
the average of f and thus express (8.30) as

S[f](t) = (/) + 57 (afc cos(wfct) + bk sin(wfcf)). (8.31)
k=l

This notation is useful because adding or subtracting a constant to the function 
only changes its average, not the terms which oscillate at a certain frequency.

Example 8.3.6. Following Example 8.2.6, consider the function f(t) = t 
defined on [0, 2тг]. We integrate to find the Fourier coefficients. It is straight­
forward to check that (/) = tv. For к E Z+, we can show

/»2тг ■£ /*2тг
ak = — tcos(kt)dt = 0, bk = — / tsin(kt)dt =

tv Jo Jo k

Thus
5|/|(о = »-2£^ 

k=l

which agrees with (8.16).

Example 8.3.7. Following Example 8.2.10, let / : [0, 2тг] —> R satisfy (8.18). 
We integrate to find the Fourier coefficients. It is straightforward to check 
that that (/) = |. For к E Z+, we have

1 /* 27Г 1 f7r
ak = — f(t) cos(Atf) dt = — cos(A;t) dt = 0,

71 Jo 57 Jo
, 1 f2" л/x z, ч , 1 Г ,, 4 , f4 if A: is odd,
bk = — / /(t) sin(fct) dt = — I sin(fct) dt = < nk

tv J 0 tv Jo I 0 if fc is even.

Thus
-1 _l - x" sin1 _l £ v'sin((2fc ~ ty)

) 2 + 7Г к 2 + % 2k -1
к odd k=l

which agrees with (8.20).
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8.3.2 Equivalency
We have developed two conventions for the Fourier series. We now show that the 
conventions are equivalent by using Euler’s identity (8.1), which states that

e±iujkt _ ± xsin(cuA;t) (8.32)

for all к 6 N, t e R. This means that any complex-exponential Fourier series can be 
written in terms of sin(cuAtf) and cos(cuA^). Conversely, by inverting Euler’s identity 
(see (8.3)), we can also write a trigonometric Fourier series in terms of complex 
exponentials via

giwkt । ia)kt ^ia)kt _  ^—iu)kt
cos(cuAtf) =-------- --------- and sin(cj/ct) =------- —--------. (8.33)

Theorem 8.3.8. For f e L2([0,T];F) the two conventions for Fourier series are 
equivalent. In particular, we have

2 CT= ^ / f(t) sin(cu^) dt = bk. □
1 Jo

скег“къ = (/) + У2 ak cos(cuH) + bk sm(cvkt). 
k——oQ k—1

Proof. Note that 
oo oo oo

52 cke^kt = co + 52 cke^kt + 52 c_ke~^kt 
k— — oQ k—1 k—1

oo
= c° + У2 Cfc(cos(cuAtf) + zsin(cu/rt)) + c_/c(cos(cj/et) — zsin(cuA;t)) 

k=l
oo

= C0 + £(cfc + c_fe ) cos(wkt) + i(ck — c_k) sin(cuAtf). 
k=l

Thus it suffices to show that

С0 = Ш, (8.34a)
ck + c_fc = ak, (8.34b)

i(ck - c-k) = bk. (8.34c)

The verification of (8.34a) is left to the reader. To prove (8.34b), we have
i rT 2 piaikt I p—iwkt

ck + c_k = - f f(t)(e~^kt + c-fct) dt= - f /(f)---------- dt

2 fT
= - j f(t) cos(wfct) dt = ak.

To prove (8.34c), we have
„• (*T  2 ГТ piwkt   p—iwkt

i(ck - c_k) = - / /(f)(e--fct - e“fct) dt = - f(t)------- ----------dt
T Jo T Jo
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8.4 Convergence of Fourier Series
In this section we prove Theorem 8.2.16, which gives conditions for the convergence 
of Fourier series. To do so, we first prove the Riemann-Lebesgue theorem, which 
states that for a sufficiently well-behaved function /, the Fourier coefficients con­
verge to zero as к —> ±oo. We also develop the theory of Dirichlet kernels, which 
provides a useful representation of Fourier series. Combining the Riemann-Lebesgue 
theorem with the theory of Dirichlet kernels gives a nice proof of Theorem 8.2.16.

Throughout this section we assume T = 2тг and thus cj = 1, noting that this 
causes no loss of generality because we can always rescale the domain.

8.4.1 The Riemann-Lebesgue Theorem
There are several versions of the Riemann-Lebesgue theorem, but they all essentially 
say that the Fourier coefficients of a given well-behaved function f converge to 
zero in the high-frequency limit. We provide two such versions (Lemma 8.4.1 and 
Theorem 8.4.2).

Lemma 8.4.1 (Riemann—Lebesgue). If f e L2([0, 2%]; F), then the coefficients 
Ck of the complex-exponential Fourier series of f converge to zero as к —> ±oo. 
Moreover the coefficients ak and bk of the trigonometric Fourier series of f converge 
to zero as к —> oo.

Proof. By Theorem 8.2.1, the set E = {elkt}ke% is orthonormal in L2([0,2тг];F). 
Hence, by the Pythagorean theorem (Volume 1, Theorem 3.2.9), the coefficients 
satisfy

£ ы2 = надш2 < над]ii2 + и/-ад]н2 = ii/ii2 < oo,
k——n

where the norm || • || is given in (8.9). Since this holds for all n 6 N, we have

oo
£ |cfc|2 < ll/ll2 < 00, 

k— — oo

which implies |cfc|2 —> 0 as к —> ±oo. Moreover, max{|ufc|, \bk\} < |cfc| —> 0 as 
к —> oo, which gives the desired result. □

Theorem 8.4.2 (Riemann-Lebesgue). If f e L2([a, 6];F) and ф e R, then

lim / dt = 0. (8.35)

Proof. First assume b — a < %; otherwise split the interval [a, b] into subintervals 
each of length at most % and proceed with each integral separately. Then apply a 
change of variables corresponding to a translation of [a, b] by some integer multiple 
of % so that the resulting interval is a subset of [0, 2%]; note that the magnitude of 
the integral does not change when doing so. Finally, extend f to the interval [0,2тг]
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Figure 8.8. A plot of the Dirichlet kernel Dn for n = 40 (red) and n = 80 (blue).

by setting it to zero outside of the interval [a, b]. All together, this shows we can 
assume, without loss of generality, that f E L2([0,2%]; F).

By the lemma, the coefficients satisfy lim/c^ioo |с&| = 0. Thus as A: —> oo, we 
have

y(f)ei(fct+^) dt f(t)eikt dt = 27r|c_fc| -+ 0. □

8.4.2 The Dirichlet Kernel
We define the Dirichlet kernel and prove several lemmata needed to prove the con­
vergence of Fourier series.

Definition 8.4.3. For n E N, the Dirichlet kernel Dn is the function

n

Dn{t) = 52 eikt. (8.36)
k——n

Lemma 8.4.4. For n E N and t E R, the Dirichlet kernel takes the form

Dn(t) = 1 + 252 cos(^)- (8-37)
k=l

It follows that Dn is real valued.

Proof. This follows by pairing up the positive and negative exponentials in (8.36) 
and using (8.3). □

Lemma 8.4.5. Let f E L2([0,2%]; F). The truncated Fourier series of f can be 
rewritten as

1 Г27Г
SMt) = ^Jq f(s)Dn(t - s) ds. (8.38)
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Proof. We have

1 Г^тг -1 /»2тг / n \
- Уо f(s)Dn(t -s)ds = -f f(s) ( £ ds

n

= 52 ckeikt = Sn[f](e). □
k——n

Lemma 8.4.6. For n E N, the Dirichlet kernel Dn satisfies the following:

(i) Dn has area 2% on the interval [0,2%]; that is,

/»2тг
/ Dn(t) dt = 2%. 

Jo

(ii) Dn is 2%-periodic; that is, Dn(t) = Dn(t + 2%) for all t E R.

(iii) Dn is even; that is, Dn(—t) = Dn(t) for all t E R.

Proof. These all follow directly from Lemma 8.4.4. □

Remark 8.4.7. Combining the results in Lemma 8.4.6 gives

Theorem 8.4.8. Let f E L2([0, 2%]; F). The truncated Fourier series of f can be 
rewritten as

Sn[f](t) = f\f(t + s) + f(t - s))Dn(s) ds, (8.39)

where we extend f on both sides of the interval so that (8.39) is well defined; in 
particular, we assume f(t) = f(t — 2%) for all t > 2% and f(t) = f(t + 2%) for all 
t < 0.

Proof. Adding the identities in Exercise 8.19 shows that

Snm = Г (/(f + s) + /(f~s)) Dn(s)ds.
2ir J_„ \ 2 J

Since the integrand is even, as a function of s, we can halve the interval and double 
its value giving (8.39). □

We conclude the discussion of the Dirichlet kernel with a useful identity that we 
use in the proof of Theorem 8.2.16 below.
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Lemma 8.4.9. When t = 2тгк for some к F Z we have Dn(t) = 2n +1. Otherwise, 
the Dirichlet kernel can also be expressed as

e(2n+1W2 - e-<2n+1^/2 _ sin ((2n + 1)2/2) 
n 2zsin(2/2) sin(2/2) (8.40)

Proof, The proof is Exercise 8.20. □

Remark 8.4.10. We can use (8.40) to plot the Dirichlet kernel Dn for varying n. 
In Figure 8.8, we see what it looks like for n = 40 and n = 80. For increasing values 
of n, we can see that Dn(t) takes the value of 2n+1 at t = 0 and gets closer to zero 
for nonzero values of t.

8.4.3 Proof of Theorem 8.2.16
Let t E [0, 2tt] be fixed. By Remark 8.4.7, the right and left limits of t satisfy

7r/(t+) = /(* +) [ Dn(s)ds and = f(t~) [ Dn(s)ds,
Jo Jo

with the edge cases /(0”) and /(2тг+) defined as /(2тг) and /(0), respectively. By
Theorem 8.4.8, we have

Jo Jo
= r(/(t + s)-/(t+)M(S)ds+ r(/(f-S)-/(f-)M(s)ds. 

Jo Jo

Hence, it suffices to show that for each e > 0, there exists N such that

Г(/(*
Jo

± s) - /(t±))£>n(s)ds (8.41)< €

whenever n > N.
Let L be the Lipschitz constant for f. Given e > 0, choose 6 < min so 

that f is continuous on [t — 3,t) and (t,t + 5], respectively. Hence

\f(t ±s)- /(^)| < Ls (8.42)

whenever 0 < s < 5. Since the sine function is concave on s € [0, тг], we have

(8.43)

for all s € [—тг,тг]. Hence, for 0 < s < 5, (8.40) gives

|ад| =
sin ((2n + l)s/2) 

sin(s/2)
7Г

“ 2s
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Thus combining (8.42) and (8.43) yields

±s) - ds Ls— ds 
2s

tvLS e
< 2

Also, (8.40) and Theorem 8.4.2 imply that for sufficiently large n we have

where 

2i sin(s/2)
for S e [(5, 7г],

which is piecewise Lipschitz on [J, 7r] and therefore in L2. Combining the two bounds 
implies (8.41), which concludes the proof.

8.5 The Discrete Fourier Transform
Sampling a signal corresponds to observing a continuous-time function at (discrete) 
equally spaced points in time. In nature, most signals are in continuous time. In 
technological applications, most signals are in discrete time. Therefore the interplay 
between nature and technology requires going back and forth between continuous­
time and discrete-time signals.

Given a discrete-time signal, we can compute its discrete Fourier transform 
(DFT), which gives the Fourier series of the discrete-time signal, or rather the 
Fourier series of a continuous-time function that, when sampled, gives the same 
discrete-time signal. Of course there are infinitely many continuous-time functions 
that yield the same discrete-time sample, so we provide the one that is most efficient, 
in a sense to be described later. In short, the DFT provides a way to transform a 
discrete-time signal into a Fourier series, thus providing a powerful way to analyze, 
filter, and compress the sample.

In addition to discussing the DFT, we also describe a fast way to compute 
it. Given a signal of n data points, the naive DFT algorithm takes O(n2) time. 
However, the DFT can be computed very quickly using an algorithm called the fast 
Fourier transform (FFT), which requires only O(nlogn) time. This difference is 
substantial when n is large.

8.5.1 Sampled Functions and the Discrete Inner Product

Definition 8.5.1. Let f e L2([0,T];F) and n e Z+. A sample of f is an n-tuple

f = C/b, fi,..., /п-l) = (Ж),..., Ж-i)) e Fn, (8.44)

where the points 0 = tQ < • • • < tn = T are equally spaced on [0, T] and each t^ 
satisfies tk = kAn for An = T/n. The map Фп : L2([0,T];F) —> Fn that takes f to 
(f(to),..., f(tn_if) is called the sampling operator with sample time An.



8.5. The Discrete Fourier Transform 347

Remark 8.5.2. It is straightforward to check that Фп is a linear transformation.

Definition 8.5.3. The discrete inner product on the space Fn is given by

1 n— 1
(f,g)n = - (8-45)

n k=0

which is ± times the standard inner product on Fn; that is, (f,g)n = ~fTg =

Remark 8.5.4. One nice property of the discrete inner product (8.45) is that it 
approximates the continuous inner product

= f(t)g(t)dt

if n is large and the functions f and g are sufficiently well behaved. Specifically, we 
have

= <Фп(/),Фп(5))п.

£=0 b £=0

8.5.2 The Discrete Fourier Transform
From Theorem 8.2.1 we know that the set is orthogonal in L2([0,T];F).
Correspondingly, the samples of the same basis functions {$n(el“kt)}k=o form an 
orthonormal basis in Fn with the discrete inner product (8.45).

Proposition 8.5.5. Let n E Z+ be fixed. For each к E Zn (see Definition 1.9.7), 
let

Фп(е^‘) = w<‘> = (W°,u£,.. • (8.46)

where wn = ехр(2тгг/п) is a primitive nth root of unity (see Section 8.1.3 for details 
on the roots of unity). The set {w^J^Zq is orthonormal in Cn with the discrete 
inner product (8.45) and thus forms a basis for Cn. We call the set {wn^'p the 
discrete Fourier basis on Cn.

Proof. It suffices to show that is orthonormal,
have

The last equality follows from Proposition 8.1.6. □

For any j, к E Zn we

if j' к (mod n), 
if j = к (mod n).
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Many good properties of Fourier series arise from the fact that they express 
functions in terms of an orthonormal basis. In the discrete setting, we get these 
same benefits since the discrete Fourier basis is orthonormal.

Definition 8.5.6. Let f = (fo, • • •, fn-i) € Fn. The discrete Fourier transform 
(DFT) of f is the vector f e Cn of the coefficients of f expressed in terms of the 
discrete Fourier basis. In other words, f = (/0, • • • 5 fn-i) satisfies

n—1

f = (/0,...,/n-i) = £AwW.
fc=0

The components can be found via the relation

£=0

(8.47)

Remark 8.5.7. Although the DFT is defined in terms of a vector f e Cn, we often 
talk about the DFT of a function /, by which we mean the DFT of the sampled 
function f = Фп(/)«

The DFT f i-> f, given by (8.47), is a linear transformation from Cn to Cn. 
Because it is linear, we can express it in matrix notation. From here on out, we 
write f and f as vectors. The matrix Wn representing the DFT, with f = Wnf, is
given by

(8.48)

For an implementation of the DFT, see Algorithm 8.1.

import numpy as np # module for efficient linear algebra 
def DFT(f):

""" Compute the discrete Fourier Transform of
the ID array f."""

n = len(f)
m = np.arange(n).reshape(n,1)
W = np.exp((-2j * np.pi/n) * m @ m.T) 
return W @ f / n

Algorithm 8.1. The DFT algorithm, which amounts to computing f = Wnf, 
where the matrix Wn, is given in (8.48). Note that @ is the NumPy syntax for 
matrix multiplication and -2j denotes the complex number —2i. To compute the 
DFT of the vector in Example 8.5.8 call DFT (np. array ([1,6,2,4])).
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Proposition 8.5.9. The matrix Wn is symmetric, that is, Wj = Wn.

Proof. The (J, k) entry of the matrix Wn (indexed from 0 to n — 1) is given by 
This is the same as the (k,j) entry. Thus Wn is symmetric. □

Theorem 8.5.10. The matrix y/nWn is orthonormal, that is, nW^Wn = I, where 
is the Hermitian (conjugate transpose) ofWn.

Proof. Noting that wnk£ = шк£, we compute

(nWr?Wn)km = - = - £ ^nk~m^ = 6km

£=0 £=0

where the penultimate equality follows from (8.7). □

0 if к ф m (mod n),
1 if к = m (mod n),

Example 8.5. 11. If f = (1,1,..., 1), then the A;th component of the DFT is 
given by

1 n— 1

а = -Е^ы = ^ =
£=0

1 if к = 0,
0 if к G {l,2,...,n- 1}.

In other words, f = eo, which is the first standard basis element for Fn, 
counting from zero. This makes sense, since the signal is constant and the 
first basis vector corresponds to the average.

Example 8.5. 12. Let f — (1, —1,1, —1,..., —1) 6 Fn, where n = 2m, that 
is, n is even. Note that fa = (—1/ and —1 = ег7Г = ш™. Thus the /cth 
component of the DFT is given by

1 n—1 1 n—1 if к = m, 
if к / m.

In other words, f = em, the mth standard basis element.
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Example 8.5. 13. Let f = Wnm^ = (cjO, co™, 1^m) for some fixed
m G Z. The A;th component of the DFT is

1 n~ 1 i n~ 1 iF _ \ л , ,m£ —k£   “I \ л (m—fc)£ _ г _ J
ik~ n n ~n^n 6krn ~ I 0 

£=0 £=0 I

if к = m, 
if к / m.

In other words, f = em. In hindsight, this should be obvious, since Wn is 
orthogonal to the other basis vectors.

Example 8.5.14. Exercise 8.9 shows how to write a signal as a sum (8.94) 
of linear oscillators. By sampling a real-valued signal on [0, T] at n equally 
spaced points and taking its DFT, we can estimate the contribution of each 
frequency to the signal by plotting the amplitude 2|Д| as a function of the 
frequency k/T for 0 < к < (assume n is even).

In Figure 8.9, we sample the audio signal (8.23) at n = 1024 points. We 
then compute the DFT of the sample and then plot the amplitude 2|Д| as a 
function of the frequency k/T (where T = 0.05 and so each point in the figure 
increments by 20 Hz). Note that the peaks are roughly at the frequencies 
440 Hz, 660 Hz, and 880 Hz, with amplitudes of approximately 4, 6, and 2, 
respectively. In other words, we can use the DFT to decompose a signal into 
a sum of linear oscillators of varying frequencies.

Frequency (Hz)

Figure 8.9. A plot of the Fourier amplitudes of a sample of n = 1024 points from 
the audio signal in (8.23) (left) as described in Example 8.5.1J. and a zoomed-in 
version of the same (right). The amplitudes roughly match those of the signal with 
approximate frequencies of 440 Hz, 660 Hz, and 880 Hz.

500 1000
Frequency (Hz)
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8.5.3 The Inverse DFT
An immediate corollary of Theorem 8.5.10 is that the DFT matrix Wn has an easily 
computed inverse, which allows us to transform the Fourier coefficients f back to 
the original sample f by matrix-vector multiplication. This operation is called the 
inverse discrete Fourier transform (IDFT).

Corollary 8.5.15. The IDFT is given by f = Wn 1f, where

’1 1 1 1
1 W„ wn a>n~1 

n

W-1 = nWr? = nWn = 1 Wn W„
, ,2(n-l)

1 w^-1) • , ,(n-l)2

(8.49)

Proof. Since nW^Wn = I and Wn is square, we have Wn 1 = = nWn. The
rest of the proof follows from the observation that сийk£ = □

Nota Bene 8.5.16. There are several different conventions for the DFT and 
IDFT. These correspond to various choices of к G {1, ^/n, n} and a G {-1,4-1} 
in the sum

1 n— 1

K e=o

In this text we have used the convention of к = n and a = — 1, and our IDFT 
corresponds to к = 1 and cr = 4-1. The reader should be aware of other 
conventions, especially when using software libraries.

8.5.4 Fast Fourier Transform
Both the DFT and the IDFT can be implemented by matrix-vector multiplication 
via (8.48) and (8.49), respectively, both of which have a temporal complexity of 
O(n2). In this section we show how both of these transforms can be sped up to 
O(nlogn) by using the fast Fourier transform (FFT). This drastic and remarkable 
improvement allows for very fast real-time computation of the DFT in many set­
tings, including radar, image processing, audio filtering, magnetic resonance imaging 
(MRI), and many other applications.

Lemma 8.5.17. Let n = 2m for some m G Z+. If f = (/о, Л, • • •, fn-i) € Fn, 
then the DFT f = (/0, /i, • • •, /п-i) € Fn satisfies

/ n/2-1 n/2-1 \

■ (8-50)
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Proof. Separate (8.47) into the even and odd powers of wn to get

£=0

n/2-1 n/2-1

- £ + - L
j=0 j=0

1 / 1 n/2 —1 1 n/2-1

2 ( ^/2 £ Ь)ШП/2 +шпк^ £ /2j + lWn/2

\ 7 j=0 7 j=0

The last step uses (8.8) to get cvn2jk = □

Let fe denote the vector of length n/2 consisting of the even-indexed entries 
of f, and let fe denote its DFT. Similarly, let fo denote the vector of odd-indexed 
entries of f and fo its DFT. If к < n/2, then the first sum in (8.50) is exactly the 
index-A: part of fe, and the second sum is exactly the index-A; part of fo. If A: > n/2, 
then = cu^/2n^2, and so each sum corresponds to the entry with index к — n/2 

from fe or fo, respectively. Thus we can construct the full DFT of f recursively, by 
computing fe and fo rescaling the odd part by w~k (often called the twiddle factor 
in this setting), and summing them.

Theorem 8.5.18 (Fast Fourier Transform). Let n = 2rn for some meZ+. By 
applying (8.50) recursively, we can compute the DFT in O(n log n) time.

Proof. The lemma converts the DFT of a vector of length n = 2m into the sum of 
two DFTs of length n/2. The second term must be multiplied by a root of unity 
and then added to the first. The multiplication and sum have temporal complexity 
0(1) for a single coefficient Д, and since we are computing them for n coefficients, 
they contribute O(n) to the temporal complexity. If T(n) is the time it takes to 
compute all n coefficients of the DFT of a vector of length n = 2m, then we have

T(n) < 2T(n/2) + cn

for some constant c > 0. By the master theorem (Theorem 1.10.2), it follows that 
T(n) e O(nlogn). This recursive approach to computing the DFT is called the fast 
Fourier transform. □

Remark 8.5.19. When n is not an exact power of 2, we can pad the signal with 
extra zeros at the end until its length is a power of 2, and then perform the FFT. 
The maximum number of zeros required is n — 1 (when n = 2m +1), and the padded 
FFT will be run at worst on a sample of length 2n. Thus the temporal complexity 
will be at worst O(2nlog(2n)) = O(nlogn).

Remark 8.5.20. Since the IDFT is constructed in a manner almost identical to 
the DFT, an argument similar to the one above shows that the IDFT also has a 
fast divide-and-conquer implementation of temporal complexity O(nlogn).
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2
3
4
5
6
7
8
9

10
11
12
13
14
15

def FFT(f):
"""Perform the FFT algorithm on the numpy array 'f

n = len(f) # assumed to be a power of 2

if n <= 4: # this cutoff to be optimized, also a power of 2
return DFT(f)

else:
f_even = FFT(f [: :2]) # FFT of even indexed entries of f 
f_odd = FFT(f[l::2]) # FFT of odd indexed entries of f 
w = np.exp((-2j * np.pi/n) * np.arange(n)) 
first_sum = f.even + w[:n//2] * f_odd 
second_sum = f.even + w[n//2:] * f_odd
return 0.5 * np.concatenate([first_sum, second_sum])

Algorithm 8.2. The FFT algorithm, which computes the DFT recursively using 
(8.50). At the end of the recursion, for the vectors of length less than some cutoff 
(here we use 4, but that choice should be optimized), the algorithm uses the DFT 
code from Algorithm 8.1. As observed after the proof of Lemma 8.5.17, the vectors 
fe and fo are used once for the terms of index k < n/2 and again for the terms of 
index к > n/2. Theorem 8.5.18 shows that this algorithm has temporal complexity 
O(nlog(n)), which is a big speedup over the complexity O(n2) of the naive DFT 
using matrix multiplication.

Remark 8.5.21. There are very efficient implementations of the FFT that have 
relatively small leading coefficients on the nlogn. Algorithm 8.2 is just an illustra­
tion of how to implement the FFT, but it is not especially efficient.

8.5.5 A Foray into Filtering with Fourier
We conclude this section by presenting two simple methods of filtering noise from a 
signal. Consider the audio signal given in (8.23). If some Gaussian noise is added to 
the signal (for example, if it is transmitted along a noisy channel), then we get a new 
signal, as in the top panel of Figure 8.10. Moreover, plotting the amplitudes of the 
various frequencies shows nonzero coefficients distributed jaggedly, but somewhat 
uniformly, across all frequencies; see the bottom panel of Figure 8.10. This is 
because Gaussian noise is uniform across frequencies. We call this white noise 
because in the visual spectrum the color white is a uniform combination of all 
frequencies.

There are two easy ways to filter the noisy signal in Figure 8.10. In both cases 
we carry out the filtering by sampling, using DFT, applying a function to the 
transformed values, and then using the IDFT to get back a filtered signal.

One way to filter the noisy signal is to use the fact that the original signal 
consisted only of frequencies between 400 and 900 Hz, so we remove all frequencies 
less than 400 Hz and greater than 900 Hz. This is called a band-pass filter, and it is
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Figure 8.10. A plot of (8.23) with added Gaussian noise. The top panel shows 
the noisy signal as a function of time (in seconds), and the bottom panel shows the 
net amplitudes as a function of frequency (the result of applying the DFT).

accomplished by applying the DFT, setting all the resulting coefficients outside the 
range of 400 and 900 Hz to zero, and then using the IDFT to construct the filtered 
signal.

Another way to filter the noisy signal is to remove any frequency that has small 
amplitude, with the expectation that the noise should have relatively small ampli­
tude relative to the original signal. This is accomplished by applying the DFT, 
setting all the resulting coefficients with amplitude less than some value to zero (in 
Figure 8.11 we used | as the cutoff), and then applying the IDFT to construct the 
filtered signal. Both filtered signals are shown in Figure 8.11.

8.6 Convolution
In most modern applications, signals and images are typically represented in discrete 
time and space as large arrays of numbers indicating an intensity or magnitude at 
that specific point in space or time. Mathematically we can consider these arrays 
as vectors in a high-dimensional vector space. This allows for methods from linear 
algebra and multivariable calculus to be used to analyze and process the data. 
However, the dimensions used are often too high to be immediately useful.

For example, when dealing with images, slight translations, rotations, or changes 
in resolution, scale, or color will have no significant perceptual differences to a 
human, but the vector representations can be wildly different from each other and 
make it difficult or even impossible to make sense out of the data. One useful
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Figure 8.11. The two filtering methods discussed in Section 8.5.5. The plots show 
the filtered signal in black and the original, noisy signal in red. The method used 
for the upper panel is a band-pass filter that removes all frequencies outside of a 400 
to 900 Hz band. The method used for the lower panel is a filter that removes all 
frequencies with small amplitude (below ±).

approach is to reduce the variation through filtering so that perceptually similar 
signals and images have similar vector representations.

For example, Section 8.5.5 showed that a low-pass filter can remove noise from 
a signal. In this section we generalize the notion of a filter using a mathematical 
construct called convolution, which, when applied judiciously, can often help sim­
plify or allow better analysis of the resulting vector. While this doesn’t reduce the 
dimensionality of the vector representation, it can reduce the variability caused by 
noise as well as provide better ways of understanding how to match signals and 
images that have undergone translations, rotations, or changes in resolution, scale, 
or color. Convolutions can average data locally, in a way that reduces variability 
while preserving perceptual similarity. They can also be used to identify whether 
a certain feature in the data is present. Moreover, multiple convolutions can be 
composed in succession to extract features that help identify patterns in data.

8.6.1 Circular Convolution
Throughout this subsection, we assume that signals are periodic with period T and 
thus correspondingly their samples are periodic with period n. Hence, given a vector 
f = (Jo, fi, fz,..., fn-i) € we assume that fk+n = fk for each к e Z. We call 
such a vector a periodic vector.
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Definition 8.6.1. Given periodic vectors f and g in Fn, we define their circular 
convolution as the periodic vector f * g e Fn whose к th component is given by

n—1
(f * g)fc = E 

j=o

(8.51)

Example 8.6.2. If f = (1,3, 2,0) and g = (1,1,0,1) are periodic vectors, 
then

(f * g)o = 1 • 1 + 0 • 1 + 2 • 0 + 3 • 1 = 4,
(f * g)x = 3 • 1 + 1 • 1 + 0 • 0 + 2 • 1 = 6,
(f * g)2 = 2 • 1 + 3 • 1 + 1 • 0 + 0 • 1 = 5,
(f * g)3 = 0 • 1 + 2 • 1 + 3 • 0 + 1 • 1 = 3,

and so f * g = (4,6, 5,3).

Remark 8.6.3. Given periodic vectors f, g E Fn, the circular convolution f * g is 
compatible with the requirement of periodic vectors that fk+n = fk for each к e Z. 
Indeed, for any к we have

n— 1 n—1

(f * g)n+fc = У fn+k-j9j = У fk—j9j = (f * g)fc-

The next result lists some basic properties of the convolution operator.

Theorem 8.6.4. Let f,g,h e Fn be periodic. For any a,b e F, we have the 
following properties:

(i) f  g = g  f.* *

(ii) f  (g  h) = (f  g)  h.* * * *

(iii) (uf + 6g)  h = a(f  h) + 6(g  h).* * *

Proof, First observe that for any periodic vector f E Fn, the sum over n consecutive 
terms is the same no matter where the sum begins:

n—1+fc n—1

E a = E^ vfceZ-
i—k i—Q

To see this, reindex to put all indices in the range {0,1,2,..., n — 1}. For example, 
when 0 < к < n — lwe have

n—l+k n—1 n— 1+fc n—1 к—1 n— 1

E a = E^+ E л = Е^+Ел = Е^
i—k i—k i—n i—k j—0 i—0

Now we prove each of the parts of the theorem.
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(i) Using m = к — j to reindex the sum defining (f g)fc  (and reversing the order 
of summation) gives

*

n— 1 m—k

(f * g)fc = fk—j9j = fm9k—m 
j—0 k—n+1
n—1

= Qk—mfm = (g * f)fc- 
m—0

(ii) Using m = j — i to reindex the sum defining (g  h)j gives*

(f * (g * h))fe = 52 h-j 52 9^-ihi
j—О \г—0

i—Q \m—Q

= ((f*g)*h) fc.

(iii) Expanding gives

n—1
((af + 6g) * h)fc = 52(aA-j + bgk-j)hj

j=o

n—1 n—1
= а fk-jhj + b gk-jhj

J=o j=o

= a(f * h)fe + 6(g * h)fc. □

Remark 8.6.5. Properties (i) and (iii) in Theorem 8.6.4 can be combined to show 
that the convolution is also linear in the second argument. Thus convolution is a 
bilinear operation.

Example 8.6.6. Let ei denote the periodic vector whose zth entry is one, 
and all other entries zero; so the jth component of ег is 6ij. Thus

n—i

(f * ei)fc — fk—j^ij = fk—i- 
j=0

In other words, convolving f with e^ shifts f to the right by i entries.
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Example 8.6.7. Convolving an input signal f with a sum g = ei — 0.5e2o 
gives

f *g  = f *ei  — 0.5f * e2o-

The term f *ei  gives a copy of f shifted one unit to the right. And the term 
—0.5f * e2o gives a copy of f shifted 20 units to the right, inverted, and scaled 
to half amplitude. Thus this convolution reproduces f along with an (inverted) 
echo of f of half amplitude. See Figure 8.12.

Figure 8.12. Convolution of an input f, consisting of a single hump (left), with a 
filter g = ei — 0.5e2o? as described in Example 8.6.1. The convolution f * g (left) 
consists of a copy off shifted one unit to the right (due to e±) and one more copy of 
f shifted 20 units to the right (due to e2o), inverted, and scaled to half amplitude.

8.6.2 The Finite Convolution Theorem
In this subsection we prove the finite convolution theorem, which gives a fast method 
for computing the convolution using the FFT.

Definition 8.6.8. For f = (/0, fl, • • •, /n-i) € Fn and g = (g0,gi, ••• ,5n-i) € Fn, 
the Hadamard product is the componentwise product

f ®g = (fogo, figi, • • •, fn-ign-i)-

Example 8.6.9. If f = (1,3,2,0) G F4 and g = (1, 2,0,1) G F4, then 

f 0g = (1,6,0,0).

Theorem 8.6.10 (Finite Convolution Theorem). Iff, g G Fn are periodic, 
then the DFT satisfies the identity

(f * g) = nf © g. (8.52)
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Proof. Assume f = (/o,/1, • • •,/п-i) Fn and g = (po,Pi, • • • ,5n-i) € Fn. 
Writing out the fcth component of n(f * g) gives

n—1 n—1 /n—1
n(f * g)fc = £ Jfc(f * g)> = £ Jk (£

j=0 j=0 \г=0

Hence 8.52 follows. □

Example 8.6.11. Let f = (A, • • •, A, • • •, A-i) € Fn be the DFT of the 
vector f 6 Fn. Recall from Example 8.5.13 that the DFT of the fcth (periodic) 
Fourier basis vector is e&. Denoting the IDFT by W~T and applying 
Theorem 8.6.10 to the expression gives

If *w^  = lw-x((f = W“x(f ®w£fc)) 
n n

= W"x(f 0 efe) = W-x(0, • • •, 0, A, 0..., 0).

This strips out the component of the A;th frequency of f and discards all the 
other frequencies. We can use this fact, along with linearity of convolution, 
to create a filter that removes, attenuates, or amplifies any combination of 
frequencies in the original signal f. For example, if g = ^2k>rn then 
convolving with g keeps all the frequencies greater than or equal to m but 
removes all the frequencies less than m from f.

8.6.3 Fast Convolution
Taking the IDFT of both sides of (8.52) gives

f * g = nWn 1 (? © g) •

This gives a fast way to compute a convolution; that is, take the FFT of f and 
g, multiply the results componentwise, and then take the inverse FFT. Since each 
application of the FFT is O(n log n), and componentwise (Hadamard) multiplication 
is O(n), the entire calculation is O(nlogn). This is a considerable speedup for 
convolutions, since the naive definition (8.51) is O(n2).

Fast convolution has many applications, including in signal processing, as men­
tioned above. More examples are given in the computer labs for this volume.
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8.6.4 *Linear  Convolution
Although circular convolutions are most useful when dealing with Fourier analysis, 
other variations of convolution are important in many settings. An especially im­
portant variant is the linear convolution, which we denote by Linear convolution 
maps two vectors f,g 6 Fn into a new vector f *'g  6 F2n-1, given by the rule

(f *'  g)o = ZoPo,
(f *'g)i  = /iPo + /oPi,

(f *Z g)n-l = fn-19o + fn-291 + • • • + fo9n-l,

(f *'  g)n = fn-191 + • • • + fi9n-i,

(f *'  g)n+l = fn-1 92 + • • • + f29n-li

(f * g)2n—2 = fn—19n—1,

(f *'g) fc =0 V/c^{0,...,2n-2}.

To compute a linear convolution within the framework of periodic vectors and cir­
cular convolution, we can pad the periodic vectors with n zeros before and after the 
original vectors. That is, set

f'= (0,0,... ,0,/о, • • • >/n-i>0,0,...,0) € F3n, 
g' = (0,0, • • •, 0, <7o, • • •, <M-i, 0,0, • • •, 0) € F3n,

which gives (f' * g')fc = fk-j9j, and then take (f *'  g)fe = (Г * g')n+k for
к € {0,. ..,2n —2}.

Similarly, to compute a circular convolution within the framework of the linear 
convolution, pad the vectors with one more copy, that is, set

f" = (/o,...,/n-i,/o,...,/n-i)eF2n, 

g" = (go, ■ ■ ■,gn-i,go, ■ ■ ■,9n-i) & F2n,

which gives (f" *'  g")fc = 1 fk-j9j, and then take (f * g)fc = (f" *'  g")n+k for
к € {0,...,n- 1}.

8.7 Periodic Sampling Theorem
In this section we address the question of how to reproduce a periodic function from 
a sample. The FFT and convolution are very powerful tools for understanding and 
modifying sampled functions. But once all the computations and adjustments have 
been made to the sample, we need to convert it back to a function, and, as it turns 
out, there is not a unique way to do this. So the question becomes, What is the 
best way to reconstruct the signal?
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8.7.1 Band-Limited Functions
In most real-world applications, the high-frequency part of a signal is considered 
noise. For audible signals, crackling and static are high-frequency noises, and it 
is often considered a good idea to filter all parts of a signal that lie outside of a 
certain frequency band. This is one example of the common situation where we 
want to consider only functions that have a Fourier series involving a limited range 
of frequencies. Such functions are called band-limited functions.

Definition 8.7.1. A function f G L2([0, T];F) with Fourier series
oo

/(*)  = 52 сквшк1 
k— — OG

is called band limited if there exists a nonnegative integer v such that Ck = 0 
whenever \k\ > v. In this case, the smallest such z/ is called the Nyquist frequency 
of f. The Nyquist rate of f is twice the Nyquist frequency.

Example 8.7.2. Consider the function

f(t) = 2 sin(67rt) + 3 sin(107r£ + 2) + 5 sin(147rt + 4).

Using the formulas (8.33) to write the trigonometric functions as exponentials, 
we have

7(f) = (е2™3* - e-2™3t

। / 2тгг74+4г
+ 2г

_2wi7t
2г

9x,2г
____  2тгг5£

+ 2г +

3 / 2тгг5^+2г   — 2ггг5£—2г 
2г к

_  27ri7t—4г

3е 2г -2ттг5г

2г
5е4г 2ттг7г

2г

_ 2тггЗг । ^л27ггЗг 

г i

This exponential Fourier series has c±7 0 but all coefficients Ck vanish for
\k\ > 7; thus the Nyquist frequency of f is v — 7, and the Nyquist rate is 
2z/ = 14.

Application 8.7.3. As mentioned in Section 8.2.2, most humans cannot hear 
frequencies above 20 kHz. Hence, the difference between an audio signal /(t) 
and the perturbed signal f(t) + sin(oz£t), when £ > 20,000, is not audible to 
humans (although your dog might not like it!). Therefore, for audio signal 
processing, it is common to work with functions having Nyquist frequency of 
slightly over 20 kHz to cover people with exceptional hearing. This gives a 
corresponding Nyquist rate of slightly over 40 kHz, and, indeed, the standard 
sample rate used in audio recordings is 44.1 A; kHz.
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8.7.2 Aliasing
Assume that a signal f has Fourier series 5[/](t) = Скега}к*.  As before, we 
sample the interval [0,T] at n equally spaced points 0 = to < t± < • • • < tn_i < T 
with te = These samples cannot determine the function f uniquely, because 
the functions ега}1: and e2a;(n+1)t both take on the same values at each that is,

eia}t _  ^Tti(£+(./n) _  g27F2(n+l)t£ _  g2Cj(n+l)t (8.53)
t—tl t=te

The good news is that if the sample comes from a band-limited periodic function, 
then Theorem 8.7.7 (given below) guarantees the function is uniquely determined 
by the samples, if there are sufficiently many samples. Moreover, given a sample 
rate, we can identify a band for which all functions limited to that band can be 
perfectly and uniquely reconstructed from the samples.

Example 8.7.4. Consider the function f(t) = C-±e~lt + co + ciezt on [0, 2тг]. 
Sampling only once on the interval [0, 2тг], at the point 0, will only determine 
the value of /(0) = c_i + cq + Q. Sampling twice, at 0 and 7Г, will also 
determine /(тг) = —c_i + cq — q. With these two values, we can deduce 
co but not c-i and ci. Only after sampling three times, at 0, can 
we deduce the values of all three coefficients. This shouldn’t be a surprise 
since three sample points gives a linear system with three equations and three 
unknowns.

Remark 8.7.5. Generalizing the previous example, if we consider the family of all 
functions of the form

n 
= 52 ckeiM 

k——n

on the domain [0, T], then to uniquely determine the 2n + 1 coefficients c_n,..., cn 
requires 2n + 1 samples in order to have at least as many equations as unknowns. 
This means we need to sample at a rate higher than the Nyquist rate of 2n in order 
to recover the signal. Of course, even if we sample at this higher rate, it is con­
ceivable that there might be linear dependencies among the equations (the matrix 
representation might not have full rank), but Theorem 8.7.7, below, shows that this 
is not the case: the Nyquist bound is exactly the right bound, and any sampling 
rate higher than the Nyquist rate will allow for perfect and unique reconstruction.

Definition 8.7.6. When the number of samples is insufficient to uniquely identify 
a band-limited T-periodic function f with Nyquist frequency z/, any other function 
with the same sample values is called an alias of f if its Nyquist frequency is no 
greater than v.

Simple examples of aliasing are given in Figures 8.13 and 8.14. You can see two- 
dimensional examples of aliasing when watching videos of rotating objects. When 
the frame rate of the video is very close to an integer multiple of the rotation 
rate of the object, the object appears to stop rotating. This is the explanation of
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Figure 8.13. A simple example of aliasing. When the black curve y(t) = sin(4t) is 
sampled only four times, each sample also lies on the red curve y(t) = sin(2t). The 
red curve is an alias for the black.

Figure 8.14. Two examples of aliasing. In the left panel is a plot of cos(800t), 
and in the right panel a plot of cos(lOOOt), but neither image is an accurate repre­
sentation of the functions. Since the number of dots drawn in these images is much 
smaller than the number of times each curve oscillates, the plots appear to be of 
an entirely different shape than the true curves. Indeed, we can’t hope to plot these 
curves at this resolution, since the thickness of a line is greater than the wavelength 
of the oscillations.

the popular internet videos of flying helicopters whose rotors appear not to spin. 
Similarly, if the frame rate is only slightly faster or slower than a multiple of the 
rotation rate of the object, the object appears to rotate very slowly.

8.7.3 Periodic Sampling Theorem
The periodic sampling theorem guarantees that whenever the number of samples of 
a band-limited periodic function exceeds the Nyquist rate, the function is uniquely 
determined by the samples.

Theorem 8.7.7 (Periodic Sampling Theorem). Assume that a band-limited 
function f : [0,T] —> F has the form f(t) = Y^k=-u ck^kt • If f is sampled at 
equally spaced points 0 = to < й < • • • < tn-i < T, where each te = ^, and n 
exceeds the Nyquist rate of 2v, then f is uniquely determined by its sampled values
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Фп(/) = f = (Л*о),  /(*1),  • • •, /(^n-i))« particular, the coefficients Ck are given 
by the DFT of the vector of samples, with a shift, that is,

Ck =
A 
fk+n

if k G [0, y\,
if к e \—y, 0), 

where (/о, A,..., A-i) = ? = Wnf is the DFT off.

Proof. The discrete inner product (Фп(/), Фп(д))п is uniquely determined by the 
values of f and g at the sample points to,..., tn_\. Moreover, by Proposition 8.5.5, 
the set {&n(cl“kt)}k=o orthonormal with respect to For any к G Z and 
any £ G {0,..., n — 1} the sample value of the function ezajkt at tp is equal to the 
value of the function at fy. Therefore, the set

{Фп(е^)}”2

is also orthonormal with respect to (•, -)n. Since n > 2z/, we have у < n — v — 1, 
and therefore, for each integer к E [—v, y\ the coefficient

Cfc = ($n(/),$n(e-fct))n fk if к G [0, y), 
if к G [—У, 0)

is uniquely determined by the values of f at the sample points t0,..., tn_i. □

Example 8.7.8. The function of Example 8.7.2 has Nyquist frequency 7, so 
the function is uniquely determined (as a periodic band-limited function with 
у = 7) by 15 or more samples. In Figure 8.15 we show what happens when 
we sample 2, 5, 9, 11, 14, and 15 times. In each case the red curve is the 
periodic function with the smallest Nyquist frequency that passes through all 
the sample points. The signal is not correctly reconstructed until the number 
of samples exceeds 14.

Vista 8.7.9. There is also a sampling theorem for nonperiodic functions, 
called the Shannon sampling theorem. Like the periodic sampling theorem, it 
guarantees that if a function is band limited, then sampling above the Nyquist 
rate will allow the function to be completely reconstructed. More precisely, 
it guarantees that /(t) is completely determined by its values at the points 
tk = for к G Z, that f(t) can be written as

/(») = E (8.34)
, nt — ктгk——oo

and that this series converges uniformly. A full treatment of the Shannon 
sampling theorem requires the Fourier transform (see Vista 8.2.17), rather 
than just Fourier series. This is discussed in more depth in Volume 4.
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9 samples

Figure 8.15. Attempts to reconstruct the f in Example 8.7.8 with 2, 5, 9, 11, 14, 
and 15 equally spaced samples. The function f (black) has Nyquist frequency 7. In 
each case the red curve is the periodic function with the smallest Nyquist frequency 
that passes through all the sample points. As described in the periodic sampling 
theorem (Theorem 8.7.7), the function is uniquely determined (as a band-limited 
periodic function with Nyquist frequency 7) once the number of samples is strictly 
greater than the Nyquist rate of 14.

8.7.4 Antialiasing
We have seen that when a band-limited, T-periodic function

/(t) = £ ckeiukt 

k——v

is sampled at a rate n <2v, aliasing occurs when we try to reconstruct the function, 
and the alias may be very different from the original function. One way to improve 
the situation is to first set all the Fourier coefficients outside the interval [—/z, p] to 
zero, where /1 = ; that is, replace f by the function

/(f) = £ ckeiukt. 

k——p,

Sampling f at least n times will allow perfect reconstruction of f from the sample. 
This is preferable to sampling from f and reconstructing an alias for f because f 
is the best approximation to f (measured in the L2-norm), as the next proposition 
shows. That means f is always at least as close to f as the corresponding alias 
would be.
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Proposition 8.7.10. Define span(F^) to be the space of all band-limited Fourier 
series on [0,T] with Nyquist frequency at most v. If f G L2([0, T];F) satisfies 
f = 5[/], then the truncated Fourier series f = satisfies

\\f-f\\<\\f-9\\

for all g G span(B1/).

Proof. The proof is Exercise 8.37. □

The process of replacing f with f is an example of low-pass filtering, so named 
because it keeps (passes) low frequencies and discards (filters) high frequencies. If 
it is done before sampling, to reduce aliasing effects, it is called antialiasing. With 
audio signals, antialiasing is often done with an analog electronic circuit, and with 
video or images, it is often done with a lens or optical filter that slightly blurs the 
images.

8.8 Haar Wavelets
Fourier analysis deals with the representation and approximation of functions as 
the superposition (linear combination) of trigonometric functions. In this section 
and throughout the remainder of this chapter, we consider superpositions of a dif­
ferent class of functions called wavelets, which come from sums of two self-similar 
functions, called the father and mother wavelets, that are rescaled and translated 
numerous times to form a representation or approximation of a function. In this 
section and the next, we focus on a simple class of wavelets called Haar wavelets. 
We consider more general wavelets in Section 8.10.

One of the key features of Fourier analysis is the fact that the Fourier basis 
functions {ега}к1}ке% form an orthonormal basis. This allows us to use the inner 
product to peel off the Fourier coefficients and represent a function as a linear com­
bination of the basis functions. This concept also extends to the discrete case, where 
a signal can be written as a linear combination of the discrete Fourier basis vectors 
{wn^Io, and the coefficients are likewise computed with an inner product; see 
(8.47). Wavelets work similarly, expressing or approximating a signal or sample as a 
linear combination of wavelet basis functions, and the coefficients can be determined 
by computing an inner product.

While Fourier series nicely represent and approximate smooth periodic func­
tions, they are not ideal for functions with discontinuities. Indeed, as discussed in 
Section 8.2.3, the Fourier series suffers from some undesirable error, called the Gibbs 
phenomenon, when applied to discontinuous functions. This makes the Fourier ap­
proximation less than ideal for discontinuous functions. By contrast, wavelets can 
gracefully and efficiently represent discontinuities in a signal.

Another advantage of wavelets is that the basis functions can represent local 
behavior with only a few terms. Contrast this with Fourier series, where all the 
basis functions are periodic and hence do not naturally represent local behavior. 
One approach for dealing with this is to divide the domain into small subintervals 
and use Fourier analysis on the restriction of the function to each subinterval, but 
then it is difficult to capture behavior that occurs at large time scales. Wavelets 
provide a different way of handling these problems.
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In summary, wavelets are sets of orthogonal functions specially designed for non­
periodic, piecewise-continuous functions. In many situations involving piecewise- 
continuous functions, such as those observed in images, videos, and other digital 
media, a wavelet basis can be chosen so that the wavelet transform is sparse, mean­
ing that it has only a small number of nonzero entries in its matrix representation, 
thus providing a very efficient representation.

8.8.1 The Haar Father and Sons
We begin with a function called the Haar scaling function (or Haar father function) 
and its scaled translates, which we call its sons.

Definition 8.8.1. The left-continuous39 map p : R —> {0,1} given by

39Recall that a function f is left continuous if limf_>a+ /(t) = /(a) for every a £ R.

99(f) =
if 0 < t < 1, 
otherwise

(8.55)

is called the Haar (father) scaling function. Its graph is given in Figure 8.16. The 
Haar sons are the following scaled and translated versions of the father function:

= ip(23t -k) =
•£ fc J. fc + 1
V 2J — b ’
otherwise,

where j G N and к e Z.

-1.0 0.5 2.0

Figure 8.16. Plot of the Haar father function p given in Definition 8.8.1.

The Haar father can be thought of as the most basic step function. Any left- 
continuous step function f with compact support that only jumps at integers can 
be written as linear combinations of integer translates of the Haar father. More 
precisely, such an f can be written as

oo
/(f) = £ /(fcMt-fc).

к— — oo

Note that since f has compact support, all but a finite number of the sample values 
f(k) are zero. Hence the sum is well defined.
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Example 8.8.2. Step functions that change only at integer values can always 
be written as linear combinations of translates of the Haar father function p. 
Consider the function

f(f) = 2p(f) + 0.8c/?(t - 1) + 3.- 2) - 2p(t - 3), 

which is illustrated in Figure 8.17.

3- ------------------

2 ' ------------------

1 - ____________

0------------------------------------------------------------------------------------------------- -------------------

- 1 -

- 2 - ------------------

— 3 л---------------1------------------ 1------------------- 1------------------ 1------------------- 1------------------ 1
-1 0 1 2 3 4 5

Figure 8.17. The function f in Example 8.8.2.

More generally, we can approximate any function f : R —> R by choosing j G N 
and sampling f at the points tk = for к G Z. This gives an approximation Tj [f] (t) 
by left-continuous step functions that have their discontinuities at the values , by 
using the sons р^к:

™ / k\ / b\
Tj[f](t)= £ (8.56)

k——oo 4 7 k— — oo x 7

Again since f has compact support, all but a finite number of the sample values 
are zero and the sum is well defined. Moreover, as shown at the end of this 

section, if f is left continuous and has compact support, then the approximation 
(8.56) converges pointwise to f as j сю.

Example 8.8.3. Consider the function

/(t) = 100t2(l - t) I sin(10t/3)|. (8.57)

We can approximate f by computing 7j[/] for various values of j € N; see 
Figure 8.18.
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Figure 8.18. Sampling a function f (black) at points of the form for к G Z 
gives an approximation (red) by Haar sons, as f(t) ~ Tj [f] (t) as given in (8.56).

8.8.2 Vector Space Structure
The Haar sons span a vector space that can be used to approximate functions. 
Moreover, the Haar sons define an orthogonal basis. This is a very natural basis to 
use for sampled signals, especially those which are discontinuous and nonperiodic.

Throughout the remainder of this chapter, we assume that we are working in 
the vector space L2 (R; R) of square-integrable functions with compact support and 
with the usual inner product

Zoo
fW)g(t)dt. (8.58)

-oo

Definition 8.8.4. For each j G N, let Vj denote the span of the set {(pj,k}ke%-

Every function in Vj is a left-continuous step function with compact support 
and has discontinuities only on the grid points {^}fceZ- Moreover, it is immediate 
that

<p(t) = + g>(2t - 1), (8.59)
which generalizes to the scaling relation

Tj,k(t) = Tj+l,2k(f) + W, (8.60)

which holds for all j G N and к G Z. This shows that Vj is a subspace of V)+i, for 
each j G N. Thus we have an increasing chain of vector space inclusions

Vo C Vi C V2 C • • • C Vj-г C Vj C • • • .

Proposition 8.8.5. The set of functions {2^2(pj^}kez C Vj гз orthonormal.

Proof. The proof is Exercise 8.39. □

Assume f G L;?(R;R). We can project f orthogonally onto Vj by computing
OO OO „ fc+1

Projy. /(t) = 2J/2 ^2 (.A2j/Vj,fc(*))^,fc(*)  = 27 H If f(t)dt.
k——oo k——oo J 2J
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The sum is finite because the support of f is bounded and thus covered by a finite 
number of intervals of the form [i, If f is sufficiently well behaved, then as 
j gets large the integral is well approximated by the area of the rectangle of height 
f (7^-) and width 2“Л This gives

k+i z ./ 2^ f A* \
k
2-7 X 7

which implies that projv. /(t) « £ Yr In °ther words, the orthogonal
projection of / onto Vj is approximately !)[/], which also lies in Vj.

8.8.3 Haar Mother and Daughters
Recall that Vj is a subset of V)+i. Here we introduce the Haar mother wavelet, 
and her daughter wavelets, which provide an orthonormal basis for the orthogonal 
complement V^ in V)+i. This allows us to express elements of Vj+i as linear 
combinations of Haar sons in Vj and Haar daughters in Vj-.

Definition 8.8.6. The Haar mother wavelet is the function

— y>(2t — 1) = — 1
0

ifO < t < 

otherwise.
(8.61)

The graph of ф is given in Figure 8.19. The Haar daughter wavelets ^j^ are scaled 
and translated versions of the mother:

Фз,к№ = ^(2^ - k) = - ft+l,2fc+lW (8.62)

for all j G N and all к eZ. Denote the span of {ф^к}ке% by Wj.

0-

-1.0 -0.5 0.0 R5 Z0

Figure 8.19. Plot of the Haar mother function ф given in Definition 8.8.6.



8.8. Haar Wavelets 371

Proposition 8.8.7. The following hold for all j G N and k,£ G Zr

(О =
(ii) € Vj+i and hence Wj C Vj+i-

(iii) = 0.

(iv) ll^.fclli = 2“J-
(v) The set {^j,fc}jeN,fcez is orthogonal.

Proof. The proofs of (i)-(iv) are Exercise 8.41. For (v) observe that if j < jf, 
then by (ii) we have 'ipj^ € Vy, but by (iii) {^j^k^g} = 0 for all g e Vjf, so 
('Ф^кт'Фу,k’} = 0- Finally, when к 7^ kf the functions and ^k' have disjoint 
support, and so V^fc') = 0- □

8.8.4 Daughters and Sons Are Complements
As shown in Proposition 8.8.7(iii), for a given j G N each daughter is orthogonal 
to each cpj^ for all &,£ G Z; thus each € VJ±. This implies that Wj C V^, 
where Vj~ is the orthogonal complement of Vj in V)+i. We now show that Wj = Vj~.

Theorem 8.8.8. The space Wj is the orthogonal complement ofVj in that 
is, Vj ф Wj = Vj+\ and Wj = Vj~. We denote this by

= Vj e± wr

Proof. Since Wj ± Vj and Wj C Vj+i, it suffices to prove that V^ C Wj. Assume 
that

oo

9 = UkTj+l,k £ V7 + I
k——00

with g G V^; therefore, g ± (pj,m for each m G Z. Using the scaling relation (8.60) 
and the orthogonality of sons (Proposition 8.8.5), we have

0 = = (<Pj+l,2m,g) + + = a2m •

Thus U2m+i = -fl2m for each m G Z. It follows that

00 00

g = 2 akTj+l,k = 2 (®2m 9^7+1,2m H” ^2m+19-?7 + l,2m+l)

k— — 00 m— — 00
00 00

= ®2m (9^7+1,2m 9^J+1,2m+l) = ^2ra^j,ra □
Tn— — 00 m——00

The previous theorem allows us to write each Vj as an orthogonal direct sum of 
Haar daughters.
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Corollary 8.8.9. For any i G N with i < j e Z+ we have

Vj = Vi e± Wi e± wi+1 e± • • • e± %_2 e± w^.

Proof. For j G Z+ we have

Vj = Vj-! e± Wj-!
= Vj-2 ®± Wj_2 ®_l Wj-1

— Vo ®_L Wo ®± • ' • ®± Wj—2 ®± Wj — 1. □

The corollary shows that any function f G Vj can be written as f = vo + wo + 
wi H------ |- wj-1, with г>о С И) and Wi G Wi for each i G {0,1,... ,j — 1}. Moreover,
for any i e N with i < j, we have

f = Vi +Wi, (8.63)

where

Vi = Vo + Wo H-------1- Wi-! G V,
Wi = Wi~\------- 1- Wj-! G V^.

This allows us to isolate the parts of a signal that change more slowly, namely 
Vi G Vi, from those parts that change more rapidly, namely Wi G V^. For a fixed, 
relatively small value of i < j, we call Vi the wavelet approximation of f and call Wi 
the detail of f. By removing the detail from a signal and keeping the approximation, 
we can filter out unwanted noise and compress the signal.

Example 8.8.10. Consider the function / from Example 8.8.3. We take as 
the original the sample of f at equally spaced points of distance 2-8 apart. 
The approximation and detail of the sample are given in Figure 8.20 for j = 6. 
The method for computing this decomposition is given in Section 8.9.

Nota Bene 8.8.11. If f is sampled at the points of the form to construct 
7}[/] — and T)[/] is decomposed as Vi + Wi, for some i < j,
then the approximation Vi is not the same as the sampled approximation
TtIf] — Sfc /(2*

8.8.5 *Uniform  Approximation by Haar Sons
Any continuous function with compact support can be approximated uniformly to 
arbitrary precision using Haar sons.
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original approximation detail

0.0 0.5 1.0 0.0 0.5 1.0

Figure 8.20. A plot (left panel, black) ofT8[f] G V8, where f is the function from 
Example 8.8.3. This is constructed by sampling f at the points of the form As 
described in Corollary 8.8.9, the function T8 [f] can be decomposed into the sum of 
its Haar wavelet approximation Vi G Vi and its detail Wi G . The Haar wavelet 
approximation v6 G Vq of T8[f] is plotted in the center panel (red), and the detail 
ge G Vg1 is plotted in the right panel (blue).

(TO (k5 To

Theorem 8.8.12. Let f : R R be a uniformly continuous function with compact 
support. Given e > 0, there exists N G N such that Tj [f] G Vj satisfies

H/-^-[/]||LoO=SUp|/(t)-TJ[/](t)|<S (8.64)

whenever j > N.

Proof. Assume that e > 0 is given. Since f is uniformly continuous, there exists 
8 > 0 such that 

|/(s)-/(t)|<£
whenever |s — t\ < 6. Choose N so that 2 N < 6. Then for j > N and t G R, 
choose к G Z so that

к к + 1 
2-> _ < 2->

This gives 
1Ж- /(fc2->)| <e,

and thus
00 / к \

тап= £
k——oo ' '

(8.65)

satisfies (8.64). Since f has compact support, all but a finite number of the terms 
of (8.65) are zero, and thus Tj[f] is an element of Vj. □

A similar argument shows that Tj [f] converges pointwise for left-continuous 
functions with compact support.
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Theorem 8.8.13. If a function f is left continuous with compact support, then the 
Haar son approximation Tj [f] of f converges pointwise; that is, for every t e R and 
for every e > 0 there is an integer N > 0 such that \f(t) — Tj[/](t)| < e whenever 
j>N.

The point is that Tj [f] (t) converges to f(t) as j oo, and if j is sufficiently 
large, then Tj [f] is a good approximation of f. In practice, when dealing with slowly 
varying functions, j does not have to be very large to produce good results. This 
makes the Haar son approximation a good one for many digital signals and images.

8.9 Discrete Haar Wavelet Transform
As described in the previous section, we can approximate f G R) by projecting 
it onto Vj and writing it in terms of the Haar sons; that is, we can approximate f 
by sampling at each tk = to get

(k \
(8.66)

Moreover, Corollary 8.8.9 guarantees that any element of Vj can be decomposed 
uniquely in terms of the daughters which is generally more useful (see, for 
example, Applications 8.9.1 and 8.9.8) but which takes a little more work to com­
pute.

Transforming from sons to daughters is called the wavelet transform. In this 
section we consider methods for writing elements of Vj in terms of the Haar wavelet 
(daughter) basis, and we describe an efficient method for doing this called the fast 
wavelet transform.

Application 8.9.1. The wavelet transform is useful for filtering certain types 
of noise. When j is small, the approximations in Vj tend not to see high- 
frequency noise, which tends to show up in the detail (in Vj_L). Therefore, 
discarding the detail and keeping only the approximation in Vj is one way to 
remove the noise. This method is especially effective at removing salt-and- 
pepper noise (sparsely occurring black and white pixels) from an image.

8.9.1 Sampled Functions and the Discrete Inner Product
While the space Vj is infinite dimensional, we restrict ourselves to functions f that 
are of compact support, that is, f G Z/2(R; R). Thus when we project these functions 
onto Vj, all but a finite number of the terms in the sum (8.66) are nonzero, and 
thus the projection can be expressed as a linear combination of basis functions. In 
the case of Haar wavelets, one typically assumes for simplicity that the function f 
is supported on the interval [0,1). If the support is some other interval, say, [a, b), 
then we can translate and rescale as needed to reformulate the problem to having 
support on [0,1).

The space П £^([0,1); R) is spanned by the scaling functions (wavelet sons) 
(fj,k for к G {0,..., n — 1}, so this space is n = 2J dimensional. Moreover, on the
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interval [0,1) the nonzero wavelets in each Wi (г < j) are ^o, • • •, Thus
the wavelet basis for V?- Г1 L2([0,1); R) consists of the functions

{^0,0, V\),0, V>l,0, Vh»l, V>2,0, ^2,1, ^2,2, ^2,3, ^3,0, • • • , j-

Note that this basis also has n = 2J elements because

J-i J-i

n = 2j = 1 + 52 = dim(Vo) + 52 dim(Wi)- 
i—0 i—0

As with the DFT, we consider samples of functions, rather than the functions 
themselves. For An = 1/n = 2_J’, let 0 = to < • • • < tn = 1 be given by tk = кДп 
for each к G {0,..., n}. Given f G ([0,1); R), let

Фп(/) = f = (/о, Л, • • •, fn-1) = (/(to), • • •, /(tn-1)) e Rn. (8.67)

The sampling function Фп : Vj П£2([0,1);R) Rn maps each 92^ to the standard 
basis vector G Rn. This is clearly surjective, so Фп is an isomorphism of vector 
spaces.

Since the projected functions are in Vj and supported on [0,1), they are constant 
on each interval of the form [tfc,tfc+i). Hence, the inner product (8.58) reduces to 
the discrete inner product (•, -)n:

{f,9) = f(t)9^dt=^f(tk)g(tk) = (<M/),<M<7)V 

J° n k=0

This shows that Фп is an orthonormal isomorphism (see Volume 1, Sections 3.2.2 
and 3.3.2), so from now on we may work entirely in the inner product space Rn 
with the discrete inner product (•, -)n. As shorthand we write <pik = Фп((/?г,/с) f°r 
each i G {0,...,/} and each к G {0,..., 2г — 1}. Similarly, we write i/?ik = Фп(*̂л)  
for each г G {0,...,/ — 1} and each к e {0,..., 2г — 1}.

Example 8.9.2. Taking j = 2 (so that n = 22 = 4), we have

Sampling the functions in the basis {(/?o,o, ^o,o? VTo, ^1,1} gives
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8.9.2 Wavelet Decomposition
Converting from sons to daughters in Vj A L2([0,1); R) corresponds to changing 
basis from the standard basis in Rn to the basis {<p00, ^0,0> ^0,1 > • • • >

When j = 2, Example 8.9.2 gives the explicit form for the wavelet basis, and
expressing any f in terms of that basis amounts to solving the system

'fo ’1 1 1 0“ bo
fl 
h

= 1
1

1
-1

-1
0

0
1

br (8.68)
/3 1 -1 0 -1 _^3_

Let H4 be the matrix in (8.68). Since the columns of H4 are orthogonal (by 
Proposition 8.8.7), the inverse of H4 is the transpose of with the rows rescaled 
appropriately.

1111
1 1
4 2

0

Я4-1 1 -1 -1
-2 0 0

0 2-2

This is the matrix representation of the wavelet transform for any f 6 R4.

Example 8.9.3. Consider the function f 6 V2 given by

/(t) = 2(^2, o(£) + 0.8(/>2,i(£) + 3.1<^2,2(£) — 2(^2,з(^)*
Note that 4>4(/) = f = (2,0.8, 3.1,—2). The wavelet transform is given by 

= (0.975,0.425,0.6,2.55). Thus we have

Ж = 0.975^o,o(t) + 0.425^o,oW + <Wi,oW + 2.55^i,i (*).

More generally, for arbitrary j G N, computing the wavelet transform of f 
corresponds to solving the system

f = япь,

where b = (60, • • •, &n-i) and the columns of Hn are the discrete wavelet basis 
vectors. As in the case of j = 2, the matrix H~1 is always a rescaled transpose of 
Hn.

Since solving this system requires only that we multiply by H~ \ computing the 
wavelet transform this way has temporal complexity in O(n2). This is similar to 
computing the DFT by matrix multiplication. But, just as in the case of the DFT, 
there is a way to compute the wavelet transform much more efficiently. Surprisingly, 
this can be done in O(n) time, as we show in the next subsection.

8.9.3 The Fast Wavelet Transform
To compute the wavelet transform more efficiently, we use the following lemma to 
write each basis vector cpj^ of Vj in terms of elements of Vj-i and Wj_±.
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Lemma 8.9.4. For j G Z+ and к E Z, we have

Pj — l,k H” ^j—l,k j Pj — l,fc ^j—l,kPj,2k = —— 2 —~ and 4)j,2k+i = —— 2 —

Proof, For j = 1 and к = 0 the claim of the lemma reduces to

V(2t> = уИ + W) and V(2j-1) (8.69)

which follows directly from the definitions. For general j and k, simply take dilates 
and translates of (8.69). □

Theorem 8.9.5 (Haar Decomposition Theorem). Any function

f = 2 aj,kpj,k £ Vj {j £
k——oo

can be decomposed as
f = Vj-i

where
oo oo

i = i,fc and Wj—i = bj—i^^j—ijk
k— — OG k— — OG

with
aj,2k + aj,2fc+l 7 7 aj,2k — aj,2k+l ,Q -n4----- and bj_Kk = ------. (8.70)

Proof, The proof is just a computation, using the previous lemma:

oo

f= 2
k——oo 

oo oo

= a-j,2kPj,2k + «J,2fc+l^j,2fc+l
k——oo k——oo
1 oo 1 oo

= 2 aj,2k (SPj-l,k + ^j-l,k) + 2 <^j,2fc+l (pj-l,k ~ ^j-l,k)
k——oo k— — oa

1 oo 1 oo

= 2 (aj,2k + &y,2fc+l) Pj-l,k + 2 (&j,2fc — &j,2fc+l)
k——oo k——oo
oo oo

= aj — l.JtSPj — l,fc “h l,k
k——oo k——oo

= Vj_1+Wj-i. □
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Corollary 8.9.6 (Fast Wavelet Transform). Fix i < j, and let f e with 
n = 2J. Let

2г —1 j-l 2m-l

f = Ьтщк'Фгщк
k—Q m—i k—0

be the wavelet decomposition of f to level i, and define am = • • >«ж2т-1)

and bm = (6m,o, • • • 5 &m,2™-i)- The wavelet decomposition, consisting of аг and 
b$,bi+i,... can be computed using the recursive algorithm below, called the 
fast wavelet transform (FWT). For an implementation of this algorithm, see Algo­
rithm 8.3.

(i) Initialize by setting m = j and setting &j = f.

(ii) While m> i repeat the following steps:

(a) Compute am~i and bm~i via (8.70). To vectorize, let a^en and a^d 
be, respectively, the even-indexed and odd-indexed parts of Thus 
я , — 1 foeven -I- oodd^ л-nJ h , — 1 foeven — nodd^

(b) Decrement m: m m — 1.

(iii) Return аг and K,..., bj-i.

In particular, the full wavelet decomposition (ao, bo, bi,..., bj_i) is computed by 
this algorithm with i = 0. The temporal complexity of the algorithm is ~ 4n FLOPs.

Proof, The fact that the algorithm computes the required coefficients is an im­
mediate result of the Haar decomposition theorem (Theorem 8.9.5). The mth 
step requires 2m-1 additions, 2m-1 subtractions, and 2m multiplications by | 
for a total of 2m+1 FLOPs per iteration. Summing over all values of m gives 
SLi 2m+1 = 4(2-7 - 1) 4n FLOPs. □

2
3
4
5
6
7
8
9

10
11
12
13
14

import numpy as np
def FWT(a,j=0):

...... Haar FWT of a' down to level j 
II II II

# Assume len(a) is an integer power of 2 
m = int(np.Iog2(len(a)))

L = □ # List of the partial trasforms
while m > j:

L.append(0.5 * (a[: :2] - a[l::2])) 
a = 0.5 * (a[::2] + a[l::2]) 
m -= 1 

return a,L[::-1]

Algorithm 8.3. An implementation of the FWT algorithm for the Haar wavelet. 
It computes the wavelet transform of a vector a of length 2J down to level i, where 
0 <i <j.
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The theorem shows that the temporal complexity of the FWT is O(n), where 
n is the number of samples. Contrast this with the complexity O(nlog(n)) of the 
FFT. The reason that the FWT is faster than the FFT is that the wavelet transform 
is sparse; that is, many of the entries in the matrix Hn are zero because the wavelets 
are supported on very small intervals. This can be seen by looking closely at Hn. 
While the first two columns of Hn have no zeros, the next two columns have only half 
their entries that are nonzero, the next four have only a quarter that are nonzero, 
and so forth.

Example 8.9.7. Consider the function f from Example 8.9.3. Instead of 
computing the wavelet transform by matrix multiplication, we can use the 
FWT. Setting a2 = f and using (8.70) we have

a0 = [0.975]

and

bo = [0.425], giving

0.975
0.425

0.6
2.55

as the wavelet transform. Thus

f(t) = + 60,0^0,0 W + &i,oVh,o(£) + bi,iVh,i(£)
= 0.975<£o,oW + O.425^o,o(^) + <Wi,o(*)  + 2.55^i,i (t),

which agrees with the result of Example 8.9.3.

Application 8.9.8. The wavelet transform is often used to compress signals 
or images. In many settings the most important information in the signal is 
carried in the approximation Vj E V), while the information carried in the 
detail Wj E is less important. Keeping the approximation and discarding 
the detail results in significant compression with minimal information loss. 
This is the basis of compression used by the JPEG 2000 image compression 
standard (although these do not use Haar wavelets). This is treated in more 
depth in the computer labs associated with this volume.

8.10 *General  Wavelets
Haar wavelets are reasonably well suited to slowly varying piecewise-continuous 
functions such as those encountered with many digital signals and images. There 
are many other examples of wavelets that can also be used, and some tend to have
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time (seconds)

Figure 8.21. An ECG signal, which is sampled at 500 Hz, measuring the electrical 
activity of the heart (in millivolts) using electrodes placed over the skin.

more success with specific types of signals. For example, Figure 8.21 shows a typical 
electrocardiogram (ECG) signal from a beating heart. Because this signal has sharp 
peaks that occur with each beat and intermittent periods of slow variation between 
beats, the Haar wavelet is usually less favored than other types of wavelets. But 
the Daubechies wavelet, which is defined in the next section, tends to do fairly well 
with ECG signals.

In this section, we show how to generalize wavelets to a much more general 
setting, where many different scaling functions (father wavelets) can be considered, 
each with a corresponding mother wavelet that couples with the father. These are 
combined to produce their own wavelet decomposition.

8.10.1 Scaling Function
To generalize the wavelet constructions of the previous sections, we identify the key 
requirements of a general father function, also known as a scaling function.

Definition 8.10.1. A function p e L;?(R;R) is said to be a scaling function (or 
father function) if it satisfies the following:

(i) It has positive mass, that is, p(x) dx > 0.

(ii) The set {p(x—k)}ke% of translated father functions is orthonormal with respect 
to the usual L2 inner product.

(iii) It can be written as a linear combination of half-scaled translates, that is,

<p(x) = hep(2x — I), (8-71)
£ez

where all but a finite number of the coefficients he G R are zero.

Example 8.10.2. In the case of the Haar scaling function, the scaling relation 
(8.59) shows that (8.71) holds with ho = h± = 1 and hi = 0 for all i {0,1}.
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Definition 8.10.3. Given 92 G £2(R;R) satisfying Definition 8.10.1, the sons are 
the functions

<Pj,k(x) = p(2jx - к), (8.72)

where j G N and к e Z.

Proposition 8.10.4 (Scaling Relation). For each J G N and к E Z we have

9^j,fc = (8.73)
^ez

Proof. Reindexing the sum via m = 2k +1, gives

4>5,к(я) = p(2Jx — к) = h^pt^^x — 2k — £)
£ez

= У7 frm-2fc¥’(2'7+1Z - m) = ^2 hm-2k<Pj+l,m(x). □ 
mEZ mEZ

Proposition 8.10.5. For any j G N, the set {2^2pj^}ke^ is orthonormal.

Proof. Using the u-substitution и = 2Jx — I, we integrate to get

{pj,k,<Pj,£) = f 9?(2Jx — k)p(2jx — t) dx = 2-J6k,e- □
J —00

Proposition 8.10.6. For j G Z+ and k,m EZ; we have

{Pj,kiPj — l,m} = 2 ^hk—2rri' (8.74)

Proof. This is Exercise 8.48. □

Remark 8.10.7. Let Vj = span^t/^}/^^). As with Haar sons, we have the chain 
of inclusions

Vo C Vi C V2 C • • • .

Remark 8.10.8. Definition 8.10.1 puts many constraints on the function p and 
the possible values of the scaling coefficients h^.

Proposition 8.10.9. The coefficients hk satisfy the following properties:

(i) For £, m G Z we have

2£^fc—2m = 2J^jTn. (8.75)
fcEZ
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(ii)
52/ifc = 2. (8.76)
fcez

(iii)

52h2k = i and 52/i2fc+i = 1- (8-77)
fcez fcez

Proof.

(i) We have

2 Ьк—2m — 2? hk—21 (SPj,k)
ke% ke%

(ii) Integrating (8.71) with the substitution у = 2x — к gives

= 2

Dividing both sides by <p(x) dx, which is nonzero, gives (8.76).

(iii) To prove (8.77), set t = 0 and sum (8.75) over meZto get

mezfcez

Breaking the inner sum into even (k = 2j) and odd (k = 2j + 1) values of к 
and changing the order of summation gives

*=£ £ h2j-2mh2j + ^2j+l-2m^2j+l

mEZ \JEZ JEZ

^2j+l-

j'EZ \mEZ j'EZ \mEZ

Substituting m j — m gives

2 — I ^2m j I I + I 2 ^2m+l j I ^2J+1 I • 
\mEZ / \ JEZ / \mEZ / \ JEZ /

Setting r = him and s = /i2m+i we have r2 + s2 = 2. Moreover, 
applying (8.76) gives r + s = 2. Solving the system yields r = s = 1, which 
gives the result. □
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8.10.2 Wavelets: Mother and Daughters

Definition 8.10.10. Given a father function <p satisfying Definition 8.10.1, the 
corresponding mother wavelet is the function

Цх) = (8.78)
^ez

where the scaling coefficients hk are those given in (8.71). For each j € N and 
fc G Z define the daughter wavelet 'ifak to be

^j,k(x) = ^(2jx - k). (8.79)

Moreover, let Wj = span({'0j!fc}fcez) be the span of the daughters.

Proposition 8.10.11. Given j G N and к G Z, we have Wj C V)+i with

= (8.80)
£ez

Proof. Let € € — 2k. Thus

'i/ij^x) = ^(2jx — k) = ^2(—l)^/zi_£(/?(2j+1a; — 2k — t)

= 52( —1)^^1—е+2/с^+1,€(^)« □
^ez

Proposition 8.10.12. Given a scaling function 99 satisfying Definition 8.10.1, 
the corresponding son and daughter wavelets and ^j^ (see (8.72) and (8.79), 
respectively) satisfy the following properties for each j G Nr

(i) JXq dx = 0 for each к G Z.

(ii) (V^,fc5 ^j,7n) = 0 for all A;, m G Z.

(iii) The set {2J’/2^j,fc}fcez is orthonormal.

Proof.

(i) Integrating (8.78) gives

>00 __ POO 1 __ POO
^(x)dx = '^j-l)eh1_e ip(2x~e)dx =4>(y)dy.

-00 £ez J-00 2 £ez J-00

The result follows from Exercise 8.49.
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(ii) We have

1) ^1—£+2fc9-?J+l,£

uez £ez

-2m^l-£+2fc <£j+l,£)

£ez «ez

= 2-J-1 l)€^£-2m^l-£+2fc

£ez

= 2->-i(-i)fc+- j2(-i)4fc_m+£/ife_m_£+1. 

£ez

Note that the negative indices cancel the positive. Specifically,

0 oo
( 1) m+£^fc—m—£+1 = 1) m—m+£+l

£=-oo £=0
oo

— 1) Ьк—тп—£+l^fc—m+£-
£—1

Thus
1) m+£^fc—m—£+1 = 0-

£ez

(iii) Reindexing and using (8.75), we have

2^ fyjfa^j,Tn) = 2^" ( 1) h\_z+^ktyj+!,£•) 1) ^1—«4-2771^4-1,i
left

= 2J y^( —l)€+2/li-£+2fc^l -i+2m ^Pj+1,i)
ie%

= - hi-£+2khl-£+2m
2 £ez

= q ^£+2fc^£+2m = □
2 £ez

8.10.3 Wavelet Decomposition
In this section we generalize Theorem 8.8.8. This makes the wavelet transform 
possible, where an element of Vj can be expressed as a linear combination of wavelet 
daughters. We describe the general wavelet transform in the next section.

Theorem 8.10.13. For j G N, we have V)+i = Vj ®j_ Wj.

Proof. We know that Wj ± Vj, Vj C Vj+i, and Wj C Vj+i. Thus it suffices to 
show that Vj+i С V? ® Wj. We do this by showing for j, к G N that there are sets
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{uy^bez and {bj^}^z (with all but a finite number being zero) such that

%+1,к = Z (8.81)
^ez £ez

Assuming the hypothesis, Exercise 8.50 gives

азЛ = 2^k-2(. and bj^ = -(—l)fc/zi_fc+2£. (8.82)

Thus

2^j+l,fc = Л&-2£<^,£ + y^(~

^ez ^ez

= (hk—2£^m—2£ T —m+2^) ^Pj+1

^EZ mGZ

Taking the inner product with cpj+i^+i gives

2£о,г = ~ У2 (^c-2£^fc-2£+z + ( —1)г^1-/с+2£^1-А:+2^-г) • (8.83)
2 £ez

Thus to prove the theorem, it suffices to show that (8.83) holds. We do this by 
proving the case for even (г = 2s) and odd (i = 2s + 1) values of г, respectively.

For the even case, mapping I к — £ in the first sum of the right-hand side of 
(8.83) gives

У2 (^k-2^fc-2£+2s + ^l+2£-fc/il+2£-fc-2s) 
£ez

= У2 (^2£-fc/i2£-fc+2s + ^l+2£-fc/il+2£-fc-2s) 

£ez

= hj-khj-k+2s — hjhj+2s = 2$s5o = 25^0*  
jez jez

For the odd case, mapping £ s + к — £ in the second sum of the right-hand side 
of (8.83) gives

УУ~ 1)г^1+2£-/с^1+2£-/с-г = “ У^ ^l+2£-fc^-fc-2s = ~ У^ hk-2£+ihk-2£,

which cancels with the first term in (8.83). □

Since Vj+i = V3; ®_l Wj, we can write any f G V)+i uniquely as f = Vj +wj with
G Vj and Wj e Wj. Since is an orthogonal basis for Vj and is

an orthogonal basis for Wj, we can write f G V}+i uniquely as a linear combination 
of elements in these two bases. To find the appropriate linear combination, we 
generalize (8.82) with the following corollary.
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Corollary 8.10.14. For each j € N and к E Z we have

1
Vj+^k — 2 У^ hk-2^Pj,£ + ( — l)fc У2 

k£ez ^ez
(8.84)

Example 8.10.15. Haar wavelets satisfy ho = hi = 1 and hi = 0 for all 
i / 0,1. Thus (8.84) gives

<£j+l,2k = У2 + hi-2k-2^j,f. = 2 + hi^j^k) ,
z £ez

<£j+l,2fc+l = 2 У? fl2k^l-2£(Pji£ — ^l-(2fc+l)-2£'0j,€ = ~ ^WP^k ~ ho^jjc) , 
z £ez

which are exactly the relations of Lemma 8.9.4.

8.11 *General  Fast Wavelet Transform and Examples
In this section we show how to extend the FWT from the Haar case in Section 8.9 
to general discrete wavelets, thus providing a general computational framework for 
wavelet decomposition. As an example, we discuss the famous Daubechies wavelets, 
which are used widely in applications. We conclude by showing the Daubechies 
wavelet decomposition of an ECG.

8.11.1 Sampling for General Wavelets
The FWT gives a change of basis to express a function f G V3; in terms of the 
daughter wavelets. In particular, since

Vj = Vi ®± Wi ®_L ®_L • • • ®_L Wj—2 ®± Wj—1) (8.85)

we can use the DWT to decompose f as f = fy + where Vi G Vi is the ap­
proximation and Wi G V^ = Wi ®_l Wi+i ®_l • • • ®j_ Wj_2 ®± Wj-i is the detail 
(see, for example, (8.63)). But before we can do this, we must have the function f 
(or a sample of /) expressed in terms of the basis {(pj,k}kez of Vj. In the case of 
Haar wavelets, this was trivial since we can simply sample the function directly (see 
(8.66)), but in the general case it’s not immediately clear how to take a compactly 
supported function f G L;?(R;R) and compute the projection projv. f itself or a 
good approximation of the projection.

Recall that for any function f G Z/2(R; R), the nearest element of Vj to f is the 
orthogonal projection onto Vj given by

OO OO / pOQ \
projv. f = 2^/2 /) (/ f(x)<pj,k(x)dxj

fc=-oo fe=-oo V-°° 7

Since the support of p is bounded, the support of pj^ can be made arbitrarily 
small by choosing j large enough. If f is continuous or otherwise well behaved, 
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then on a sufficiently small interval, it is almost constant, and the integral above is 
approximately 2_J f(2~^k) <p(x)dx, as the following theorem shows.

Theorem 8.11.1. If f G L2(R;R) is continuous and p is compactly supported, 
then for any e > 0 there exists j > 0 such that the coefficients aj^ in the expansion 
(8.87) of the projection projv. f satisfy

|aj,fc - a/(2--7A:)| < £,

where a = p(x) dx.

Proof. Assume the support of p lies in the compact interval [—£,£]. Since f is 
continuous, it is uniformly continuous on [—L, L], so for every e > 0 there exists a 
5 > 0 such that |/(ж) — f(y)\ < % whenever |ж — y\ < 5. Choose j > 0 such that 
2_JL < 5. Hence for any к G Z the support of lies in [2—J (A; — L), 2~i(k + L)]. 
This implies that

/•oo /•2-5(fc+I/)
2~]a]tk = / f(x)<pj,k(x)dx= / flx^p^x - k) dx

J— oc L)

= 2"> j f(2~j(t + k)yp(t)dt

/•OO
= 2"J/(o:o) / <p(t) dt = 2~1f(x0)a

J —oo

for some = 2_J(A +10) € [2-J(A — L), 2~i(k + L)]. Since

|2-J(k +10) - 2~jk\ = 2~j\to\ < 2~jL < 5,

it follows that p 
|/(2^(fc + to))-/(2-^)|<-. a

Thus

|aJifc - a/(2->fe)| = la/Cro) - af(2~^k)\ = a|/(z0) - /(2’^)1 < £• □

Remark 8.11.2. Since aj^ ~ af(2~^k), when j is sufficiently large the projection 
projv. f is well approximated by the sampled sum

proj^ f = 52 ~ ° 52 /(2-7/сМл- (8-86)
fcez fcez

Now that we have the approximate the projection, we can consider the DWT.

8.11.2 The FWT for General Wavelets
Fix a value of J E N and let n = 2Л Given any function f G Vj with compact 
support, assume f G span({^fc}^Q-1) for some M so that we can write

nM— 1

f = 52 (8-87)
fc=0
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As in the case of Haar wavelets, the relations (8.84) can be applied iteratively to 
write f in terms of the orthogonal wavelet basis

9^0,0 > • • • , V>0,0, • • • ? ^0,М-1^1,0> • • • , • • • ,

Theorem 8.10.13 guarantees that f can be written in terms of the bases for Vj-i 
and Wj_i as

f = 52 aj-i,kVj~i,k+52 (8-88)
fcez fcez

A calculation similar to the proof of Theorem 8.9.5 gives the following theorem.

Theorem 8.11.3. For j e Z+, the coefficients aj-i.k and bj_±^ in (8.88) satisfy

a>j—i,k 2 Z and bj_\ ^ — 2( 1) /и—(8.89)
£ez ^ez

Proof. Taking the inner product of f with the basis function Pj-i,k is

2 — = (9?J —l,fc?/) = / hf—2k(Pj,£i ^'j,'rn(Pj,m )
\£eZ mGZ /

£€% m£Z

Similarly, the inner product of f with the basis function 'ifj-i^k gives

2 ^bj — i^k = (^j — l,k>f} = ( ^( 1) h±—£-\-2k(Pj,£-) )
\£ez mez /

= ( 1) ^1—£-\-2k^j,m (^J,£5 9-?j,Tn) = 2 ^ ^ ^( 1) hi—£-^2k^j,£’ □
£ez mez £ez

Theorem 8.11.3 shows that the same idea used for the Haar case gives an FWT 
for general wavelets constructed from a more general scaling function p. The algo­
rithm is outlined in Algorithm 8.4.

Remark 8.11.4. If there are К nonzero coefficients hk in the scaling relation 
(8.71), then the zth step of the FWT iteration (Algorithm 8.4) requires 2г-1А 
multiplications and 22-1(JC — 1) additions (or subtractions). This adds up to a 
total of 2г-1(2А — 1) FLOPs per iteration. Computing the full wavelet transform 
by this method requires 2г-1(2А — 1) = (2J — 1)(2JC — 1) ~ 2-?+1A = 2Kn 
FLOPs.

8.11.3 The Daubechies Wavelet
In the 1980s Ingrid Daubechies developed a new class of wavelets, where both the 
father function p and the mother function if are continuous. The canonical example 
from this class is known as the Daubechies db2 scaling function and wavelet. These



8.11. *General Fast Wavelet Transform and Examples 389

(i) Initialize by setting i = j.

(ii) For each к e {0,1,2,..., 2г-1М — 1}, compute (8.89).

(iii) Decrement г: i G- i — 1.

(iv) If i > 0, then repeat from step (ii).

Algorithm 8.4. Outline of the FWT algorithm for general wavelets. Given f as in 
(8.87), determined by coefficients a.j = (o^o, • • •, aj,nM-i)? this algorithm computes 
the coefficients aj_i and b^i of the decomposition (8.88) and then continues to 
compute a.i and Ьг iteratively for all i E {j — 1,..., 0}.

functions are continuous but cannot be written down in terms of elementary func­
tions; see Figure 8.22. One advantage of the continuous wavelets is that they tend 
to approximate continuous functions more efficiently than discontinuous wavelets 
do. After describing the Daubechies db2 wavelets, we apply them to the ECG image 
in Figure 8.21.

The Daubechies db2 scaling function p : R —> R is characterized by the scaling 
rule (8.71), satisfying

p(x) = hQp(2x) + hip(2x — 1) + h2p(2x — 2) + h3p(2x — 3), (8.90) 

with scaling coefficients

, 1 + V3 , 3 + V3 , 3-V3 , , 1-V3ho =--------- , hi =---- ----- , h2 =---- ----- , and h^ =---- ----- , (8.91)4 4 4 4

and the corresponding mother wavelet ф : R —> R, which is similarly characterized 

Figure 8.22. The Daubechies db2 scaling function p (left), and the mother wavelet 
ф> (right).
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by the rule (8.78), satisfying

ф(х) = — ho<p(2x — 1) + Л1у?(2я;) — /г2^(2ж + 1) + h^(p(2x + 2).

These coefficients are derived from the fact that the Daubechies db2 wavelet has 
a first moment of zero, that is,

хф(х) dx = 0. (8.92)

The only choice of four coefficients До, Д1, Д2, and that satisfy the scaling 
identities in Proposition 8.10.9, as well as (8.92), are those given by (8.91); see 
Exercise 8.56 for details.

To construct y? and Vs first define iterative sequences of functions (y2n)neN and 
(V’n)neN by

9?n+i(ar) = h0(pn(2x) + hiipn(2x - 1) + ЛгУ’пСЗж - 2) + h.3<pn(2x - 3)

and

^n+iW = -hopn(2x - 1) + hikpn(2x) - h2(pn(2x + 1) + h3(pn(2x + 2)

with initial functions <po = Фо = l(o,i]- К can be shown that both <pn and фп 
converge uniformly to their limiting functions <p and ф.

As an alternative construction, we can determine the values of and ф pointwise 
on each , where for each fixed j e N, the numerators к vary between 0 and 3 • 23'. 
As j gets larger, the distance between adjacent points grows smaller, and in the 
limit as j —> oo, we arrive at the values of the functions ip and ф on a dense set.

To do this start with the initial values

99(1) = 1 + 5/3
2 and ^(2) = 1 - Уз

2

Now use (8.90) to find 9?(|), 9?(|),and assume that p(x) = 0 for all x (0,3).
and y?( j). Then, using the values at <£>(|), y?(l), 9?(|), ^(2), and j), we can use 
(8.90) to compute the values 92Q), ^(1)> ^(I)> ап^ ^(т)*  °^ег
words, by having all of the nonzero values of 92(^7), for fixed j e N, we can find all 
the values of ^(^tt). Then we can increment j and repeat until we have a dense 
representation of 92 on the interval (0,3). To find the mother wavelet, we follow a 
similar procedure, but on (8.78) instead. Plots of the Daubechies scaling function 
and mother wavelets are given in Figure 8.22; see Algorithm 8.5 for the code that 
generated the figures.

8.11.4 Convolutional Form of FWT
Further inspection of (8.89) shows that the sums can be written as convolutions 
followed by what is called downsampling. We conclude this section by demonstrating 
how to compute a single iteration of the DWT algorithm using this approach. We 
apply this technique on the ECG signal in Figure 8.21.
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

import numpy as np

def daubechies(j):
""" Produce a sample of the Daubechies d2 scaling function 
and mother wavelet on the interval [0,3].
и и и

signs = np.array([1,-1,1,-1])
h = (np.array([1,3,3,1])+np.sqrt(3)*np.array ([1,1,-1,-1]))/4 
phi = np.zeros(3*2** j+1);
psi = np.zeros(3*2** j+1);

idxO = (2**j)*np.array ([1,2]);
phi [idxO] = 2*np . array ( [h [0] , h [3] ] ) ;
psi [idxO] = 2*np . array ( [h [3] , -h [0] ] );

for к in range(j):
idxl = 2**(j-k-l)*np.arange(l,3*2**(k+l) ,2)
for 1 in idxl:

z = 2*1  - (2** j)*np .array([0,1,2,3]) 
z = np.array([a*int (a in idxO) for a in z]) 
phi[l] = np. dot (h, phi [z] ) ;
psi[l] = np.dot(h[::-1]*signs,phi[z] );

idxO = idxl
return phi, psi

Algorithm 8.5. The Daubechies algorithm for generating values of the db2 scaling 
function and corresponding mother wavelet sampled at points of the form 
forke {0,1,2,..., 3-2-7}.

Writing the convolution operator as

(x*y)<  = "^ХкУе-к

simplifies the expressions in (8.89). Let aj = (aj,k)ke% and bj = (bj,fc)fcez denote 
the sequence of coefficients, all but a finite number of which are zero. Reindexing 
к —> 2£ — к gives the approximation coefficients as

= 2 У? hk-2£aj,k = 2 У? h-kaj,2£-k = (L * aj)2£, 
fcez fcez

where
L = 2 (^3’ ^2’ h-^hn).

The vector L is often called a low-pass filter.
Similarly, reindexing к —> 2£ — к gives the detail coefficients as

bj-i,£ = - y^(~l)fc^i-fc+2£Qj,fc = 2 yy_l)fc^i+&a.7,2£-fc = (H * aj)2£, 
fcez fcez
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where
н = -[-h0,h1,-h2,h3].

The vector H is often called a high-pass filter.
Both expressions include only the even values of the convolution. We can skip 

the odd-numbered elements via the downsampling operator

Dx £-2,^0, x2,.. •)•

In other words, we have

aj_i = D(L * a,-) and bj-i = D(H * a,-). (8.93)

Remark 8.11.5. In actual code it’s customary to implement edge conditions at the 
beginning and the end of the signal to give the convolution operator extra padding. 
This is done by adding К — 1 values at the beginning and the end of the sample, 
where К is the length of the filters L and H (K = 4 in the case of the Daubechies 
db2 wavelet). The leading and trailing padding most used is just the К — 1 elements 
of the signal, respectively, in reverse order. So if the actual signal is «о? «1? • • • ? «n 
and К = 4, then we feed the following as the signal into the convolution formulas 
(8.93):

(2з, a2l O1, Uq, а1ч а2ч • • • , an< an-l,an-2, an-3-

Example 8.11.6. Applying Algorithm 8.6 to the ECG data in Figure 8.21 
gives the decompositions shown in Figure 8.23. With each iteration of the 
DWT, the number of points halves the previous input and therefore so does 
the number of coefficients required to store the signal. Applying the DWT 
three times yields a visually similar ECG signal compared to the original, 
despite being | = 2-3 the number of coefficients.

import numpy as np 
2
3
4
5
6
7
8
9

10
11
12

def dwt(X,H,L):
""" The DWT algorithm using convolutions and downsampling.

К = len(H)
1 = np.flip(X[O:K-l],0) # left padding
r = np.flip(X[-(K-l)::],0) # right padding
X = np.concatenate((l,X,r),axis=0)
cD = np.convolve(X, H, 'valid')[1::2] # detail
cA = np.convolve(X, L, 'valid1)[1::2] # approximation 
return cA, cD

Algorithm 8.6. Algorithm for a single iteration of the DWT via convolution and 
downsampling. Left and right padding are attached to the signal as described in 
Remark 8.11.5.
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Figure 8.23. The top pair represents the first db2 wavelet decomposition, taking 
3580 points from the ECG signal in Figure 8.21 and splitting it into the approx­
imation (left) and the detail (right), each consisting of 1791 points. The middle 
pair is the second db2 wavelet decomposition, resulting in 897 points for both the 
approximation (left) and the detail (right). Finally the bottom pair is the third db2 
wavelet decomposition, resulting in 450 points for both the approximation (left) and 
the detail (right). All three approximations are strikingly similar to the original.

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
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and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

8.1. Show that
ег(Ь-а) ег(а-Ь) 2г sin(tt — 6) 
b — a a — b a — b

8.2. Show for all к G Z, with к 0, that

/»2тг 
/ eikt dt = 0. 

Jo

8.3. For any г, w G C prove that
(i) zw = щ

(ii) z ± w = z ± w,

(iii) (—) = 4.
8.4. If |z| = 1, and a, b G C, prove that

az + b 
bz + a

Hint: Remember that |w|2 = ww, and rw + s = rw + s.
8.5. Express each of the following complex numbers in polar form (i.e., z = гегв):

(i) 2 + 2%/Зг.
(ii) —2 + 2г.

8.6. Find all the complex numbers £ satisfying the relation £2 + £ + 1 = 0 as 
follows:

(i) First determine how many solutions exist.
(ii) Show that any such £ must satisfy £3 = 1 and £ 1.

(iii) Use the previous step to find the polar form of all the solutions.
(iv) Now solve the problem using the rectangular form by writing £ = x + iy 

and computing (x + iy)2 + (x + iy) + 1. Setting both the real and 
imaginary parts to zero gives two equations in two unknowns, whose 
solutions give the required values of x and y.

(v) Show that the answers you got in polar form agree with the answers you 
got in rectangular form.

8.7. Simplify the following into the form a + ib, where a, b G R. Is the solution 
unique? Justify your answer.
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(i) Vi-

(ii) v'l + i-
(iii) VV^i-

8.8. Let J € L2([0,T];F). Prove the “almost converse” of Proposition 8.2.12: If 
Cfc = c-k for all к G Z, then S'[/] is real valued on [О, Т].

8.9. From Proposition 8.2.12, we know that the Fourier coefficients of the function 
f e L([0,T];R) satisfy c_k = Ck- Thus the Fourier series satisfies

S[f](t) = 22cke^kt = co + 22 cre-“fct + cke^kt

= Co + (cfc + Cfc) cos(cufcf) + z(cfc - Cfc) sin(cu/ut).
fcez+

Show that for each к E Z+ the following holds:

(cfc +Cfc) cos(a;A;t) +z(cfc - Cfc) sin(cu/0t) = 2|cfc| cos(cuA:t + 0fc),

where the real and imaginary parts of Cfc satisfy Jf(cfc) = |cfc| cos(</>fc) and 
9(cfc) = |cfc| sin(</>fc), respectively. In other words, we can decompose the 
Fourier series S[f] into a sum

W) = Co + 22 2|cfe| cos(u>A:t + <fa) (8.94)
fc=i

of linear oscillators, each having frequency k/T, amplitude 2|cfc |, and phase 
angle фк.

8.10. Find the complex-exponential Fourier series of the function f(t) = sin(5cj£) 
on the interval [0,T].

8.11. Find the complex-exponential Fourier series of the function

ж=? (<8-95>

on the interval [0,2%]. By Theorem 8.2.16 the Fourier series converges point­
wise to f on [0,2%]. Hint: We already computed the Fourier series of the 
sawtooth function in Example 8.2.6.

8.12. Find the complex-exponential Fourier series of the function

1
У(ж) = 0

if 0 < x < %,
if x E {0, %, 2%}, 
if % < x < 2%

(8.96)

on the interval [0,2%]. Hint: We already computed the Fourier series of the 
square wave function in Example 8.2.10.
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8.13. Show that if Ck = C-k, then the following hold:
(i) al = afc and bk = bk.

(и) ak + bk = 4cfec-fc-
(Ш) Vak+bk = 2Ы-

8.14. Find the trigonometric Fourier series of the function f in Exercise 8.12.
8.15. Use the results from Exercise 8.14 to prove that the following equalities hold:

Hint: Show that ||/||2 = 2.
8.16. Many textbooks develop Fourier series on the domain [—7г, 7г] instead of [О, Т]. 

In this case, the trigonometric Fourier series S[f] of f : [—7г, 7г] —> R is still 
of the form (8.31), but the Fourier coefficients are given by

1 Г7Г 
ak = — f(t) cos(Atf) dt, 

J-TV
1 f7r

bk = — f(t) sm(kt) dt.
7Г J-ir

(8.97)

(8.98)

We call this approach the centered trigonometric Fourier series. Now consider
the function

1
/(*)  = 0

1
. 2

if t e [-7Г, -|) U (f,7r], 
if t =

defined on the interval [—7г,тг]. Compute the centered trigonometric Fourier 
series using (8.97) and (8.98).

8.17. Consider the function f(t) = \t\ on the interval [—%, 7г]. Write f as a centered 
trigonometric Fourier series (see Exercise 8.16). Hint: Write

\t\ =
t
-t

if t > 0, 
if t < 0,

and then integrate by parts.

8.18. Prove that the Dirichlet kernel Dn satisfies the following for each t E R:
(i) £>n(f) = £>„(2тг - t).

(ii) £>п(тг +1) = Dn (тг - t).
8.19. For f e L([0,2тг]; R), extend f to all of R by letting /(t) = f(t — 2тг) for all 

t > 2tt and /(t) = f(t + 2tt) for all t < 0. Prove the following identities:
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(i)

[ f(s)Dn(t- s)ds = [ f(t-s)Dn(s)ds = [ f(t - s)Dn(s) ds.
JO Jo J-7T

(ii)

[ f(s)Dn(t- s)ds= [ f(t + s)Dn(s)ds= [ f(t + s)Dn(s)ds. 
Jo Jo J-7T

Hint: Use integration and change of variable rules with Lemma 8.4.6.
8.20. Prove Lemma 8.4.9. Hint: Use the geometric series formula for (8.36).
8.21. Consider the function

I 7Г if t = 0 or t = 27Г.

Let gn(£) = f(t) — Sn [/](£) be the approximation error between the function 
f and the nth partial sum of its Fourier series (see Example 8.2.6).

(i) Plot дп(х) for different values of n to demonstrate the Gibbs phenomenon.
(ii) Show that

, _ sin((2n + l)t/2)
9n() sin(t/2)

Hint: Use Lemmata 8.4.4 and 8.4.9.
(iii) Show that tn = is the first critical point of gn to the right of zero. 

Hence the L 00-norm (supremum) of the approximation error is at least 
gn(tn\

8.22. Continuing from the previous problem, complete the following steps:
(i) Using the fundamental theorem of calculus, show that 

, ['■ sin«2»+1)1/2)
9“(<-) = Л sin(l/2) Л - *■

Hint: Recall that the fundamental theorem of calculus will apply only to 
functions that are continuous on the interval [0, £n], so you will need to 
replace the integrand with a function that is continuous on that interval.

(ii) Prove that
i- / \ л f*  sin(t) hm gn(tn) = 2 / —dt - тг.П-ЮО JQ t

(iii) Evaluate the integral numerically to show that

2 [ dt - тг « 0.562.
Jo

This shows that the nth truncated Fourier series Sn [f] (t) does not converge 
uniformly to /(£), despite the fact that it converges pointwise. Hint: You can 
compute the integral with a Riemann sum.
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8.23. Compute the following:

(i) Find the DFT of f = (1,1,0,0).

(ii) Find the inverse DFT of f = (1,0,1,0).

8.24. (i) If p(x) = ao + a±x H-----------h an~ixn-1 is an arbitrary polynomial, what is
the value of for arbitrary £ e Z? Explain carefully how to use the 
matrix representation of the DFT to compute this.

(ii) A fairly fast way to evaluate a general polynomial at a single point is 
Horner’s method:

p(x) = a0 + rr(ai + x(a2 4----------H ^(un-2 + £«n-i) • ••)),

which takes O(n) time. But to evaluate p at n distinct points using 
Horner’s method takes O(n2) time. Explain carefully how to compute 
the evaluation of p at the n distinct points , cj™-1 in O(nlog(n)) 
time using the FFT.

8.25. Prove that applying the DFT twice to f = (/0,/1, • • •,/n-2,/п-i) gives

8.26. A matrix A e Mn(F) is circulant if it is of the form

&2

«3 «2

no an-i
«1 (Zo

(i) Show that the circulant matrix can be diagonalized by the DFT. That is, 
show that if Un = y/nWn is the orthonormal matrix of Theorem 8.5.10, 
then diag(co,..., cn-i)Un = A for some (co,..., cn_i).

(ii) Find the eigenvalues of A.

8.27. The DFT approximates a function f(t) using the orthonormal set
but if f(t) = elajXt with A e R\Z corresponds to a frequency that is not 
in that set, we see nonzero effects in all the DFT frequencies k/N. This is 
called leakage from the actual frequency X/N to the other frequencies k/N.

(i) Prove that the modulus |/(fc)| of the &th discrete Fourier coefficient f(k) 
of f is given by

l/(fc)l = sin7r(A — k)

This formula gives the so-called leakage amplitude for the DFT of a 
noncharacteristic sinusoidal frequency.

(ii) Plot |/(fc)| as a function of к for several values of A, taking N = 100.
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8.28. Let f, g, h, к be the 4-periodic vectors

f = (1,2,3,4), 
g= (0,0,1,0), 
h = (l,z, —1, —г), 
k= (1,-1,1,-1).

Compute f * g, g * h, g * g, h * k, and h * h.
8.29. Using the same notation as the previous problem,

(i) compute the DFT of each of the vectors f, g, h, k;
(ii) find the products 0 W^g, W4g 0 H^h, W^g 0 W4g, W4h 0 W4k, 

and 0 W^h;
(iii) verify that dW^1 applied to each of these products agrees with the 

corresponding convolution that you computed in the previous problem.
8.30. The naive algorithm for multiplying two polynomials

f = ^0 ak %k and 9 = ^0 bk%k
k=0 k=0

of degree n E is to compute every term of

2n

fg = 52cexf' 
(00

as 
£

c£ = ajbe-j.

This naive computation has temporal complexity O(n2). Explain how to 
use the DFT to multiply two degree-n polynomials in O(nlogn) time. Hint: 
Use Exercise 8.24 and the fact that a polynomial of degree 2n is uniquely 
determined by its values at 2n + 1 distinct points.

8.31. Let A be the circulant matrix

<2q <2n-l
<21 «о

«2 <2i

«3 <22

an-2 ttn-3 • • • «0 «n-l
an~i an-2 • • • ai uq

and let g = (go,gi,..., gn-2,9n-i)- Show that Ag is precisely a * g, where a 
is the periodic vector a = (a0, «i, • • •, an-2, &n-i)-

8.32. Let f = x and g = sin(j;). Using your preferred computational tools, sample 
both of these functions 1000 times on the interval [0,2тг] to get vectors f and 
g. Treating f and g as periodic vectors, compute the (circular) convolution 
f  g and the Hadamard product f 0 g. Plot the points (хк,Ук) where Xk = *
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2тгА:/1000 and yk is the &th coordinate of each of the vectors f, g, f * g, and 
f 0 g. Plot them all separately and then plot them together on the same 
graph.

8.38. Prove the Haar scaling relation (8.60).
8.39. Prove Proposition 8.8.5.
8.40. Prove the equality ф(2^х — k) = — <£>j+i,2fc+i(#) from (8.62) holds.
8.41. Prove items (i)-(iv) of Proposition 8.8.7.
8.42. Complete the following:

(i) Code up a method that takes a function f : [0,1) —> R and an integer 
n > 0, and returns an array consisting of the values of the function f at 
the points k/2n for к G {0,..., 2n — 1}.

(ii) Write a method that accepts an array a = [a0, cq,. •., a2™_i] and a value 
x e [0,1) and returns EjLo akPn,k(x)-

(iii) For the function
/(t) = Si^-  ̂ (8.99)

у |c — 7Г/201

8.33. Given n > 2y samples (£0, /(^o)), • • •, (tn-i, /(^n-i)), implement the periodic 
sampling theorem algorithm to compute the exponential Fourier series of a 
function f : [0,T] —> R with Nyquist frequency z/. Your code should accept 
integers у and n, a floating point number T, and a function / and return 
an array of coefficients [c.^,..., cq, ..., c^]. Also, implement a method that 
returns g(t} = 'Y^k=-v ck^kt as a callable function.

8.34. Find the period T and the Nyquist frequency of the function

f(x) = 1 — 3sin(127nr + 7) + 5sin(27nr — 1) + 5sin(47nr — 3).

For each value ofnG{3,7,ll,13} use your code from the previous problem 
to sample / at the n points , ^n-i with and find the unique
function gn(x) with Nyquist frequency less than n/2 passing through those 
n points. Plot /, gn, and the n sample points on the same graph.

8.35. For any у G N prove that the set V of all functions on [0, T] with Nyquist 
frequency no greater than v is a vector space. Let / have Nyquist frequency 
y. Assume f is sampled at n = 2v uniformly spaced points on [0,T) as 
in Definition 8.5.1. Prove that the subset of V consisting of functions that 
vanish at all the sampled points is a subspace of V of dimension at least 1; 
therefore, there are an infinite number of functions agreeing with f at all the 
samples. This shows the conclusion of the periodic sampling theorem fails 
for n = 2y.

8.36. Let V be the set of functions on [0,T] with Nyquist frequency у or less. Fix 
n > 2z/ +1, and let f = Фп(/) = (/0, • • •, /п-i) be the corresponding sampled 
vector. Prove that there exists at least one vector a G Cn such that for every 
f G V we have aTf = 0. In particular, this shows that for most choices 
у = (t/o, • • • lUn-i) (for all but those satisfying the linear relation aTy = 0) 
there is no function f G V satisfying f(ti) = yi for all i G {0,..., n — 1}.

8.37. Prove Proposition 8.7.10. Hint: The Fourier basis is orthonormal.
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and for each of the values n e {1,2,3,..., 10}, use your code to plot f 
and plot fn(x) = Hint: It may look like the
sum has a l°t °f terms, but for any x all but one of
the terms are zero.

8.43. Consider the function f : [0,1) —> R given by

—2, x e [0,0.25),

/00 = < 4,
2,

x e [0.25,0.5),
x e [0.50,0.75),

<-з, x e [0.75,1.0].

(i) Find the wavelet transform of f by matrix multiplication.
(ii) Find the wavelet transform of f by using the FWT.

(iii) Express f in terms of its component parts Vo, Wo, and W±.
8.44. Write out the matrix representation of the wavelet transform T8-1 on the 

subspace of V3 consisting of functions that have support contained in [0,1). 
Consider the function f : [0,1) —> R given by

2,
4,

x e [0,0.125),
x e [0.125,0.25),

/00 = < 3, x e [0.25,0.5),
1, x e [0.50,0.75),

-3, к x e [0.75,1.0).

(i) Find the wavelet transform of f by matrix multiplication.
(ii) Find the wavelet transform of f by the FWT.

(iii) Express f in terms of its component parts W2, Wi, Wo, and Vo-
8.45. Complete the following:

(i) Code up a function that takes as input the wavelet transform (given by 
the array [uoo, boo, &io, &n, • • •]) and an integer j and returns the approx­
imation 7)[/] e Vj and detail gj e Vj~ as callable functions.

(ii) Apply your code to the function (8.57) and reproduce the images in 
Figure 8.20.

8.46. Complete the following:
(i) Use your code from Exercise 8.42 and Exercise 8.45 to construct a 

method that takes a function f defined on [0,1) a positive integer £ and a 
positive integer j < fa samples f to get an approximation /f, and returns 
the two functions Tj [f] e Vj and gj e V^ such that fa = Tj [f] + gj.

(ii) Apply your methods to the function (8.99) for £ = 10. For each value of 
j e {0,1, ...,£— 1} plot each of the functions Tj[f] and gj.

(iii) Compare the plots of each Tj [f] to the corresponding plots in Exercise 
8.42. In both cases they are functions in Vj, but they are not identical. 
Explain the difference. Explain why it occurs.
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8.47. Complete the following:
(i) Adapt your code from the previous problem to sample functions on 

any compact interval [a, b], construct the Haar wavelet transform of 
the sampled function on that interval, and return the two functions 
Tjlf] e vj and 9j e Vj1- such that fe = Tj[f] +gj.

(ii) Apply your method to the function (8.99) on the interval [—1,1] for 
£ = 10. For each value of j e {0,1, ...,£ — 1} plot each of the functions 
Tj[f] and 9j-

8.48. Prove Proposition 8.10.6.
8.49. Prove that Z^ez(—l)£^i-^ = 0-
8.50. By taking the appropriate inner products, show that the two equations in 

(8.82) hold.
8.51. Consider the class of scaling functions (8.71) with exactly four coefficients /zq, 

Zzi, Zz2, and /z3 satisfying

1 + д/2 cos 0 1 + y/2 sin 0
=-------5------- , hr =--------- ------- ,

(8.100)
1 — д/2 cos 0 1 — y/2 sin 0

h2 = ------- ~2------- , h3 = ------- ~2-------•

Prove that the three identities in Proposition 8.10.9 hold, specifically:

(i) Following (8.75), show that Hq + h2 + + h% = 2 and /zq^2 + hih^ = 0.
(ii) Following (8.76), show that /zq + hi + /z2 + = 2.

(iii) Following (8.77), show that /zq + /z2 = 1 and hi + h% = 1.
8.52. Do the following steps to prove that any scaling function with exactly four 

coefficients /zq, /zi, /z2, and /z3 can be written as (8.100) for some choice of 
0. Assume that the scaling function coefficients satisfy (i)-(iii) from Exercise 
8.51.

(i) Show that (/zq + hi)2 + (/zi + Л3)2 = 2.
(ii) Show that h0 + /z2 = Tzi + /z3 = 1. Hint: Let /z0 + ^2 = 1 + £ and 

hi + I13 = 1 — e and use the previous identities to show that e = 0.
(iii) By writing

7 1 ,1 ,1 ,1^0 — 2 + ^1 — 2 + ^2 — 2 — ^з — 2 —

show that s2 +t2 = 1/2.
(iv) Complete the proof by showing that (8.100) holds.

8.53. Show that the coefficients of the Daubechies db2 scaling function, given in 
(8.91), satisfy (8.100). What is the value of 0 that makes them equal?

8.54. Show that the first moment of the mother wavelet satisfies

fcez
(8.101)
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8.55. For the Daubechies db2 scaling function, prove that p(x) dx = 1. What 
does this mean for Theorem 8.11.1?

8.56. Assume that the scaling function for a certain wavelet satisfies the following:
(i) There are exactly four nonzero coefficients ho, hi, h-2, and h^.

(ii) The first moment (8.101) of the mother wavelet is zero, that is,

52(-i)fcw = o. 
fcez

(iii) The three scaling identities in Exercise 8.51 (i)-(ii) hold.
This gives a system of four equations and four unknowns. Solve these to get 
(8.91).

8.57. Plot the approximation and detail of the function f in (8.99) with the Daubechies 
db2 wavelet Tj [f] for varying depths.

Notes
Much of our treatment of wavelets and Fourier series was inspired by [Str93, BN09, 
GV15]. For more on the FWT see also [BCR91]. For the proof that both pn and 
фп (in the construction of the Daubechies wavelets) converge uniformly to their 
limiting functions p and ф see [DD10].





Polynomial 
Approximation and 
Interpolation

There ’s no sense being precise when you don’t know what you ’re talking about.
—John von Neumann

This chapter is about approximating continuous functions on bounded intervals with 
polynomials. This is useful because polynomials are relatively simple functions that 
can be evaluated rapidly. They can also be differentiated and integrated easily. 
Thus we can often approximate the integral of a function, the zeros of a function, 
or the extrema of a function very well by approximating it closely with a polynomial 
and then computing the desired operation for the polynomial approximation.

We begin by proving the Weierstrass approximation theorem, which guarantees 
that every continuous function can be approximated arbitrarily closely in the uni­
form norm. To prove this we use Bernstein polynomials (see Volume 1, Section 2.6). 
The more closely these polynomials approximate a (nonpolynomial) function, the 
higher degree the polynomials must be. Unfortunately to approximate an arbitrary 
continuous function very closely it often takes a very high degree polynomial.

But for functions that have some level of regularity, or smoothness (that is, 
functions that are Ck for some к > 1), we can approximate much more efficiently 
using a special collection of orthogonal polynomials called Chebyshev polynomials. 
In this case the function is interpolated by the polynomial; that is, the polynomi­
als are required to agree with the values of the function at certain predetermined 
points called nodes. We first discuss existence and basic properties of interpola­
tion, and then we discuss the use of orthogonal polynomials, especially Chebyshev 
polynomials in interpolation. Chebyshev polynomials have a strong connection to 
Fourier series, and that connection leads to a very fast method for computing highly 
accurate Chebyshev interpolations using the FFT.

Finally we discuss several methods of numerical integration based on polynomial 
approximations. These include Newton-Cotes methods (like the trapezoid rule and 
Simpson’s rule), Clenshaw-Curtis quadrature, which uses Chebyshev polynomials, 
and Gaussian quadrature, which uses Legendre orthogonal polynomials.

405
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9.1 Polynomial Approximation
In this section we prove that any continuous function on a compact interval [a, b] 
can be approximated arbitrarily closely (in the uniform norm) by a polynomial. 
In other words, the vector space of polynomials is dense in the space C([a, 6]; R) of 
continuous functions under the uniform norm || • ||l<x> ). This is called the Weierstrass 
approximation theorem and is a fundamental theorem in mathematical analysis.

9.1.1 The Bernstein Transformation
To prove the Weierstrass approximation theorem we use the Bernstein polynomials, 
described in Volume 1, Section 2.6, and the Bernstein transformation, described 
below. This transformation takes a function f and returns a sum of Bernstein 
polynomials of a given degree that approximates f on the interval [0,1]. The ap­
proximation becomes increasingly accurate as the degree of the polynomial gets 
large.

Recall that for each n 6 N the degree-n Bernstein polynomials

B?(i)=Q?(l-I)n-J for j e {0, ...,n} (9.1)

are nonnegative on the interval [0,1] and have their extrema on [0,1] occurring at 
the points ..., Moreover, the set of all Bernstein polynomials of a given 
degree sum to one (they form what is known as a partition of unity).

Definition 9.1.1. Denote the vector space of polynomials in x with coefficients in 
R by R[rr] and the subspace of polynomials of degree at most n by R[rr; n]. For each 
n e the Bernstein transformation Bn : C([0,1]; R) —> R[ar; n] is given by

fc=0

Example 9.1.2. Let g(x) = sin(7nr). If n = 3, the Bernstein transformation 
ЯзЫ(ж) is

вз[д](х) = g(0)B$(x) +g (A B^x) +g (|) B%{x) +g B%(x)

У3/3\ . .2 У3/3\ 2/= 0 + — ^JxCl - a;)2 + — (2)ж (1 -ж) + 0

3\/3 2\
= — (ж-a:2).

Although this is a sum of polynomials of degree 3, the highest-degree terms 
cancel, yielding a polynomial of degree 2 in x. Note that #з[д](0) = 0 = g(0) 
and Вз[д](1) = 0 = g(l). The functions g and Вз[д] are plotted in the left 
panel of Figure 9.1.
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Figure 9.1. Bernstein polynomial approximation Bn [<j] (plotted in black) of the 
function g(x) = sin(7nr) (plotted in red) for n = 3 and n = 6. Note that the 
approximations Bn[g] agree with g at x = 0 and x = 1 but do not intersect the 
graph of g anywhere on the open interval (0,1).

Example 9.1.3. As before, let g(x) = sin(7nr), but now take n = 6. The 
Bernstein transformation Вб[д](ж) is

-ВбЫ(яО = g(0)B$(x) + g Г0 B^(x) + g (0 Bf(z) +g (0 B$(x)

+ g (0 B46(a:) + g (0 B6(a;) + g (0 B66(x)

= 3a;(l — x)5 H———a;2(l — a:)4 + 20a:3 (1 — a;)3

4—~~ л:4(1 — а:)2 + 3a:5(l — x)

« —0.02a:6 + 0.058a:5 + 0.93a:4 - 1.96a:3 - 2.01a:2 + 3.0a:.

The functions g and Вб[д] are plotted in the right panel of Figure 9.1.

The next two lemmata give some of the basic properties of the Bernstein trans­
formation.

Lemma 9.1.4. For all n e Z+ we have

Bn [1] = 1, Вп[ж] = ж, and Bn[x2] = x2 + -——

Proof, The proof is Exercise 9.3. □
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Figure 9.2. Bernstein polynomial approximations (plotted in black) of the function 
f(x) = ;r2sin(27Er + %) (plotted in red), for n = 4, 10, 50, and 200, respectively. 
This is not a very good approximation unless n is large.

Example 9.1.5. In Figure 9.2 we plot the function

/(ж) = x2 sin(27nr + 7г) (9-2)

and the Bernstein approximations Вп[/](ж) for n = 4, 10, 50, and 200. Al­
though these approximations do converge uniformly to / as n —> oc, they are 
not very good approximations until n is fairly large.

Lemma 9.1.6. Let f,gE C([0,1];R) and a,b e R. For all n e N, the Bernstein 
transformation Bn satisfies the following properties:

(i) Linearity: Bn[af + bg] = aBn[f] + ЬВп[д].

(ii) Weak monotonicity: If f < g on [0,1], then Bn [f] < Bn[<?] on [0,1].

(iii) Strong monotonicity: If \ f\ < g on [0,1], then \Bn[f]| < Bn[<?] on [0,1].
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Proof.

(i) We have

Bn[af + ЭДСг) = f>/ + bg) (£) 

fc=0

= а^/^В^х)+Ь^д^)В^х)

= aBn[f](x) + bBn{g](x).

(ii) The proof is Exercise 9.4.

(iii) If \f\ < g, then -g < f < g, which implies -Bn[g] < Bn[f] < Bn[g], or
equivalently | Bn [f] | < Bn [g]. □

9.1.2 Weierstrass Approximation

We now have all the tools we need to prove the Weierstrass approximation theorem.

Theorem 9.1.7 (Weierstrass Approximation Theorem). If f e C([a,6];R), 
then there exists a sequence of polynomials mR[a;] such that ||pn —0 
as n oo. In other words, R[rr] is dense in C([a,6];R) under the sup-norm.

Proof. Rescale the domain [a, b] to [0,1] via so that we may assume
a = 0 and 6=1. The desired sequence of polynomials that converges to f is given 
by the Bernstein transformation: given f e C([0,1];R), we show that for all e > 0 
there exists N > 0 such that ||Bn[/] — /||ьоо < e for all n > N.

Since [0,1] is compact, f is bounded and uniformly continuous on [0,1]. Hence, 
for every e > 0 there exists 6 > 0 such that \f(x) — f(y)\ < f whenever |ж — y\ < 6 
and x,y e [0,1]. Let M = maxxE[0,i] |/(#)|- We claim that 

2

for any с e [0,1]. To see the claim, note that if |ж — c| < <5, then |/(ж) -/(c)| < f. 
But if I# — c| >5, then

I/O) - /(с)I < 2M < < | + ^(ж - c)2.

Thus the claim holds.
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By Lemmata 9.1.4 and 9.1.6, we have

|Вп[/](ж)-/(с)| = |Вп[/-/(С)](ж)|

Bn 2 + ^(*"c)

where the last inequality follows from the fact that maxxe[01] (x — x2) = Substi­
tuting c in for x gives |Bn [/](<?) — /(c) | < f + 7^2 • Since c is arbitrary, we have 
\\Bn[/] - f\\Loo < € whenever n > N > Д. □

Remark 9.1.8. Although useful for proving the theorem, the Bernstein approxi­
mation method requires that n be large in order to produce close approximations. 
A particular weakness of this method is that for a polynomial p of degree к > 2, we 
usually have Bk [p] ф p- For example, B2 [ж2] = | (ж2 + ж). Thus n must often be 
much larger than к in order for Bn [p] to achieve a good approximation of p.

Remark 9.1.9. If the function to approximate is C1, then we can approximate 
it much more efficiently using some powerful methods involving interpolation by 
Chebyshev polynomials, described in Sections 9.4 and 9.5. The smoother / is (the 
more derivatives of / that exist), the lower the degree of the polynomial required 
to approximate / to a given accuracy.

9.2 Interpolation
The previous section focuses on uniform approximation of functions by polynomials, 
but those polynomials are not required to actually agree with the function at any 
points—they are just required to be uniformly near the function. However, in many 
settings we want an approximation that actually agrees with the function at certain 
points. This is called interpolation.

Interpolation plays a key role in applied and computational mathematics; it is 
particularly important in numerical analysis, where interpolating polynomials are 
used to approximate continuous functions. It is also pervasive throughout computer- 
aided design, signal processing, coding theory, and mathematical systems theory.

In this section we prove the Lagrange interpolation theorem, which states that 
if я?о, Xi,..., xn are distinct, then for any values yo, ..., yn, there exists a unique 
polynomial p(x) of degree at most n such that p(xi) = yi for each i = 0,1,2,..., n. 
Although the Lagrange interpolation theorem does give a constructive proof of the 
existence of the unique interpolating polynomial, that construction is not generally 
a good numerical algorithm. But we describe two stable, efficient methods for 
numerically computing the unique interpolating polynomial, namely, barycentric 
Lagrange interpolation and Newton interpolation.
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9.2.1 Interpolation

Definition 9.2.1. Given a collection of points {(x0,y0),..., (xn,yn)} in R2 with 
all the Xi distinct, we say that a polynomial p e R[rr] interpolates the collection of 
points if p(xj) = yj for each j e {0,1,2,..., n}. If I C R is an interval containing 
the distinct points {tq, ..., xn}, then a polynomial p interpolates f : I R at 
{to, ..., xn} if p interpolates the collection {(^o, /(^o)), • • •, (xn, /(жп))}.

Remark 9.2.2. Although the definition is given here for points (хг,уг) e R2, this 
definition also makes sense for points in C2, and most of the theorems of this chapter 
also hold over C.

Example 9.2.3. The rational function /(ж) = 1/(1+25ж2) is not polynomial, 
but p(x) = 1 — ||a;2 is a polynomial interpolation of f at the points { —1,0,1}, 
because p(—1) = /(—1) = 1/26, p(0) = /(0) = 1, and p(l) = /(1) = 1/26.
This is shown in the left panel of Figure 9.3.

terpolating polynomials. In the left panel is the degree-2 polynomial 1 — ||t2 (in 
black) interpolating f at the points x e {—1,0,1}, as described in Example 9.2.3. 
On the right is the degree A polynomial (black) interpolating f at the points x e 
{—1, — |, 0, |, 1}, as described in Example 9.2.8. After simplifying, the degree-4 
polynomial can be written as ^^x4 — ^^x2 +1.

Unexample 9.2.4. The Bernstein polynomial approximation Bn[/] is not 
(usually) an interpolation of f at the points This is because
even though Bn [f] is a polynomial that is determined by the values of f at 
the points k/n, it usually does not pass through the points (k/n, f(k/nf) for 
к E {1,..., n — 1}. See also Figure 9.1.
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Remark 9.2.5. Any polynomial passing through {(#o,?/o), • • •, (^n,£/n)} is an in­
terpolation, but we usually want the interpolating polynomial of lowest degree. For 
example, any polynomial of the form p(x) = xn passes through the two points 
{(0,0), (1,1)}, but the polynomial of least degree that passes through those two 
points is the line f(x) = x.

Theorem 9.2.6 (Interpolation Theorem). Given n + 1 distinct points #o,^i, 
..., xn and corresponding values y^,... ,yn, there exists a unique polynomial of de­
gree at most n that interpolates the collection {(#0,3/0), • • •, (^n,3/n)}«

Proof, Define a family of n-degree polynomials by

- JI _ • (9-3)
j k

These polynomials are called the Lagrange basis functions. Evaluating Lnj at each 
Xk gives Lnj(xk) = djk- Hence, the linear combination

P(z) = (9.4)
j=o

is an interpolating polynomial for the given collection. To prove uniqueness, suppose 
there exists another interpolating polynomial q of degree at most n. The polynomial 
p — q has degree at most n, yet it has n + 1 distinct zeros (the points #0, • • •, xn). 
But a nonzero polynomial of degree n can have at most n zeros, by the fundamental 
theorem of algebra (see Volume 1, Theorem 15.3.15); hence, p — q = 0. □

Corollary 9.2.7. Two distinct polynomials of degree n can intersect in at most n 
points.

9.2.2 Lagrange Interpolation
Lagrange interpolation is the method used in the proof of Theorem 9.2.6 for con­
structing the unique interpolating polynomial of degree at most n. Namely, given 
{#0, • • • ,#n} first construct the basis polynomials Lnj, and then use (9.4) and the 
values ?/o, • • •, Уп to assemble the desired polynomial.

4

Ь4,о(ж) = Р 
fc=l

Example 9.2.8. To use Lagrange interpolation to interpolate a function in 
the interval [—1,1] at the five equally spaced points Xi = for i € {0,..., 4}, 
construct the Lagrange basis polynomials of degree 4:

X = |(ж + |)ж(х— |)(х- 1) = |(4x* 4 -4ж3 — x2 + ж), 
-l)-xfe 3 2 2 6
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and similarly

£4,1(2)
4 _ я

= ]L n = 9(ж + 1Ма: г)(х x) 
“НН 3
k^l

= — - (2ж4 — x3 — 2x2 + x), 
0

4
£4,2(2)l=Hn =4(x + l)(x+2X2 l)=4x4 5x2 + 1,

k=oU~Xk k^2

£4,3(2)1 = TT 1 = „(2 +1)(2+ J)2(a; 1)= (2a;4 +x3 2a;2 a;),
“2-^ 3 3

k^3

£4,4(2) = IT 1 = <>(2+l)(a; + 2^X(X 2) = a (^4 +
1 — Xfc 0 0k=0k^4

To use these to interpolate the rational function 1+25ж2 (see Figure 9.3, right 
panel), compute the function values yj = f(xj) for all j G {0,..., 4} and apply 
(9-4):

p(^) — ^6^4,0 + + ^4,2 + ^^4,3 + ^^4,4

1250 4 3225 2 ,
“ 377 X ~ 754 +

(9-5)

Figure 9.4. Lagrange polynomial interpolations (in black) of the function f(x) = 
x2 sin(27nr + %) (plotted in red) with equally spaced values in x for n = 4 and 
n = 8. The approximation is eyeball perfect for n = 8. Compare these to the 
Bernstein approximations in Figure 9.2. Beware, however, that this is a special 
example—interpolating at uniformly spaced points can sometimes provide very poor 
approximations; see Section 9.4-1 for more on this.
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Nota Bene 9.2.9. In college algebra classes it is traditional to simplify ex­
pressions like (9.3), (9.4), and (9.5) by expanding all the multiplications and 
gathering all the terms of the same degree. In the previous example, we sim­
plified £4,0(ж) from its original form |(rr + ^)x(x — |)(ж — 1) to the form 
I(4a;4 — 4a:3 — x2 + x), and similarly with the other Lagrange basis poly­
nomials L±j(x). We also simplified (9.5) to + 1- But these
simplifications are not necessary. The expressions (9.3), (9.4), and (9.5) are all 
polynomials whether they are simplified or not, and they can still be evaluated 
in their unsimplified form.

When we talk about Lagrange interpolation as a method for construct­
ing the unique interpolating polynomial we usually mean the unsimplified 
form of (9.4) with the Ln j of (9.3) also unsimplified. Moreover, as an algo­
rithm this unsimplified form is easy to code up, whereas methods for au­
tomatically simplifying the polynomial are not so easy. In Sections 9.2.3 
and 9.2.4 we discuss two other methods for constructing the interpolating 
polynomial that are algebraically equivalent to Lagrange interpolation (that is, 
they all simplify to give the same polynomial), but, in their unsimplified form, 
they yield more efficient algorithms for computation than the naive Lagrange 
method.

The interpolation theorem (Theorem 9.2.6) has the following immediate corol­
lary.

Corollary 9.2.10. If f is a polynomial of degree at most n, then the polynomial 
constructed by Lagrange interpolation of f at n + 1 distinct points is f.

This corollary shows one virtue of Lagrange interpolation over the Bernstein 
polynomial approximation: even when f is a polynomial, the Bernstein approxima­
tion Bn[/], is rarely equal to /; see Remark 9.1.8.

Complexity of Lagrange Interpolation

Assuming the values y0,... ,yn are known and the denominators

II -xk) (9-6)

are computed in advance (a cost of ~ 2n FLOPs each, for a total complexity of 
~ 2n2 FLOPs for the initial startup), evaluating the unsimplified polynomial at a 
point x involves n multiplications and n subtractions, for each of the n + 1 basis 
polynomials £п^(ж), and then an additional n + 1 multiplications and n additions 
to compute the expression (9.4), for a total of ~ 2n2 FLOPs for each evaluation of 
the interpolating polynomial.
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Example 9.2.11. In Figure 9.4, we see the unique degree-n interpolation of 
/(a?) = x2 sin(27ra; + 7r) at n + 1 equally spaced nodes in the domain [0,1] 
for n = 4 (left panel) and n = 8 (right panel). In this case, the Lagrange 
interpolation is more accurate for n = 8 than the Bernstein approximation 
is when n = 200. In Section 9.4.1 we show, however, that interpolation at 
uniformly spaced points is not always so accurate. It can sometimes provide 
a very poor approximation.

9.2.3 Barycentric Lagrange Interpolation
Lagrange interpolation can be made more stable and more efficient with some simple 
modifications. The resulting method is called barycentric Lagrange interpolation. 
Barycentric Lagrange interpolation still has a startup cost of ~ 2n2, but evaluating 
the resulting polynomial at a given value x costs only O(ri) FLOPs. Contrast this 
with naive Lagrange interpolation which has a cost of O(n2) for each evaluation of 
the polynomial.

The Barycentric Lagrange Method

Barycentric Lagrange interpolation begins with the observation that the Lagrange 
basis function Lnj in (9.3) can be rewritten as

LnJ(x) = v(x)-

where the Wj (hereafter called the barycentric weights) are given in (9.6), and v(x) = 
n;=o(*  — Xj). Using (9.4) we can write

p(x) = «(ж) л> - (9-7)
J=ox Xj

Applying (9.7) to the degree-0 polynomial 1 (so yj = 1 for all j) gives

J=o
™j
— X j

so we can avoid computing v(x) and write

n Wj
X — Xj

POO = ------------------

v- Wj
(9-8)

X — Xj

We call (9.8) the barycentric form of the interpolating polynomial p. Although this 
does not look like a polynomial, the previous discussion shows that it is, and, in 
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fact, it is the unique polynomial of degree at most n that interpolates the data

Remark 9.2.12. Although the barycentric form (9.8) defines a polynomial func­
tion (meaning that there is a polynomial, in the traditional sense, that agrees with 
it at all the points where (9.8) is defined), the expression (9.8) is not defined at the 
points Xj for j e {0,..., n}. But the value of the polynomial at Xj is already known 
to be yj, so (9.8) need never be evaluated at any of the Xj.

Example 9.2.13. To use barycentric Lagrange to interpolate a function in 
the interval [—1,1] at the five equally spaced points Xi = for i E {0,..., 4}, 
use (9.6) to compute the barycentric weights

(4 \ —1
П(-1 - xk) | = ((-1 + i)(-l - 0)(—1 - 1)(-1 - I))-1 = |
k=l /

and, similarly,

8 
w3 = and

To use these to interpolate the rational function f(x) = 1+25^.2 , use the func­
tion values yj = f(xj) for all j € {0,... ,4}, and then apply (9.8):

By the interpolation theorem (Theorem 9.2.6), the polynomial (9.9) is unique 
and thus must equal (9.5), so both of these simplify to + 1-
But one benefit of the barycentric Lagrange method is that one can rapidly 
compute the value of this polynomial using (9.9), without doing any simplifi­
cation.

Complexity of Barycentric Lagrange

Every evaluation of p(x) in (9.8) uses the weights Wj, which are constant, so these 
can be computed in advance. Computing each Wj requires 2n FLOPs, for a total 
startup cost of ~ 2n2 FLOPs. To evaluate the polynomial at a given point x requires 
computing (9.8). To do this, first compute the expressions x™x , which require only 
2 FLOPs each, for a total of 2(n +1) FLOPs. Computing the sum in the numerator 
requires an additional n+1 multiplications and n additions, and computing the sum 
in the denominator requires n more additions, for a grand total of ~ bn FLOPs. 
Thus the startup cost of barycentric Lagrange interpolation is the same as naive 
Lagrange interpolation (~ 2n2), but evaluation of the polynomial at any point x 
costs only ~ bn instead of ~ 2n2.
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Remark 9.2.14. When a generic polynomial is fully simplified into the standard 
form evaluating it requires at least n multiplications and n additions
(using Horner’s method), for a minimum number of ~ 2n FLOPs. The barycentric 
method is not significantly worse than this, and any algorithm to further simplify 
the polynomial would require additional computation. Thus barycentric Lagrange 
is not far from being optimal, in terms of temporal complexity.

Remark 9.2.15. The weights Wj depend only on the Xj and are independent of 
the yj, so once the Wj are computed, they can be used for interpolation with any 
collection of 7/j, without any additional startup cost. Adding a new point #n+i to 
the formulas can also be done with an additional temporal cost of O(n) (see Exercise 
9.11).

9.2.4 *Newton  Interpolation
Newton interpolation is an alternative method of constructing the interpolating 
polynomial. It also requires only O(n) FLOPs to evaluate the polynomial, once some 
initial numbers have been computed, and computing those initial numbers requires 
O(n2) FLOPs. It has the disadvantage that the initial numbers depend on the values 
Уэ, so changing the yj means another startup cost of O(n2). Nevertheless, Newton 
interpolation is a practical and commonly used method. And it has the advantage 
of generalizing well to Lagrange-Hermite interpolation, a variant of interpolation 
where not only values of f(xj) are to be matched by the polynomial, but also 
derivatives (see Volume 1, Section 15.7.4). Traditionally Newton interpolation was 
the preferred method for interpolation, but more recently it has become clear that 
barycentric Lagrange is a better algorithm for many applications (see [BT04]).

Newton interpolation is an iterative method that constructs the interpolating 
polynomial of degree at most к through the first к +1 pairs {(^o, yo),..., (#&, Ук)}-

Theorem 9.2.16. For each к e {0,... ,n} let pk(x) be the unique polynomial of 
degree at most к that interpolates the subset {(xj,yj)}j=G with the Xi all distinct. 
For each к e {1,... ,n} the polynomial Pk(x) satisfies the relation

Рк(х) = Pk-i(x) + akwk(xfi (9.10)

where
k—1

^k{x) := Ц(я - Xj) (9.11)

and
— ~ Pk~l(Xk) Zn i
— / \ (9.12)Wk(xk)

Proof. The difference pk(x) — Pk-i(x) is a polynomial of degree at most к with 
all the same zeros as Wk(x); therefore it must equal some scalar multiple of wifx). 
Evaluating (9.10) at the point Xk yields (9.12). □
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Corollary 9.2.17. For {а7-}™=0 and wffx) defined iteratively, as above, we have

n
= '^ajWj(xfi (9.13)

J=o

where wo(rr) = 1 and «о = Уо- If the coefficients aj are known in advance, then, for 
a given value of x, the expression (9.13) can be computed as

Pn(x) = (... ((an(x -xn-i) + an-i)(^ - xn-2) + an-2)-----h «i)(^ - z0) + a0.
(9.14)

The corollary motivates the following proposition and the corresponding algo­
rithm, called divided differences, which allows for fast computation.

Proposition 9.2.18. For each к e {0,... ,n} define = yk, and for 0 < j < к 
recursively define

....... = ...............»*-.] (915) 
Xk Xj

The coefficients ak in (9.10) satisfy

ak = y[x0,x1,...,xk].

Proof. Let pk (x) denote the unique polynomial of degree at most к that interpolates 
{(xj, yj)}j=Q- Similarly, let Pk(x) be the unique polynomial of degree at most к — 1 
that interpolates {(^j, 2/j) }^=i • For each к e {1,..., n} we have

Pfc(ar) = Pk(x) + ——— (Pk(x) -pfc-i(®)). 
Xk ^0

Matching the terms of degree к gives (9.15). The details are Exercise 9.13. □

Example 9.2.19. To apply the divided differences algorithm to interpolate 
the set {(0,1), (—1,3), (1,1), (2,15)}, we compute

«о = y[xo\ = 1 and

Xi — жо —1 — 0

Computing a2 requires

= 1,1121 ~ = -1,
x2 - Ж1

from which we compute

г , укьжз] - yko,^i]
«2 = У Жо,^1,Ж2 = —---------- 2-------- ’---------- - = 1.

Х2 ~ Х0
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Computing аз requires

3/[#2,#з] = —— = 14 and
- #2

Г i у1х2,Хз\ - у[х1,х2] _
y\xi, #2,^3 =------------------------------------= 5,

Хз - X!

yielding аз = 2. Combining these using (9.14) gives

Рз(^) = ((а3(х - ж2) + а2)(ж - #i) + ai)(z - a?0) + «о 
= ((2(z-l) + l)(z + l)-2)z + l.

9.3 Orthogonal Polynomials for Approximation
As discussed in Chapter 8, choosing an orthogonal basis for a space of functions is 
a very powerful tool for approximating functions. Fourier series and wavelets are 
important examples of this. Orthogonal bases are also very useful in the space R[rr] 
of polynomial functions. There are many choices of inner products that we can put 
on R[&], and these different choices each lead to a different orthogonal basis.

9.3.1 Legendre Polynomials
The Legendre polynomials arise from considering the vector space R[ar] with the 
inner product

(/, 9) = / x f(x)g(x) dx. (9.16)

Applying the Gram-Schmidt process (see Volume 1, Section 3.3.1) to the power 
basis {1, x1, a?2,...} C R[rr] gives an orthonormal basis. Recall that this process 
involves letting

and defining Qi, q2, ..recursively, by

к= xK -pk-i 
qk ||arfc — pfc_i|| ’ к e Z+,

where
k—1

Pk-1 = projQfc_1(®fc) = '^2(qi,xk)qi
2=0

(9-17)

is the orthogonal projection of xk onto Qk-i = span({#o, • • •, Qfc-i})« 
We now compute the orthogonal basis

Po =projQo(rr) =
1 \ 1—) —— = 0, 

72 /72
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so x is already orthogonal to Qq. This gives

_ x-po _ \/3
91 II® -Poll V^X'

And next, a straightforward integration shows that (x,x2} = 0, which gives

so
®2 - Pi /о 2

77-5-------- iT = ----7=\^x ~®2-Р1 2>/2qi =

Continuing in this manner gives an infinite orthonormal set {qo, Qi, ...} of polyno­
mials, with each qn of degree n.

Although orthonormal sets have some advantages over other orthogonal sets,
for polynomials it is often more convenient to rescale the polynomials to create an 
orthogonal set {uq,ui,...} of nonzero polynomials of the form Uk = xk — Pk-i,
where Pk-i is given by

Pk-i (9.18)

That is, we take each и к to be a monic polynomial of degree к (monic means the 
coefficient of the highest-degree monomial is 1). For example, with the Legendre 
polynomials this gives uq = 1, u± = x, and = x2 — 1/3.

9.3.2 Monic Chebyshev Polynomials
The Chebyshev polynomials are constructed in a manner similar to the Legendre 
polynomials but using a different inner product on R[rr], namely

(f,g}= f1 f-^M^dx. (9.19)
J — 1 у 1 X

Applying the Gram-Schmidt process to the power basis {1, x, x2, x3,... } using this 
inner product, but rescaling to make these polynomials monic, gives the monic 
Chebyshev polynomials {Tn}£T0, which satisfy

ВД = 1,
Ti(&) = x,

f2(x) = x2 -

fn+i(x) = xfn(x) - n>2. (9.20)

This forms an orthogonal sequence of monic polynomials on the interval (—1,1) 
with the inner product (9.19).
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Proposition 9.3.1. The monic Chebyshev polynomials satisfy the following rela­
tion:

Tn(x) = cos (n cos"1 ж) forn e Z+. (9.21)2n 1

Proof. The proof is Exercise 9.17. □

9.3.3 Chebyshev Polynomials
It is useful to rescale the monic Chebyshev polynomials to get rid of the 2n-1 in 
(9.21), so for n > 1 we define

Tn(x) = 2n-1fn(x).

We call these nonmonic polynomials simply Chebyshev polynomials. They are 
sometimes called Chebyshev polynomials of the first kind, since there are other 
kinds of Chebyshev polynomials, but we don’t use that name (“of the first kind”) 
because these are the only kind of Chebyshev polynomials that we really use in this 
book.

The Chebyshev polynomials satisfy the recurrence

ВД = 1,
71 (a:) = x,
Т2(ж) = 2x2 - 1,

Tn+1(x) = 2xTn(x) - Tn-i(x), n > 2. (9.22)

See Figure 9.5 for a plot of some of these polynomials.

Remark 9.3.2. The Chebyshev polynomials Tn satisfy the relations 

'o
(Tn, Tm) — < 7Г

л/2

if n Ф m,
if n = m = 0,
if n = m Ф 0,

(9.23)

so, as with the monic Chebyshev polynomials, these are orthogonal but not or­
thonormal.

By (9.21), we have

Tn(cos(t)) = cos (nt) \/n e N. (9.24)

This relation provides an important connection between Chebyshev expansions and 
Fourier series, which we explore further in Section 9.5.

Proposition 9.3.3. LetTn(x) be the Chebyshev polynomial of degree n.

(i) The zeros ofTn(x) (and ofTn(x)) are given by

/fi / 1 \ \
Zj = cos I — I j- + - I I, j = 0,1,2,..., n — 1. (9.25)

\ П \ Z ! !
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/V A A

Figure 9.5. A plot of the first nine Chebyshev polynomials on the interval [—1,1]. 
The degree of the polynomial Tn(x) is n, and its zeros are Zj = cos (j + j)) for 
j e {0,1,2,..., n — 1}. When restricted to the domain [—1,1], the range of the 
Chebyshev polynomials is also contained in [—1,1].

We call these the Chebyshev zeros. They are often called Chebyshev points 
of the first kind or Gauss-Chebyshev points; see Figure 9.6.

(ii) The extrema ofTn(x) (and ofTn(x)) in [—1,1] occur at the points

yj = cos f — J, j = 0,1,2,..., n, (9.26)

and yield Tn(yj) = (—I)-7 and Tn(yj) = . We call the points yj Cheby­
shev extremizers or just Chebyshev points. These are often called Chebyshev 
points of the second kind or Chebyshev-Gauss-Lobatto points.

Proof, The proof is Exercise 9.21. □
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Figure 9.6. A plot (red) of the Chebyshev points (extremizers) when n = 20. 
These correspond to the x-coordinates of points (blue) uniformly distributed around 
the upper half of the unit circle. Notice the clustering of the zeros near the two 
endpoints.

9.3.4 Other Inner Products and Orthogonal Polynomials
We can generalize the previous process to any interval (a, 6) with an inner product 
of the form

(f,g)= [ w(x)f(x)g(x) dx, (9.27)
J a

where the weight function w(x) >0 is an integrable function.
The orthogonal polynomials in Table 9.1 are some of the most widely used 

examples in applications. They arise frequently in numerical analysis, probability 
theory, statistics, number theory, and physics.

Performing the Gram-Schmidt process (but scaling to make the polynomials 
monic, instead of orthonormal) gives a recursive formula for the orthogonal monic 
polynomials for the corresponding inner product, as described in the next theorem.

Table 9.1. Commonly used orthogonal polynomials. The constants &k+i and ftk+i 
are the coefficients of the recursion described in Theorem 9.3.4 for к e N.

Class Domain w(rr) afc+i ftk+1

Chebyshev (-1,1) (l — #2)-1/2 0 1/4 (l/2forfc = l)
Hermite (—oo, oo) exp (—x2) 0 k/2
Laguerre (0, oo) exp (—#) 2k + 1 k2
Legendre (-1,1) 1 0 k2/^k2 - 1)
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Theorem 9.3.4. Let I be an interval in R and letw:I^ [0, сю) be a nonnegative, 
integrable function on I. If the integrals fT w(x)x2k dx are finite and nonzero for all 
к e N, then (f,g) = fT f(x)g(x)w(x) dx defines an inner product on R[rr] and there 
exists a unique basis of monic orthogonal polynomials {uq,ui, ...}, with degu^ = к 
for each к e N. Moreover, the polynomials satisfy the recursive equation

ЗД+1 — (# Pk+lUk—1, (9.28)

where the recursion begins with uq = 1 and u± = x — ai, and the coefficients 
and ftk+i are given by

«fc+i =
{uk,XUk} 
(uk,Uk)

and {uk^,xuk}
Pk-^-1 / \ •(Uk-l,Uk-l)

(9.29)

Proof. It is straightforward to check that (f,g) = fT f(x)g(jc)w(x) dx defines an 
inner product. We show (by induction) that for any к > 0 the given equations do, 
in fact, define an orthogonal set {w}^0 with each u^ monic of degree £ for every 
£ e {0,..., k}. This shows that the set {u#}k=0 forms a basis of the space R[rr; k] 
of polynomials of degree at most к and that for each £ < k, the polynomial is 
orthogonal to every polynomial in R[rr; £ — 1] (that is, every polynomial of degree 
at most £ — 1).

The initial case of к = 0 is immediate. For к = 1 we need only check that 
(1, # — oq) = 0, which follows from the definition of oq. Assume now that the claim 
holds for some к > 1. Since Uk and Uk-i are monic, they must have (uk,Uk) > 0 
and (ufc-i, Uk-i) > 0, which shows that the denominators in (9.29) defining ctfc+i 
and /3fc+i are not zero, so the polynomial и^+1, defined by (9.28), makes sense and 
is a monic polynomial of degree к + 1.

We have

(nk, Uk-^-1) (W'ki^'U'k ^k-^-l^k ftk+l'U'k—1) 

= (uk, XUk) - (ufc, Uk) = 0,

(У'к—1, ^fc+1) (У'к—1т^^к ^k-\-l^k (dk-\-lUk—\)
= (ufc_i, xuk) - Д/c+i (ufc_i, ufc_i) = 0,

and

l\Uj, Uk-\-]_) (Uj)XUk ^k-\-l^k ftk+lUk—1)

= {uj, xuk) for each j < к — 1.

However, (uj,xuk) = (xuj, Uk) = 0, since xuj is a polynomial of degree at most 
к — 1 and hence is always orthogonal to Therefore, the set is orthogonal.

To prove uniqueness, suppose that is also an orthogonal basis of monic
polynomials each satisfying deg Vk = k. Thus Uk — Vk is a degree к — 1 polynomial, 
and hence (uk — Vk,Uk) = 0 and (uk — v^Vk) = 0, since Uk and Vk are orthogonal 
to all lower-degree polynomials. Therefore \\uk — Vfc||2 = (uk — Vk,Uk — Vk) = 0, and 
thus Uk = Vk- □
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Remark 9.3.5. The converse also holds: If a sequence of monic polynomials satis­
fies the recurrence in (9.28), then there exists a domain I and weight function w(x) 
such that the polynomials are orthogonal with respect to the inner product defined 
by I and w; see [Fav35] for details.

9.3.5 *Further  Analysis of Legendre Polynomials
We conclude this section by applying Theorem 9.3.4 to the monic Legendre poly­
nomials. Assume the domain is (—1,1), and the weight function is w(x) = 1. We 
show that ctfc+i = 0 and = Zc2/(4A:2 — 1), for each к > 0. As a first step, we 
prove Rodrigues’ formula, which is very useful in its own right.

Theorem 9.3.6 (Rodrigues’ Formula). For each к e N the monic Legendre 
polynomial Uk satisfies

u\ rfk
= '“0)

Proof. We first show that the right-hand side of (9.30) is orthogonal to the set 
R[rr; к — 1]. Any basis for R[rr; к — 1] can be used to check this orthogonality, so we 
use the power basis {1, x,..., Repeated integration by parts gives

Z1 jfc * Jk—j — 1
dl = - 1) J + - 1)‘

1

= 0
-1

for I = 0,1,2,..., к — 1. Since the right-hand side of (9.30) is a degree к polynomial 
that is orthogonal to all lower-degree polynomials, it must be a scalar multiple of 
Uk(x). Thus we need only choose a scaling to make it monic.

Note that

dk / 2 .Afc dk v—-r(x2 - IF = —r > 
dxk dxk

f-j ,k—2
k\ (fc-2)!

This implies 

k\ dk
(2k)l dxk

(x2 - l)fc = xk
1) fc-2

2k(2k - 1) (9.31)

which gives the desired monic scaling. □

Remark 9.3.7. Each of the orthogonal polynomials described in Table 9.1 has a 
similar formula and the term Rodrigues’ formula is used to describe them.

The recursion formula (9.28) gives an interesting way to compute the Legendre 
polynomials, computing the coefficients &k and using (9.29). But Rodrigues’ 
formula gives a way to compute the Legendre polynomials directly, as described in 
the following corollary.
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Corollary 9.3.8. For each n e N, the monic Legendre polynomial un is given by

/ л nfc (n!)2(2n - 2/c)! n_2fcUn “ £ 1) ^(п-^)!(п-2^)!(2п)!Ж ' (9'32)

Proof, By the binomial theorem we have

П! (д.2 _ 1Г = n! y- n! 2(n—fc)( nfc
(2n)P ’ (2n)! A;!(n - A;)! 1 >'

Differentiating n times gives (9.32). □

Theorem 9.3.9. The recursion (9.28) for Legendre polynomials satisfies ctfc+i = 0 
and fik+i = к2/ (4A;2 — 1) for each к > 0.

Proof. Corollary 9.3.8 shows that Uk is an odd function when к is odd, and it is an 
even function when к is even. Combining this with (9.28) implies that 0^+1 = 0.

To prove that /3k+i = k2/(4k2 — 1), we write Uk(x) = xk + p>kXk~2 H---- , where
fik is given in (9.31). Thus

Q _ xuk(x) - Uk+i(x) _ _ —k(k — 1) t (k + l)k
lk+1 ~ uk-i(x) ~^k~ ^k+1 ~ 2(2fe - 1) + 2(2fe + 1)

(A; — 1)(2A: + 1) — (A; + 1)(2A: — 1) _ k2
2(2k — l)(2fc4-l) “ 4k2 - 1'

Remark 9.3.10. For each k, the monic Legendre polynomial и к satisfies the second- 
order ordinary differential equation

(x2 - + 2^^- - k(k + Ifuk = 0. (9.33)
(LJl (LJL

Indeed each of the orthogonal polynomials described in Table 9.1 can be generated 
by a sequence of differential equations in this manner.

Another way to construct the Legendre polynomials is to start with the linear 
operator D : R[ж] R[&] given by D = (x2 — 1)^ + 2#^. Relation (9.33) shows 
that each Legendre polynomial Uk is an eigenvector (also called an eigenfunction) 
of D with eigenvalue k(k + 1). It can be verified that D is self-adjoint (Hermitian) 
with respect to the inner product (9.16), which means that the eigenvectors must 
be orthogonal.

9.4 Interpolation and Approximation Error
Interpolating a function does not always give a good approximation of that function, 
and, contrary to intuition, adding more points does not always improve the quality 
of the approximation. The key is how the nodes are distributed. If the nodes are 
uniformly spaced, interpolation at those points can give terrible approximations, but 
if the nodes are spaced like the Chebyshev zeros (9.25) or the Chebyshev extremizers 
(9.25), then interpolating gives a good approximation, as measured by the sup-norm, 
provided the original function is well behaved. The quality of the approximation 
improves for smoother functions and for higher-degree polynomials.
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9.4.1 Interpolation Error
We begin this section with a theorem that describes the interpolation error for a 
degree-n polynomial interpolation of a smooth function in terms of the (n + l)th 
derivative of the function and the polynomial v(x) = П”=о(*  — xf), where the хг 
are the nodes of the interpolation.

Theorem 9.4.1. Let p e R[&; n] be the unique interpolating polynomial of degree 
at most n for a function f e Cn+1([a, 6]; R) at n + 1 distinct points x0, Xi,... ,xn 
on the interval [a, 6]. For each x e [a, b] there exists £> e (a, b) such that

/(*)  -p(x) = -J—/"* 1)(9.34) 
Vn ' 17*

where

v(x) = П(ж - xk)- (9.35)
fc=O

Proof. Fix x e [a,b\. Assume x • • • , since otherwise the result
holds trivially. Let

5(У) = /(У) - P(y) - •v[x)

Note that g(x) = 0 and g(xj) = 0 for all j = 0,1,2,... ,n. By Rolle’s theorem, 
g'(y) has n+ 1 distinct zeros in (u, b). Similarly, g"(y) has n distinct zeros in (a, b). 
Repeating, g(n+1\y) has at least one zero in (a, 6); call it £. Thus we have

о = 5(n+i)(e) = /(п+1)(о -p(n+1)(e) - «(п+1)

n+l)/n _ /(ж) - p(x) 
v(x)

Simplifying gives (9.34). □

(n + 1)!.

Remark 9.4.2. You might wonder why we used Bernstein polynomials to prove 
the Weierstrass approximation theorem (Theorem 9.1.7) when the previous theorem 
seems to suggest that polynomial interpolation can also give good approximations. 
There are at least two reasons why Theorem 9.4.1, as it stands here, is not strong 
enough to prove the Weierstrass approximation theorem. First, to prove conver­
gence, we need a bound on the polynomial v(x). Without some restrictions on the 
interpolation nodes x0,..., xn, the polynomial v(x) can grow very large (see imme­
diately below), but this problem can be circumvented: If the nodes are carefully 
chosen, then |v(#)| can be bounded.

Second, a more fundamental problem is the fact that Theorem 9.4.1, and most 
other theorems about convergence of polynomial interpolation, requires the function 
f being interpolated to lie in Cn+1. Therefore, a convergence result as n сю 
would require f e C°°, whereas Weierstrass approximation holds for any continuous 
function, with no differentiability requirement at all.
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Figure 9.7. Plots of the Wilkinson polynomial W(t) (left panel, blue) and the 
signed-log of the Wilkinson polynomial, that is, sign(W(x)) -log(|W(j:)| + 1) (right 
panel, green). Note that the у-axis in the left panel is measured in multiples of 1012 
(lel2). To get a sense of the scale of the plot, notice that W(0) = 2.43 x 1018 = 
e42,34? corresponding to a value of 42.34 on the log plot.

Uniformly Spaced Points

If the (п + l)th derivative of f is bounded by M on an interval I = [a,b], so 
lyCn+i)^)! < for all x e I, then Theorem 9.4.1 shows the error \\f — p||z,oo = 
suPxei 1/(ж) — р(ж)1 is controlled by the polynomial v(x). But, unfortunately, if the 
nodes are uniformly spaced, then this polynomial can behave very badly. In the 
special case where the nodes are the integers 1,2,3,..., 20, this polynomial is called 
the Wilkinson polynomial (see Figure 9.7):

20

W(t) = ]^[(^ — Xi) = (x — 1)(t — 2) • • • (t — 20) 
г=1

= т20 - 210т19 + 20615т18 - 1256850т17 + 53327946т16 - 1672280820т15

+ 40171771630т14 - 756111184500т13 + 11310276995381т12

- 135585182899530т  + 1307535010540395т  - 10142299865511450т11 10 9

+ 63030812099294896т8 - 311333643161390640т7 + 1206647803780373360т6

- 3599979517947607200т  + 8037811822645051776т4 - 12870931245150988800т35

+ 13803759753640704000т2 - 8752948036761600000т + 2432902008176640000.

Although Wilkinson’s polynomial takes on the value zero at each of the nodes 
1,2,..., 20, it gets very far away from zero between those points, especially near 
the endpoints of the interval [1,20]. This illustrates that equally spaced points in 
high-degree polynomials can cause serious problems.

The fact that v(x) (or W(t)) can become so absurdly large has led many stu­
dents, and some professors, of numerical analysis to the mistaken conclusion that 
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polynomial interpolation is useless. This is not true. With a good choice of inter­
polation points, polynomial approximation can be very well behaved and extremely 
useful. The key is to choose the interpolation points judiciously. We see this more 
in the next subsection and throughout the rest of this chapter.

Nota Bene 9.4.3. One might expect that increasing the number of interpo­
lation points would give a better approximation of the functions, but this is 
not always the case. It turns out that adding more interpolating points can 
make the oscillation much worse, rather than better. This is called Runge’s 
phenomenon. See Figure 9.8 for an example. But again, choosing the inter­
polation nodes more judiciously solves this problem. We treat this more in 
Section 9.4.2.

Degree 2 Degree 4 Degree 6

Degree 8 Degree 10

Degree 14 Degree 16

Figure 9.8. Runge’s phenomenon: Interpolating the function 1/(1 H- 25rr2) (red) 
at uniformly spaced points. As the number of points increases the interpolation 
polynomial (black) oscillates more and more wildly near the endpoints.

-1 о 1

<

A
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9.4.2 Monic Polynomial Approximation
Consider the question of finding the degree-n monic polynomial that best approx­
imates a continuous function f in the uniform norm; that is, given a continuous 
function f on some interval I C R, we seek the polynomial p G R[&; n] such that 
II/ — p||l°° < II/ — q||l°° for all q G R[rr; n], that is,

sup \f(x) - р(ж)| < sup \f(x) - g(x)| 
xEl xEl

for all q G R[rr; n\. Solving for the absolute best solution to this problem is usually 
difficult, but we can get very near optimal with Chebyshev polynomials.

In fact, the monic Chebyshev polynomial of degree n is the best degree-n monic 
polynomial approximation of 0 on the interval [—1,1]. This fact is sometimes called 
the minimax theorem because it states that the monic Chebyshev polynomial has 
the minimal maximum (that is, the smallest L°°-norm) on [—1,1] of any monic 
polynomial of degree n.

Theorem 9.4.4 (Minimax Theorem). If p(x) is a monic polynomial of degree 
n, then

= sup |fn(x)| < sup |p(x)|, 
2 x€[-l,l] x€[—1,1]

where Tn(x) is the monic Chebyshev polynomial of degree n.

Proof. Suppose that \p(x) | < for all x G [—1,1]. If yj = cos (^), then for 
each j = 0,1,2, ...,n, the monic Chebyshev polynomial satisfies Tn(yj) = .
Thus

(-iy [fn(y>)-p(%)] >o VJ = 0,1,2, ...,n. (9.36)

This means that Tn(x) —p(x) crosses the rr-axis n times (has n zeros) in the interval 
(—1,1). But Tn(x) — p(x) is a polynomial of degree n — 1, which implies that 
Tn(x) = p(x), but that contradicts (9.36). □

The monic Chebyshev polynomials satisfy Tn+1 = — ^), where the
Zj = cos (/ + j)) are the Chebyshev zeros. Because of this, we can give the 
previous proposition another formulation.

Corollary 9.4.5. For any collection of points x^..., xn, consider the monic poly­
nomial flLoO — xk) of degree n + 1. The L°°-norm of this polynomial on the 
interval [—1,1] is minimized when {a?o5 • • •, xn} = {zq, • • •, zn} is the set of degree- 
(n + 1) Chebyshev zeros.

9.4.3 Error for Interpolation at Chebyshev Roots
The results of the previous subsection, combined with Theorem 9.4.1, give some 
control of the interpolation error when interpolating at the Chebyshev zeros. Recall
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that Theorem 9.4.1 guarantees that for any x 6 [—1,1], the interpolating polynomial 
p(x) of the function f(x) at the points xQ,... ,xn e [—1,1] has the error (9.34)

/(®) -p(x) = * /(п+1)Юф)
(n + 1)!

for some value £ e (—1,1), where v(x) = П&=о(ж —the most general setting, 
the value /(n+1)(£) may be hard to control, since the exact dependence of £ on x 
is not specified. But, if f e Cn+1([—1,1]; R), then /(n+1)(£) is bounded on the 
compact interval [—1,1]. It is reasonable, therefore, to focus on minimizing the 
product |v(a?)| as a proxy for the whole error term. Choosing the interpolating 
points to be Chebyshev zeros minimizes this product, which gives the following 
bound on the interpolation error.

Proposition 9.4.6. If |/(п+1\ж)| is bounded by M on [—1,1], and if p(x) is 
the degree-n interpolating polynomial of the function f(x) at the Chebyshev zeros 
{zq, • • •, zn}, given in (9.25), then

M
sup |/(ж) -p(x)\ < ———. (9.37)

xe[-i,i] 2n(n+l)!

Proof, By Theorem 9.4.1 we have

M
7-------777 SUP(n + 1)! xe[-i,i]

sup |/(ж)-р(ж)|<
n

Ц(ж - Xk)

k=0

By the previous corollary, this bound is minimized when the interpolation points 
{a?o, • • • >%n} are the Chebyshev zeros {г0,..., zn}. And for all x e [—1,1] we have

n

II(a:-zfc)
fc=0

2n

by Proposition 9.3.3(ii). □

9.4.4 Interpolation at Chebyshev Extremizers
So far we have focused on interpolation at Chebyshev zeros, but another set of 
interpolation points with very good behavior is the collection of Chebyshev extrem­
izers {yk = cos(7r/c/n)}^0. These have a few advantages over the Chebyshev zeros: 
first, they include the endpoints of the interval, so we can force the interpolating 
polynomial to take a certain value at the boundary, and second, they are somewhat 
simpler to compute with, especially with the methods of the next section.

It should not be too surprising that interpolation at the extremizers gives an 
approximation that is almost as good as interpolation at the zeros of Tn+i, since 
both of them are the real part of a set of points that are uniformly distributed 
around the unit circle, and consequently, both of them cluster near the endpoints 
of the interval.



432 Chapter 9. Polynomial Approximation and Interpolation

As with interpolation at the Chebyshev zeros, we can bound the error for interpo­
lation at the Chebyshev extremizers by bounding the product v(x) = П^=о(ж — % ) 
and using (9.34) in Theorem 9.4.1. First we prove some basic properties of the 
partial product \x ~ Уз), which is often denoted Un_i(x) and is called the 
monic Chebyshev polynomial of the second kind of degree n — 1. Note that yo = — 1 
and yn = 1, so

n

v(x) = IK*  - = (x2 ~ Wn-i(z)- (9.38)
j=o

Proposition 9.4.7. If {yk = cos(7r/c/n)}JL0 are the extremizers of Tn(x) on 
[—1,1], then the polynomials v(x) = П^о(ж — Уз) an^ ^n-i(^) = П^1(ж — Уз) 
satisfy the following:

(i) Un_i(x) —

(ii) If x = cos(t) with t e [0,7г], then Un-i(x) =

(iii) For all x e [—1,1] we have |v(#)| <

Proof, The proofs of (i) and (ii) are Exercise 9.24. Property (iii) follows from (ii) 
and (9.38), since

\v(x)\ =
j=0

= 1(Ж2-1Я_1(Ж)1 = ^Т sin2(£)
sin (nt) 
sin(t)

= ——г I sin(t)sin(nt)| < —r. □ 2n~i1 v 7 v /I — 2n—i

Corollary 9.4.8. //’|/(n+1)( x) | is bounded by M on [—1,1], and ifp(x) is the inter­
polating polynomial of the function f(x) at the Chebyshev extremizers {yo,... ,yn}, 
then

M 
^|UPi||/(I)-P(I)|<2„_i(n + 1),. (9,39)

Proof, By Theorem 9.4.1 we have

1Г/ A / M / TT I I / M
sup \f(x)-p(x)\ < sup Ц \x — yk < v —-TV7,

xe[-i,i] (n+1)! ^[-id]fc=o 2 4^+1)!

where the last inequality follows from Proposition 9.4.7(iii). □

This gives a uniform bound on the error for interpolation at the Chebyshev ex­
tremizers that is twice the size of the bound (9.37) for interpolation at the Cheby­
shev zeros. But both of these go to zero rapidly as n oo, assuming that f is in 
C'oo([—1,1]; R) with all derivatives bounded by some fixed M < oo.
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-1 0 -1 0 1

Figure 9.9. Polynomial interpolation (black) of the function 1/(1 + 25a;2) (red) 
at Chebyshev extremizers. Notice that the interpolation improves as the number 
of points increases, and Runge’s phenomenon does not occur. Contrast this to the 
interpolation at uniformly spaced points in Figure 9.8.

Remark 9.4.9. The upshot of this corollary and Proposition 9.4.6 is that inter­
polation at Chebyshev extremizers and zeros both converge for sufficiently smooth 
functions. This and the results of the previous section show that the Runge phe­
nomenon is not a problem when the interpolation points are the Chebyshev zeros or 
extremizers. Even if the interpolating polynomial oscillates around the function /, 
the maximum total error is bounded and becomes smaller as n grows; for example, 
see Figure 9.9.

Remark 9.4.10. The Chebyshev polynomials and Chebyshev interpolation can 
be adapted to any interval [a, b]. Specifically, if we want to interpolate f on the 
interval [a, 6], we can make a linear change of variables of the form g(x) = rx + s 
for some r, s e R to get a new function f(x) : [—1,1] R given by f(x) = f(g(xf). 
Interpolation of f on [—1,1] then corresponds to interpolation of f on [a, b\. The 
details are Exercise 9.27.
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9.5 Fast Chebyshev Interpolation
Recall that the Chebyshev polynomials 7b, 7i,..., Tn form an orthonormal basis for 
the vector space R[&; n] of polynomials of degree at most n. Thus for any p e R[rr; n] 
there exists a unique set of coefficients ao,..., an such that

n

р = ^акТк. (9.40)

The Chebyshev basis has many advantages over the standard monomial basis 
{a?fc}£=0. Among the advantages is the fact that a small change in the coefficients 

of the Chebyshev basis produces only a small change in the location of the zeros 
of p inside [—1,1], but if p is expressed in terms of the standard monomial basis, 
then a small change in the coefficients can change the zeros of p a lot. We say 
the rootfinding problem for the Chebyshev basis is well conditioned, whereas the 
rootfinding problem for the monomial basis is ill conditioned. The conditioning of 
a problem describes how much or how little the solution of the problem changes 
when the inputs to the problem are slightly changed; see Section 11.2 for more on 
conditioning.

In this section we describe a fast algorithm to express the interpolation of a 
function f at the Chebyshev extremizers in terms of the Chebyshev basis. As a 
function, this polynomial is the same as the one constructed by Lagrange interpo­
lation, but it is written in terms of the Chebyshev basis instead of in terms of the 
Lagrange basis or the standard monomial basis. Since any degree-n polynomial is 
its own interpolation, this algorithm will also express any degree-n polynomial in 
terms of the Chebyshev basis.

9.5.1 Fast Chebyshev Interpolation
If the interpolating polynomial p has already been computed in terms of the mono­
mial basis, then the naive way to change from the monomial basis to the Chebyshev 
basis is to multiply by the (n + 1) x (n + 1) transition matrix (see Volume 1, Sec­
tion 2.4). The temporal complexity of this algorithm is dominated by the matrix 
multiplication, which is typically O(n3).

Alternatively, if we have not yet computed the interpolating polynomial in terms 
of another basis, we could compute the values of f(x) at the n+ 1 points x0,..., xn 
and compute the values of the Chebyshev basis functions at those points to get a 
system of (n + 1) linear equations in the coefficients а&. Solving this system also 
has temporal complexity of O(n3). But in the case that the interpolating points 
are the Chebyshev extremizers,40 there is a much more efficient way to express the 
interpolating polynomial in terms of the Chebyshev basis. This is based on the 
relation (9.24)

40Similar methods also work for the Chebyshev zeros, but everything turns out a little messier.

Zn(cos(t)) = cos (nt) \/n e N.

This relation reveals a deep and important connection to Fourier series, which per­
mits the use of the FFT to compute the Chebyshev interpolation in terms of the 
Chebyshev basis very rapidly, in O(n\ogn) time. The following theorem is the main 
result of this section.
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Theorem 9.5.1. For each keZ, let у к = cos(7rP/n). The coefficients a^... ,an E 
R of (9.40) are given by a certain multiple of the real part of the DFT of the 2n- 
dimensional vector of samples {pG/k)})^1. Specifically, we have

Uk =7fe3i(DFT(p(yo),p(yi),---,p(y2n-i)))fc, (9.41)

where JR denotes the real part, and the coefficient yk is

if к e {0,n}; 
otherwise.

(9.42)

Proof. Let cu2n = е27гг/2п. For the Chebyshev extremizers yj we have

n n / ‘1 \ П [ n

рШ = 52 akTk(.yj) = 52ak cos ()= 52 ак®(ш2п) = 152 акш& 
k—Q k—Q ' ' k—Q \k—Q

The right side resembles the real part of the inverse discrete Fourier transform 
(IDFT), except that the upper limit of the summation does not go to 2n — 1, which 
is what it would need to be for the IDFT, given the way we have indexed things. But 
we may extend the coefficients to by defining an+j = an_j, j = 1,2,..., n.
Exercise 9.29 shows that for any j, к e Z we have JR = JR which
gives

2n n n n
£ afc3?(<4) = £an+fc3?(<4n+fc)) = £an_fc3?(^”-fc)) = £afc3?(^).
k—n k—Q k—Q k—Q

Moreover, since = aQ> it follows for j = 0,1,2,..., 2n — 1 that

IL -j / IL IL

p(yp> = 52 = 2 (52 ak^2n)+52 ак®(ш2п)
k—Q \k—Q k—Q t

1 / n 2n

= 2 E«^(4) + £ak»(4)
\fc—0 k—n
(2n-l \

fc=0 /

where the last equality follows from the definition of jk, which accounts for the 
double counting of un^2n and °f ao = «2n-

Thus the sample values are the real part of the IDFT of (t% rf,..., J2""1 )•
v 7o ’ 71 ’ 72 n-i 7

Taking the DFT of both sides and rescaling componentwise gives (9.41). □

Remark 9.5.2. Taking the real part of the DFT in the formula above is actually 
unnecessary, since the DFT of the vector

(p(po),p(yi), • • • ,p(pn-l),p(pn),p(pn-l), • • • ,p(yi))
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is always real; see Exercise 9.30 for details. But we usually take the real part in 
numerical computations in order to eliminate any imaginary error terms that arise.

Corollary 9.5.3. If f : [— 1,1] R is any function, the degree-n interpolating 
polynomial pn of f through the n + 1 Chebyshev extremizers {y^ = cos(?rA;/n)}£=0 
can be written as n

Pn(x) = ^акТк.
k=0

where each a^ is given by

ак=ук$ (DFT(/(y0), /(3/1), • • •, /(3/2n-i)))fe

= 3? (DFT(/(3/o),..., /(з/n-i), /W, J(3/n-i), • • •, /(3/i)))fc , (9-43)

and yk is given in (9.42).

Proof. By definition of the interpolating polynomial, we have

Pn(3/fc) = /(?/fc) (9.44)

for each уь with к e {0,..., n}. Moreover, cos(tt + x) = cos(tt — x) for any x e R, 
which gives yn+j = Уп-j for each j e {0, thus (9.44) holds for all к e 
{0,..., 2n — 1}. The corollary now follows immediately from Theorem 9.5.1. □

Remark 9.5.4. Since the DFT of any vector may be computed using the FFT, the 
previous corollary gives a method for computing the degree-n interpolation (in the 
Chebyshev basis) of any function f at the n+1 Chebyshev extremizers in O(nlogn) 
time. Compare this to barycentric Lagrange and Newton interpolation that cost 
O(n2) for their initial setup.

This algorithm gives the resulting polynomial as a linear combination of the 
Chebyshev polynomials rather than as a linear combination of the standard mono­
mial basis, but, as mentioned above, for many applications the Chebyshev basis 
is actually preferable. Moreover, Clenshaw’s algorithm (Exercise 9.20) allows the 
polynomial expressed in the Chebyshev basis to be evaluated in O(n) time, which 
is as efficient as evaluating a polynomial in the standard monomial basis.

Finally, by the results in the previous section, if f is sufficiently smooth and n 
is large enough, then this Chebyshev interpolation is a close approximation to f.

Example 9.5.5. We interpolate the function f(x) = ex sin (2тгж) + x + 6 
using the method given above. Algorithm 9.1 gives the code that performs 
the interpolation. A plot of the resulting approximation in degree 29 is given in 
Figure 9.10. The plot is eyeball perfect. The sup-norm error in this example is 
5.3 x 10 15—that is, essentially perfect, to machine accuracy (for more about 
the limits of machine accuracy in floating point, see Section 11.1). In other 
words, with 30 numbers we can store the whole function f to within machine 
accuracy. This is remarkable.
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

import numpy as np
from numpy.fft import fft

def cheb_interp(f,n):
""" Compute the coefficients of the degree-n Chebyshev 
interpolation of f at the extremizers y_k=cos(k pi/n). 
и и и 

у = np.cos((np.pi * np.arange(2*n) ) / n) 
samples = f(y) 

coeffs = np.real(fft(samples))[:n+l] / n 
coeffs [0] = coeffs [0]/2 
coeffs[n] = coeffs[n]/2

return coeffs

Algorithm 9.1. Code to produce the degree-n Chebyshev coefficients for any func­
tion f(x), as described in Corollary 9.5.3. Note that NumPy’s fft is missing the 
scaling factor of l/2n, so we must put it in explicitly. Combining the scaling factor 
with means that the Oth and nth coefficients are scaled by l/2n, and the rest of 
the coefficients are scaled by 1/n. Note that this algorithm could have used the FFT 
algorithm in Algorithm 8.2, but the reader should become used to using professional 
grade packages that have been carefully optimized for speed and usability.

Figure 9.10. The function in Example 9.5.5 and its degree-29 interpolation using 
30 Chebyshev points. The actual function is plotted in red, but it is directly beneath 
the interpolation (the black curve is plotted with a slightly thinner width so the red 
can still be seen beneath).
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Example 9.5 .6. We interpolate the function f(x) = x4 at the five Chebyshev 
points yQ^... Since f is a polynomial of degree 4, we should recover x4 
exactly but expressed in terms of the Chebyshev basis; that is, we should find 
the coefficients such that x4 = Ylk=oakTk(%)- Computing the coefficients 
a к numerically, as before, we get

a0 = 0.375000000000000, 
ai = 0.000000000000000, 
a2 = 0.500000000000000, 
a3 = 0.000000000000000, 
a4 = 0.125000000000000.

We can verify this answer by hand:

+ |lb(*)  = h&r4 - 8x2 + 1) + 1(2^ - 1) + |
o z о о z о

4 2 1 2 1 3
= X -X + ~+Ж -9 + 0 

О z о
= X4.

So the numerical solution using the FFT is the same as (or rather, within 
machine accuracy of) the exact solution.

Example 9.5 .7. The function g(x) = |ж| is not smooth at 0, so we cannot 
expect the Chebyshev interpolation of g to be as good as the interpolation for 
the smooth functions in Examples 9.5.5 and 9.5.6. In Figure 9.11 we plot the 
degree-28 Chebyshev interpolation of g. You can see that the approximation 
is very good away from 0, and it is less accurate near the singular point at 
0. The sup-norm error for this approximation is less than 0.0058—far from 
the extremely small errors of the previous examples, but still a very good 
low-degree polynomial approximation near this singular point.

Example 9.5 .8. Even functions that fail to be differentiable at many points, 
like the one depicted in Figure 9.12, can still be approximated fairly well with 
Chebyshev interpolation if the number of interpolation points is sufficiently 
large. The use of the FFT in the computation of the coefficients means that 
finding these approximations is still very efficient even when interpolating at 
many points.
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Figure 9.11. Degree-28 interpolation of the absolute value function, using Cheby­
shev points for n = 29. The actual function is plotted in red and the interpolation 
in black. The approximation is still very good away from the singularity at 0 and 
not really terrible even at 0—with an error no worse than 0.0053.

Figure 9.12. Interpolation of a very singular function using Chebyshev extremiz- 
ers. The actual function is plotted in red and the interpolation in black. By degree 
200, the approximation is visually pretty good, and by degree 600 it has error less 
than 0.0006.

9.5.2 *Chebyshev  Projections
There is another way to assign a polynomial of degree n to a function f : [—1,1]
R, provided that f e L2([— 1,1]; R). In this space, endowed with the Chebyshev 
inner product (9.19), the set of Chebyshev polynomials 7b, 7i,... ,Tn of degree at 
most n is orthogonal, and thus we may project f orthogonally onto the subspace
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n] C L2([—1,1]; R) spanned by these polynomials to get

fn = Proj>[x;n] f

= Y.bkTk
fc=0
1 9 n

= -{f,T0}T0 + -^(f,Tk}Tk.

The coefficients and in the last line are the inverses of (7b, Tq) = % and 
(7fc,7fc) = (see (9.23)). In general this projection is not the same as the inter­
polating polynomial pn of the previous section, but it is fairly close, as we show 
below.

The main problem with computing this projection is that the inner products

J-i vl — x2

are usually not easy to compute, but we can approximate them numerically. 
One natural way to approximate them is by subdividing the interval [—1,1] at 
the Chebyshev extremizers у к and then using the trapezoid rule (see Section 9.6.3). 
Remarkably, this gives almost the same result as interpolation at the Chebyshev 
extremizers, as we now show.

For к > 0 the coefficient bk is (/, 7/J. Making the substitution x = cos(0), for 
к > 0 we have

7Г J-i VI — X2

К J7V д/l — COS2(0) 

9 f7r
= — /(cos(0)) cos(A;0) dO.

it Jo

Dividing the interval [0,7r] uniformly into n pieces gives a grid of n + 1 points 0j = 
Trj/n for j e {0,..., n}. Using this grid for the trapezoid rule (see Example 9.6.3) 
to approximate the integral gives

- <f,Tk) = - Г f(cos(0))cos(k6)d0
л ~ Jo

~ I 52 I (ACOS<A)) c°s(M) + /(cos(0,+i))cos(fc(9j+i))
7Г *—' Z П

= - I/(yo) cos(fc0o) + 2 V f(.yd cos(fc^) + f(yn) cos(/c#n) ) .
n \ ы J

Using the same argument given in the proof of Theorem 9.5.1 shows that this 
last line is the same as the fcth term in the expression

23?(DFT(/(y0),/(yi),...,/(?/2„-i))fc.
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Dividing everything by 2 also gives a trapezoid-rule approximation for

bo ~ 9? (DFT(/(y0), №1),.. •, /(У2п-1))о •

The final result is closely related to the result of Theorem 9.5.1. Indeed, we have 
shown that

(9.45)
I 2a^ и к = n,

so this approximation of the projection fn is almost identical to the interpolation 
pn at the Chebyshev extremizers.

In general, the projection fn has a somewhat smaller uniform error than the in­
terpolation pn. But the approximated projection given by (9.45) does not, because 
it is, after all, just an approximation of the projection fn. Moreover, the inter­
polation is guaranteed to pass through the extremizers, including the endpoints 
(—!,/(—!)) and (1,/(1)), whereas the projection and its approximation are not.

9.6 Integration by Interpolation
Polynomial approximation is a powerful tool for computing integrals. The main 
idea of this and the next section is simple: integrating polynomials is easy, so 
approximate the integrand with a polynomial and integrate the polynomial instead. 
The methods we consider in the rest of this chapter differ mostly in the choice of 
how to approximate the integrand. In this section we consider Newton-Cotes, which 
corresponds to interpolating at uniformly spaced points. To avoid problems arising 
from the Runge phenomenon, it is generally better to use low-degree interpolations 
on many subintervals, rather than using a single high-degree interpolation on the 
entire domain of integration. This is called composite Newton-Cotes quadrature.

9.6.1 Numerical Quadrature
Numerical quadrature is a method of choosing points Xi and weights Wi so that for 
any sufficiently well-behaved functions /, the integral f(x) dx is closely approxi­
mated by the sum /(a?*) .

Definition 9.6.1. A numerical quadrature for continuous functions on a bounded 
interval [a, b] is a set of n+ 1 points (called nodes,) xq < x\ < • • • < xn in [a, b] and 
a set of corresponding weights wq, wi, ..., wn e R for every n e such that for 
all functions f e C([a, 6]; R) we have

n

2=0
dx

as n oo.
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Example 9.6.2. Right-hand Riemann sums are a form of numerical quadra­
ture with equally spaced nodes a = < #1 < • • • < xn = b and with weights
wq = 0 and Wi = Xi — Xi-i for all i € {1,..., n}, giving

Since all continuous functions are integrable, their Riemann sums converge 
to the integral as n —> oo, so this simple quadrature can approximate the 
integral as closely as desired by making n large enough. But the convergence 
is not very rapid—we usually need to take n to be large in order to get a good 
approximation; see Figure 9.13.

0

10 -

5 -

0 -
5 10 0 5 10 0 5 10

Figure 9.13. Quadrature by Riemann sums. Here we are taking right-hand sums, 
as in Example 9.6.2, with n = 4, 8, and 12, respectively. The approximation is still 
relatively poor with n = 12 (right panel).

9.6.2 Quadrature by Polynomial Interpolation
Many quadrature rules arise from integrating a polynomial interpolation. The idea 
is to choose n+1 distinct nodes я?о,..., xn in the interval [a, b], compute the unique 
interpolating polynomial pn E I[x:n] for f at those nodes, and then integrate that 
polynomial as an approximation of the integral of f. This gives

(9.46)

where

for j e {0,1,2,... , n}, (9.47)

and the Lnj are the Lagrange basis functions (9.3).
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9.6.3 Newton-Cotes Quadrature
Interpolation quadrature with n+1 evenly spaced nodes a = xq < Xi < • •• < xn = b 
in [a, b] is called Newton-Cotes quadrature of order n. Newton-Cotes performs 
poorly for large values of n because the high-order polynomial approximations of 
the integrand can suffer from Runge’s phenomenon. One remedy, which we explore 
in the next section, is to choose the nodes more judiciously—either at the Chebyshev 
extremizers (this is called Clenshaw-Curtis quadrature) or at zeros of the Legendre 
polynomials (called Gaussian quadrature).

Another remedy is to chop the domain into subintervals and use lower-order 
Newton-Cotes quadrature on each subinterval. Assuming that n = d£, with d, £ e 
Z+, we can split up the domain as

[a, b] = [ж0, xn] = [ж0, xd] U [xd, x2d] U • • • U [xd(£_i), xde\.

Since each subinterval has d+1 nodes, we can use a degree-d Newton-Cotes quadra­
ture on each subinterval. Thus we have

r^i+1)d
2 , / Pi(x)dx, 
2=0 J Xid

(9.48)

where Pi(x) is a degree-d polynomial. We call (9.48) the composite Newton-Cotes 
rule.

Example 9.6.3. First-order (d = 1) composite Newton-Cotes quadrature 
is better known as the trapezoid rule. First consider the contribution of the 
interval [a?o,#i], where h = x± — xq to the approximation (9.48). The first-order 
Newton-Cotes quadrature weights are given by the integrals of the first-order 
Lagrange basis functions

Г1 x-X1 , 1, . h

ib H C+1 ^/(ж,+1) + /(ж.)/ /(ж)<7ж«2^/ Pi(x)dx=2_^--------- z--------- h. (9.49)
Ja i=0 Jx' i=o 2

Wo= --------- dx = -(^1 - Xq) = -,
Jx0 Xo-Xi 2 2

Г1 ж-жо , 1, . hwi= ----------dx = -(Ж1 - ж0) = -.J Xq ^0 2 2

Thus we have

[ f(x) dx « f(xo)wo + J(a:i)wi = (/(ж0) + /(zi)). 
J Xq

If we choose the points xq, ... ,xn to be equally spaced with a gap of h = 
Жг+i — Xi = (b — a)/n, then these weights are the same for all the subintervals. 
Thus (9.48) becomes
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Remark 9.6.4. One can show that the error in the trapezoid-rule estimate shrinks 
like O(n-2), which means that as n grows, the error of the integral is bounded by a 
constant times n-2, whereas the errors in the right- or left-hand rule with Riemann 
sums are in O(n-1). It’s worth noting that the computational complexity of the 
trapezoid method is no greater than that of computing a Riemann sum, and so the 
trapezoid rule gives improved accuracy without a higher computational cost. See 
also Figure 9.14.

Figure 9.14. Quadrature by the trapezoid rule with n = 4, 8, and 12, respectively. 
Compare the quality of the approximations here with those for Riemann sums in 
Figure 9.13.

Example 9.6.5. The second-order Newton-Cotes quadrature rule is better 
known as Simpson’s rule. As with (9.48), begin by approximating the integral 
of the function f(x) on the interval [rco,x2]. The second-order Newton-Cotes 
quadrature weights are given by the integrals of the second-order Lagrange 
basis functions

Ь2,о(ж) =

L2ti(x) =

L2,2(x) =

(x — Х1)(х — X2) 
(x0 - xi)(xo - x2)’
(x - ж0)(ж - a?2)

(^1 - Жо)(Я1 - x2)’
(x - жр)(ж - Ж1) 

(x2 - x0)(x2 - Xi)'

It follows that

w0 =
ГХ2

/ Т2?0(я)сЬ =
1 Xq

Г2 (ж - Ж1)(ж - ar2) 

Jx0 (x0 - Xi^Xo - X2)
dx. (9.50a)

Wi =
px2
/ L2,i(^) dx =

1 Xq

fX2 (ж - £р)(ж - a:2)
Ixo (Xl - Жр)(Х1 - X2) dx, (9.50b)

W2 =
ГХ2

/ L2j2(x)(Lr = 
J Xq

ГХ2 (x - жр)(ж - a?x) 
lx0 (x-2 - Жр)(ж2 - Xi) dx. (9.50c)
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These integrals are tedious to compute, but some work shows that

x2 — hw0 = w2 =---------= -6 3
2(ж2-ж0) 4/iand wx =-------------= —, (9.51)

О о

where h = Жг+i — Xi = for all г; see Exercise 9.34 for details. Again, the 
weights do not depend on the actual values of x2 and xq—just the difference 
between them—and so this rule works for all of the subintervals. Thus if there 
are an even number n = 2£ of nodes, the degree-2 composite Newton-Cotes 
rule (Simpson’s rule) is

rb £ z*2(i+l)  £ 1 i
I f(x) ~ ^2 / Pi(x) dx = ^2~ [/(a?2i) + 4/(a:2i+i) + У(^+2)] •
a i=o ^2i i=Q 6

This simplifies to 

n 
^f(Xi)Wi, 

г=0

4
< 2

4X

if i = 0, n,
if i is even (but not Oorn), 
if i is odd.

(9.52)

Remark 9.6.6. Now that we have (9.52), estimating the integral using Simpson’s 
rule is no harder to compute than the trapezoid rule or Riemann sums, but it gives 
greater accuracy; see also Figure 9.15. From Theorem 9.4.1, it is straightforward to 
show that the error in Simpson’s rule is in O(n-3) (see Exercise 9.36), and a more 
sophisticated argument shows that the error is actually in O(n-4).

Figure 9.15. Quadrature by Simpson’s rule with n = 4, 8, and 12, respectively. 
Compare the quality of the approximations here with those for Riemann sums in 
Figure 9.13 and the trapezoid rule in Figure 9.14- The Simpson approximation here 
for n = 12 is visually almost perfect, while the trapezoid rule still has visible flaws 
at n = 12, and Riemann sums are obviously very far from accurate at n = 12.
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Example 9.6.7. Table 9.2 shows the result of Simpson’s rule and the trape­
zoid rule applied to the following integral for various values of n:

log(a;) dx = 201og(20) - 19 40.914645471079815. (9.53)

Table 9.2. Performance of trapezoid rule and Simpson’s rule on the integral (9.53). 
For both methods, the results become more accurate with larger values of n. Esti­
mating the big-О rate by hand from the table suggests (correctly) that the trapezoid 
rule has error roughly O(n~2), whereas Simpson’s rule has error roughly O(n~4).

Trapezoid Rule Simpson’s Rule
n Approximation Error Approximation Error
4 39.5343 1.3803e-00 40.5232 0.3914e-00
16 40.8073 0.1074e-00 40.9047 0.0100e-00
64 40.9077 6.9562e-03 40.9146 7.7541e-05

256 40.9142 4.3600e-04 40.9146 3.3449e-07
1024 40.9146 2.7255e-05 40.9146 1.3162e-09
4096 40.9146 1.7034e-06 40.9146 5.1585e-12

Remark 9.6.8. A composite Newton-Cotes quadrature with a larger (but fixed) 
value of d converges even faster as n goes to infinity, but it is not a good idea to let 
d grow with n because this would be similar to high-degree, naive (noncomposite) 
Newton-Cotes quadrature—using a single polynomial to interpolate through many 
equally spaced points—and this approximation can be adversely affected by Runge’s 
phenomenon.

9.6.4 Method of Undetermined Coefficients
Naive computation of the integrals in (9.47) to find the quadrature weights can be 
painful, but there is another way, based on the observation that n+1 distinct points 
uniquely determine a polynomial of degree at most n through those points. The 
next proposition is immediate.

Proposition 9.6.9. Any quadrature rule on [a, b] arising from polynomial inter­
polation in n +1 distinct nodes in [a, b], as in (9.46), is exact on R[rr; n], meaning 
that it computes the value of the integral dx exactly for any f e R[ж; п].

Since quadrature by interpolation at n + 1 points yields exactly the correct 
answer for any polynomial of degree n or less, for any such quadrature rule we have

kfc+l _ fc+1 rb n
---- -—----- = / xk dx = Ух^г VA: e {0,1,... ,n},

k + 1 Ja i=0
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which gives a linear system of n + 1 equations and n + 1 unknowns (the weights). 
In matrix form, this is written as

111
x0 Xr x2
~2 ~2 ~2
JzQ Xi x2

J/Q X1 X2

Wo

W2

b — a 
(62-u2)/2 
(63-u3)/3 (9.54)

(6n+1 — un+1)/(n + 1)

The matrix on the left-hand side is the transpose of the Vandermonde matrix, which 
is known to be invertible if the Xi are distinct, so a unique solution exists and can be 
found by solving the linear system. This approach to finding the weights is called 
the method of undetermined coefficients.

Example 9.6.10. If n = 2 and the nodes {a?o, #1, #2} are evenly spaced with 
a?o = a, xi = and x2 = b (Newton-Cotes of order 2), then the correspond­
ing quadrature weights (9.47) are given by the integrals of the second-order 
Lagrange basis functions

ГХ2
Wo = / £2,0 (ж) dx =

J x0
ГХ2

Wi= L2^{x)dx =
J Xo
ГХ2

w2 = / L2,2(x)dx =
J x0

Г2 (% - ~ J
Lo (x0 - xO(xo - X2) 

fX2 (# ~ ж0)(а: - X2) dx
Jx0 (Ж1 - Жо)(®1 - X2) 
rX2 (x - x0)(a: - a?i)

Jx0 (x2 -aro)(x2 -xi)

The method of undetermined coefficients computes these by solving the system 
(9.54), which, in this case, reduces to

1 1
2^o 2^i
3#o 3rr2

f 
2j:2 
3rz^_

Wo 

Wi 
w2

%2 ~ xo
2 2

x2 ~ x0 
7^.3 _  Q,3x2 Xq

A little work (basic Gaussian elimination) gives the same result for the Wj as 
(9.51) in Example 9.6.5.

9.7 Clenshaw-Curtis and Gaussian Quadrature
Newton-Cotes quadrature corresponds to interpolating at equally spaced nodes. 
In this section we consider quadrature methods where the nodes are chosen more 
judiciously. Throughout this section we work on the interval [—1,1] rather than 
on an arbitrary interval [a, 6], but we can always rescale so that any integral 
f f(x) dx on a compact interval [a, b] can be rewritten as an integral on the 
interval [—1,1].
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9.7.1 Clenshaw-Curtis Quadrature
Instead of integrating by interpolating at uniformly spaced points, we can inter­
polate at the extremizers of the Chebyshev polynomials and then integrate the 
resulting polynomial. This is called Clenshaw-Curtis quadrature.

Expressing the interpolating polynomial pn in terms of the Chebyshev basis 
Pn(^) = and then using the fact (see Exercise 9.41) that

f1 _ z 4 . fo if A; is odd,
/ Tk(x)dx= < (9.55)
J-i I n к is even,

we obtain 
f1 f1

J i /(x)dxx J iPn(x) dx = 4 _ ^.2 • (9-56)

This gives a simple and efficient method for computing the Clenshaw-Curtis approx­
imation of f(x) dx, namely, compute the interpolating polynomial pn in terms 
of the Chebyshev basis pn(x) = using fast Chebyshev interpolation,
and then apply (9.56).

The standard form for a quadrature rule is

( /(x) dx « f(yj)wj. (9.57)
7-1 j=0

In this case the yj = cos(^) are the Chebyshev extremizers, and the Wj are the 
quadrature weights given by (9.47). We can compute the weights Wj by using (9.43) 
to express the coefficients U2fc in (9.56) in terms of the samples

Г1 2 /1 2n-1 \
/ pn(x) dx = ^2 T _4fc2 I 27 52 72fc cos(-2K7r/n)/(y£) j

2n—1 LtJ

= - 52 52 cos(-2HTr/n)

1 n Lt J
= - 52 52 i ?4\2 cos(-2KTT/n),

£=0 fc=0

where the last line follows from the fact that yn+j = Уп-j and cos(—2k£ir/ri) = 
cos(—2к(/ ± п)тг/п) (recall from (9.42) that 7o = 7n = 1 and 7? = 2 otherwise). 
Thus we have

LtJ
wj = 52 i ?4\2 cos(-2fej7r/n). (9.58)

k—Q

Remark 9.7.1. Not surprisingly, there is an efficient algorithm for computing the 
weights in O(nlog(n)) time, using the FFT. This algorithm is due to Waldvogel 
and is especially advantageous if multiple functions are to be integrated with the 
same order-n quadrature rule.
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9.7.2 Gaussian Quadrature
Gaussian quadrature uses a different set of points for its interpolation, namely the 
zeros of the Legendre polynomials. Surprisingly, if f is a polynomial of degree at 
most 2n + 1, then Gaussian quadrature with only n + 1 points gives precisely the 
right answer, with no error whatsoever; that is, Gaussian quadrature with n + 1 
points is exact onK[x;2n+l|. This suggests that whenever a function can be well 
approximated with an interpolating polynomial through the n + 1 Legendre zeros, 
then Gaussian quadrature should give a very good approximation of the integral of 
that function.

Theorem 9.7.2. If {^}?=o C [—1,1] are the zeros of the (n + L)th Legendre 
polynomial, then for all f G 1[ж:2п + 1] we have

i n

f(x)dx = y^J{xi')Wi,
1 i=0

(9.59)

where

г = 0,1,2,... ,7i, (9.60)

are the integrals of the corresponding Lagrange basis polynomials.

Proof. Let Pn+i denote the (n+ l)th Legendre polynomial. The division algorithm 
for single-variable polynomials says that for any f G 2n + 1] there exist unique 
polynomials q G R[#; n] and r G R[#; n] such that f = qpn+i + r (see Volume 1, 
Section 15.2). Since pn+i is orthogonal to all polynomials of lower degree, it must 
be orthogonal to q. It follows that

f(x)dx = У pn+i(x)q(x) + r(x) dx = r(x)dx.

Moreover, we have f(xi) = r(xi), since pn+i(#i) = 0 for all i G {0,1,..., n}. Thus

n n pl n

У f(xi)wi = У r(xi)wi = / У r(xi)Ln^x) dx 
г=0 г=0 J-1 г=0

f(x) dx. □

This theorem shows that only n +1 points are needed to evaluate the integral of 
a polynomial of degree 2n+ 1 exactly. Thus any integrable function g : [—1,1] R 
can be integrated fairly accurately if it is closely approximated by a polynomial f 
of degree 2n + 1 or less that agrees with g at the Legendre zeros xq,. .. ,xn. For 
small n, the zeros (xf) and weights (wj) can be precomputed and stored to be used 
for quadrature of any function. These zeros and weights for Gaussian quadrature 
are built in to many computational systems. For large n there is a fast algorithm 
for computing the zeros and weights in O(n) time [Bogl4].
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Example 9.7 .3. The monic Legendre polynomial of degree 2 is x2 — so its 
zeros are Theorem 9.7.2 guarantees that

/ 1
+ I

\ у О

for all p(x) E R[x; 3], with wz = Li^(x)dx. A straightforward calculation 
shows that Li?0(^) = — ^(x — ^=) and £1д(ж) = an<^ integrating
these gives wq = wi = 1.

This implies that

1
(аж3 + bx2 + ex + d) dx = a

-i

for all a, b, c, d, 6 R. The coefficients of terms of odd degree do not contribute 
in the computation because all odd functions integrate to 0 on [—1,1].

Example 9.7 .4. Given any function f for which there is a good degree-3 
polynomial approximation of f on [—1,1] that agrees with f at the points 

we have the approximation

У * /(x) dx f (--h) + f (^0 • (9.61)

For example, the function /(ж) = ^/соэ(ж) on the interval [—1,1] has

dx = 1.82796941..

while the approximation (9.61) gives

у д/соз(ж) dx « у cos(—1 /\/3) + ycos(l/V3) = 1.83075048,

so with only two evaluations of the function we have an approximation of the 
integral that is accurate within 3 x 10-3.
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Example 9.7 .5. In the case of n = 4, using the five zeros xq, ... ,хд of the 
degree-5 Legendre polynomial and the five weights Wo,..., W4 gives

у f(x) dx « wof(xo) + Wif(xi) + w2f(x2') + w3/Ce3) +1174/(2:4).

Using this approximation for the integral in Example 9.7.4 gives

У Усоз(х) dx « 1.82797138,

which has an error of 1.97 x 10-6.

9.7.3 Convergence
As n gets large, naive Newton-Cotes quadrature (not the composite form) often 
fails to converge to the integral it is intended to approximate because of Runge’s 
phenomenon—as the degree increases the interpolating polynomial oscillates more 
and more wildly, and the weights Wi can grow very large. But the next theorem 
shows that Clenshaw-Curtis and Gaussian quadrature don’t have this problem, 
since both converge for any continuous function. First we need the following lemma.

Lemma 9.7.6. The weights Wj in Clenshaw-Curtis quadrature and Gaussian 
quadrature are positive for all j G {0,..., n}, and they satisfy wj = 2-

Proof. By (9.58) the Clenshaw-Curtis weights satisfy

/ LfJ
— I 1 - У2 .,22fc 1 cos(-2HTr/n) 
n \ 4k2 - 1

\ k—1

Since 1 < 7fc < 2 for all k (see (9.42)) this gives

where the last equality follows from Exercise 1.17(ii).
For positivity of the Gaussian quadrature weights, consider the Lagrange ba­

sis polynomials £пДя;) G R[#;n]. Recall that Lnj(xi) = Sij. For each j G 
{0,1,2,..., n} we have Lnj(x)2 G R[ж; 2n], and, by Theorem 9.7.2, this gives

Wj — Wj

Finally, each quadrature method is exactly correct for polynomials of degree at 
most n, and so for the polynomial 1 G R[&; 0] we get Wk = 1 dx = 2. □
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Theorem 9.7.7. If f is continuous on [—1,1], then Clenshaw-Curtis and Gaussian 
quadrature both converge to ftxf(x)dx as n oo.

Proof. Given e > 0, the Weierstrass approximation theorem (Theorem 9.1.7), 
guarantees there exists n > 0 such that

£ II/-pIIl~ < |

for some p G R[x; n\. This implies

f(x) dx — У p(x) dx

M=0
<2\\f-p\\^ + \\f-p\\  ̂

< 4||/-p||l~ < £• □

Convergence for Analytic Functions

For a special class of functions called analytic functions, Gaussian and Clenshaw- 
Curtis quadrature converge very rapidly. We say that f is analytic at a point x 
if f has a convergent Taylor series expansion in an open neighborhood of x. All 
polynomials and polynomial combinations of ex, sin(rr), cos(rr), as well as many 
other common functions, are analytic at all points of C; see Volume 1, Chapter 11.

Given p > 1, if a function is analytic on an ellipse in C with foci at ±1, and 
with major and minor semiaxes cosh(p) and sinh(p), respectively, then the error in 
Clenshaw-Curtis quadrature applied to f is in O(p-n) as n oo, and the error 
in Gaussian quadrature is in O(p-2n); see [Trel3] for details. Contrast these with 
Simpson’s rule, which is in O(n-4) or with naive (noncomposite) Newton-Cotes, 
which does not necessarily converge at all.

Remark 9.7.8. Because the exponent of p in the convergence bound for Gaus­
sian quadrature is —2n, while the corresponding coefficient for Clenshaw-Curtis is 
—n, you might think that Gaussian quadrature should converge significantly faster 
than Clenshaw-Curtis quadrature. But in practice that is not usually the case. 
Clenshaw-Curtis quadrature converges about as rapidly as Gaussian quadrature, 
and both converge very rapidly when the integrand is analytic.

9.7.4 *Gaussian  Quadrature with Other Orthogonal Polynomials
Theorem 9.7.2 can be extended to orthogonal polynomials with other domains and 
weights. Any class of orthogonal polynomials corresponding to an inner product
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(/, g) = fb f(x)g(x)w(x)dx with weight function w(x) satisfies

pb n
/ p(x)w(x) dx = (9.62)
J*  i=0

for any p G R[rr; 2n + 1], where

fb
Wi= Ln,i(x)w(x) dx, i = 0,1,2,..., n, 

J a

are the quadrature weights, and {хг}™=0 C [a, b] are the zeros of the degree-(n + 1) 
polynomial pn+i(&) in the w-orthogonal polynomial basis. The proof is like that of 
Theorem 9.7.2, but we must show that the zeros of the corresponding w-orthogonal 
basis functions do, in fact, all lie in the interval (u, b).

Lemma 9.7.9. Assume w(x) > 0 is continuous on [a, b\. If a nontrivial function 
f G C([a, b];R) is w-orthogonal to R[#; n], that is,

f f(x)p(x)w(x) dx = 0 Vp G R[x; n], 
J a

then f changes sign at least n + 2 times on (a, b).

Proof, By hypothesis, f is w-orthogonal to 1 G R[rr;n]. Thus f must change 
sign at least once in (a, 6); otherwise the integral fb f(x)w(x) dx would be nonzero, 
which is a contradiction. Suppose that f changes sign exactly r + 1 < n + 1 times 
in (a, 6). Since f is continuous, it must, therefore, have at least r < n distinct zeros 
{^}[=1 in the interval (a, b). The polynomial

p(x) = Ц(ж - r] 
2=1

has degree r < n and changes signs precisely when f does, and thus

f f(x)p(x)w(x) dx 0, 
J a

which contradicts the w-orthogonality hypothesis. Therefore f changes sign at least 
n + 2 times in (u, b). □

Corollary 9.7.10. The degree-n w-orthogonal polynomial on the domain [a,b] has 
exactly n distinct real zeros in the interior of its domain (a, b). Moreover, all of the 
zeros are simple (multiplicity one).

Corollary 9.7.11. Assume w(x) > 0 is in C([a,6];R). The class of orthogonal 
polynomials corresponding to the inner product (f,g) = fb f(x)g(x)w(x) dx with 
weight function w(x) satisfies

pb n
/ p(xfw(x) dx = y^^p(xj)wj

2=0
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for any p G 2n + 1], where

fb
Wi= Ln l(x)w{x) dx. i = 0,1,2,..., n,

J a

are the quadrature weights, and {a^}£L0 C [a, b] are the zeros of the (n + l)th poly­
nomial рп+1(ж) in the w-orthogonal polynomial basis.

Proof. The proof is essentially the same as that for Theorem 9.7.2. □

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

9.1. Show that the fcth Bernstein polynomial B^(a?) of degree n has a local max- 
• , кimum at x = -. n

9.2. Prove that for any n G and any f : [0,1] R the polynomial Bn [f] agrees 
with f at the endpoints: /(0) = Bn[/](0) and /(1) = Bn[/](1).

9.3. Prove Lemma 9.1.4. Hint: It may be useful to employ the results or tech­
niques of Exercise 1.42.

9.4. Prove weak monotonicity of the Bernstein operator (Lemma 9.1.6(ii)). Hint: 
Consider Bn[g — f] and recall that B£(x) > 0 for all x G [0,1].

9.5. Code up a method to compute the polynomial Bn[/] for any n G N and any 
callable function f. Use your code to reproduce the plots in Figure 9.2.

9.6. Another way to interpolate is to solve the linear system

1 Xq Xq • Xq «0 ~Уь

1 Xi • Xy «1 = У1

1 Xn Xn • <rn Уп_

The (n + 1) x (n + 1) matrix is called the Vandermonde matrix.
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(i) Prove the Vandermonde matrix is nonsingular when the Xi are distinct.

(ii) Use the Vandermonde matrix to find the unique cubic polynomial that 
interpolates the set

A = {(-1,2), (0,-4), (1,-6), (2,-16)}.

9.7. Use Lagrange interpolation to find the unique cubic polynomial that inter­
polates the set A from Exercise 9.6. Your answer need not be written in the 
form a3x3 + a2x2 + «irr + a0.

9.8. Use barycentric Lagrange interpolation to find the unique cubic polynomial 
that interpolates the set A from Exercise 9.6. Your answer need not be 
written in the form a3x3 + a2x2 + a±x + Uq.

9.9. Code up a method to compute the barycentric weights for a given set of 
distinct points {^o,..., xn}. Using your weights method (and the barycen­
tric construction), code up a method to evaluate the unique interpolating 
polynomial of {(^o, yo),..., (xn, yn)} at any point x.

9.10. Using your method from the previous problem, for each of n = 2,3,..., 20 
compute and plot the interpolation polynomial for the function f(x) = |ж| at 
n+1 evenly spaced points on the interval [—1,1] and graph /, for comparison, 
on the same plot. Which of these interpolating polynomials has the smallest 
error (measured in terms of the L°°-norm) on the interval [—1,1]?

9.11.  Prove the claim made in Remark 9.2.15: If a new point xn+i is added to 
the set of points to interpolate, then the new barycentric weights for the set 

, £n, ^n+i} can be computed in O(n) time by giving an algorithm for 
computing the new Wj using the old Wj, and then show that the algorithm 
has temporal complexity in O(n).

*

9.12.  Use Newton interpolation to find the unique cubic polynomial that interpo­
lates the set A from Exercise 9.6. Your answer need not be written in the 
form a3x3 + a2x2 + a^x + do-

*

9.13.  Write up the details of the proof of Proposition 9.2.18.*
9.14.  Prove that the computation of the in Newton iteration has temporal 

complexity O(n2), while the computation of p(x) for any x is O(n), once the 
ak are known.

*

9.15. Compute the first three monic Legendre polynomials.
9.16. Compute the first five monic Chebyshev polynomials.
9.17- t A Using the recursive relation (9.20), prove Proposition 9.3.1; that is, show 

that the monic Chebyshev polynomials satisfy the relation

Tk(x) = л cos (A; cos"1 (a;)) for к G Z+. (9.63)2« i

Hint: Let 0 = cos"1 x and use the trigonometric identity:

cos [(fc ± 1)0] = cos(0) cos(A;0) =F sin(0) sin(A;0).
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9.18. Use (9.63), above, to show that the monic Chebyshev polynomials {Tk(x)}^L0 
are orthogonal with respect to the inner product

J-i vl — x2

Hint: Recall the trigonometric identity

2 cos (a) cos (/3) = cos (a + (3) + cos (a — /3).

9.19. Prove that the nonmonic Chebyshev polynomials satisfy

IT T \ - I7’’ if n = °’
1 n) (тг/2 if n^O.

9.20. Clenshaw’s Algorithm: The Chebyshev polynomials 7b,...,Tn form a 
basis of R[x; n] over R, so any polynomial in R[a;; n] can be written uniquely 
in the form p = with G R for all к G {0,..., n}. Consider the
following algorithm: For any fixed x G [—1,1], set izn+i = 0 and un = an, 
and recursively compute

Uk = 2xuk~\~i — Uk~\~2 + «fc for к = n — 1, n — 2,..., 0.

(i) Prove, using the recurrence (9.22), that p(x) = |(«о + — ^2)- This is
called Clenshaw’s algorithm for evaluating polynomials in the Chebyshev 
basis at points in x.

(ii) Compute the leading-order (both temporal and spatial) complexity of 
Clenshaw’s algorithm.

9.21.  Prove Proposition 9.3.3.*
9.22.  Use equation (9.63) to show that the monic Chebyshev polynomials satisfy 

the ordinary differential equation
*

(1 -x2)f^(x) - xf^x) + k2fk(x) = 0 VUZ+. (9.64)

The nonmonic polynomials also satisfy this ordinary differential equation, 
since it is a linear equation.

9.23.  Prove that the monic Chebyshev polynomials satisfy*

Tk(x) = Vl - *2/fc(l - *2)fc~1/2 Vfc€Z+ (9.65)
(2/v)! dxK

Hint: Follow the same approach as in the proof of Theorem 9.3.6.

9.24. Prove parts (i) and (ii) of Proposition 9.4.7.
9.25. Use barycentric Lagrange interpolation to find the degree-3 interpolating 

polynomial for the data (—1,sin(—7г)), (—1/3,sin(—тг/З)), (1/3,sin(7r/3)), 
and (l,sin(7r)); that is, interpolate through the points {(т7,8т(тгт7)}^0 for 
xq = —1, Xi = —1/3, X2 = 1/3, and x% = 1. Plot your answer and the 
function sin(7nr) on the interval [—1,1].
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9.26. Repeat the previous problem, but instead use the Chebyshev extremizers 
yj = cos(jtt/3); that is, interpolate through the points {(з/j,sin(7r?/j))}^=0. 
On the interval [—1,1] plot your answer along with the function sin(7ra;) and 
your answer to the previous problem.

9.27. Work out the details for Remark 9.4.10; that is, give a formula for the linear 
change of variables x that maps [—1,1] to [a, b], and give an explicit formula 
for the points of [a, b] corresponding to the Chebyshev zeros under this map. 
Give the analogue of Proposition 9.4.6 for interpolation at these points on 
the interval [a, b\.

9.28. Let z[, ..., z'2O be the points in [1,20] corresponding to the degree-20 Cheby­
shev zeros, as computed in the previous problem. Plot the polynomial 
qO) = II?2i (x — z'), on the interval [1,20], and plot the Wilkinson poly­
nomial W(rr) on the same graph. Compute supxe[12o] q(#), and compare this 
to sup^ji^o] VT(a;).

9.29. Let j,k,n € Z with n 0. Prove that if ш = е™1п, then Ji= 
sR(wfc(«-»).

9.30. Let n € Z+ be given. Assuming the vector (ag, «1, • • •, a2n-i) € IR2n satisfies 
an_|_j = an_j for J = 1,2,..., n — 1, prove that the Fourier coefficients

1 2n—l
1 у—> — jkCk = 2^

are all real.
9.31. The polynomial approximation p(x) computed in Exercise 9.26 can be written 

as p(x) = Y^k=oakTk- Use the DFT, as described in the text, to compute 
the coefficients a,k by hand. Expand the sum and collect like terms to prove 
that your answer gives the same polynomial as p(x).

9.32. Using Algorithm 9.1, plot the Chebyshev interpolating polynomials of degree 
2k for к = 1,..., 7 for the function

1 + X
X/(*)  = if x < 0, 

if x > 0

on the interval [—1,1]. Also graph f for comparison in each of the plots.
9.33.  Code up the algorithm for computing the trapezoid-rule approximation of 

the Chebyshev projection method, as described in Section 9.5.2. Repeat Ex­
ercise 9.32 using your projection code instead of Algorithm 9.1, and compare 
the results to the results of Exercise 9.32.

*

9.34. Compute the integral of one of the three Lagrange basis functions for the 
second-order Newton-Cotes quadrature and verify that it equals the corre­
sponding weight.

9.35. Show that Simpson’s rule is exact for the integral xk dx for any к G 
{0,1,2,3}. Use this to prove that Simpson’s rule is exact for any cubic poly­
nomial. Hint: First prove the results just for three points Xq, х±, #2, and then 
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apply that result to the triple of points Ж2,хз,Х4, and then again for each 
triple of the form x2^ #2k+i, ж2й+2, which then gives the result for Simpson’s 
rule for any even n > 2.

9.36. Assume that f G C3([a, 6];R).
(i) Show that is bounded by some M < oo.

(ii) Show that if p is the degree-2 interpolating polynomial for f at uniformly 
spaced points xq < x\ < x2, then

M 2
sup |/(x)-p(x)| < — sup 

xe[x0,x2] 0 жЕ[ж0,ж2]^0

Hint: Consider using Theorem 9.4.1.

(iii) Under the assumptions of the previous step, show that

sup |/(x) -р(ж)| < ^-h3, 
xe[x0,x2]

where h = x± — x0 = x2 — x±.

(iv) Show that the degree-2 Newton-Cotes approximation I2 of I = f(x) dx 
has error \I — I2\ bounded by ^/z4.

(v) Show that the error arising from using Simpson’s rule to approximate 
f f(x) dx lies in O(n-3) as n oo.

9.37. Using the data in Table 9.2, show empirically that the error for the trapezoid 
rule is roughly O(zz-2) and the error for Simpson’s rule is roughly O(n-4). 
Specifically, assume that the errors are of the form t = kna and then estimate 
a using the data for various values of n.

9.38. Find the weights wq,wi,W2 so that

f p(x) dx = p(0)wo + p(l/2)wi + p(l)w2 Vp G R[x; 3].
Jo

9.39.  Determine the values of the nodes жсь^ь^2 and the weights wq,wi,W2 so 
that

*

/ p(x)x2 dx = p(xq)wq + p(£i)wi + p(x2)w2 Vp G R[rr; 3].
Jo

9.40.  For what value of c G (0,2) is the following quadrature rule exact for all 
реф;2|?

*

/ p(x) dx = p(c) + p(2 — c)
Jo

9.41. Prove that Tk(x) dx is zero if к is odd and is if к is even; see (9.55).
9.42. Prove that Gaussian quadrature with n + 1 nodes cannot be exact for all 

f G R[z;2n + 2].
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9.43. Compute the Taylor polynomial of degree 3 for sin(a; + 3) around 0. Use this 
and the results of Example 9.7.3 to estimate the integral

y*  sin(:r + 3) dx.

Compare your computation to the value of the integral computed symboli­
cally.

9.44. Generalize Theorem 9.7.2 from the interval [—1,1] to an arbitrary interval 
[a,b\. Give explicit formulas for the appropriate sample points in terms of 
the zeros of the Legendre polynomials, and give explicit formulas for the 
appropriate weights in terms of integrals of the Lagrange basis polynomials. 
Prove your generalized theorem is correct.

9.45. (i) Using built-in methods for finding the zeros and weights for Gaussian
quadrature, code up a method that accepts any callable function f on 
[—1,1] and any integer n > 1 and uses Gaussian quadrature at n + 1 
points to approximate the integral f(x) dx.

(ii) Using your method, compute the Gaussian quadrature estimate of the 
integral |ж| dx for n = 10,20,30,..., 100. Compare your results to 
the true answer (which is 1).

(iii) Repeat the computation for cos(x) dx. Compare your results to the 
true answer of 2sin(l).

(iv) Explain why the computations for one of these integrals are so much 
more accurate than for the other integral.

9.46.  Prove that if*
pb n
/ p(x)w(x) dx = 52 p(® i)wi \/p € R[&; 2n + 1],

2=0

then the polynomial — ^-orthogonal to R[x\ n] on [a, b\.

Notes
Much of the material discussed in this chapter is inspired by [Trel3]. Our treatment 
of barycentric Lagrange interpolation is based on [ВТ04]. Lagrange interpolation 
is also discussed in more detail, and from a different perspective, in Volume 1, 
Section 15.7.1.

For a detailed discussion of Chebyshev polynomials and many of their properties, 
we recommend [МН03]. When f is analytic in a Bernstein ellipse around the line 
segment [—1,1], then much stronger results than (9.37) and (9.39) can be proved 
about the convergence of the interpolation at the Chebyshev zeros and extremizers. 
This is discussed in detail in [Trel3, Chapter 7].

For more information about conditioning of the problem of finding zeros of a 
polynomial as a function of the coefficients, see Volume 1, Section 7.5.2, and [Trel3, 
Appendix: Myth 6]). The fast algorithm for computing the weights in Clenshaw- 
Curtis quadrature is due to Waldvogel [Wal06]. For more about the convergence of 
Clenshaw-Curtis quadrature versus Gaussian quadrature see [Tre08].





Part III

Interlude





-И Review of Multivariate 
Differentiation

Nothing ruins your day more than getting a bad review.
—Taylor Swift

In this chapter we briefly review derivatives in multiple dimensions. A solid working 
understanding of multivariate differentiation is essential for the remainder of the 
text, most notably for the theory of optimization. We cover differentiation only 
briefly here, and mostly without proofs. For a rigorous treatment of the topic, see 
Volume 1, Chapter 6.

10.1 Directional, Partial, and Total Derivatives
In single-variable calculus the derivative of a well-behaved function / : (a, 6) —> R 
at a point t G (a, b) is the rate of change (or slope of the tangent) of the function 
f at the point t G (a, 6). For the multivariate case, given an open set U G Rn 
and a well-behaved function f : U —> R, the derivative at a point x G U allows 
us to find the tangent plane (or hyperplane) to the graph of f at x, as well as 
the slope in any direction along the plane. In this section and the next we review 
the basic theory of derivatives and how to write the tangent plane of a function at 
a point.

10.1.1 Curves and Tangent Vectors
Before we treat derivatives with a multivariate domain, we first consider the case 
where the domain is one dimensional, but the codomain is higher dimensional.

Definition 10.1.1. A curve is a map у : (a, b) Rn. We say that the curve у is 
differentiable at t G (u, b) with derivative

7(t) = lira
h—у0

7(t + /t) - 7(t) 
h (Ю.1)

463
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Figure 10.1. The derivative rf(t) of a differentiable curve у : (a, b) Rn points 
in the direction of the line tangent to the curve at 7(f). Note that the tangent vector 
7'(t) (blue) represents the instantaneous velocity of the curve at y(t), whereas the 
line segment (red) from 7(f) to y(t) + 7'(t) is what is often informally called the 
“tangent” to the curve.

if the limit exists. The derivative is a vector, commonly called the tangent vector 
or the velocity; see Figure 10.1 for an illustration. If у is differentiable at every 
point of (a,b), we say that the curve у is differentiable on (a, b). In this case, 
defines a curve as well, often called the tangent curve 0/7.

Throughout this chapter we will assume that all curves are differentiable.

Remark 10.1.2. If the curve 7 is given by

?(t) = (71(t),---,7n(t)),

then the derivative gives the componentwise representation

7^) = (7;а),...,7;а))-

Example 10.1.3. The differentiable curve 7 : ]R —> IR2 given by

7(f) = (cost, sin t)

traces out a circle of radius one, centered at the origin, going counterclockwise. 
The tangent vector at t = тг/2 is 7'(tt/2) = (—1,0). The tangent curve is 
7'(t) = (— sint, cost). Note that 7(f) and 7'(t) are orthogonal for each £ E EL 
This is treated further in Example 10.1.5.

By looking at the individual coordinates of the differentiable curves, we can 
prove the following results.
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Proposition 10.1.4. Let f, g : R —> Rn be differentiable curves, and let 99 : R —> R 
be differentiable. The following hold:

(i) (/()  +<?())'  = /'()+  </()•* * * *

(ii)

(iii) (/(),  </()>'  = </'(), P()>  + (/(W«* * * *

(iv) (/ °

41 By well-behaved we mean that the limit in (10.2) exists.

Example 10.1.5. Consider again the differentiable curve of Example 10.1.3. 
It is straightforward to verify that (7(^)5 7(t)) = IItWII2 — 1 for each t € 
R. By Proposition 10.1.4(iii) the derivative is (7'(t), 7(f)) + (7(f), 7'(t)) = 0, 
which implies 2 (7'(£),7(£)) = 0. This shows that the tangent vector 7'(t) is 
orthogonal to the curve 7(7).

10.1.2 Directional Derivatives
Let U C Rn be an open set containing x and f : U —> R a well-behaved41 function. 
Given a vector v G Rn, the rate of change of the function f at the point x, moving 
in the direction v eRn, is the directional derivative of f at x with respect to v.

Definition 10.1.6. Let U G Rn be an open set containing x and f : U R. 
Given veRn, the directional derivative of f at x with respect to v is the limit (if 
it exists)

= lim /(x + tv)-/(x)
7 t->o t (Ю.2)

Remark 10.1.7. The curve 7(f) = x + tv is the line in Rn passing through x and 
pointing in direction v. The directional derivative is simply the derivative of the 
composition / о 7 at the point t = 0, that is,

>7) .1 ЖМ)-№(0)) /(x + tv)-/(x)^v№)
at t—Q t t—>0 t

Remark 10.1.8. If u is a unit vector, the directional derivative of f at x in the 
direction of u is the slope of the tangent line along the direction u. If u is not 
a unit vector, then the directional derivative is the product of the slope and the 
magnitude ||u|| of the vector u.
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Example 10.1.9. Let f : R2 —> R be defined by f(x,y) = xy2 + x3y. The 
directional derivative at x = (x,y) in the direction v = (-d^, d=) is found by 
computing the derivative of /(x + £v) with respect to t at t = 0:

10.1.3 Partial Derivatives
Taking directional derivatives along the standard basis vectors ег for each i gives 
partial derivatives. In other words, the partial derivatives are simply the directional 
derivatives Dei/(x)5 which are often written as Th/(x) or

Definition 10.1.10. Let U 6Rn be an open set and f : U Rm. The ith partial 
derivative of f at the point xtU is given by the limit (if it exists)

Difix') = lim /(X + - /(X)
t

Remark 10.1.11. In the previous definition the ith coordinate is the only one that 
varies in the limit. Thus we can think of the ith partial derivative as the derivative 
of a single-variable function with the only variable being the ith coordinate; the 
other coordinates are treated as constants.

Example 10.1.12. The partial derivative Dif(x, y) of the function f(x, y) = 
xy2 +x3y can be computed by treating f as a function of x only, holding у as 
a constant. Thus, this partial derivative is

Dif(x,y) = y2 + 3x2y.

Similarly, the partial derivative Dzf(x,y) can be computed by treating f as 
a function of у only, holding x as a constant. Thus, this partial derivative is

-°2/(ж,у) = "Ixy + X3.

10.1.4 The Derivative
We now review the idea of the total derivative of a function f : U Rm, where 
U e Rn is an open set.
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Definition 10.1.13. Let U C Rn be an open set. A function f : U Rm is 
differentiable at x G U if there exists a matrix Df(x) G Mmxn(W) such that

||/(x + h)-/(x)-Z>/(x)h|| 
h”o llhll (10.3)

The matrix Df(x) is called the derivative of f at x. If f is differentiable for each 
xeU, we say that f is differentiable on U. If f is differentiable on U and the 
function g : U given by g(x) = D/(x) is continuous on U, then f
is continuously differentiable on U. In this case we write f G C1(U;R) or say 
/is C1.

Remark 10.1.14. The derivative is sometimes called the total derivative as a way 
to distinguish it from the directional and partial derivatives.

Nota Bene 10.1.15. An element of Rn is an n-tuple a = (оц,... , un), but 
when written in terms of the standard basis it corresponds to a column vector 
[ai • • • an] . Unless otherwise indicated, we always use the standard basis 
ei,..., en, where the zth entry of e*  is 1 and all other entries are 0, so ег = 
(0,..., 1,..., 0) and [ai,..., an] denotes the element a = 52?= i eiai- We 
always use parentheses ( ) to indicate an n-tuple in Rn, and we use square 
brackets [ ] to indicate the representation of that tuple in a given basis (always 
the standard basis, unless otherwise indicated).

The derivative Df(x) of a function / : Rn —> Rm at x is actually a linear 
operator mapping Rn to Rm, which means that in standard coordinates it is 
given by an m x n matrix. In particular, for a function f : Rn —> R, the 
derivative maps Rn to R and hence is expressed in standard coordinates as a 
1 x n matrix, that is, as a row vector. If we need to use Df(x.) as a vector 
in Rn instead of as a linear operator, we take its transpose D/(x)T (often 
called the gradient), which is represented in the standard basis as a column 
vector. For more details on the derivative as a linear operator, see Volume 1, 
Chapter 6.

Theorem 10.1.16. Let U C Rn be an open set and f : U Rm be given by 
f = (/i? /2, • • •, fm)*  If f is differentiable on U, then the partial derivatives Difj(x) 
exist for each i,j G {1,..., m} and x^U, and the matrix Df(x) satisfies

■£>l/l(x) Wl(x) • •• £>n/i(x)‘

£>/(x) =
£>1/2(x) ад(х) • • • Г>п/2(х)

£>2Лп(х) • • £>n/m(x)_

(Ю.4)
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Example 10.1 .17. Let f : R3 —> R2 be given by

f(x, y, z) = (xy + x2z2, y3z5 + x).

The derivative D/(x) of /, written in standard coordinates, is the matrix

Df(x,y,z) = у + 2xz2
1

x 2x2z 
3y2z5 by3z*

Example 10.1 .18. Let f : Rn —> Rn be the sоftmax function, which is given 
by

/(x) = (/l(x),/2(x),...,/n(x)),

where for x = (^i, , %n), each /г(х) satisfies

Л(х) = ™(10.5) 
Efe=i eXk

The partial derivatives of (10.5) are

D f(x\ = (E£=ie*fc) ~
J dxj (ELi^)2

= еж‘ ME^i6**)  
“(Efc=1^) (EZ=i^)
= /i(x)№j -Л(х))-

This shows that D/(x) can be written as the following symmetric matrix:

D/(X) = diag(/(x)) - /(x)/(x)T, (10.6)

where diag(/(x)) denotes the diagonal matrix whose (г, г) entry is fffx).

10.2 Properties of Derivatives
In this section we review three important properties of the derivative, namely lin­
earity, the product rule, and the chain rule.

10.2.1 Linearity
Derivatives are linear maps on the space of differentiable functions.

Theorem 10.2.1 (Linearity). Let U C Rn be an open set. If f : U Rm and 
g : U —> Rm are differentiable on U and a,b G R, then af + bg is also differentiable 
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on U and satisfies the rule

D(af(x) + 6p(x)) = a£>/(x) + bDg(x) 

for each xtU.
(Ю.7)

Remark 10.2.2. An immediate consequence of the theorem is that if f : Rn —> R 
is given by /(x) = afc/fc(x), then Df(x) = afcZ>/fc(x).

Nota Bene 10.2.3. Beware that the derivative at a point x is not a linear 
function in x. This can be seen in Examples 10.1.17 and 10.1.18 by comparing 
Df(ax) to aDf(x).

10.2.2 Product Rule
The product rule holds for the total derivative of real-valued functions.

Theorem 10.2.4 (Product Rule). Let U C Rn be an open set. If f : U —> R and 
g : U —> R are differentiable on U, then the product map h = fg is also differentiable 
on U and satisfies the product rule

D/z(x) = ^(x)£>/(x) + f(x)Dg(x) (10.8)

for each xtU.

Example 10.2.5. Let f : R3 —> R and g : R3 —> R be defined by 

/(ж, ?/, z) = x5y 4- xy2 4- z7 and g(x, y, z) = x3 + z11.

By the product rule we have

D(fg)(x, y, z) = g(x, y, z)Df(x, y, z) + f(x, y, z)Dg(x, y, z) 
= (x3 + z11) [5x4y + y2 x5 + 2xy 7 г6] 

+ (x3y 4- xy2 + z7) [Зя2 0 11г10].

For example, the derivative at the point (0,1,-1) € R3 is given by

Z>(/^)(0,1, —1) = — [1 0 7] - [0 0 11] = [—1 0 -18].

Proposition 10.2.6. For any a G Rn, if g(x) = aTx (and note that aTx = xTa 
always holds), then

Dg(gC) = aT.

Proof. This follows because (10.3) holds for all x with A = aT because

||#(x + h) — g(x) — Ah|| = ||aT(x + h) — aTx — aTh|| =0. □
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Corollary 10.2.7. Let A = [aij] be an m x n matrix. If g : Rn —> Rm is given by 
g(x) = Ax, then Dg(x) = A.

Proof. Write g in coordinates g(x) = [<?i(x) ^2(x) ••• gm(x)]T, with each 
gi(x) = ajx, where each a*  = («a,... , a^n) is the transpose of the zth row of A. 
This gives

I?p(x) =

-Dpi(x)
-Op2(x)

Dgm(x) _^m_

= A. □

Example 10.2.8. If g : Rn —> Rn is given by g(x) = x, then Dg(x) = I.

Proposition 10.2.9 (Inner Product Rule). Let U C Rn be an open set. Ifu,v 
are differentiable functions from U into Rm and /(x) = (u(x),v(x)) = u(x)Tv(x), 
then

Df(x) = u(x)TDv(x) + v(x)TDu(x).

Proof. Write u(x) = (ui(x), u2(x),...,and v(x) = (vi(x), v2(x),..., 
vm(x)), so that /(x) = Ui(x)vi(x). The product rule (Theorem 10.2.4) gives

D/(x) = (ui(x)Dvi(x) + vfxjDufx)) = u(x)TDv(x) + v(x)TDu(x). □

Example 10.2.10. If a vector-valued function r : U —> Rm is differentiable 
on the open set U C Rn, then the function /(x) = ||r(x)||2 = r(x)Tr(x) is also 
differentiable on U and satisfies Df(x) = 2r(x)TDr(x).

Corollary 10.2.11. If g : Rn —> R is given by g(x) = xTAx for some A e Mn(R), 
then

Dg(x) =xT(A + AT).

Proof. Let u(x) = x and v(x) = Ax, so g(x) = u(x)Tv(x). The inner product 
rule, combined with Example 10.2.8 and Corollary 10.2.7, gives

Dg(x) = u(x)TDv(x) + v(x)TDu(x) = xTA + (Ax)T I = xT(A + AT). □

Example 10.2.12. If Ac Mn(R) is symmetric and f : Rn —> R is given by 
/(x) = xTAx, then Df(x) = 2xTA.

The following is a slight generalization of the product rule.
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Proposition 10.2.13. Letw : Rn —> and В : Rn —> Mfcxm(^) be differentiable
functions given by w(x) = (wi(x),..., wm(x)) and

B(x) =

(x) 

b2,l(x)

bl,2(x) 

^2,2 (x)

bfc,i(x) &fc,2(x)

&l,m(x)‘ 

&2,m(x)

Ьк,т (x)

If H : Rn —> is given by H(x) = B(x)w(x), then

w(x)TDbi(x)T
ВЯ(х) = B(x)Dw(x) + (10.9)

_w(x)T Dbfc(x)T

where b*  is the ith row of В.

Proof. Let Uffx) = b*(x)w(x)  be the ith coordinate of B(x). The inner product 
rule (Proposition 10.2.9) gives DHi(x) = b*(x)Dw(x)  + w(x)TDbi(x)T for each i. 
Stacking these vertically gives (10.9). □

10.2.3 Chain Rule
The chain rule also holds for total derivatives.

Theorem 10.2.14 (Chain Rule). Assume that U C and V G are open 
sets and that g :U —> V and f : V —> Rn with g(U) С V. If g is differentiable on U 
and f is differentiable on V, then the composite map h = f og is also differentiable 
on U and satisfies the chain rule

Z>/i(x) = £>/(y(x))£>y(x) (10.10)

for each xEU.

Example 10.2.15. The function h(x,y) = (sin(j;g),xy(x — y)2) can be writ­
ten as h = f og, where /(p, q) = (sin p, pg2) and д(ж, g) = (rrg, x — g). We can 
write р(ж, g) = xy and q(x, y) = x — g. The chain rule gives

Dh\x,y) = Df(p,q)Dg(x,y') = Jj

cos(a;g) 0 у x
(x-y)2 2xy(x — y)\ [1 -1

gcos(rrg) xcos(xy)
y(x - y)2 + 2xy(x - y) x(x - y)2 - 2xy(x - y)

The total derivative may be used to compute directional derivatives.
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Theorem 10.2.16. Let U cRn be an open set. If f : U Rm is differentiable at 
x E U, then the directional derivative Dvf(x) along v e Rn at x exists and is the 
product of the derivative Df(x) and the tangent vector v:

r>v/(x) = £»/(x)v. (10.11)

Proof, Let f : Rn —> Rm be arbitrary and 7 : R —> Rn be defined by the differen­
tiable curve 7(f) = x + tv. The chain rule gives

Pv/(x)=^/(7(t))| = Я/(7(0))7'(0) = Df(x)v. □
at I

Example 10.2.17. Let f : R2 —> R be defined by f(x,y) = xy2 + x^y, as in
Example 10.1.9. We have

Df(x, y) = [Dif(x, y) Dzf(x, у)] = [у2 + 3x2y 2xy + x3] .

Thus, the directional derivative of f in the direction v = (-U, -U) is ’ J v 2 V 2 /

Dvf(x, y) = [y2 + 3x2y 2xy + ж3]

which agrees with the (more laborious) calculation in Example 10.1.9.

Figure 10.2. Depiction (yellow) of the tangent plane H to the graph (gray) Гf = 
{(x, z) G R2 x R I z = /(x)} of a function f at the point (xo,/(xq)) as given in 
(10.14).
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10.2.4 Tangent Planes
We conclude this section by describing the tangent plane to the graph of a function 
at a point. For a function f : U R, the graph of f is the set

Tf = {(x, z) E U x R | z = /(x)} C Rn x R = Rn+1; (10.12)

see Appendix A.2 of Volume 1 for more on graphs of functions. If U is open and 
f is differentiable on [7, then the tangent plane to the graph of f at x0 E U is the 
graph of the function

Mx) = Лхо) + £)/(x0)(x-x0). (10.13)

Thus, the tangent plane is the set

H = {(x, z) € Rn+1 | z = L(x)}, (10.14)

which is a hyperplane in Rn+1; that is, a set of the form {v E Rn+1 | aTv = b} 
for some a E Rn+1 and b E R. We may write the tangent plane as a hyperplane 
by setting a = (D/(x0),—1) and b = Df(xo)xo — /(x0). See Figure 10.2 for an 
illustration.

Remark 10.2.18. This is a generalization of the formula for the line tangent to 
the graph in single-variable calculus given by the equation

У = Лжо) + Л(жо)(® - Жо).

Example 10.2.19. Consider the function f : R2 —> R in Example 10.1.9 
given by f(x,y) = xy2 + x3y. The tangent plane at the point (#o>?/o) is the 
graph of the function

L(x, y) = f(xo,yo) + Df(x0, ?/o) X — Xq

У-Уо

= f(xo, Уо) + [уо + 3a'oJ/o 2жоуо + Л)] X — Xq

У~Уо.

Nota Bene 10.2.20. The tangent plane H = {(x, L(x)) | x E Rn} in Rn+1 
is not a vector subspace because it does not (usually) pass through the origin 
in Rn+1. Instead it’s an affine set, which is a translate of a vector subspace; for 
more on affine sets, see Section 13.1.8. Indeed, T = {(v,D/(x0)v) | v E Rn} 
is a vector subspace of Rn+1, called the tangent space of the graph of f at 
(xq,/(xq)), and the tangent plane H is the translate of T given by H = 
T + (x0,/(x0)).

This is similar to the situation for derivatives of curves, where the tangent 
vector 7'(to) at does not necessarily touch the curve 7(f) at all, but the 
tangent line 7(^0) + ^7z(^o) is actually tangent to the curve at the point 7(^0); 
see Figure 10.1.
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10.3 Implicit Function Theorem and Taylor's Theorem
In this section we review the implicit function theorem, higher-order derivatives, 
and Taylor’s theorem. These are essential for understanding smooth, nonlinear 
functions and will be used throughout the rest of the book.

10.3.1 Implicit Function Theorem
Let I, J C R be open intervals (possibly infinite). Given a function of two variables 
F : I x J —> R, each constant c G R defines a level set {(#, y) G I x J I F(x,y) = c}. 
The implicit function theorem gives conditions that guarantee the level set is locally 
the graph of a function f : I1 J, where Г С I is also an open interval. This 
new function f is the implicit function satisfying the relation F(x, /(#)) = c for all 
x e I1. The implicit function theorem also generalizes to higher dimensions.

Example 10.3.1. Let F(x,y) = x2 + t/2, and consider the circle of radius 3 
defined by the level set {(x,y) C R x R | F(x,y) = 9}. In a neighborhood of 
the point (rro>?/o) — (0,3) we can define у as a function of x on the interval 
(—3,3); that is, y(x) = \/9 — x2. We say that F implicitly defines у as a 
function of x in a neighborhood of (0, 3).

However, we cannot define у as a function of x in a neighborhood around 
the point (3, 0) since in any neighborhood of (3, 0) there are two points of 
the level set of the form (ж, ±\/9 — x2) with the same x coordinate. This is 
depicted in Figure 10.3. The implicit function theorem gives general conditions 
for when one or more variables can be defined implicitly as functions of other 
variables.

Figure 10.3. An illustration of Example 10.3.1. In a neighborhood around the point 
(0,3), the points on the circle F(x,y) = 9 (black arc on the left) can be written as 
(x,f(xf), provided x remains in a small enough neighborhood (blue line) ofO. But 
near the point (3,0) there is no function of x defining y. Instead, there is a function 
g so that we can write points of the circle near (3,0) as (g(y),y), provided у remains 
in a small enough neighborhood (red line) of 0. Thus, x is implicitly defined as a 
function g of у.
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In the previous example, we were able to solve explicitly for у as a function of a?, 
but in many cases solving for one variable in terms of the others is very hard or even 
impossible. Yet, for many problems just knowing it exists and knowing its derivative 
is enough. The implicit function theorem tells us not only when the function exists 
but also how to compute its derivative without computing the function itself.

Theorem 10.3.2 (Implicit Function Theorem). Assume that U C Rm and 
V C Rn are open sets containing x0 and y0; respectively, and F : U x V —> Rn 
is a continuously differentiable map. Let Z?iF(xo,yo) denote the derivative of F 
with у = уо held constant, and let Р2^(хо,уо) denote the derivative of F with 
x = xq held constant. If D^F^q, уq) is nonsingular, then there exists an open 
neighborhood Uo x Vo C U x V o/(xo,yo) and a unique continuously differentiable 
function f : Uq Vq such that /(x0) = yo and

{(x,y) e Uo x Vb I F(x,y) = F(x0,y0)} = {(x,/(x)) | x e Uo}. (10.15)

Moreover, for each xeUq. the derivative of f satisfies

= -D2F(x, /(x)). (10.16)

Example 10.3.3. In Example 10.3.1, the hypothesis of the implicit func­
tion theorem is satisfied since D2F(xo,yo) = 2yo Ф 0. Hence, there exists 
a unique continuously differentiable function f(x) in a neighborhood of the 
point (xo,yo) satisfying Е(а?,/(ж)) = 0. Setting у = f(x) and differentiating 
the equation F(x, y) = 0 with respect to x gives

о = DiF^x, f(x\) + D2F(x, f{x))f'(x) = 2x + 2y(x)y’(x).

Solving for у' = Г(х) yields

, , DiF(a;,t/) 2x -x
’w = /w = ~WW7’

which agrees with (10.16).

Remark 10.3.4. The previous example is a special case of a claim often seen in 
a multivariable calculus class. For any function F : R2 —> R, if the equation 
F(x,y) = c defines у implicitly as a function of x, then the derivative is given 
by

7 FE&У = dx 
dx OF- *

oy

(10.17)

The implicit function theorem guarantees that у is a function of x whenever ф 0, 
and (10.17) is a special case of (10.16).
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Example 10.3.5. Consider the two-dimensional surface S defined implicitly 
by the equation Е(ж, у, z) = 0, where

F(x, y, z) = z3 + 3xyz2 — 5x2y2z + 14.

If (#0, Vo, го) — (1, — 1,2) € S, then F3F(a7o, Уо, ^о) = —5^0. By the implicit 
function theorem, the surface S can be written explicitly as the graph of a 
function z = z(x,y) in a neighborhood of (жо,?/о5 ^o)-

Furthermore, the partial derivatives of z(x, y) can be computed by differ­
entiating F(rr, ?/, г(ж, ?/)) = 0, which gives

0 = D]F(x, y, z) + B3F(z, y, z)Drz(x, y)
d z

= (Syz2 — 10xy2z) + (3г2 + 6xyz — 5x2y2) — ,

0 = D2F(x, y, z) + D3F(x, y, z)D2z(x, y)
dz

= (Зжг2 — Юж2?/ z) + (3г2 + 6xyz — 5ж2?/2) —.
<э?/

Substituting жо,?/о,^о and solving for the partial derivatives of z gives

dz 
dx 
dz 
dy

n , x DYF(xQ,y^z^ 32
= Аг(жо,?/о) = n a = r ’F3F(£ro,?/o,^o) 5

D2F(a;o,?/o,^o) 32
= D2^(^o,2/o) = n \ = r •DbF^o^o^o 5

Thus, the tangent plane of the surface S at (ж3,?/о? го) is

32(ж - 1) - 32(?/ + 1) + 5(z - 2) = 0.

10.3.2 Higher-Order Derivatives
Let U C Rn be an open set. If the function f : U —> R is continuously differentiable 
on U, then the function g : U Rn given by g(x) = is continuous on U.
This derivative is transposed because D/(x) is a row vector, and we want to treat 
elements of Rn as column vectors; see Nota Bene 10.1.15. If g is differentiable on [7, 
then we can take its derivative Dg(x) for each x G U. The n x n derivative matrix 
Dg(x) can be considered the second derivative of / at x G 77, hereafter denoted 
D2/(x) and called the Hessian of f at x. If g is continuously differentiable, we say 
that f is twice continuously differentiable and write f G C2(77;R) or just say f is 
C2.

Write

p(x) = D/(x)T =
A/(x)

A/(x).

91 (x)

_0n(x).
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where each g2(x) = Differentiating gives

£>151 (x)
£>152 (x)

B2/(x)=

£>251 (x) ••• £>n51(x)
£>252 (x) ••• £>n52(x)

,£>15п(х) £>25n(x) ••• Dngn(x)
DiDtflx) D2D1f(x) ••• £>n£>i/(x)
DiD2f(x) D2D2f^) ••• £>n£>2/(x)

,£>i£>„/(x) £>2£>n/(x) ••• £>„£>„/(x)

Proposition 10.3.6. Let U C Rn be an open set and assume f : U R is twice 
continuously differentiable on U. For any xtU, the matrix D2/(x) is symmetric, 
and hence

DiDrftx) = DjDiflx) (10.18)

for every i and j.

2
Taking things one step further, let U C Rn be an open set and let h : U Rn 

be the function that maps x to the flattened Hessian D2/(x), where the elements of 
the matrix are just listed in a single column vector of length n2. If h is continuously 
differentiable, then we say that f is thrice continuously differentiable and write 
/ G C3(/7;R) or just say f is C3.

10.3.3 Taylor's Theorem

Taylor’s theorem is one of the most powerful tools in analysis. It allows us to 
approximate smooth (differentiable) functions in a small neighborhood to arbi­
trary precision using polynomials. This allows us to approximate functions that 
are otherwise difficult to analyze and can give a lot of insight into the behavior of a 
function.

The univariate version of Taylor’s theorem holds both in R and in C, and we 
need the complex version in the next chapter. We use F to denote either R or C.

Theorem 10.3.7. Let U C F be an open set with f : U -4- F in Cfe(C7; F) (meaning 
that exists and is continuous on all of U). If z e U and h e F are such that 
the line segment £(z, z + h) = {z + th | 0 < t < 1} is contained in U, then the к th 
derivative f^ must be bounded by some M < сю on the line segment. For any such 
M we have

f(z + h) = f(z) + f'(z)h + (z~)h2 + --- + Rk, (10.19)

where \Rk\ < ^|/i|fc.
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There is also a multivariate version of Taylor’s theorem, but talking about mul­
tivariate higher-order derivatives is a little messy, so here we only give quadratic 
and cubic versions of Taylor’s theorem.

Theorem 10.3.8. Let U C Rn be an open set. Assume that x EU and h e Rn 
are such that the line segment £(x, x + h) = {x + th | 0 < t < 1} is contained in U. 
If f e C2(U', R) and ||D2/(x + th) || < L on all of x + h), then

/(x + h) = /(x) + D/(x)h + B2, (10.20)

where

Г1 LT?2 = / (1 - t)hTr>2/(x + th)hdf and |Я2| < ^||h||2. (10.21)
Jo 2

Similarly, if f e C3(t/;R), and ||D3/|| < M on ^(x,x + h), then

+ h) = /(x) + £>/(x)h + ihT£>2/(x)h + R3, (10.22)

where

|йз| < ||h||3. (10.23)

Corollary 10.3.9. Let U C Rn be an open set and f e C2(C7;R). If ||D2/(x)|| < 
L for each x EU and ||h|| is sufficiently small, then

|/(x + h) —/(x) — D/(x)h|| < ^£||Ь||2. (10.24)

Example 10.3.10. Let f : R2 —> R be given by f(x,y) = ex+y. To find the 
second-order Taylor polynomial of f at (0, 0) compute the derivative

r>/(0,0) = [e®+y = 1 
0,0

1 1]

and the Hessian
~ex+y ’1 1'

D2f(0,0) = ex+y ex+y
0,0 1 1

With x = (0,0) and h = (x,y), the second-order approximation of f at x is

f(x, y) « /(0) + Z>/(0)h + |hTZ>2/(0)h, 

= 1 + x + у + |(я:2 + 2xy + у2).
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Example 10.3.11. Let f : R2 —> R be given by = cos(a;)e32/. To find 
the second-order Taylor polynomial of f at (0,0), compute the derivative

£>/(0,0) = [— sin(a;)e32/ 3cos(a;)e32/]

and the Hessian

— cos(a;)e32/ —3 sin(a;)e32/
—3sin(rr)e32/ 9cos(a;)e32/

0
9

If x = (0, 0) and h = ( ж, ?/), then the second-order approximation of / at x is

f(x, y) « /(0) + D/(0)h + |hTD2/(0)h, 

= 1 +3y - l^2 + |y2-

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

10.1. Generalize the result in Example 10.1.5: Prove that if the differentiable curve 
7 : (a, b) Rn has constant norm for all t e (a, 6), that is, if ||7(t)|| = C for 
some constant C, then the tangent vector y'(t) is orthogonal to y(t) for each 
t e (a, 6).

10.2. Show that the function / in (10.5) of Example 10.1.18 has derivative Df(x) = 
diag(/(x)) - /(x)/(x)T.
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10.3. Let A e Mn(R) and consider the differentiable curve f : R —> Mn(R) given 
by

k—0 k—0

This is well defined, since the sum converges absolutely, that is, for any matrix 
norm42 || • || we have

42For more about matrix norms, see Volume 1, Section 3.5. For more about the absolute conver­
gence of sums, including this one, see Volume 1, Section 5.6.3.

k=o k'

Use the definition of the derivative to prove that 

Df(t) = AeAt

for every t e R. You may assume without proof that

(i) f(t + s) = /(t)/(s) and

(ii) eAt = I + At + O(f2) for small |t|.

10.4. Let A = [aij] be an n x n matrix. As \t\ 0, we have

— (IT £<2ц)(1 T ^22) •••(1 T tann) T O(t2)

det (I T tA) =

1 T tan 
td21

tai2
1 T td22

'' tain
' * ta2n

tani tdn2 ’ * 1T tann

= 1 T ttr(A) T O(t2).

(i) Use this to prove that det(I T fA)|f=0 = tr(A).

(ii) Let f : Mn(W) R by given by /(X) = det(X). What is the directional 
derivative of f at the identity in the direction A?

10.5. The coordinate transformation f : R3 —> R3 from spherical coordinates to 
rectangular coordinates is given by

= (psin(^)) cos(0), psin(0) sin(0), pcos(0)).

Compute Df(x) and show that detD/(x) = — p2sin</>.

10.6. Given A e Mn(R) and b e Rn, let /(x) = ||Ax — b||2. Prove that

D/(x) = 2(xTAT - bT)A.

Hint: Write f as (Ax — b)T(Ax — b), then expand and differentiate.
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10.7. Let U C ln be an open set. Prove that if f : U —> R and g : U R are 
differentiable on U, and g is nonzero on U, then the map h = f/g is also 
differentiable on U and satisfies the quotient rule

g(x)Df(x) - f(x.)Dg(x)
(10.25)

for each x E U.
10.8. Let U C Rn be an open set containing x. Given a differentiable function 

f : U —> R, find the unit vector v that maximizes the directional derivative 
Dvf(x) = Df(x)v.

10.9. Given a vector (3/1,3/2, • • •, Уп) € Rn, let g : Rn R be the function g(x) = 
— yk l°g(/i(x)), where each fi : Rn R is given by (10.5). Use the
chain rule to show that Djg(x) = /j(x) У г) — yj-

10.10. Given a sequence of real numbers bi, 62, • • •, and an m x n matrix A = [a^-] 
with rows a^, aj,..., a^ in Rn, define the LogSumExp function f : Rn —> R 
as

/(x) = log 52 ^(x)
V=1

(10.26)

where each Zj(x) = exp(ajx + bj). Show that

g.i°^W_*W T-4 
’’ 1

10.11. Show that the equations

sin(a; + z) + ln(?/z2) = 0, 
ex+z+yz = 0

implicitly define continuously differentiable functions x(z) and y(z) in an 
open neighborhood of the point (1,1, —1). Find x'(2) and y'(z).

10.12. Let A E Mn(R) be symmetric and b E Rn. Show that if /(x) = xTAx + bTx, 
then D2/(x) = 2 A.

10.13. Let U С Г be an open set and assume r : U Rm is twice continuously 
differentiable on U. In Example 10.2.10 we showed that the “norm squared” 
function /(x) = ||r(x)||2 = r(x)Tr(x) satisfies Df(x) = 2r(x)TDr(x). Now 
show that the Hessian of f satisfies

Z>2/(x) = 2 I Dr(x)TDr(x) + 52 п(х)Г>2п(х)

where ri is the zth coordinate function of r.

where 1 E Rm is the ones vector and z(x) = (21 (x), 22 (x),..., zm(x)).

(10.28)
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10.14. Show that the Hessian of the LogSumExp function (10.26) is given by

Г>2/(х) = AT diag(z(x)) - (1tz1(x))2z(x)z(x)T) A> (10-29)

where z is defined as in Exercise 10.10.
10.15. Find the second-order Taylor polynomial for g(x,y,z) = e2x+yz at the point 

(0,0,0).

Notes
For a deeper and more thorough exploration into differentiation, see Volume 1, 
Chapter 6.
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Nothing brings fear to my heart more than a floating point number.
—Gerald Jay Sussman

11.1 Floating-Point Arithmetic
Essentially every algorithm involving real numbers is implemented using floating­
point numbers. Many basic floating-point operations are built into CPUs at the 
lowest level, so they can be executed very rapidly. These operations include arith­
metic operations (addition, subtraction, multiplication, division, and square root), 
as well as other important functions such as round. More complicated operations, 
and operations on more general data types, such as arbitrarily long integers, are 
slower because they process more data and require software function calls instead 
of hardware calls that are built in to the processor’s design.43 For this reason the 
temporal complexity of many algorithms is reported in terms of the number of 
floating-point operations (FLOPs) used by the algorithm; see also Section 1.5.1.

43With software function calls, the computer has to find instructions in memory for how to compute 
the desired function.

11.1.1 Fundamentals of Floating Point
The default number in most floating point systems is the 8-byte (64-bit) double- 
precision floating-point number. Floating-point numbers are maintained in binary 
scientific notation, like — I.OIIIIOIOIOO2 x 21011012. These numbers are broken into 
three parts: the sign, the significand, and the exponent:

IOIIOI2
- I.QIIIIOIOIOO2 X2 exponent

sign significant!

483
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exponent 
sign (11 bit)

fraction 
(52 bit)

11.1. Double-precision bit map for IEEE 754 double-precision binaryFigure
floating-point format. Bits are, from left to right, sgn, вб2, egi, - ■ •, 652,651,..., b0.

Except for special numbers like 0 we can normalize each number so that the leading 
digit of the significand is 1, so we need not record that digit. Instead we only record 
the digits after the decimal point, which we call the fraction 44 Almost all computers 
currently follow the IEEE 754 standard for double-precision floating-point numbers. 
In this standard, the first bit is the sign of the number. The next 11 bits correspond 
to the exponent and the last 52 bits represent the fraction; see Figure 11.1 for an 
illustration. All together, we have

44Beware that some people use the words fraction and significand interchangeably. Also, some 
people use the word mantissa instead of significand, but that term is misleading because it also 
means the fractional part of a logarithm, which is similar to, but not quite the same as, the 
significand.

(52 \
1 + 52б52-г2-' x2e-1023, 

2=1 /

where the exponent is represented as the bits 652651. •. 653652 with e = б52+г2г.
If e is the stored value of the exponent, the actual exponent of the floating-point 
number is shifted to e — 1023; this allows us to represent both positive and negative 
exponents without tracking another sign. The exponents of —1023 (all zeros) and 
+1024 (all ones) are reserved for special numbers, so the range of possible exponents 
is all the integers from —1022 up to +1023.

Example 11.1.1. The number

5 = 1012 = 1.012 x 22

is positive, so it has a sign bit of 0, an exponent of 2 = OOOOOOOOOIO2, which 
is shifted to a stored exponent of 2 + 1023 = 100000000012, and a fraction of 
.OI2, so 5 is represented in floating point as

0100000000010100000000000000000000000000000000000000000000000000.
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Example 11.1.2. The number

-0.25 = -0.012 = -1.02 x 2-2

is negative, so it has a sign bit of 1, an exponent of —2 = —000000000IO2, 
which is shifted to a stored exponent of —2 + 1023 = OIIIIIIIOI2, and a 
fraction of all zeros, so —0.25 is represented in floating point as

1011111111010000000000000000000000000000000000000000000000000000.

Special Numbers

There are two special exponents—all zeros and all ones—that allow representation 
of the following special numbers:

• Denormalized numbers.

• +0 and —0.

• + INF and - INF.

• NaN.

The special exponent —1023 (all zeros) indicates that the exponent should be 
treated as —1022, and the leading bit, which is usually taken to be 1, is now 0. 
This allows us to represent additional numbers like 1.0 x 2-1025 as 0.001 x 2-1022. 
These are called denormalized numbers and they range in size all the way down to 
2-52-1022

Zero is the special denormalized number represented by setting both the expo­
nent and the fraction to be all zeros. The sign bit is still used, however, so floating 
point has both a +0 and a —0. These usually print as the same number, and an 
equality check -0 == +0 returns True, yet they are different because l/(+0) returns 
+ INF and l/(—0) returns — INF.

The special exponent of +1024 (all ones) indicates INF (00) or — INF (—сю) if 
the fraction is all zeros. The exponent of +1024 indicates NaN (Not a Number) 
if the fraction is nonzero. IEEE 754 arithmetic yields the following results with 
computations involving INF:

any nonnegative number/ ± INF = ±0,
any positive number/ ± 0 = +INF, 

any positive number x ± INF = ± INF, 
± INF x ± 0 = NaN, 

INF - INF = NaN.

± INF x INF = ± INF, 
INF + INF = INF, 

±0/±0 = NaN, 
± INF / ± INF = NaN,

Any operation involving NaN returns NaN.
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Gaps

Since the significant! can only take on 252 values, not every number can be rep­
resented. There are always gaps between the values we can represent with finite- 
precision numbers. There is a less popular system, called fixed-point arithmetic, in 
which all of the gaps are the same width along the number line. But this has the 
disadvantage that you can’t represent both very small and very large numbers in 
the same system.

In floating point the size of a gap is determined by the size of the numbers near 
the gap. The floating-point numbers that lie in the range [1,2] are of the form

1,1 + 2"52,1 + 2 x 2"52,1 + 3 x 2"52,..., 1 + (252 - 1) x 2"52,2

and the floating-point numbers that lie in the range [2fe, 2fc+1] are just the numbers 
in [1,2] multiplied by 2fc. So the gaps between very small numbers are tiny, but the 
gaps between very large numbers are large.

Except for those numbers that are too large or too small to be represented, 
the distance from any real number x to its nearest floating-point representation is 
bounded by 2“53|я|. So, if А(ж) is the floating-point representation of x (that is, 
fl(rr) is the representable number closest to x), then

|z-fl(rr)| <2-53|4 (11.1)

The advantage of floating-point numbers is that they allow us to represent very 
small numbers very finely and still represent enormous numbers in the same sys­
tem. The disadvantage, as shown in Example 1.0.1, is that in some algorithms the 
relatively small errors caused by these gaps can compound into very large errors.

11.1.2 A Model of Floating-Point Arithmetic
Basic floating-point operations like addition, subtraction, multiplication, division, 
and square root are hard-coded into most computers. Generally addition, sub­
traction, and multiplication are several times faster than division and square root, 
but this depends on the specific implementation. Also, the error in various basic 
floating-point operations may depend on the particular numbers being operated on 
and on the specific implementation. Of course we want our analysis of algorithms 
to apply to all sorts of machines and not depend on the specific implementation. 
So, rather than go into the detailed specifics of these operations and the errors 
they produce for each implementation, we set some basic assumptions that we ex­
pect all floating-point systems to use and then make all our analyses using those 
assumptions.

The standard model for floating-point arithmetic consists of a set F С 1 con­
sisting of 0 and all numbers of the form 

where b (the base, which is usually 2) and p (the precision, which is the number 
of digits in the significand) are fixed integers, whereas s and e are variable integers 
with bP-1 < s <bp and — M < e < N for some choice of M, N e N. Here s/bp~r is 
the significand, and e is the exponent. Depending on the situation, we may ignore 
the bounds on s and e to simplify the analysis.
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Example 11.1.3. For IEEE 754 double-precision binary floating point, the 
base b is 2, the precision p is 53, and the exponent e is bounded by —1022 < 
e < 1023 (ignoring denormalized numbers). The significand is s/252 = 1 + 
^51/2 + &5o/4 + • • • + &o/252. Clearing denominators gives

252 < s = 252 + 65i251 + • • • + 6121 + 6O2° < 253 - 1.

So s is any integer in the range from 252 up to 253 — 1.

We require the system to satisfy two key axioms:

(i) There exists a number ^machine, called machine epsilon or unit round-off^ 
such that for any x in the representable range, there exists 5 with |5| < £machine 
such that

fl(rr) = (l + <5)z. (11.2)
That is, the relative error | fl(#) — ж|/|ж| is no more than ^machine-

(ii) If * denotes any of the standard operations +, —, x, or /, and if ® denotes its 
floating-point counterpart, then for ж,р, e F with x * у in the representable 
range we have

x ® у = (1 + 6)(x * p), (11-3)
where |5| < ^machine- Or, equivalently, the relative error

(ж ® p) - (a; » y) 
x *y

is at most ^machine*

We use this model whenever we need to analyze errors or evaluate the stability of 
algorithms.

Example 11.1.4. Equation (11.1) shows that | fl(a;) — a?| < 2 53|a?| for IEEE 
754 standard, double-precision. In fact, IEEE 754 requires that £machine — 

2-53.

Remark 11.1.5. The key thing to note in both of these axioms is that the error 
is relative. If we were interested in absolute error, we would require the differences 
| fl(#) — ж| or \(x ® y) — (x * y)\ to be less than ^machine, but instead we require the 
ratios | fl(a;) — ж|/|ж| or \(x ® y) — (x * y)\/\x * y\ to be less than ^machine-

The relative error is generally more meaningful than the absolute error. It is 
probably OK to be off by a mile when measuring the distance to the sun, but it’s 
definitely not OK when measuring the distance to the bathroom. In order to know 
whether an error is significant, it needs to be measured and reported in proportion 
to the thing being approximated. Relative error does that.
45 Some authors use the term machine epsilon to mean the distance from 1 to the next largest 

floating-point number (that is, b1—p), and they reserve unit round-off for the quantity we call 
^machine- For example, [Hig96] and NumPy use that convention, while [Dem97] and [TB97] use 
our convention.
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Remark 11.1.6. It is common to treat the square root as a basic floating-point 
operation and assume that the floating-point implementation sqrt of square root 
satisfies the analogous property: if x and y/x are in the representable range, then 
sqrt(a;) = (1 + 6)y/x for |<5| < Emachine-

Remark 11.1.7. Complex floating-point arithmetic is usually done by simply re­
ducing complex numbers to their real and imaginary parts. We may still use our 
model of floating-point arithmetic, but the value of ^machine is changed by a factor 
of approximately 22.

11.1.3 Practical Considerations for Using Floating Point
Programmers and algorithm designers who forget or ignore the basic properties 
of floating-point arithmetic can get into trouble. We discuss these issues more in 
Section 11.3, but here are a few practical considerations to keep in mind.

Test for Relative Nearness—Not Equality

Essentially every operation has some round-off error, so two floating-point numbers 
that should be equal will almost never be identical—they will only be close. For 
example, the command sqrt(x)**2  == x returns False for most values of x. A 
slightly better, but still naive, way to try to identify when two floating-point num­
bers x and у are equal is to choose a small error tolerance 6 and then check whether 
|ж — y\ < 6. The problem with this is that it ignores the fact that the gaps between 
floating-point numbers are proportional to the size of the numbers; so, for example, 
even when x and у are adjacent floating-point numbers, if they are much larger 
than <5, this test for nearness fails.

A better solution is to check for relative nearness: choose some 6 > 0 and then 
test whether \x — y\ < 5max(|x|, \y\). If J is not much bigger than ^machine, then 
this test returns True only for x and у that are nearly adjacent.

Be Aware of Relative Size in Addition and Subtraction

Adding a relatively small number to a relatively large one returns the larger one 
unchanged. If \y\ is much smaller than the gap between x and its nearest floating­
point neighbor, then x ф у = x. Here ф is floating-point addition, as described in 
axiom (ii).

Example 11. 1.8. In double-precision floating-point arithmetic we have 2  + 
1 = 2  and 1 + 2“  = 1.

53
53 53

Similarly, subtracting two numbers that are different, but whose difference is 
relatively small, results in a substantial loss of precision. This is a problem, for 
example, when trying to compute derivatives from their definition as a limit of 
difference quotients.
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Example 11. 1.9. You might try to compute the derivative of cos (a?) at x = 1 
as

cos(l + h) — cos(l) 
hm----------- ------------- .
h—>0 П

This estimate gradually improves until h gets to be about 2-26, after which 
the approximation degrades. So while the true value of the derivative of cos at 
1 is — sin(l) = —0.841470984808, in Python with the default double-precision 
arithmetic, the command 
for n in range(20,54):

print(n, (cos(1+2** (-n)) - cos(l)) / (2**(-n)))  
yields the following:

For more about numerical computation of derivatives, see Section 11.4.

20 -0.841471242486 37 -0.84147644043
21 -0.84147111373 38 -0.841461181641
22 -0.841471049003 39 -0.841491699219
23 -0.841471017338 40 -0.841430664062
24 -0.841471001506 41 -0.841552734375
25 -0.841470994055 42 -0.84130859375
26 -0.841470986605 43 -0.841796875
27 -0.841470986605 44 -0.841796875
28 -0.841470986605 45 -0.83984375
29 -0.841471016407 46 -0.84375
30 -0.841470956802 47 -0.84375
31 -0.841470956802 48 -0.84375
32 -0.841471195221 49 -0.875
33 -0.841470718384 50 -0.875
34 -0.841470718384 51 -0.75
35 -0.841472625732 52 -1.0
36 -0.841468811035 53 0.0

Keep Intermediate Steps at Reasonable Size

Despite the fact that floating-point arithmetic can represent some very large and 
very small numbers, it is still easy to exceed the largest possible value. This is called 
overflow. Overflow is a risk when working with exponentials, factorials, and other 
fast-growing functions, including many of the functions discussed in the first half of 
this book related to counting and probability. It is also easy to produce calculations 
whose results have absolute value smaller than the smallest positive representable 
value. This is called underflow.

Generally the intermediate steps in a computation are more susceptible to over­
flow or underflow than the final result is. Moreover, even if the intermediate steps 
do not actually overflow or underflow, if they are much larger than the final answer, 
you are at risk of losing precision in your computation.



490 Chapter 11. Fundamentals of Numerical Computation

Example 11.1 .10. For many values of к the binomial coefficients = 
(n—fc)!fc! are n°t imP0SSibly big, even if n is large. But computing them by 
first computing n\ and then dividing by the product (n — k)\k\ causes the 
computation to overflow once n > 170, regardless of A;, because 171! > 21024.

This problem can be solved in at least two ways. The first is to simplify 
the expression algebraically before constructing the algorithm: n\/(n — k)\ = 
n- (n— 1) • • • (n — A; + 1), which is much smaller than n\ if к is small. A second 
way to deal with this is to use logarithms. We have

n! f л ( n\ \\Ar!(n — fc)! = exp ( °S — fc)!) J

(п к n—k \

52iog(j) - j^iogU) - los0) • 
J=1 j=l J=1 /

This expression is much less likely to overflow than the original algorithm 
because the logarithms are much smaller than their inputs, they are summed 
rather than multiplied, and they are exponentiated only at the end of the 
computation.

11.1.4 *Financial  Computations
Financial computations are problematic in base-2 floating point because a high 
degree of accuracy is required and because rounding is usually done in base 10. The 
primary problem with using base-2 floating point is that negative powers of 10 have 
a nonterminating representation in base 2, for example,

0.10 = О.ОООИОО2 and 0.01 = 0.000000101000111101011100002,

where the part that is overlined is repeated infinitely. Since 0.01 does not have an ex­
act representation as a base-2 floating-point number, it is impossible to round to the 
nearest hundredth in base 2—instead the machine rounds to the appropriate binary 
approximation, depending on the binary precision being used. Financial numbers 
usually must be recorded, rounded, and reported to the nearest hundredth or some 
other power of 10, and there are strict laws regarding this rounding. Therefore, 
any system that relies on binary arithmetic will introduce errors in the continual 
conversion back and forth between decimal and binary.

Many programming languages have a software implementation of base-10 
floating-point arithmetic that helps reduce these problems. But if the decimal 
arithmetic is not implemented directly in the hardware, there is a substantial loss 
of speed using decimal arithmetic compared to binary floating point (a factor of 
roughly 100 in Python).

Of course, switching to base 10 does not prevent all round-off errors. As shown 
earlier, floating point in any base presents problems with loss of precision. This can 
be a special problem in financial transactions because even minor errors have real 
costs and create significant opportunities for malicious exploitation.
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It is tempting to try to solve this by performing all computations with exact 
(integer or rational) arithmetic to avoid errors. But there are at least two prob­
lems with this idea: first, some important financial computations, like continuous 
compounding, involve transcendental numbers that cannot be represented as ra­
tional numbers without round-off; and second, exact arithmetic is inefficient and 
slows down rapidly as the number of computations grows. A system based on exact 
arithmetic could rapidly become unusable in settings involving many operations, 
like a record of many savings accounts, with interest, deposits, and withdrawals 
over many days.

The numbers occurring in financial applications usually lie within a well-defined 
range and require a well-defined level of precision. In those situations fixed-point 
decimal arithmetic may be useful.

11.2 A Brief Review of Conditioning
This section is an abbreviated version of Section 7.5 of Volume 1.

The solution to nearly every problem in applied mathematics can ultimately 
be expressed as an algorithm. Executing these algorithms amounts to evaluating 
functions. But evaluating functions numerically has several potential sources of 
error. Two of the most important of these are errors in the inputs and errors in 
the intermediate computations. Since every measurement is inherently imprecise, 
and most numbers cannot be represented exactly as a floating-point number, inputs 
almost always have some error. Moreover, floating-point arithmetic almost always 
introduces additional error at each intermediate computation, and depending on 
the algorithm, these can accumulate to produce significant errors in the output.

For each problem we must ask (i) how sensitive is the function to small changes 
in the inputs? And (ii) how much error can accumulate from round-off (floating­
point) error in the algorithm? The answer to the second question is measured by 
the stability of the algorithm. Stability is treated in Section 11.3. The answer to 
the first question is captured in the conditioning of the problem. If a small change 
to the input only results in a small change to the output of the function, we say that 
the function is well conditioned. But if small changes to the input result in large 
changes to the output, we say the function is ill conditioned. Not surprisingly, a 
function can be ill conditioned for some inputs and well conditioned for other inputs.

Example 11.2.1. Consider the function f(x) = x/(l — x). For values of x 
close to 1, a small change in x produces a large change in f(x). For example, 
if the correct input is ж*  = 1.001, and if that is approximated by x = 1.002, 
the actual output of f(x) = 1/(1 — 1.002) = —500 is very different from the 
desired output of /(ж*)  = 1/(1 — 1.001) = —1000. So this problem is ill con­
ditioned near x = 1. Note that this error has nothing to do with round-off 
errors in the algorithm for computing the values—it is entirely a property of 
the function itself.

But if the desired input is xq = 35, then the correct output is /(ж*)  = 
— 1.0294, and even a bad approximation to the input like x = 36 gives a good 
approximate output f(x) = —1.0286. So this problem is well conditioned near 
x = 35.
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11.2.1 Condition Number of a Function
The condition number of a function at a point measures how sensitive the function 
is to changes in input values. Throughout this section we assume that norms have 
been fixed on Fn and Fm (we use || • || to denote both of these norms).

Definition 11.2.2. Let U C Fn and f : U Fm be given. The absolute condition 
number of f at x e U is

= lim sup
<^o+ ||h||<5

||/(x + h)-/(x)|| 
l|h||

Proposition 11.2.3. Let U C Fn be an open set containing x. If f : U Fm is 
differentiable at x, then

«(x) = p/(x)||, (11.4)

where ||D/(x)|| is the induced norm of the linear transformation Df(x); see Volume 
1, Section 3.5.2, for more on induced norms.

Remark 11.2.4. The condition number depends on the choice of norm, but all 
norms on Fn are topologically equivalent (Volume 1, Theorem 5.8.7), which means 
that for any two norms || • ||a and || • ||& there exist constants 0 < m < M such that

m||x||a < ||x||b < M||x||a (11.5)

for all x e Fn. Therefore, the condition number of f with respect to the norm || • ||& 
is bounded by a fixed multiple of the condition number of f for the norm || • ||a, as 
follows:

m ||/(x + h) - /(x)||a ||/(x + h) -/(х)||ь M ||/(x + h) -/(x)||a
M ||h||a - ||h||6 - m ||h||a

and thus

T7«a(X) < K6(x) < — Ka(x)M m

for all x.

In most settings, relative error is more useful than absolute error. An error of 1 
is tiny if the true answer is IO20, but it is huge if the true answer is IO-20. Relative 
error accounts for this difference. Since the condition number is really about the size 
of errors in the output, the relative condition number is usually a better measure 
of conditioning than the absolute condition number.

Definition 11.2.5. Let U C Fn be an open set, and let f :U Fm be a function. 
The relative condition number of f at x e U is

«(x) = lim sup
<5->0+ ||h||<6

/||/(x + h)-/(x)|| /||Ь||\ 
к ii/wii / mJ ll/(x)||/M’ (ц-e)
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Remark 11.2.6. The relative condition number depends on the choice of norm, 
but, as in the case of the absolute condition number (see Remark 11.2.4), the value 
of k;(x) relative to a norm || • ||a is bounded by a constant times the value of 
relative to the norm || • Ц5.

Remark 11.2.7. A problem is well conditioned at x if the relative condition num­
ber is small. Similarly, the problem is ill conditioned if the relative condition number 
is large. Of course, what we mean by “small” or “large” depends on the problem.

Not a Bene 11.2.8. Roughly speaking, we have

relative 
change 

in output

relative \
condition x
number /

relative 
change 
in input

This leads to a general rule of thumb that, without any error in the algorithm 
itself, we should expect to lose к digits of accuracy if the relative condition 
number is 10fc.

If f is differentiable, then Proposition 11.2.3 gives a formula for the relative 
condition number in terms of the derivative.

Corollary 11.2.9. Let U C Fn be an open set containing x. If f : U Fm is 
differentiable at x, then

||D/(x)|| _ ||x||p/(x)||

||/(x)||/||x|| ||/(x)|| (П-7)

Example 11.2.10. Consider the function /(rr) = of Example 11.2.1. We 
have Df(x) = (1 — ж)-2, and hence, by (11.7), we have

_ ll-D/(x)|| _ 1 (X-г)*  |
1

Il/(x)||/||x|| Ш/и 1 — X

This problem has a small relative condition number when x is far from 1 and 
a large relative condition number when |1 — ж| is small.

Example 11.2.11. Given y. consider the problem of finding x on the curve 
x3 — x = y2. Setting F(x, y) = x3 —x — y2, we can rewrite this as the problem 
of finding x to satisfy F(x, y) = 0. Note that DxF(x, y) = 3x2 — 1, so, provided 
that x / ±^/1/3, the implicit function theorem (Theorem 10.3.2) applies and 
guarantees that there is (locally) a function x(y) such that F(x(y),y) = 0.
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Moreover, Dx(y) = dx/dy = 2y/(3x2 — 1). Therefore, near a point (rr,y) on 
the curve with x ±^/1/3, the relative condition number of this function is

= |2?//(3a72 - 1)| = 2y2 = 2|a?3 - ж| = 2|ж2 - 1|
|ж|/|?/| |3ж3 — ж| |ж||3ж2 —1| |3а?2 — 1| ’

This problem is ill conditioned when x is close to ± ^/1/3 and well conditioned
elsewhere.

11.2.2 Condition of Finding a Simple Root of a Polynomial
The implicit function theorem can be used to show that varying the coefficients of 
a single-variable polynomial p causes the simple roots (those of multiplicity 1) of p 
to vary as a continuous function of the coefficients. The next proposition gives the 
condition number of that function.

Proposition 11.2.12. Define P : Fn+1 x F —> F by F(a, а?) = For any
given a*  G Fn+1 and any simple root x*  G F of the polynomial p(x) = P(a*,a;) 7 
there is a neighborhood U of a*  in Fn+1 and a continuously differentiable function 
r : U F with r(a*)  = x*  such that P(a,r(a)) = 0 for all a G U. Moreover, the 
relative condition number of r as a function of the ith coefficient ai at the point 
(a*,  a?*)  is

Figure 11.2. The black dots are the true roots of the Wilkinson polynomial 
w(x) plotted in the complex plane. The red crosses are the roots of the polyno­
mial obtained by perturbing w(x) by 10-7 in the coefficient of a?19. As described in 
Example 11.2.13, the roots are very sensitive to tiny variations in this coefficient 
because the relative condition number is very large.
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Proof, A root x*  of a polynomial p is simple if and only if p'(x*)  / 0. Differentiat­
ing P at (a*,  x*)  with respect to x gives DxP(a* , x*)  = = р'(ж*).
Because pf(x*)  is invertible, the implicit function theorem guarantees the existence 
of a neighborhood U of a and a unique continuous function r : U F such that 
r(a*)  = x*  and such that P(a, r(a)) = 0 for all a G tA Moreover, we have

Dr(a*)  = -DTP(a*,x*)- 1DaP(a*,x*)  = - 1 
p'(x*)

X* CH2

Combining this with (11.7) shows that the relative condition number of r as a 
function of the ith coefficient di is given by (11.8). □

Example 11.2.13. If the derivative p'(x*)  is small, relative to the coefficient 
a*,  then the rootfinding problem is ill conditioned near (a*, a;*).  A classic 
example of this is the Wilkinson polynomial

20
w(x) = Jpa; - r) = ж20 - 210ж19 + 20615ж18 ------+ 2432902008176640000.

r=l

Perturbing the polynomial by changing the coefficient of ж19 from —210 to 
—210.0000001 changes the roots substantially. Specifically, the 10 largest (in 
modulus) roots become 20.4 ± 0.99г, 18.16 ± 2.47г, 15.31 ± 2.70г, 12.85 ± 2.06г, 
and 10.92 ± 1.10г, while the 10 smaller roots remain real and are closer to 
their original integer values. This is plotted in Figure 11.2. The big change 
in the value of the roots is because the derivative p'(x*)  is small for roots like 
x*  = 15, relative to (a?*) 18ai9, where is the coefficient of a;19. Specifically, 
at x*  = 15 we have

P (15)

11.2.3 Condition Number of a Matrix
We conclude this section by discussing the condition number for problems of the 
form Ax = b, where A G Afn(F) is nonsingular. There are several cases to consider:

(i) Given A, what is the relative condition number of /(x) = Ax?

(ii) Given x6Fn, what is the relative condition number of g(A) = Ax?

(iii) Given A, what is the relative condition number of /z(b) = A-1b?

Although the relative condition numbers of these three cases are not identical, 
they are all bounded by the number ||A||||A-1||, and this is the best uniform bound.
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Theorem 11.2.14.

(i) The relative condition number of /(x) = Ax satisfies

к = ||Л||^<||Л||||А-1||. (11.9)
ll7ixll

Moreover, if the norm || • || is the 2-norm, then equality holds when x is a right 
singular vector of A corresponding to the minimal singular value.

(ii) Given x e Fn, the relative condition number of g( A) = Ax satisfies

* = ||х||Ж < ||Л||||А-1||. (11.10)
ll^-xll

Moreover, for the 2-norm, equality holds when x is a right singular vector of 
A corresponding to the minimal singular value.

(iii) The relative condition number of /z(b) = A-1b satisfies

« = М-11|А^Ь<цл||||л-1||. (н.п)

Moreover, for the 2-norm, equality holds when b is a left singular vector of A 
corresponding to the maximal singular value.

Proof. For the proof of (11.9), note that Corollary 10.2.7 gives D/(x) = A, so 
Corollary 11.2.9 gives the first equality of (11.9). To get the upper bound, substitute 
x = Ay into the definition of || A~11| to get

IIЛ 41 =sup 
X

ll^xll 
llxll = sup 

У
HA-iAyll 

My|| = sup 
У

llyll
Му1Г

This gives ||A~11| > ||y||/||Ay|| for all y, from which we get (11.9).
The proof of (iii) is similar. Again Corollary 10.2.7 gives Dh(b) = A-1. The proof 

of (ii) is a little trickier. The details are given in Volume 1, Theorem 7.5.11. □

The previous theorem inspires the following definition.

Definition 11.2.15. Let A G Mn(F). The condition number of A is 

к(А) = ||Л||||А-1||.

Nota Bene 11.2.16. Although ft(A) is called the condition number of the 
matrix A, it is not the condition number (as given in Definition 11.2.5) of 
most problems associated to A. Rather, it is the supremum of the condition 
numbers of each of the various problems in Theorem 11.2.14; in other words, 
it is a sharp uniform bound for each of those condition numbers. Also the 
problem of finding eigenvalues of A has an entirely different condition number 
(see Volume 1, Section 7.5.4).
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11.3 Stability of Numerical Algorithms
As described in Section 11.2 the two main sources of significant error in a numerical 
computation are poor stability and ill conditioning. If a problem is ill conditioned, 
then no algorithm will give good results—the problem itself is not well suited to 
numerical computation. If the problem is well conditioned, then there is hope that 
it is amenable to computation, but one still needs an algorithm to compute the 
solution to the problem. It is possible that the algorithm can produce a large 
error from round-off and truncation, rendering the solution unreliable. Such an 
algorithm is a bad algorithm, even if the problem itself is well conditioned. It 
is important to remember that even when an algorithm has been proved correct 
when implemented in exact arithmetic, it can still give very bad answers when 
implemented in finite-precision arithmetic on a computer. The study of the stability 
of algorithms is about quantifying the severity of the accumulated errors produced 
by round-off.

Throughout this section, assume that a variable wearing a tilde denotes a com­
puted quantity; thus, x denotes the computed value of x.

11.3.1 Forward Error
When evaluating the errors in an algorithm, it might seem natural to think about 
the forward error, which is the (relative) difference between the computed value 
and the exact “true value.”

Definition 11.3.1. For a function f : Fn —> Fm, let /(x) represent the computed 
value of /(x) (that is, the result at x of some algorithm to compute f). Given a 
choice of norm on Fm, the relative forward error is given by

ll/(x)-/(x)|| 

ll/(x)|| (П-12)

Remark 11.3.2. It is common to call the relative forward error of an algorithm 
the accuracy of the computation. This is different from, but depends very much 
upon, the precision, of the machine, which is determined by ^machine-
Remark 11.3.3. As in the case of condition numbers (see Remark 11.2.4) the 
relative forward error depends on the choice of norm, but the relative forward error 
with respect to the norm || • ||ь is bounded by a fixed multiple of the relative forward 
error for the norm || • ||a, as follows:

m ||/(x)-/(x)||a ||/(x)-/(x)||b M||/(x)-/(x)||a

M ||/(x)||a - ||/(x)||b - m ||/(x)||a

There are at least two problems with using forward error to evaluate the quality 
of an algorithm. The first is that it does not account for the fact that the output 
of the algorithm might be fundamentally wrong or nonsensical, even if the forward 
error is small.
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Unexample 11.3.4. Consider a decay function /(t) = e~l, being used in a 
physical problem to represent the mass of some object at time t. Suppose we 
have two algorithms for computing f(t\ and suppose that on the input t = 10, 
the first algorithm produces the result f(t) = —4.5 x 10“ 5 and the second 
produces the output f(f) = 4.5 x 10-4. The correct answer is approximately 
4.5 x 10-5; therefore, the relative forward error of the first algorithm is = 
(4.5 — (—4.5))/4.5 = 2, whereas the second algorithm has a relative forward 
error of ej = (4.5 — (4.5 x 10))/4.5 = 9.

However, the quantity /(10) = —4.5 x 10-5 does not make sense for the 
function /(t) = e~t, because e~l is always positive, and the concept of negative 
mass is not physically meaningful. Meanwhile, 4.5 x 10-4 ~ e~7'7 is at least 
the correct value of e~l for a value of t close to 10.

The second problem with using forward error to evaluate an algorithm is that we 
cannot expect the input itself to be exact—in reality one computes with approximate 
inputs, and so we are really considering the error produced by /(x + s) for some 
small s.

11.3.2 Backward Error
To separate the conditioning of the problem from the stability of the algorithm, we 
instead think about the relative backward error of the algorithm.

Definition 11.3.5. Let || • || denote a norm on Fm. Given a function f : Fn —> Fm? 
the absolute backward error of an algorithm f for f is the smallest ||5|| for all 
3 e Fn such that /(x) = /(x + 3); that is, if

Pf = min{||<5|| : 7(x) = /(x + <5)},

then the relative backward error of f is /3j = .

If the relative backward error is small, then the algorithm gives exactly the right 
answer to nearly the right problem. Since our inputs are almost never exact, this 
is a reasonable measure of the quality of the algorithm. Indeed, as pointed out in 
[Hig96, Section 1.5], if the backward error is no larger than the uncertainties in the 
inputs, the quantity x + 3 could even be the correct input, and /(x) could well 
be the exact answer to our question. So it is reasonable to say that the algorithm 
performs well when the relative backward error is small.

Example 11.3.6. Consider the two algorithms in Unexample 11.3.4. The 
first algorithm has no meaningful finite value for the backward error, since the 
output is not equal to the exact answer for any input. It might make sense in 
this setting to say that the backward error is infinite /3 = oo.

The second algorithm produces /(10) = 4.5 x 10-4 = f(7-7), so the relative 
backward error of the second algorithm is Pf = (10 — 7.7)/10 = 0.23.
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Example 11.3.7. Let f be the algorithm /(ж, у) = fl(x)®fl(iy) for computing 
the sum /(ж, у) = x + у. By the axioms of floating-point arithmetic, we have

f(x,y) = fl(®) ф fl(y)
= (fl(ar) + fl(j/))(l + <51)
= (x(l + 52) + 2/(1 + *з))(1  + *i)
= ж(1 + <J2)(1 + <5i) + y(l + 53)(1 + *1)
< x + у + ж(<52 + *i)  + 2/(*з  + *1)  + (x + 2/)e machine t

where |5i|, |52|, |53| < ^machine- Letting

8 = (ж(1 + 52)(1 + <5i) - x, y(l + 53)(1 + 5i) - y)

gives f(x,y) = f(fx,y) + 5), so the relative backward error of this algorithm 
is bounded by

ll^ll < (^machine + ^machine) II II 
Il(*,?/)  и _ ii(*V)ii

— 2smachine + ^machine*

11.3.3 Backward Stability
We would like to say that an algorithm is backward stable if the relative backward 
error is always small. Of course the meaning of “small” might depend on the situa­
tion, but the following definition gives a uniform meaning to the idea of backward 
stability as precision increases.

Definition 11.3.8. An algorithm f for f is backward stable if there exists a 
constant C > 0 such that for each x in the domain of f and for each ^machine 
(determining the precision of all the arithmetic used in the algorithm) there exists 
8 e Fn such that /(x) = /(x + 8) with

11*11  
llxll < C^machine- (11.13)

If an algorithm is backward stable, we can make the relative backward error as 
small as desired by using sufficiently high precision (a sufficiently small ^machine)-
Remark 11.3.9. It is common to write (11.13) as

и и £ O(6machine) ^machine 0*

Notice here that 8 is a function of ^machine and x, while C must be independent of 
both X and ^machine-
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Example 11.3.10. If f is the algorithm f(x,y) = fl(#) фй(з/) for computing 
the sum f(x,y) = x + у, then, as shown in Example 11.3.7, the relative 
backward error of the algorithm is bounded by < 2smachine + ^machine’ 
which is in O(£machine) as ^machine —> 0- Therefore floating-point addition is 
backward stable. The proofs that the other basic floating-point operations are 
backward stable are similar.

Example 11.3.11. For x € R we show that the algorithm g(x) = fl(#) ®fl(#) 
for computing g(x) = x2 is backward stable. The axioms of floating-point 
arithmetic give

<)(#) — X2 (1 4“ $1)2(1 4“ $2) — #2(1 4" 2$1 + $1 + $2 T 2$1$2 4“ $1$2)

or
^(#) — #2(1 + 2$i 4- $2 4- $3)

for some $3 with |$3| < 4s^achine. We must find 6 such that |$|/|#| € O(^machine) and g(x 4- $) = <?(#). That is, we need

(# + $)2 = x2 + 2x6 + 62 = X2 + #2(2$i 4- $2) 4“ #2$3.
This is quadratic in $, and the smaller of the two solutions is

<5 = x(-l + 0 - (25i + 52 + <53)).

Using the Taylor expansion \/l — a = 1 — 4- О (a2) shows that

o ^machine 4” О (^machine)
and thus

I I £ О (^machine),
as required.

Example 11.3.12. Consider the algorithm g(x) = fl(#) Ф 1 for computing 
g(x) = x 4- 1. We have

g(x) = fl(#) ф 1 = (#(1 4- $2) 4- 1)(1 + $1)
= (#(1 4- $г)(1 + ^i) 4"^i) 4" 1
= g(x + 6),
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where <5i,52 < ^machine and

8 = rr(l 4- (52)(1 4~ $i) 4- <5i — x = x(6i + 62 4- (5i<52) + (5i.

Thus the relative backward error of g is (3g = |(Ji 4- (52 4- (?i(52) 4- <5i/#|, which 
could become arbitrarily large as x —> 0. Thus g is likely not backward stable 
near x = 0 unless <5i also gets very small as x —> 0 for a fixed ^machine- But 
since all we know is that Ji < smachine5 we have no reason to believe that this 
algorithm is backward stable near x = 0.

However, for any a > 0, if x is restricted to lie in (a, oo), the relative 
backward error is

Pg = |(<51 + <5'2 + ВД + <5i/a:| < 3gmachine + £^chine g 0(£machine).

Therefore, this algorithm is backward stable if x is restricted to lie in (a, oc).

11.3.4 Numerical Stability

Backward stability is a strong condition. As shown in Example 11.3.12, even a 
very simple, fundamental algorithm might not be backward stable. But often we 
can get by with a weaker condition called numerical stability, often just called sta­
bility. For stability, we allow not only the input to be approximated but also the 
output. That is, rather than requiring the exact answer to nearly the right prob­
lem (backward stable), we require only nearly the right answer to nearly the right 
problem.

Definition 11.3.13. An algorithm f to compute f is stable if there exist positive 
constants C and D such that for all x in the domain of f and for any sufficiently 
small ^machine there is a 8 (depending on x and 6machine J satisfying

и и — machine
and

||/(x + <5) —/(x)|| 

№ + <5)11 < D£machine«

We write these conditions as e O(Emachine) and ||*̂дх +<?)||Х)11 e O(Emachine) as ^machine 0.

Theorem 11.3.16, below, shows that if the relative condition number ^(x) of a 
function f is bounded, then any backward stable algorithm is stable.
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Example 11.3.14. Consider again the algorithm in Example 11.3.12. The 
backward error is well behaved away from x = 0 but is problematic near x = 0. 
For |x| < | if we let 6 = x(6i + 62 + ^1^2), then g(x) = g(x + 5) + <5i, so

|д(ж + J) - g(x)| 
|р(ж + <5)|

< ^machine 
I + 5 £ ^(^machine).|ft|

|x + 1 + 5|

and |<5|/|x| € O(Emachine)5 so g is stable in the open interval |x| < |. Moreover, 
the algorithm g is stable when |ж| > | because it is backward stable there. 
Therefore g is stable for all x.

Example 11.3.15. For x, у € R", computing the outer product /(x, y) = 
xyT using the obvious algorithm

fl(xi) ® fl(yi)
7(x, y) =

fl(xi) ® й(з/2)
А(ж2) ® fl(y2) А(ж1) ® fl(yn) fl(z2) ®

® fl(yi) fl(xn) ® fl(j/2)
is stable, but not backward stable. If the algorithm were backward stable, 
there would be a small 6 = (<5i, Й2) € R2n such that /(x,y) = (x + <5i)(y + 
Й2)Т7 but the rank of (x + <5i)(y + ^2)T is always 1, regardless of the value of 
x,y,^i,^2, whereas the rank of the matrix /(x, y) is almost never 1. There­
fore, f cannot be backward stable. The proof that /(x,y) is stable is Exercise 
11.14.

11.3.5 *Conditioning  and Stability
Roughly speaking, one can expect that the condition number /s, the forward error, 
and the backward error are approximately related by

relative forward error < к x relative backward error

if they are all computed using the same norm. So an algorithm with a small back­
ward error for solving a well-conditioned problem also has a small forward error, 
but if the problem is ill conditioned, the forward error could be large, even when 
the backward error is small.

The following theorem makes this relationship more precise.

Theorem 11.3.16. Suppose the relative condition number of a function f at x is 
Ap(x) and that an algorithm f for f is backward stable. Then the relative forward 
error of f satisfies

IIZ?J^X)I1 e OMxkmachine). (U-14)
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Proof, By the definition of ^(x) we have

к = lim sup 
h^0+ ||<5||<h

/||/(x + <?)-/(x)||||x||\
\ ll/(x)||||<5|| J-

By backward stability, for each ^machine there is a 8 such that

7(x) = /(x + <5) and jpqj e О (Emachine )• 
llxll

Thus as ^machine 0 we have

ll/(x)-/(x)|| ||/(x + d)-/(x)|| 0(D) ll^ll c 0Mx)E b- )
||/(x)|| H/(x)|| - (Mx) + o(l))||x|| eO(/i(x)Emachme),

where o(l) indicates a quantity that converges to zero as £machine 0. □

The theorem indicates that the accuracy of a backward stable algorithm is as 
good as the precision of the arithmetic system and the conditioning of the problem 
allow.

11.4 Computing Derivatives
Many applications, including optimization, which is a focus of the rest of this book, 
require approximating first or second derivatives of functions. In this section we 
discuss some of the main methods for computing derivatives. These include sym­
bolic differentiation (done either by hand or with the help of a computer algebra 
system), finite differences, complex step differentiation, and algorithmic (or auto­
matic) differentiation.

11.4.1 Symbolic Differentiation
In some situations, one can compute a derivative symbolically, that is, analytically 
compute a closed-form expression for the derivative, and then use the resulting ex­
pression to compute the value of the derivative. Although some simpler expressions 
can be calculated by hand, computer algebra systems with symbolic differentiation 
tools, like those in the Python module SymPy, are usually needed to compute more 
complicated derivatives symbolically.

Example 11.4.1. The symbolic method works very well for functions with 
known, simple, closed-form expressions for their derivatives. For example, to 
compute cos (a;) at x = 1, we can use the standard formula from calculus 

cos(a?) = — sin(a?). Evaluating at x = 1 gives —0.8414709848078965.



504 Chapter 11. Fundamentals of Numerical Computation

3000-

2500-

• 15000-

12500-

2000 - 10000 -

Figure 11.3. Plot of the number of terms in the expansion of the function hk(x) 
(left panel, blue) of Example 11.4-2 and the symbolic derivative j^hk(x) (right panel, 
red) as functions of k. This rapid growth is an example of expression swell, which 
can make it costly to compute symbolic derivatives.

In some applications, it is necessary to compute the derivative of functions that 
are compositions of many simpler functions. Such functions can be evaluated rapidly 
at any particular input value, but symbolic differentiation usually involves expand­
ing out the compositions and differentiating. The number of terms in these ex­
pansions and their derivatives can rapidly grow to be very large. This growth is 
called expression swell, and it can make the computation of a symbolic derivative 
prohibitively expensive.

Example 11.4.2. Let f(x) = x — 7x2, and consider the function

Ы1) = (/ О f О • • • О /)(ят)

к

for various values of к E Z+. Here we expand out the composition and compute 
the derivative symbolically for the cases of к = 2 and к = 3:

^2(^) = —7x2 + x — 7(—7x2 + ж)2,
h'2(x) = -14x + 1 - 7(—2&r + 2)(-7x2 + x\
h%(x) = —7x2 + x — 7(—7x2 + x)2 — 7(—7x2 + x — 7(—7x2 + x)2)2,
h'^x) = -14z + 1 - 7(—2&r + 2)(-7ж2 + ж)

- 7(—2&r - 14(—2&r + 2)(—7rr2 + x) + 2)(-7rr2 + x - 7(-7x2 + x)2).

In Figure 11.3 we plot the number of terms in the expansion of hk and the 
derivative of hk for к up to 10.

Of course, if a function is not defined by a standard, closed-form formula but 
rather by the output of a more complicated algorithm or some opaque process,
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Figure 11.4. Plot of the algorithmic function f (blue) defined in Unexample 11.4-3 
and its derivative (red). Because this function does not have a simple closed form, 
its derivative is not easy to compute symbolically. But it can be approximated with 
numerical difference quotients or, more efficiently and accurately, with algorithmic 
differentiation. See Section 11.4-4 for more about algorithmic differentiation.

like the result of a physical measurement, then the derivative usually cannot be 
computed symbolically.

Unexample 11.4.3. Functions without a simple, closed-form expression, like 
the following Python function, are not well suited to symbolic differentiation.

import numpy as np

def f (x) :
z = max(x,1.5)
while x>5:

z = int(np.round(np.log(np.abs(x) + l),0))
for к in range(z):

x -= z/2 + np.sin(z)
if 3*x  + 2 < np.exp(z):

return np.sin(x) + x
else:

return 5/x

See Figure 11.4 for a plot of this function and its derivative.

11.4.2 Numerical Difference Quotients
In many situations we may only have access to the values of the function as the 
output of a complicated subroutine or other “black box,” so the best we can hope 
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for is an approximation to the first and second derivatives using specific values of 
the function. In this case one strategy is to use the difference quotient

~ /(ж + л) -/(ж)
7 w ~ h

for small values of h. When h > 0, this is called a forward difference. In the 
absence of round-off error, the forward difference would approximate the derivative 
more and more closely as h 0+, and the size of the error in this estimate would lie 
in O(/z). Specifically, if f G C2((a, 6); R) for some neighborhood (a, b) around rr0 and 
|/"(ж)| < L on (a, b) for some constant L, then Taylor’s theorem (Theorem 10.3.7) 
gives

|У(х0 + h) - У(ж0) - hf'(xo)\ < ^h2L,

so the error from using the forward difference Zfoo+frH/foo) £0 compute f'(xo) is 
bounded by

/(ЖО + /0-/Ы _ //(a.o) < lhL e

n, 2
The quality of the approximation can be improved to O(/z2) by taking a centered 

difference
/'(*)  f(x + h)-f(x-h)

2n
If f € C3 with |/(3)(ar)| < M near xp, Taylor’s theorem (Theorem 10.3.7) gives

h2 Mh3\f(x0 + Л) - /(x0) - hf'(x0) - ^/"Ы1 < (П.16)
Z o!

Applying (11.16) twice, once with h and once with —/z, gives

2hf\x0)-(f(x0 + h)-f(x0-h))

/ h2 \
= 2hf'(x0) - \f(xo + h)~ f(xp) - -^-f”(xoH

(П-17)

(11.18)

(11.19)

+ hf'(xQ)
/ h2 \\f(x0 -h)- /Ы - - f"(x0))

2Mh3
~ 3! ’

Dividing this inequality by h gives (11.15).
Unfortunately, approximations of the derivative using difference quotients in 

floating-point arithmetic usually develop large errors when h is too small. One 
example of this is given in Example 11.1.9. Therefore, minimizing the total error 
requires finding a value of h that keeps

-
f(xp + h) — У(жо) 

h
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small enough but that also avoids making the round-off error too large. The optimal 
answer depends on which difference quotient method is being used and the size of 
the relative forward error in /, as well as ^machine- As a rough ballpark estimate, if 
q is a close upper bound on the relative forward error in f for all x near then

h ~ 2^/q

is a reasonable choice for the step size with forward differences. For more on the 
choice of step size, see Section 11.4.5.

11.4.3 Complex Step Differentiation
Computing derivatives by numerical differences is fundamentally limited in its ac­
curacy by the trade-off between the need to make h small to get a reasonable 
approximation and the need to keep h large enough to avoid loss of precision from 
subtraction. But if the function f to be differentiated is analytic (its Taylor series 
converges at every point)46 in a small neighborhood of the point xq in C, then we 
can compute a numerical derivative /'(^o) at xo without subtraction by using the 
following proposition.

46For more on analytic functions, see Volume 1, Chapter 11.

Proposition 11.4.4. If Xq eR with f analytic in a small neighborhood of Xq in 
C, and f(x) is real for all x in a small real interval around xq, then for sufficiently 
small real h > 0 we have

= s + (1120)

where is the imaginary part of z.

Proof. If f is analytic near xq, then there exists 6 > 0 such that f G С°°(В(д;о? <5); C) 
on B(xq,S) and there exists M > 0 with < M for all x G B(xq,6). For
0 < h < 6 Taylor’s theorem gives

h2 Mb3
f(x0 + ih) - /(x0) - + 2|-/(2)(яо) < -gj-.

Taking the imaginary part shows that for all real h with |/i| < 6 we have

Mh3

Dividing by h gives (11.20). □

This shows that to approximate /'(^o) we may compute j^s(f(xo + ihf). This 
is called complex step differentiation. Since this method does not involve a subtrac­
tion in the numerator, it is resistant to the sorts of errors that arise in the numerical 
differences methods. Since most numerical computing libraries handle complex com­
putations seamlessly, this gives a practical method for numerically computing many 
derivatives accurately. This can be a very robust way to accurately approximate 
the derivative, but it does require the function f to be defined as a composition of 
analytic functions.
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Example 11.4.5. Applying complex step differentiation to compute cos(l) 
behaves much better than the forward difference method in Example 11.1.9. In 
Python with the default double-precision arithmetic, calculating S(cos^-n—-) 
for n e {20,..., 500} yields the following:

20 -0.8414709848080241 27 -0.8414709848078965
21 -0.8414709848079285 28 -0.8414709848078965
22 -0.8414709848079045 29 -0.8414709848078965
23 -0.8414709848078986 30 -0.8414709848078965
24 -0.8414709848078971 31 -0.8414709848078965
25 -0.8414709848078967 32 -0.8414709848078965
26 -0.8414709848078965 33 -0.8414709848078965

So this computes the correct answer, to machine precision, by n = 26 (corre­
sponding to h = 2-26), and then continues to give that same, correct answer 
for all n up to 500—it never degrades the way that the forward differences did 
in Example 11.1.9.

Remark 11.4.6. If the operations involved in computing f use complex numbers 
other than those in the argument, then round-off error can affect the imaginary 
parts of this computation and degrade the result.

11.4.4 Brief Overview of Algorithmic Differentiation
Algorithmic differentiation is a powerful method for computing derivatives. The 
method called back propagation, which is one of the fundamental tools for training 
neural networks, is a special case of algorithmic differentiation.

The rough idea is to define a class of primitive functions (for example, linear 
operators, arithmetic operations, trigonometric functions, and so forth) with known 
derivatives, and then construct derivatives of arbitrary compositions of these func­
tions using the chain rule. These methods begin by explicitly coding up algorithms 
for computing the derivative of each primitive function. These derivatives are usu­
ally calculated by a formula (like sin(rr) = cos (a;)), instead of numerically. This 
helps prevent the loss of precision that typically occurs in numerical difference quo­
tients.

Having the derivatives of the primitive functions coded explicitly means that for 
any primitive function b and any valid input x we can rapidly compute both 5(x) 
and D6(x). For any function f that is built from a composition of the primitive 
functions f = bi о b2 о • • • о bk, the chain rule gives

D/(x) = D5i(b2 о... о bk(x))Db2(b3 о • • • о bfe(x)) • • • Dbk(x). (11.21)

Thus, D/(x) can be computed by first computing bk(x) and D6fc(x), then computing 
bfc-i(6fc(x)) and Dbfc_i((5fc(x))), and so forth until computing Dbi(b2 о • • • obfc(x)), 
and then multiplying together all the terms appearing in (11.21). Moreover, these 
matrix multiplications can be performed relatively efficiently by judicious choices 
of the order of multiplication.
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The idea of algorithmic differentiation generalizes to more complicated com­
positions of functions (for example, to functions of the form Ь1(62(х), Ьз(х))) by 
carefully tracking the effect of the chain rule through all the compositions. This 
allows for efficient differentiation of very complicated functions, including functions 
whose definition involves loops, conditional statements, and other computer code, 
provided the actual computations themselves consist of compositions of the primi­
tive functions.

Example 11.4.7. The Python function defined in Unexample 11.4.3 can be 
algorithmically differentiated using the autograd module. This module adds 
explicitly coded derivatives to most NumPy functions and then differentiates 
any function constructed from those functions by repeatedly applying the 
chain rule.

import autograd.numpy as np # NumPy with derivatives 
from autograd import grad # Algorithmic differentiator

def f(x): # Same function as before
z = max(x,1.5) 
while x>5:

z = int(np.round(np.log(np.abs(x) + l),0)) 
for к in range(z):

x -= z/2 + np.sin(z)
if 3*x  + 2 < np.exp(z):

return np.sin(x) + x 
else:

return 5/x

df = grad(f) # Derivative of f

See Figure 11.4 for a plot of this function and its derivative, computed with 
autograd.

11.4.5 *More  on Forward and Centered Differences
In this subsection we discuss the temporal complexity of difference quotient methods 
and also the problem of choosing the optimal step size.

Temporal Complexity of Difference Quotients

To compute the approximate derivative D/(xq) = [Di/(xq) • • • Z>n/(xo)] of a 
multivariate function f : Rn —> R by one-sided difference quotients requires n + 1 
function evaluations: /(x0) and /(x0 + /ze*)  for each i. The centered difference 
requires 2n function evaluations and is somewhat more accurate. The decision of 
whether to use the one-sided or centered difference will depend heavily on the nature 
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of the problem, the level of accuracy needed, and the overall cost of the additional 
n — 1 function evaluations.

To approximate the Hessian D2/(xq) when the gradient Df(x) is available, we 
can use the same techniques that we used to calculate the gradient from the original 
function. This requires n + 1 evaluations of the gradient.

If the gradient is not available, then we can use the approximation

r> ti A /(xo + /zei + /ie>)-/(xo + /zei)-/(xo + /zej) + /(xo)

but this, of course, suffers from an additional loss of accuracy and requires O(n2) 
evaluations of f. The error on this approximation can be computed in a manner 
similar to the first derivative, using the higher-order Taylor approximation.

Optimal Step Size

Let f'(xo) denote the computed value of using the centered difference with 
step size h. The total error \f(xq) — f'(xo)\ can be split into two parts:

l/'Oo) - /'(ж0)| < f’(x0) - f^ + h^ V
2ri

f(x0 + h) — /(жр - h) _ ~

(11.22)

In the case of centered differences, (11.17) shows that the term

ГЫ - f(x0 + h) — /(ж0 - h) 
2h

on the right side of (11.22) is bounded by where |/^3\ж)| < M for all x 
near xq. To bound the second term, assume that |/(ж)| < C for all x near xp and 
that q is an upper bound on the relative forward error for /(ж) near жр, so that 
|/(ж) — /(ж)| < Cq for all ж near жр. We write

7'(ж0) = (/(жр + h) © 7(ж0 - h)^ 0 2h.

This gives

/(жр + h) - /(ж0 - h) 
2h - f’M

f(x0 + h) — /(жр - h) 
2h

f(xp + h) — /(жр - h) 
2h

( (/(*o  + h) © 7(ж0 - h)^ 0 2hj

f(x0 +h)Q f(x0 - h) 
2h H” ^machine

2CQ ^machine
2h H” ^machine*

Thus the total error using this method with step size h is bounded by

I rf / \ \| h2M 2CQ + ^machine
\f \x0) ~ f (жо)| — । I" ^machine-
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Differentiating shows that this bound is minimized at

3/ 3 । 1 \у Q “r 2 ^machine j •
If q >» £machine (meaning that q is much larger than emachine)5 then this is approx­
imately

provided С « M » emachine-
A similar analysis shows that a good choice of h for forward differences is

2C + ^machine).
where |/(2) (ж)| < L for all x near xq. If C « L >*  ^machine, then is approximately 
given by

/z+ 2y/p,

which is a common choice for approximating derivatives with a forward difference.

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

11.1. Express the following numbers in IEEE 754 floating point:
(i) 7.

(ii) 77/64.
(iii) 22/7.

11.2. Not every integer can be represented as a floating-point number. Give a 
formula in terms of b and p for the smallest positive integer that cannot be 
represented in the system F of Section 11.1.2. What is the smallest positive 
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integer n that cannot be represented as an IEEE 754 double? Write and 
execute a program to verify that n — 3, n — 2, and n — 1 are all represented 
as floating-point numbers on your computer, but n is not. What about 
n + 1, n + 2, n + 3,... ?

11.3. Floating-point arithmetic does not behave the way regular arithmetic does. 
Many of the “laws” of regular arithmetic fail to hold. Here are a few:

(i) The set F is not closed under (true) addition. Give an example of two 
numbers ж, у G F such that x + у is in the represent able range but 
x + y F. Explain. For your example, evaluate x®y on your computer.
What is the relative error | |?

(ii) The set F is not closed under (true) division. Give an example of a 
number in F such that 1/x is in the representable range but 1/x £ F. 
Explain. For your example, what is 10 x? What is the relative error 
| (1/ж)~(10ж) |9 
I 1/x I '

(iii) Floating-point addition is not associative. Find floating-point numbers 
ж, ?/, and z such that (x ф у) ф z ф x ф (у ф z). Explain.

(iv) Floating-point arithmetic does not satisfy the distributive law. Find 
floating-point numbers x, y, and z such that (x@y)®z (ж0г)ф(?/0г).
Explain.

11.4. Consider the series 1000/n.
(i) Compare the result when you sum the series forward, from 1 to 107, 

with the result when you sum the series backward, from 107 down to 1.
(ii) Floating-point addition is commutative, so why does changing the order 

of this summation change the result?
11.5. Plot the function f(x) = (1 — x) — 1 and the function x at a thousand points 

along the interval (—3 x 10-15, +3 x 10-15). Note that (1 — x) — 1 = —x in 
exact arithmetic. Explain why the graph of x looks smooth but the graph of 
(1 — x) — 1 is jagged. Now plot the ratio ((1 — x) — 1)/ж. Why does the error 
(the distance from the correct value of —1) get larger as x —> 0?

11.6. Find the relative condition number at xq G R of the following functions:
(i) e* (i) (ii) (iii) (iv) * * * * * x.

(ii) 1п(ж).
(iii) cos(a;).
(iv) tan(rr).

11.7. Given (x, y) G C2, consider the problem of finding z such that x^+y2— z3+z =
0. Find all the points (x,y) for which z is locally a function of (x,y). For a
fixed value of т/, find the relative condition number of г as a function of x.
What is this relative condition number near the point (ж, у) = (0,0)?

11.8. Give an example of a matrix A with condition number > 1000 (assuming
the 2-norm). Give an example of a matrix В with condition number k(B) = 1. 
Are there any matrices with condition number less than 1? If so, give an 
example. If not, prove it.
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11.9. Let {go(^L • • • , <7n(#)} be a basis of the space F[rr; n] of polynomials of degree 
no more than n, with deg(^) = i. Let F(a,x) = ^7=0 ai9i(x>) be a polyno­
mial expressed in this basis. Just as in the case of Proposition 11.2.12, for any 
given a  e Fn+1 and any simple root x  of the polynomial p(x) = Р(а,ж),  

there is a neighborhood U of a  in Fn+1 and a continuously differentiable 
function r : U —> F with r(a)  = x  such that P(a, r(a)) = 0 for all a e U.

* * *

*

* *
(i) Show that the relative condition number of r as a function of the zth 

coefficient сц at the point (a , x ) is* *

k(x*) =
zp'(.-r*)

(11.23)

(ii) Prove that for any nonzero scalar c € F, the condition number (11.23) 
remains the same if any basis element gi is replaced by сдг.

(iii) For a given p(x) with simple root x , prove that choosing a monic basis 
{go,... ,gn} that minimizes the condition number (11.23) is equivalent 
to choosing a monic basis that minimizes the numerator \agi(z)|.

*

*
(iv) Recall that the minimax theorem (Theorem 9.4.4) guarantees that the 

monic Chebyshev basis (gi(x) = T^x) for every i, where is the monic 
Chebyshev polynomial of degree i) minimizes sup2e[_1 ?1] gi(z) among all 
monic bases. This does not guarantee that the Chebyshev basis neces­
sarily minimizes the numerator of (11.23) for each г; nevertheless, it sug­
gests that the Chebyshev basis should be among the better-conditioned 
choices of basis for real roots in [—1,1]. Prove that if x  E (—1,1) is real, 
then the condition number of the root x  as a function of the coefficients 
of the Chebyshev basis is

*
*

«(#*)  < 2i~1x*p'(x*)

11.10. Prove that floating-point subtraction is backward stable, as a function from 
R2 to R.

11.11. Any reasonable algorithm involves more than one single operation. Let

=
^^machine

1 ks machine
Prove the following result, which shows how errors from multiple operations 
combine. If |J| < 7^ and \ф\ < yj, then (1 + J)(l + </>) = (1 + £), where 
|C| < 7fc+j-

11.12. Find a good upper bound on the relative forward error that results when 
computing (a + b)/(c + d) for a, b, c, d e F.

11.13. For each of the following, decide whether the algorithm is backward stable, 
stable but not backward stable, or unstable. Sketch a proof.

(i) For x G R the algorithm k(x) = fl(:r) 0 А(ж) 0 • • • 0 А(ж) for computing 
k(x) = xn.

(ii) For x G R\ {0} the algorithm й(х) = А(ж) 0 А(ж) for computing the 
value of u(x) = 1.
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(iii) The algorithm for computing e as ё = (1 ф 1 0n)n with n some fixed 
large value, and where the nth power is computed with the algorithm 
in (0-

(iv) The previous algorithm for e, but with n = fl(fc/£machine) for some fixed 
к > 0.

(v) The algorithm for computing e as e = , where all the operations
are the usual floating-point operations and the sum is added starting 
from к = 1 upward, and terminated once < ^machine-

(vi) The algorithm for computing e as ё = , where all the operations
are the usual floating-point operations and the sum is added backward 
(starting from the smallest positive integer к such that l/k\ < ^machine 

and proceeding down to к = 1).
11.14.  Prove that the algorithm given in Example 11.3.15 for computing the outer 

product is stable.
*

11.15. Show that, in the absence of round-off error, if f E C4((a,b);¥) in a neigh­
borhood of € (a, b), then for h sufficiently close to 0 we have

2f(x + Л) + 3f(x) - 6f(x - h) + f(x - 2h)
6/z

11.16. Computing gradients with forward differences:
(i) Write code for computing the gradient Df of a function f : Rn —> R 

using forward differences and a given step size. Your code should accept 
an integer n > 0, a callable function f : Rn —> R, a point x E Rn, and a 
step size Л, which should default to h = 2л/гтасыПе- Your code should 
return an estimate for D/(x) computed using forward differences.

(ii) Compute the gradient of f(x,y) = (ж+2ж+^, symbolically and 
evaluate the symbolic expression numerically at the point (2,3).

(iii) For each value h = 2~k with к e {2,3,...,53}, use your code to compute 
the gradient of f(x,y) = (ж+2ж+^2, ^2^2) at the point (2,3).

(iv) Time each of the previous computations, and identify the value of h that 
gives the optimal accuracy.

11.17. Computing gradients with centered differences:
(i) Write code for computing the gradient Df of a function f : Rn —> R 

using centered differences and a given step size. Your code should accept 
an integer n > 0, a callable function f : Rn —> R, a point x E Rn, and a 
step size Л, which should default to h = 1.4^emachme- Your code should 
return an estimate for D/(x) computed using centered differences.

(ii) For each value h = 2~k with к e {2,3,...,53}, use your code to compute 
the gradient of f(x,y) = ^2^2) at the point (2,3).

(iii) Time each of the previous computations, and identify the value of h 
that gives the optimal accuracy. Compare your results to those of the 
previous problem.
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11.18. Compute the derivative of f(x) = sin (ЖНСО8(Ж) at = 1.5 in each of the 
following ways. For the difference quotients and complex step methods, com­
pute with the value of h = 2-n for each n e {1,..., 53}. Compare the 
convergence rate, overall accuracy, and computation time for each method.

(i) Compute the derivative ff(x) symbolically (either by hand or with a 
computer algebra system) and evaluate at xq.

(ii) Compute the forward difference /(Жо+М~/(жо).

(iii) Compute the centered difference .

(iv) Compute the complex step approximation ^(/(xo+2h-)).

(v) Use an algorithmic differentiation package to compute
11.19. Let ReLu : R —> R be the function47

47The name ReLu is short for rectified linear unit, because a rectifier is an electrical device that 
lets current pass in the positive direction only. This function is a common component in deep 
neural networks.

{
t if т > 0

0 if x < 0.

(i) Symbolically compute the derivative with respect to w of ReLu(wTx+6). 
(ii) Consider the function F : R2 x (R2)3 —> R2 given by

F(x, wi, w2,bi) = (ReLu(w]"x + 6ц), ReLu(wJx + 612))-

The composition

7Vi(x, wq, wi, W2,6o,bi) = ReLu(wjF(x, wi, W2, bi) + bo)

corresponds to a very simple single-layer neural network, while

TV2(x, И7, B) = 7Vi(F(x, W3, w4, b2), wq, wi, W2, bo, bi) 

= ReLu(wjF(F(x, w3, w4, b2), w1? w2, bi) + 50)

corresponds to a two-layer neural network (here W = (wq, ..., w4), and 
В = (b0,bi,b2)). Symbolically compute the partial derivative with 
respect to wn of Nt (here wx = (wn,wi2)).

(iii) Repeat the following 10 times:
(a) Draw each of x±, x^, wqi, W02, • • •, W42, bo, 6ю,..., 622 from a stan­

dard normal e/K(0,1).
(b) Use an algorithmic differentiation package to compute the partial 

derivative with respect to wn at the point x, w0,..., w4, b0, b1? b2 
of the simple one- and two-layer neural networks TVi and N2, re­
spectively.

(c) Evaluate your symbolic solution at the chosen values for x, wq, wi, 
W2, bo, and bi and compare to the solution for к = 1 found by 
algorithmic differentiation.
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Notes
Sources for floating-point arithmetic include [Dem97, Hig96, TB97, 1ЕЕ08]. For 
more on Remark 11.1.7 about how machine epsilon changes in complex arithmetic, 
see [TB97, pg. 100]. Example 11.1.8 is inspired by a similar example given in 
[Cool4], and Exercise 11.2 is from [TB97, Exercise 13.2].

Our treatment of stability is inspired by [TB97] and [Dem97]. Exercise 11.5 is 
due to [Dem96] and Exercise 11.13 is based on [TB97, Example 15.1]. Our proof of 
Theorem 11.14 is based on [TB97, Section 15].

For more examples and discussion of higher-order difference methods for numer­
ical differentiation see [LeV07].

We first learned of complex step differentiation from [Higl8], but it apparently 
originated with [ST98] and was foreshadowed by ideas from [LM67]. This method 
can also be applied to compute derivatives of matrix functions; see [АМН10].



Part IV

Optimization





Unconstrained 
Optimization

Premature optimization is the root of all evil.
—Don Knuth

Nearly every problem in the world is, or can be formulated as, an optimization 
problem. How do I maximize profits? What’s the best way to study for the test? 
How can I minimize my risks? How can I carry out a task with the fewest resources? 
How can I do the most good? All of these are optimization problems.

Chapter 4 gives many examples of discrete optimization problems, including 
graph problems such as finding a minimum spanning tree and computing the short­
est path between two vertices. In the remainder of the book we focus on optimization 
problems for which the function to be optimized (called the objective function) is a 
differentiable function of its inputs, and the algorithms for solving these optimiza­
tion problems are derived from principles of differential calculus.

In single-variable calculus we find the minimum of a function by first locating all 
its critical points (that is, the points for which the derivative is zero or undefined) 
and all the boundary points for the domain in question. Critical points that fail the 
second-derivative test can be discarded, and then we evaluate the function at each 
of the remaining critical points and all boundary points and compare their values.

This chapter generalizes these ideas to multiple dimensions. We focus here on 
problems for which there are no imposed constraints or boundaries. These problems 
are called unconstrained optimization problems. In later chapters, we consider opti­
mization problems where constraints are added to force the solution to have certain 
properties. The addition of constraints adds significant complexity to the problem, 
and so it takes several chapters to sort through all of the nuances involved. But 
in this chapter we avoid those challenges and focus only on problems that have no 
constraints (and therefore no boundaries).

12.1 Fundamentals of Unconstrained Optimization
Unconstrained optimization is the problem of finding the minimizer or maximizer 
of a function f : Q —> R, where Q C Rn is an open set. In this section we give some 
basic definitions and discuss the first- and second-order necessary conditions and 
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the second-order sufficient condition for finding optimizers. These are fundamental 
tools of optimization.

12.1.1 Mathematical Descriptions
We begin with some basic definitions.

Definition 12.1.1. Assume Q C and let f : Q № be given. A point x*  e Q 
is a minimizer of f on Q if /(x*)  < /(x) for all x E Q. In this case /(x*)  is 
called a minimum value of f on Q or just a minimum of f. If there exists an open 
neighborhood U ofx*  in Rn such that x*  is a minimizer on the set U П Q, then x*  
is a local minimizer of f on Q. A minimizer (or local minimizer) is strict if the 
corresponding inequality is strict for all x x*  in Q (or in U 0(1/ If the set Q 
is open in Rn and there are no other restrictions on the set of possible minimizers, 
then the problem of finding a minimizer is called an unconstrained optimization 
problem.

Remark 12.1.2. If x*  is a minimizer on all of Q it is common to call it a global 
minimizer of f on Q to distinguish it from a local minimizer. Of course, a global 
minimizer is also a local minimizer.

Definition 12.1.3. A point x*  E Q is called an optimizer if it is either a minimizer 
or a maximizer of f. In optimization problems the function f to be optimized is 
called the objective function. In minimization problems the objective function is 
sometimes called the cost function or loss function. In maximization problems the 
objective function is sometimes called the utility function or payoff function.

Definition 12.1.4. Assume (1 C Rn and let f : Q —> R be given. We denote the 
set of all minimizers of f on Q by

argmin/(x) = {x e Q |/(x) </(y) Vy e Q}.

If the global minimizer x*  of f on Q is unique, we often write

x*  = argmin/(x).

The argmax is defined similarly.

Remark 12.1.5. Maximization problems can easily be recast into minimization 
problems. In particular, observe that x*  E (1 is a local (resp., global) minimizer 
of f in Q if and only if x*  E (1 is a local (resp., global) maximizer of — f. In 
order to simplify notation and our discussions, we always assume from now on that 
optimization problems are minimization problems, unless otherwise indicated.

Local versus Global Optimization

As with single-variable calculus, we solve global optimization problems by identify­
ing all the local minimizers (and the boundary, if the problem is constrained), and 
then check to see which gives the smallest value of the objective function.
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There are special classes of functions that have only one local minimizer, and 
thus the local minimizer is also the unique global minimizer. This occurs, for 
example, with convex objective functions, which are discussed in Chapter 15.

12.1.2 First-Order Necessary Condition
Differential calculus gives some of the most important tools for finding optimizers. 
In this section we discuss a necessary condition for a minimizer of a differentiable 
function. These can, of course, be easily modified to give necessary conditions for 
a maximizer.

Theorem 12.1.6 (First-Order Necessary Condition (FONC)). Assume that 
Q C Rn is open and f : Q —> R is differentiable at x*  F Q. Ifx*  is a local minimizer 
of f on Q, then Df(x*)  = 0T.

Proof. Suppose some local minimizer x*  F Q satisfies Df(x*)  0T. Thus the 
unit vector v = — satisfies Z>/(x*)v  = — ||D/(x*)||  < 0 (assuming the
usual Euclidean norm). Since x*  is a local minimizer, there exists a 5 > 0 such that 
/(x*  + tv) > /(x*)  whenever 0 < t < 5. Hence,

|/(x*  + tv) - f(x*)  - Ш/(х*)у|  = /(x*  + tv) - fj£) + t||Z>/(x*)||
||tv|| t

= + р/(х*)||  > P/(X*)||.

This is a contradiction, since the left-hand side of the first equality converges to 
zero by the definition of the derivative; hence, Df(x*)  = 0. □

Example 12.1.7. Consider the function f(x,y) = x3 — 3x2 +y2. We compute 
the derivative Df(x,y) = (За;2 — 6a;, 2т/), which vanishes only at the points 
(0,0) and (2,0). We call these the critical points of f. Thus by the FONC, 
no other point (а;, у) E R2 can be a local minimizer of /. We do not yet know 
whether either of the points (0, 0) or (2, 0) are local minimizers; we just know 
that they are the only two feasible candidates.

Remark 12.1.8. While the FONC (Theorem 12.1.6) gives a necessary condition 
for a local optimizer, it is not always easy to find all the solutions to the equa­
tion Df(x) = 0. Unless the derivative Df(x) is very simple, there is usually 
no nice, closed-form solution. Sometimes the best approach is to use numerical 
methods to try to solve the system of equations D/(x) = 0, but it is often more 
efficient to use other (iterative) techniques that do not depend on finding the ze­
ros of the derivative directly. Most of the rest of this chapter is dedicated to such 
techniques.



522 Chapter 12. Unconstrained Optimization

Example 12.1.9. We generalize the one-dimensional optimization problems 
of Examples 6.1.12 and 6.1.13 to two dimensions by computing the MLE of 
the mean /i and variance <r2 of a normal distribution

As in Examples 6.1.12 and 6.1.13, we begin with an i.i.d. sample (a?i,... ,rrn) 
drawn from a normal distribution with unknown parameters /z and cr2 and 
consider the likelihood

n / 1 \ n/2 / i n
L^, a2) = P f(xi | /z, a2) = ( —) exp I — —= - /z)2\ £ О / \2=1 ' ' \ 2=1

The MLE is the maximizer (/z, ?2) of the likelihood L(/z, cr2). As in the one­
dimensional case, it is easier to work with the log-likelihood ^(/z, cr2), which is 
given by

1 n
O-2) = log(L(/z,CT2)) = --log27T<T2 - -m)2-

2=1

Thus, to find the MLE we must solve the unconstrained minimization problem 

(/z, ст2) = argmin — -£(/z, cr2).

Any minimizer (jEz, a2) of — -£(/z, cr2) must be a critical point and hence must 
satisfy the FONC:

o=?
O/L

And by (12.1b) we have na2 = — /i)2, and hence the maximum
likelihood estimator a2 satisfies

2=1

1 n= —\^(^-/z) and (12.1a)
—2 az L' № 2=1

° = da* -.2 = ~2^ + 2(?2)2 - ^2- (12.1b)

Here, as in Example 6.1.13, we treat a2 not as the square of a but as an 
awkwardly named variable in its own right. By (12.1a) we have 0 = 52/=1(жг — 
/z) = (Z2?=i хг) ~ nV>- Thus, the maximum likelihood estimator jEz of /z for an 
i.i.d. sample Xi,..., Xn satisfies
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Remark 12.1.10. We have already seen the estimators of the previous example in 
Section 6.1. Recall that is an unbiased estimator, but <r2 is biased.

Nota Bene 12.1.11. The FONC is a necessary condition, meaning that ev­
ery minimizer must satisfy it. But it is not sufficient, because a point could 
satisfy the FONC without being a minimizer. For example, the point x = 0 
satisfies the FONC for the function f(x) = x3, but it is neither a minimizer 
nor a maximizer.

12.1.3 Second-Order Conditions
The second derivative (or Hessian) of a function f can give both necessary and 
sufficient conditions for a critical point x*  to be a minimizer of the function f.

Theorem 12.1.12 (Second-Order Necessary Condition (SONC)). Assume 
that Q C is open and that f e C2(Q;R). Ifx*  e Q is a local minimizer of f on 
Q, then D2f(x*)  is positive semidefinite (hereafter denoted D2f(x*)  >0).

Proof. Suppose, by way of contradiction, that there exists v e Rn such that 
vTB2/(x*)v  < 0. Choose 6 > 0 sufficiently small so that x*  is a minimizer on 
B(x*,  J) C Q and vTB2/(x*  + tiv)v < 0 for all t e [0,1]. By Taylor’s theorem 
(Theorem 10.3.8), for any 0 < e < S we have

/(x*  + ev) = f(x*)  + eDf(x*)v  + e2 / (1 — t)vTB2/(x*  + tev)v dt.

Since 2?/(x*)  = 0 (by the FONC) and vTB2/(x*  + tev)v < 0 for all t e [0,1], 
we must have f(x*  + ev) < /(x*),  which is a contradiction, since x*  is a local 
minimizer. Thus vTD2/(x*)v  > 0 for every v ERn. □

Example 12.1 .13. Like the FONC, the SONC guarantees that certain points 
cannot be minimizers. For example, consider the function /(ж, у) = —x2 — у2. 
The derivative Df(x, y) is [—2x —2?/], so the origin is the only critical point. 
The second derivative is

D2f(x,y) = -2 0
0 -2

which is negative definite everywhere, since both eigenvalues are always neg­
ative. Therefore by the SONC, no point can be a local minimizer.
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Example 12.1 .14. Consider the function f(x,y) = x3 — 3x2 + y2. Example 
12.1.7 shows that the critical points of f are (0,0) and (2,0). The Hessian of
f is

D2f(x,y) = 6x — 6 0
0 2

Since the Hessian is diagonal, we can immediately see that the Hessian is 
positive definite at (2,0) and indefinite (that is, the eigenvalues are of mixed 
sign) at (0,0). Thus (0,0) is not a local minimizer, but the SONC does not 
rule out (2,0). But note that the SONC cannot guarantee that a point is a 
minimizer.

Example 12.1 .15. Consider the function g(x,y) = x3 — y3. The derivative 
Df(x, y) is [Зге2 —3г/2], so the origin is the only critical point. The second 
derivative is 

which is zero (hence positive semidefinite) at the origin. Therefore the SONC 
does not rule out the possibility that the origin could be a minimizer.

The second derivative can also be used to guarantee that certain critical points 
are minimizers, as the next theorem shows.

Theorem 12.1.16 (Second-Order Sufficient Condition (SOSC)). Assume 
that Q C Rn is open and that f e C2(Q;R). Ifx*  e Q is such that Df(x*)  = 0 and 

is positive definite (hereafter denoted B2/(x*)  >0/ then x*  is a strict 
local minimizer on Q.

Proof. Since B2/(x*)  > 0, there exists e > 0 such that vTD2/(x*)v  > 2e||v||2 
for all v 0, and, in particular, the smallest eigenvalue of D2/(x*)  is at least 2e. 
(See Volume 1, Section 4.5.1, for more details.) By the implicit function theorem 
(Theorem 10.3.2) the eigenvalues of B2/(x) depend continuously on x, so there 
exists 5 > 0 such that the smallest eigenvalue of D2f(x.) is at least e for all x 6 
B(x*,J)  C Q. This implies that vTB2/(x)v > e||v||2 for all v 0 and for all 
x e B(x*,  J) c Q.

For any v with ||v|| < <5, Taylor’s theorem (Theorem 10.3.8) implies that

/(x*  + v) = /(x*)  + £>/(x*)v  + / (1 - t)vTD2/(x*  + tv)vdt

Since vtD2/(x* + tv)v > 0 for all v ± 0 and t G [0,1], the integral is always 
positive. Since B/(x*)v  = 0, we must have /(x*  + v) > /(x*).  □
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Example 12.1.17. A Solving a linear system is closely related to minimiz­
ing a quadratic objective f : Rn —> R of the form

/(x) = хтЛх — bTx + c (12.2)

for some square matrix A G Mn(R), some vector b G Rn, and some constant 
c € R. Exercise 12.3 shows that the function (12.2) is equal to the function

/(x) = -xTQx — bTx + c, (12.3)

where Q = A + AT, so one may always assume that quadratic functions are 
of the form (12.3) with Q symmetric. Equation (12.3) has a unique critical 
point x*,  corresponding to the unique solution of

Qx*  = b, (12.4)

and the SONC shows that this can be a minimizer only if Q > 0. The SOSC 
shows that it is always a minimizer if Q > 0. Thus solving the system (12.4) 
with Q > 0 is equivalent to solving the quadratic optimization problem (12.3).

Remark 12.1.18. Depending on Q, the best way to solve the linear system (12.4) 
is often to use numerical optimization algorithms on the quadratic problem (12.3) 
instead of using standard linear solvers on (12.4). Some of these numerical methods, 
such as gradient descent and the conjugate-gradient method, are described later in 
this chapter.

Example 12.1.19. Consider again the function f(x,y) = x3 — 3x2 + y2 of 
Examples 12.1.7 and 12.1.14. Since D2/(2,0) > 0, the SOSC guarantees that 
(2, 0) is a local minimizer.

Example 12.1.20. The Rosenbrock function, pictured in Figures 12.1 and 
12.2, is

f(x,y) = (1 - x)2 + 100(2/ - ж2)2. (12.5)

The point (1,1) satisfies the FONC since

Df(l, 1) = (-2(1 - x) - 400ж(т/ - ж2), 200(у - *2))|(1>1) = (0,0).

A straightforward computation shows that there are no other critical points, 
and hence, by Theorem 12.1.6, no other point can be a local minimizer of f.



526 Chapter 12. Unconstrained Optimization

The Hessian at the point (1,1) is given by

Я2/(1Д) = 2 - 400?/ + 1200x2 —400x1
—400x 200 _| (11}

802 -400
-400 200

To see whether this is positive definite, note first that its eigenvalues satisfy 
the degree-2 equation A2 — BX + C = 0, with В = tr (D2/(l, 1)) and C = 
det (Z)2/(l, 1)). Since the Hessian is symmetric, its eigenvalues are all real. 
The quadratic equation gives A = 1(B±\/B2 — 4C). It is left to the reader to 
show that tr (Z?2/(l, 1)) > 0 and det (D2/(l, 1)) > 0, so В > \/B2 — 4C > 0, 
and hence the eigenvalues must both be positive. Therefore, the point (1,1) 
satisfies the SOSC and is, indeed, a local minimizer.

The SOSC tells us nothing about global minimizers—even though there are 
no other local minima, the function could decrease below that local minimum 
without having another local minimizer. However, in this special case (1,1) is 
also a global minimizer because /(1,1) = 0 and f(x,y) is strictly positive for 
all other points (x, y).

Remark 12.1.21. The Rosenbrock function is often used as a test function for 
optimization algorithms because, although it is easy to find the minimizer analyti­
cally, many algorithms for finding local minimizers get confused in the long, narrow, 
almost-flat-bottomed valley of the graph of the Rosenbrock function.

Remark 12.1.22.*  In the two-variable case we give a general condition to ensure 
that 2?2/(x*)  >0. If U CR2 is open and f e C2(C7;R), then

o2/(x‘) = fxy 
fyy.

fxx 
fyx

Figure 12.1. A graph of the Rosenbrock function as defined in (12.5), with its min­
imizer at (1,1) indicated as a darker dot. As an alternative to the three-dimensional 
plot shown here, the contour plot in Figure 12.2, can also be useful.
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Figure 12.2. A contour plot of the Ros enbrock function, where the colors represent 
the values of f, corresponding to the color bar on the right of the figure. The bottom 
corners are yellow, representing larger values around 1500, and the dark blue curves 
represent small values near zero. The minimizer (1,1) is indicated in black. The 
light-colored curves in the plot are contour lines, corresponding to level sets, which 
are sets of the form {x | /(x) = c} for various values of c.

As observed in the previous example, the eigenvalues of B2/(x*)  are the roots of 
A2 — BA + C where В = tr (B2/(x*))  and C = det (B2/(x*)).  Since B2/(x*)  is 
symmetric, the eigenvalues are always real. The quadratic formula guarantees that 
the roots are both positive precisely when В > y/B2 — 4C >0. A little thought 
shows that this is equivalent to the condition that В > 0 and C > 0. Expanding out 
the trace and the determinant, along with a little more work, gives the conditions 
which are often taught in multivariable calculus classes:

/xxlx- >0 and (Jxxfyy- Д)|х- >o. (12.6)

Similarly, the characteristic polynomial has nonnegative roots precisely when the 
previous strict inequalities are relaxed to allow equality.

Remark 12.1.23.*  Since B2/(x) is symmetric, the spectral theorem (Volume 1, 
Theorem 4.4.7) guarantees that at any point x G Q there is an orthogonal basis 
of Rn consisting of eigenvectors of B2/(x) and the eigenvalues are all real. This 
implies that the directional derivative is increasing in the directions corresponding 
to the positive eigenvalues and decreasing in the directions corresponding to the 
negative eigenvalues. In two dimensions, if B/(x) = 0 and B2/(x) has both a 
positive and a negative eigenvalue, then the graph has a saddle shape at x. More 
generally, we call x a saddle point of f if B2/(x) is indefinite (has at least one 
positive and at least one negative eigenvalue).

Example 12.1.24.*  At the point (0,0), the function f(x,y) = x3 — 3a;2 +y2 
of Examples 12.1.7 and 12.1.14 is a saddle point.
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12.2 One-Dimensional Numerical Optimization
For functions with a one-dimensional domain, the tools of the previous section 
reduce to the usual first- and second-derivative tests of single-variable calculus. 
However, even in this simple one-dimensional case, finding the points where f' 
vanishes is not always easy, and most functions have no closed-form expression for 
the critical points. So we need numerical methods for finding minima of functions 
of one variable. In this section we discuss several of the most common methods.

All of the optimization methods discussed in this chapter are iterative, meaning 
that they begin with an initial approximation, or guess, and then use that ap­
proximation to (hopefully) construct a better approximation. The utility of such 
algorithms depends on how rapidly they converge. Therefore, we begin the section 
with a brief discussion of convergence, before moving to the specific algorithms.

12.2.1 Convergence
It only makes sense to discuss the temporal complexity of an algorithm that termi­
nates. Many important algorithms never have a natural termination point—instead 
they iterate, getting closer to the desired answer with each iteration. When to stop 
the algorithm depends on how accurate one wants the answer to be. In this sit­
uation, there are two important factors that affect the overall complexity of the 
algorithm:

(i) The number of steps necessary to reach a desired level of accuracy.

(ii) The temporal and spatial complexities of each step.

Both the complexity of each iteration and the convergence rate are important 
when evaluating iterative algorithms. In some algorithms, each iteration involves 
only a few simple steps, but many iterations are required to reach the desired 
accuracy. Other algorithms need only a few iterations to converge to a high level 
of accuracy, but each iteration is costly to execute.

Definition 12.2.1. Given a sequence (x^^Lq C R that converges to x*  C R, let 
en = \xn — £*|  for each n e N. The convergence of x* is (at least) linear
of rate fi if there exists a p e [0,1) and an N > 0 such that

en < P^n-i whenever n> N. (12.7)

If for every p e (0,1) there exists an N such that (12.7) holds, then we say the 
convergence is superlinear. If en 0, but there is no p e (0,1) and N > 0 
satisfying (12.7), then the convergence is sublinear. If there exists an a > 1 and 
numbers p, N > 0 such that

en < P^n-i whenever n> N,

then we say the convergence of (#fc)£T0 to x*  is of order a. In particular, the 
convergence is said to be quadratic convergence if a = 2.

Roughly speaking, a linear convergence of rate p adds about — log10 p digits of 
accuracy at each iteration, whereas quadratic convergence (a = 2) approximately 
doubles the number of digits of accuracy with each iteration.
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Remark 12.2.2. The number // must be less than 1 for linear convergence, but 
the number p has no such restriction for higher-order convergence. The reason for 
the restriction p < 1 is that we expect the errors to be decreasing at each step, but 
when p is 1 or greater, then the relation Ek < gives no guarantee that the 
errors decrease. When p < 1, however, then < pEk-i < £k-i guarantees that Ek 
shrinks, and it gives some information about how quickly Ek shrinks. For a > 1, 
the errors shrink regardless of the size of p.

Example 12.2.3. The sequence Xk = 1 + (|)fc converges to 1 linearly with 
rate p = |, because Ek = (|)fc — Since p = | we expect the number
of digits of accuracy to improve by — log10(|) « 0.30 each iteration—that is, 
we expect the number of zero digits immediately after the decimal point to 
increase by about one every ~ 3.3 iterations. This is clearly visible in 
the following list of the decimal representations of the first 10 terms of this 
sequence.

k=0 2.0
k=l 1.5 one digit correct
k=2 1.25
k=3 1.125
k=4 1.0625 two digits correct
k=5 1.03125
k=6 1.015625
k=7 1.0078125 three digits correct
k=8 1.00390625
k=9 1.001953125
k=10 1.0009765625 four digits correct

Example 12.2.4. The error in the trapezoid rule for n + 1 evenly spaced 
nodes is approximately of the form En = cn~2 for some constant c (see 
Section 9.6.3). This converges sublinearly, but not linearly, because

En = СП
(n — I)2

C--------2-----(n-l) 2
1 \
2 ) ^n—1*  
nz )

Since the sequence (1 — - + converges to 1 as n —> oo, there is no p < 1 
such that En < pen-i for ah sufficiently large n.

Simpson’s rule has error approximately cn-4, which converges to zero much 
faster than the trapezoid rule, but it also converges sublinearly.

12.2.2 Bisection Algorithm for Critical Points
The bisection algorithm is a method used to find a zero of a function. Applying it 
to f' on [a, b] for a continuously differentiable function f will find a critical point 
under mild conditions.
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The algorithm begins by computing the value of f at the endpoints ao = a and 
bo = b, if those two values have different sign, then the intermediate value theorem 
(see Volume 1, Corollary 5.9.14) guarantees that there is a zero of /' in the interval 
(a, 6).

Now divide the interval in half to get cq = а°2Ь(| and compute f'(co). There 
are three possibilities: (i) If /'(co) = 0, the zero has been found, and the algorithm 
terminates. Otherwise, (ii) /'(с0) must have sign opposite of /'(a0) or (iii) /z(co) 
must have sign opposite of /'(fro)- In either of these last two cases, we now have 
a new interval (uo,co) or (cq,6o) that must contain a zero. Call the new interval 
(ai,&i).

At each subsequent step, evaluate ff at Ck = ak+bk, and let the new interval 
(«/c+i, 6fc+i) be either (a^, Ck) or (q, 6^), depending on which one has a sign change. 
The process is repeated until the desired accuracy is reached.

At stage A;, take the midpoint Ck = ak+bk of the interval as the approximation 
of the true zero x*  e (ufc,5fc). The error ek = Ck — x* can be no larger than 
|(6fc — Ofc) = 2_(fe+1)(6 — a). In the worst case, where вк = 2_(fc+1)(6 — a), the 
sequence ek converges linearly at rate /a = |, because вк = Just as in
Example 12.2.3, this means that the number of correct digits should increase by 
— log10(|) « 0.30 for each iteration.

Example 12.2.5. Taking f(x) = ±x4 — 27x and f'(x) = x3 — 27 means 
that the minimizer occurs at x*  = 3. Calculating this using the bisection 
algorithm with an initial interval of [2.4,4.4] yields the following, for the first 
10 iterations:

k=0 3.4 one digit correct
k=l 2.9
k=2 3.15
k=3 3.025 two digits correct
k=4 2.9625
k=5 2.99375
k=6 3.009375 three digits correct
k=7 3.0015625
k=8 2.99765625
k=9 2.999609375
k=10 3.0005859375 four digits correct

The exact answer, to machine precision, was first found after 48 iterations.

12.2.3 Newton's Method in One Dimension
A much faster method for finding a local minimizer is Newton’s method. Newton’s 
method, or variants of Newton, like the secant method (see Section 12.2.5 below), 
are almost always the methods of choice whenever they can be used.

To find a critical point of a function f whose second derivative is Lipschitz, we 
may use Newton’s method for finding a zero of f'(x). The method takes an initial 
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/'(Zfc)
ГЫ'

estimate Xk of the critical point and replaces it with

If the initial estimate is sufficiently close to the zero, then Newton’s method con­
verges quadratically.

Theorem 12.2.6. Given f e C2((a, 6);R) with f" Lipschitz,48 assume that x*  G 
(a, 6) is a local minimizer of f. If / 0, then there exists 6 > 0 such that for 
any initial xq e B(x*,6)  Newton’s method converges quadratically to x* ; that is, if 
£k = \%k — then for some constant M > 0.

48If f" is differentiable, then f" is Lipschitz, by Proposition 6.3.7 of Volume 1.

Proof, This follows by applying the convergence result for the rootfinding Newton’s 
method (Volume 1, Theorem 7.3.4) to the function □

Example 12.2.7. Consider f(x) = ^x4 — 27x, with f'(x) = x3 — 27, as in 
Example 12.2.5. Using Newton’s method with an initial guess of Xq = 3.4 
yields

k=0 3.4 one digit correct
k=l 3.0452133794694354 two digits correct
k=2 3.0006679769830704 four digits correct
k=3 3.0000001486869405 seven digits correct
k=4 3.0000000000000070 fifteen digits correct
k=5 3.0000000000000000 exact, to machine precision

In this example the number of correct digits roughly doubles at each iteration, 
corresponding to the quadratic convergence of Newton’s algorithm. The algo­
rithm reaches the exact answer, to machine precision, in five steps. Compare 
this to bisection, which took 10 iterations just to find the first four digits and 
48 iterations to find the exact answer, to machine precision.

Nota Bene 12.2.8. Newton’s method is very sensitive to the initial guess. 
If the value of xq is too far from the minimizer, Newton’s method may never 
converge and may even diverge to infinity.

12.2.4 Newton as Quadratic Approximation
An alternative way of thinking about Newton’s method for minimization is as a 
quadratic approximation. This approach begins by fitting a quadratic function q(x) 
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to the function f(x) at xq by using the Taylor expansion. Let

:= /(^o) + /'(ж0)(ж - ж0) + |/"(жо)(ж - ж0)2.

Note that q(xo) = /(#о)? О'Ч^о) = and q"(xo) = f,f(xe). We use the
minimizer x^ of q(x) as a proxy for the minimizer of f (see Figure 12.3). Thus x^ 
must satisfy 0 = which gives 0 = /'(^o) + — #o)« Solving this
yields the relation 

which is exactly the same formula as Newton’s method for finding a zero of ff. 
Therefore, applying one step of Newton’s method to the derivative /' is the same 
as approximating the function f with a quadratic and finding the minimizer of the 
quadratic.

Figure 12.3. Given an approximation x^ of the minimizer x* of a function f 
(blue), Newton’s method for minimizing corresponds to approximating f with the 
quadratic function q (red) that best fits f at Xk and then letting Xk+i be the mini­
mizer of q.

When f is a quadratic function, then the quadratic approximation is actually 
equal to f. The previous discussion shows that one step of Newton’s method gives 
the minimizer of the quadratic approximation, which is the minimizer of f. Thus, 
we have the following proposition.

Proposition 12.2.9. If f : R —> R is quadratic (that is, f(x) = ax2 + bx + c, for 
some a,b,c, e R, a > 0), then Newton’s method converges to the unique optimizer 
of f in a single step, regardless of starting point.

12.2.5 The Secant Method
The subtraction and division steps of Newton’s method are inexpensive, but com­
puting f"(x) may be difficult or expensive. Suppose we cannot or prefer not to 
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calculate the second derivative of f. We can approximate f"(xk) by using forward 
differences of the first derivative

fH, x f'(xk + h) -f'(xk) . ...f (xk) ~------------ j------------ for small values of h.h

If Xk-i is near Хк, then we can take h = Xk-i — Xk to obtain

/"(xfc) ~ Г(^)~Г(^-1) (12 8)
&k ^k—l

Substituting (12.8) into Newton’s method, the next approximation is

(12'9)

This is the secant method. At each stage, since f'(xk-i) has already been calculated 
for the previous step, we need only calculate ff(xk) in order to compute the next 
approximation Xk+i- Of course, this computational savings comes with a cost, 
namely, the order of convergence is no longer quadratic, as the next theorem shows.

Theorem 12.2.10. Assume that f e C2((u, 6);R) and f" is Lipschitz on (a,b). 
If x*  e (a,b) is a local minimizer of f with f,f(x*)  / 0, then there exists 5 > 0 
such that the secant method converges to x*  with order ф = 1+2^ « 1.618034, 
provided xq,x\ e B(rr* ,6) with Xi / xq- In other words, if €k = \xk — #*|  < 6, then 
£fc+i < for some constant M > 0.

The proof is similar to that of Newton’s method (see Volume 1, Theorem 7.3.4) 
and is given in Section 12.2.7.

Remark 12.2.11. Although Newton’s method has a higher order of convergence, 
the secant method can be faster if computing the second derivative /"(#&) is much 
more expensive than computing f'(xk)-

12.2.6 Stopping Criteria
When performing any of the iterative methods in this chapter, we need to know 
when to stop. There are several standard stopping criteria. These can be based 
on the norm of the derivative, the change in approximation, or the change of the 
function. For a prespecified error tolerance e > 0 we might choose any one of the 
following conditions to decide when to stop:

(i) ||L>/(xfc)|| <£.

(ii) ||a:fc+i - Zfc|| < £.

(iii) l/Ofe+i) - f(xk)\ < e.

(iv) The number of iterations is too large.
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The first condition is based on the FONC: when the derivative Df(x) is nearly zero, 
we expect the function to be close to its minimum. The second and third conditions 
are based on the idea that we should stop when the next iteration does not change 
enough to matter—either the estimated optimizer Xk is not changing much or the 
estimated optimal value f(xk) is not changing much.

These different stopping criteria give different stopping times, and a reasonable 
argument can be made for each choice. The “correct” choice may depend on the 
problem being solved. These stopping criteria can also be combined in various ways. 
Of course, if the method does not converge, then we must stop the method after a 
fixed number of iterations and consider using a different method.

Remark 12.2.12. This chapter covers some of the more common methods of one­
dimensional optimization. But there are many others. Some of these are explored 
in more depth in the labs for this volume.

12.2.7 *Proof  of Theorem 12.2.10
We prove Theorem 12.2.10, which guarantees that the secant method converges 
superlinearly, with order ф = 1+2 .̂

Proof, Assume that f" is Lipschitz with constant L, so that

\m-f'\d)\<L\c-d\

for any c,d e (a, 6). Choose <5,77 > 0 with C (a,6), so that for every
x e В(ж*,5)  we have /"(a?) > rj > 0. Let A = and, if necessary, shrink 5 so
that A < 1. Choose any distinct values of #0,^1 £ B(rr*,  5) to start the iteration. 
We show inductively that each xn e В (x*,  6) and that for each n > 1 the error 
en = \xn — #*|  is strictly less than Aen_i (that is, the convergence is at least linear).

Since #0,^1 £ В (ж*,  J), the initial induction step holds. Now assume the induc­
tion hypothesis for all n < к and that xn / x*  for all n < k. We have

£k = \(xk -xk-i) + (xk-i - x*)\  = p// \ Xk— 1 Xk—2 / *\

Since Xk-i and Xk-2 lie in B(rr*,  J) and |/"(a;)| > r] > 0 for all x e B(x* , <5), we have 
f'(xk-i) ф f(xk-2^ The mean value theorem guarantees the existence of some 
c,d e B(x*,5)  such that r(^fc_~)2p(~2fc-2) = and /'(^-1) = f”(d)(xk-i - 
x*).  Combining these with the previous calculation gives

, n /"(d)(xfe_i - x*)(xfc_i - x )------------——--------

(12.10)

< Acfe-i.

This concludes the induction and shows the secant method converges at least lin­
early.
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To see that the order of convergence is at least ф, note that the difference 
|c — d\ in the previous argument can be bounded more tightly. Specifically, c lies 
in the interval from Xk-i to Xk-2, and d lies in the interval from x*  to Xk-i, so 
|c — d\ < 2\xk-2 — #*|  = 2£fc_2. Substituting this into (12.10) and letting C = 2L/rj 
gives

£k < Ek-i£k-2^L/T] = Cek-iSk-2- (12.11)

We wish to find the largest value of a such that

lim £k = D (12.12)

for some constant D. We have already shown that convergence of the secant method 
is at least linear, so a > 1. Let

This implies
ek = Ske<j^ = Sk(Sk^_2)a = SkS^-2.

which gives
q qct ca2

£k _ ^k^k-l£k-2 _ c oa-l^a2-a-l
~ q — °k^k-l£k-2

£k— l^k—2 ^k—l^k—2^k—2

The first two factors of the right side approach constants, so we must have

a2 — a — 1 = 0,

and the quadratic equation, combined with a > 1, shows that a = ф = +2 . □

12.3 Gradient Descent
For the rest of this chapter we discuss numerical algorithms for solving uncon­
strained optimization problems in higher dimensions of the form

minimize f : Rn —> R.

These algorithms can also be used in many cases to solve problems on an open subset 
Q C Rn, but there is a possibility that they will step out of Q. In such situations, 
one can either just try restarting the algorithm at a different initial point or switch 
to some of the constrained optimization techniques discussed later in the book.

In this section we discuss a class of algorithms called gradient descent methods. 
These are based on the observation that the negative gradient of the objective 
function points in the direction of greatest decrease.

12.3.1 Gradient Descent Methods
Exercise 10.8 shows that the gradient D/(x)T of a function f points in the direction 
of greatest increase of the function. Here we give the proof again.
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Proposition 12.3.1. Let Q C be open and let f : Q —> R be a function that is 
differentiable at x e Q. Among all unit vectors in the direction u e Rn with 
the greatest directional derivative Duf(x) at x is the normalization of the gradient 
u = D/(x)T/||D/(x)T||.

Proof. The Cauchy-Schwarz inequality (see Volume 1, Proposition 3.1.17) guar­
antees that

|Du/(x)| = |L>/(x)u| = | (D/(x)T,u) I < p/(x)T||

for every unit vector u e Rn. But letting u = 2?/(x)T/||2?/(x)T|| gives

L>u/(x) = (U/(x)T,D/(x)T)/||D/(x)T|| = ||D/(x)T||.

Hence the normalized gradient u = 2?/(x)T/||2?/(x)T|| maximizes the directional 
derivative. □

To minimize /, move in the opposite direction, which is the direction of greatest 
decrease. This insight provides an important class of optimization methods called 
gradient descent methods, which are all iterative methods of the form

xfc+i = Xfc - afcD/(xfc)T, (12.13)

where the parameter ak G (0, oo), called the learning rate, is chosen in various ways.

12.3.2 Exact Gradient Descent
One approach for choosing the learning rate ak is to minimize f along the ray 
Xfc — aDf(xk)T for a > 0. More precisely, at each step solve the one-dimensional 
optimization problem

ak = argmin^)fc(a!), (12.14)
Q>0

where ^>fc(o) = f (xfc — oZ?/(xfc)T). Finding the optimal ak can be done using 
the one-dimensional minimization methods described in Section 12.2. Using the 
minimizer as ak gives the maximal decrease in the direction — 2?/(xfc)T. We call 
this the method of exact gradient descent.49

49Some, like [CZ01], call this method steepest descent, but others, like [BV04], use that name for 
an algorithm that we do not discuss in this book.

Example 12.3.2. Recall from Example 12.1.7 that the function f(x,y) = 
x3 — За?2 + у2 has a local minimizer at (2, 0). Here we take one step of exact 
gradient descent, starting at the point x0 = (x, y) = (4,4). The gradient is 
[3rr2 - 6x 2y] = [24 8] , so the next iteration is

Xi = x0 - Ck'o(24,8)
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with Qo chosen as the minimizer of the function

ф(а) = /((4,4) - a(24,8)) = (4 - 24a)3 - 3(4 - 24a)2 + (4 - 8a)2.

Using one of the one-dimensional methods of the previous chapter, we find 
that «о = 0.10243 is a minimizer, which gives Xi = (1.5415,3.1805). Note 
that /(xi) = 0.10244, whereas /(xq) = 32, so this first step has already 
reduced the value of f a lot. Repeating the process continues to descend (see 
Proposition 12.3.3) and the sequence eventually reaches (2.0,4 x 10-8) after 
35 iterations.

The method of exact gradient descent does indeed descend; that is, the sequence 
of values (/(xfc))£l0 generated by the method is strictly decreasing, as the next 
proposition shows.

Proposition 12.3.3. Let f e C1 (Rn; R) with Df(xk)T ф 0. If ak is a minimizer 
of ф(а) = /(xfc — aD/(xfc)T) on an interval of the form (0, b), then setting Xfc+i = 
xfc - afc£>/(xfc)T gives

/(xfc+i) < /(xfc).

Proof. Since Ofc is a minimizer of ф on (0,6), we have </>(ofc) < ф(сф for all a e (0,6). 
The chain rule shows that

<A'(0) = —D/(xfc)D/(xfe)T = — ||D/(xfc)||2 < 0.

Since f is C1, the function ф(сф is too, which implies that <^'(o) is negative on some 
open interval (0,e). It follows that ф(рф is a decreasing function on the interval 
[0,e). In other words, there exists a > 0 such that ф(оф < </>(0) for all a e (0,о]. 
Therefore, we have

/(xfc+i) = ф(ак) < ф(а) < ф(0) = f(*k)-  □

12.3.3 Exact Gradient Descent for Quadratics
For a quadratic objective function /(x) = |xTQx — bTx + c with Q > 0, we 
can find an explicit formula for ak in the exact gradient descent method. Note that 
2?/(xfc)T = Qxfc —b. Since ak minimizes </>&(«), the FONC implies that фк(ак) = 0. 
Thus,

0 = фк(ак) = —Df(xk - afc£>/(xfc)T)£>/(xfc)T

= bTD/(xfc)T + afcD/(xfc)QD/(xfc)T - x^Q£>/(xfc)T.

Thus, ak satisfies
£>/(xfc)D/(xfc)T 

°k Df(xk)QDfW

Recall that the condition number ^(Q) of the matrix Q is = ||Q||||Q-1||; 
see Definition 11.2.15. Recall also that the 2-norm of a square matrix Q is the 
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largest singular value of Q; see Volume 1, Exercise 4.21 (i). In our current setting 
with Q > 0, the eigenvalues of Q are its singular values, so = Ai/An, where Ai 
is the largest eigenvalue, and An is the smallest. The next proposition shows that 
the rate of convergence of exact gradient descent is governed by ft(Q). Some of the 
geometric intuition for why this is true is given in Remark 12.3.6.

Proposition 12.3.4. For a quadratic objective function /(x) = |xTQx — bTx + c 
with Q > 0, the exact gradient descent method converges linearly with rate no worse 
than 1 — ^(Q)-3, where is the condition number of the matrix Q.

Proof. To simplify the analysis, first make the change of variables x i-> x — x*.  
This moves the optimizer to the origin and transforms the objective function into 
the form /(x) = |xTQx + c. Moreover, since Q is symmetric, it is orthonormally 
diagonalizable (see Volume 1, Theorem 4.4.7). Thus, there is a linear, orthonormal 
change of variables (a rigid motion of Rn about the origin) that makes Q diagonal. 
Since an orthonormal change of basis does not change the 2-norm, making this 
change of basis does not change anything about the convergence rate. Therefore, 
we may assume that Q = diag(Ai,..., An) with Ai > • • • > An > 0 (the eigenvalues 
are all positive because Q > 0). Finally, the location of the minimizer and the 
outcome of each step of the exact gradient descent algorithm are independent of 
the constant c, so we may assume that the objective /(x) and its derivative D/(x) 
have the form

/(x) = |xTQx and D/(x)T = Qx,

with Q diagonal. Thus (12.13) and (12.15) reduce to

XfcQ2Xfc 
x^Q3xfc

and xfc+i = xfc-----y—-—Qxfc,
^kQ

respectively.
To simplify notation further, drop the subscript on х& and just write x/~ = x = 

(#i,..., xn). At stage к + 1, the error ||x/c+i ||2 is bounded by

l|Xfc+l||2 =
xTQ2x
xTQ3x I-

xTQ2x
xTQ3x l|x||2.

2

But if a matrix is diagonal, then its 2-norm is the largest element on the diagonal. 
This implies

/ \2 2\
l|Xfc+11|2 < max 1 - ** 1Ы|2

/ A2r2\ / A3 \= 1 - A^ryi l|xfc||2 <1-4 l|xfcI|2.
X 2^г=1ЛгЖг/ X Л1 /

Therefore the exact gradient descent method converges linearly (or better) with 
rate /1 = (1 - (An/Ai)3) = 1 - k(Q)~3. □

Remark 12.3.5. The proposition shows that when is large the convergence 
rate is poor (close to 1), and when «(Q) is small, the convergence rate is good (close
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to 0). In the special case that Ai = • • • = An = A, we have = 1, and exact 
gradient descent converges in one step because and = Ax^, which
implies that x^+i = 0.

Remark 12.3.6. The convergence result of Proposition 12.3.4 also has a geometric 
interpretation. At each stage of the exact gradient descent algorithm, the next 
direction is orthogonal to the previous one (see Exercise 12.14) and each step stops 
at a point that is tangent to the level set (set of the form {x | /(x) = d}) containing 
the stopping point.50 An example of this is illustrated in Figure 12.4. If all the 
eigenvalues of Q are equal, then the level sets are spheres and a normal to a sphere 
is a radius, so it points directly toward the center of the sphere (the minimizer), and 
exact gradient descent converges in a single step. As long as the eigenvalues of Q are 
nearly equal, the level sets are nearly spheres, and each step of the algorithm gets 
much closer to the minimizer. But if the largest and smallest eigenvalues of Q are 
very different, the level sets are ellipsoids with high eccentricity, and the normals to 
these sets do not point toward the center; see Figure 12.4. Instead, the method can 
bounce back and forth repeatedly, while improving by only a small amount with 
each iteration.

50For a function from R2 to R, the level sets are like contour lines in a topographic map, and 
plotting them can give a good sense of the shape of the function.

Figure 12.4. Exact gradient descent at step к always moves in a direction orthog­
onal to the level set containing -x.k, and that direction is always tangent to the level 
set containing the stopping point х&+1. In this example the level sets are ellipses in 
the plane.

12.3.4 Other Gradient Descent Methods
Exact gradient descent is not always the most efficient form of gradient descent. 
Even if the gradient is easy to calculate, other methods of choosing the learning rate 
can often give better performance. There are at least two reasons why exact gradient 
descent is not always the best choice. First, the time spent finding the optimal &k 
is often better spent computing the next iteration in a new direction instead. And 
second, even if it is easy to find the optimal &k in the line search, that may not
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Figure 12.5. Gradient descent with a relatively small constant learning rate gen­
erally moves in a good path toward the minimizer x*, but if the learning rate is too 
small, it may take many steps to actually reach the minimizer.

actually be the best choice, because, as described in the previous subsection, if the 
Hessian of the objective function has a large condition number, then the graph has 
the shape of a narrow trough, and the method of exact gradient descent can zigzag 
back and forth, while descending slowly, whereas a smaller learning rate could lead 
to x*  in fewer steps.

Constant Learning Rate

One very simple way to choose the learning rate for gradient descent is just to use 
a small constant value a for a at every step:

Xfc+1 = Xfc - a£>/(xfc)T.

This can work well in many settings. If the objective function f is continuously 
differentiable, then, as the approximations approach a minimizer, the gradient 
D/(xfc)T approaches 0 and the total length of the step аВ/(х^)т also becomes 
small. Thus, it is possible for gradient descent with constant learning rate to con­
verge to the minimizer; see Figure 12.5 for an illustration.

The challenge in choosing the constant a is that if it is too large, the algorithm 
can overshoot and not converge (see Figure 12.6); but if a is too small, the algorithm 
could take many steps to approach the minimizer.

Descent with Backtracking

Backtracking starts with a constant learning rate, but then adjusts it to ensure 
descent and prevent climbing out away from the minimizer. The algorithm begins 
by trying the constant learning rate to see if it descends; that is, it tests whether 
/(x/c — aD/(xfc)T) < /(xfc). If not, it replaces a by a/2 and tries again, repeating 
until it finds the largest choice of 2~£a that gives descent. Of course any value 
greater than 1 could be used in place of the number 2 here.

It is often beneficial to require additional conditions on the learning rate while 
backtracking in order to encourage faster descent. One of the best known of these
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Figure 12.6. Gradient descent with a constant learning rate that is too large can 
diverge. In this example, even though the gradient is pointing in the right direction at 
each step, the algorithm moves too far in that direction. As the iterates get farther 
away from the minimizer, the norm of the gradient increases, and the distance 
||xfc — Xfc-iH grows instead of converging to 0.

conditions is the Armijo condition, which uses the tangent at х& to give a bound 
on how much less /(xfc+1) should be than /(x/J. If the chosen descent direction at 
x/c is d, then the Armijo condition is

/(xfc) - /(xfc + ad) > -aaZ>/(xfc)d (12.16)

for some choice of a e (0,1). In the case of gradient descent, with d = —D/(x/c)T, 
the Armijo condition becomes

/(xfc) - /(xfc - aI?/(xfc)T) > aa||Z>/(xfc) ||2. (12.17)

To understand the Armijo condition geometrically, note that Z?/(x/c)d is the direc­
tional derivative at х& in the d direction, so if f were linear, then —aZ?/(x/c)d is 
the amount that f would decrease when moving from x/~ to X& + ad. Of course, 
near a local minimum, we expect f to curve upward from the tangent plane, so an 
improvement of —aD/(x/c)d is too much to expect. Thus, the Armijo condition 
requires only that f improve by some fraction a e (0,1) of that ideal amount.

Remark 12.3.7. Another condition that is sometimes imposed on the learning 
rate is the curvature condition, which gives a bound for how much less the slope 
at Xfc+1 should be than the slope at xfc. Taken together, the Armijo and curvature 
conditions are called the Wolfe conditions.

12.4 Newton and Quasi-Newton Methods
Newton’s method for one-dimensional optimization is discussed in Section 12.2, but 
Newton’s method also works for higher dimensions. If the initial starting point is 
sufficiently close to the minimizer, then Newton’s method converges quadratically, 
which is a much higher order of convergence than most algorithms. This means 
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it takes very few steps to converge and makes it the algorithm of choice in many 
settings.

But Newton’s method also has some drawbacks. Some of the most notable of 
these are as follows:

(i) A good initial guess is needed; otherwise it may not converge.

(ii) It requires computing the Hessian, which can contribute significantly to the 
computational cost.

(iii) It requires D2/(x/~) to be positive definite at each of the points xfc.

(iv) It requires solving a linear system with the Hessian, which has temporal com­
plexity O(n3), where n is the dimension of the domain of f. In high dimensions 
this can be prohibitive.

Instead, quasi-Newton methods are techniques that are based on, or are similar 
to, Newton’s method but are designed to overcome one or more of these disadvan­
tages. We begin this section with a discussion of multivariate Newton’s method and 
then describe some key quasi-Newton methods.

12.4.1 Newton's Method
If the second derivative D2f of f : Q —» R is Lipschitz, then applying the zero- 
finding version of Newton’s method (see Volume 1, Section 7.3.2) to the function 
DfT : Rn —> Rn gives a method for finding a critical point of f.

Theorem 12.4.1. Assume Q C Rn is an open neighborhood ofx*  and Df(x*)  = 0. 
I/D2/(x*)  > 0 and D2f is Lipschitz on Q, then the iterative map

Xfc+1 = Xfc - D2/(xfc)-1Z>/(xfc)T (12.18)

converges quadratically to x*  whenever xq is sufficiently close to x* .

Proof. This follows immediately by applying the convergence result for the zero­
finding Newton’s method (Volume 1, Theorem 7.3.12) to the function DfT. □

Remark 12.4.2. The temporal complexity of each iteration of Newton’s method 
is O(d + h + n3), where d is the cost of computing the gradient D/(x)T and h is 
the cost of computing the Hessian D2/(x).

Not a Bene 12.4.3. Solving a linear system is usually faster and more stable 
than first computing the matrix inverse and then multiplying by the inverse. 
It still has complexity O(n3), but the leading-order complexity is better, as is 
the stability. We can use this to improve the speed and stability of Newton’s 
method by breaking the computation into two steps:

(i) Solve £>2/(xfe)dfc = -_D/(xfc)T for dfc.

(ii) Set Xfc+i = xfe + dfc.
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Example 12.4.4. Consider again the function f(x,y) = x3 — За?2 + у2 of 
Examples 12.1.7 and 12.3.2, with a local minimizer at (2,0). We take one step 
of Newton’s method starting at the point xq = (4,4). The gradient is

Df(x0) = [3a?2 — 6a? 2y] = [24

and the Hessian is

0
2^2/(xo) = 6a? — 6 

0
18 
0

0
2 *

This gives

X1 = xo - D2/(x0) Х£»/(х0) 18
0

0
1
2_

24
8

’8"
3
0 '

comparison, inFor32.Note that /(xi) = —2.37037, whereas
Example 12.3.2, we computed a single step of exact gradient descent starting at 
the same point and it yielded x.^9d = (1.5415, 3.1805) with /(x^rf) = 0.10244.

Continuing with the Newton algorithm gives X2 = (2.1333,0), and the 
algorithm reaches the minimizer (2,0) exactly (to machine precision) after 
just five iterations, which is much faster than exact gradient descent.

/(xo)

4
4

12.4.2 Newton as Quadratic Approximation
Just as in the one-dimensional case (see Section 12.2.4 and Figure 12.3), Newton’s 
method can be interpreted as minimizing a quadratic approximation. To see this, 
assume that f : Rn —> R is a C2 function and that x*  e Rn is a local minimizer of 
/ satisfying D2/(x*)  > 0. The degree-2 Taylor polynomial of / at х& is

q(x) = /(xfc) + Z)/(xfc)(x - Xfc) + |(x - Xfc)TZ>2/(xfc)(x - Xfc). (12.19) 

Since this is a quadratic function with positive definite Hessian, it is minimized 
when D/(xfc) + (xfc+1 — xfc)TD2/(xfc) = 0, which (after transposing) gives (12.18) 
again. Hence, minimizing the quadratic approximation gives the same algorithm as 
Newton’s method.

As in the one-dimensional case, if f is itself quadratic, then it is equal to its 
quadratic approximation, so Newton’s method must converge in one step. As a 
result, we have the following proposition.

Proposition 12.4.5. If /(x) = |xTQx + bTx + c; for some Q > 0, some b 6 Rn; 
and some c e R, then Newton’s method converges to the unique minimizer of f in 
a single step, regardless of starting point.

12.4.3 Descent of Newton
Newton’s method does not necessarily descend. But it always moves in a descent 
direction, which is a direction that descends if the step size is small enough.
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Proposition 12.4.6. Let (xfc)£L0 be the sequence generated by Newton’s method 
for minimizing a given objective function f. If the Hessian Z?2/(x/c) > 0 and 
Df(xk) ф 0, then dfc = Xfc+i — х& = — Z?2/(x/c)-1Z?/(x/c)T is a descent direction 
for f, that is, there exists an a > 0 such that for all a e (0, a),

/(xfe +adfc) < /(xfc).

Proof, The proof is similar to that of Proposition 12.3.3. The details are Exercise
12.18. □

12.4.4 Newton with Line Search
Even though the direction chosen by Newton’s method is a descent direction, the 
actual method may not descend because the step size chosen by Newton’s method 
could be too large; see Figures 12.7 and 12.8. The fact that d/~ = —Z?2/(x/c)-1Z?/(x/c) 
is a descent direction means only that f will descend in that direction if the step size 
is sufficiently small. If the higher derivatives of the objective function f are large, 
then the function f can move away from its quadratic approximation (12.19) very 
quickly and the minimizer x/~ — D2 f (x^)-1 D f (x&) of the approximating quadratic 
might give a value of f that is larger than /(x^). And even if it does descend, this 
might not be the best choice for the next iteration.

The first of the quasi-Newton methods discussed here is a simple variant on 
Newton’s method that addresses this problem of stepping too far by changing the 
learning rate and letting

xfc+i = Xfc - afcZ)2/(xfc)_1Z)/(xfc),

Figure 12.7. Plot of a function f and a starting point xk for which the Newton 
step does not descend. Instead it produces a point Xfc+i with ffx.k+i) > f(^k)- 
As long as the Hessian is positive definite at xk, Proposition 12.j.6 guarantees 
that Newton’s method moves in a descent direction, which means that the objective 
function decreases if the step size is small enough.
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Figure 12.8. Newton’s method applied to the Rosenbrock function. Notice that the 
x2 and x4 steps here do not descend, but we were lucky with the initial choice x0; 
and the method still happened to converge.

where the learning rate < 1 is chosen by one of the same methods used in gradient 
descent, for example, by setting ak = argminQ/(xfc — aD2/(x/c)-1Z?/(x/c)) or by 
simple backtracking until descent occurs.

12.4.5 Levenberg-Marquardt Modification
Newton’s method requires the Hessian to be positive definite at each step, but this 
may not hold if the point х& is too far from the minimizer. If Z?2/(x/c) is not positive 
definite, then the Newton direction = —Z?2/(x/c)-1Z?/(x/c)T may not be a de­
scent direction at all, and the method may not converge. The Levenberg-Marquardt 
modification is a modification to Newton’s method (hence, a quasi-Newton method) 
designed to deal with this problem.

Since D2/(xfc) is symmetric, it has real eigenvalues Ai,...,An. Denote the 
corresponding eigenvectors by vi,..., vn. Choose // > 0 and define the matrix G = 
D2 f (x) + /11. Exercise 12.22 shows that D2/(x) and G share the same eigenvectors, 
and the eigenvalues of G are Ai + /1,..., An + /1.

Choosing /1 large enough makes the eigenvalues of G all positive and hence makes 
G positive definite. At each step of Newton’s method, replacing the Hessian with 
G/c = A^(D2/(x/c) + /iklfi for suitable positive choices of /ik and learning rate a^ 
defines a new algorithm

xfc+i = xfc - afc(£>2/(xfc) + /ifc/)-1Z)/(xfc)T,

which has the descent property for /ik sufficiently large and ak suitably small. This 
is the Levenberg-Marquardt modification.

Remark 12.4.7. The Levenberg-Marquardt modification can be thought of as a 
weighted combination of Newton’s method and gradient descent because setting 
/1 = 0 with ak = 1 just gives Newton’s method, whereas if /ik сю, then this 
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method becomes a type of gradient descent. As a general strategy, one usually 
starts with /1 small and increases only as needed at each step to keep G positive 
definite.

Remark 12.4.8. The function _D2/(x) + ц! is the Hessian of the regularized func­
tion F(x) = /(x) -b /lz||x||2- The function F is less bumpy than /, and as /1 increases 
F becomes more and more like the simple quadratic function ЦхЦ^. Algorithms 
minimizing F are less likely to end up in suboptimal local minima than those that 
minimize f. The Levenberg-Marquardt modification is similar to, but not quite the 
same as using Newton’s method on F, because Newton’s method for F would use 
x — D2F(x)-1DF(x) instead of the Levenberg-Marquardt x — D2F(x)-1 D f (x).

12.4.6 Gauss-Newton for Nonlinear Least Squares
Another weakness of Newton’s method is the fact that it requires computing the 
Hessian at each step, which can be computationally expensive (or unstable). The 
Gauss-Newton algorithm is a quasi-Newton method for avoiding this computa­
tion for an important class of optimization problems called nonlinear least squares 
(NLS).

NLS problems are minimization problems where the objective function f : Rn —> 
R can be written as a sum of squares: 

(12.20)

where each r*  : Rn —> R is a smooth function (the ri are often called residuals), and 
the ri can be combined to give a vector-valued function r(x) = (п(х), Г2(х),..., 
rm(x)).

Example 12.4.9. Assume we are given a family of functions of the form 
p(£;x) = j;0cos(j;i£ + #2)? where x = (жо^ь^г) is a vector of parameters. 
Given a collection of data points (to,po),..., (tm-i,pm-i), we wish to find the 
parameters x that best fit the data, so that the MSE (see Definition 6.1.16) 
— ^27=o x)— Pi)2 is minimized. This amounts to solving the optimization
problem

1 m—1 m—1

x = argmin — V' (р(2г; x) - p,)2 = argmin V' (x0 coslx^ + x2) - Pi)2 ■ 
x m x2=0 2=0

Setting t\(x) = p(ti, x.) — pi = xq cos(xiti + x%) — Pi for each i expresses this 
as an NLS problem.

More generally, for any family of functions p(t; x) parametrized by a vector 
x, finding x to fit data points (to,Po)? • • •, (^m-bPm-i) is an NLS problem with 
n(x) = p(^;x) - pi.
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To use Newton’s method for (12.20), first compute the derivative and Hessian. 
The derivative of f is given by Df(x.) = r(x)TDr(x); see Example 10.2.10. The 
Hessian of f is given by

£>2/(x) = Z>r(x)TZ>r(x) + гДх)£>2п(х),
2 = 1

S(x)

(12.21)

as computed in Exercise 10.13. Thus, Newton’s method for this optimization prob­
lem is given by

Xfc+1 = Xfc - (Dr(xfc)TDr(xk) + S(xfc))-1Z>r(xfc)Tr(xfc), (12.22)

where 5(x) = x п(х)£>2Гг(х).
The Gauss-Newton algorithm takes advantage of the special structure of NLS 

problems to avoid computing the second derivatives. Specifically, the Gauss-Newton 
algorithm method drops the second term S(x) in (12.22) giving

xfc+i = xfc - (£>r(xfc)TDr(xfc))-1 £>r(xfc)Tr(xfc). (12.23)

At the minimizer x*,  the FONC implies that £>/(x*)  = r(x*) TDr(x*)  = 0. If 
r(x*)  = 0, then S(x*)  = 0, and if x is near x*,  then all entries of S(x) must be small. 
In either case, dropping S from (12.22) gives a close approximation to Newton’s 
method whenever S(x) is small. In such situations the convergence rate of the 
Gauss-Newton method is close to quadratic, but without the cost of computing the 
Hessian. For this reason, the Gauss-Newton algorithm is the standard optimization 
method for NLS problems. But if 5(x) is too large, the method may not converge, 
so it is still important to have a good initial guess.

Example 12.4.10. Assume that m + 1 range finders (devices that can mea­
sure distance, but no other location information) are placed at points ao,..., 
am E Rn, and they all record the distance to an object located at point 
xtrue E Rn as di = ||a^ — xtrue|| + where the measurement error has 
E[e?i] = 0. If the true location xtrue E Rn of the object is unknown, we can use 
the measurements of the range finders to try to get an estimate x for xtrue as

m

X = argmin (dt - ||x - a,||)2 . 
X „2=0

Letting n(x) = di — ||x — a*||  makes this into an NLS problem.
To make this concrete, consider the case depicted in Figure 12.9, where the 

object is located at the point xtrue = (3,3) and there are four range finders, lo­
cated at points ao = (0,0), ax = (1,1), a2 = (2,0), and аз = (—1,3). Exercise 
12.23 is to code up the Gauss-Newton algorithm and apply it to this problem 
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in the case that the (noisy) measured distances from the range finders to 
the object are given by d - (3.88506517,2.87540403, 3.10537735,3.99674185). 
The values of the objective

з з
/(x) = 52(x)= 52 (di ~ iix - a* ii )2 г=0 i=0

are plotted in Figure 12.9 as a contour plot. In this example the Gauss- 
Newton method converges (within machine precision) in eight steps to x = 
(2.9546367,2.88618843), which is not quite equal to the true value because of 
error in the initial measurements.

Figure 12.9. Contour plot of the objective function for the NLS problem of locating 
xtrue (the star) given noisy measurements from four range finders (blue dots), as 
described in Example 12.4-10. Darker colors correspond to smaller values of the 
objective. The minimizer x (orange triangle) of the objective function is quickly 
reached using the Gauss-Newton method, starting at x0 = (2,0). The minimizer x 
does not quite agree with the true location because of the noise in the measurements.

Remark 12.4.11. Although Dr(x/C)TDr(xfc) is always positive semidefinite, it may 
not be full rank and hence not invertible (and therefore not positive definite). To 
remedy this, we can make a Levenberg-Marquardt modification to Gauss-Newton, 
replacing Dr(x/C)TРг(х^) by Dr(xfc)TРг(х^) + pT. This is essentially the same 
as approximating S(x) by pl in (12.22). When applied to the Gauss-Newton 
algorithm, the Levenberg-Marquardt modification is often called the Levenberg- 
Marquardt algorithm.
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Example 12.4.12. When applying Gauss-Newton to minimize the quadratic 
function

/(x) = ||b - Ax||| = xTATAx - 2xTAb + bTb,

it is straightforward to verify that S(x) = 0, and the Gauss-Newton method is 
the same as Newton’s method. Thus, Gauss-Newton converges for quadratic 
functions of this form in a single step.

12.5 The BFGS Method
Newton’s method converges rapidly, but it requires solving a linear system involving 
the Hessian matrix at each step; and both computing the Hessian and solving 
the resulting system can be expensive, especially in high dimensions. The BFGS 
method, named for Broyden, Fletcher, Goldfarb, and Shanno, is a quasi-Newton 
method that approximates the Hessian in a clever way to allow the inverse of the 
approximated Hessian to be computed easily. This approximation generally comes 
at the cost of slower convergence, but the decreased computational complexity of 
each iteration is often well worth it.

12.5.1 Low-Rank Updating
Newton’s method approximates the objective function f with the second-order ap­
proximation

<7k(x) = y(xfc) + Z>y(xfe)(x - Xfc) + i(x - xfc)TZ>2/(xfc)(x - Xfc)

and solves for the minimizer, which is given by

Xfc+1 = Xfc - Z>2/(xfc)-1Z)/(xfc)T.

The BFGS method also approximates the objective function f with a quadratic 
approximation

Qfc(x) = /(Xfc) + £>/(xfc)(x - Xfc) + |(x - Xfc)T4fc(x - Xfc) (12.24)

for a special choice of Ak > 0, and the update is similarly given by

xfc+1 = Xfc - A^Df^ky. (12.25)

The idea behind BFGS (and similar methods) is to choose Ak to be a low-rank 
update of Л/с-i of the form

Ak = Afe_i + акак or Afc = Afc_i+afcafc+bfcbfc, (12.26)

where a/c,b/c 6 are chosen to give Ak good properties for optimization. The 
main advantage of using low-rank updates like these for Ak is that they are easy to 
invert if the inverse of Л/c-i is already known. Typically, the process begins either 
with Ло = D2/(x0) or with some easily invertible, positive definite approximation 
of _D2/(xo), like I. The initial quadratic term Ло must be positive definite, and this 
ensures that all the subsequent Ak remain positive definite.
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12.5.2 Inverting Low-Rank Updates
If is already known from the previous step, then the following identity, due 
to Sherman and Morrison, gives an explicit formula for , after which the mul­
tiplication Л^1/?/(хп)т only requires ~ 2n2 FLOPs.

Proposition 12.5.1 (Sherman—Morrison Formula). For any invertible n x n 
matrix A, and any vectors u, v e Rn, the matrix A + uvT is invertible if and only 
ifl + vTj4-1u 0. If A + uvt is invertible, then

(^ + uvV1=>l-1-1+vTx_lu. (12.27)

Proof. The proof is Exercise 12.25. □

The benefit of using the Sherman-Morrison formula in this setting is that Л-1 is 
already known. The time cost of computing (j4+uvt)-1 via (12.27) is dominated by 
the computation j4-1uvTj4-1. This can be computed as (Л-1и) (vTj4-1), which 
consists of two matrix-vector products (with leading-order complexity ~ 2n2 each) 
followed by a vector-vector outer product, which has leading-order complexity ~ n2. 
Thus, the total complexity of computing the inverse using Sherman-Morrison is 
~ 5n2 FLOPs. Compare this to the cost of inverting directly, or rather solving the 
corresponding linear system, which is ~ |n3 FLOPs.

12.5.3 Two Requirements
Matching Gradient

The quadratic Taylor approximation of f at x/~ matches both the gradient and the 
Hessian of f at xfc. The main point of the BFGS method is to try to get a good 
quadratic approximation (12.24) of f without computing the Hessian, so instead of 
making the Hessian match, a reasonable alternative assumption is that the gradient 
of the approximation should match the gradient of f at both x/~ and at x^-i, that 
is, DQfc(xfc) = Df(x.k) and Dqk(^.k-i) = Df(xk-i)- Since the first is automatic, 
we need only consider the second. Differentiating (12.24) at Xk-i gives

Dqk{y-k-i) = Df(xk) + (xfe_i - xfe)TAfe,

and so the matching gradient condition becomes

Df(xk) - Df(xk_i) = (xfc - xfc_i)T4fc. (12.28)

We call (12.28) the matching gradient constraint.
One possible choice for the matrix Ak is to take the best symmetric rank-one 

update of Ak-i (meaning that Ak = Ak-i + vvT for some v e Rn) that satisfies 
the matching gradient constraint (12.28). This naive method is called Brogden’s 
method. Unfortunately it does not work very well because rank-one updates do not 
always make Ak positive definite, which means the method does not necessarily 
descend, as we discuss below.
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Positive Definite for Descent

In order to guarantee that each new direction Л^12?/(х/г)"г in (12.25) is a descent 
direction, the matrix Ak should be positive definite. Specifically, for any optimiza­
tion method of the form Xfc+i = Xfc — Л^’12?/(х/с)т, Taylor’s formula (Theorem 
10.3.8) for /(xfc+i) expanded around Xfc gives

/(xfc+i) = /(xfc) + D/(xfc)(xfc+i - Xfc) + o(||xfc+i - Xfcll) 
= /(xfe) - D/(xfc)(4^1D/(xfc)T) + o(||xfc+1 - Xfcll).

So if ||xfc+i — Xfc|| is sufficiently small and Ak > 0, then we have

/(Xfc) > /(Xfc+1).

However, if Ak is not positive definite, then we cannot expect this inequality to 
hold.

12.5.4 BFGS
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method brings together all the 
ideas discussed so far in this section. To do this, it makes a positive definite rank- 
two update instead of the rank-one update of Broyden’s method. Specifically, for 
an objective function /, points xq, ..., Xfc, and matrix Ak_± > 0, set

Ak — Ak-i + УкУк
YfeSfe

Xfc-iSfcSfcXfc i
(12.29)

where

yfc = Z)/(xfc)T - Z>/(xfc_i)T and sfc = xfc - xfc_i. (12.30)

The next point Xfc+i is now computed using (12.25).

Theorem 12.5.2. Let B(x*,  J) be an open ball containing Xfc and Xfc_x. Assume 
that f e C2(B(x*,(5);R)  and D2f(x) > 0 for all x e B(x*,J).  If A^ > 0 
and satisfies the matching gradient constraint (12.28), then the matrix Ak given 
in (12.29) is a positive definite, rank-two (or less) update of Ak-i satisfying the 
matching gradient constraint (12.28).

Proof. It is straightforward to check that Ak is symmetric whenever Ak-i is. It is 
also straightforward to check that Aksk = уfc, so Ak satisfies the matching gradient 
constraint (12.28). Moreover, the difference Ak — Ak-i is the sum of two rank-one 
matrices, so it has rank at most two.

To show that Ak > 0 we first prove the special case s[Aksk > 0. Begin by 
rewriting this as

SfeXfeSfe = yfeSfc = (Z>/(xfc) - Z>/(xfc_i))(xfc - Xfe_i) > 0. (12.31)

By Taylor’s theorem (Theorem 10.3.8), for each pair x,x' 6 B(x*,<5),  we have

/(x') = /(x) + -D/(x)(x' - x) + -Й2, (12.32)



552 Chapter 12. Unconstrained Optimization

where
R2 = [ (1 — t)(x' — x)TZ?2/(x + f(x' — x))(x' — x) dt.

Jo

Since Z?2/(x + t(x.' — x)) > 0 for all t e [0,1], we have R2 > 0 and

/(x')-/(x)>£»/(x)(x'-x)

for any x, x' e B(x*,  J). This gives

/(xfe_i) - /(xfc) > 7?/(xfc)(xfc-i - xfe) and 
/(xfc) - /(xfc_i) > 7?/(xfc_i)(xfc - xfe_i),

which combine to give Z>/(xfc)(xfc — x^-i) > D/(x/c_i)(x/e—x^-i), and thus (12.31) 
holds.

Since Ak-i > 0, it defines an inner product (w,x)*  = wTAfc_ix. To see that 
is positive definite, compute zTAfcZ for any z 6 Rn with z 0 as follows:

.’4.=.4-,.+ z'v;z -
y^.Sfc S^fc-iSfc

_/^.\ . zTyfcyfcz (sfe,z^
YfcSfc \s/c?sfc/*

By the Cauchy-Schwarz inequality, we have (s/~, z)*  < (s^, S&)*  (z, z)*,  with equality 
if and only if z and S& are linearly dependent. This gives

zTA^z > (z, z), + > 0,
y^.sfc (sfc,sfe)+ y^.sfc

where the last inequality follows from (12.31).
If z and Sfc are linearly independent, then the first inequality above is strict, 

giving zTj4fcS > 0, as desired. If z and are linearly dependent, then since z 0 
and Sfc / 0, we must have z = ask for some a / 0, and

zTXfcz = a2SfcXfcsfc > 0,

where the inequality again follows from (12.31). □

The last step of the BFGS algorithm is to use the Sherman-Morrison identity 
twice to invert A^ to get the following (see Exercise 12.28):

.-1 _ .-1 , (slyfc +yMfc2iyfc)sfcs^ A-^yksl + sfcy^;21
‘ «У»)2

A Python implementation of the complete BFGS algorithm is given in 
Algorithm 12.1.

(12.33)
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

import numpy as np
from numpy.linalg import inv, norm

def BFGS(f, df, xO, AO, max_iter=40, tol=le-8):
"""Minimize f using BFGS, given the derivative df, an 
initial guess xO, and an initial approx AO of D~2f(xO). 
и и и

# Initialize 
done = False 
iters =0 # Count the number of iterations
A_inv = inv(AO) # Initial approximate inverse Hessian 
x = xO - A_inv @ df(xO) # x_l
s = x - xO # s_l

while not done: # Main BFGS loop
у = df(x) - df(xO) # Update у
sy = s @ у # This product is used several times 
Ay = A_inv @ у # This product is used several times 
# Approximiate the new inverse Hessian
A_inv = (A_inv +((sy + у @ Ay)/sy**2)  * np.outer(s,s) 

- (np.outer(Ay,s) + np.outer(s,Ay))/sy )
xO = x
x = xO - A_inv @ df(xO) # Update x.
s = x - xO # Update s.
iters += 1
# Stopping criteria 
done = ((norm(s) < tol) or 

(norm(df(x)) < tol) or 
(np.abs(f(x) - f(xO)) < tol) or 
(iters >= max_iter)) 

return x

Algorithm 12.1. Python implementation of the BFGS algorithm for finding a 
local minimizer of i, given the gradient function df, an initial guess xO, and 
an initial approximation AO of the Hessian. The function df can usually be con­
structed easily from f using algorithmic differentiation (see Section 11.4-4)- Note 
that the Python matrix multiplication operator @ automatically transposes vectors to 
be the (assumed) correct shape, so a product like s @ у gives the inner product and 
A_inv 0 df(xO) computes the usual matrix-vector product even though df(xO) is a 
row vector. Computing an outer product like syT requires np.outer(s,y).
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Example 12.5.3. Consider, yet again, the function f(x,y) = x3 — 3x2 4- y2 
of Examples 12.4.4, 12.3.2, and 12.1.7, with a local minimizer at (2,0). We 
apply the BFGS method, starting at the point x0 = (4,4)- As computed in 
Example 12.4.4, the gradient and Hessian are

£>/(x0)T = and £>7(x0) = 0
2

(i) Setting Aq = D2 /(xq) makes the first step of BFGS the same as Newton, 
so by Example 12.4.4 we have xi = (|, 0).

(ii) Proceeding with the next BFGS step we have

(a) yi = £>/(xi)T - D/(x0)T = (-^,-8) and si = xi - x0 = 
(-1,-4)-

(b) Compute s}yi = Aj^yi = (-Ц,-4), and y^A^yi = 4Ж 
and plug these into (12.33) to get

1 Г17 3
256 3 121

(c) This yields x2 = Xi— At = (2.3125,-0.0625) with/(x2) =
-3.67261.

Compare this result to Newton’s method, which yields x^ewt = (2.1333,0) 
with /(x^ewt) = —3.94432. At this step BFGS does not give quite as good an 
estimate of x*  = (2, 0) as Newton’s method, but it is not much worse.

Continuing with BFGS on this optimization problem yields the solution 
X9 = (2, — 1 x 10 13) in nine steps, which is more than Newton’s five steps, but 
much fewer (with a better final result) than exact gradient descent’s 35 steps. 
Since the dimension of this problem is so low, BFGS provides no computational 
benefit at each iteration over Newton’s method in this example. But in higher- 
dimensional problems, BFGS can be much cheaper per iteration than Newton; 
see Remark 12.5.4.

Remark 12.5.4. The BFGS algorithm is very effective for high-dimensional, un­
constrained optimization problems with a dense Hessian. On these problems it 
generally runs much faster than Newton’s method, despite taking more iterations 
to converge. After the initial step, each iteration of the BFGS method runs in 
O(n2 + d) time, where d is the cost of evaluating the gradient D/(x)T. When 
n is large, this is a big improvement over the O(d + h + n3) cost of computing 
£>2/(xfc)-1£>/(xfc)T in Newton’s method.

Remark 12.5.5. The standard modifications to the learning rate for Newton’s 
method and gradient descent can be applied to the BFGS algorithm. That is, we 
can change (12.25) to

Xfc+i = xfc - akAk 1Df(xk)
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for an appropriate choice of We can either use optimal line search

oik = argmin /(xfe - a4“1D/(xfc)T) (12.34)
Ct

or use a simple backtracking algorithm to find a choice of that results in descent 
(or compliance with the Armijo, Wolfe, or other conditions).

Remark 12.5.6. After several iterations the matrices A^ can become very small, 
and their inverses Aj”1 very large, which can make the algorithm unstable. In such 
cases a standard approach is to restart the method, either with = D2 f (x/J or 
with an easily invertible, positive definite matrix like A^ = I.

Remark 12.5.7. Storing the approximation A^1 in memory can be costly if n is 
large. There is a variant of BFGS, called limited memory-BFGS or L-BFGS, for 
dealing with this problem.

12.5.5 *Sherman-Morrison-Woodbury
The Sherman-Morrison formula (12.27) is a special case of a more general formula 
called the Sherman-Morris on-Woodbury formula, which has many uses in applied 
and computational mathematics.

Proposition 12.5.8 (Sherman—Morrison—Woodbury). Let A be a nonsingular 
n x n matrix, В an n x £ matrix, C a nonsingular £ x £ matrix, and D an £ x n 
matrix. We have

(A + BCD)-1 = A-1 - A~1B(C~1 + DA~1B)~1DA~1. (12.35)

Proof. The proof is Exercise 12.32. □

Vista 12.5.9. Many techniques in machine learning boil down to choosing 
parameters w G Rm for a family of functions /(x; w) in such a way that the 
predictions made by the resulting function closely approximate some data set 
of the form {(x*,  ?/i)}^Li, meaning that yi = f(x2:w) should be close to yi, 
on average. The distance between the data and the predictions is typically 
measured by some “loss” function of the form £(y,y), for example, £(?/, y) = 
(y — y)2. Thus the problem to solve is

1 N 
minimize — £(и. f (xr, w)),

wGr- 2=1

where the dimension m of the parameter space may be large.
Low-memory BFGS and gradient descent (and a variant of it called stochas­

tic gradient descent) are very important numerical methods for optimization 
in machine learning.
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12.6 Conjugate-Gradient Methods
Throughout this chapter, we have seen an inverse relationship between the rate of 
convergence and the amount of computing required per iteration. For example, 
Newton’s method and the quasi-Newton methods usually converge faster but come 
at a higher cost per iteration than gradient-descent methods, which usually converge 
more slowly but at a lower cost per iteration. In this section, we consider a “middle 
ground” class of algorithms called conjugate-gradient methods, which typically re­
quire more iterations than Newton methods but at less cost per iteration, and fewer 
iterations than gradient descent methods, albeit at a higher cost per iteration.

One of the primary applications of conjugate-gradient methods is solving large 
linear systems of the form

Ax = b, (12.36)

where A > 0. As we see in Exercise 12.3, solving such a system is equivalent to 
minimizing the quadratic objective /(x) = |xTAx — bTx. There is a standard 
conjugate-gradient algorithm for solving such systems, and when we refer to the 
conjugate-gradient method we usually mean this standard choice. But for higher- 
degree (nonquadratic) optimization problems, there are many variants of conjugate­
gradient methods (see Section 12.6.3 for more on the nonquadratic case).

In exact arithmetic (the absence of round-off error), the conjugate-gradient 
method is guaranteed to minimize a quadratic objective f : Rn ч I in n iter­
ations and thus can be considered a direct method (meaning that it produces an 
exact solution with a finite number of iterations). In the presence of round-off error, 
however, the conjugate-gradient method will not actually terminate, but continuing 
to iterate can give successively better approximations. We show in Section 12.7 
that the convergence is linear with a rate (see Definition 12.2.1) that is related 
to the matrix condition number ft(A), that is, a better conditioned A gives faster 
convergence.

Each iteration of the conjugate-gradient method requires one matrix-vector mul­
tiplication of the form Ad for some direction d and the rest of the computations 
have a cost of O(n). If the matrix A is sparse with only m entries, where m<n2, 
then each matrix-vector multiplication costs only O(m) FLOPs, and thus solving 
the entire system (12.36) costs only O(mn + n2) FLOPs. This can be much cheaper 
than the O(n3) cost of using the LU or QR decompositions. In other words, the 
conjugate-gradient method is a good sparse solver.

Fortunately, the conjugate-gradient method can usually be terminated in fewer 
than n iterations, because each step moves in the direction of maximal improve­
ment, and once the most important directions have been handled, the resulting 
intermediate solution is often good enough. If the algorithm can reach a satisfac­
tory approximation in К n iterations, then the total time complexity to solve 
the system (12.36) is O(mK + nK).

12.6.1 Conjugate Directions
Recall that exact gradient descent can suffer from the problem of bouncing back 
and forth inefficiently when the Hessian A has a large condition number ft (A); see 
Figure 12.4. The conjugate-gradient method seeks to remedy this by finding better 
directions of travel.
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Geometric Motivation

As a first step to understanding the conjugate-gradient method, consider the special 
case where the minimizer is at the origin and /(x) = |xTAx, where A is diagonal 
and positive definite. The level sets of f are ellipsoids with all their axes agreeing 
with the coordinate axes.

In this case, start at any point xq = (ai, «2, • • • > an), but instead of moving in the 
direction of the negative gradient, move in a direction parallel to the first standard 
basis vector ±ei. It is straightforward to check, and easy to see geometrically, that 
the minimizer of ф(а) = f (x0+aei) occurs at a = — cq, so that Xi = (0,02,..., «n)« 
Move now in a direction parallel to e2. A line search to find the optimizer gives 
X2 = (0,0, «з,..., an). Continuing in this manner is called coordinate descent, and 
in the special case that A is diagonal, it arrives at the minimizer (the origin) in n 
steps or fewer.

Unfortunately, if /(x) = xTAx, where A is not diagonal, then coordinate de­
scent can suffer from the same bouncing phenomenon that exact gradient descent 
suffers from. But a change of basis can solve this problem. Let A = FTAF for 
some invertible F and a diagonal matrix A > 0. Since A is positive definite, it is 
orthonormally diagonalizable, which shows that A can always be written as FTAF 
for some invertible F and diagonal A, but we do not require that F be orthonormal 
for the rest of this discussion.

Let di,..., dn be the columns of F-1. Changing basis in Rn from the standard 
basis S = [ei,..., en] to the basis T = [di,..., dn] means that the coordinates 
[x]s of x in the standard basis can be written as F-1 times the coordinates in the 
eigenbasis: [x]s = F-1[x]^. Thus, f can be expressed as

/(x) = |[x]^[x]s = | (F-1[x]T)TPTAF(F-1[x]T) = |[x]£A[x]t

in the new coordinates. This means that coordinate descent, performed in terms of 
the new basis, must reach the optimizer in n steps or fewer. Expressed in terms of 
the original coordinates, this means that moving first in the direction di and then 
the direction d2 and so forth, will reach the optimizer in n steps or fewer.

Conjugate Directions

Any two of the vectors dz and dj described above satisfy

djAcL = d7FTAFd7 = ej Ae, = 0 L J L J I J

whenever i j. This property is important enough to deserve a name and a formal 
definition.

Definition 12.6.1. Assume A G Mn(R) is positive definite. Nonzero vectors 
di,..., dfc are called А-conjugate if

d]Adj=0 (12.37)

for all i ф j.
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Remark 12.6.2. Condition (12.37) is equivalent to saying the vectors di,... ,d& 
are orthogonal in the weighted inner product (x, y)A = xTAy. Thus, any set of 
А-conjugate vectors is linearly independent by Corollary 3.2.5 of Volume 1.

Conjugate directions are useful because, as the previous discussion suggests, 
moving toward the minimizer in direction di, followed by moving in direction d2, 
and so forth, must reach the minimizer in n steps or fewer.

Proposition 12.6.3 (Conjugate Directions). Assume the objective function 
f : Rn —> R is quadratic

/(x) = ^xTAx — xTb + c, (12.38)

with A > 0, b G Rn, and c G R. Given any starting point xq and a sequence 
di,..., dn of A-conjugate directions, define Tk, (*k,  and Xk iteratively for each к G 
{1,..., n} as

rfc = b - Axfc_i, ak = ’ an(^ Xfc = Xfc-1 + Ofcdfc. (12.39)

The vector Yk is called the kth residual. For each к the quantity &k is the minimizer 
of the function фк(а) = /(xfc-i + ctd^), and xn is the unique minimizer of f, that 
is, xn = x* .

Proof. The proof is Exercise 12.35. □

Remark 12.6.4. The algorithm only requires the use of x^-i and d& at step k. 
None of the points xq, ... , Xfc_2 and none of the other directions d; for j к is 
needed to compute г&, c^, and x^. This means this algorithm can be used without 
remembering or knowing any of the other dj, provided we know that each d^ is 
А-conjugate to all the other d;.

Given the А-conjugate vectors di,... ,dn, this algorithm determines the mini­
mizer of f in n steps or fewer. Thus we need a fast way to compute the A-conjugate 
vectors. A naive way to produce these would be, as discussed above, to factor A as 
PTAP for some diagonal A with invertible P, and then let the directions di,..., dn 
be the columns of P-1. But doing this is at least as difficult as solving the system 
Ax = b.

Alternatively, one could start with any basis and use the Gram-Schmidt process 
with the inner product (•, -)л, as described in Volume 1, Section 3.3. If the initial 
basis is the standard basis, doing this is essentially equivalent to finding the QR 
decomposition of A, which could be used to backsolve for x in the system Ax = b. 
Therefore, finding a basis of А-conjugate directions in this way is also not easier 
than solving the system Ax = b via the QR decomposition.

In the following subsection we present a fast method, called the conjugate­
gradient method, of obtaining a sequence of А-conjugate vectors.

12.6.2 Conjugate-Gradient Method
The conjugate-gradient method is a clever approach to constructing a set of A- 
conjugate directions. It does this by using, at step k, the previous direction d^-i
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and the negative gradient —D/(xfc_i)T to define the next А-conjugate direction. 
As discussed above, this means that for quadratic objectives in exact arithmetic, it 
is guaranteed to converge in n steps. Thus, if run to completion, it solves the linear 
system Ax = b exactly. But, of course, we use floating-point arithmetic, not exact 
arithmetic, and on very large systems we usually cannot or do not want to let it 
run all the way to completion because a good approximate solution can usually be 
found in fewer than n steps.

There are three main reasons that the conjugate-gradient method works well as 
an iterative algorithm:

(i) At each step there are many possible А-conjugate directions, but the algorithm 
chooses the one that is closest to the current negative gradient, and moving 
in that direction tends to reduce the value of f as much as possible.

(ii) The algorithm requires only the previous direction d^-i in order to compute 
the next direction and the next approximation X&. This means that each 
iteration is cheap to compute and only one direction needs to be stored or 
computed at a time.

(iii) Because of the previous two steps, the algorithm can be terminated before all 
n steps are complete—often long before.

As an iterative algorithm, the method converges linearly with each step, and 
the rate of convergence is related to the condition number ft (A), where a better 
conditioned A gives faster convergence; see Section 12.7.

The conjugate-gradient method merges gradient descent and the conjugate­
direction method. It constructs the А-conjugate directions di,...,dn by apply­
ing Gram-Schmidt with the inner product (•, -)A to the negative gradient sequence 
—D/(xq)t, — D/(xi)T,..., —D/(xn_i)T. This differs from exact gradient descent 
because instead of proceeding in the steepest direction —Df(xk)T, it projects out, 
via Gram-Schmidt, the directions that have already been used.

Given an initial point xq, the algorithm moves in the direction —D/(xq)t to the 
optimal point on that line (this is the same as exact gradient descent), but at each 
subsequent step, it A-orthogonally projects away the directions that have already 
been used before and then moves to the optimal point in the remaining direction.

Remark 12.6.5. If the objective f : Rn —> R is quadratic, then the conjugate­
gradient method reaches the minimizer in n steps or fewer. In two dimensions, as 
in Figure 12.10, this means the minimizer is reached by the second step. Compare 
this to Newton’s method, which always converges in a single step for a quadratic 
objective; but in high dimensions that one step costs more than all of the conjugate­
gradient steps combined.

The Gram-Schmidt process normally requires computing inner products of the 
new direction —D/(xfc)T with all the previous А-conjugate directions di,..., d^-i. 
An important reason for the usefulness of the conjugate-gradient method is that it 
completely avoids computing most of these inner products, thanks to the following 
lemma.
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Figure 12.10. The conjugate-gradient method (red) avoids much of the bouncing 
back and forth that occurs with exact gradient descent (black). The first step of 
the conjugate-gradient method is the same as exact gradient descent, but the second 
step moves in a direction that is А-conjugate to the first, the third step moves in a 
direction that is А-conjugate to both the first and the second, and so forth.

Lemma 12.6.6. Given a quadratic objective function /(x) = |xTAx — bTx+c and 
a set of A-conjugate directions di,..., d^, the residual rk computed by the conjugate 
direction method (12.39) satisfies r& = —Df(xk-i)T and

d?rfe = 0 (12.40)

for all i G {1,..., к — 1}.

Proof. The fact that = —D/(xfc-i)T is a straightforward computation. Next 
we prove that for any к G {2,..., n} we have

dLirfc = 0, (12.41)

as follows:

<tLirfc = dj_x(b - 4x^1)
= dj_xb - dfc_1X(xfc_2 + afc_idfc_i)
= d^_x(b - ^xfc_2) - ak-idi^Adk-!
= d£_x(b - 4xfc_2) - dj_xrfe_i = 0.

The rest of the proof is by induction. For к = 1, there is nothing to prove, 
and the case of к = 2 follows from (12.41). Assume that for some к > 2 we have 
dTrfc = 0 for all i = 1, 2,..., к — 1. Since

Tfe+i - rfe = X(xfc_x - Xfc) = —akAdk and ak = Tfc , (12.42)
dfc Adk

it follows that dTrfc+1 = djrfc — akdf Adk = 0 for i = 1,..., к — 1, by the induc­
tion hypothesis and A-conjugacy of d2 with d^. Finally, d£rfc+i = 0 by (12.41). 
Therefore, dTr^+i = 0 for all i = 1,2,..., k. □
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The conjugate-gradient method starts with xq and computes

di = ri = —Z>/(x0)T = b - Лх0,

which gives xx = x0 + oqdi, where cti is computed by (12.42). At each subsequent 
step it computes = —D/(xfc-i)T = b — Ax^-i and then performs one step of 
the Gram-Schmidt process, using the inner product (•, -)A, projecting out all the 
previous directions di,..., d^-i to get d^ as

dI_-,Ark
dfc = rfc-projspan(dl5„ 5dfc l) rk = rfe-projdfc_1 rk = rfc--y——-----dfc_i, (12.43)

afc-i7iafe-i

where projj^r denotes the orthogonal projection, with respect to the inner prod­
uct (•, -)л, of r onto a subspace and where the second equality follows from 
Lemma 12.6.6. Note that the usual Gram-Schmidt process would also normalize 
the vector d^, but that is an unnecessary step, since we do not need the A-conjugate 
vectors to be orthonormal. After d^ is constructed, ak is computed by (12.42), and 
Xfc = Xfc-i + akdk. The entire process is summarized in Algorithm 12.2.

If rk = 0 for any k, then Ax^-i = b, and the minimizer has been found: 
Xfc-i = x*.  The sequence di,...,dn in the algorithm above is А-conjugate by 
construction. This fact is important enough to be its own theorem.

Theorem 12.6.7. In the conjugate-gradient method, the set {ф}™=1 is A-conjugate.

Because of Theorem 12.6.7, the conjugate-gradient method (Algorithm 12.2) is a 
special case of the conjugate direction method (Proposition 12.6.3) and hence must 
converge in n or fewer steps for quadratic objective functions.

Complexity of the Conjugate-Gradient Method

The computational complexity of each step involves several inner products with 
complexity O(n) and two matrix-vector multiplications: Ax^+i and Adk. Sparse 
matrix-vector multiplication can generally be performed in O(m) FLOPs, where m 
is the number of nonzero entries of A. So each step has complexity O(m + ri), and 
running the algorithm to completion would take n steps for a total of O(n2 + nm) 
FLOPs. If A is not sparse or m ~ n2, then the entire process has complexity 
~ 4n3, which is six times slower than solving the linear system directly by LU 
decomposition. But if n is large and m ri2, this is much faster than direct 
methods.

In situations where n is very large, running the algorithm to completion is not 
usually advantageous because (i) the approximation is often good enough after 
fewer steps, (ii) it may be prohibitively expensive to carry out all n steps, and (iii) 
numerical stability issues often prevent the algorithm from giving the exact answer 
after n steps anyway.

12.6.3 *Conjugate-Gradient  Method for Nonquadratic Problems
The conjugate-gradient method can also be applied to more general, nonquadratic 
objective functions. As with Newton’s method, the idea is to fit a quadratic
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

import numpy as np
from numpy.linalg import norm

def conjugate-gradient(A, b, xO, tol=le-8, max_iters=None): 
"""Solve A x = b by minimizing 1/2 x.TAx-b.Tx using 
the conjugate gradient algorithm, starting at the initial 
guess of xO."""

if not max_iters:
max_iters = len(b) # Theoretical max number of steps.

# Initialize
x = xO
d = r = (b - A @ x) # First conj dir is the residue.
done = (norm(r) < tol) # Stop if the reside is small, 
iters = 0

while not done:
dA = d @ A # This product is used often.
alpha = r @ d / (dA 0 d)
x = x + alpha * d # Updated x.
r = b - A 0 x # Updated residue.
beta = (dA 0 r)/(dA 0 d)
d = r - beta * d # Next conjugate direction, 
iters += 1
#Stopping criteria
done = (norm(r) < tol or iters >= max_iters)

return x

Algorithm 12.2. Implementation in Python of the conjugate-gradient method for 
solving the linear system Ax = b by minimizing a quadratic objective function of 
the form (12.38).

approximation to the objective function using a second-order Taylor polynomial. 
The Hessian of the function is required for the Taylor polynomial. But one of the 
main reasons for using the conjugate-gradient method is to avoid computing the 
Hessian (otherwise we’d just use Newton’s method), so it is beneficial to use a 
variant of the conjugate-gradient method that doesn’t require the Hessian.

The only places the Hessian A occurs in the basic (quadratic) conjugate-gradient 
method are when computing &k and /?&. But &k can be found by minimizing the 
function </>fc(a) = /(xfc + ctdfc), and this can be accomplished with a line search, 
which can be done without A.

For /3k there are several approximation formulas that do not require A and can 
be used in place of the original conjugate-gradient method above. We list these 
formulas here but omit the proofs. For details of their derivations see the references 
in the notes for this chapter.
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In each of these cases set Гк = —D/(xfc_i)T.

Hestenes-Stiefel Formula
= r^+1(rfc+i -rfc) 

k dj(rfc+i-rfc)

Polak-Ribiere Formula
r^+1(rfc+i -rfc)

Pk = ----------------T------------------- •
Wk

Fletcher-Reeves Formula
_ r£+1rfc+1

Pk — у
rk*k

51 Since the minimizer of f is the same as the minimizer of f — c, it suffices to assume that c = 0.

These modifications to the conjugate-gradient method do not converge in n steps 
when applied to functions that are not quadratic. Instead, they should run until 
meeting a suitable stopping criterion. Moreover, the A-conjugacy of the direction 
vectors tends to deteriorate over time. Thus, it is common to reinitialize the direc­
tion to the negative gradient after every n steps or so.

12.7 Convergence of the Conjugate-Gradient Method
In this section we show that the conjugate-gradient method, when considered as 
an iterative algorithm for optimizing a quadratic function, converges linearly. We 
assume throughout that the conjugate-gradient method has been applied to the 
quadratic objective51

/(x) = |xTAx - bTx, x e Rn, (12.44)

where A > 0. Following Algorithm 12.2, we start with xq and produce nonzero 
residuals iq,..., rm, the values oq,..., om, and conjugate directions di,..., dm. If 
using exact arithmetic, then for some m < n, we have that rm+i = 0 and xm = x*  
is the global minimizer of f. However, when using finite-precision arithmetic, the 
sequence iterates, converging linearly to x*,  and stops only once a terminal condition 
is met. In theory m could be any positive integer, but in practice m < n.

To begin, we need the idea of a Krylov subspace of Rn; see also Volume 1, 
Section 13.2.

Definition 12.7.1. For A G 7Wn(R) and у G the kth Krylov subspace of A 
generated by у is

■Шу) = span(y,4y,42y,...,4fc“1y).

The residuals iq,..., i> and the conjugate directions di,..., d/, all lie in the 
Krylov subspace generated by iq, as the next lemma shows.
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Lemma 12.7.2. For all k G {1,..., n} we have

span(di,..., dfe) = span(ri,..., rfc) = J^(A, rj. (12.45)

Proof. First, note that left-multiplying the definition of (12.39) by A gives

rfc+i = rfc - akAdk. (12.46)

We now prove (12.45) by induction. The case к = 1 follows because di = ri. For 
the induction step assume that (12.45) holds for к = £ — 1. This implies that

Ad^_i G AJ^_i(A, ri) = span(Ar,..., Ar£) C J^(A, ri),

which, when combined with (12.46), gives

Yf> e J^(A,ri)

and
span(ri, r2,..., r£) C J^(A, ri).

Since d# = r£ — /J^d^-i, we also have

span(di,..., d^) C span(ri, r2,..., 17) C J^(A, ri).

But since the dz are А-conjugate and nonzero, they are linearly independent and 
thus dim(span(di,..., d^)) = £ > dim J^(A, ri), and hence

span(d!,..., d^) = span(ri, r2,..., r^) = J^(A, rx). □

Lemma 12.7.3. The point xk is the minimizer of f among all x that lie in the set 
x0 + ^(А,гг) = {x0 + q | q G J^(A,ri)}; that is,

xk = argmin /(x). (12.47)
xexo+J^fc(A,ri)

Moreover, xk is also the minimizer of e(x)2 = ||x — x*||^  on that same set; that is

xk = argmin e(x)2. (12.48)
xex0+J^fc(A,ri)

Proof. Note first that Ax*  = b, which implies that

e(x)2 = (x — x*) TA(x — x*)
= xTAx — 2xTAx*  + (x*) TAx*
= xTAx — 2xTb + (x*) Tb
= 2/(x)+bTx*.

Therefore a point x*  is the minimizer of f if and only if x*  is the minimizer of e2.
Thus it suffices to prove (12.48).

Since Xfc G x0 + ^fc(A, ri) we have

x0 + J^(A,ri) = xfc + ^(A,ri) = xfc + span(di,... ,dfc).
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Therefore, any x G xq + J^(A, i*i)  can be written asx = x^+v for some v G 
4(A,ri) = span(di,...,dfc).

Since x*  = xm for some m > к we have x*  = x^ + Г™.t, cadi. By Exercise 
12.39 we have

£(x*) 2=£(xfc)2 + ||v||2A, (12.49)

which shows that s2 is minimized precisely when ||v||^ = 0. Hence x^ is the 
minimizer of s2. □

Lemma 12.7.4. Let 8k = s(xfc) and &k be the set of all polynomials of degree at 
most к with constant term 1. If Ai,..., An are the eigenvalues of the n x n matrix 
A, then

< min max|Q(Aj)|.
So 3

Proof. The Krylov subspace J^(A,ri) can be written as

Xk(A, ri) = {p(A)ri | p G R[rr; к - 1]},

where R[ж; к — 1] is the vector space of all polynomials of degree at most к — 1, and 
p(A) = aiA1 for any polynomial p(x) = EiJo*  агхг G R[x; к — 1]. Therefore, 
another way to express Lemma 12.7.3 is to say that x& = xq + p/c(A)ri, where

Pk = argmin /(x0 + p(A)ri) = argmin s(x0 + p(A)ri). (12.50) 
—1] —1]

Since ri = Axq — b = Axq — Ax*  = A(xq — x*),  we have

xfc - X*  = x0 +pfc(X)ri - X*  = (/ + Apk(A))(x0 - X*).

Therefore, xk — x*  = %(Л)(хо — x*),  where qk(x) = 1 + xpk(x). Since is the 
set of all polynomials of degree at most к with constant term 1, we can write

£k = ||xfc - х*||д  = min ||q(A)(x0 - x*)|| A.
q^&k

Exercise 12.40 shows that

4 < 1кИ)(х0-x*)||^  < £q max(^(Aj))2. (12.51)
3

Therefore we have
e2

-4 < min max(n(A?))2. □
s2 ” з 3

Lemma 12.7.5. The error в к = Цх^ — x*|| a satisfies

£k < 1
£° - 2fc-1Tfc (*±|)  ’

where к = Xmax/^min is the 2-norm condition number of A (see Definition 11.2.15) 
and Tk is the к th nonmonic Chebyshev polynomial (see Section 9.3.3).
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Proof, By the previous lemma, it suffices to show that

min max Ig(A?-) I <---- —7-- r-
j - 2k-ifk

Since A > 0, all the eigenvalues A of A satisfy 0 < Amin < A < Amax- Recall from 
Proposition 9.3.1 that the (nonmomic) Chebyshev polynomials have the property 
that |7fc(a;)| < when |#| < 1. Moreover the map

Ащах T Amin 2# 
\- A-----/'max /'min

takes the interval [Amin, Amax] into the interval [—1,1]. Thus, the polynomial

Tk ( Amax+A min j^ / \ \ ^max ^min J
qkW = --77--7"I AmaxTAmin j 

к -^max ^min J

is in since it satisfies g(0) = 1. Moreover, the numerator satisfies

1
2^i

whenever x G [Amin,Amax]- Hence,

min I max|g(Aj)| ) < max|g(Aj)| < ------ ------------------c- =------ ---------- r-. □
\ j J j 2fc-1T/c ( ^maxH~ ^minV ^max ^min J V 1 J

Theorem 12.7.6. The error eк = ||xfc — x*|| a satisfies

(12.52)

where к is the 2-norm condition number of A.

Proof, It suffices to show that

Tk
к + 1\
к — 1J

1
2^ (12.53)

This follows from Exercises 12.41 and 12.42. □

Corollary 12.7.7. The error ek = ||xfc — x*I| a in conjugate-gradient method
converges linearly. More precisely, we have

£k

£o
(12.54)
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Remark 12.7.8. Corollary 12.7.7 shows that if к is close to 1, then convergence 
is very fast, but as к —> oo, the corollary isn’t very helpful and we must resort to 
using the theorem. Asymptotically, we have

With a little algebra (see Exercise 12.43), we can show that

This is not much less than 1 unless k is large, relative to у/к.

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

12.1. Find all the critical points of the function

f(x) = — — 25#2 + 24#
5 2 3

12.2.
on R and identify which of those is a local minimizer or maximizer. 
Find all the critical points of the function

/(ж, у) = Зх2у + 4жу2 + xy

on R2 and identify which of those is a local minimizer or maximizer.
12.3. A Prove all the claims of Example 12.1.17 about minimization of a quadratic 

function; that is, prove the following:
(i) For any square matrix A the matrix Q = AT + A is symmetric, and 

xTQx = xTATx + xTAx = 2xTAx, so (12.2) is equal to (12.3). Thus 
we may always assume that quadratic functions are of the form (12.3) 
with Q symmetric.
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(ii) Any minimizer x  of a quadratic function f of the form (12.2) or (12.3) 
is a solution of the linear equation (12.4).

*

(iii) If Q > 0, then the quadratic minimization problem (12.2) has a mini­
mizer.

(iv) If the quadratic minimization problem (12.2) has a minimizer, then Q > 
0 and the minimizer is the solution of the linear system (12.4).

12.7. Fix m > 1. For each of the following convergent sequences, decide whether 
the convergence is sublinear, linear, superlinear but not quadratic, quadratic, 
or better than quadratic. If it is linear, determine the rate of convergence д.

(i) xk = 1 + m~k.
(ii) xk =

(iii) xk = 1 + m~2k.
(iv) xk = 2 + m~2k.

Explain why this shows that solving the system (12.4) with positive definite 
Q is equivalent to solving the quadratic optimization problem (12.3).

12.4. Let A e Mmxn(>) and b e Rm. Consider the quadratic function

/(Х) = ^||Ах-Ь|||. (12.56)

Prove the following:
(i) The Hessian satisfies D2/(x) = ATA > 0.

(ii) A necessary condition for x  to be a minimizer of f is that it satisfies 
the linear system

*

ATAx*  = ATb. (12.57)

This is called the normal equation for (12.56).
12.5. Consider the quadratic function f given in (12.56). Prove the following:

(i) If A has full column rank, then _D2/(x) > 0, and thus any solution of 
the normal equation is a local minimizer of f.

(ii) If A has full column rank, the point x  = (ATA)-1ATb is the unique 
local minimizer of f.

*

(iii) Even if ATA is not invertible, a solution x  to (12.57) always exists. 
Hint: Think about the orthogonal projection of b to the subspace Я (A), 
as described in Volume 1, Section 3.9.1, and consider the fundamental 
subspaces of A (Volume 1, Theorem 3.8.9),

*

(iv) Even if ATA is not invertible, any solution of (12.57) can be written as 
x  =хЦ v, with v e c/K (A) and x^ = A^b, where A^ = ViEf    C7’jr is 
the Moore-Penrose pseudoinverse of A, and A = CTiEi V/ is the compact 
form of the singular value decomposition (see Volume 1, Theorem 4.5.10 
and Remark 4.5.14).

* *1(ii)(iii)

12.6.  Prove the claim in Remark 12.1.22 that a critical point (хо,уо) of twice- 
differentiable function f is a strict local minimizer if and only if (12.6) holds.
*
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12.8. Prove carefully that the sequence Xk = 1 + к 2 converges to 1 sublinearly.
12.9. Consider the problem of minimizing f(x) = x^\ Note that 0 is the global 

minimizer of f.
(i) Write down the algorithm for Newton’s method applied to this problem.

(ii) Show that as long as the starting point is not 0, this algorithm does 
not converge to 0, no matter how close to 0 it starts. Why doesn’t this 
contradict Theorem 12.2.6?

12.10. Code up an implementation of Newton’s method for finding a critical point 
of a function of one variable. Your code should accept a twice-differentiable 
function /, an initial guess a70, a desired level of accuracy e, and a maximum 
number of iterations M. It should return an approximation to a critical point 
of /, provided the algorithm reaches the desired accuracy in fewer than M 
iterations. For the stopping criterion, use |rrfc+i — Xk\ < e. Be sure your code 
has methods for identifying and handling cases where the algorithm fails or 
the sequence does not converge.

12.11. Just as Newton’s method can be used to find roots of a function, the secant 
method has an obvious analogue for rootfinding.

(i) Describe the rootfinding version of the secant method and use it to devise 
a method to approximate log6(a;) for any b e (1, oo) and any x > 0 using 
only basic arithmetic operations and exponentiation.

(ii) Code up your algorithm without importing any libraries or modules. 
Your code should accept two floats x > 0 and b > 1 and return a close 
approximation to logb(#).

12.12. Prove that an unconstrained linear objective function /(x) = (a, x) +c, with 
a e and с E i, either is constant or has no minimum.

12.13. Let /(x) = |xTQx — bTx, where Q e Mn(W) is positive definite (denoted 
Q > 0) and b e Rn. Show that exact gradient descent (that is, gradient 
descent with optimal line search) converges in one step (that is, Xi = Q-1b) 
if and only if xq is chosen such that D/(xq)t = Qxq — b is an eigenvector of 
Q and qq satisfies (12.15).

12.14. Assume that f e C1(Rn;R). Let {xfc}£L0 be defined by exact gradient 
descent. Show that x^^i — x/~ is orthogonal to Xfc+2 — *fc+i for each к.

12.15. Write a simple implementation of the exact gradient descent method for 
quadratic functions. Your code should accept a small number e, arrays xq, b 
of length n, and an n x n matrix Q > 0, and your code should return a close 
approximation to a local minimizer x* of /(x) = |xTQx — bTx + c. For the 
stopping criterion, use the condition ||D/(x/c)T|| < e.

12.16. Construct an implementation of exact gradient descent for arbitrary func­
tions, using Newton’s method (Exercise 12.10) for the line search (you must 
choose some initial value of a for Newton’s method—justify your choice). 
Your method should accept a callable function /, a starting value xq (an 
array of length n), and a small number e. It should return a close approx­
imation to a local minimizer x* of f. For the stopping criterion, use the 
condition ||D/(xfc)|| < e.
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12.17. Apply your code from the previous problem to the Rosenbrock function

f(x,y) = 100(y - x2)2 + (1 - x)2

with an initial guess of (#o,?/o) = (—2,2). Does it converge? If not, explain 
why not. If it does, how many iterations does it take to get within 10“5 of 
the true minimizer?

12.18. Prove Proposition 12.4.6 as follows:
(i) Let dk = —D2f(xk)~* 1 (ii) (iii)Df(xk)T and set ф(а) = f(xk + adk). Show that 

^'(0) = Ddfc/(xfc) = D/(xfc)dfc.
(ii) Show that Df(xk)dk < 0. Hint: Recall that D2f(xk) > 0.

(iii) Show that there exists an a > 0 such that ф'(сф < 0 for all a e (0,ci).
(iv) Show that /(x^ + od/J < /(x^) for all a e (0,d).

12.19. Give an example of a smooth (infinitely differentiable) function f : R2 —> R 
and an initial point xq such that D2/(xq) > 0 but /(xq—D2/(xo)-1D/(xo)t) 
> /(xo).

12.20. Write an implementation of Newton’s method for finding a local minimizer 
of a function f : Rn —> R. Your code should accept a twice-differentiable 
function /, an initial guess xq, a desired level of accuracy e, and a maximum 
number of iterations M. At each step it should calculate x^+i =xk — 
D2f(xk)~1Df(xk>)T and then repeat until it reaches a good approximation 
to a critical point of f or exceeds M iterations. For the stopping criterion, 
use ||xfc_|_i — Xfc|| < e. Be sure your code has methods for identifying and 
handling cases where the algorithm fails or the sequence does not converge.

12.21. Apply your Newton code from Exercise 12.20 to the Rosenbrock function 
with an initial guess of xq = (^o, 2/o) = (—2,2). Does it converge? If not, 
explain why not. If it does, how many iterations does it take to get within 
10“5 of the true minimizer?

12.22. Prove that if A e Mn(F) has eigenvalues A1?..., Xn and В = A + then 
the eigenvectors of A and В are the same, and the eigenvalues of В are 

+ Ai, /1 + A2,..., /л + An.
12.23. Code up an implementation of the Gauss-Newton algorithm for solving NLS 

problems. Your code should accept a differentiable function r : Rn —> Rm, 
defining an objective function /(x) = r(x)Tr(x), an initial guess xq E Rn, a 
desired level of accuracy e, and a maximum number of iterations M. At each 
step it should calculate J(xk) = Dr(xfc)T and compute xk+1 via (12.23), and 
then repeat until it reaches a good approximation to a critical point of /, or 
exceeds M iterations. For the stopping criterion, use ||x/c+i — x/J| < e.
Apply your code to the range finder problem (Example 12.4.10 and Fig­
ure 12.9) with the data given in the example. Verify that when starting at 
x0 = (2,0) your code converges in eight steps to the minimizer (2.9546367, 
2.88618843).

12.24.* Adapt your code from Exercise 12.20 to check at each iteration whether the 
Newton step descends, and then use backtracking to guarantee that each step 
descends.
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Apply your adapted Newton code to the Rosenbrock function with the initial 
guess of x0 = (жо,1/о) = (—2, 2). Compare the results to those of Exercise 
12.21.

12.25. Prove Proposition 12.5.1 (the Sherman-Morrison formula). Hint: Recall that 
to prove X = У-1 it suffices to show XY = YX = I.

12.26. Prove that for the BFGS method, as given in (12.29), the matrix Ak is sym­
metric whenever Ak-i is symmetric.

12.27. Prove that for the BFGS method, as given in (12.29), we have Ak&k — Ук, 
and Ak satisfies the constraint (12.28).

12.28. Apply (12.27) twice to derive (12.33).
12.29. Consider the problem of minimizing the function

/(x, y) = x - у + 2x2 + 2xy + y2.

Apply the BFGS algorithm by hand to this problem for two steps (compute 
xi and X2), starting at xq = (0,0) and taking Aq = I.
Note: Since f is quadratic, if we had taken Ao = D2/(x0), then the method 
would converge to the minimizer in a single step, because BFGS would have 
been identical to Newton’s method at that initial step. But since Aq = I ф 
D2/(xq), there is no reason to expect convergence in a single step.

12.30. Write an implementation of the BFGS algorithm or use the code in 
Algorithm 12.1.

(i) Apply your code to the function in Example 12.5.3 with an initial guess 
of x0 = (zo,Z/o) = (4,4) and Ao = £>2/(x0) = [q8 £]. How many 
iterations does it take to get within 10“5 of the true minimizer?

(ii) Repeat the previous step with the initial point xq = (4,4) and Aq = I.
(iii) Repeat the previous step with the initial point xq = (10,10) and Aq = 

Я2/(х0) = [504 ^
(iv) Repeat the previous step with the initial point xq = (10,10) and Aq = I.
(v) What happens when the algorithm begins at the initial point x0 = (0,0)? 

Explain.
12.31.  The Davidon-Fletcher-Powell (DFP) method is a quasi-Newton method 

that is similar to the BFGS method. Like BFGS, the DFP method makes 
a rank-two update to maintain a positive definite Hessian approximation. 
Suppose that f e C1(Rn;R). The DFP algorithm for minimizing f is as 
follows:

*

(i) Initialize a starting matrix Bq and starting position x0 and let к = 0.
(ii) dfc = —BkDf(xk)T (search direction).

(iii) ak = argmina>0 f(xk + afcdfc) (line search).
(iv) xfc+i = xfc +afcdfc.
(v) pfc = xfc+i -xfc.

(vi) qfc = D/(xfc)T - D/(xfc+i)T.
(vii) If I |D/(xfc+i) 11 < e for some predetermined e > 0, then stop.
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(viii) Bfc+i = Bk + PTPfc — Bfcqt qfcBfc (DFP inverse-Hessian approximation).*

12.33. Prove that in the special case of where the minimizer is at the origin in Rn 
and /(x) = |xTAx, where A is diagonal and positive definite, then coordi­
nate descent (as described on page 557) converges in no more than n steps, 
regardless of the starting point xq.

12.34. Let A e Mn(W) satisfy A > 0, and let f be the quadratic function

/(x) = ^xTAx — bTx + c. (12.58)

Given a starting point xq and А-conjugate directions di,..., dn in Rn, show 
that the optimal line search solution for x/~ = Xk-i + ctfcdfc, that is, the a 
which minimizes ^(o) = /(x^-i + ad^), is given by ak = > w^ere
rk = b — Axfc_i.

12.35. Let A e Mn(R) satisfy A > 0, and let f be the quadratic function (12.58). 
Assume a starting point x0 and А-conjugate directions d15..., dn in Rn. For 
each к > 0 let xk = ^k-i + «fcdfc, with ak as in the previous problem.

(i) Let the A;th error vector be ek = x& — x*, where x* is the minimizer of f. 
Writing so in terms of the basis {do, di,..., dn~i} as So = 
show that d^Aso = <5fcd^Adfc and hence

4=4^- 

djAdfe

(ii) Show that = £q + ajdj and use this to show that

dkAek = dTkAe0 
d[Adk dTkAdk k'

(iii) Use the results of the previous problem to show that ak = —6k.
(iv) Show that en = 0, hence for the quadratic function f this method 

converges to the minimizer in no more than n steps.

x ' * 1 (ii) (iii) PfcQfc q/.

(ix) Set к = к + 1 and go to step (ii).
Prove the following:

(i) Show that if Bq is symmetric, then Bk is symmetric.
(ii) Use the DFP method to minimize/(#i, #2) = — £2 + 2^ + 2a?ij;2 +^2 

from the starting point xq = [O 0]T with Bq = [j and e = 0.01.

(iii) Show that if the function is quadratic with Hessian Q > 0 (i.e., /(x) = 
|xTQx — xTb + c), then Bk+iQpi = p  for 0 < i < к.*

(iv) Show that if the function is quadratic with Hessian Q > 0, then pjQpj = 
0 for 0 < i < j < к.

(v) If f is quadratic with Hessian Q > 0, how many steps will it take, at 
most, for DFP to converge?

12.32.  Prove the Sherman-Morrison-Woodbury formula (12.35).*
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12.36. Prove that all the equalities in (12.43) hold.
12.37. For the conjugate-gradient method prove that the vectors r$ and d  satisfy 

the following relations for all к E {2,..., n}:
*

12.39.* Prove that (12.49) holds as follows:
(i) Show that for all i > к the vector djAv = 0 for all v E J^(A, iq).

(ii) Expand out ||x — x*||^, using the relations x = х& + v for some v E 
J^(A, ri) = span(di,..., dfe) and x* = xfc + YT=k+i

(iii) Combine the first two parts to get e(x*)2 = e(xfc)2 + ||v||^.
12.40.* Prove (12.51) as follows:

(i) Show that A = UTAU for an orthonormal matrix U and a diagonal 
matrix Л = diag(Ai,..., An).

(ii) Set у = J7(x0—x*) and show that ||q(A)(xo-x*)||^ = уЩчМ)2-
(iii) Show that E”=1 J/2 Ai(?(A»))2 e(* (i) (ii) (iii) * * * * * * xo)2 maXj (q(A3))2.

12.41.* For к E Z+, let be the /cth monic Chebyshev polynomial. Prove that

/ z + _ zk + z~k
lk V 2 J = 2* ’

Hint: Use induction via (9.20).
12.42.* Prove Theorem 12.7.6 by showing the following:

(i) If^ = ^±i,then^ = ^l.

(ii) Use the previous exercise to prove (12.53).
12.43.* Derive the expansion in Remark 12.7.8.

(i) rjrfc = 0 for all i < k.
(ii) Generalize (12.42) to prove that for all £ < к we have

k-l
Гк~ге = -52а>Л<1*'  

j=e

(iii) For each £ < к prove that
k-l k-l

rkrk = - 52 «id^Ffc = - 52 ai (di> rk)A ■ 
i—l i—£

12.38. A For each of the multivariable optimization methods discussed in this chap­
ter, list the following:

(i) The basic idea of the method, including how it differs from the other 
methods in the list. Include any geometric description you can give of 
the method.

(ii) What types of optimization problems it can solve and cannot solve.
(iii) Relative strengths of the method.
(iv) Relative weaknesses of the method.
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Notes
Useful references for the optimization techniques in this chapter include [CZ01] 
and [NW99]. For details on the limited-memory BFGS algorithm, see [NW99, Sec­
tion 7.2]. For a detailed discussion of the use of Levenberg-Marquardt methods in 
NLS problems, see [TMS10]. The NLS range finder example was inspired by [Vanl8]. 
It is closely related to the geodetic problem of updating geographic survey data (mea­
suring distances, angles, and altitudes), which was the problem for which Gauss de­
veloped the method of least squares. For more on this, see [Dem97, Example 3.3]. 
For more on conjugate-gradient methods see [GS92, Dan67, Dan70, She94]. For 
more about the conjugate-gradient method for nonquadratic objectives, see [CZ01].



Linear Optimization

The simplex method is so easy I could even teach it to MBA students.
—Emily Evans

If the objective function in an unconstrained optimization problem is linear and 
nontrivial, then, as shown in Exercise 12.12 it has no minimum nor maximum. 
But many interesting and important problems correspond to minimizing a linear 
function with some additional constraints. Problems where the objective and the 
constraints are all linear are called linear optimization problems. Linear optimiza­
tion problems arise in many important applications, including resource allocation, 
production planning, labor scheduling, transportation, portfolio management, mar­
keting, and military logistics, to name just a few.

We begin this chapter with a discussion of convex and affine sets, which play 
an important role in linear optimization problems. We then state and prove the 
fundamental theorem of linear optimization, which guarantees that if there is an 
optimizer for a linear problem, then one of the vertices of the feasible set is an 
optimizer. Thus, one strategy to finding an optimizer is to search among the vertices 
of the feasible set. This is the key idea for the most famous and widely used method 
for solving a linear optimization problem, namely, the simplex method, which was 
developed by George Dant zig in 1947. It remains one of the most notable algorithms 
of our time.

13.1 Convex and Affine Sets
Before beginning the subject of linear optimization, we need a little background 
about convex sets and affine sets. Throughout this section assume that V is a 
given vector space.

13.1.1 Convex Sets

Definition 13.1.1. A nonempty set С С V is convex if for each x, у € C, we have

Ax + (1 - A)y e C

575
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Figure 13.1. The set E (left) is not convex because the line segment (red) between 
a and b is not contained in E. But the set C (right) is convex because the line 
segment between any two points x, у e C is always contained in C.

for all A with 0 < A < 1. Said differently, C is convex if for each x, у e C the line 
segment £(x, y) = {Ax + (1 — A)y | A e [0,1]} between x and у is contained in C 
for every x.yE C; see Figure 13.1.

Example 13.1.2. If (V, || • ||) is a normed linear space, then the open ball 
B(v,r) centered at v G V is convex. To see this, consider x,y G B(v, r), and 
let 0 < A < 1. We have Ax + (1 — A)y 6 B(v,r), since

||Ax + (1 - A)y - v|| = ||A(x - v) + (1 - A)(y - v)||
< A||x - v|| + (1 - A)||y - v||
< Ar + (1 — A)r = r.

Proposition 13.1.3. The intersection of a collection {Ca}aEj С V of convex sets 
is convex if it is not empty.

Proof. Let С = If x,у e C and 0 < A < 1, then x,у e Ca for each
q E J, which implies Ax+ (1 — A)y e Ca for each a e J. Thus, Ax+ (1 — A)y e C. 
□

13.1.2 Convex Combinations and Convex Hulls

Definition 13.1.4. Let S be a nonempty subset of V. The convex hull of S, 
denoted conv(S), is the set of all convex combinations of elements of S, that is, the 
set of all finite sums of the form

AiXi 4-------h AfcXfc for Xi e S and к E Z+,

where each A*  > 0 and Ai + • • • + A& = 1. This set is also sometimes called the 
convex span of S.

Proposition 13.1.5. If S is a nonempty subset ofV, then conv(S) is convex.

Proof. See Exercise 13.2. □

Proposition 13.1.6. If C is a convex subset ofV, then conv(C) = C.
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Proof, It is immediate from the definition that С C conv(C), so it suffices to 
show conv(C) С C; this follows by induction on the number of terms in the convex 
combination. The cases n = 1 and n = 2 follow by the definition of a convex set.

Suppose that all convex combinations of C of length n are in C, and consider a 
convex combination of length n +1, say, x = AiXi + A2X2 4------ H Anxn + An+ixn+i,
where, after possibly reindexing, we may assume 0 < An+i < 1. Rewrite x as

/1 \ \ ( ^ixi . . Anxn \x — (1 — An+i) I ----- -------- I- • • • 4- - ---- г----  I +An_|_ixn_|_i.
\ 1 An_|-i 1 An_|-i J

w

Thus, if w = + • • • + , then by the inductive hypothesis, we have
w e C. This implies x = (1 — An+i)w + An+ixn+i e C, by the definition of 
a convex set. Hence, all convex combinations of n 4- 1 elements are also in C. 
Therefore, by induction, all finite convex combinations of elements of C are in C, 
and conv(C) С C. □

Theorem 13.1.7. Assume S С V is not empty. The convex hull of S is the 
smallest convex set that contains S, meaning that if D is any convex set containing 
S, then conv(S) C D. Moreover, conv(S) is equal to the intersection of all convex 
sets containing S.

Proof, If D is any convex set with S C D, then conv(S) C conv(D) = D, by 
Proposition 13.1.6. This also implies that conv(S) is a subset of the intersection 
of all convex sets containing S. Conversely, since conv(S) is itself a convex set 
containing S, it must contain the intersection of all such sets. □

13.1.3 Affine Sets and Functions

Definition 13.1.8. A set AcV is called affine if there exist some linear subspace 
W С V and a point v e V such that A = W + v = {x e V | 3 w e W,x = v + w}. 
In other words, A is affine if A is a translate (a coset) of a linear subspace W of 
V; see also Volume 1, Section 1.5.1. The dimension of an affine space A = W + v 
is the dimension of the linear subspace W.

Example 13.1.9.

(i) Any linear subspace is an affine set (with translation 0).

(ii) A single point {c} is an affine set of dimension 0 because it is a translate 
of the zero subspace: {c} = {0} 4- c.

(iii) For any matrix A E AfmXn and any b E Rm the set С = {x E Rn | Ax = 
b} is an affine set if it is not empty. To see this, let xy be any element 
of C and observe that C = jV (A) + x0 = {w 4- x0 E Rn | Aw = 0}, 
and the kernel c# (A) of A is a subspace of Rn.
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Proposition 13.1.10. If an affine set A can be written in two ways as A = 
W + v = W' + v', with W and W both linear subspaces of V, then W = W' and 
v — v' e W. Thus the dimension of A is well defined.

Proof. The proof is Exercise 13.9. □

Proposition 13.1.11. An affine set is convex.

Proof. The proof is Exercise 13.1 (ii) □

Affine functions are those that differ only by a constant from linear transfor­
mations. We (and everyone else) often call these linear functions. Beware that this 
name is easily confused with linear transformations.

Definition 13.1.12. Let V and W be vector spaces. A function f : V —> W is 
affine if there is a linear transformation L : V —> W and a constant c e W such 
that /(x) = L(x) + c for all x e V.

Example 13.1.13.

(i) Any linear transformation is an affine function.

(ii) Any constant function is affine.

(iii) The function / : R2 —> R given by f(x,y) = 3x + Ay + 6 is not a linear 
transformation because it does not map the origin to 0, but it is affine, 
because /(ж, у) — 6 is linear.

Proposition 13.1.14. If С С V is a convex set and f : V —> W is an affine 
function, then f(C) is convex. Also, if D C W is convex, then f-1(D) = {v e V | 
/(v) e D} is convex.

Proof. The proof is Exercise 13.3. □

Proposition 13.1.15. If А С V is an affine subset of V and f : V —> W is an 
affine function, then f(A) is an affine subset of W. Similarly, if В C W is an 
affine subset ofW, then /-1(B) is affine subset ofV.

Proof. The proof is Exercise 13.10. □

13.1.4 Hyperplanes and Half Spaces
Throughout the rest of this chapter, unless otherwise indicated, let (V, (•, •)) be a 
given inner product space over R, and let ||x|| = у/(x, x) be the corresponding 
norm.
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Definition 13.1.16. A hyperplane in V is a set of the form {x e V | (a, x) = b}, 
where a eV is not zero, and b e R.

Remark 13.1.17. Algebraically, the hyperplane H = {x e V | (a, x) = b} is the 
solution set of the linear system (a, x) = b, which is

a±xi 4-------h anxn = b,

where a = (ai,..., an) and x = (aq,..., xn). This is the same as the zero locus 
{x e V | /i(x) = 0} of the affine function /z(x) = (a, x) — b. Sometimes people call 
a function of the form /z(x) = (a, x) — b a hyperplane, but this is a little sloppy.

Remark 13.1.18. Geometrically, H is the set of all vectors that have a constant 
inner product with a. If xq E H is given, then we may write the hyperplane as H = 
{x e V | (a, x — xq) = 0}. This implies that H is a translate of the orthogonal com­
plement W = span(a)± of a, which is the linear subspace of V consisting of vectors 
orthogonal to a; see Figure 13.2. If V is finite dimensional, then every such W has di­
mension dim(V) — 1, and so the dimension of a hyperplane in V is always dim(V) — 1.

Example 13.1.19. Given two points c,d E V, the perpendicular bisector is 
the unique hyperplane that goes through the midpoint m = |(c + d) of c 
and d and is perpendicular to the line segment €(c, d) joining the two points. 
The perpendicular bisector is given by the hyperplane (d — c, x — m) = 0, or, 
alternatively, (a, x) = b. where a = d — c and

6=/d-c,|(c + d)\ = |(||d||2-||c||2);

see Figure 13.3.

Figure 13.2. A set of the form H = {x | (a, x) = b} is called a hyperplane 
(see Definition 13.1.16). Any hyperplane is an affine set because it is a translate 
(coset) of the linear subspace W = span(a)1- of all vectors orthogonal to a; see 
Remark 13.1.17.
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Figure 13.3. The perpendicular bisector ofc and d is the hyperplane (red) through 
the midpoint |(c + d) (yellow) that is perpendicular to d — c, as described in 
Example 13.1.19. This can also be described as the set {x | (d — c,x — m) = 0}.

Figure 13.4. The half space S = {x e V | (a, x) < b} (gray) is “half” of the space 
determined by the supporting hyperplane H = dS = {x e Rn | (a, x) = b} (red). If 
b is positive, then the half space lies on the side of the hyperplane that contains the 
origin.

Definition 13.1.20. A half space in V is a set of the form S = {x e V | (a, x) < 
b}, where a eV is not zero, and b e R. The hyperplane H = dS = {x e V | (a, x) = 
b} is called the supporting hyperplane of S. See Figure 13. f. for an illustration.

Remark 13.1.21. The set {x | (a, x) > b} is also a half space, since it can be 
written as {x | (—a, x) < —b}.

13.2 Projection, Support, and Separation
Throughout this section we assume that (V, (•, •)) is a finite-dimensional inner prod­
uct space. Many of the results of this section also hold in the infinite-dimensional 
case, but their proofs would take us beyond the scope of this text. Details on the 
infinite-dimensional case can be found in any good book on functional analysis.

13.2.1 Projection to a Convex Set
The notion of a projection in linear algebra extends in a very natural way to convex 
sets. This is a very powerful concept.
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P = projcx

Figure 13.5. The projection projcx of the point x onto the convex set C is the 
point p E C nearest to x.

Definition 13.2.1. Let С С V be nonempty, closed, and convex, and let x E 
V. The projection of x onto C, denoted projcx, is the point p E C satisfying 
||x — p|| < ||x — у|| for all у E C. In other words, projcx is the closest point in C 
to x. See Figure 13.5.

The problem of finding the projection of a point x onto a convex set C is a 
constrained optimization problem of the form

minimize ||x — p|| 
subject to p E C.

(13.1)

Remark 13.2.2. Since the squaring function is strictly increasing, (13.1) is equiv­
alent to the problem of minimizing ||x — p||2 subject to p E C, which is generally 
easier to compute.

Theorem 13.2.3. If С С V is a nonempty, closed, and convex set, then every 
x e V has a unique projection p E C.

Proof. Let x e V be given. Since C is not empty, there exists at least one z E C. 
Consider the closed and bounded subset

C' = {yeC:||y-x||<||z-x||}.

Since V is finite dimensional, the Heine-Borel theorem (Theorem 5.5.4 of Volume 
1) guarantees that C" is compact. Let f : C —> R be the function /(y) = ||y — x||. 
Notice that infyec/(y) = infyec' /(y)- Since f is continuous and C" is compact, 
the extreme value theorem guarantees that some p E Cl is a minimizer of f on C. 
and thus also a minimizer of f on all of C.

To prove uniqueness, suppose there exists another minimizer q E C of f with 
q ф p. Since p and q are minimizers of f on C, it follows that the midpoint 
m = 1 (p + q) E C is also a minimizer, since x — m = | (x — p) + | (x — q), and thus
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However, x — m is orthogonal to m — q, since

I p + q
\ 2 2 /

x — q x — p x — q
2 ’ 2

It follows from the Pythagorean law (Theorem 3.1.20 of Volume 1) that

l|x - q||2 = ||x - m + m - q||2 = ||x - m||2 + ||m - q||2 > ||x - m||2,

which is a contradiction, since q and m are equidistant from x. □

Example 13.2.4. Since every subspace of a vector space is convex, an orthog­
onal projection of a vector to a subspace is the same as the convex projection 
of the vector to the subspace.

The following theorem gives a very useful condition for deciding when a point 
is a projection.

Theorem 13.2.5 (Convex Projection Formula). Assume С С V is nonempty, 
closed, and convex. A point p e C is the projection of x onto C if and only if

(x - p, p - y) > 0 for all у &C. (13-2)

Proof, The proof is Exercise 13.13. □

13.2.2 Support and Separation
An important concept in convex analysis is that of a supporting hyperplane.

Definition 13.2.6. Let C be a set in V. The hyperplane H = {v e V | (a, v) = b} 
supports C if

(i) С П H + 0, and

(ii) C lies entirely in only one of the two half spaces {v e V | (a, v) < b} or 
{v e V | (a, v) > b} defined by H. In this case, the half space containing C 
is also said to support C.

If D С V is another set, then C and D are separated by H if (a, x) < b for all 
x e C and (a, x) > b for all x e D, or vice versa. The sets are strictly separated 
if (a, x) < b for all x e C and (a, x) > b for all x e D, or vice versa.
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Figure 13.6. The separation lemma (Lemma 13.2.7) guarantees that for any 
nonempty, closed, and convex set C, and any x C, there exists a hyperplane 
H (red) separating C from {x} and supporting C, meaning that one of the half 
spaces (pink) defined by H contains all of C, that H itself contains at least one 
point (here that point is p/ and that x is not in the half space containing C.

Lemma 13.2.7 (Separation Lemma). Assume C eV is nonempty, closed, and 
convex. Ifx £ C and p = projc x, then the hyperplane H = {z | (x — p, z — p) = 0} 
supports C and the half space S = {z | (x — p, z — p) <0} contains C but not x, 
as illustrated in Figure 13.6.

Proof, The proof is Exercise 13.12. □

Theorem 13.2.8 (Supporting Hyperplane Theorem). Assume С С V is 
closed, convex, and not empty. If p e C and there exists a sequence (xfc)£L0 C Cc 
outside of C that converges to p, then there exists a supporting hyperplane of C that 
contains p.

Proof. For each к e N let p^ = projcx&, let afc = (x/, — pfc)/||xfc — Pfc||, and let 
bk = (afc,pfc). Since ||а&|| = 1 the vector а& lies in the closed unit sphere, which is 
compact. Therefore, the sequence (а&)£Т0 must have a subsequence that converges 
to some a e V with ||a|| = 1. Passing to that subsequence, we may assume that 
a^ a. Let x = a + p. Since р& is the projection of х& to C for every к e N, 
Lemma 13.2.7 shows that

(xfc -Pfc,z-pfc) < 0

and every z e C. This shows that

(a^,z) < (aj-jP/c) (13.3)

for all к e N and z G C. Taking the limit of (13.3) gives (a, z — p) <0, which 
can be rewritten as (x — p, p — z) > 0. This implies p is the projection of x onto 
C by Theorem 13.2.5. Moreover, the hyperplane H = {z e V | (a, z) = b}, with 
b = (a,p), is the desired hyperplane containing p. □
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Figure 13.7. Minkowski’s theorem (Corollary 13.2.9) guarantees that any closed 
convex set C can be described as the intersection of supporting half spaces. Here 
several of the supporting hyperplanes are drawn.

Corollary 13.2.9 (Minkowski). Any nonempty, closed, convex set in С С V 
is equal to the intersection of all half spaces that support it. Figure 13.7 gives an 
illustration of this.

Proof. Let be the set of all half spaces that support C, and let К be the 
intersection of all half spaces in Clearly, С С K, so it suffices to show that 
К С C. Suppose there exists x e К \ C. By the separation lemma (Lemma 13.2.7), 
there exists a supporting half space containing C but not x. It follows that x К, 
a contradiction. Therefore, С = К. □

13.2.3 Separating Hyperplanes
Given any convex set C and point x C, the separation lemma (Lemma 13.2.7) 
guarantees that there is a hyperplane H supporting C that separates C and x. Since 
H supports C, the separation is not strict. However, a much stronger separation 
result holds, namely, any two disjoint convex sets, where one is compact and the 
other closed, can always be strictly separated by a hyperplane. This is an important 
result, called the separating hyperplane theorem or the Hahn-Banach separation 
theorem. This is illustrated in Figure 13.8.

Theorem 13.2.10 (Separating Hyperplane Theorem). For any nonempty, 
disjoint, convex subsets C and D with C compact and D closed, there exists a strictly 
separating hyperplane.

Proof. Since C and D are disjoint subsets, with C compact and D closed, Exercise 
5.33 of Volume 1 shows that

dist(C, D) = inf{||u — v|| | u e C, v e D} > 0.

Moreover, there exist points с e C and d e D that achieve the minimum distance, 
that is, ||c — d|| = dist(C, D). Consider the hyperplane (a,x) = b defined by the 
perpendicular bisector of the points c and d; see Example 13.1.19 and Figure 13.8,
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Figure 13.8. Construct a strictly separating hyperplane for the convex sets C and 
D by taking the two distance-minimizing points с E C and d e D and choosing the 
perpendicular bisector (red) through the midpoint (yellow).

that is, let

a — d c and. о —--------------- .
2

Set h(x) = (a, x) — b. It suffices to show that h is negative on C and positive on D. 
Suppose there exists u e D such that /z(u) < 0. We have

h(. Zd HdH2-||c||2 Л „„ d + c\n\u) = \d — c, u)------------------- = ( d — c, u------- -— }

/, d —c\ ||d — c||2
= \ d — c, u — d H------— \ = (d — c, u — d) + -—.

Hence (d — c, u — d) <0. However, since

-7-||(l — *)d  + tu — c||21 = 2 (d — c, u — d) < 0,
dt h=o

there exists some 0 < t < 1 such that ||(1 — t)d + tu — c||2 < ||d — c||2. In other 
words, (1 — £)d + tu lies in D and is closer to c than d is. This is a contradiction 
since d is the point in D that is closest to c. Thus h(u) > 0 for all u e D. The 
proof follows similarly for C. □

Corollary 13.2.11. If C eV is closed, convex, and not empty, then for any к C 
there exists a hyperplane that strictly separates {x} and C.

Remark 13.2.12. It is important that one of the sets be compact for the strict 
separation in the theorem to hold. In the noncompact case it can still be shown 
that there exists a separating hyperplane, but the separation might not be strict. 
In Exercise 13.14 you are asked to give an example of two nonempty closed convex 
disjoint sets that cannot be strictly separated.

13.3 Fundamentals of Linear Optimization
A linear optimization problem is one where both the objective and the constraints 
are all linear (affine) functions.
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13.3.1 Standard Form for Linear Optimization
Many seemingly different optimization problems are actually equivalent. In order to 
avoid having to talk about all the different equivalent forms of a linear optimization 
problem every time we want to prove a result, we usually assume that our problem 
has been put into the following standard form.

Definition 13.3.1. An optimization problem is linear if the objective function and 
the constraint functions are linear functions. A linear optimization problem is in 
standard form if it can be written as

minimize cTx
subject to Ax b, 

x 0,
(13-4)

where A e MmXn(^); b e and c e Rn. The symbols and >z denote entrywise 
inequality. Written out in coordinates, this takes the form

minimize CiXi + C2X2 H-------h cnxn
subject to ацх± + 0-12^2 + • • • + a±nxn < bi, 

&21^1 + ®22^2 + • • • + <^2n^n < &2,
(13.5)

®ml^l T ®m2^2 “h ' ’ ’ “h O'mn^n < bm, 
X± > 0, X2 > 0, . . . , Xn > 0.

The inputs xi,...,xn are called the decision variables. A point x is said to be 
feasible if it satisfies the constraints. The set & of feasible points is called the 
feasible set. If & = $, the problem is infeasible; otherwise it is feasible.

Nota Bene 13.3.2. Linear optimization is often called linear programming. 
The word programming here is an old-fashioned way of referring to the tables 
that were traditionally made to solve linear optimization problems. We avoid 
this usage of the term programming in this book to prevent confusion with 
computer programming.

Example 13.3.3. The linear optimization problem

maximize
subject to

5^i — X2 + 6а?з + 7
4a?i + X2 + X3 < -2,
X2 - + 8 > 1,
Ж1 > 0, X2 < О, Ж3 > 0

can be rewritten in standard form as follows. First, the constant 7 in the 
objective does not change the optimizer, so it may be dropped. Second, the 
problem may be converted to a minimization problem by changing the sign of
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the objective. Third, the constant 8 in the constraint may be combined with 
the bound of 1 and that constraint multiplied by —1 to change the constraint 
from > to <, giving

minimize — 5a?i + X2 — 6^3
subject to 4^i + X2 + #3 < -2,

#1 - X2 < 7,
^1 > 0, X2 < 0, x% > 0.

Finally, replacing X2 by — X2 gives

minimize —5a?i — X2 — 6ж3
subject to 4a?i — X2 + X3 < —2, 

xi + X2 < 7,
a?i > 0, X2 > 0, X3 > 0.

This has the matrix form (13.4), where

4 -1 1
1 1 0

Remark 13.3.4. In the standard form the two constraints Ax 22 b and x >2 0 can 
be combined into one inequality with x [£]. Thus, we sometimes write a 
linear optimization problem as

minimize cTx

subject to Ax b,
(13.6)

where A = [ J] and b = [£].

13.3.2 The Fundamental Theorem
The feasible set of a linear optimization problem is an intersection of finitely many 
half spaces. Such an intersection is called a polyhedron. The fundamental theorem 
of linear optimization (Theorem 13.3.13) guarantees that every linear optimization 
problem with a nonempty, bounded feasible set always has a minimizer that is a 
vertex of the feasible polyhedron. In other words, the search for a minimizer boils 
down to only searching among the vertices, and there are only finitely many of 
these.

Definition 13.3.5. A polyhedron P in Rn is the intersection of finitely many half 
spaces. In other words, a polyhedron P is a set that can be written in the form

P = Q{x e Rn I ajx < bi} = {x e ИГ I Ax b},
2=1
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Figure 13.9. The intersection of half spaces forms a polyhedron. The intersection 
of the half spaces a^x < b± with ajx < 62 and ajx < 63 is the triangle T.

where A is the mx n matrix whose ith row is af and b is the column vector whose 
ith entry is bi; see Figure 13.9 for a graphical depiction. The dimension of P, 
denoted dim P, is the dimension of the smallest affine subset of Rn containing P.

Remark 13.3.6. A polyhedron is a closed, convex set, since it is the intersection 
of closed (convex) half spaces.

Definition 13.3.7. Let С C be a convex set. An extreme point, or vertex, ofC 
is a point v E C that cannot be written as the midpoint of any two distinct points in 
C. In other words, a point v e C is an extreme point if the equality v = j(xi +X2) 
for xi,X2 6 P implies that v = Xi = X2. This is depicted in Figure 13.10. We 
denote the set of vertices of C by vert(C).

A vertex of a polyhedron can be identified by the space of constraints that are 
active at that vertex.

Definition 13.3.8. Let P = x{x e | a^x < bi} be a polyhedron defined by 
each of the half spaces ajx < bi. For any p e P, the ith constraint a^x < bi is 
active (or binding^) at p if it satisfies the equality

a^P = bi;

Figure 13.10. A point (yellow) that is the midpoint of two other distinct points in 
a polyhedron P (gray) is not a vertex of P. The vertices (red) of P are the points 
that cannot be written as the midpoint of two other distinct points in P.
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Figure 13.11. The active constraints at a vertex v of a polyhedron are those 
which are equalities at v. The active constraints are a^x < b± and ajx < b^, 
corresponding to the two red hyperplanes. The active set is Av = {ai,a2}, which 
spans R2, as required by Theorem 13.3.9.

otherwise it is inactive, or nonbinding; see Figure 13.11. The active set ofpEP 
is the set Ap = {a*  | ajp = bi for some i = 1,..., m}.

Theorem 13.3.9. Let P C Rn be a polyhedron. A point v e P is a vertex of P if 
and only if the active set Av spans all ofW1, that is, span Av = Rn.

Proof. Suppose Av spans Rn but v is not a vertex. This implies v = |(vi + v2) 
for distinct points vi,v2 6 P. Let a*  e Av. Since vi,v2 e P, we have that 
ajvi < bi and ajv2 < bi. However, if either of the inequalities is strict, then 
ajv = |(aTvi + aTv2) < bi, which is a contradiction, and thus we have that 
both a^vi = bi and ajv2 = bi. Let M be the matrix whose rows are af for each 
аг 6 Av. Since a^Vi = ajv2 for all a*  6 Av, it follows that Mv1 = Mv2, which 
implies that the null space of M is not trivial, and thus M is not of full rank. This 
is a contradiction, since the row space of M was assumed to span Rn.

Now suppose that Av does not span Rn, and so there exists a nonzero u 6 
(span Av)-1-. This implies that aj(v + cm) = bi for each a*  e Av. For any a*  Av, 
we have a^v < bi, and thus there exists some e > 0 so that v + eu, v — eu e P. 
Note that v = |((v + eu) + (v — eu)), and thus v is not a vertex of P. □

Corollary 13.3.10. Ifv e P C Rn is a vertex, then |AV| > n, that is, v must lie 
on at least n hyperplanes defining P.

Corollary 13.3.11. The number of vertices of a polyhedron P C Rn defined by the 
intersection of к half spaces is at most Q).

Proof. Every vertex must lie on at least n of the к hyperplanes defining P, and 
there are ways to choose a collection of n things from among the к hyperplanes 
defining P. □

The following theorem (Minkowski-Stemitz) is key to proving the fundamental 
theorem of linear optimization. Although we prove it only for Rn, the Minkowski-
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Steinitz theorem also holds in the infinite-dimensional case, where it is called the 
Krein-Milman theorem.

Theorem 13.3.12 (Minkowski—Steinitz). Every nonempty compact convex set 
C cRn is the convex hull of its vertices, that is, C = conv(vert(C)).

The proof of the Minkowski-Steinitz theorem is given in Section 13.3.4.

Theorem 13.3.13 (Fundamental Theorem of Linear Optimization). If the 
feasible set & of a linear optimization problem is bounded and not empty, then there 
exists a vertex v e which is optimal. See Figure 13.12 for an illustration.

Proof. The intersection of closed half spaces is closed, so & is both closed and 
bounded and thus compact. By the extreme value theorem (Volume 1, Corol­
lary 5.5.7) there exists a minimizer x*  E that is, cTx > cTx*  for all x e &.

Suppose that no vertex of & is a minimizer. In this case, cTv > cTx*  for each 
vertex v in the finite set V = {vi,..., v/,} of all vertices &. Since & is a polyhedron, 
it can be written as the convex hull of its vertices (by Minkowski-Steinitz), hence 
the minimizer x*  can be written as

x*  = Aivi 4--------- h AfcVfc,

where A*  > 0 and A$ = 1. This gives

cTx*  = AicTvi 4--------- h AfcCTvfc > (Ai 4--------- h Afc)cTx*  = cTx*,

which is a contradiction. Thus, cTx*  = cTv for some v e V. □

Figure 13.12. The fundamental theorem of linear optimization says that a 
nonempty, bounded feasible set has a vertex that is a minimizer. The level sets 
of the objective function for a linear optimization problem are hyperplanes. Of all 
level sets that intersect the feasible set, the one with the smallest value must inter­
sect at either a vertex or along a face of the feasible set. In either case, there is an 
optimizer at a vertex.
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Remark 13.3.14. This theorem is fundamental to solving linear optimization prob­
lems because it guarantees that once feasibility and boundedness are established, 
one of at most vertices must be a minimizer. One of the main methods for find­
ing a minimizer is the simplex method, which moves along adjacent vertices with 
decreasing values of the objective function until a minimizing vertex is found. This 
is described in detail in the next section.

13.3.3 Applications
Linear optimization problems arise in many real-world settings. We consider two 
examples here.

Application: Production Schedules

A company produces n different products using m different raw materials. Let Tj 
denote the revenue associated with the production of one unit of product j, and let 
Xj denote the number of units of product j produced. Thus, the total revenue is En

Let denote the cost of purchasing one unit of the zth raw material and assume 
that there are at most bi units of the zth raw material available for purchase. Assume 
that producing one unit of product j requires units of raw material i, so that 
the cost of producing one unit of product j is given by Cj = 52$ii &aij-

The net profit pj for each unit of product j is pj = rj — 52™ i and the total 
profit is ^=iPjxj- Therefore, the production planner should solve

n 
minimize — pj Xj

" (13.7)
subject to L dijXj <bi, i = 1,2,..., m,

j=i
Xj >0, j = 1,2,..., n.

Application: Network Flow

Consider a directed graph G = (V,E), where each node represents a producer or 
consumer of a given product and edges are transportation channels for the product. 
To make things concrete, we assume the product is cheese, and edges correspond to 
trucking routes for transporting cheese.

Let bi denote the amount of cheese produced or consumed at the г th node, where 
a negative value means demand. Assume that bi = 0 so that the system does 
not grow or shrink over time (economists would say the market clears). For each 
edge (i,j) 6 E, let Cij denote the cost of transporting one unit cheese from node 
i to node j, and let Xij denote the number of units moved from node i to node j. 
The total transportation cost is therefore

COSt — Ci j X ij.

We want to move all the cheese from the producers to the consumers as cheaply as 
possible. We also want to do this in such a way that there is no surplus cheese left 
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at any node, that is, so that the flow is balanced at each node, which means that

for each v G V. Moreover, assume that each Xij > 0 so that the flow goes with the 
direction of the edge. This is important because flowing backward on edge (г, J) 
would be the same as flowing forward on edge (J, г), which should incur a positive 
cost at the rate of Cji per unit of cheese, instead of a negative cost (namely x^Cij, 
if x^ < 0). There may also be some upper bound x^ < aij on the flow along each 
edge—for example, if the number of trucks available on each route is limited.

This gives the linear optimization problem of finding x 6 R^l to

minimize У CijXij

subject to xVj — XiV = bv \/v G V,
(v,j)EE (i,v)EE 
0 x a,

where x is the vector of all the x^ and is the vector of all the a^.

13.3.4 *Proof  of Minkowski-Steinitz
We now prove the Minkowski-Steinitz theorem (Theorem 13.3.12); however, we first 
need the following lemma.

Lemma 13.3.15. Let С C Rn be nonempty, compact, and convex. If H is a 
supporting hyperplane of C, then vert(C ПЯ) = vert(C) П H.

Proof. Let v G vert(C)C\H. If x,у G CC\H satisfy v = |(x + y), then v = x = y, 
which implies v G vert(C П H). Thus, vert(C) A H C vert(C A H). Conversely, 
suppose v G С A H is not an extreme point of C. Thus we can find x, у G C, 
with x y, such that v = |(x + y). Assume without loss of generality that 
H = {x G Rn | (a, x) = b} and С C {z G Rn | (a, z) < b}. If x H or у H, 
then (a, x) < b or (a, y) < b, which implies b = (a, v) = |((a, x) + (a, y)) < b, a 
contradiction. Hence, x, у 6 H, which implies that v is not an extreme point of 
СПН. It follows that vert(C A H) C vert(C) A H. □

The proof of the Minkowski-Steinitz theorem now proceeds by induction on the 
dimension n. In the case of n = 1, a nonempty compact convex set C in R is an 
interval of the form C = [a, b\. It is clear that vert(C) = {u, b} and C = conv({u, 6}).

For n > 1, assume by induction that the theorem holds for Rn-1 and consider a 
nonempty closed convex set С C Rn. Let x G C be a point that is not a vertex. If 
x lies in a supporting hyperplane H of C, then С A H is convex. Translating this 
set by —x gives a convex set (С A H) — x in the (n — 1)-dimensional linear subspace 
H — x C Rn. By the induction hypothesis the conclusion of the theorem holds on 
the set (С А Я) - x. It is straightforward to check that it also holds on С A H.
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Combining this with the lemma gives x 6 conv(vert(CnU)) = conv(vert(C)nU) C 
conv(vert(C)).

If x does not lie in the boundary of any supporting half space, then since x is 
also not a vertex, there must be distinct r, s e C such that x = |(r + s). Let L be 
the one-dimensional affine set L = {tr + (1 — t)s | t e R} = s + span(r — s). The 
set (L П C) — s is a compact and convex subset of a one-dimensional vector space, 
hence the conclusion of the theorem applies to (L П C) — s, and also to L П C. Let 
r' and s' denote the vertices of L П C. Thus x lies in the convex span of r' and 
s'. For each of the points r' and s' there is a sequence of points outside of C that 
converges to the point, so by the supporting half space theorem (Theorem 13.2.8), 
r' and s' lie in the boundary H of a supporting half space and thus lie in the convex 
span conv(vert(C П Hf) = conv(vert(C)) П H C conv(vert(C)). Therefore x lies in 
conv({r', s'}) C conv(vert(C)), as required. □

13.4 The Simplex Method I
The fundamental theorem of linear optimization (Theorem 13.3.13) says that an 
optimizer can be found among the vertices of the feasible set. The simplex method 
is an algorithm for searching through the set of all vertices to find the minimizer. 
In most cases it performs very well, but it is possible to design pathological cases 
where it visits every single vertex before finding the optimizer.

The geometric idea behind the simplex method is to start at any feasible vertex 
v and examine the vertices neighboring v to see if one improves the objective f; 
that is, find a neighbor w of v such that f(yv) < /(v). If such a neighbor can 
be found, then move to the neighbor (set v = w) and repeat. If /(w) > /(v) for 
every neighbor w, then stop and return v as a minimizer. See Figure 13.13 for an 
illustration.

This is the main idea of the simplex method, but there are a few technical details 
to work out, including how to find an initial feasible vertex, and what to do when 
/(w) = f(y) in order to ensure that the algorithm does not visit the same vertex 
more than once. The rest of this section and the next give the details of how to 
execute the algorithm.

Figure 13.13. The feasible set for a linear optimization problem is a polyhedron. 
If an optimal point exists, then an optimal point occurs at a vertex of the polyhe­
dron. The simplex method searches for optimal points by moving among adjacent 
vertices in a direction that decreases the value of the objective function until it finds 
a minimizing vertex x* .
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13.4.1 Slack Variables and Vertices
Corollary 13.3.10 gives a method for identifying vertices, namely, look for points 
that lie on at least n of the hyperplanes defining the feasible set. While these points 
may not always be vertices (in the unlikely case that the hyperplanes are linearly 
dependent), every vertex is of this form.

Feasible points lie on a bounding hyper plane when the inequality in the corre­
sponding constraint is an equality. To track these more easily, we introduce nonneg­
ative variables wi,..., wm, called slack variables, and rewrite the linear optimization 
problem as a system with equalities:

minimize
subject to

cTx
Ax + w = b, 
x >2 0, 
w 4 0.

(13.8)

This system is equivalent to the original problem, since Ax 2^ b if and only if 
Ax + w = b and w 4 0. We summarize this idea in the following proposition.

Proposition 13.4.1. For a linear optimization problem with n variables and m 
constraints in standard form (13.4), a point x e is feasible if and only if there 
exists w 6 such that x 4 0. w > 0. and Ax + w = b.

We call any assignment of x and w a configuration. Note that we can always 
solve for w in terms of x as w = b — Ax.

Example 13.4.2. Adding slack variables to the problem

minimize x^ — x% 
subject to 2a?i + X2 < 4,

x\ 4- 2a?2 < 3, 
X2 >0

gives an equivalent problem

minimize x\ — X2
subject to wi 4- 2a?i 4- X2 = 4,W2 4” Xi + 2x2 — 3, #1, X2, Wi, W2 > 0.

This polyhedron is depicted in Figure 13.14.

The advantage of this new formulation is that it gives a simpler description of 
the bounding hyperplanes. In the original version (13.4), the hyperplanes bounding 
the feasible set are given by the equations x± = 0, #2 = 0, ..., xn = 0 and by
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Figure 13.14. The polyhedron of Example 13.4’2. The locus where wi = 0 is the 
hyperplane 2x± + x^ = 4, and the locus w% = 0 is the hyperplane x± + 2x2 = 3. The 
red point is the intersection = W2, and at that point both x± and X2 are strictly 
positive. Similarly, the yellow point is the intersection x± = X2 = 0 and at that 
point wi and W2 are both strictly positive.

each of the rows of the equation Ax = b. But in the new description, the bounding 
hyperplanes are given by each of the equations x± = 0, X2 = 0, xn = 0 and 
wi = 0, W2 = 0, ..., Wm = 0. So, in the previous example the equation = 0 
corresponds to the hyperplane 2#i + X2 = 4 in R2.

Nota Bene 13.4.3. Although a configuration of x and w lies in Rn+m, when 
we discuss the hyperplane given by W} = 0, we mean the hyperplane in Rn 
defined by the zth row of Ax = b and not a hyperplane in the larger space 
Rn+m.

13.4.2 The Simplex Method
As outlined in the introduction to this section, the simplex method starts at a 
feasible vertex v, examines the vertices neighboring v to see if one improves the 
objective /, and if such a neighbor can be found, it moves to the neighbor and 
repeats.

We begin with an example of how this method is actually executed, solving 
the linear optimization problem in Example 13.4.2. Using the formulation of the 
problem with slack variables, we wish to choose Xi,X2,Wi,W2 in order to

minimize
subject to

xr - x2
Wi + 2a?i + x2 = 4, 
W2 + Xi + 2x2 = 3, 
Xi, ^2, Wi,W2 > 0.

Let f be the objective function. Note that setting Xi = 0 and x2 = 0 gives Wi = 4 
and W2 = 3, which is a feasible configuration, so (^1,^2) = (0,0) is a vertex of the 
feasible polyhedron see Figure 13.14. We can solve for w in terms of x and 
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write the following system of equations, called a dictionary'.

f = 0 + Xi - x2

W1 = 4 - 2®i - x2 (139)
w2 = 3 — Xi — 2x2

dependent independent

Since all the variables must be nonnegative, we don’t bother including that infor­
mation in the dictionary. The objective function and the variables and W2 are 
written on the left and they are expressed in terms of the variables and xz-

Choosing a vertex of & corresponds to choosing two variables from the set 
{a?i, #2, wi, wz} to set to 0; we call these the independent variables and solve for the 
other, dependent, variables in terms of the independent variables.52 In the preceding 
dictionary, the independent variables are x± and xz, while the dependent variables 
are wi and wz-

52The dependent variables are often called basic variables, and the independent variables are often 
called nonbasic variables. But we find these names confusing, since the nonbasic variables are 
the ones defining the basis of hyperplanes active at the current vertex.

Each step of the simplex method starts at a given vertex, corresponding to a 
choice of n independent variables, and moves to a new vertex by trading one of the 
independent variables with a dependent variable. That means one of the formerly 
independent variables may become nonzero (hence positive) and one of the formerly 
dependent variables must be set to 0. In the current example, that means we may 
choose one of x± or xz to allow to become positive (and be dependent) and choose 
one of wi or wz to set to 0 (and be independent).

Since the coefficient of x± in f is positive, allowing x± to become positive (hence, 
dependent) would increase the value of the objective, which is undesirable, whereas 
the coefficient of xz is negative, so allowing xz to increase would decrease the ob­
jective, as desired. Thus xz must become dependent, and either or wz must 
become independent. Keeping x± = 0, the requirement > 0 gives xz < 4, and 
the requirement wz > 0 gives xz < |. Therefore, the largest xz can be is |, and 
Wz = 0 gives the binding constraint on rr2. Thus w2 must be the new independent 
variable.

Solving for xz in terms of x± and wz gives xz = j — — |w2- Substituting
this into the equations of (13.9) for wi and f gives the following new dictionary:

f = “I + hi + >2

Wi = I - I Xi + |w2
X2 = | - - |w2.

dependent independent

Setting the independent variables, x± and W2, to 0 corresponds to the vertex on the 
upper left of Figure 13.14, and the objective has the value — j at this point. Since 
the objective f is now a positive linear combination of the independent variables 
Xi and W2, and those two variables must always remain nonnegative, the vertex 
corresponding to Xi = wz = 0 must be a minimizer of f. So, x*  = (0, |).
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Remark 13.4.4. Both the slack variables wi,...,wm and the original variables 
#i,..., xn are all treated the same way throughout this process, so it makes notation 
simpler if we relabel the slack variables to be a?n+i,..., xn+rn by writing xn+i = Wi. 
We do this from now on. This means that each of the hyperplanes bounding & is 
of the form {xt = 0} for some i E {1,..., n + m}, and the corresponding equation 
is given by the zth row of Ax = b in (13.6).

In Algorithm 13.1 we give a more detailed description of how the simplex method 
is executed in general.

Begin at a feasible vertex, defined by hyperplanes

xi± = • • • = xin = 0.

Let I = {fy,... ,zn} be the set of indices of these independent variables and 
D = {di,..., drri} be the indices of the dependent variables, so that I U D = 
{1,..., n + m}.

(i) Solve for the objective f and all the Xj with j E D in terms of the 
independent variables (all Xi with i E I), and write the corresponding 
dictionary, whose top row is the expression for f in terms of the inde­
pendent variables, and each remaining row is the expression for some Xj 
with j E D in terms of the independent variables.

(ii) Identify an independent variable хг for which the coefficient of Xi in / is 
strictly negative, so that increasing Xi would decrease f. If none exists, 
then stop: the current vertex, defined by /, is a minimizer.

(iii) For each j E D, the inequality Xj > 0 combined with the conditions 
хр = 0 for all i' E I \ {г} gives a bound on x± that must be satisfied.

(a) If none of these is an upper bound for X{, then xi may increase 
arbitrarily, the feasible set & for this problem is unbounded, and 
f has no minimizer because it approaches — oo. Stop.

(b) Otherwise, the smallest of these upper bounds is called the binding 
(or active) constraint. Let j E D be an index corresponding to the 
binding constraint (there may be more than one dependent variable 
that yields the same constraint).

(iv) Trade the positions of i and j; that is, remove i from I and put it into 
D, and remove j from D and put it into I. The variable Xi is called 
the entering variable, as it enters Z), and the variable Xj is the leaving 
variable.

(v) Repeat from step (i).

Algorithm 13.1. Outline of the basic simplex method for solving linear optimiza­
tion problems, beginning at a feasible vertex. The problem should be of the form 
(13.8) but where the slack variables wi,... ,wm are renamed to rrn+i,..., a?n+m. 
Coding up this algorithm is an exercise in the computing labs for this volume.
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Nota Bene 13.4.5. In the basic simplex method there are two choices to be 
made with each iteration. First, one independent variable must be chosen as 
the entering variable. Any independent variable Xi for which the coefficient of 
Xi in f is strictly negative in the objective f will do, but there may be some 
choices that improve the objective more than others. Second, once the entering 
variable is chosen, the leaving variable must be chosen. Again, there may be 
more than one candidate, and usually any dependent variable that imposes a 
binding constraint may be used (but see the next section for a discussion of 
cycling, where not just any choice will work).

There are many rules for choosing which variables to take as the entering 
and leaving variables. In the next section we discuss one of these rules, called 
Bland’s rule. But in many cases the simplex method works well with just 
choosing the first variables you find that can be used; that is, choose as the 
entering variable the first variable you find that has a negative coefficient in 
the objective, and choose as the leaving variable the first variable you find 
that imposes a binding constraint on the entering variable.

The basic version of the simplex method converges in most cases, as described 
in the following proposition.

Proposition 13.4.6. Assume that the feasible set of a linear optimization problem 
is bounded and not empty. If no vertex is visited more than once by the simplex 
method (for example, if the objective function strictly decreases at every step of the 
algorithm), then the simplex method terminates at a minimizer of the objective.

Proof. Since the feasible set is bounded, it has a finite number of vertices. Since no 
vertex is visited more than once, the algorithm must terminate. The terminating 
vertex corresponds to a choice of n independent variables Xir,..., Xin. Because the 
algorithm terminates at this vertex, the coefficient of each independent variable 
Xi£ in the objective function f = £ + <ЧкХ{к (where £ is the constant term) is 
nonnegative. But every feasible point must satisfy Xi£ >0, and hence f is minimized 
at the vertex xi± = • • • = xin =0. □

Remark 13.4.7. Usually, every step of the simplex method strictly decreases the 
objective, but there are settings where that is not the case. Theorem 13.5.4 in 
Section 13.5.3 gives a method to ensure that no vertex is visited more than once, 
even in the case the objective is not strictly decreased.

Remark 13.4.8. Although we have worked out the steps of the simplex method 
in the examples of this section by hand, these are straightforward to program using 
standard methods of numerical linear algebra (see the accompanying labs for this 
volume). Except for the purpose of learning the method, executing these steps by 
hand is as silly as solving a large linear system of equations by hand.
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13.4.3 Another Example
Consider the problem of choosing Х1,Х2,хз to

minimize —x\ — 2x2 + Зхз
subject to 2xi + X2 + X3 < 4,

-xx - 2x2 + 4x3 < 2, 
Xi, x2,x3 > o.

Adding slack variables x± and x5 gives an equivalent linear optimization problem 

minimize — Xi — 2x2 + 3x3
subject to 2xi + X2 + X3 + x± = 4,

-xx - 2x2 + 4x3 + x5 = 2, 
Xi, X2, X3, X4, x$ > 0.

The point Xi = x2 = x3 = 0 is feasible because plugging these values into the equa­
tions above gives x± = 4 and x5 = 2 (both positive). Starting at this configuration, 
and solving for the objective /, as well as x^ and x$ in terms of the independent 
variables Х1,Х2,хз, gives the initial dictionary

f = 0 - Xi - 2x2 + 3x3

a?4 = 4 — 2xi — X2 — X3

x5 = 2 + Xi + 2x2 ~ 4x3.

Since the coefficients of Xi and X2 in f are negative, increasing either Xi or X2 
will decrease f. It doesn’t matter which we choose, so take Xi. The constraint 
on Xi given by X4 > 0 (and all other independent variables set to 0) is Xi < 2. 
The constraint of x$ > 0 implies that Xi > —2, which always holds, since Xi is 
nonnegative. Thus the only binding constraint is given by x± > 0, so swap Xi with 
#4, making x± independent and Xi dependent.

Solving the first equation for Xi in terms of x± gives

Xi = 2 - - |.r3 - ^x4. (13.10)

Replace the first constraint with (13.10), and substitute this expression for Xi ev­
erywhere else Xi occurs in the first dictionary. The resulting dictionary is

f = -2 - |x2 + ^хз + |x4

Xi = 2 - |x2 - |x3 - |x4
X5 = 4 + |x2 - 1^3 -

Only X2 has a negative coefficient in the objective function, so X2 is the new entering 
variable. The first constraint Xi > 0 gives X2 < 4, and the second constraint X3 > 0 
gives X2 > — |, which is not binding. Therefore, Xi is the leaving variable.

Solve the first equation for X2 to get X2 = 4 — 2xi — X3 — X4, and substitute this 
into the previous dictionary to get

f = — 8 + 3xi + 5хз + 2x4

X2 = 4 — 2xi — Хз — X4
хз = 10 — 3xi — 6x3 — 2x4.
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The independent variables Xi, X3, and correspond to the vertex =
0, which gives x2 = 4 and x$ = 10.

Since all coefficients in the objective function are positive, the objective function 
cannot be further decreased by swapping a variable. Thus the solution to the original 
problem is x*  = (0,4,0).

The final dictionary corresponds to the minimization problem

minimize
subject to

—8 + 3^i + 5^3 + 2a?4
2^i + хз + x± < 4, 
3^i + бжз + 2x4 < 10, 
Ж1, хз, x± > 0,

which is equivalent to the initial optimization problem. But now it is easy to see 
that = хз = x± = 0 is optimal, because increasing any of these variables increases 
the objective.

13.4.4 *An  Unbounded Example
Consider the following linear optimization problem:

minimize — X\ + 2x2 + X3
subject to -Ж1 + x2 < 5, 

2x2 - хз < 2, 
Ж1, х2,хз > 0.

Adding slack variables x± and x$ gives the following dictionary representation:

f = 0 - X1 + 2x2 + хз

X4 = 5 + Xi — x2
хз = 2 - 2x2 + X3.

To decrease the objective function, x± must be the entering variable, since it is the 
only independent variable with a negative coefficient in f. The constraint x$ > 0 
does not bound #1, and so the only constraint on x 1 is given by £4 > 0, which implies 
that x\ > —5. Since there is no upper bound on sq, it may be arbitrarily large, 
which means that the feasible set is unbounded. The objective has no minimizer 
because setting x± = z > 0 gives the valid configuration x± = z,x2 = 0, Ж3 = 0, £4 = 
5 + г, Хз = 2 with /(x) = —z.

13.5 The Simplex Method II
The simplex method works by proceeding from one known feasible vertex to another. 
So the simplex method needs a feasible vertex from which to start. In this section 
we discuss how to find such a vertex. We also discuss how to ensure that no vertex 
is visited more than once, thereby ensuring that the algorithm terminates. Finally, 
we discuss some aspects of the temporal complexity of the simplex method.
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Figure 13.15. The left panel illustrates a well-posed linear optimization problem 
(bounded and feasible) where the feasible set (yellow triangle) does not contain the 
origin. This occurs whenever an entry in b is negative. In this case the negative 
value of bi corresponds to the green half space. The first step to using the simplex 
method to solve a problem like this is to use an auxiliary problem to find a feasible 
point. The right panel illustrates a linear optimization problem that is infeasible 
because the half spaces have no mutual intersection. There can be no optimizer if 
there is no feasible point at all.

13.5.1 Determining Feasibility
The feasible set may actually be empty, and even if it is not empty, the simplex 
method needs a feasible starting vertex. So far we have always initialized the simplex 
method by starting at the origin: x± = x% = • • • = xn = 0. If this point is feasible, 
then the feasible set must be nonempty.

Determining whether the origin is feasible is easy. Recall that the constraints 
take the form Ax b. When x = 0, the left-hand side is 0. Therefore, the origin 
is feasible whenever b >2 0, that is, whenever all the entries of b are nonnegative. 
However, if any entry of b is negative, the origin is not feasible. See Figure 13.15 
for an illustration.

When the origin is not feasible, we need to find a feasible starting point or 
determine that no such point exists. To accomplish this we use an auxiliary problem 
constructed by adding a new variable (increasing the dimension of the original 
problem), as we now describe.

Definition 13.5.1. Given a linear optimization problem in standard form (13.4) 
the auxiliary problem is the problem

minimize Xq

subject to Ax — #O1 b, ^3 U)
^0 > 0, 
x 0.

Here 1 = (1,1,..., 1) denotes the all-ones vector, so if aj denotes the ith row of A, 
then each of the original constraints a^x < bi is replaced by a^x — x0 < bi in the 
auxiliary problem.

Three important properties of the auxiliary problem can be seen immediately:

(i) Feasible points of the form (xQ, x±,..., xn) with xq = 0 correspond to points 
(a?i,..., Xn) of the original feasible set, and
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(ii) The point (6,0,0,..., 0) is feasible for the auxiliary problem, where b = 
— пищ bi (note that this is positive, since at least one of the bi is negative).

(iii) The auxiliary objective я?о is bounded below by 0.

The first fact means that the original problem has a feasible point if and only if 
the auxiliary problem has a feasible point with xq = 0. The second fact gives an 
explicit feasible starting vertex for the auxiliary problem. The last fact implies that 
the problem is not unbounded and so the simplex method applied to the auxiliary 
problem will terminate (assuming vertices are visited at most once). We summarize 
this in the following proposition

Proposition 13.5.2. A linear optimization problem in standard form is feasible if 
and only if either

(i) all the entries ofb are nonnegative, in which case the origin is feasible for the 
original problem; or

(ii) some entries are negative, but the associated (bounded) auxiliary problem has 
an optimal value of 0 with optimizer (0, x± ,..., x+), in which case the point 
(x+, ...,#+) is a feasible vertex for the original problem.

Remark 13.5.3. Geometrically, the set Hi = {(a?o, ..., xn) | a^x — a?o < bi} in
Rn+1 is a half space containing the point (6*,  0,0,..., 0). The set {(0, x) | a^x < bi} 
also lies in H, where we have written (0, x±,..., xn) as (0, x) for convenience. The 
feasible set & of the auxiliary problem is the intersection of half spaces Hid - • -ПЛШ 
with the half spaces a? о > 0, ..., xn > 0, which is a polyhedron in Rn+1 having the 
property that a point (a;o,x) e Rn+1 lies in & if and only if the point x e lies 
in the feasible set & for the original problem.

13.5.2 Example of an Auxiliary Problem
Consider the problem of finding a?i,a;2 to

minimize — 2x± — a?2 
subject to — Xi + x2 < — 1,

—xi — 2x2 < —2, 
a?2 < 1, 
Xi, X2 > 0.

Since there are negative values on the right-hand side of the constraints, the origin 
is not feasible for this problem. The auxiliary problem is

minimize x$
subject to —+ a?2 — xq < — 1,

—— 2x2 — a?o < —2, 
X2 - < 1,
#0, Xi, X2 > 0.

A feasible starting vertex for the auxiliary problem is a?o = 2, with x± = X2 = 0. 
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Introduce slack variables a?3,a?4, Ж5 for the constraints to get the relations

-xx + x2 - + x3 = -1,
—Xi — 2x2 — + X4 = —2,

+ x5 = 1

and substitute the values at the vertex into these equations to get x3 = 1, X4 = 0, 
and x$ = 3. Thus this vertex corresponds to choosing xi,x2? £4 as the independent 
variables and gives the dictionary

f = 2 - xx - 2x2 + x4

x3 = 1 — 3x2 + ^4
Xq = 2 — Xi — 2X2 + ^4

= 3 — Xi — 3rr2 + ^4-

The coefficients of Xi and x2 are both negative, so we may choose Xi as the entering 
variable. The binding variable for Xi is a?o, so we choose that as the leaving variable, 
which yields the dictionary

f = 0 rr0

x3 = 1 - Зж2 + X4
Xi = 2 — 2x2 + £4 —
x$ = 1 - X2 + XQ.

None of the coefficients of the objective function is negative, so this point is optimal 
and the optimal value is 0, as desired. This gives #1 = 2, z2 = 0 as a feasible point 
for the original problem.

Removing a?o from the dictionary above gives a valid dictionary for the origi­
nal problem, except that the objective function for the auxiliary problem must be 
replaced with the objective function — 2a? 1 — x2 for the original problem. But the 
objective function must be rewritten in terms of the independent variables, a?2,^4- 
This can be done using the second constraint, which gives an expression for Xi in 
terms of the independent variables. This gives the dictionary

f = — 4 + 3a?2 — 2a?4

a?3 = 1 - Зж2 + X4
Xi = 2 — 2x2 + X4
x5 = 1 - x2-

This dictionary is feasible for the original problem and has an objective function 
value —4. From this point the simplex method continues in the normal fashion until 
it finds an optimal point or determines that the problem is unbounded.

13.5.3 Cycling and Degeneracy
As proved above, the simplex method terminates and returns a minimizing vertex 
provided it never visits the same vertex twice. In most cases the objective function
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(i) If every entry in b is nonnegative, then the origin is feasible. Use the 
basic simplex method (Algorithm 13.1) instead of this one. Otherwise 
(if at least one entry of b is negative) the origin is infeasible.

(ii) Begin phase one: Set up the auxiliary problem by introducing a vari­
able Xq

(a) Set the objective function equal to xq.

(b) Subtract xq from each of the inequality constraints.
(c) Add a new constraint that xq > 0.

(iii) Introduce slack variables, and set up the initial dictionary.

(iv) To make the dictionary feasible, pivot on the row with the minimal (most 
negative) entry of b: that is, make xq the entering variable and take as 
leaving variable the slack variable corresponding to the most negative 
entry of b.

(v) Proceed as usual for the simplex method until either:

(a) The objective function is zero and the dictionary is feasible. This 
indicates a feasible dictionary has been found. Go to step (vi).

(b) An optimal value has been reached with (no negative coefficients 
in the objective function) but the value of the objective function is 
positive. This indicates an infeasible dictionary. Stop. There is no 
solution.

(vi) Begin phase two: Delete the column with the variable xq from the 
dictionary. Replace the objective function with the original objective 
function, replacing all dependent variables with independent variables

(vii) Continue with the basic simplex method (Algorithm 13.1) until an op­
timizer is found.

Algorithm 13.2. A summary of the two-phase simplex method. The first phase 
uses the simplex method to solve an auxiliary problem that gives a feasible point 
for the original problem. The second phase uses the simplex method, starting at 
the feasible point found in phase one, to solve the original problem. Coding up this 
algorithm is an exercise in the computing labs for this volume.

strictly decreases with each step, so it does not cycle back to a previously visited 
vertex, but unfortunately, it is possible for the value of the objective function to 
remain unchanged after a step of the simplex method.

The following dictionary gives an example:

f = 0 + - 2x2 +

a?4 = 1 — — |x3
x5 = 0 + xr - x2 + x3.
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The only negative coefficient is that of a?2, so that must be the entering variable. 
The constraint induced by x5 > 0 is binding and implies x2 < 0, so x2 cannot 
increase at all without making x$ negative. Nevertheless, we can still pivot (make 
a new choice of entering and leaving variables) to get

f = 0 - |#i - + 2д;5

ж4 = 1 -
x2 = 0 + - ^5-

While the dependent and independent variables have changed, the value of the 
objective function has not. Moreover, the actual configuration of x± = x2 = x3 = 0, 
#4 = 1, #5 = 0 is the same for both this and the previous dictionaries, so we have 
not moved to a different vertex.

This situation is called degeneracy. A degenerate dictionary is one in which the 
constant term of one of the constraints is 0. In this case, some dependent variables 
are equal to zero, in addition to the n independent variables. This corresponds 
to being on the intersection of more than n hyperplanes. See Figure 13.16 for an 
illustration.

Figure 13.16. Degeneracy occurs when more than n hyperplanes intersect at a 
single vertex. Moving from n of these hyperplanes to n others does not result in 
moving to a different feasible point or decreasing the value of the objective function; 
it only changes which variables are considered dependent and which are considered 
independent.

Degeneracy seems problematic, but making the right choices of entering and 
leaving variables (pivots) eventually moves to a new vertex. In the previous example, 
choosing as the entering variable makes x± binding and moves to a new vertex 
with an improved objective.

One way to escape a degenerate vertex is to apply Bland’s rule.

Theorem 13.5.4 (Bland’s Rule). If the entering variable is always chosen to 
be the independent variable with smallest index having a negative coefficient in the 
objective function and the leaving variable is chosen to be the dependent variable with 
the smallest index among all dependent variables that impose a binding constraint 
on the entering variable, then the simplex method never cycles.
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The proof of Bland’s rule is long and somewhat unenlightening, so we do not 
include it here, but the interested reader can find a proof in [Vanl4].

Nota Bene 13.5.5. Bland’s rule is just a tie-breaking rule for the usual sim­
plex method. The entering variable must still be one with a negative coefficient 
in the objective function; see Nota Bene 13.4.5. There is no need to invoke 
Bland’s rule unless there is more than one such variable. Similarly, once the 
entering variable is chosen, the leaving variable must be chosen from among 
those dependent variables that impose a binding constraint on that chosen 
entering variable. Often there is only one of these, and again, Bland’s rule 
needs to be invoked only if there is more than one dependent variable that is 
binding.

Since the total number of configurations is finite, we have the following corollary.

Corollary 13.5.6. If the simplex method is implemented using Bland’s rule, then 
it is guaranteed to terminate after a finite number of iterations and produce the 
correct result for a linear optimization problem in standard form.

An alternative approach to preventing cycling is the lexicographic perturbation 
rule. This approach chooses a small 6i, a much smaller 62, a still smaller e3, and so 
on, and then shifts bi to bi + £$. This removes all degeneracy and, if ei is sufficiently 
small, it does not change the optimal choice of dependent and independent variables.

Neither Bland’s rule nor lexicographic perturbation is necessarily the fastest 
route to the optimizer. Indeed, there are often other choices that result in a much 
greater decrease in the objective function. Note also that Bland’s rule could easily 
result in very small pivot values (the coefficient of the entering variable), which 
reduces the stability of the algorithm.

Finally note that cycling is actually a rare phenomenon. It often makes more 
sense to use another selection rule and worry about cycling only if it actually occurs.

13.5.4 Complexity of Linear Optimization
The worst-case run time of the simplex method is exponential because the number 
of potential vertices to check is (m+n)« In 1972 Klee and Minty constructed a 
pathological example in n variables and m = n constraints where the feasible region 
is a slightly tilted n-dimensional hypercube with one vertex at the origin [КМ72]. 
Choosing the starting vertex to be the origin and following standard pivoting rules, 
the simplex method on this example visits every other vertex of the hypercube 
before reaching the optimizer. There are 2n vertices, so the simplex method makes 
2n — 1 pivots before finding the optimizer. Soon after the Klee-Minty paper was 
published, several other authors produced similar examples for many other pivoting 
rules, including Bland’s rule. So in the worst case, the simplex method can perform 
very poorly.

However, these worst cases are very unusual. It can be shown that on average 
very few of the vertices need be to examined, and the average-case performance is 
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generally very good, typically taking 2m to 3m iterations (where m is the number 
of constraints) and converging in expected polynomial time for certain distributions 
of random inputs.

Remark 13.5.7. The dual problem, described in the next section, interchanges the 
number of constraints and the number of variables, so the dual problem is typically 
solved in 2n to 3n iterations. If the number m of constraints is much larger than 
the dimension n, then switching to the dual problem can significantly reduce the 
complexity of solving the problem with the simplex method.

Remark 13.5.8. In Section 15.6 we describe a very different class of methods for 
solving linear and other optimization problems. These solve linear optimization 
problems in polynomial time, namely O(^/nLlogL), where L is the number of bits 
of input to the problem. It can be shown that L e O(mn + log2(|P|)), where P is 
the product of all nonzero coefficients of A, b, and c. Despite the fact that these 
methods are polynomial and the simplex method is exponential in the worst case, 
the simplex method in practice usually takes only O(m) or O(n) iterations to find 
the optimizer.

13.6 Duality
In this section we discuss duality for linear optimization problems. The weak duality 
theorem guarantees that for every linear minimization problem there is another, 
dual linear maximization problem with the property that every feasible value of 
the dual objective is bounded above by every feasible value of the original (primal) 
objective. The strong duality theorem guarantees that the minimal value of the 
primal problem is equal to the maximal value of the dual problem. Moreover, the 
optimizers for the primal and dual problems are closely related. Indeed knowledge 
about one of these usually gives useful knowledge about the other. One of the most 
important connections between the primal and dual problems is the property of 
complementary slackness, which is discussed in Section 13.6.3.

In some cases the dual problem is easier to solve than its corresponding primal 
problem and in other cases the primal problem is easier to solve. In either case, once 
one of the optimizers is known, the other can be computed quickly. As shown in 
Chapter 15, some of the best methods for solving large linear optimization problems 
rely heavily on the interplay between the primal and dual problems.

13.6.1 Weak Duality
Every linear minimization problem has a natural dual problem that is formulated 
as a linear maximization problem.

Definition 13.6.1. Let A e Mmxn(R), b e and c e Rn. The linear 
optimization problem

minimize cTx
subject to Ax b, (13.12)

x > 0
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has the following dual problem:

maximize — bTy 
subject to — Лту c, (13.13)

У >r o.

We call the original problem (13.12) the primal problem to distinguish it from the 
dual problem (13.13).

Remark 13.6.2. Following Example 13.3.3, it is sometimes helpful to write the 
dual as a minimization problem in standard form

minimize bTy 
subject to — Лту c, (13.14)

У o.

The next proposition shows that, as one might expect from the name dual, the 
dual of the dual is the primal.

Proposition 13.6.3. For a linear optimization problem in standard form, the dual 
of the dual optimization problem is again the primal problem. Stated more precisely, 
if the dual problem is recast as the minimization problem (13.14), then its dual is a 
maximization problem that, when recast as a minimization problem, is the original 
problem (13.12).

Proof. The proof is Exercise 13.33. □

Nota Bene 13.6.4. Many textbooks develop linear optimization theory with 
maximization problems being their “standard form.” In these cases, the primal 
problem is the maximization problem and the corresponding dual problem is 
a minimization problem.

The weak duality theorem guarantees that every feasible value of the primal 
objective is an upper bound for every feasible value of the dual objective.

Theorem 13.6.5 (Weak Duality Theorem). If x e is feasible for the 
primal problem (13.12) and у e is feasible for the dual problem (13.13), then 
the objective for the dual problem is bounded above by the objective for the primal 
problem, that is, the following inequality holds:

—bTy < cTx. (13.15)

Proof. It is straightforward to see that

—bTy = —yTb — yTAx = — xTATy xTc = cTx. □
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Corollary 13.6.6. If the dual problem is unbounded, then the primal problem is 
infeasible. Similarly, if the primal problem is unbounded, then the dual problem is 
infeasible.

Proof. If the primal problem is feasible and the dual problem is unbounded, then 
weak duality fails, since cTx is an upper bound for all feasible values of — bTy. 
Similarly, if the dual problem is feasible and the primal problem is unbounded, 
then weak duality fails, since — bTy is a lower bound for all values of cTx. □

The converse of the corollary is not true. When the primal is infeasible, we do 
not know that the dual is necessarily unbounded. Both problems could be infeasible.

Example 13.6.7. The linear optimization problem

minimize 2x2 ~
subject to —Xi + X2 <2, 

^2 < -1, 

X±, > 0

is infeasible because the constraints require that X2 > 0 and X2 < —1. The 
dual problem

maximize — 2y± + у 2
subject to У1 < -1, 

-yi ~У2<2, 
У1,У2 > 0

is also infeasible, since the constraints require that y± > 0 and y± < — 1.

13.6.2 Strong Duality
The weak duality theorem only guarantees that feasible points of the dual problem 
provide lower bounds for the primal problem. It does not indicate how tight that 
bound is. The strong duality theorem guarantees that the bound is sharp and that 
the minimal value of the primal is equal to the maximal value of the dual.

Theorem 13.6.8 (Strong Duality). If the primal problem (13.12) has a mini- 
mizer x*  e and the dual problem (13.13) has a maximizer y*  e then the 
following equality holds:

—bTy*  = cTx*. (13.16)

Remark 13.6.9. The proof of strong duality is given in Section 13.6.5. Strong 
duality gives us a certificate of optimality, meaning that if a primal feasible solution 
x*  and a dual feasible solution y*  satisfy (13.16), then they are guaranteed to be, 
respectively, a primal optimizer and a dual optimalizer.
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13.6.3 Complementary Slackness
Strong duality also implies a very useful relation called complementary slackness 
between the optimizer x*  of the primal problem and the optimizer y*  of the dual 
problem.

Theorem 13.6.10 (Complementary Slackness). Suppose that x = (#i,..., xn) 
is a feasible point of the primal problem (13.12) and у = (?/i,..., ym) is a feasible 
point of the dual problem (13.13). Let w = (wi,..., wm) >z 0 be the slack variable 
for the primal problem so that Ax + w = b, and let z = (zi,..., zn) >z 0 be the 
slack variable for the dual problem so that —ATy + z = c. The points x and у are 
both optimal for their respective problems if and only if

XiZi = 0 Vi e {1,... ,n} and yjWj = 0 Vj e {1,..., m}. (13.17)

Proof. Assume x and у are, respectively, optimizers for the primal and dual 
problems. As in the proof of Theorem 13.6.5, strong duality implies

—yTb = —yTAx = cTx. (13.18)

This gives

0 = yT(b — Ax) = yTw and 0 = (c + ATy)Tx = zTx. (13.19)

The right-hand sides of (13.19) are sums of nonnegative products, so each term уги)г 
and ZjXj must be zero.

Conversely, if (13.17) holds, then so does (13.19), which implies (13.18). Since 
equality of the primal and dual objective functions can occur only at optimal points, 
x and у must be optimal. □

If the optimizer of either the primal or the dual problem is known (but not 
both), then complementary slackness gives some linear relationships that help solve 
the other problem.

Example 13.6.11. Suppose it is known that x*  = (11,1/2) is an optimizer 
for the primal problem

The corresponding dual problem is

minimize 24a; i + 60a?2
subject to —1^1 — x2 < —6,

—2a?i — 2x2 < —14,
—xi — 4a72 < ~13, 
a?i, X2 > 0.

maximize 6yi + 14y2 + 13уз
subject to jj/i + 2у2 + Уз < 24, 

У1 + 2У2 + 4уз < 60, 
У1,У2,Уз > 0.
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Computing Ax + w = b. it is easy to see that = 0 and W2 = 9.
Complementary slackness implies that y± > 0, у2 = 0, and у % > 0 and that 
zx = Z2 = 0. Computing — ATy + z = c we have

_i
2
1

2
2

24
60j ’

which simplifies to
24
60

This can be solved to give y*  = (36, 6).
To check that this is an optimizer, we verify strong duality (13.16) and see 

that —bTy*  = cTx*  = 294.

13.6.4 An Economic Interpretation of Duality

Recall the production-schedule problem described in Section 13.3.3. In this situ­
ation, the factory scheduler wants to maximize total profit subject to
the constraints that it requires units of material i to make one unit of product 
J, and there are at most bi units of material i available. If we set c = — p, then the 
problem (13.7) can be expressed in standard primal form (13.12).

For the dual problem, assume an investor is interested in buying all the resources 
that the factory has available. If she pays yi dollars for resource i, then the total 
amount she will be paying is 52$li biyi = bTy dollars. She would obviously prefer 
to minimize this amount, but if she offers too little, then the factory won’t be willing 
to sell, because it can make more money by using the resources to make products. 
Specifically, for every j e {1,... ,n} the value 52Zti a^yi that the investor offers 
to pay for the materials to make one product of type j must be at least as much 
as the value pj of that widget; that is, the factory will not accept the deal unless 
ATy >2 —c. Also, у >2 0 because the factory won’t pay the investor to take the 
resources. So the investor’s problem is to choose nonnegative prices yi to minimize 
bTy (or maximize —bTy) subject to ATy >2 —c (or — ATy c). This is precisely 
the dual problem (13.13).

Weak duality — bTy < cTx is equivalent to saying pTx < bTy for all feasible x 
and y; that is, the total value of any feasible offer the investor makes will be no less 
than the factory’s profit making products, no matter what combination of products 
it makes. Strong duality guarantees that the investor’s optimal (cost-minimizing) 
offer will cost her exactly the same amount of money that the factory could earn 
by making products in the optimal (profit-maximizing) way.

The investor’s optimal prices y*  are often called shadow prices. At the shadow 
price, the factory should be willing to buy or sell (a small number of) its resources, 
because selling would bring in the same amount of profit as making more products 
would. Note, however, that selling or buying a large number of resources could 
change the optimal values of x*  and y*  and thus change the shadow prices.



612 Chapter 13. Linear Optimization

Complementary slackness also has an interpretation in this economic setting. If 
an optimal primal slack variable w*  is positive, then not all of resource i is used in 
the optimizer. Thus, the factory has a surplus of that resource that it cannot use, 
and this extra resource is of no value to the factory. Therefore, the shadow price of 
resource i should be 0. This shows that w*y*  = 0 for all г E {1,..., m}.

Similarly, if the optimal dual slack variable Zj is positive, that means the investor 
is paying more for the resources needed to make one widget of type j than the profit 
the factory can make by producing a widget of type j. Thus, the factory would 
make more money by making fewer widgets of type j. But since x*  is optimal, this 
means x*  must be zero. This shows that z*x*  = 0 for all j e {1,..., n}.

13.6.5 *Proof  of Strong Duality
We conclude the section by proving Theorem 13.6.8, which guarantees that when­
ever the primal problem has an optimizer x*  E Rn, then the dual also has an 
optimizer y*  E such that —bTy*  = cTx*.  The first step in the proof is Farkas’ 
lemma.

Lemma 13.6.12 (Farkas’ Lemma). Given A E 7Wmxn(R) and b E denote 
P = {x E Rn | x 0, Ax b} and D = {у E | у >2 0, ATy >2 0,bTy < 0}. 
The set P is not empty if and only if the set D is empty.

Proof. If F 0, then there exists x >z 0 with Ax b. For any у 0 satisfying 
ATy 0, we have~0 < xTATy = yTAx < yTb. Thus, D = 0.

If F = 0, let A = [A Im] be the matrix constructed by adjoining A and the 
m x m identity matrix. The set

К = {Aw I w E Rn+m with w >2 0}

is convex and closed. Suppose b E K, meaning b = Aw for some w >2 0. Write

w = Wi 
w2 with wi e and w2 E Rm.

This implies Awi 2^ Awi + w2 = b, so wi E F, which is a contradiction. Therefore 
b^K.

Since К and {b} are disjoint, then by the separation lemma (Lemma 13.2.7), 
there is a hyperplane that separates К from b; that is, there is a vector у and a 
real number d such that yTx > d for all x E К and yTb < d. In particular, since 
0 E K, we have 0 = yT0 > d.~

Finally, suppose that yTA has a negative value in the zth coordinate. Hence, 
ayTAei < d for some a > 0. This implies that утА(аег) < d, but this is a 
contradiction since А(оег) E K. Thus, yTA has only nonnegative entries. Taking 
the transpose gives ATy >2 0 and у >2 0, which implies that у E D. □

We can now prove the strong duality theorem.

Proof. Assume that x*  is a minimizer for the primal problem (13.12) so that cTx*  
is the minimal value. Therefore, for any e > 0 the system of inequalities Ax b,
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стх < стх*  — е has no solution with x 0. Writing this in matrix notation gives 
the system

b
cTx* — e with x >2 0,

which has no solution. By Farkas’ lemma, there must exist у E with у 0 and 
£ > 0 satisfying

У ^0 cTx* — e] У 
e

[Лт c] and [bT <0.

Thus we have

Лту + Cc t ° and bTy + £(cTx*  - e) < 0.

If £ = 0, then we have ATy >2 0 and bTy < 0, so by Farkas’ lemma, there is no 
point x 0 satisfying Ax b; but x*  is such a point, so £ > 0.

Rescaling у by l/£, we may assume that £ = 1. Simplifying gives

-Лту c and — bTy > cTx*  — e.

This implies that у is a feasible point for the dual problem (13.13). Since there 
is a feasible point to the dual problem and all values of the objective function are 
bounded above, there is a maximizer y*  satisfying cTx*  — e < —bTy*  < cTx*.  Since 
this holds for all e > 0, it follows that (13.16) holds. □

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

13.1. Prove that each of the following sets is convex: 
(i) A half space.

(ii) An affine set.
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(iii) The positive orthant {x e Rn | x >2 0}.
(iv) The set {x e Rn | xTAx < c} for any c > 0, where A E 7Wn(R) and 

A > 0. Hint: Since A > 0, the function x д/хтАх defines a norm on 
Rn. Use the triangle inequality applied to Ax + (1 — A)y.

(v) The set {x E | xTAx + bTx + c < 0} where A E Mn(R), A > 0, 
b E Rn, and с E R.

13.2. Prove Proposition 13.1.5.
13.3. Prove Proposition 13.1.14.
13.4. Provide an example showing that the union of two convex sets need not be 

convex. Given a nondecreasing sequence Kq G Ki C • • • of convex sets, prove 
that the union |J^ Ki is convex.

13.5. Define the convex cone cone (S') of a set S to be the set of all nonnegative 
linear combinations of elements of S:

{k

aiSi I ai > 0, Si E S
2 = 1

Prove that the convex cone of any set S is convex.
13.6. Let PSDn(R) C Mn(R) be the set of all positive semidefinite (and hence 

symmetric) n x n matrices over R. Prove that PSDn(R) is a convex cone, 
meaning that cone(PSDn(R)) = PSDn(R), and hence PSDn(R) is convex.

13.7. Two hyperplanes in Rn are parallel if they never intersect.
(i) What is a necessary and sufficient algebraic condition for two hyper­

planes to be parallel? (Warning: The inner product representation of 
the hyperplane is not necessarily unique.)

(ii) Find a formula for the distance (assume the Euclidean metric || • ||2) 
between two parallel hyperplanes.

(iii) Describe necessary and sufficient algebraic conditions for one half space 
to contain another.

13.8.  Let 5i, S2 С V be subsets of a vector space V. The Minkowski sum Si + S2 
of Si and S2 is the set

*

Si + S2 = {Si + S2 I 83 E Sa}.

Prove the following:
(i) The Minkowski sum of convex sets is convex.

(ii) The Minkowski sum of affine sets is affine.
(iii) conv(Si) + conv(S2) = conv(Si + S2).
(iv) cone(Si) + cone(S2) = cone(Si + S2).

13.9.  Prove Proposition 13.1.10.*
13.10.  Prove Proposition 13.1.15.*
13.11.  Prove that if S is compact, then conv(S) is compact.*
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13.12. Prove the separation lemma (Lemma 13.2.7).
13.13. Prove the convex projection theorem (Theorem 13.2.5). To do this, first prove 

the statements below, and then write a complete proof of the theorem.

(О II* * * * х-yll2 = IIx-pII2 + Up — y||2 + 2 <x — p,p — y).

13.17. Consider the linear optimization problem

minimize — 5x + 4y
subject to 2x — 3y < 4,

x — 6y < 1,
x + у < 6, 
x, у > 0.

Draw (or plot) the feasible set. Graph the objective function over the feasible 
set. Find an optimizer for this problem.

(ii) If (13.2) holds, then ||x — у|| > ||x — p|| for all у E С, у p. Hint: Use 
the identity in (i).

(iii) If z = Ay + (1 — A)p, where 0 < A < 1, then

IIх - ZH2 = IIх - Pll2 + 2A (x - p, p - у) + Л2||y - p||2. (13.20)

(iv) If p is a projection of x onto the convex set C, then (x — p, p — y) > 0 
for all у E C. Hint: Use (13.20) to show that

0 < 2 (x — p, p — y) + A||y - p||2 Vy € С, A e [0,1].

13.14. Give an example of convex sets C and D that are disjoint and both closed 
(but not compact) that have no strictly separating hyperplane.

13.15. Let C, D C Rn be disjoint closed convex sets (not necessarily compact). Prove 
that if the set E = C — D = {c — d | с E C, d E D} is closed, then there 
exists a strictly separating hyperplane, that is, there exist a E Rn and 6 E R 
such that (a, c) < b for every с E C and (a, d) > b for every d E D.

(i) Prove that C — D is convex and 0 E.

(ii) Assume that E is closed. Prove that there exists a point z E E such 
that if a = — z and bf = — aTa, then the half space H' = {x | (a, x) < bf} 
supports E and does not contain 0.

(iii) Prove that supceCaTc + ||a||2 < infdeD (a, d).

(iv) Let b = supceCaTc + ||a||2, and let H = {x | (a, x) < b}. Prove that 
С С H and D П H = 0.

13.16. Prove that if C, D C Rn are disjoint closed convex sets (but C — D is not 
necessarily closed), then there exists a separating hyperplane, but it need not 
be strict. Hint: Take an increasing sequence Cn of compact subsets of C 
producing sequences (ап)пен- Normalize the vectors so that vn = an/||an||. 
Show that vn converges and use the limit to define the desired half space.
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13.18. Draw the feasible polygon of the following linear optimization problem. Iden­
tify all the vertices, and use the fundamental theorem to solve the linear op­
timization problem (that is, check all the vertices). Give both the optimizer 
and the optimal value of the objective function.

minimize — 3ti — x2
subject to xi + 3#2 < 15,

2#i + 3#2 < IS, 
xi - < 4,
aq,x2 > 0.

13.19. Draw the feasible polygon of the following linear optimization problem. Iden­
tify all the vertices, and use the fundamental theorem to solve the linear op­
timization problem (that is, check all the vertices). Give both the optimizer 
and the optimal value of the objective function.

minimize — 4a? — by
subject to — x + у < 11, 

x + у < 27, 
2x + by < 90, 
ж, у > 0.

13.20. Kenny’s Toy Co. manufactures two types of toys: a GI Barb soldier and a 
Joey doll. A GI Barb soldier sells for $12 and uses $5 worth of raw materials. 
Each solider that is manufactured increases Kenny’s general overhead costs 
by $3. A Joey doll sells for $10 and uses $3 worth of raw materials. Each 
Joey doll built increases Kenny’s overhead costs by $4. The manufacture of 
soldiers and dolls requires two types of labor: molding and finishing. A soldier 
requires 15 minutes of finishing labor and 2 minutes of molding labor. A Joey 
doll requires 10 minutes of finishing and 2 minutes of molding labor. Each 
week, Kenny can obtain all the needed raw material but only 30 finishing 
hours and 5 molding hours of labor. Demand for GI Barbs is unlimited but 
at most 200 Joey dolls are bought each week. Formulate a linear optimization 
problem in standard form whose solution would maximize Kenny’s profit on 
these two toys.

13.21. Consider the following network, where the weights of each edge represent the 
carrying cost per unit of that edge.

Assume that the supply (or demand, depending on the sign) at the nodes is 
Ьа = 10, Ьв = 1, be = —2, bo = —3, Ье = 4, б/? = —10 and that the capacity 
of each edge is bounded by 6. Write a linear optimization problem in standard 
form whose solution gives the optimal (cheapest) flow in this network with 
these constraints.
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13.22. For the linear optimization problem in Exercise 13.17, solve the linear problem 
using the simplex method. Show the dictionary after each pivot. Give both 
the optimizer and the optimal value of the objective function. Verify that 
your answers agree with those of Exercise 13.17.

13.23. For the linear optimization problem in Exercise 13.18, solve the linear problem 
using the simplex method. Show the dictionary after each pivot. Give both 
the optimizer and the optimal value of the objective function. Verify that 
your answers agree with those of Exercise 13.18.

13.24. For the linear optimization problem in Exercise 13.19, solve the linear problem 
using the simplex method. Show the dictionary after each pivot. Give both 
the optimizer and the optimal value of the objective function. Verify that 
your answers agree with those of Exercise 13.19.

13.25. Solve the Kenny’s Toys linear problem of Exercise 13.20 using the simplex 
method. Show the dictionary after each pivot. Give both the optimal choice 
of how much of each toy to manufacture and the maximal profit.

13.26. Give an example of a three-dimensional linear minimization problem where 
the feasible set is closed and unbounded (hence nonempty) and

(i) the objective function has no minimizer;

(ii) the objective function has a unique feasible minimizer.

13.27. Solve the following linear problems using the simplex method. Show the 
dictionary after each pivot. If there is a solution, give a minimizer and the 
minimal value of the objective function. If there isn’t a solution, tell whether 
the problem is unbounded or infeasible.

minimize aq + 3a; 2 +
subject to -a?i - x2 - a?3 < -2, 

2a; i - x2 + 37з < 1, 
^1,^2, > 0-

minimize — 5a; i — 2x2
subject to 5a?i + 3a?2 < 15, 

3a?i + 5x2 < 15, 
4xi — 3a?2 < —12, 
a?i,x2 > 0.

(iii)
minimize 3x i — x2

subject to x2 < 4,
—2xi + 3a?2 < 6, 
aq,x2 > 0.
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13.28. Give an example of a three-dimensional linear optimization problem where

(i) the feasible set is empty;

(ii) the feasible set is closed, bounded, and not empty, but 0 is not feasible. 
Write an auxiliary problem whose solution gives a feasible vertex for 
starting the original problem.

13.29. Solve the following linear problem using Bland’s rule to resolve degeneracy. 
Show the dictionary after each pivot. Give the minimizer and the minimum 
value of the objective function.

minimize — lOaq + 57^2 + 9^3 + 24^4
subject to 0.5#i — 1.5^2 — 0.5^з + x± < 0,

0.5#i — 5.5^2 — 2.5^3 + 9^4 < 0, 
aq < 1,
#i,#2,#3,£4 > 0.

13.30. Solve the previous problem using lexicographic perturbation to remove all 
degeneracy. Note that the minimizing vertex for the perturbed problem does 
not lie in exactly the same position as the minimizer for the original, unper­
turbed problem, but it is identified by the same set of independent variables in 
the final, optimal dictionary, and hence those independent variables identify 
the minimizing vertex for the original problem.

13.31. Consider the linear problem

minimize cTx
subject to Лх 0,

x >: 0,

with the right-hand side of each constraint equal to zero. Show that either 
x = 0 is a minimizer or the problem is unbounded.

13.32.  Suppose that the initial dictionary of a given linear optimization problem is 
not degenerate and, when solved by the simplex method, there is never a tie 
for the choice of binding constraint.

*

(i) Can such a problem have degenerate dictionaries? Explain.

(ii) Can such a problem cycle? Explain.

13.33. Prove Proposition 13.6.3 that the dual of the dual is the primal, as follows:

(i) Beginning with a linear minimization problem in the form (13.12), com­
pute its dual and recast that as a minimization problem in the form 
(13.14).

(ii) Compute the dual of the new minimization problem and then recast it 
as a minimization problem. Verify that this agrees with the original 
primal problem.
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13.34. Give the dual of the linear problem

minimize
subject to

-Ж1 - x2
2xr + x2 < 3, 
xi + 3^2 < 5, 
2^i + 3^2 < 4, 
#i, X2 > 0.

By graphing the constraints, solve both the primal and dual problems and 
verify that the optimal values are equal.

13.35. Show, using the weak duality theorem, but without finding the optimizer or 
using the simplex method, that the linear problem

minimize — x± — 2x2 — ^3
subject to + #2 + 2#з < 4,

a;i,a;2,^3 > 0

has an optimizer, and give upper and lower bounds on the optimal value.
13.36. Give an example of a three-dimensional linear optimization problem (n = 

m = 3) where both the primal and its dual are infeasible.
13.37. For each of the linear optimization problems Exercises 13.17-13.19 provide 

the dual formulations (13.13). Use the optimal solutions for those primal 
problems (which you found earlier) and complementary slackness to find op­
timizers for the dual problems.

13.38. Write the dual of the linear problem Exercise 13.27(i) and solve the dual 
problem using the simplex method. Use your solution to the dual problem 
to construct a solution to the primal problem.

Notes
This chapter is inspired by [Vanl4], especially in the use of dictionaries instead 
of the more commonly used, but more confusing, tableaux. Other useful sources 
include [NW99, Biel5, Ped04] and [BV04]. The proof that Bland’s rule does not 
cycle as well as Exercises 13.29, 13.31, and 13.32 are from [Vanl4]. Klee and Minty’s 
famous example first appeared in [КМ72]. For more on these sorts of pathological 
examples see [PSZ09]. For more on the complexity of the simplex method see 
[Gol94, FS15, DS19].

For a proof of the infinite-dimensional versions of some of the theorems in 
this chapter from convex analysis, including the Hahn-Banach theorem (Theorem 
13.2.10) and the Krein-Millman theorem (Theorem 13.3.12), see [Con90, Pro08, 
Rud91].





Nonlinear Constrained 
Optimization

The more constraints one imposes, the more one frees oneself
—Igor Stravinsky

In the previous chapter, we considered optimization problems (13.4) with linear 
constraints, which resulted in feasible sets characterized by convex polytopes. In 
this chapter, we consider optimization problems with nonlinear constraints, which 
produce much more complex geometries. For a nonempty open set Q C Rn we 
consider two kinds of nonlinear constraints. One is called an equality constraint 
and is defined as the set of points satisfying H (x) = 0 for some vector-valued 
function H : Q —> R€. The other is called an inequality constraint and is defined as 
the set of points satisfying G(x) 0 for some vector-valued function G : Q —> Rm.

Given objective function f E G1(Q;R), we define the standard form of a non­
linear constrained minimization problem to be

minimize x6Q
subject to

/(*)
G(x) 0, 
Я(х) = 0.

(14-1)

Any point x G Q satisfying both G(x) 0 and 77 (x) = 0 is called a feasible point 
of the problem (14.1). The set &

/ = {x e Q | G(x) 0 and Я(х) = 0} C Q (14.2)

of feasible points is called the feasible set of the problem (14.1).
Constrained optimization problems are generally more difficult to solve than 

unconstrained problems. This is because the minimizer x*  E / need not lie in the 
interior of , and thus it need not satisfy Z?/(x*)  = 0. Another complication is 
that the feasible set can be nonconvex, which makes it more difficult to work with.

We begin the chapter with the problem of equality constraints and later treat 
the more complicated case where there are both equality constraints and inequality 
constraints.

621
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14.1 Equality-Constrained Optimization
We assume Q C Rn is open and an objective function f E C* 1 (ii) (iii)(Q;R) is given. The 
standard form of an equality-constrained optimization problem is given by

Example 14.1.3. If £ = 1 and n = 2, then the feasible set & = {(x,y) | 
H(x, y) = 0} C R2 is a one-dimensional subset of R2. The derivative DH(x, y) 
is a single row, so it has maximal row rank unless it vanishes. Here are several 
examples. See Figure 14.1 for plots of these curves.

(i) If H(x, y) = x2 — y2, then & = {(ж, у) E R2 | x2 = y2} is the union of the 
two lines {x = y} and {ж = — у}. The derivative DH(x, у) = [2# —2y] 
only vanishes at the origin, and the origin is contained in so the 
origin is a singular point of &, while every other point of & is regular.

(ii) If H(x, y) = x5 — y\ then the derivative only vanishes at the origin, and 
the origin lies on the curve so the origin is a singular point of the 
curve &, while every other point of & is regular.

(iii) If H(x, y) = x2 +y2, then & consists of a single point—the origin, which

(iv) If H(x,y) = x5 — y3, then & has a singular point at the origin, but & 
looks “smooth.”

minimize /(x) x6Q
subject to 71 (x) = 0,

(14-3)

where H : Q —> R^ is the equality constraint and no inequality constraint G is 
present. The feasible set for this problem is the set ^ = {xE Q | H(x) = 0}.

Definition 14.1.1. A point x*  E & is a local minimizer for the problem (14.3) 
if there exists an open neighborhood U CQ of x*  such that /(x) > /(x*)  for every 
x E D' П &. The point x*  € £ is a global minimizer for the problem (14.3) if 
/(x) > /(x*)  for every x E &.

14.1.1 Regular and Singular Points
A feasible set can have some special points that are not smooth. These could 
correspond to a sharp cusp, a place where two or more branches intersect, or be 
badly behaved in some other way. All of these “bad” points are where the derivative 
of H fails to have full rank.

Definition 14.1.2. Let H E C1(Q;R£). A point x E is called a regular point 
of & z/rank(Z?77’(x)) = £, that is, if DH(x) has full row rank. A point that is not 
regular is called singular.

is also singular.
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(v) If H(x, y) = x5 — x — y3, then the derivative DH(x^ у) = (5x4 — 1,3?/2) 
vanishes only at the points (x, y) = (±5-1/4,0), but these points do not 
lie on &, so there are no singular points of &. Every point of & is 
regular.

(vi) If H(x, y) = x5 + x — у\ then the derivative DH(x, y) = (5rr4 + 1, 3?/2) 
never vanishes, so there are no singular points of &. Every point of & 
is regular.

-1 о

Я(ж,?/)=ж2 + ?/2

Figure 14.1. Six plane curves, as described in Example 14-1.3. The first four ex­
amples have singular points at the origin, while the last two curves have no singular 
points. In the top row the singularities are visibly obvious. But in the bottom left 
case (example (iv)) the singularity is not easily visible.

Remark 14.1.4. We are primarily interested in the regular points of the feasible 
set of the minimization problem (14.3). Since the rank of DH(x) is never more 
than the number of columns, there can be no regular points if £ > n, that is, if 
the number of constraints is greater than the dimension of the space Rn. Further, 
if a regular point x e & satisfies t = n, then it is an isolated point (see Exercise 
14.5), which doesn’t make for a very interesting optimization problem. Therefore, 
we focus on the case where I < n. If there are n or more constraints, then it is 
often the case that some of them are redundant, and eliminating the redundant 
constraints may give I < n.
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14.1.2 The Geometry of Feasible Sets
Consider the minimization problem (14.3), where the equality constraint function 
H e C1(Q; R€) satisfies £ < n. We have £ equations, given by Zii(x) = 0, /z2(x) = 0, 
..., /г^(х) = 0, and n unknowns. In the case of affine constraints, if the rows of 
7?77(x) are linearly independent,53 then the feasible set is an (n — £)-dimensional 
affine space.

53In the affine case DH(x) is independent of x, so all of the points in the feasible set are regular 
points.

In the case of nonlinear constraints, if the rows of the derivative DH(x) at 
a point x e & are linearly independent (that is, x is a regular point), then we 
can express the constraints locally (meaning in a neighborhood of x) as an n — £ 
dimensional parametric surface (or manifold; see Volume 1, Section 10.3). In other 
words, there is an open set U C Rn-€, a neighborhood V of x, and an injective 
function a E C'1(t7; У) such that ot(U) = VD J.

This parameterization allows us to locally reduce the minimization problem 
(14.3) to an unconstrained minimization problem. We begin with the following 
lemma.

Lemma 14.1.5. Let H E (Q; R£) satisfy I < n. At any regular point x0 of the set

<F = {x E Q | Я(х) = 0}, (14.4)

there is a neighborhood o/x0 which is an (n — £)-dimensional parametric surface (or 
parametrized manifold; see Volume 1, Definition 10.3.1). In other words, there is an 
open set U C a point zq E U, and an injective C1 function ot : U -> Q C Rn 
with Im(a) = V П &, Dot injective, and a(zo) = xq.

Proof. Near any regular point xq of <F, since

~dhi dhi dhi ~
dxi 9X2 dxn
dh2 dh2 dh2

Г»Я(х0) = dxi dx2 dxn

dht> dhg. dht>
-dxi 8X2 dxn _

has rank £, there are I coordinates zi,..., i^ such that the square submatrix

- dhi dhi
dxir dxi2 
dh2 dh2
dxir dxi2

dhi - 
дхг{1 
dh,2 
dxi(>

is nonsingular. Let у = (3/1,..., ye) = (x^,... ,xif) and let z = (zi,..., zn-e) be 
the remaining x variables. Rearranging the order of the variables as necessary, we 
may write x = (z,y) and H : x with 7?y77(z,y) invertible. By
the implicit function theorem (Theorem 10.3.2), there are open sets U C Rn-£ and
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V C Rn, a point zq of C7, and an injective C1 function /3 : U —> such that 
x0 = (z0,/3(z0)) with #(z,/3(z)) = 0 for all z E U and cx(U) = V П &. Setting 
a(z) = (z,/3(z)) gives the desired result. □

Remark 14.1.6. The lemma guarantees that in a neighborhood V of a regular 
point there is always a parametrization ex : U —> Rn whose image is contained 
in the feasible set. This allows the local optimization of an equality-constrained 
problem to be reformulated into an unconstrained local optimization problem. In 
other words, if the regular point x*  is a local minimum of f constrained to V 
then it is also a local minimum of f о ex on U. This allows us to generalize the 
FONC to equality-constrained minimization problems, which we do in Section 14.2.

Remark 14.1.7. Although the implicit function theorem guarantees ex exists, it 
does not provide an explicit expression for ot. Luckily, it does provide an explicit 
expression for the first derivative Dex via (10.16), which is what we need to derive 
a constrained FONC; see Section 14.2 for details.

14.1.3 Tangent Spaces and Normal Spaces of Parametrizations
Throughout the remainder of this section, we assume that H E C'1(Q; R£) with £ < 
n, that the feasible set is (14.4), and that xq E & is a regular point. From Lemma 
14.1.5, there exists an open neighborhood U C Rn-£ of xq and a parametrized 
surface (or manifold) ex : U —> Rn with Im (a) = V ПД Dex injective, and a(z0) = 
x0.

For any a E Rn-€, we can define a line in U of the form cr(t) = at + zq. This 
defines a curve y(t) = a(cr(t)) in whose derivative defines a tangent vector of 
& at Xq

V = 7'(J) = -^a(cr(£)) = Da(zo)cr'(0) = Da(z0)a.

The space of all such tangent vectors is equal to ^(Da(x0)): see Volume 1, Sec­
tion 10.3.2, for more details. This motivates the following definition.

Definition 14.1.8. The tangent space TXo^ of the parametrization ex : U —> Rn 
at xq = a(zo) is the range of Do(zq) in Rn.

As an immediate consequence of the previous discussion, we have the following 
proposition.

Proposition 14.1.9. If x is a regular point of and if v E Tx^, then there is
an interval (—6,6) C R and a curve 7 : (—6,6) —> in & that is differentiable at 
0 and such that 7(0) = x and 7'(0) = v.

Proof. Let zq E U and let ex : Rfc —> Rn be a parametrization of & near x with 
a(z0) = x0. By definition, any v E T^M is in the range of Da(z0), so there 
is a vector w E Rfc such that Dn(z0)w = v. Letting = a(zo + tw) gives
7(0) = a(z0) = x0 and 7'(0) = Da(z0)w = v. □



626 Chapter 14. Nonlinear Constrained Optimization

The next lemma gives a characterization of the tangent space in terms of the 
function H instead of the parametrization a.

Lemma 14.1.10. = JY (ГЯ(х0)).

Proof. Since 77(a(z)) = 0 for all z E /7, the chain rule gives

Z>(tf(a(z0))) = W(x0)Oa(z0) = 0.

Since every tangent vector v is of the form v = Da(zo)a for some a E Rn-^, we 
have DH(xq)v = 0a = 0. Hence, TXo<F q jy (D77(x0)).

For equality, it suffices to show that dimTXo = dim^ (Da(xo)) = n — £. Let 
a(z) = (z,/3(z)) be the parametrization given in the proof of Lemma 14.1.5. A 
direct computation gives Da(zo) = J , and this clearly has rank n — £. □

Definition 14.1.11. The normal space of the regular point xq E & is 
the orthogonal complement of the tangent space C Rn; that is, =
Txo^.

Corollary 14.1.12. NXo& = TXo^r = jY (рН(х0)У>~ = (Г>Я(х0)т).

Remark 14.1.13. The observation that the tangent space and normal space are 
orthogonal is a generalization of the fact that the gradient of a function is orthogonal 
to level sets. Here the gradient generalizes to D77(x0)T and the tangent vectors to 
the level sets generalize to the tangent space at xq.

Nota Bene 14.1.14. Do not confuse the two complementary ways of think­
ing about the feasible set & and its tangent space.

One way to think about it is parametrically, that is, as a parametrized 
manifold a : [7 —> Rn. This is the approach taken in Volume 1, Chapter 10. 
In the parametric formulation, the tangent space at a regular point xq = ct(zo) 
is

Txo^" = (Pa(z0)),

and the columns of Dn(zo) are all tangent to & at xq.
Another way to think about & is implicitly, that is, as the zero set of the 

function H : Q —> В 7 This is the most natural way to think about a manifold 
defined by equality constraints. In the implicit formulation the tangent space 
at a regular point xq is given by

ТХо^ = еЖ(7?Я(хо)),

and the rows of DF(x0) are normal to the tangent space of & at x0.
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Example 14.1.15. If H : R3 —> R is given by H(x^y^z) = 9xz — 7y2, then 
the surface & = {(ж,?/,z) E R3 | H(x,y,z) = 0} can be parametrized by 
a(t, u) = (t2,3izt, 7u2). The point xq = a(l, 1) = (1,3,7) E & is a regular
point of & because DH(xq) has rank one.

In the parametric formulation we have

2
3
0

0 
3 
14

whereas in the implicit formulation we have

Тх0^ = ^(РЯ(1,3,7)) = ^([63 -42 9]).

The columns Da((l, 1)) are orthogonal to DJ?(xq)t and span ._/K (D/f (xq)), 
while the vector D7L((xq))t is normal to & at xq.

Example 14.1.16. If H : R3 —> R2 is given by H(x) = (hi(x), Zi2(x)), then

Г>Я(х0) = Di/ii(x0) 
£>i/i2(x0)

(xo) 
£>2/i2(xo)

z»3/ii(xo) 
D3hi (x0)

has maximal row rank (two) if and only if the vectors -D/ij (x0)T and D/i2(xo)T 
are linearly independent. Lemma 14.1.10 shows that each _D/i,(xq) is normal 
to the surface S) = {x | hj(x) = 0} at the point xq, so a point of Si П Sz is 
singular if and only if the normal to Si at xq is a scalar multiple of the normal 
to Si at xq. An example of this is depicted in Figure 14.2.

14.2 Lagrange's First-Order Condition
Chapter 12 discussed the first-order necessary condition (FONC) for an optimizer 
in an unconstrained optimization problem; see Theorem 12.1.6. In this section, 
we generalize that result to the case of equality-constrained optimization problems 
(14.3). The main result is Lagrange’s first-order condition, which gives a necessary 
condition similar to that for unconstrained problems.

An important feature of Lagrange’s first-order condition is that the necessary 
condition does not require an explicit parametrization of the feasible set. In other 
words, it doesn’t require reducing the constrained optimization problem into an 
unconstrained optimization problem.

14.2.1 Lagrange's First-Order Condition

Theorem 14.2.1 (Lagrange’s First-Order Necessary Condition). Letx*  be 
a local minimizer of the equality-constrained optimization problem (14.3). If x*  is
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Figure 14.2. Intersection of two surfaces, defined by hi = 0 (a plane) and hz = 0 
(the saddle shape), respectively. The intersection is a curve in R3. At every point x 
in the plane hi = 0 the vector Dhi(x)T (blue) points directly upward (normal) from 
the plane. Similarly, at every point x of the surface Л2 = 0 the vector Dhz(x)T 
(red) points in a direction normal to the surface. At the point xi, and at most other 
points of the curve of intersection, the vector Dhz(xi)T is linearly independent of 
Dhi(xi), so the matrix DH(xi) has maximal rank (rank two) at x1? and the point 
is regular. But at xq the vector Dhz(xo)T (red) and the vector 2?/zi(xq) are both 
vertical, and so Dhz(xo)T is a scalar multiple of 2?/zi(xq)t. This means DH(xq) 
only has rank one at xq, and therefore xq is a singular point of the curve.

a regular point of the feasible set J = (x E ln I Hix) = 0} C Q, then there exists 
Л*  e R€ such that

Df(x*)  + А* Т£>Я(х*)  = 0. (14.5)

Proof, Let ct : U Rn be a parametrization of the feasible manifold near 
x*,  with U open, and with a(z*)  = x*  as given by Lemma 14.1.5. The FONC 
(Theorem 12.1.6) for f о ct : U —> R guarantees that D(f о a)(z*)  = 0, and the 
chain rule gives

о = D(f O a)(z*)  = £>/(x*)£>a(z*).

Since Я (£>a(z*))  = Tx* we have 2?/(x*) T e 7VX* by Lemma
14.1.10. Therefore 2?/(x*) T = 2?JJ(x*) Tv for some v e Rn. Setting Л*  = —v gives 
the result. □

The preceding theorem provides a necessary condition for a regular point x to 
be a local minimizer or maximizer of f on the feasible set , namely that the 
condition in (14.5) is satisfied. Such a point x is called a critical point of the 
equality-constrained optimization problem (14.3). In the next section we develop 
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both necessary and sufficient second-derivative tests, which enable us, in many 
situations, to determine whether a given critical point is a maximizer, a minimizer, 
or neither.

Remark 14.2.2. We can give a nice geometric interpretation of the Lagrange first- 
order condition in the special case of single equality constraint /z(x) = 0; for an 
illustration, see Figure 14.3. At each feasible point x, the gradient 2?/z(x)T is 
normal to the locus &. Similarly, the gradient 2?/(x)T of the objective function is 
normal to the contour lines of the objective and points in the direction of greatest 
increase. For a local minimizer x* , the Lagrange first-order condition guarantees 
that the two gradients are parallel. They could point in either the same direction or 
opposite directions, but they must be parallel. If the two gradients are not parallel 
at a point x, then —2?/(x)T (which points in the direction of greatest decrease) 
can be orthogonally projected onto the tangent space of and moving in that 
direction along & will decrease the value of the objective function.

Figure 14.3. I/ a problem has a single equality constraint h, then for each point x 
the gradient 2?/i(x)T (red arrows) is normal to the feasible set & (red curves). The 
gradient Df(x)T (black arrows) of the objective is normal to the contour lines of the 
objective (light purple and green). In the left panel the point x* is a local minimizer, 
and the Lagrange first-order condition guarantees that the two gradients are parallel. 
In the right panel, the point Xi is not a local minimizer, and the gradient 2?/(xi)T 
is not parallel to Dh(xi)T. For more see Remark 14-2.2.

Remark 14.2.3. Any maximization problem of the form

maximize /(x)
subject to H(x) = 0

(14-6)

can be easily adapted to standard form (14.3) by changing the sign of the objective 
f. If x*  is a local maximizer of (14.6), then x*  must be a local minimizer of — f 
with the same equality constraint. Therefore, the Lagrange condition (14.5) holds 
for equality-constrained maximizers.
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Example 14.2.4. To maximize the volume V(x, ?/, z) = xyz of a rectangular 
box given a fixed surface area S, we solve the minimization problem

minimize /(ж, у, z) = —xyz
subject to 77 (ж, у, z) = 2(xy + yz + xz) — S = 0.

By Lagrange’s condition (14.5), a minimizer x*  = (x,y,z) must satisfy

0 = D/(x*)  + A* TDH(x*)  = —(yz, xz, yx)y + A*2(?/  + z, x + z, у + rr)T

or, equivalently,

yz = 2X*(y  + г), xz = 2A*(rr  + z), and xy = 2X*(x  + y).

Multiplying the first equation by x, the second by y, and the third by z gives 
three equalities for xyz. Setting these equal and simplifying gives the relations

о = x(y - z) = y(x -z) = z(x - y).

If any coordinate is equal to 0, then the volume is 0, which is not a maximizer. 
Thus, x = у = z = ^/S/6 is the maximizer—a perfect cube.

Example 14.2.5. We find the points on the unit circle {x G R2 : l|x||2 = 1} 
that are closest to, and farthest from, the point p = (3,4). The unit circle 
corresponds to the equality constraint 77 (x) = ||x||2 — 1 = 0. The objective 
function is the distance function ||x — p||2, but the optimizer of the distance 
function is the same as that of its square, so we can assume that /(x) = 
IIх — PII2-

We have D7f(x) = 2xT and D/(x) = 2(x —p)T, so the Lagrange condition 
is equivalent to Ax = p — x. Thus for x = (ж, у), we have

  — —  7 x-------------у

which reduces to
3 _ 4
x y'

Solving for у in terms of x and substituting into the constraint 77 (x) = 0 gives

3 , 4 x = ±- and у = -x.5 3

It is straightforward to check that (|, |) is the minimizer and (— |, — |) is the 
maximizer.
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14.2.2 The Lagrangian

Definition 14.2.6. The Lagrangian corresponding to the equality-constrained op­
timization problem (14.3) is the function : Q x R€ —> R given by

^(х,А) = /(х) + ЛтЯ(х). (14-7)

The Lagrangian is a convenient tool for lifting the constrained optimization 
problem (14.3) to a higher-dimensional space, where it becomes an unconstrained 
problem. In the proof of the Lagrange condition, we used an explicit parametrization 
of the feasible manifold & to convert (14.3) into an unconstrained problem, but the 
Lagrangian allows us to do this without reference to an explicit parametrization of 
the feasible manifold. Critical points of the Lagrangian correspond to critical points 
of (14.3). More precisely, if 2Z5f(x*,  A*)  = 0 for some pair (x*,A*),  then

Р^(х*,А ‘) = [r>/(x*)  + А* Т£>Я(х*)  Я(х*) т] = О,

which is a restatement of (14.5) and the constraint 77 (x*)  = 0. Thus, for a regular 
point x*  to be a local minimizer (or maximizer), it is necessary that there exist A*  
such that 2Z5f(x*,  A*)  = 0.

Nota Bene 14.2.7. Although the optimal points of f occur at critical points 
of the Lagrangian, these critical points are not necessarily optimizers for the 
Lagrangian. In fact, they are usually saddle points of the Lagrangian.

Example 14.2.8. Recall that the multinomial distribution (see Section 5.7.5) 
comes from a sequence of n repeated trials of a categorical distribution with 
parameters p = (pi,P2, • • • ,Pfc) t 0, such that Yli=iPi = 1- support 
consists of A;-tuples of nonnegative integers x = (жь^,...,^), satisfying 
Z2 xj = n- Here xj represents the number of experiments that had result 
j. The p.m.f. is

Ж1,Ж2, • • • ,Xk
Xi X-2 Xl?

Pl P2 '-’Pk -

Given a draw x = (a?i,... ,rr^) from a multinomial distribution with un­
known parameters p, we wish to compute the MLE for the parameters p. To 
do this we must maximize the log-likelihood of the multinomial

n
#i,#2, • . . ,Xk^(p) = log

к
+ '^xjiogpj

subject to the equality constraint 2^i=iPi = 1 and the inequality constraint 
p 0. Since the first term of the log-likelihood has no p dependence, it has 
no effect on the choice of maximizer, and so we can disregard it. Thus the
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MLE of p is the solution of the optimization problem 

minimize — xj ^o&Pj 
subject to = 1, (14-8)

Pj > 0 Vj.

No pj can be zero, since that would make the objective go to infinity, and so 
we can always assume each pj > 0. Thus, we assume Q = {p € I P >- 0}. 
On Q we have the single equality constraint 2^j=iPj = 1- The Lagrangian is

fc / / к \ \
J?(p,A) =-^xjlogpj+A j-1 • (14-9)

j=i \ \J=i / /

The first-order condition requires

0 = Dp^(p,A) = -[^ * ••• ^]+A[l 1 ••• 1].

Thus we have Xj = Xpj for each j. Taking the sum gives 

к к

n = 52^ = = A-
j=l j=l

It follows that any minimizer p must satisfy pj = for each j E {1,2,...,A:}.

Example 14.2.9. We can generalize Example 14.2.5 to the problem of finding 
the points on the zero set & = {x E | Я(х) = 0} which are closest to and 
farthest from a given point p . In the special case that & is a convex set 
C or the boundary of a convex set C, then the minimizer x*  is exactly the 
projection of p to C.

Since the objective function is /(x) = ||x — p||| and the constraint is 
Я(х) = 0, the Lagrangian is

&(x, A) = xTx - 2pTx + pTp + АтЯ(х).

Taking the derivative yields

ГЩх, A) = [2xT - 2pT + ATDH(x) Я(х)] .

Thus, a necessary condition for a minimizer is that РЯ(х)тА = 2(p — x), 
which implies that p — x E & (ЯЯ(х)т) = In other words,
the line segment p — x must be orthogonal to the tangent space Tx^.
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14.3 Lagrange's Second-Order Conditions
Just as in the unconstrained case, there are second-order conditions for equality- 
constrained optimization. In this section we state these conditions as theorems, 
provide some examples, and then rigorously prove the theorems.

14.3.1 Statement of Results and Examples
Recall that the second-order necessary and sufficient conditions relied on the Hessian 
of the objective function. In the equality-constrained case, they rely on the Hessian 
of the Lagrangian.

Theorem 14.3.1 (Lagrange Second-Order Necessary Condition). Letx*  be 
a local minimizer of the equality-constrained optimization problem (14.3), where f 
and H are both C2 on a neighborhood ofx*.  Ifx*  is a regular point of & with corre­
sponding Lagrange multiplier A*  e R€ satisfying (14.5), then vTD^(x*,A*)v>0  
whenever v e Tx*

Theorem 14.3.2 (Lagrange Second-Order Sufficient Condition). Consider 
the equality-constrained optimization problem (14.3). Assume there exists x*  e Rn 
and A*  e R£ such that (14.5) holds. If f and H are both C2 in a neighborhood of 
x*  and vT2?2j£f(x*,  A*)v  > 0 for all nonzero v e Tx*̂,  then x*  is a strict local 
minimizer.

Remark 14.3.3. As in Remark 14.2.3 with the first-order condition, we can pro­
vide second-order necessary and sufficient conditions for maximization problems of 
the form (14.6). In particular, by changing the direction of the inequalities, we have 
vTD^(x*,  A*)v  < 0 for the SONC, and vTD^(x*,  A*)v  < 0 for the SOSC. For 
more details, see Exercise 14.13.

Example 14.3.4. Consider again the problem of finding the MLE for the 
multinomial distribution (see Example 14.2.8). Recall that the Lagrangian 
Jf(p, A) is given by (14.9) and has the derivative

Dp^(p,A) = -[^ £ ... ^]+A[l 1 ... 1].

Thus for all p > 0, we have

Xi/Pi o o ••• o
0 Х2/Р2 0 ... 0

Г>2^(р,Л)= 0 0 ••• 0 >0

.0 0 0 ... Xnjp2n_

Therefore, this unique critical point is a minimizer.
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Remark 14.3.5. The SOSC does not require the Hessian 2?2Jjf(x) of the La­
grangian at the critical point x to be positive definite but rather that vT2?2j£f(x* , 
A*)v  is positive for each v 6 . However, if the Hessian is positive definite, then
vT2?2Jjf(x*,  A*)v  > 0 holds for all v 0. Thus, we can think of a positive definite 
Hessian as a “strong” sufficient condition.

Example 14. 3.6. Consider the problem 

minimize — ~ ^2^3 — # 1^3
subject to h = Xi + X2 + £3 — 3 = 0.

The Lagrangian is

^(Ж1,Ж2,Жз,Л) = -Ж1Ж2 - #2^3 -Ж1Ж3 + A(#i +#2 +^з — 3)

with

DJzf (rrq, a?2, ^з? A)

= [A — X2 - X3 X — Xi — X3 A — Xi — X2 X\ + X2 + X3 — 3] .
A little algebra shows that the Lagrange first-order condition is satisfied only 
at (1,1,1). The Hessian (in x) is 

which is not positive definite, because its eigenvalues are —2, 1, and 1. How­
ever, the feasible set & is a plane in R3 with normal vector n — D^h = (1,1,1), 
so a vector v 6 R3 is a tangent vector if and only if nTv = 0 or, equiva­
lently, tq + V2 + V3 = 0. For any tangent vector v, we have vTZ?2Jzfv = 
V1(—V2 — v3) + V2^~Vi — V3) + ^з(—г?1 — V2) = vl + v% + V3 > 0 with equality 
if and only if v = 0. Therefore the Lagrange SOSC guarantees that (1,1,1) 
is a local minimizer.

Example 14. 3.7. Assume that the benefit (utility) enjoyed by consuming 
the amounts x and 7/, respectively, of two goods is given by the function 
U(x,y) = aln(rr) + 61п(т/). The available budget for these goods is fixed (say, 
A dollars) and the unit cost of the goods is px and py, respectively, imposing 
the constraint xpx + ypy = A.

To maximize utility let Q = {(ж, 7/) G R2 | (x,y) >- 0} (note that zero 
consumption in either category produces —00 utility) and solve

minimize —U(x,y) = —aln(a?) — Ь1п(т/) (rr,?/)eQ
subject to xpx + ypy — A = 0.

(14.10)
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It is easy to solve for у in terms of a?, which would turn this into an uncon­
strained optimization problem. But we leave this as a constrained problem to 
illustrate how to apply the Lagrange second-order criterion.

The Lagrangian is

(x, y. A) = —a ln(a?) — 61n(?/) + X(xpx + ypy — A).

Its derivative is DS£(x, г/, A) = [—^ + Арж 
critical point must satisfy

-у + xPy xPx + УРу- A]- A

A = a = and
\XPx) \УРу)

ypy = A - xpx.

Solving for X, 7/, and A gives

aA bA
рх(а + ЬУ У ру(а + ЬУ

1 ч a~\~band Л =
A

as the only critical point.
The second derivative with respect to x = (a?, y) is

D2& = afx2 0
6/?/2 for all nonzero x and г/,0 > 0

so the Lagrange SOSC guarantees that this critical point is a local minimizer 
of (14.10).

Example 14. 3.8. Recall the problem of Example 14.2.9, of finding the points 
on the zero set & = {x E Rn | H(x) = 0} which are closest to and farthest 
from a point p 0 . In this problem, the second derivative is

D2̂  = 21 + АВ2Я(х).

Consider the case where H : R2 —> R is 7/(x) = x2 — у2 — 1, and p = 
[8 2\/з]Т- In this case we haveDH(x) = [2a? —2т/] and D2 77 (x) = [q _0]. 
The Lagrange FONC is

D7L(x)TA = 2(p — x).

One can easily check that the point x = (2, —л/3) satisfies the FONC with 
A = 3. But for the second order condition, we have = [^ _^1, which is 
indefinite.

The tangent space at x is the kernel

Л (DH(x)) = JY ([4 -2^/3]) = span



636 Chapter 14. Nonlinear Constrained Optimization

Thus, every vector v G is of the form v = a(\/3, 2). Checking this in 
the Lagrange second-order condition gives

vtD2J^v = a2 (24 - 16) > 0,

and so x is a local minimizer by Lagrange’s SOSC.

Example 14. 3.9. Consider again the problem in Example 14.2.9, but where 
H : Rn —> R is Я(х) = xTx — 1, so that & = {x | H(x) = 0} is the unit 
sphere. We have ЛЯ(х) = 2xT and D2Lf(x) = 21. The necessary condition 
for an optimizer is that W(x)TA = 2(p — x), so we have x = p/(l + A) for 
some A. Combining this with Я(х) = 0 gives 1 = pTp/(l + A)2 or

A = ±л/pTp — 1 and x = ±77^77.

IIpII
The Hessian is = (2+2A)7. which is positive definite if A > —1, which 

occurs if we take A = ||p|| — 1, which gives x = . Therefore Lagrange’s
SOSC guarantees that x = is a minimizer. Similarly, Lagrange’s SOSC 
guarantees that x = — is a maximizer.

14.3.2 Proof of the Lagrange Second-Order Necessary Condition
We prove the Lagrange SONC, Theorem 14.3.1.

Proof. Let v e Tx* where x*  e^isa local minimizer. By Proposition 14.1.9, 
there exists a curve 'y(t) in & with 7(0) = x*  and 7,(0) = v. Moreover, t = 0 is a 
local minimizer of ф(1) = /(7(f)), and thus > 0. Since

^(0) = 7'(0)T£2/(7(0))7'(0) + £>/(7(0))7"(0) = vTD2/(x*)v  + D/(x*) 7"(0), 

we have
vtD2/(x*) v + D/(x*) 7"(0) > 0. (14.11)

Moreover, since f/(7(t)) = 0 (and writing f/(x) = [hi(x) /гг(х) ••• /г^(х)]Т), 
we have

0 = —A* TH(7(t)) _ =£A>-№(7(t))7'(t)) _ 
t—0 j —1 f—о

e
= £ A, (Y(0)tP2^(7(0))7'(0) + РЛД7(0))7"(0)) 

J=1
£ \

^2 AjvtD2/ij(x*) v + Л* ТРЯ(х*)7"(0),  (14.12)
/
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where Л*  = [Ai A2 ••• A^]T. Adding (14.11) and (14.12) yields

(£ \
D2/(x’J + ^2 Aji>2Mx*)  v + (w(x*)  + А* Т£>Я(х*)}  7"(0) > 0.

j=i /

Lagrange’s first-order condition (14.5) gives vT2?2j£f(x*,  A*)v  > 0, since

e
D^?(x*,  A*)  = D2/(x*)  + ^2 AjB2Mx*)-  0

J=i

14.3.3 Proof of the Lagrange Second-Order Sufficient Condition
We prove the Lagrange SOSC, Theorem 14.3.1.

Proof. Suppose that x*  e & satisfies the hypothesis yet is not a strict local 
minimizer. This implies there exists a sequence {x/c}^L1 C & \ {x*}  that converges 
to x*  such that f (x^) < f (x*).  Let

Sfc = Xfc - X and sfc = -—-. 
1Ы1

Note that is bounded and thus has a convergent subsequence s^. —> s*.  By
reindexing the subsequence we may assume that x/~ —> x*  and —> s*.  Note that 
JJ(xfc) — Я(х*)  = 0 for each к e N. Dividing by ||sfc|| and taking the limit gives 
2?JJ(x*)s*  = 0, which implies that s*  e Tx*

Taylor’s theorem (Theorem 10.3.8) gives

/(xfc) - /(x‘) = £>/(x*)e fc + [ (1 - t)£fc£>2/(x*  + fefc)efc dt, 
Jo

and if H = (/ii,..., ЛД then for every j e {1,..., m} we also have

0 = D/zj(x*)sfc  + f (1 — t)e^D2hj(x*  + tsk)^k dt. 
Jo

The second equality holds since И(х&) = H(x*)  = 0. This implies

/(xfc) -/(x*)  = ||xfc - x*||£>/(x*)s fc + ||xfc - x*|| 2 f (1 -f)SfcD2/(x*  + tek)skdt 
Jo

and

0 = ||xfc - x*\\Dhj(x*)s k + ||xfc - x*|| 2 f (1 —t)s[D2hj(x*  +tek)skdt.
Jo

Letting A*  = (Ai, A2,.. •, A^) and multiplying the second equality by A7, summing 
over j, and then adding to the first equality gives

/(xfc) - /(x‘) = ||xfc - X*  II2 [ (1 - f)sl£>2^(x*  + tek, A*)s fc dt. (14.13)
0
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By hypothesis, we have (s*) T2?2j£f(x*,  A*)s*  > 0. Since is C2 in a neighborhood 
of (x*,A*),  it follows that (x, A*)v  > 0 holds for x in a neighborhood of
x*  and v sufficiently close to s*.  Thus, if к sufficiently large, then the integral is 
positive. Hence, the right-hand side of (14.13) is positive, whereas the left-hand 
side is nonpositive, which is a contradiction. Thus, x*  e & is a strict local mini- 
mizer. □

14.4 Karush-Kuhn-Tucker First-Order Conditions
We now turn to the case where the feasible set is defined by both equality constraints 
and inequality constraints. Throughout this section and the next we consider con­
strained optimization problems in standard form (14.1), where / is continuously 
differentiable on the open set Q C Rn. We also assume that G : Q —> Rm and 
H : Q —> are continuously differentiable and have the form

G(x) =

'91 (x)' 

92 (x)
and =

’/ll(x)‘ 
h2 (x)

_5m(x)_ _MX).
An example of an inequality-constrained problem is depicted in Figure 14.4.

Definition 14.4.1. A point x e Q is a feasible point of the optimization problem 
(14.1) if it satisfies all the constraints, that is, if G(x) 0 and H(x) = 0. The set 
& of all feasible points is called the feasible set and satisfies (14.2). A point x*  e & 
is a local minimizer for the problem (14.1) if there exists an open set U CQ such 
that /(x) > /(x*)  for every x eU П . The point x*  is a global minimizer for the 
problem (14.1) if f(x) > /(x*)  for every x e &.

The Karush-Kuhn-Tucker (KKT) conditions, given below in Theorem 14.4.5, 
provide conditions for inequality-constrained optimizers analogous to the Lagrange 
conditions for equality-constrained optimizers.

14.4.1 The Locus of Binding Constraints
Before we can describe the KKT conditions, we need some definitions about points 
that satisfy the binding constraints.

Definition 14.4.2. Given a point x e &, an inequality constraint gj(x) < 0 is 
binding (or active,) at x if gj(x) = 0. If instead gj(x.) < 0, then the constraint is 
nonbinding (or inactive) at x. Let J(x) denote the index set of binding constraints 
at x, that is,

Дх) = {J I %(x) = 0}.

The locus of binding constraints at x is the set

^(x) = {y e Q I H(y) = 0 and g,(y) = OVf 6 J(x)} c



14.4. Karush-Kuhn-Tucker First-Order Conditions 639

Figure 14.4. An inequality-constrained optimization problem in R2 with con­
straints #i(x) < 0 and g2(x) < 0. The minimizer is x*. For more on this figure see 
Example 14-4-4-

A point x is a regular point for the optimization problem (14.1) if it is regular for 
<F(x), that is, if the set

{Dhi(x)}ei=1 U {£>ft(x)}>€J(x)

is linearly independent. If x is regular, let T(x) = TxJ^(x) be the tangent space to 
<F(x) at x.

Remark 14.4.3. If the inequality constraints are all affine, then the binding (ac­
tive) constraints at a point x are the same as the active constraints defined in 
Definition 13.3.8.

Example 14.4.4. Figure 14.4 illustrates an inequality-constrained optimiza­
tion problem in R2 with constraints #i(x) < 0 and <72 (x) < 0. The feasible set 
& = {x I g(x) < 0} is shaded in color (lower left). The objective function f is 
shown as a contour plot with smaller values colored darker (more purple) and 
larger values colored lighter (more yellow). The point x*  is the minimizer of 
this problem. The point xq is not the minimizer for this problem because it is 
not feasible, but it would be the minimizer if the problem were unconstrained.

The only binding constraint at the point x*  is g±, and so J(x*)  = {1} 
and the locus & of binding constraints at x*  is the red curve {x | #i(x) = 0}. 
There are no active constraints at xi, so J(xi) = 0. The binding constraints at 
x2 are g\ and g^, so J (^2) — {1,2}, and the locus & of binding constraints at 
x2 is the singleton set {x2} (the intersection {x | gi(x) = 0} П {x | g2(x) = 0} 
of the red and blue curves).
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14.4.2 The KKT First-Order Conditions
We can now give the KKT first-order conditions, which give a powerful set of 
necessary conditions for a local minimizer.

Theorem 14.4.5 (KKT First-Order Conditions). Assume that x*  e is 
a local minimizer of the constrained optimization problem (14.1). If x*  e & is a 
regular point, then there exists Л*  e R£ and pL*  e Rm such that

(i) B/(x)  + (Л) т2?Я(х)  + (/z) TBG(x)  = 0,* * * * *

(ii) pt 0, and*

(iii) pLgi(x)  = 0 for all i e {1,... , m}.**

We refer to (i)-(iii) as the KKT conditions of (14.1).

We give the proof of the KKT first-order conditions in Section 14.4.5.

Example 14.4.6. An illustration of the KKT conditions in R2 for the case 
of no equality constraints (£ = 0) and three inequality constraints G : R2 —> 
R3 is given in Figure 14.5. The local optimizer is x*  in that figure. The 
binding constraints at the point x*  are g± and g^, and the locus & of binding 
constraints at x*  is the singleton set {x*}.  Because g% is not binding at x*,  
the multiplier is 0 (by condition (iii)), which means that condition (i) does 
not involve the gradient of g%. The KKT conditions guarantee that

W) + /ij^i(x*)  + M2^2(x*)  = 0

with /4,/4 — This is equivalent to saying that D/(x*) T = -д|Р^(х*) т — 
/12^)^2(x*) t, which means that the gradient D/(x*) T (black arrow) is a nega­
tive linear combination of the two constraint gradients 79gi(x*) T (red arrow) 
and D^(x*) T (blue arrow).

Contrast this with the situation in Figure 14.6. The point Xi cannot be a 
minimizer because the gradient Z)/(x*) T is not a negative linear combination 
of the two binding-constraint gradients D#i(x*) T and D^2(X*) T- But pro­
jecting —Df(x*) J orthogonally onto the tangent space of one of the binding­
constraint loci (the red curve) gives a vector (orange) that points in a direction 
that decreases f.

Remark 14.4.7. The feasibility conditions Я(х*)  = 0 and G(x*)  0 are some­
times called the primal feasibility conditions, to distinguish them from the two KKT 
conditions 2?xJjf(x*,  A*, /1*)  = 0 and pL*  0, which are sometimes called the dual 
feasibility conditions. The third KKT condition that /z*̂(x*)  = 0 for all i is called 
complementary slackness and is considered neither primal nor dual. Exercise 14.22 
shows that these conditions correspond exactly to their counterparts of the same 
name for linear optimization. We discuss duality in more depth in the next chapter.
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Figure 14.5. A local optimizer x* of an inequality-constrained optimization prob­
lem in R2 with two binding constraints. The first-order KKT constraints guarantee 
that the gradient (black arrow) is a negative linear combination of the two
binding-constraint gradients 2?#i(x*)T (red arrow) and Dg2(x*y (blue arrow). For 
more details, see Example 14-4-6-

Figure 14.6. The point Xi in this inequality-constrained optimization problem 
in R2 cannot be a minimizer because the gradient Df(x.i)T (black arrow) is not a 
negative linear combination of the two binding-constraint gradients (red
arrow) and Dg2(x.fiy (blue arrow). For more details, see Example 14-4-6-
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14.4.3 Examples

Example 14. 4.8. Consider the problem

minimize
subject to

f(x, y) = (x- 2)2 + 2(y - I)2 
x + 4?/ — 3 < 0, 
у — x < 0.

The KKT conditions require that there exist = (/ii, /12) 0 such that

[2(z - 2)

(14.14a)
(14.14b)

(14.14c)

To solve this, consider the possible cases:

(i) If /ii = /12 = 0, then (14.14c) implies that x = 2 and у = 1. But this is 
not feasible.

(ii) If /ii = 0 and /12 / 0, then (14.14b) implies that x = y. Substituting 
into (14.14c) gives 2x — 4 = /12 = —4rr + 4. Hence x = у = 4/3 and 
/12 = —4/3, which does not satisfy the nonnegativity condition for /1.

(iii) If /12 = 0 and /11 / 0, then (14.14a) implies that x = 3 — 4?/, and 
substituting this into (14.14c) gives 2(3 — 4y — 2) = —/11 = у — 1. Hence 
у = I, x = I, and /11 = i, which is feasible.

(iv) If /11 and /12 are both nonzero, then x = у and x = 3 — 4//, so x = у = | 
and /1 = (||, —||). But this does not satisfy the nonnegativity condition 
for /1.

Therefore, the only case with a feasible point satisfying the KKT conditions 
is (iii), and the only candidate for a minimizer is (|, |).

Example 14. 4.9. Consider the problem

minimize f(x,y) = x2 + y2 + z2 
subject to Л(х) = x + у + z — 1 = 0, 

z < 0.

The KKT conditions require that there exist /1 > 0 and A 6 I such that

fiz = 0, (14.15a)
[2a; +A,2?/ +A,2z +A + ju]T = 0. (14.15b)
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Equation (14.15b) and a little algebra give z + -^/i = x = y. If z / 0, 
then /z = 0, which gives x = у = z. Combining this with /z(x) = 0 gives 
x = у = z = which is not feasible (because z > 0).

If /1 > 0, then we have z = 0 and 2x = 2y = 1, so x = у = |. This is the 
only feasible solution to the KKT constraints.

Example 14.4.10.*  Consider the problem

minimize /(ж, у) = x2 + у2 + xy — 3# 
subject to x > 0,

У > 0.

The KKT conditions require that there exist /1 = (/zi,/Z2)T t 0 such that

—/i^x = 0,
-Ц2У = 0,

[2x + у - 3 2y + ж] + дт 1

(14.16a)
(14.16b)

(14.16c)

Again consider the different possible cases:

(i) If = /12 = 0, then (14.16c) implies that x = —2y and 3 = 2x 4- y, so
у = — 1 and x = 2. But this is not feasible.

(ii) If /Xi = 0 and /12 0, then (14.16b) implies that у = 0. Substituting
into (14.16c) gives 2x — 3 = 0 and /12 = x. Hence x = /12 = | and 
у = = 0. This is feasible.

(iii) If /12 = 0 and /1^ / 0, then (14.16a) implies that x = 0, and substituting 
this into (14.16c) gives у = 0 and /11 = у — 3 = —3, which does not 
satisfy the nonnegativity condition.

(iv) Finally, if /11 / 0 and /12 ф 0, then x = у = 0, and 2y 4- x — /12 / 0, so 
/1 does not satisfy the nonnegativity condition.

Therefore, the only case with a feasible point satisfying the KKT conditions 
is (ii), and the only candidate for a minimizer is (|, 0).

Definition 14.4.11. The Lagrangian of the constrained optimization problem 
(14.1) is the function T£ : Q x x Rm —> R given by

% (x, Л, /z) = /(x) + АтЯ(х) + /zTG(x). (14.17)

The Lagrangian derivative condition (x* , A* , /1* ) = 0 gives the first KKT 
condition (Theorem 14.4.5(i)). In contrast, the Lagrangian derivative condition
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Z?A<Jzf(x*,  A*, /1*)  = 0 merely satisfies the constraint H(x*)  = 0. The Lagrangian 
derivative condition (x* , A* , /jl*) 0 satisfies the constraint G(x*)  0.
14.4.4 Lagrange as a Special Case of KKT
If an optimization problem has no inequality constraints or the optimizer does not lie 
on the boundary of the inequality constraints, then the KKT first-order conditions 
reduce to the Lagrange first-order conditions.

Consider first the case of no inequality constraints. Here the KKT conditions are 
clearly the same as the Lagrange condition, and there are no /м, so the first-order 
KKT conditions are the same as those for equality constraints.

In the case that we know that no optimizer lies on the boundary of any equality 
constraint, we may work in the open subset of Q where these strict inequalities hold. 
Inside that open subset, we have only equality constraints, and the KKT conditions 
reduce to the Lagrange conditions.

Alternatively, we can work with the full KKT Lagrangian (14.17), but the fact 
that all inequalities are strict for all optimizers implies that every дДх) 0 for 
every optimizer x*  and every i. Therefore, complementary slackness guarantees 
that fl*  = 0. The only remaining KKT first-order condition is

0 = Dx^ (x*,  A*,  0) = Dxf + X*D xH + 0T DXG,

which is the same as the equality-constrained first-order Lagrange condition.

14.4.5 Proof of the KKT First-Order Conditions
We prove the KKT first-order conditions, Theorem 14.4.5.

Proof. Let & = c?(x*).  Since & C the point x*  G & is also a local minimizer 
of f on which involves only equality constraints. Thus, by Lagrange’s first- 
order condition (Theorem 14.2.1), there exist A*  = (AJ,..., A^) G and constants 

so that

£

£>/(х*)  + 52а*£>^( х*)+  52 д*£>^(х*)  = 0.

Setting (i*  = 0 for all j J(x*)  gives ц*  = (/4, • • •, Mm) so that

£>/(x*)  + (А*) тЯЯ(х*)  + (/z*) TDG(x*)  = 0.
This immediately gives *̂P*( X) = 0 for every i G {1,..., m}.

Now, to show that /1*  >2 0, suppose by way of contradiction that /4 < 0 for some 
к G J(x*).  Let be the enlargement of the feasible set obtained by removing the 
constraint ^(x*)  < 0 from the definition of that is,

cFfc = {x G Q I Я(х) = 0 and #j(x) = 0 VJ G J(x*),  j ± к}, 

and let be the tangent space of at x*,  that is,

= {v G Rn I M(x*)v  = 0 and Bft(x)v = 0 Vj G J(x*),  j ф к}.
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We claim that there exists a v G Тх*̂  such that Dgk(x*)v  ф 0. If not, then 
2?g/~(x*)v  = 0 for all v G Tx*<Ffc.  Thus 2?^(x*) T G TX*<F^,  that is, it is in the 
normal space to at x*.  Hence,

£>pfc(x*)  e span ^{D/ij(x*)}f =1 U {fc}) ,

contradicting the assumption that x*  is a regular point. Therefore 2?pfc(x*)v  0 
for some v G Tx*jF fc.

Changing the sign of v, if necessary, we may assume 2?^(x*)v  < 0. Now write 
the Lagrange condition as

i

Df(x*)  = - g* kDgk(x*).
i—1 j^k

Applying this to v, and using the fact that 2?/^(x*)v  = 0 for all i and 2?^(x*)v  = 0 
for all j G J(x*)  \ {k} gives

D/(x*)v  = -Mfc£>Pfc(x*)v  < 0.

Now, since v G Tx*̂,  Proposition 14.1.9 guarantees there is a differentiable curve 
7 : (—6, b) with 7(0) = x*  and 7'(0) = v. We then have

^/(7(t)) = O/(x‘)v < 0,
£=0

which means that the function /(7^)) is strictly decreasing at t = 0. Moreover,

= £>pfc(x*)v  < 0, 
at t=o

and so the function ^(7^)) is also strictly decreasing at t = 0.
Thus, there exists 6 > 0 such that /(7(f)) < /(7(0)) = Дх*)  and ^(7^)) < 0 

whenever t G (0,5). Thus, we have that ^(t) G & and /(7(2)) < /(x*)  for all such 
t G (0,5). This contradicts the statement that x*  is a local minimizer for f. □

14.5 *Second-Order  KKT
Just as for the unconstrained and equality-constrained cases, there are both KKT 
SONCs and KKT SOSCs.

14.5.1 Second-Order Necessary Condition

Theorem 14 .5.1 (KKT Second-Order Necessary Condition). Assume that 
x  G & is a regular point and a local minimizer of the optimization problem (14.1). 
Let A  G R£ and pb  G Rm be the vectors satisfying the first-order KKT conditions, 
and let

*
* *

f(x*)  = {v G Rn I Dtf(x*)v  = 0,2?^(x*)v  = 0 VJ G J(x*)}.
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If f,H,G are all C2 in a neighborhood ofx*,  then for every v G T(x*)  we have

vT£>^(х* ,A*,M*)v  >0.

Proof. Since x*  is a local minimizer in the feasible set & in (14.2), it is also a 
local minimizer in & = {x G & | #(x) = 0,^(x) = OVJ G J(x*)}.  Since x*  is a 
regular point of and since T(x*)  = Tx* the second-order necessary Lagrange 
condition immediately gives the result. □

Theorem 14 .5.2 (KKT Second-Order Sufficient Condition). Consider the 
optimization problem (14.1), where f, H, and G are all C2. Assume that x  G & 
is a regular point and Л  G and pb  G are vectors satisfying the first-order 
KKT conditions. Let

*
* *

J(x*, M*)  = {zG J(x*)  | > 0},

and let

f(x*)  = {v G Rn | M(x*)v  = 0,2?^(x*)v  = OV? G J(x*,  д*)}.

If for every nonzero v G T(x*)  we have

vT£>2.$f(x*,A*,/z*)v>0,

then x*  is a strict local minimizer for this problem.

Proof. As in the proof of the Lagrange SOSCs, if x*  is not a strict local minimizer, 
we can take a sequence хд. x*  with /(x/J < /(x*)  and construct — x*
and Sfc = Sfc/||sfc|| with S& s*  for some s*.

As before, we have DH(x*)s*  = 0. We now show that for every j G J(x*)  we 
have Dgj(x*)s*  = 0. To see this, note that ^-(x*)  = 0 and for every к G Z+ we have 
Pj(x*  + Sfc) = #j(xfc) < 0, since х& is feasible. This gives

£>ft(x*)s* ff,(x* +£fc) -gj(x*) 
l|efe|| Bm a1*’-1;») <0.

On the other hand, since the first-order KKT conditions hold, we have

D/(x*)s*  = -AT£>#(x*)s*  - (/z*) TDG(x*)s*  = -(/z*) TDG(x*)s*.
But each nonzero is strictly positive, and Dgj(x*)s*  < 0, so 2?/(x*)s*  > 0. 
However,

Z>/(x*)s*  = lim <0.

Therefore, 2?/(x*)s*  = 0 and Dgj(x*)s*  = 0 for every j G J.
The rest of the proof is essentially the same as for Lagrange, but with T(x*)  

and J(x*,  д*)  substituted for T(x*)  and J(x*).  The details are Exercise 14.28. □
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14.5.2 Examples

Example 14. 5.3. In Example 14.4.8 the only active constraint at the point 
x  = T and /z  = [| 0]T is g± (x, y) = x + 4y — 3, with /zi > 0, so* *

T(x*,  /z*)  = e# (£h?i(x*))  = {v | [1 4] v = 0} = span( [—4 1]T).

It suffices to check that vTD2 Jzf (x*,/z*)v  > 0 for any such v^O. But

r>2^(x,/z)= J ° >0,

so the condition holds. This guarantees that the one feasible candidate is 
indeed a minimizer.

Example 14. 5.4. In Example 14.4.10 we have 

W/) = \
so the KKT SOSC guarantees that all feasible first-order candidates are indeed 
minimizers.

Example 14. 5.5. Consider the problem of finding x 6R2 to 

minimize ЦхЦ!
subject to 2 — ^1^2 + 3#i < 0.

The Lagrangian for this problem is

(xi, ^2, aO = x2 + x% + /z(2 — ^1^2 + 3a?i)

with DxJf(xi,X2,//) = [2^i — /л(х2 — 3) 2x2 — M^i]- It straightforward 
to check that x = (2,4) where /z = 4 is a solution of the first-order KKT 
conditions, and the constraint h(x) = 2 — ж 1^2 + 3a?i is active there with 
/z > 0. We have

T(x) = (Dh(x)) = span 2
-1

and D2Jzf(x) =

Hence, every nonzero v € T(x) = span((2, —1)), which implies that v = q(2, —1) and

vT O2 J^v = a2 [2 -1] 2 —4
—4 2

2
-1

= 26a2 > 0.

So the KKT SOSC implies that this point is a local minimizer.
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14.5.3 Second-Order Lagrange as a Special Case of KKT
The second-order Lagrange conditions are a special case of the second-order KKT 
conditions, just as the first-order Lagrange conditions are a special case of the first- 
order KKT conditions. To see this, note that in the case that none of the inequality 
constraints are active for any optimizer, then

T (x*)  = f (x*)  =

Therefore, the KKT second-order conditions are identical to their equality- 
constrained Lagrange counterparts.

14.6 Removing Affine Constraints
Perhaps the most straightforward way to deal with constraints is to rewrite the 
problem as an unconstrained problem. This is always possible when all of the 
constraints are affine equalities, because we can use the equality constraints to 
solve for some of the variables in terms of the others, and then substitute those 
relations into the objective, reducing the dimension of the problem and making the 
constraints unnecessary. This method is easy to apply on problems like that of 
Example 14.3.7. Here we give several additional examples and then discuss some 
general considerations for how to do this most effectively.

Unexample 14.6.1. While affine constraints can always be removed, non- 
affine constraints are trickier. In some situations removing a nonaffine con­
straint carelessly can be disastrous. Consider the problem

minimize x2 + y2
subject to (x — I)3 — y2 = 0.

It is straightforward to check that the minimizer is (1,0) with minimal value 1. 
Making the naive substitution у2 = (x — l)3 turns this into the unconstrained 
problem of minimizing x2 + (x — I)3, which is unbounded as x —> — oo. The 
error here is that the constraint (x — l)3 — = 0 also implicitly imposes the
additional constraint (x — l)3 > 0, which was not accounted for in the naive 
unconstrained version of the problem. This is not to say that one can never 
remove nonaffine constraints, but doing so requires extra care.

14.6.1 Example: Line Fitting with Ordinary Least Squares
Given a set of data points {(#z, we wish to find the line that best fits the
data. Assuming that the data is only susceptible to noise (error) in the у direction 
(see Figure 14.7(a)) corresponds to the model

yi + = гпхг + 6, г = 1,..., d, (14.18)

or
у + e = mx + M,
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where e is the error and 1 = is the vector of all ones. To minimize the
2-norm of the error e, we can formulate this as the constrained optimization problem

minimize ЦеЩ
e,m,5

subject to у + e = mx + bl.

Solving for e in terms of m, 6, x, and у gives the unconstrained optimization problem 
of choosing m and b to

N

minimize ||mx + bl — у || 2 = / \тпхг + b — ?/*| 2.

54Note that we are not actually minimizing the sum of the distances to the line, but rather the 
sum of the squares of the distances. So while we are minimizing ||<5||2 + Iklli» a related, but not 
identical, problem would be to minimize ||<5||2 + ||e||2- This related problem is messier to solve 
and the answer is usually not very different from summing the squares of the distances.

m,b
г=1

We have removed the equality constraints and reduced the dimension of the problem 
from N + 2 to 2, thereby simplifying it substantially.

This particular problem can be written in a nicer form by taking

Xx 1
л x<2 1 , \m
A = . . and z = .

b

_xN 1_

so that the problem becomes that of finding z to

minimize ||Az — уЦ^. z

14.6.2 Total Least Squares
Ordinary linear regression measures error in the у variable only. It could also 
happen that the data {(a^, 2/z)}f=i are susceptible to noise in both the x and у 
values, corresponding to the model

Уг + = rn(xi + Si) -\-b, i = 1,..., d, (14.19)

or
у + e = m(x + S) + bl.

For an illustration of this, see Figure 14.7(6).
In this setting, the goal is to solve the following equality-constrained optimiza­

tion problem54 of choosing m, 6, 5, and e to

minimize7 e» ( * I- -L \ 6 6 /
m,o,d,€

subject to mSi + mxi + b — ег = уг, i = 1,..., d,

or, in vector notation,

minimize ||<5||| + ||e|||
m,o,d,e

subject to mS — mx — bl + e = y.



650 Chapter 14. Nonlinear Constrained Optimization

Figure 14.7. The residuals for (a) ordinary least squares include only error in the 
у-axis. The residuals for (b) total least squares are the (squares of the) distances 
measured perpendicular to the line.

(14.20)

The constraint is affine and we can rewrite this by solving for e in terms of m, 6, 
x, y, and 8 to get the unconstrained quadratic optimization problem of finding m, 
6, and 8 to

minimize ||<5||2 + Ну — + шх + II2 •
m,b,S

This has turned the problem from a constrained problem to an unconstrained prob­
lem and has also reduced the dimension from 27V + 2 down to N + 2, a substantial 
simplification.

14.6.3 Generalization: Removing Affine Constraints
The previous examples are special cases of the generic equality-constrained problem

minimize f(x) хек™
subject to Cx = d

where C G and d G If C has rank r < £, then the feasible set
& = {x G I Cx = d} has dimension n — r as an affine space. Here we show how 
to remove the constraints by finding a bijective map ф : Rn-r —> & and reducing 
the constrained problem into the unconstrained problem of choosing у G Rn-r to 
minimize /(<^(y)).

We can construct a bijection ф using the reduced QR decomposition with piv­
oting to write C = QRP\ where Q is an £ x r orthonormal matrix, P is an n x n 
permutation matrix (it is orthonormal with every entry equal to either 1 or 0), and 
R is an r x n upper triangular matrix of the form R = [7?i R2], where R± is an 
r x r upper triangular, invertible matrix and R^ is an r x (n — r) matrix. Given 
such a decomposition, define an affine map ф : Rn-r —> Rn by

<^(z) = P[7?f1(QTd-P2z) z]T. (14.21)

Remark 14.6.2. The formula (14.21) may feel like it comes out of nowhere, but it 
should feel more natural after reading the proof of Proposition 14.6.4. Pay particular 
attention to the nice form for ф = ф-1 in that proof.
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Nota Bene 14.6.3. Given a matrix С G Mexn(W) with rank r < d, naively 
performing QR decomposition on C does not necessarily yield an R in the 
desired block form R = [R± R2] with R± upper triangular and invertible of 
rank r. But with pivoting, this can always be done. That is, one can always 
decompose C as C = QRP, where R has the desired form, Q has orthonormal 
columns, and P is a permutation matrix.

Proposition 14.6.4. Assuming d G <^(C), the affine map ф : Rn r Rn in 
(14.21) is a bijection from Rn-r to the feasible set = {x e Rn | Cx = d}.

Proof. To show that ф is well defined, let z G Rn-r. Thus,

C<f>(z)=Q[R1 7?2]Pt<Xz)

= <Э[Я1 P2]FTF[JRr1(<?Td - f?2z) z]

= Q[7?! fl2][/?r1(<?Td-/?2z) z]T

= <2((<?Td - P2z) + T?2z) = <2Q-1d.

Since d € ^(C), it follows that QQTd = d.55 Thus, </>(z) € Define a map 
7/): > Rn-r as follows: for any x € Rn with Cx = d, write PTx = [y z]T with

55Beware that although QTQ = I, the matrix Q is not square, and QQT 7^ I.

у G Rr and z G Rn-r, and let ф(х) = z.
To prove the proposition, it suffices to prove that ф = <^-1, that is, </>(V>(x)) = x 

for all x G & and ^(</>(z)) = z for all z G Rn-r. For any z G Rn-r we have 
</>(z) = P[Pj"1(QTd — P2z) z]T, and thus ^(</>(z)) = z. Conversely, if x G 
write PTx = [y z]T so that

d = Cx = QPPTx = Q [Pi R2] = Q(Riy+ P2z).

Thus QTd — R2z = Rfy and у = R± 1(QTd — P2z), giving x = </>(z) = ф(ф(х)). 
□

Remark 14.6.5. To solve the original problem, we need only solve the uncon­
strained problem

minimize/(</>(z)) = f(P\R11(QTd — P2z) zlT), 
zeRn-r L J

for the minimizer z* , and let x*  = </>(z*).

Remark 14.6.6. Geometrically speaking, the affine space & is a translate of the 
(n — r)-dimensional vector subspace W = {x G | Cx = 0}, and every subspace 
of dimension к is isomorphic to Rfe. The map ф is the composition of a translation 
& W with an isomorphism W = Rn-r. See Figure 14.8 for an illustration.
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Figure 14.8. Any affine set & is the translate of a vector subspace W, so we can 
write & = W + sq for any point s0 6

Example 14.6.7. Given A E Mmxn(R) and b 6 Rm, the least squares with 
equality constraints (LSE) problem is given as

minimize II Ax — bll 2xeRn 2

subject to Cx = d,
(14.22)

where С E M£Xn(R) and d E R^.
Using the notation x = P[y z]T of the previous section, we rewrite the 

objective function as
Лх - b = АР У 

z

By writing AP = [Ai A2], we have

У 
zAx - b = AP - b = AiPf 1(QTd - P2z) + A2z - b

= (A2 - AiEf 1P2)z + ArR^Q^d - b.

So the LSE problem (14.22) is equivalent to the following (unconstrained) 
ordinary least squares problem:

minimize ||Az — b||n, zeRn-r 11 ll2’

where

A — A2 — Ai Rr 1R2 E AQx(n_r)(R), 

b = b — AiPf1QTd E R€.

Remark 14.6.8. Although making an affine transformation to remove equality 
constraints can both reduce the dimension and allow us to use the numerical meth­
ods of Chapter 12, there are situations where it might be better not to make this 
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transformation. For example, in the LSE problem (14.22) if the matrix A is large 
but sparse, a transformation to remove equality constraints might destroy the sparse 
structure of A. This could result in an increased computational complexity that 
would completely negate any benefit that might have been gained by removing the 
equality constraints.

14.6.4 Application: Portfolio Optimization
Consider the problem of forming an investment portfolio of several assets. Suppose 
that there are n possible assets to choose from, and assume their rates of return are 
random variables r = (n, Г2,..., rn) with expected values f$ = E[r^], i = 1,2,..., n. 
Assume further that the covariance matrix E = E[(r —r)(r — r)T] is positive definite 
with components E^- = E[(r$ — fi)(rj — f?)].

The portfolio consists of a mix of these n assets. We characterize the mix by 
choosing n corresponding weights wi, W2,..., wn which sum to one and denote the 
proportion of the portfolio holdings for each of the assets. The rate of return for 
the entire portfolio is given by

p = wiri + w2r2 4-------H wnrn.

The expected rate of return is given by

p = E[r] = win + w2f2 4-------1- wnfn.

The investor wants to maximize the rate of return, but that’s not the same as 
maximizing the expected rate of return. Investors are usually leery of risk, which 
corresponds essentially to variance in the rate of return. Two different portfolios 
may have the same expected rate of return but wildly different variances. For a 
given expected rate of return p, we wish to minimize the variance of the portfolio.

The variance is given by

Var p = E[(p - p)2]

= E E WiwiEt(ri “ ri^ri ~ 
i=ij=i 
n n

= EEwiw>Ev-
i=i j=i

So given fi,..., rn and all the EZJ we have the optimization problem of choosing 
wi,..., wn so as to

minimize £"=1 £”=1 WiWj^ij

subject to wi + W2 4------ 1- wn = 1,
win 4------ h wnrn = f.
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If we let w = (wi,..., wn), 1 be the vector of all ones, and r = (n,..., rn), then 
this problem could also be rewritten as the problem of choosing w to

minimize
subject to

wTSw 
wTl = 1, 
wTf = p.

(14.23)

Each choice of expected value p has a corresponding minimum possible variance 
Var(p). Plotting these optimal pairs on a graph with risk Var(p) on the ж-axis 
and expected return p on the ?/-axis gives a curve called the efficient frontier; see 
Figure 14.9.

Figure 14.9. Graphical representation of the Markowitz model. The solid blue line 
represents the efficient frontier, consisting of portfolios that minimize risk (variance) 
for a given expected return p. The red star represents the portfolio with the overall 
minimum variance, and the black dots represent individual assets.

■> Var(p)

This concept was developed by Harry Markowitz in the 1950s in his modern port­
folio theory, which eventually resulted in the capital asset pricing model (CAPM). 
The CAPM is widely used by portfolio managers across the world. Markowitz was 
awarded the Nobel Prize in economics in 1990 for his work on portfolio theory.

Using the previous techniques, we can rewrite this problem (see Exercise 14.32) 
as the unconstrained quadratic optimization problem of choosing у G Rn-2 to 

minimize yT Ay — vTy + p (14.24)

for some choice of p G R, and v G Rn-2, and A > 0. In this form, we can use the 
techniques of Chapter 12 to find solutions to this problem.

The discussion above assumes that you can short sell an asset, which means that 
you essentially borrow the asset from someone and sell it to someone else. At some 
later date you buy it back again and return it to the person you borrowed it from.



14.7. Numerical Methods for Constrained Optimization 655

You would do this when you think the price of an asset is going to go down. Thus, 
it is possible to have negative values of because you borrowed the asset, sold it, 
and then invested that money in the other assets in the portfolio (thus keeping the 
total sum of weights to one).

Prohibiting short selling corresponds to an additional requirement that Wi > 0 
for each i. In this case we cannot rewrite the problem to remove all the constraints, 
but it is still solvable using the techniques in this text, especially those in the 
following chapter.

14.7 Numerical Methods for Constrained Optimization
In this section we describe a few common methods for computing minimizers of 
a differentiable function f on a closed, convex feasible set &. That is, we are 
interested in computing numerical solutions to problems of the form

minimize f(x)V 7 (14.25)
subject to x G

where & is closed and convex and / is continuously differentiable on an open set 
containing &,

14.7.1 Conditional Gradient
The conditional gradient method is an iterative method for numerically solving 
problems of the form (14.25). Given an initial feasible point xq G it proceeds by 
choosing

Xfc+1 = Xfc + afc(xfc - Xfc), (14.26)

where
xfc = argmin £>/(xfc)(x - xfc). (14.27)

Of course, since DF(x.k) is a linear transformation, this is the same as minimizing 
2?/(xfc)x over &.

Since & is convex, the point Xfc+i must also lie in & provided G [0,1]. There­
fore, this algorithm requires the constraint of 0 < Q/c < 1 on the learning rate 
Aside from this constraint, the learning rate сц~ can be chosen in any of the stan­
dard ways outlined in Section 12.3, including by solving the optimization problem 
ct/c = argmina€[0}1] /(x^ + o(x/c — х&)), using a constant value, or backtracking.

Geometrically, this method amounts to choosing x/~ by minimizing the linear 
Taylor approximation £(x) = /(x/J + 2?/(x/c)(x — x^) of / at x^. That is, the 
method moves in the direction that would be optimal if / were linear (and equal 
to £(x)), but the distance it travels in that direction is determined by whatever 
method is used to choose

The conditional gradient method replaces the problem of minimizing / over & 
with the problem of successively minimizing the linear functions 2?/(x/c)(x—x^) over 
&. These are often much easier to solve than the original problem. For example, 
if & is defined by purely affine constraints, then each of the new problems (14.27) 
is a linear optimization problem that can be solved using the simplex method.
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Example 14. 7.1. Given Q > 0, consider the problem

minimize
subject to

У(х) = |xTQx + rTx 
Ax b, 
x >- 0.

We show how to take one step of the conditional gradient method to solve this 
problem, given a feasible point X&. Let = {x 6 Rn | x 0, Ax b}. For 
each к we have Df(xk) = x^Q + rT and so

Xfc = argmin(xjQ + rT)(x — xfc) = argminx^Qx + rTx.

Setting ck = xjQ + rT shows that the problem of finding x has been trans­
formed into the linear optimization problem

minimize c^x 
subject to Ax b, 

x 0,

which can be solved with the simplex method. Once х& has been found, the 
learning rate ak may be found by solving

ak = argmin/(xfc + a(xfc - xfc)). 
ae[o,i]

One way to do this is to find the global minimizer a*  of (/?(q) = f(x-k + 
a(xfc — Xfc)), using the one-dimensional optimization methods of Section 12.2 
or by solving for it exactly, by hand, since cp is a quadratic function of a. 
In either case, the solution of the constrained optimization problem ak = 
argminaEj01j <^(a) is 0, 1, or a* , if a*  G [0,1]. The computed values of ak and 
хд. are now plugged into (14.26) to get the next iterate.

14.7.2 Gradient Projection
The gradient projection method is another iterative method for solving problems of 
the form (14.25) with a convex feasible set &. This method chooses

Xfc+l — X& “h (^/-(x/- Xfc)
with

xfc = proj^-(xfc - sfcD/(xfc)T) (14.28)

for some choice of otk G [0,1] and sk > 0. Again, since the point x^ lies in which 
is convex, the point x^+i must also lie in provided otk G [0,1].

Computing a projection proj^v is an optimization problem with a quadratic 
objective:

minimize ||x — v^.

Thus, the gradient projection method replaces the problem of minimizing / over 
& with the problem of successively minimizing quadratic functions of the form 
||x - (Xfc - Sfc£>/(xfc)T)||^ over
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In some situations the projection is easy to compute. Here are some important 
cases:

(i) If the constraints defining & are all of the form a x b, then the projection 
projjr v has its zth coordinate (projj? v)i given by

(projjr v)i = Vi

if Vi 
if at 
if bi

< Vi < bi, 

< Vi.

(ii) If the feasible set is a hyperplane & = {x | aTx = b}, then the projection of 
v to cF is

projv = v + .. *2Va. (14.29)
IHI2

(iii) If the feasible set is a half space & = {x | aTx < b}, then the projection 
of v to c? is just v if aTv < b and otherwise it is the projection onto the 
supporting hyperplane (14.29).

There are two main approaches to using the gradient projection algorithm. One 
approach is to make Sk = s constant. Then, once each x^ is chosen, choose &k 
either as &k = argminaE[0д] /(x^ + a(5tk — xfc)) or just choose &k by backtracking 
from o = l.

The other approach is to fix the learning rate &k = 1, but at each step choose 
Sk judiciously. This can be done by setting x(s) = projjr(x/c — s2?/(xfc)T) and 
then backtracking from s = 1 until the following analogue of the Armijo condition 
(12.16) holds:

/(Xfc) - /(x(s)) > <T£>/(xfc)(xfc - x(s)) (14.30)

for some fixed choice of a E (0,1). This effectively amounts to backtracking along 
the projection arc {x(s) | s E [0,1]} until 14.30 is satisfied.

Example 14. 7.2. Consider a constrained optimization problem of finding 
x e Rn to

minimize /(x) = |xTQx + rTx
subject to aTx < b

for some fixed choices of b E R, a, r E Rn, and Q E Mn(W) with Q > 0. Given 
a feasible point x^, the gradient projection method with fixed Sk = s first 
computes v = x/~ — sDf(x.k)T = sQ’x.k — st and then finds x^ as proj& n. 
This is given by

{v if aTv < 6,

v + if aTv >b-11 all 2

The learning rate &k cun be computed in the same manner as in Example 14.7.1 
and xfc+i = xfc + afe(xfc - x).
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Example 14. 7.3. We can also use backtracking along the projection arc for 
the problem in Example 14.7.2 with fixed learning rate = 1. To do this, 
let v(s) = х& — sDf(xk)\ as before, and define

x(s) = projjr v(s) =
if aTv(s) < 6, 
if aTv(s) > b

for all s € [0,1]. Fix a E (0,1). Starting at s = 1, check the Armijo condition:

/(xfe) - /(x(s)) > <rD/(xfe)(xfc - x(s)) = |(x£Q - rT)(xfe - x(s)). (14.31)

If that fails, try again with s = 1/2 and then s = 1/4, and so on, until (14.31) 
holds, at which point, set x/~+i = x(s).

Remark 14.7.4. The gradient projection method can suffer from the same sorts 
of inefficiencies and slow convergence as unconstrained gradient descent. There 
are many variations on this method to try to improve this situation, analogous 
to things like conjugate gradient for improving the unconstrained case of gradient 
descent.

14.7.3 Newton's Method with Constraints
Recall that the unconstrained version of Newton’s method can be thought of as 
making a quadratic approximation

/(x) « q(x) = /(xfc) + r>/(x - xfc) + l(x - xfc)TZ)2/(xfc)(x - Xfc)

of /(x) near Xfc and then finding the minimizer Xfc+i = argminx q(x). This is easily 
adapted to the constrained case as

Xfc+i = argminry(x). (14.32)

In the unconstrained case the minimizer of q is given by the usual Newton formula 
Xfc — D2/(xfc)-1D/(xfc)T, but in the constrained case, computing Xfc+i requires 
minimizing a quadratic objective over &. As with the other methods, the difficulty 
of solving this problem depends heavily on the nature of . As in the unconstrained 
case, a natural variant of this method is to set Xfc+i = Xfc + QfcXfc, where Xfc = 
(argminxe^r q(x)) — Xfc and the learning rate € [0,1] is chosen in one of the 
standard ways.

14.7.4 Initialization
Since all of the methods in this section are iterative, they require an initial point 
xq. If the feasible set & is defined by affine constraints, then an initial value can 
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be found with the help of an auxiliary linear problem, exactly as in the linear case; 
see Section 13.5.1.

Alternatively, we can set up a different problem with the same minimizer, but 
with a relaxed set of constraints so that it is easier to find an initial feasible point. 
The key is to add a penalty to the objective for any failure to satisfy the original 
constraints.

Example 14.7.5. Consider a problem of the form

minimize
subject to

У(х)
G(x) 0.

If no x is known that satisfies G(x) 0, then we can consider an alternative 
problem of the form

minimize /(x) + ct
subject to G(x) tl, (14.34)

t > 0,

where 1 = (1,1,...,1) is the all-ones vector, and c > 0 is fixed. If x*  is 
a minimizer of the original problem, then (x*,0)  is a minimizer for the new 
problem. And conversely, if (x*,t*)  is a minimizer for the new problem, then 
t*  = 0 and x*  must be a minimizer of the original problem. Moreover, it is 
easy to find a feasible starting point for the new problem; namely, for any xq 
in the domain of /, if to = max(gi(xo),... ,gm(xo)), then (xo,to) is feasible 
for (14.34). Any of the previous iterative methods for solving constrained 
optimization problems may now be used to solve (14.34).

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.
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14.1. The unit circle S1 C R2 is defined by the equation h(x,y) = 0, where

h(x,y) = x2 + у2 — 1.

(i) Show that every point on the circle is a regular point.

(ii) Near each point, find a one-dimensional parametrization for the circle. 
Hint: Remember that a parametrization is an injective map from an 
open interval to the circle, so you cannot find one parametrization that 
works for all the points of the circle at once. At each point, describe a 
(nonzero) normal vector as a function of your parametrization near that 
point.

14.2. The equation h(x, y, z) = 0, where

h(x, y, z) = \ c— y/x2 + y2j + z2 — a2, c > a > 0,

defines a torus T2 C R3.
(i) Show that every point on this torus is a regular point.

(ii) Find a two-dimensional parametrization of the torus near each point 
and describe a (nonzero) normal vector at each point. Hint: Recall that 
D/i(x)T is always orthogonal to TXS.

14.3. For each of the following functions h : R2 R, find all the points of the set 
S = {(ж, у) G R2 | Л(х) = 0} that are singular (not regular). Plot the set S 
near each singular point. For each singular point (ж,?/), identify the vector 
space {v e R2 | Dh(x, ?/)v = 0} and its orthogonal complement.

(i) h(x, y) = x4 — 2ж3+ж2— у2. Hint: The implicit curve S = {x | Л(х) = 0} 
corresponds to the 0-contour curve.

(ii) h(x,y) = x3 — x2 — y2. Hint: To see what is happening near the singu­
larity, try plotting the level curves {x | Л(х) = c} for very small positive 
and negative values of c.

(iii) h(x, y) = x3 — y2 + 2y — 1.
14.4. For each of the following functions h : R3 R, find all the points of the set 

S = {(x,y, z) e R3 | Л(х) = 0} that are singular (not regular). Plot the set 
S near each singular point (if there are an infinite number of singular points, 
plot the set near a large number of them).

(i) h(X) 7/, z) = z2 — x2 + y2. Hint: If you do not have tools to easily plot a 
three-dimensional implicit surface, you can often just solve for one of the 
variables in terms of the others (like z = ±д/ж2 — у2) and then plot the 
corresponding three-dimensional graphs (in this case both the positive 
and negative parts).

(ii) h(x, 7/, z) = x2y — z2.

14.5. Prove that if £ = n, then a regular point x G is an isolated point, that is, 
there is a neighborhood of x in which there are no other points of &.
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14.6. Consider the problem 

maximize xy 
(x,y)ER2

subject to x2 + 4?/2 = 1.

Find all the points that satisfy the Lagrange first-order condition.
14.7. Consider the problem

maximize x2 + 2xy + Зу2 + 4x + by + 6г 
(x,y,z)ER3

subject to x + 2y = 3, 
4т + 5z = 6.

Find all the points that satisfy the Lagrange first-order condition.
14.8. Find the dimensions of the box of maximal volume that can be inscribed in 

the ellipsoid
2 2 2

L I £ = 1a2 62 C2 K

14.9. Let A E Mmxn(R) be of maximal rank. Show that the minimizer of the 
problem

minimize II Axil о 
xeR™ 2

subject to ЦхЦ! = 1
is the unit-length right singular vector corresponding to the smallest singular 
value of A, that is, x*  satisfies ATAx*  = a2x*.

14.10. Consider the problem

maximize 11 x — Xn 119 
xeR2

subject to ЦхЦ! = 9,

where xq = (1, \/3). Find all the points that satisfy the Lagrange first-order 
condition.

14.11. For Exercise 14.6 use the second-order conditions to determine which, if any, 
of the points are local maximizers.

14.12. For Exercise 14.7 use the second-order conditions to determine which, if any, 
of the points are local maximizers.

14.13. For any equality-constrained maximization problem of the form (14.6), define 
the Lagrangian of the maximization problem to be

^(х,Л) = /(х) + АтЯ(х).

Use the Lagrange FONC for maximization problems (see Remark 14.2.3) and 
the Lagrange second-order conditions for minimization to prove the following 
corresponding second-order conditions in the case that f and H are both C2 
in a neighborhood of x*:

(i) If x  is a local maximizer (14.6) and a regular point of the feasible set 
then the Л  E of Remark 14.2.3 is such that vTD2jSf(x,  A)v  < 0 
whenever v E Tx

*
* * *

*
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(ii) If there exists x  G Rn and Л  G R£ such that Lagrange FONC for 
maximization holds and vT, A)v  < 0 for all nonzero v G 
then x  is a strict local maximizer.

* *
*

*
14.14. Recall the minimization problem in Exercise 14.10. In that problem, we 

determined the points that satisfied the Lagrange first-order condition. Now 
use the second-order conditions to determine which, if any, of the points are 
local maximizers.

14.15. Let f(x,y,z) = x + у + г, and define

S = {(ж, у, z) e R3 I x2 + 2y2 + 3г2 = 1}.

Find the maximum and minimum of f on S.
14.16. Find all solutions to the optimization problem

maximize xTAx
subject to ЦхЦ! = 1,

where A = [2 3].

14.17. Find all the points that satisfy the first-order KKT conditions for the opti­
mization problem

maximize x 1X2
subject to + #2 —

#i,x2 > 0.

14.18. Consider the optimization problem of choosing (x^y) G R2 to

maximize —x2 — 2y2
subject to x + у < 4, 

xy = 1, 
x > 0,7/ > 0.

(i) Set up the problem in the form (14.1). Hint: Strict inequalities can be 
incorporated by restricting to an open set Q rather than as constraints 
of the form gi < 0.

(ii) Write all the first-order KKT conditions that any optimizer must satisfy.
(iii) Find all the candidate points that should be tested for optimality.
(iv) Plot the feasible set and all the points you identified using the KKT 

conditions.
(v) Identify the global maximizer.

14.19. Find all the points that satisfy the first-order KKT conditions for the opti­
mization problem

maximize x2 + 6Ж1Ж2 — 2#i — 2x2
subject to x2 + 2x2 < 1,

2#i — 2x2 < 1-
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Hint: Do not feel obligated to give exact answers nor to do the entire problem 
by hand—good numerical approximations are acceptable, and some of the 
more tedious aspects of this problem are much easier to do using a few lines 
of code.

14.20. Solve the optimization problem

minimize ||x||2 
subject to cTx = 6, 

x 0,

where c G Rn and b G R are given. Hint: Use the KKT conditions to relate 
the signs of 6, A, and each хг, and сг.

14.21. Consider the problem

minimize ||b — Ax||| 
subject to ||x||i = 1, 

x 0,

where A G 7Wmxn(R) and b G Rm.
(i) Explain what it means for a feasible point x G Rn to be a regular point. 

Are there feasible points that are not regular?
(ii) Write down the first-order KKT conditions.

14.22. A Write down the KKT first-order conditions for the linear problem 

maximize cTx 
subject to Ax b, 

x 0

and show that the first two conditions (Theorem 14.4.5, items (i) and (ii)) are 
equivalent to the dual linear problem (see Definition 13.6.1), while condition 
(iii) is equivalent to complementary slackness (see Theorem 13.6.10).

14.23.  For Exercise 14.17 write down the KKT second-order conditions and use 
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*

14.24.  For Exercise 14.18 write down the KKT second-order conditions and use 
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*

14.25.  For Exercise 14.19 write down the KKT second-order conditions and use 
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*

14.26.  For Exercise 14.19 write down the KKT second-order conditions and use 
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*

14.27.  For Exercise 14.20 write down the KKT second-order conditions and use 
them to determine which of the points you found from the first-order condi­
tions are optimizers.

*
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14.28.  Provide the details to finish the proof of Theorem 14.5.2.*

14.29. Given the points (1,2), (3,1), and (5,5) in R2,
(i) Assuming that only the у direction is subject to error, write an uncon­

strained linear optimization problem which is equivalent to the ordinary 
least squares problem of finding the line that best (in terms of the 2- 
norm) fits these three points.

(ii) Assuming that both the x and у directions are subject to error, write 
an unconstrained linear optimization problem which is equivalent to the 
total least squares problem of finding the line that best (in terms of the 
square of the 2-norm) fits these three points.

14.30. Consider the linear optimization problem of finding x G Rn with an equality 
constraint

maximize c[x
subject to Aix bi, 

pTx = d.

Show that if p ф 0, then there exists a linear optimization problem 

maximize cjy 
subject to A2y b2

in n — 1 variables (that is, у G Rn-1) and an n x (n — 1) matrix M such 
that if y*  is a maximizer to the second problem, then x*  = My*  + xq is a 
maximizer to the first problem.

14.31. For any v G Rn and any A G 7Wn(R) with A > 0, write ||v||yi = VvTAv. Let 
L e Mn(R) and let W = LLA > 0. Show that the unconstrained optimization 
problem

minimize ||Ax — b||^r_i

has the same solution as the constrained optimization problem

minimize ||v||2
subject to Ax + Lv = b.

14.32. Show that the portfolio minimization problem (14.23) (with short selling 
allowed) is equivalent to an unconstrained quadratic optimization problem of 
the form (14.24) as follows:

(i) Write the constraints as Gw = d and find A, v, and p explicitly in terms 
of the QR decomposition C = Q [R± R2] FT.

(ii) Give the formula for w in terms of the solution у of the unconstrained 
problem.

(iii) Prove that A is positive definite.
14.33. Consider the Markowitz portfolio optimization problem with only two assets 

of known expected value ri and f2, respectively.
(i) Show that the constraints give a unique solution, so the minimum­

variance solution is the only solution.
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(ii) Show that the variance is always a quadratic function in the expected 
return r. (Beware that E(r2) is a function of f, so writing Var(r) = 
E(r2) — r2 does not, in itself, solve the problem.) Figure 14.9 shows the 
graph of such a curve.

(iii) The bottom half of the curve in Figure 14.9 is dotted because no one is 
interested in it. Why not?

14.34. Verify the following claims made in the text:

(i) If is convex, and x&,x G then X-k+i = k  + c(x  — X/J G for all 
a e [0,1].

* *

(ii) If the feasible set is the hyperplane / = {x aTx = 6}, then the 
projection of v to is given by (14.29).

(iii) If (x,f)  is a minimizer for (14.34), then x  is a minimizer of (14.7.5).** *
14.35. Consider the problem of choosing x G R3 to

minimize /(x) = | (x^ + x \ + ОДЖ3) + 0.55#з 
subject to x± + X2 + = 1,

x > 0.
(i) Show that the global minimizer is x  = (1/2,1/2,0).*

(ii) Given х& and x^, find a closed-form expression for the minimizer = 
argminae[01] /(xfc + a(xfc - xfe)).

(iii) Write a computer program implementing the conditional gradient method 
to solve this problem, using the formula for learning rate computed in 
the previous step.

(iv) Verify computationally that for any starting point x0 = (а71,ж2,^з) 0
that satisfies x± 7^ ^2, we have

/(Xfc+i) - y(xfc)
/(xfc) - /(xfc-i)

Thus, this method does not converge linearly on this problem; see 
Definition 12.2.1.

14.36. Write a computer program implementing the gradient projection method to 
solve the optimization problem in Exercise 14.35 with constant s = 1 and 
learning rate ctfc = argminaE^0 /(x^ + o(x — x/J). Compare the conver­
gence rate for various initial points to that of your implementation for the 
conditional gradient method. Hint: Use (14.29) with a = (1,1,1).

14.37. Write a computer program implementing the gradient projection method to 
solve the optimization problem of Exercise 14.35 with constant a = 1, but 
with Sk chosen by backtracking along the projection arc to satisfy (14.30). 
Compare the convergence rate for various initial points to those of your im­
plementations for the conditional gradient method and gradient projection 
with fixed s and variable a.
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14.38. Consider the constrained problem of minimizing /(x) subject to H(x.) = 0, 
where f G C2(Q;R) and H G C1(Q;R£). When applying Newton’s method 
to solve this problem, each iteration requires solving the subproblem

minimize /(xfe) + £>/(xfe)(x - xfc) + |(x - xfc)TI?2/(xfc)(x - xfc)
subject to JI(x) = 0.

(14.35)
Prove that if x G and A E are such that

Z>2/(xfc) РЯ(х/с)т1 Гх1 F-Z)/(xfc)' 
W/(xfc) о] [Л] [ -Я(хк)

then x is a minimizer of (14.35). Thus the Newton subproblem can be solved 
by solving a linear system of dimension (n + €), provided that system is full 
rank. This shows the temporal cost of each intermediate step in the equality- 
constrained Newton method is O((n + £)3), where £ is the number of equality 
constraints.

Notes
Much of this chapter was inspired by [CZ01], while the final section was inspired 
by [Berl6]. We learned of Unexample 14.6.1 from [NW99]. Example 14.4.10 is 
from [CZ01, Example 20.4], and many of the exercises on the Lagrange and KKT 
conditions are also from [CZ01]. Example 14.3.6 is from [Jial8].

Other useful sources for these topics include [Biel5, BV04, NW99] and [Ped04]. 
An interesting history of Lagrange multipliers is given in [Bus03].



Convex Analysis and 
Optimization

If we can formulate a problem as a convex optimization problem, then we can solve 
it efficiently.... With only a bit of exaggeration, we can say that if you formulate a 
practical problem as a convex optimization problem, then you have solved the origi­
nal problem.
—S. Boyd and L. Vandenberghe

A function is convex when any chord of the graph lies on or above the graph (see 
Figure 15.1). In first-year calculus classes, we usually call such functions concave up. 
In optimization, these functions are extremely nice to work with. If the objective 
function is smooth and convex and the feasible set is convex, then a local minimum 
is the global minimum and all that is needed to find it is the FONC (Theorem 
14.2.1). There are many important problems spanning nearly every area of applied 
mathematics that can be formulated and solved as convex optimization problems. 
For example, linear optimization problems are convex optimization problems.

We begin this chapter by defining convex functions and describing many of their 
important properties. Among the most useful concepts in the study of convex func­
tions is Jensen’s inequality and the large inventory of household inequalities that can 
be derived from it. For example, using Jensen’s inequality, we prove all the inequal­
ities in Volume 1, Section 3.6, in particular, Young’s inequality, the arithmetic­
geometric mean inequality, Holder’s inequality, and Minkowski’s inequality. It is 
staggering how many fundamental inequalities are simple corollaries of Jensen’s 
inequality.

The remainder of the chapter focuses on convex optimization problems and 
a few of the very powerful numerical methods for solving them. As with linear 
optimization problems, more general minimization problems have a corresponding 
dual problem that satisfies a weak duality principle similar to that of Section 13.6. 
Many convex optimization problems also satisfy strong duality. This means that the 
dual problem also has a global optimizer and the optimal values of the two problems 
are equal. As with linear optimization problems, the dual problem is often easier 
to solve than the original problem. Many of the most powerful numerical methods 
for convex optimization rely heavily on both the primal and dual formulations and 
the relation between them.

667
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/(*)  =

15.1 Convex Functions
In this section, we define convex functions and describe some of their properties. 
Throughout this chapter we assume that V is a vector space and Q С V an open 
subset.

We first show how to extend the range of a function to include +oo and —oo. 
Consider the extended real numbers R^ = RU {oo}, R-oo = R U {—oo} and 
R±oo = RU{oo,—oo}, where the arithmetic rules involving ±oo are as follows:

(i) If x G R, then x ± oo = ±oo.

(ii) If x > 0, then x • (±oo) = ±oo, and if x < 0, then x • (±oo) = +oo.

(iii) —oo — oo = —oo and 00 + 00 = 00.

Note that some operations such as 00 — 00 are ambiguous and not defined.

Remark 15.1.1. These rules are the same as those involving the special floating 
point numbers ± INF. The operations that result in NaN such as 00 —00 are likewise 
undefined; see Section 11.1.1.

Remark 15.1.2. For any function f : Q R, we can extend f to all of V by 
defining the extension f :V Rqc as

/(x) if x G Q, 
00 if x Q.

We can also restrict f to the points in the domain where f is finite, as follows.

Definition 15.1.3. For any function f : Q R±oc? the effective domain of f is 
the set

effd(/) = {xG I —00 < /(x) < 00} C Q.

Remark 15.1.4. If f : Q R±oo, then we have that f : effd(/) R.

15.1 .1 Convex Functions
The concept of a convex function is fundamental to optimization and, indeed, to 
much of real analysis.

Definition 15.1.5. Let C be a convex subset of V. A function f : C Roc is 
convex if for all xi,x2 G C and 0 < A < 1, we have

/(AX1 + (1 - A)x2) < A/(X1) + (1 - A)/(x2); (15.1)

see Figure 15.1. The function f is strictly convex if strict inequality holds in (15.1) 
whenever Xi x2 and 0 < A < 1. The function f is concave or strictly concave if
—f is convex or strictly convex, respectively.
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Figure 15.1. The defining feature of a convex function f is that the line segment 
connecting the points (xi,/(xi)) and (x2,/(x2)) lies above the function itself for 
each point of the line segment Axi + (1 — A)x2, where 0 < A < 1.

Example 15.1.6. A norm function || • || on a vector space is a convex function. 
From the triangle inequality we have

||AX! + (1 - A)x2|| < A||xi|| + (1 - A)||x2||

for all xi,X2 E V and 0 < A < 1.

Remark 15.1.7. If a function takes on both the values oo and —oo, then checking 
the convexity condition between these two points doesn’t make sense, because it 
involves computing A • oo + (1 — A)(—oo) = oo — oo, which is not defined. For this 
reason, we always require convex functions to take their values in R^. There is no 
loss of generality by excluding —oo because if f : V R-oo has effd(/) 0 and 
there exists some x E V with /(x) = — oo, then f cannot satisfy (15.1). To see this, 
consider z E effd(/) and let у = 2z — x. If f were convex, we would have

-oo < /(z) = f Qx + iy) < iy(x) + |/(y) = -oo,

which is a contradiction.

Remark 15.1.8. If f is convex on a convex set С С V, then we can naturally 
extend f to a convex R^-valued function f on all of V via Remark 15.1.2. Moreover, 
we have that effd(/) = C. This shows that there is no loss of generality to assume 
that convex R^-valued functions are defined on all of V. We often make this 
assumption in the rest of this book.

Proposition 15.1.9. If f : V —> R^ is a convex function, then effd(/) is a convex 
set.



670 Chapter 15. Convex Analysis and Optimization

Proof. Assume that f is a convex function with xi,X2 G effd(/). If 0 < A < 1, 
then /(Axi + (1 — A)x2) < A/(xi) + (1 — A)/(x2) < oo, and so Axx + (1 — A)x2 G 
effd(/). □

15.1.2 Characterizations of Convex Functions
The following lemma guarantees that a function is convex if and only if it is convex 
when restricted to any line segment on the domain. This can be used to provide an 
alternative characterization of a convex function.

Lemma 15.1.10. Let f : V Roc be a function with essential domain С С V. 
The following are equivalent:

(i) The function f is convex.

(ii) For all Xi, x2 G C the map g : [0,1] R given by g(f) = f(txi + (1 — t)x2) is 
convex.

(iii) For all xi,x2 G C the map g : [0,1] R given by g(f) = /(txi + (1 — £)x2) 
satisfies

g(t) < t5(l) + (1 - t)ff(0) (15.2)

for every t e [0,1].

Proof.

(i) =>(ii): If f is convex, then for any a, b G [0,1] and any A G [0,1] we have

g{Xa + (1 - A)b) = /((Au + (1 - A)6)X1 + (1 - Xa - (1 - A)6)x2)
= /(A(axi + (1 - a)x2) + (1 - A)(6xi + (1 - 6)x2))
< A/(axi + (1 - a)x2) + (1 - A)/(6xi + (1 - 6)x2)
= Ap(a) + (l-A)p(6).

Therefore, g is convex.

(ii)=>(iii): If g is convex, then (15.2) is just a special case of the definition of 
convexity; that is, taking a = 1 and 6 = 0, convexity gives

p(t) = g(ta + (1 - t)6) < tg(a) + (1 - f)g(6) = fp(l) + (1 - f)g(G).

(iii)=>(i): Finally, for any xi,x2 G C and A G [0,1] we have

/(Axx + (1 - A)x2) = 5(A) < AP(1) + (1 - A)P(0) = A/(xx) + (1 - A)/(x2),

so f is convex on C and can be extended to f on V via Remark 15.1.8. □

Remark 15.1.11. The previous lemma also holds with strict convexity instead of 
convexity for f and g if the inequality in (15.2) is made strict for all t G (0,1). The 
proof is essentially identical.
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Figure 15.2. For any differentiable function f on a convex set C, Theorem 15.1.12 
shows f is convex if and only if /(x) > /(xq) + D/(xq)(x — xq) for all x0,x g C.

Theorem 15.1.12. Let f be a real-valued differentiable function on a convex open 
set С С V of a finite-dimensional normed linear^6 space (V, || • ||). The function f 
is convex if and only if for all x0,xEC; we have

/(x) > /(x0) + £>/(xo)(x - x0); (15.3)

see Figure 15.2. Moreover, f is strictly convex if and only if the strict inequality 
holds in (15.3) whenever x0 ф x.

Proof. If f is convex, then (15.2) holds with Xi = xq and X2 = x in the definition 
of g(t). Thus, setting p(A) = /(Ax0 + (1 — A)x), we have

(1-A)5(O)-(1-A)5(1)> 5(A)-5(1).

Solving for p(0) gives

Taking the limit as A —> 1“ yields 5(0) > 5(1) — which gives (15.3).
For the converse, choose xi,X2 € C and 0 < A < 1. Let xq = Axi + (1 — A)x2.

Using (15.3) twice gives

/(xi) >/(xo) + £>/(xo)(xi-x0) and /(x2) >/(x0) + £>/(x0)(x2 - x0).

Multiplying the first inequality by A and the second by (1 — A) and adding yields

A/(xi) + (1 - A)/(x2) > /(x0) + £>/(x0) (A(xi - x0) + (1 - A)(x2 - xo))
= /(xo) + £>/(xq)(Axi + (1 - A)x2 - Xq)
= /(Axi + (1 - A)x2) + £>/(x0)(O).

Thus f is convex. The proof for the strict inequality case is similar. □

56The theorem and the proof given here both hold for the more general situation where (V, || • ||) 
is a Banach space (see Volume 1, Sections 5.6.2 and 6.3).
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The preceding theorem is very useful, but it is still often difficult to verify that a 
function is convex by using either the definition or this theorem. The next theorem 
gives a simple method for verifying convexity in many cases.

Theorem 15.1.13. Let C be a convex open set in a finite-dimensional normed 
linear57 space (V, || • ||). A function f G C2(C;R) is convex on C if and only if the 
Hessian D2 /(x) is positive semidefinite for all x G C. The function f is strictly 
convex if D2f(x) is positive definite for all x G C.

57As in the case of Theorem 15.1.12, this theorem and the proof given here hold for a more general 
Banach space.

Proof. Taylor’s theorem (Theorem 10.3.8) guarantees that for each xq,x G C we 
have

/(x) = /(x0) + r>/(x0)(x - Xo) + T?2, (15-4)

where
R2= [ (1-f)(x-xo)TZ>2/(xo + f(x-x0))(x-xo)dt. 

Jo
If D2/(x') > 0 for all x' G C, we have R2 > 0 and

/(x) > /(x0) + Df(x0)(x - x0).

Hence, f is convex. In the case that D2/(x') > 0, then f is strictly convex.
Conversely, suppose that f is convex but for some xq G C the Hessian D2/(xq) is 

not positive semidefinite. Then there exists some h G V such that hTD2/(xo)h < 0. 
Choose e sufficiently small so that x = x0 + eh G C and so that hTD2/(z)h < 0 for 
all z on the line segment between x0 and x. The remainder R2 in (15.4) becomes

e2 f (1 — £)hTD2/(x0 + tehfhdt < 0, 

Jo

which implies

Thus, f is not convex.

/(x) < /(x0) + Df(x0)(x - x0).

□

Example 15.1 .14. The following are examples of convex functions:

(i) Let f : R —> R be given by f(x) = eax for fixed a / 0. The function f 
is strictly convex because /"(ж) = a2eax > 0.

(ii) Let f : (0, oo) —> (0, oo) be given by f(x) = xa, where either a > 1 or 
a < 0. Note that f"(x) = a(a — V)xa~2 > 0, so / is strictly convex.

(iii) Let f : (0, oo) -4- R be given by f(x) = — log x. The function f is strictly 
convex because /"(ж) =
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Example 15.1 .15. The LogSumExp function f : Rn —> (0, oo) is given by 
/(x) = log(e:E1 + • • • + еЖп), where x = (a?i, x%,..., xn). From (10.29) we can 
show that the Hessian is

п2р/ x (lTz) diag(z) — zz 
D /(x) = -------- (Tzp-------

where z = (еЖ1, еЖ2,..., eXn). If h = (Zii,/12, • • •, Zzn), then the Cauchy- 
Schwarz inequality (with a = (y/zi,..., y/Eff) and b = (fti-y/zi, • • • > 
gives

(hTz)2 = = (lTz)(hT diag(z)h),

which implies that hTD2/(x)h > 0. Therefore f is convex.

15.2 Jensen's Inequality
In this section, we show that the set of all points that lie on or above the graph 
of a convex function (the epigraph of the function) is a convex set. This leads to 
an easy proof of the finite form of Jensen’s inequality, which says that any convex 
combination of a finite collection of points on the graph of f lies on or above the 
graph.

There is also an integral form of Jensen’s inequality, where the finite sum is 
replaced with an integral (see Theorem 15.2.13). To show this we first prove that 
every convex function f with a closed epigraph is the supremum of all the affine 
functions whose graphs lie below the graph of f; see Theorem 15.2.12.

15.2.1 Epigraphs
The set of all points on or above the graph of a function is called the epigraph of 
the function; see Figure 15.3 for an illustration. Theorem 15.2.3 shows that the 
epigraph is convex if and only if the function is convex.

Definition 15.2.1. The graph of a function f : V —> Roc is the set

Гу = {(x, /(x)) | x € effd(/)} C effd(/) x R.

The epigraph of the function f is the set

epi(/) = {(x,y) | x e effd(/),y > /(x)} C effd(/) x R.

Remark 15.2.2. Theorem 15.1.12 shows that if f is convex and differentiable at 
x0, then the tangent plane /z(x) = /(x0) + 2?/(x0)(x — x0) supports the epigraph of 
f at xq because it contains the point (xo,/(xq)) and the epigraph of the function 
is in the half space supported by Л; see Figure 15.4.
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Figure 15.3. The epigraph epi(/) (yellow) and the graph Гf of a function f. 
Theorem 15.2.3 guarantees that a function is convex if and only if the epigraph of 
the function is a convex set. The function and the epigraph in this figure are not 
convex.

Figure 15.4. For any differentiable convex function f, Theorem 15.1.12 shows 
that the tangent plane at any point (xq, /(xq)) of the graph of f is a supporting 
hyperplane of the epigraph.

Theorem 15.2.3. A function f : V —> with a nonempty effective domain is
convex if and only if the epigraph epi(/) С V x R is a convex set.

Proof, If f is convex on V, then, since there exists x G effd(/), we have /(x) < сю, 
and hence (x,/(x)) G epi(/). Therefore, epi(/) 0. If (xb y^, (x2, y2) € epi(/), 
then /(xi) < yi and /(x2) < y2. Thus, for 0 < A < 1, we have

/(Axi + (1 - A)x2) < A/(xi) + (1 - A)/(x2) < A?/i + (1 - A)t/2,

which implies that A(xi,t/i) + (1 — A)(x2,?/2) G epi(/).
Conversely, assume that epi(/) is a convex set, that xi,x2 G V, and that 0 < 

A < 1. If /(xi) = oo or /(x2) = oo, then the convexity condition (15.1) holds 
immediately. Otherwise, (x1?/(xi)), (x2,/(x2)) G epi(/), and thus we have

A(xi,/(xi)) + (1-A)(x2,/(x2)) = (Axi + (1-A)x2, A/(xi) + (1-A)/(x2)) G epi(/), 

which implies that /(Axi + (1 — A)x2) < A/(xi) + (1 — A)/(x2). □
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Proposition 15.2.4. Let f : V -4 Rqq be convex. If effd(/) С V is a closed set 
and f : effd(/) -4- R is continuous, then epi(/) is also a closed set.

Proof. Assume that ((xi,pi))£50 c epi(/) converges to G V x R. It
suffices to show that (x*,p*)  G epi(/). The projection pi : V x R -4 V mapping 
(x, y) i-> x is a continuous function; hence хг = pi((x*,  у if) pi((x*,p*)  = x*.  
Since effd(/) is closed, we must have x*  G effd(/). Since each (x*,p*)  lies in epi(/) 
we have yi > Taking limits and using the fact that f is continuous on effd(/) 
implies that p*  = lim^oo yi > lim^oo/(xj = /(lim^ooX^) = /(x*).  Therefore, 
(x*,y*)  € epi(/). □

Remark 15.2.5. Exercise 15.15 shows that every convex function is continuous on 
the interior of its effective domain, hence the continuity hypothesis of the previous 
proposition can fail only at the boundary of effd(/).

15.2.2 Jensen's Inequality—Finite Form
Convexity of the epigraph gives us Jensen’s inequality, which is one of the most 
important inequalities in analysis. An illustration of Jensen’s inequality is given in 
Figure 15.5.

Theorem 15.2.6 (Jensen’s Inequality—Finite Form). Let f : V R^ be a 
convex function. If Xi, X2,..., xn G V and Ai, A2,..., An G [0,1] with A*  = 1, 
then

/(A1X1 + A2X2 + • • • + Anxn) < Ai/(xi) + A2/(x2) + • • • + An/(xn). (15.5)

Proof. If /(хг) = oc for any i with A*  > 0, then (15.5) holds immediately. Assume 
now that /(x*)  < oo for all i G {1,..., n}. The points (xi, /(xi)),..., (xn, /(xn)) 
all lie on the graph of f, and thus they lie in the epigraph of f. Theorem 15.2.3 
guarantees that the epigraph of f is convex, and hence the convex combination

Ai(xb /(xi)) + A2(xi, /(x2)) 4-------H An(xn, /(xn))

must also lie in the epigraph (by Proposition 13.1.6). By definition of the epigraph, 
this means that (15.5) holds. □

Corollary 15.2.7 (Young’s Inequality). If a,b > 0 and | | = 1, where
1 < p, q < oc; then

ap bq
ab<- + -. (15.6)p q

Proof. Since x 1-4 ex is convex, we have

ab = elo&ab = ep loglog69 < ielogaP + ielogb9 = — + —. □
“ P Q P q'
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Figure 15.5. The graph of a convex function f and three points /(xi), /(x2); 
/(хз) on the graph. Jensen’s inequality guarantees that a convex combination 
А1/(х1)+А2/(х2)+Аз/(хз) (red) of the three function values lies above the function 
evaluated at the convex combination /(AiXi + A2x2 + A3x3) (blue), and, in fact, ev­
ery point in the convex span of these points (the white triangle) lies above the graph 
(gray).

Remark 15.2.8. Two other important inequalities that follow from Jensen’s in­
equality are as follows:

(i) The arithmetic-geometric mean inequality: 52Г=1 Xi — ПГ=1ЖУП- This 
follows almost immediately from Jensen’s inequality applied to the convex 
function — log (ж).

(ii) Holder’s inequality: \xiyi\ < (EXi Ыр)р (1X1 Ш9)9- This follows
(with a little work) from Jensen’s inequality applied to the convex function i 
xp .

Holder’s and Young’s inequalities are discussed in more detail in Volume 1, Sec­
tion 3.6.

15.2.3 Jensen's Inequality—Integral Form
A version of Jensen’s inequality holds even when the finite sum is replaced with an 
integral over an infinite set. To prove this we first show that if a convex function 
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f has a closed epigraph, then f is the supremum of all the affine functions whose 
graphs lie on or below the graph of /.

Theorem 15.2.9. Given a collection {fa}&eJ of convex functions fa:V—> Rqq, 
the function /(x) = supaEJ /a(x) is convex.

Proof. Let x, у G V and A G [0,1]. Since fa is convex for each q G J, we have that

/(Ax + (1 - A)y) = sup fa (Ax + (1 - A)y) 
aeJ

< sup(A/Q(x) + (1 - A)A(y)) 
olEJ

< sup(A/Q(x)) + sup((l - A)/a(y)) 
a£j

= A sup A(x) + (1 - A) sup A(y) 
aEJ aeJ

= A/(x) + (1 - A)/(y). □

Lemma 15.2.10. If {fa}aeJ is a collection of functions fa :V Rqq, then

epi(sup/Q) = П epi(/a). (15.7)
aEJ

Proof. Since //з(х) < supaEJ/a(x) for all /3 G J and all x G V, we have 
epi(supaeJ /Q) С ер!(//з) for all /3 G J, which implies that epi(supa ej fa) C 
Q/3eJepi(//3). Thus, it suffices to show that ерЦ/^) C epi(supQeJ А)- и 
(x, y) G ер!(//з) for all /3 G J, then у > //?(x) for all /3 G J. This implies that

> supaeJ /Q(x) for all о G J, and hence that (x, y) e epi(supQeJ A)- □

Lemma 15.2.11. If f,g : V —> Rqq are functions with epi(/) = epi(p), then f = g.

Proof. If f ф g, then without loss of generality, there exists an x G V for which 
/(x) < g(x), but then (x,/(x)) epi(g), while (x,/(x)) G epi(/), which is a 
contradiction. □

Theorem 15.2.12. //(V, (•,•)) is an inner product space, then a convex function 
f : V —> Rqq with a closed epigraph is the pointwise supremum of all hyperplanes 
that lie below the graph of f; that is, for each x eV, we have

/(x) = sup Л(х), 
кеж

where

= {/z(x) = (a, x) — b | a G V,b G R, with /z(x) < /(x) for all x G V}. (15.8)

Proof. By Lemma 15.2.11 it suffices to show that epi(/) = epi(suphEJ^ Д). By 
Lemma 15.2.10 we have epi(suphE J^ Л) = epi(/z), and thus it suffices to show 
that the set

н= П epi(ft)
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is equal to epi(/). Since epi(/) C epi(/i) for each h e , we have epi(/) С H, so 
all that remains is to show that H C epi(/).

Consider V x R with the inner product ((v, o), (w,/3)) = (v, w) + o/3. For any 
point (xo,t/o) epi(/), we have /(xq) > yo. Since epi(/) is closed, the separation 
lemma (Lemma 13.2.7) guarantees the existence of a half space containing epi(/) 
but not containing (xo,t/o)« This corresponds to a pair (a, o) G V x R and b G R 
such that ((a, a), (x0, yo)} = (a, x0) + ay0 > b but ((a, a), (x, y)) = (a, x) + ay < b 
for all (x, y) G epi(/). In particular, we have (a, xq) + o/(x0) < b.

Combining the separating conditions gives b — af(xo) > (a, xq) > b — ayo, or 
o/(x0) < ayo. But /(xq) > yo, so a < 0. Dividing the equations through by |o| 
we may assume that a = — 1. Letting Zi(x) = (a, x) — b gives /z(x) < /(x) for all 
x, so h G But 7z(x0) > yo, so (xo,i/o) epi(/i); hence, (x0,7/0) H. Therefore 
#Cepi(/). □

Theorem 15.2.13 (Jensen’s Inequality—Integral Form). Let С C Rn be a 
convex set and g : C —> R be a nonnegative integrable function with fc p(x) dx = 1. 
If f : C —> R is a convex function whose epigraph is closed inVxR, then

f xp(x) dx) < f(x)g(x) dx.

Proof. Extend f and g to be Revalued functions on all of Rn. As described in 
Remark 15.1.8, we have that effd(/) = effd(g) = C. Let Ж be defined as (15.8). 
For any 7z(x) = (a, x) — b G we have /(x) > /г(х) for all x, which gives

[ f(*)g(*)dx>  f h(x)g(x)dx = 
JC Jc

(15.9)

Since (15.9) holds for all h G it must also hold for the supremum, which yields

/ /(x)^(x) dx > sup h
Jc hej?

as desired. Here the final equality holds by Theorem 15.2.12. □

Recall that a function f : V R^ that is continuous and convex on its effective 
domain has a closed epigraph if its effective domain is closed; see Proposition 15.2.4.

Corollary 15.2.14. Let X be a continuous random variable taking values in a 
closed convex set С G Rn. If ф : C R is a continuous convex function, then

</>(E[X]) < E[<XX)]-

Proof. The proof is Exercise 15.14. □
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Example 15.2.15. The function ф(х) = ex is both continuous and convex 
on R, so by Jensen’s inequality, for any univariate continuous random variable 
X we have

eE[X] < E[eX],

For n G N, we generalize to ф(х) = x2n, which is also continuous and convex, 
and thus E[X]2n < E[X2n]. In the special case of n = 1, we have that 
E[X2] - E[X]2 = Var(X) > 0.

15.3 Fundamentals of Convex Optimization
Convexity has important consequences for optimization. Among other things, any 
local minimizer of a convex optimization problem is also a global minimizer, and 
that minimizer is unique. Therefore, any technique for finding a local minimizer 
also yields the global minimizer of a convex function.

There are also some very good numerical methods designed specifically for find­
ing the minimizer of a convex optimization problem (some of these are described in 
Section 15.6), so for practical purposes, once a problem is formulated as a convex 
optimization problem it is essentially solved—at least in many cases. As a general 
rule, with current techniques, most convex optimization problems are relatively 
easy, whereas nonconvex problems are generally hard.

15.3.1 Definition and Examples
A convex optimization problem is one where the feasible set and the objective 
function are both convex.

Definition 15.3.1. Consider an optimization problem in standard form

minimize
subject to

f(x)
G(x) 0,
Я(х) = 0,

(15.10a)
(15.10b)
(15.10c)

with f, G, H all defined on an open domain Q C Rn (f may take values in Rqo/ 
This is a convex optimization problem if (i) the objective f is a convex function, 
(ii) the set Q is convex, (iii) all the inequality constraint functions g±,... ,gm, given 
by the components of G, are convex functions, and (iv) all of the equality constraint 
functions hi,... ,he, given by the components of H, are affine functions.

Remark 15.3.2. It is common to write the affine equality constraint H(x.) = 0 as 
Ax — b = 0 for some A e Mexn(W) and b e

Proposition 15.3.3. The feasible set

/ = {x G Q | /(x) < oo, G(x) 0, Ax - b = 0} c Q (15.11)

of a convex optimization problem (15.10) is a convex set.
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Proof, The proof is Exercise 15.17. □

Proposition 15.3.4. Let h : Q —> R be a given function. The functions h and —h 
are both convex if and only if h is affine.

Proof, The proof is Exercise 15.18. □

Remark 15.3.5. Any equality constraint of the form /z(x) = 0 is equivalent to 
the two inequality constraints /z(x) < 0 and — /z(x) < 0. Proposition 15.3.4 shows 
that both /z(x) and — /z(x) are convex if and only if /z(x) is affine, so requiring 
equality constraints to be affine is equivalent to requiring both the corresponding 
inequality constraints to be convex. We usually find it more convenient to use 
equality constraints rather than the corresponding pairs of inequality constraints.

Example 15. 3.6. In Remark 13.3.4 we showed that a linear optimization 
problem in standard form (13.4) can always be rewritten as

minimize cTx

subject to Ax — b 0.

Since the objective and the constraints are all affine and thus convex, this is 
a special case of a convex optimization problem.

Example 15. 3.7. An important problem in machine learning is the task of 
classifying points x G Rd into one of two categories—this is called a binary 
classifier. This can be formulated as finding a function f : Rd {±1}, where 
/(x) is +1 for one category and —1 for the other.

A simple example of such a classifier is a function of the form /(x) = 
sign(wTx — 6), which amounts to finding the hyperplane and assigning any 
point x on one side of the hyperplane, say, when wTx — b < 0, to — 1 and 
assigning a point on the other side, that is, when wTx — b > 0, to +1.

Given the training data D = {(x17 z/i),..., (x^, 2/^)} *n Rd x {±1}, we 
want to find a suitable hyperplane {x 6 Rd | wTx = b} for the function f. 
Support vector classifiers provide some methods for doing this. Specifically, 
the hard-margin support vector classifier chooses w e Rd and b G R to

minimize |||w||2
subject to (1 — 2/i(wTXi + bf) < 0 Vi G {1,..., N}.

The objective is convex and the constraints are all affine in w and 6; there­
fore, this is a convex optimization problem. The data set D is called linearly 
separable if the feasible set is not empty.
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Example 15. 3.8. If the data set D is not linearly separable, then the hard- 
margin optimization problem is infeasible. To overcome this, we relax the 
constraints and invoke a penalty for violating the constraints by using a soft- 
margin support vector classifier. This is an unconstrained problem to minimize 
what is called regularized hinge loss:

minimize
W.6

I Hui+c1 is max(°’1 - yi(wTx+&))
2=1

for some fixed choice of C > 0. By Exercise 15.5 this is also a convex opti­
mization problem.

15.3.2 Consequences of Convexity for Optimization
As mentioned above, one very important consequence of convexity is that any local 
minimizer is also a global minimizer.

Theorem 15.3.9. If x*  is a local minimizer of a convex optimization problem 
(15.10), then it is also a global minimizer.

Proof, Let & be the feasible set (15.11) for the convex optimization problem 
(15.10). Let x*  G X be a local minimizer; that is, assume there exists 6 > 0 such 
that

/(x*)  = min{/(x) | x G П B(x*,  <5)}.

Suppose that x*  is not a global minimizer, so there exists у G J such that /(y) < 
/(x*).  Choose z = (1 — A)x*  + Ay, where A = 5/(2||x*  — y||). Thus,

IIх* - z|| = ||x*  - (1 - A)x*  - Ay|| = A||x*  - у|| = <5/2.

By convexity of the point z must be feasible, and convexity of f implies

/(z) < (1 - A)/(x*)  + A/(y) < (1 - A)/(x*)  + A/(x*)  = /(x‘).

This contradicts x*  as a local minimizer since z G B(x*,  6). Thus x*  is a global 
minimizer. □

Convexity also gives a first-order sufficient condition.

Theorem 15.3.10. Assume that the objective function f in the convex optimization 
problem (15.10) lies in C1(Q;R). A point x*  G & is a minimizer if and only if

B/(x*)(y  - x*)  > 0 Vy G (15.12)

Proof, If (15.12) holds for x*  G then, since f is convex, Theorem 15.1.12 
guarantees that

/(y)>/(x*)  + L>/(x*)(y-x*)  Vye.^.
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Combining with (15.12), we have that /(y) > /(x*)  for all у G &. Thus x*  is a 
minimizer.

For the converse observe that for every у G convexity of & implies that the 
vector x + £(y — x*)  lies in & for all t G [0,1]. Assume, by way of contradiction, 
that 2?/(x*)(y  — x*)  < 0. For the unit vector v = ||yZ**||  the directional derivative 
Z?v/(x*)  = 2?/(x*)v  is negative. Since f is C1, there must be some small e such 
that the directional derivative 2?/(x)v must be negative for all x in B(x*,e)  П &. 
Hence the function /(t(y — x*)  + x*)  is decreasing for t G [0,e), and thus x*  is not 
a minimizer of f on & □

Remark 15.3.11. If x*  is an interior point of then 2?/(x*)(y  — x*)  >0 holds 
for all у in a neighborhood of x* , which implies that 2?/(x*)  = 0. In particular, 
when the convex optimization problem is unconstrained, we have that & = Q and 
every point of & is an interior point.

But if x*  is not an interior point, then (15.12) implies that for every у 6 / we 
have — Df(x*)y  < —2?/(x*)x*.  Setting a = —2?/(x*) T and b = — Df(x*)x*  gives 
a half space {y | aTy < b} that supports

15.3.3 Rewriting Problems as Convex Optimization Problems
As mentioned above, there are good algorithms for solving convex optimization 
problems, but nonconvex problems are generally hard. It is important, therefore, 
to recognize that many problems are actually convex optimization problems, even 
when they are not initially formulated as such. Unfortunately, there are no off- 
the-shelf methods for rewriting general problems as convex problems, but spending 
a little effort to look for a way to rewrite a problem as a convex problem can 
yield significant benefits. Among other things, this guarantees a unique minimizer, 
which must be global, and it means that you can take advantage of the effective 
numerical methods for solving convex optimization problems. We discuss some of 
these methods in Section 15.6.

Example 15.3.12. Consider the problem

minimize
subject to

Although the objective function is convex, the constraints are not. However, 
we can recast this as a convex problem in standard form as follows. First, 
(x + y)2 = 0 is equivalent to x + y = 0, and second, l-\-y2 is always positive, so 

2 < 0 is equivalent to x < 0. Therefore, the original problem is equivalent 
to the convex optimization problem

minimize
subject to

2 I 2

x 4- у = 0, 
x < 0.
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The following easy proposition is often used for rewriting optimization problems.

Proposition 15.3.13. If D C R with f : Rn —> D, and if ф : D —> R is a strictly 
increasing function, then x*  is a local minimizer for the problem

Example 15.3.15. A An important optimization problem in machine learn­
ing is the problem of computing the parameters for logistic regression. This 
arises when we have data of the form D = {(xi, т/i),..., (хдг, Pn)} with 
хг € Rrf and yi € {±1}, drawn from a distribution with

P(Y = 11x) =-------- z т and P(Y = -11 x) =------ A ,h.
v 1 7 X _|_ e—(wTx+b) * v 1 7 X + g(wTx+b)

for some choice of parameters w G Rd and b € R. This can be written more 
cleanly as

P(Y = у I x) =---------1. T |M.
V y 1 7 X + g-2/(wTx+d)

minimize ф о /(x) 
subject to G(x) 0, 

Я(х) = 0

if and only if x*  is a local minimizer for the problem 

minimize /(x) 
subject to G(x) 0, 

Я(х) = 0.

Proof, The proof is Exercise 15.19. □

Example 15.3.14. The function /(#) = log |3rr — 5| is not convex, but since 
log |3t — 51 = | log(3rr — 5)2 and the function | log(z) is strictly
increasing on [0, oo) we can use Proposition 15.3.13 to recast the optimization 
problem. Hence the optimization problem

minimize log |3ж — 5| 
subject to G(x) 0.

H(x) = 0

has the same minimizer as the problem

minimize
subject to

(3# - 5)2
G(x) 0,
Я(х) = 0,

which has a convex objective function.
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The MLEs are
77 1

(w,6) = argmax TT----------——-rr.
wb Ц i + e-^wTxH-b)

This is not a convex optimization problem. But taking logarithms and putting 
the new problem in standard form gives

w
(w, 6) = argmin log(l + e~yi^ Xi+b)).

w’b 2=1

By Exercise 15.6 each summand of the objective is convex, so the objective is 
also convex. Therefore, this is an unconstrained convex optimization problem.

Remark 15.3.16. Given a solution (w, b) to this problem, we can define a classifier 
f : {±1} by

fl if Р(У = 11 x) > 0.5,
Л ' [-1 if P(Y = 1 |x) < 0.5.

It is straightforward to check that this classifier satisfies /(x) = sign(wTx+6), which 
looks very similar to the support vector classifiers of Examples 15.3.7 and 15.3.8. 
Note, however, that w and b are computed differently and so the hyperplanes are 
generally not the same.

Example 15.3.17. The Chebyshev approximation for linear regression uses 
the oo-norm instead of the 2-norm; that is, given A (E Mmxn(W) and b G Rm, 
we have the unconstrained optimization problem

minimize ||Ax — ЬЦ^.

This can be written as a linear (hence convex) optimization problem as follows.
For any t > ||Ax — ЬЦ^, if 1 = (1,1,..., 1) is the all-ones vector, then we 

have |Ax — b| tl, so the smallest t satisfying |Ax — b| tl is ||Ax — ЬЦ^. 
Therefore, the problem is equivalently given as

minimize t
subject to Ax — tl — b 0, 

— Ax — tl + b 0.

Since the objective function and the constraints are both affine, this is a convex 
optimization problem.

Remark 15.3.18. If we use the 1-norm in the regression problem above, instead of 
the oo-norm, the problem is instead called robust regression or C-minimization. The 
robust regression problem can also be formulated as a linear optimization problem; 
see Exercise 15.22 for details.
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15.4 Weak Duality
Just as in the case of weak duality for linear optimization, weak duality in convex 
optimization gives a lower bound on a given minimization problem in terms of a 
dual maximization problem. In this section we describe the dual problem and prove 
that weak duality holds. In the subsequent section we show that strong duality also 
holds in many cases, which means that the optimal value of the dual problem is the 
same as the optimal value of the primal problem. In some cases this dual problem 
is easier to solve than the primal problem. The ideas of duality are also important 
in the interior point methods for convex optimization, which we discuss at the end 
of this chapter.

Throughout this section, unless otherwise stated, we assume functions take val­
ues in R±oq.

15.4.1 The Lagrange Dual
Recall from (14.1) the (not necessarily convex) constrained minimization problem

minimize /(x) (15.13a)
subject to G(x) 0, (15.13b)

Я(х) = 0, (15.13c)

where f : Q —> is C1 on effd(/), and the constraints G : Rn —> Rm and 
H : Rn —> R€ form the feasible set & C Q, where Q C Rn is an open set. We 
denote the inequality constraint functions gi,... ,gm from the components of G 
and equality constraint functions /zi,..., hf from the components of H.

Let x*  Е / be the minimizer of f with p*  = /(x*).  As defined in (14.17), the 
Lagrangian : Q x R£ x Rm —> R can be interpreted as giving a penalty to values 
of x that violate the constraints. For example, whenever the constraint G(x) 0 is 
violated with Pi(x) > 0, then for any ц 0, we have //грг(х) > 0, and the larger 
is, the greater the penalty for violating the constraint рДх) < 0. Following this idea, 
we can use the Lagrangian to make a new unconstrained problem that is equivalent 
to the original constrained problem, as follows. First, for any x observe that

supAT#(x) = (° lf = °’ (15.14)
л I oo otherwise

and
x fo ifG(x)^0,supjz G(x) = < (15.15)

I oo otherwise.

If F(x) = supM^0 AJS?(x, A, jz), then the constrained optimization problem (15.13) 
can be rewritten as the unconstrained optimization problem

minimize F(x). (15.16)

One of the benefits of duality for linear optimization problems is that it gives a 
bound on the optimal value. In particular, the following minimax inequality gives 
a bound on the optimal value of the nonlinear problem (15.13).
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Figure 15.6. An illustration of the minimax inequality for Ф(х,у) equal to the 
Rosenbrock function. For each x G [—2,2] (right axis) let y(x) = argmin^ Ф(х, у). 
The black curve is the plot of all points of the form (ж, y(x), min^ Ф(ж, у)). Similarly, 
for each у e [—1,4] (lower left axis) let x(y) = argmax^ Ф(х,у). The red curve is 
the plot of all points of the form (x(y), у, тахж Ф(х, у)). The minimax inequality 
guarantees that the highest point of the black curve is never greater than the lowest 
point of the red curve.

Proposition 15.4.1 (Minimax Inequality). For any sets X, Y and any function 
Ф : X x У ч 1 the following inequality holds:

sup inf Ф(х,y) < inf sup Ф(х,у). (15.17)yeY xeX

See Figure 15.6 for an illustration.

Proof, For every x G X and every у G Y, we have

inf Ф(х,у') < Ф(х,у) < sup Ф(х',у). (15.18)
y'ev x'CX

Taking the infimum over all values of у G Y on the right gives

inf Ф(х, y') < inf sup Ф(х',у). 
y'ev yeY

Taking the supremum over all values of x G X

sup inf Ф(х, y') < inf sup Ф(х',у). □ 
xexy'e^ yevx/eX
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Remark 15.4.2. The minimax inequality applied to the unconstrained optimiza­
tion problem (15.16) shows that the optimal value p*  = /(x*)  of this problem 
satisfies

Example 15.4.5. Let A E Mmxn(R), b E Rm, and с E Rn. Consider the 
primal linear optimization problem (see (13.12))

minimize cTx
subject to Ax b, (15.20)

x 0.

d*  = sup inf Jjf(x, А,д)< inf sup Jjf(x, А, д) = p*.  
M^o,AxeRTl ^Vo,a (15.19)

This motivates the following definition.

Definition 15.4.3. The Lagrange dual function f : x Rm —> R±oo

/(Л, д) = inf ^(x, Л, fi) = inf (/(x) + ЛтЯ(х) + /zTG(x)1. 
xER™ xEKn X /

Example 15.4.4. Assume that A E MeXn(W) and b E Consider the 
optimization problem

minimize ? Il* xll2
subject to Ax = b.

The Lagrangian is given by

J^(x.A) = |||х||22 + Ат(Лх-Ь).

For any A E the minimizer of the Lagrangian (x, A) occurs where 
vanishes, so the minimizer x satisfies

Dx^(x, A) = xT + ATA = 0,

which implies x — —ATA. Thus, the dual function satisfies

/(A) = xmf (1||х||2 + Ат(4х-Ь))

= inf (h-^T^)T(-^T^) + ^T(^x-b) 
xeRn \2

= —-АТАЛТА — ATb.
2
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The Lagrangian is

(x, y, /z) = cTx + yT(Ax — b) — /zTx,

where both у and [Л are nonnegative. The Lagrange dual function is

/(у, д) = Jnf, (cTx + yT(Ax - b) - дтх)

= inf (—bTy + (с + Лту - д)тх) 
xeKn
J —bTy if c 4- ATy — /z = 0,
I —oo otherwise.

Remark 15.4.6. We show below that the Lagrange dual function is always con­
cave, even if the original problem was not, since it is the pointwise infimum of affine 
functions (and may equal — oo for some values of x).

When expressed in terms of the original function f and its Lagrange dual /, 
Remark 15.4.2 immediately gives the following important result.

Theorem 15.4.7 (Weak Duality). For any Ae T and pt E Rm with pt 0, if 
p*  is the minimal value of f on the feasible set, then f(X,pt) < p* .

Remark 15.4.8. Weak duality guarantees that solving the dual optimization prob­
lem

maximize /(А, /л)
subject to pt 0

(15.21)

gives a lower bound for the original problem (15.13), hereafter called the primal 
problem. In particular, if

d*  = sup /(А, д)

is the solution to the dual problem, then d*  <p*.

Example 15.4.9. Consider again the problem from Example 15.4.4. By the 
FONC, the maximizer A*  of f satisfies

Dxf = -АТЛЛТ - bT = 0,

and thus A*  = — (ЛЛТ)-1Ь, so the maximal value is d*  = |ЬТ(ЛЛТ)~'Ь. 
Weak duality implies that d*  < p* , but it is straightforward to check that 
d*  = p*  in this example. Later in this chapter we show that a very broad class 
of convex optimization problems have the property that d*  = p* .
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Example 15.4.10. Consider the problem in Example 15.4.5. Maximizing the
Lagrange dual function gives d* , which is determined by solving

maximize — bTy
subject to ATy + c — /1 = 0, 

y,M >Z 0
(15.22)

This is equivalent to the dual linear optimization problem (13.13). Hence, the 
notion of duality given here is a generalization of that of Section 13.6 for linear 
optimization.

Remark 15.4.11. In Example 15.4.10 above, the weak duality inequality d*  < p*  
becomes the weak duality inequality — bTy*  < cTx*  for linear optimization as given 
in Theorem 13.6.5.

Remark 15.4.12. In the following section, we show for a large class of convex 
optimization problems that the weak duality inequality can be strengthened to the 
stronger equality d*  = p*.  This is a generalization of the strong duality theorem 
(Theorem 13.6.8) for linear optimization which states that —bTy*  = cTx*.

Example 15.4.13. A Consider again the hard-margin support vector classi­
fier of Example 15.3.7 with linearly separable data D = {(xi, pi),..., (xyv, pv)} 
in x {±1}. The Lagrangian for this optimization problem is

1 N
b,n) = -IIw\\l + 22 /2i(l - yi(wTxj + &)),

where ц = (pi,..., pw) t 0- For any given p, 0 the Lagrangian is a convex 
function of w and 6, and so the unique minimizer of <5?(w, 6, p) satisfies

N

0 = Pwj5f(w, Ь, ц) = WT - У2 L-LiVi^i- 
i=l

This implies that the minimizing w satisfies w = 52/Li and the La­
grange dual function is

У(м) = inf _S?(w, b, fj.) w.b
N / / N

I 1 - Vi I + b
2 = 1 \ V=1
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A little algebra shows that

N N n N \

-2 5252WiW&i + 
i—1 j=l i=l г=1 /

But if 52^=1 УгУг / 0? then the infimum is —oo, so the feasible set for the dual 
problem satisfies /ЧУ{ = 0, and the dual problem is

maximize -1 x Xj + E”=i
subject to (15.23)

/1 >2 0.

Example 15.4.14. An unconstrained problem (to minimize f on the open 
domain Q) has an uninteresting Lagrangian Jjf(x) = /(x), and the dual func­
tion f = infx /(x) = p*  is constant. The dual problem is silly: maximize the 
constant function f = p* . Weak duality clearly holds, because /(x) > f = p*  
for all x.

15.5 Strong Duality
Weak duality (Theorem 15.4.7) guarantees that d*  > p*,  where p*  is the minimal 
value of f and d*  is the maximal value of the Lagrange dual f. In this section we 
describe conditions under which these two optimal values are equal. The main cases 
for which this is true are convex optimization problems (see Definition 15.3.1), and 
we limit ourselves to convex optimization problems in this section.

Definition 15.5.1. The minimization problem (15.13) (called the primal problem) 
satisfies strong duality if it and the dual problem (15.21) are both feasible and the 
minimal value p*  of the primal objective f is equal to the maximal value d*  of the 
dual objective f.

Strong duality holds for many convex optimization problems, but not all of them. 
In this section we discuss some situations where strong duality can be proved to 
hold.

15.5.1 Strong Duality from Weak Slater
One of the most common conditions that guarantees strong duality is called Slater’s 
condition.
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Definition 15.5.2. A minimization problem (15.3.1) satisfies the weak form of 
Slater’s condition if there exists a feasible e & from (15.11) that lies in the 
interior o/effd(/) and gj(x!) < 0 for every gj that is not affine.

Example 15.5.3. Any feasible linear optimization problem satisfies the weak 
Slater condition because effd(/) = Rn and every constraint is affine. If the 
problem isn’t feasible, then the problem also fails to satisfy the weak Slater 
condition, since Slater’s condition requires a feasible point.

Example 15.5.4. Any feasible convex minimization problem with effd(/) 
open and with only equality constraints (no inequality constraints) satisfies 
the weak Slater condition.

Unexample 15.5.5. Many feasible convex optimization problems satisfy the 
weak form of Slater’s condition. But here is one that does not: let f be the 
function f(x,y) = e~x if у > 0 and oo otherwise. Consider the optimization 
problem

minimize /(ж, у} 
subject to x21у < 0.

The condition x2/у < 0 implies that either у < 0 (in which case f is infinite 
and hence not minimized) or x = 0, and thus the minimal value is p*  = 1, 
and it is achieved by any point in the feasible set & — {(0, у) | у > 0} 
(recall that the feasible set requires f(x,y) < oo; see (15.11)). Moreover, the 
inequality constraint x21 у < 0 is binding on the entire feasible set. Thus this 
optimization problem does not satisfy the weak Slater condition, yet it is a 
convex optimization problem.

The next theorem guarantees that strong duality holds for optimization problems 
of the form (15.13) that are convex and satisfy the weak Slater condition. We prove 
this in Section 15.5.5.

Theorem 15.5.6 (Weak Slater, Strong Duality). Assume the optimization 
problem (15.13) is a convex optimization problem (see Definition 15.3.1) with a 
finite infimum p*  = infxej?/(x). If there exists a point xf satisfying the weak 
Slater condition, then the dual problem has a feasible maximizer and the maximum 
d*  of the dual problem is equal to the infimum p*  of the primal problem.

Remark 15.5.7. The hypothesis of the previous theorem does not require that a 
feasible primal minimizer exists (the infimum might not be realized on J^); never­
theless, the theorem guarantees the existence of a feasible dual maximizer.
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Unexample 15.5.8. Recall the optimization problem in Unexample 15.5.5. 
The Lagrangian is

x fe~x + px2/y if у > 0,
I ос otherwise,

and the Lagrange dual function is

7(m) = inf (е-ж + цх2/у) > 0.
reElK
У>®

If у = 0, then НпЪе-юо Jzf(x, p, ff) = lim^^oo e~x = 0. If /Lt > 0, then for any 
e > 0 choosing x large enough to make e~x < e/2 and choosing у large enough 
to make 2fix2 /у < e/2 shows that /(jz) < £ for all £ > 0, so we have

~ Jo if/z > 0,
/(W = < -f AI —oo it /1 < 0.

Therefore, the dual problem of maximizing f has maximal value d*  = 0, and 
strong duality fails for this convex problem because there is a duality gap of 
p*  -d*  = 1/

15.5.2 Strong Duality Implies KKT First Order
In Section 14.4 the KKT first-order conditions are proved to hold for regular points. 
But if strong duality holds, then the KKT first-order conditions also hold for singular 
points.

Theorem 15.5.9. Given a minimization problem (15.13) (not necessarily convex) 
with dual problem (15.21), assume there exists a primal feasible value x*  e and 
dual feasible values A* : e and /Lt*  E with /Lt*  0, such that

p*  = = d*.

If is differentiable at (x*,  A*,  /Lt*)  and x*  lies in the interior o/effd(<if (•, A*,  /Lt*)),  
then the KKT first-order conditions (see Theorem Ц-4-5) hold for x* , A* , /Lt* :

(i) 2?xJ^(x,A,/Lt)  = O, and***
(ii) jî(x)  = 0 for all i e {1,... , m}.**

Proof. By (15.16) we have

p*  = /(x*)  = supJ^(x*,  A,/Lt) > J^(x*,  A*,/Lt*)
A,/2

> inf^(x,A*,/x*)  = = d*,
X

(15.24)
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but strong duality gives p*  = d* , so

/(x*)  = infj^(x, А*,д*),  x

and the (unconstrained) FONC gives

2?xJ^(x*,A*, m*)  = 0,
which is the first KKT condition.

Moreover, since all the inequalities in (15.24) must be equalities, we have

/(x*)  = ^(x‘, A*,/z*)  = /(x*)  + (А*) тЯ(х*)  + (M*) TG(x*),

but the fact that x*  is feasible gives H(x*)  = 0. Hence, we have
m

0 = (м*) тС(х*)  = £мЫх*)-
г=1

Since G(x) 0 and pb*  0, no term of the sum 52^ Д*<7г(х*)  is positive, and 
therefore every term in the sum must vanish. Thus,

M*5»(x*)  = 0 Vi,

which is the KKT complementary slackness condition. □

15.5.3 Convex and KKT Imply Optimality and Strong Duality
The KKT first-order conditions are necessary conditions for a regular point to be 
a minimizer. However, in the case of a convex optimization problem, the KKT 
conditions are also sufficient, and strong duality automatically holds.

Theorem 15.5.10. Given a convex minimization problem of the form (15.13) with 
dual problem (15.21), if there exist feasible points x*  e Rn, A*  e and рь*  e 
with рь*  0, satisfying the first-order KKT conditions (see Theorem 7^.^.5), then

p*  = /(x*)  = /(A*, M*)  = d*.

In other words, strong duality holds for this problem, the primal optimizer is x*,  
and the dual optimizer is (A* ,рь*).

Proof, By definition, we have

7(A*,/Z*)  = inf (/(x) + (А*) тЯ(х) + (M*) TG(x)).

The sum (x, А*,  рь*)  = /(x) + (A*) T77’(x) + (/la*) tG(x) is a convex function of x 
because f and all gi are convex, H(x.) is affine, and pb*  >z 0.

Since x*  e satisfies the first-order KKT condition DxJzf(x* , A* , рь* ) = 0, 
Theorem 15.3.10 (sufficiency of first-order condition for convex problems) and 
Theorem 15.3.9 (local minimizers are global minimizers) combine to guarantee that 
x*  is a global minimizer for this problem, so

inf J^(x, A* , рь* ) = Jf(x* , A* , рь* ). x
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Strong duality now follows from a straightforward computation:

= inf (/(x) + (А*) тЯ(х) + (M*) TG(x))

= /(x‘) + (А*) тЯ(х*)  + (/z*) TG(x*)
= /(x‘),

where the last line follows from the feasibility of x*  and complementary slackness, 
so both (/la*) tG(x*)  = 0 and Я(х*)  = 0.

For any z e with z x*,  weak duality gives /(z) > /(A*,  p,*)  = /(x*),  so x*  
must be a global minimizer of f. □

Unexample 15.5.11. In the case of Unexample 15.5.5, no minimizers (0,?/) 
are regular points. This is because the constraint h(x,y) = x^/y is active 
at these points, and Dh(x,y) = \^x/y —a?2/?/2]. Any point of the form 
(0, y) has D/z(0, y) = [0 0], which is not of maximal rank. Therefore, the 
first-order KKT conditions do not apply.

15.5.4 Equivalent Primals May Have Different Duals
As discussed earlier there may be many ways to reformulate an optimization problem 
as a different, equivalent problem. Each of these different reformulations has its own 
dual, and often these dual problems are very different.

Example 15.5.12. Any unconstrained optimization problem has a constant 
dual function (see Example 15.4.14). But we can often rewrite an uncon­
strained problem as a constrained problem, and the new problem may have a 
dual that is easier to solve or interesting in other ways.

Consider the logistic regression problem of Example 15.3.15 to minimize 
Si=i l°g(l + e-2/’(w x*+ fe))5 without constraints. This can be rewritten as the 
equivalent constrained problem

N

minimize log(l +ez‘) 
i=l

subject to Zi + ^(wTXa + b) = 0 Vi € {1,..., N}.

The Lagrangian of this equivalent problem is

N N

b, z, A) = 57 l°g(l + eZi) + 57 ^Zi + ^(wTxi + &))> 
2=1 2=1

and the dual function is

(N N N \

У log(l + eZi + XiZi) + wT V Att/,x, + bУ Хгуг I .
Z / Z / Z / /
2=1 2=1 2=1 /
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The function /(A) is —oo unless Xiyi = 0 and Хгуг^г = 0, and 
otherwise it is infz 52i=1(log(l + eZi) + XiZi). Exercise 15.34 shows that this 
is also —oc^unless every Xi is bounded by —1 < A < 0, in which case it takes 
the value /(A) = Zi=i (U _ -M l°g(l _ _ log(Aj)). Changing the sign
of A gives the dual problem

N

maximize log(—A;) - (1 + AJ log(l + AJ 
2 = 1

subject to 0 < Xi < 1 Vi G {1,..., TV}, 
Za=i = 0’
Zill = 0.

Example 15.5.13. A As with the previous example, the soft-margin support 
vector classifier of Example 15.3.8 is an unconstrained optimization problem, 
and hence it has an uninteresting dual. The original problem

N 1
minimize /(w, 6) = C max(0,1 — z/j(wTXi + 6)) -I—1|w||q

2

can be rewritten as

N 1 
minimize C & + dWIi

2 (15.25)
subject to 1 — ?/i(wTXj + 6) < Vi G {1,..., N},

0<Ci Vie {1,...,7V}.

Writing /z = (a,/3) gives
N N N

^(w, b, £,a,0) = С^& + -1|w||2 - ^2Q'(C - 1 + J/i(wTxi + fe)) - 52
2=1 2=1 2 = 1

Exercise 15.35 shows that the dual problem is almost identical to that for the 
hard margin:

NN n

maximize — | Xj + &i
2=1 J=1 2=1

N

subject to ^2 агУг = 0,

0~<ai<C Vz e {1,...^}.

Moreover, Slater’s conditions hold, so the KKT conditions hold for the unique 
minimizer. Therefore we have

oii^i - 1 + + b)) = 0 Vi e {1,..., IV}.

This is called the soft-margin support vector classifier.
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15.5.5 *Proof  of Strong Duality from Weak Slater
We conclude this section by proving Theorem 15.5.6, that strong duality holds if 
the weak Slater conditions are satisfied.

Proof, Any equality constraint in an optimization problem can be rewritten as 
two inequality constraints; therefore, we may assume that the primal optimization 
problem is of the form 

minimize /(x)
subject to #i(x) < 0,

^m(x) < 0,
where the domain Q C Rn is open and convex, and the functions f and gi are 
all convex. Slater’s condition gives an x' E such that if gi is not affine, then 
Pi(x') < 0. Without loss of generality, assume that pi(x'),... ,^(x') are all strictly 
negative and gk+i, • •• ,9m are all affine, with ^+1(x') = ••• = pm(x') = 0. For 
convenience, we write G = (pi,..., pfc).

Define the set

V = {(u, w) E x R | 3x e Q, G(x) u, /(x) < w}.

By Exercise 15.37 the set V is convex and not empty. Moreover, given any (u, w) E 
V and any (u', w') (u, w) we must have (u', w') E V, by definition of V.

The point (0,p*)  is not in the interior of V because otherwise there would be 
a point of the form (0,p*  — e) in V for some e > 0, and this would contradict 
the minimality of p*  on &. Therefore (0,p*)  lies on the boundary of V. By 
the supporting hyperplane theorem (Theorem 13.2.8) there exists a hyperplane 
/z((u, w)) = /iTu + p^w + 6, with either p 0 or p0 0, such that Zi((O,p*))  < 0 
and /z((u,w)) > 0 for all (u, w) E V. This gives

/iTu + pow > PoP*  (15.26)

for all (u, w) E V. If any entry pi of p were negative, then for any (u, w) E V 
we could increase the corresponding component иг of u arbitrarily and still remain 
in V, but this would violate (15.26) for щ sufficiently large. Therefore p >z 0. A 
similar argument shows that po > 0.

If po = 0, then (15.26) shows that inf(U5W)ev /latu > 0, but p >z 0 combined 
with p ф 0 imply

, inf /u < Д (x' j < 0
(u,w)ev

because рДх') < 0 for all i < к. Therefore p$ > 0.
Since po > 0 we may divide (15.26) by po to get

inf ( uTu + w) > p*  
(u,w)ev \ /

where p = -^p. Letting p = (Д, 0) E x gives the following bound on the 
Lagrange dual function:

7(Д) = inf(/(x) + (/l)TG(x)) = inf (ATu + w) > p*.
x (u,w)ev \ /
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Taking the supremum of yields

d*  = sup/(/x) > f(fi) > p*,

but weak duality implies d*  < p* ; therefore d*  = p*  and Д is the maximizer. □

15.6 Interior Point Methods I: The Barrier Method
Interior point methods originally began as an alternative to the simplex method 
for solving linear optimization problems, but many of them also work very well 
for general convex optimization problems. These algorithms are iterative, moving 
through the interior of the feasible set and converging to an optimizer, rather than 
moving among the vertices of the boundary of the feasible set

The simplex method is very effective on a large class of linear optimization 
problems, but there are pathological examples where the temporal complexity of 
the simplex method is exponential in the number of variables. Specifically, there 
are examples where the simplex method has to visit exponentially many vertices 
(exponential in the number of variables) before reaching the minimizer; see Section 
13.5.4 for more on this. It was a long-standing problem to determine whether there 
was any algorithm for solving linear optimization problems that was guaranteed to 
have polynomial complexity.

The first interior point method was the ellipsoid method due to Shor, Nemirovski, 
Yudin, and Khachiyan, who showed that their method was provably polynomial in 
complexity. In particular, the temporal complexity is bounded by O(n6L) time, 
where L is the number of bits of input in the problem (see Remark 13.5.8).

While the development of this algorithm was an important advance in theory, 
the algorithm itself was impractical for solving real problems, due in part to a high 
cost for each iteration and also due to poor numerical stability. A few years later, 
Karmarkar presented the first practical algorithm, also an interior point method, 
that could be proved to solve linear optimization problems in polynomial time. 
The complexity of his algorithm is bounded by O(n35L). Of course, interior point 
methods have continued to improve since Karmarkar and have been generalized to 
handle many convex optimization problems—not just linear ones.

A nice feature of interior point methods is that they can give relatively accurate 
approximations of the optimal point in very few iterations. Moreover, the number 
of iterations required to give an accurate solution increases very slowly with the 
dimension of the problem. At present, interior point methods are the only good 
option for very large linear optimization problems (say with a million or more 
constraints and variables), and they remain competitive when dealing with smaller 
linear problems.

15.6.1 Formulation
Barrier methods provide a powerful class of methods for numerically computing 
solutions of convex optimization problems of the form

minimize /(x) (15.27a)
subject to G(x) 0, (15.27b)

Ax - b = 0, (15.27c) 
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where f and the components g±,..., gm of G are convex functions that are C2 on 
Rn, where A E Mgxn(W), and b E Moreover, the feasible set

cF = {x E | G(x) 0 and Ax — b = 0}

must have a nonempty interior /°. As in the case of unconstrained optimization 
algorithms, these methods can often still work if the domain Rn is replaced with 
an open convex set Q C Rn, but applied naively, there is a risk that they will step 
outside the domain. One way to deal with this situation is to express the set Q 
in terms of additional convex inequalities #m+i(x) < 0,... ,#m+fc(x) < 0, and then 
add these inequalities to the list of constraints in G. Of course, a drawback to this 
approach is that it can produce minimizers outside the feasible set (on the boundary 
dQ = Q\Q).

In theory, and occasionally in practice, it is sufficient to consider the reduced 
problem

minimize /(x) 
subject to G(x) 0,

(15.28)

where the affine equality constraints (15.27c) are removed using the methods of 
Section 14.6. However, many numerical packages follow the general form (15.27).

The idea of barrier methods is to add a small multiple of a convex barrier 
function b to the objective /, where 6(x) is finite for x E <F°, but with 5(x) oo 
as ^г(х) 0“ for any i E {l,...,m}. In this section, we study the logarithmic
barrier function given by

6(x) = -52log(-&(x))- (15.29)

It is straightforward to check that this 5(x) is convex if each g^(x) is; see Exercise 
15.38. The optimization problem (15.28) is replaced with a new problem,

minimize /£(x) = /(x) + eb(x) 
subject to x E cF°

(15.30)

for some small e > 0. Because 5(x) and /(x) are convex, the function /£(x) is also 
convex. For each e let x*(e)  be the unique minimizer of (15.30) on F°. The path 
defined by x*(e)  for e E (0, oo) is called the central path.

Example 15.6.1. Consider the problem of minimizing /(rr) = rr2, subject to 
x > 0. Adding a logarithmic barrier to the objective gives the new problem 
of minimizing f£(x) = x2 — slog(j:) on the set {ж E R | x > 0}. In this case 
the minimizer for the new problem is ж*(е)  = л/е/2, and as s —> 0+ we have 
ж*(б)  —> 0, which is the minimizer of the original problem. Theorem 15.6.3, 
below, shows that this is a general phenomenon.
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Figure 15.7. Illustration of the situation in Lemma 15.6.2. Given a point x 
(yellow) in C and an interior point xq E C° (blue), let у = txo + (1 — £)x be any 
point on the segment connecting x and xq. The point у lies in the interior of C, 
because any point z (red) in B(y,t£) can be written as z = tzo + (1 — t)x e C for 
some zq E B(xq,£).

15.6.2 Limiting Behavior
We generalize the example by showing that the minimizer x*(e)  of (15.30) converges 
to the minimizer x*  of (15.29) as e 0+. First we have the following lemma.

Lemma 15.6.2. IfCcV is a convex set in an inner product space (V, || • ||), then 
for every x E C and every xq in the interior C°, the point у = tx0 + (1 — t)x, 
t E (0,1], lies in C°; see Figure 15.7. Moreover, if C° 0, then С C C°.

Proof. Let x E C, x0 E C°, and у = tx0 + (1 — t)x for some t E (0,1]. To show 
that у E C°, it suffices to prove that the open ball B(y,e) С C for some e > 0. 
Since x0 E C°, there exists £ > 0 with B(x0,£) С C. For any z E B(y,e), with 
e = t£, the point z0 = |(z + (t — l)x) lies in the ball B(x1?£), because

||z0-x0|| = |||z +(t-l)x-fx0|| = |||z - y|| <£.

This shows that z0 E B(x0, £) С C and thus z = tz0 + (1 — t)x E B(y, e) С C.
We conclude the proof by showing x E C°, that is, for any 6 > 0, there exists 

0 < t < 1 such that у E B(x,5). Setting t < min(l, J/||x — x0||) gives

lly - xll = llixo + (1 - t)x - x|| = t||x0 - x|| <6. □

Theorem 15.6.3. Let b : R be a convex function with the property that
for any point x in the boundary \ we have limk^oo b(xk) = oo for
any sequence (x/e)/ce^ in that converges to x. Fix a positive sequence {ek)ke  ̂
converging to 0. For each j E N let Xj be the minimizer of (15.30) for e = ej. Any 
limit point of (xj)jgn in Q lies in & and is a global minimizer of f on .
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Proof. Let x e Q be a limit point of (xj)jGn- Passing to a subsequence, if necessary, 
we may assume that xj —> x. If x E ^°, then |6(x)| < oo and lim/^^ ekb(xk) = 0. 
If x /°, then by hypothesis, 6(x/c) oo, and thus for any sufficiently large к we 
have

£kb(xk) > 0.

This implies that
/(Xfc) + Efcb(xfc) > /(Xfc). (15.31)

Assume by way of contradiction that x is not a global minimizer, so that there exists 
x*  e / such that /(x*)  < /(x). By continuity of f there exists 6 > 0 such that 
/(y) < /(x) for all у E B(x*,<5).  By Lemma 15.6.2 we may assume that у E J^°. 
The definition of x/~ as a minimizer on and (15.31) combine to give

/(y) + £kb(y) > f(xk) + £kb(xk) > f(xk)

for all sufficiently large к E N. Taking limits gives /(y) > /(x), a contradiction. 
□

Example 15.6.4. Consider the optimization problem

minimize
subject to

f(x,y) = x-y2 
1 + x — y2 >0,

where the minimum of the function is —1. The log barrier problem is to 
minimize the function

fe(x, y)=x-y2 -e log(l + x - y2) - £ log(y).

This is an unconstrained problem, which we can solve by computing the FONC 
given by

1 “ —2 = °’
1 + x — yz

V 125 7^---- 2-£-=0-
1 + x - у

We simplify to get

у2 - У - e/2 = 0, 
1 + X — у2 = E.

This gives the solution

ж*( е)'
y*(e).

1 3s — 1 + \/l + 2s
2 1 + \/l + 2s

Letting s —> 0+ gives the solution (ж*,  г/*)  = (0,1).
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Example 15.6.5. Consider the optimization problem

minimize /(x, y) = x3 + y3
subject to 1 < ж < 4, 

2 < У < 5.
(15.32)

Replace the objective with f£(x, y) = f(x, у) + еЬ(ж, ?/), where

b(x, y) = - log(4 - x) - log(x - 1) - log(5 - y) - log(?/ - 2).

Take a sequence £& 0+ and for each к apply a few steps of Newton’s method
to f£k. This gives an approximation x& of the optimizer x*(^)  for each &k- 
This is illustrated in Figure 15.8.

Figure 15.8. The logarithmic barrier method applied to f(x,y) in (15.32). The 
black curve is the central path, corresponding to the minimizer x*(e) for all e > 0. 
This path approaches the minimizer x* = (1,2) as e 0+. The red dots correspond 
to iterates of the method for a decreasing sequence вк 0+. Rarely does it make 
sense to actually find the minimizer х*(б>)—that would correspond to red dots all 
lying on the black central path. Instead, it is usually best to apply Newton’s method 
for вк only until the Newton steps are sufficiently small, and then update to €k+i 
and start another stage of Newton’s method, moving toward х*(б>+1).

15.6.3 Naive Implementation
Many barrier methods follow the basic idea of choosing a sequence г к 0+ and 
then, for each k, approximately solving for x*(^).  The important choices in such 
a method are

(i) which method to use for approximating x(^);*

(ii) when to stop the search for x(^);*

(iii) how to update €k to €k+i-
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One common barrier method uses (i) a Newton-type method on the logarithmic 
barrier (15.30), (ii) stopping the search for x*(e fc) when 2?2/£(x)-12?/£(x)T < r for 
some fixed r > 0, and (iii) updating by еь+i = @£k for some fixed 0 E (0,1). This 
is given in Algorithm 15.1.

Begin with an initial point xq E a value of 0 E (0,1) (to decrease S&), a 
value т > 0 (to decide when to stop searching for x(s&)), an initial 64 > 0, 
and a final value e > 0. Now proceed as follows:

(i) Set к = 1.

(ii) Perform a Newton search (possibly using exact line search or backtrack­
ing in the Newton direction) for (15.30) in order to approximate х(е^).*

(iii) Terminate the search for x(^)  once D2/£(х)-1 D/£(х)т < r and set 
Xfc+i equal to the approximate solution.

*

(iv) Update ek+1 = (1 - 0)ek.

(v) If ek > e, then increment к to к + 1 and go to (ii). Otherwise return 
Xfc_|_i and stop.

Algorithm 15.1. Outline of the naive barrier method to solve the optimiza­
tion problem (15.29). It can be shown that this algorithm solves linear and 
quadratic (quadratic objective with linear constraints) optimization problems in 
O(V^Tlog(L)) time. In the next section we examine the more general approach 
and a modification that speeds things up considerably.

15.7 Interior Point Methods II: The Primal-Dual Method
Primal-dual methods are a modification of barrier methods that provide a faster and 
more powerful approach to solving convex optimization problems. The general idea 
is to solve both the primal and dual problems simultaneously by relaxing one of the 
constraints in the barrier method. We begin with a more general implementation 
of the barrier method.

15.7.1 General Implementation of the Barrier Method
Consider the convex optimization problem

minimize f(x) (15.33a)
subject to G(x) 0, (15.33b)

Ax - b = 0, (15.33c)

where f and the components g±,..., gm of G are convex functions that are C2 on a
convex open domain Q C Rn, with A E M£Xn(R), and b E R^. The feasible set is 
given by

с? = {x E Rn I G(x) 0 and Ax - b = 0} c Q.
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We assume that strong duality holds and that the problem is solvable, that is, there 
exists a feasible optimizer x*.

The Lagrangian is

(x, /Lt, A) = /(x) + /LtTG(x) + AT(Ax — b).
The KKT necessary conditions for a minimizer (Theorem 14.4.5) are as follows:

(i) Primal feasibility: Ax  — b = 0 and G(x)  0.* *

(ii) Dual feasibility: /Lt 0 and*
£>/(x*)  + (д*) т DG(x*)  + (A*) TX = 0. (15.34)

(iii) Complementary slackness: = 0 for all i € {1,... , m}.

It is difficult to solve these conditions directly. In particular, complementary slack­
ness often causes some numerical difficulty due to the sharpness of the constraints. 
Instead, we use the barrier method and solve an equality-constrained optimization 
problem that relaxes complementary slackness.

For e > 0, consider instead the relaxed problem

minimize /(x) - e ^2 log(-&(x)) ц5 35)

subject to Ax — b = 0.
The Lagrangian is

-£”(x, A) = /(x) - £ 52 los(_^(x)) + -^T(^x - b). 
i=l

The FONC is

£>/(x) - s V Dgi^ + ATA = 0, (15.36)S' 5i(x)
together with the constraint Ax — b = 0. We can solve this by finding a zero of the 
function r : Rn+m —> Rn+m given by

r(x, A) =
Ax — b

This can be done with Newton’s method. To avoid notational clutter, let x x + a 
indicate that the value of the variable x is set to the old value of x plus a. We 
update 

by solving the linear system

Dr(x,X) дл = —r(x, A),
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where 

and a > 0 is judiciously chosen to maintain feasibility.

Remark 15.7.1. One choice for the learning rate a is to fix some /3 E (0,1) (an 
upper bound for the learning rate), and set the learning rate a > 0 as

a = /3 • min < 1, min < -—-I l < 0 (15.37)

Note that this choice ensures that the feasibility condition x + сеДх >- 0 holds.

Remark 15.7.2. The first-order necessary condition for barrier methods (15.36) 
can be written as (15.34) by setting

—e —e —e

.91 (x) 92 (x) 9m (x) (15.38)

This is equivalent to enforcing a perturbed complementary slackness constraint 
дбгрг(х) = — e for each i = 1,2, which, in the limit as e —> 0, gives the 
original complementary slackness condition. In other words, the barrier method is 
simply a relaxed form of the KKT conditions given above.

Example 15.7.3. Consider the linear optimization problem in standard form 

minimize cTx
subject to Ax b, (15.39)

x 0,

where A E MmXn(R), b E Rm, and с E Rn. By adding slack variables, this
can be written as

minimize cTz
subject to Az = b, (15.40)

z 0,

where с = [cT 0T], A = [А I], and z E Rm+n. Thus, the barrier method 
becomes the equality-constrained optimization problem

m+n
minimize cTz — e log(^) , .

_ i=l v • 7
subject to Az = b.

An implementation of the barrier method on this problem is given in Algo­
rithm 15.2, using the learning rate described in Remark 15.7.1.
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Example 15.7.4. Consider the linear optimization problem in Example 13.3.3.
The problem can be modified to fit the form of (15.40) by setting

4 -1
1 1

1 1 0
0 0 1A = and cT = [—5 —1 —6 0 0] .

Using the barrier method described in this section with (15.41), as imple­
mented in Algorithm 15.2, yields the optimizer x*  = (0, 7, 5) very rapidly.

15.7.2 Formulation of the Primal-Dual Method
In the barrier method, each iteration of the Newton step requires that (15.38) hold. 
As it turns out, we can often get an algorithmic improvement by keeping the relaxed 
complementary slackness condition (15.38), but solving the original dual condition 
(15.34), that is, solve the following system of equations:

(i) Primal feasibility: Ax  — b = 0 and G(x)  0.* *

(ii) Dual feasibility: D/(x)  + (/Lt) TDG(x)  + (A) TA = 0 and /it 0.* * * * *

(iii) Relaxed complementary slackness: дб^(х)  = — e for all i e {1,... , m}.**

We can solve this by finding a zero of the function r : Rn+m+^ —> given by

r(x,/z, A) =
D/(x)T + DG(x)T/Lt + ATA 

diag(/Lt)G(x) + el 
Ax — b

(15.42)

This can be done with Newton’s method where we update

Ax
fl fl + a A/l
А А ДА

by solving the linear system

Ax
Dr(x, /x, A) A/Lt = — r(x, /Lt, A),

AA
(15.43)

where

Dr(x, /Lt, A) =
£>2/(x) + £ У2 l^iD29i (x) OG(x)T AT

diag(/Lt)DG(x) 
A

diag(G(x)) 
0

0
0

and then choosing a > 0 judiciously.
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

import numpy as np
import numpy.linalg.solve as solve

def linear_barrier(A,b,с,у,eps=0. 1) :
"""Use the logarithmic barrier method to minimize 
c~T x subject to A x = b and x >= 0. 
и и и

theta=0.9 # Decay rate for eps
beta=0.9 # Maximum learning rate
tol=le-13 # Stop once I Newton dir I <= tol 
max_iter=1000 
m,n = A.shape 

counter =0 # which iteration 
d = 1
while np.linalg.norm(d) > tol: # Execute barrier method 

x = у [0: n] ; lamb = у [n: n+m]
r = np.block( [-c+eps/x + A.T 0 lamb, A @ x - b])
Dr = np.block([E-eps*np.diag(l/x**2) ,A.T], 

EA,np.zeros((m,m))J])
d = -solve(Dr,r) # Newton direction
ratio = x / d[0:n] # Used to compute Irning rate alpha 
alpha = beta*np. min(np.block([1,-ratio[ratio<0]])) 
у = у + alpha * d # Newton step
eps = theta * eps # Shrink epsilon
counter = counter + 1 
if counter >= max_iter:

print('Does not converge1) 
break 

return y, counter

Algorithm 15.2. Python implementation of the equality-constrained barrier 
method for linear optimization problems of the form (15.40), as described in 
Example 15.7.3. Given an initial choice of eps and an initial guess у = (x, 
lamb), where x is the primal variable and lamb is the dual variable, use the 
logarithmic barrier method to solve the linear problem by approximating the ze­
ros of r(y, eps) = cT — eps ^l/xi + ATlamb as eps —> 0. Here we use the 
learning rate described in Remark 15.7.1. Note that in Python 0 denotes matrix 
multiplication.
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Remark 15.7.5. In this case, the inequality constraint fi + cuA/it 0 needs to be 
preserved. Given 0 < /3 < 1, set the learning rate a > 0 to satisfy

a = 3 • min < 1, min < —— < 0I l (15.44)

It is common to also use backtracking to make sure that G(x) 0 holds and that 
||r(x, д)|| decreases.

Example 15.7.6. Consider a linear optimization problem in the form (15.40). 
Here we have /(z) = cTz and G(z) = —z. Thus, D/(z)T = c, DG(z) = —I. 
It follows from (15.43) that

0 -I
- diag(/z) - diag(x)

A 0

АТ1 Г Ax'
A/i
AA

c — fi + ATA 
— diag(/z) diag(rr)ll + si 

Az — b
0
0

Putting these into code and applying the learning rate given in Remark 
(15.7.5) gives Algorithm 15.3.

Remark 15.7.7. In the barrier method (Algorithm 15.2), our terminal condition 
is based on the size of the step ||d||. By contrast, the terminal condition of the 
primal dual method (Algorithm 15.3) is based on the norm of the residual r. This 
is because the barrier method can converge to a different point as the algorithm 
achieves the solution due to the asymptotic relationship between the numerator and 
denominators in (15.38).

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

import numpy as np

def rpd(z, eps): 
и и и

Return r and Dr for the primal-dual method 
и и и

x = z[0:n]; mu = z[n:2*n];  lamb = z[2*n:2*n+m]
r = np.block([c-mu+np.dot(A.T,lamb),

-x*mu  + eps*np.ones(n) , 
np.dot(A,x)-b])

Dr = np.block([[np.zeros((n,n)),-np.eye(n),A.T] , 
[-np.diag(mu),-np.diag(x),np.zeros((n,m))], 
[A,np.zeros((m,m+n))J])

return r, Dr

def primal_dual(z, eps): 
и и и

Primal dual iteration via Newton's method

counter = 0
r = 1
while np.linalg.norm(r) > le-6:

r, Dr = rpd(z,eps)
d = -np.linalg.lstsq(Dr,r,rcond=None)[0] 
ratio = z[0:2*n]  / d[0:2*n]
alpha = beta*np. min(np.block([1,-ratio[ratio<0]])) 
z = z + alpha * d 
eps = gamma * eps 
counter = counter + 1 
if counter >= N:

print('Does not converge') 
break

return z, counter

Algorithm 15.3. Python implementation of the primal dual method for linear 
optimization problems of the form (15.40) as described in Example 15.7.6.

15.1. Prove that any nonnegative combination of convex functions is convex. That 
is, for any convex set C, for any convex functions Д,..., Д taking C to R, 
and for any Ai,..., Ak € [0, oo), the function

к

/(x) = 52a*a(x)
г—1

is convex.
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15.2. Prove that if f : Rn —> R is a convex function, then {x E Rn | /(x) < с} C Rn 
is a convex set for every с E R.

15.3. Prove that if f : Rm —> R is convex, A E Mmxn(R), and b E Rm, then the 
function g : Rn —> R given by g(x) = /(Лх + b) is convex.

15.4. Prove that if g : C —> D C R is convex and f : D —> R is convex and 
increasing, then f о g : C —> R is a convex function. Give an example of a 
pair of convex functions /, g : R —> R such that f о g is not convex.

15.5. A For any fixed value of x E Rd and у E {±1} the hinge loss function is 
/i(w,5) = max(0,1 — ?/(wTx + 6)). Show that h : Rd+1 —> R is a convex 
function of (w, b).

15.6. A For any choice of x E Rd and у E {±1}, the logistic loss function is 
£(w, b) = log(l + e-^(wTx+ )) for w E Rd and b E R. Prove that the function 
£ is a convex function of (w, 6) E Rd+1. Hint: Observe that log(l + et) 
is a special case of the LogSumExp function (Example 15.1.15) and that 
—?/(wTx + b) is an affine function of (w, 6).

6

15.7.  If f : [a, b] —> R is convex, show that*

(i) /()  < ^/(0 + ^f(b) Ух e (a, b),*

(ii) < ЩрШ < vx e (a.b).

15.8.  Let К denote the positive orthant {x E Rn | x >2 0}. Consider the map 
f : К —> R given by /(^i, #2, • • •, xn) = — (Щи^)1^. Show that f is convex 
by the following steps:

*

(i) Let q = (X,..., Show that the Hessian of f can be written as

ndiag -qqT1 1

(ii) Use the Cauchy-Schwarz inequality to prove that for any vector v = 
(vi,..., vn) E Rn we have

(iii) Show that D2 /(x) > 0 by directly checking that vTD2/(x)v > 0 for 
every v E Rn.

15.9.  f Exercise 13.6 shows that the set PSDn(R) of positive semidefinite matrices 
in Mn(R) is convex. Prove the following:
*

(i) Prove that the set PDn(R) of positive definite matrices in Mn(R) is 
convex.

(ii) The function /(X) = — log(det(X)) is convex on PDn(R). To prove 
this, show the following:

(a) The function f is convex if for every Л, В E PDn(R) the function 
g(t) : [0,1] —> R given by g(t) = f(tA + (1 — t)B) is convex.
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(b) Use the fact that positive definite matrices are normal to show that 
there is an S such that STS = A and

g(t) = - log(det(S'T(tl + (1 - t)(ST)-1B6'-1)S))
= - log(det(A)) - log(det(f/ + (1 - f)(ST)-1BS-1)).

(c) Show that
n

g(t) = - ^21оё(*  + (1 - <)Ai) - log(det(A)), 
г=1

where Ai,..., An are the eigenvalues of (ST) 1BS 1
(d) Prove that g"(t) > 0 for all t G [0,1].

15.10. Prove that if f : Rn —> R is convex and bounded above, then f is constant.
15.11. Give an example of a convex function on a convex set in Rn whose epigraph 

is not closed and which is not the supremum of the hyperplanes lying below 
its graph (so the conclusion of Theorem 15.2.12 does not hold).

15.12. Let »i, ci2,03 be the interior angles of a triangle. Prove that sin(«i) < 
Hint: Consider using Jensen’s inequality.

15.13. Let Xi, X2,.. •, xn > 0 and Ai, A2,..., An >0 with A& = 1.
(i) Generalize the arithmetic-geometric mean inequality by showing that

n n

fc=i &=i

If Ai, A2,.. •, An > 0, prove that equality holds if and only if £1=^2 = 
• • • = xn. Hint: For the equality, consider using Lagrange multipliers.

(ii) Use the arithmetic-geometric mean inequality to show that the hyper­
bolic set {(rzq, ^2, • • •, xn) E Rn I E[fc=i xk > 1} is convex.

15.14. Prove Corollary 15.2.14.
15.15. A Prove, using the following steps, that if U C is open and f : U —> R is 

convex, then f is continuous on U.
(i) For any x0 G U, prove that the function p(x) = ||/(x) —/(x0)|| is convex 

on U.
(ii) For any xq G U there exists a closed ball B(xq, r) C U. Prove that there 

exist n points Xi,..., xn G B(xo,r) and a real number p > 0 such that 
the closed ball B(xq, p) is contained in the convex hull conv(xi,..., xn).

(iii) Show that p(x) is bounded on B(xo,p) by some M < 00. Hint: Use 
Jensen’s inequality.

(iv) Show that for every e > 0 if 6 = then g(x) < e. Explain why this 
proves that f is continuous.

Give an example to show that if f : U —> R^ is convex, then f need not 
be continuous. Give an example of a convex set C and a convex function 
h : C —> R such that h is not continuous.
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15.16.  Assume that both С C Rn and f : C —> R are convex. Show that a vertical 
supporting hyperplane of epi(/) cannot contain an interior point of C (i.e., 
a point of the form (c, 0) where c is an interior point of C). Beware that 
С C Rn but epi(/) C Rn+1 and all the supporting hyperplanes also lie in 
Rn+1, not in Rn. Hint: Do the problem first for n = 1. For the general 
case think about a line segment near c in the direction orthogonal to the 
hyperplane.

*

15.17. Prove Proposition 15.3.3.
15.18. Prove Proposition 15.3.4.
15.19. Prove Proposition 15.3.13.
15.20. For each of Exercises 14.17-14.21, identify whether the problem is a convex 

optimization problem (or can be rewritten as a convex optimization problem).
15.21. Show that both the objective function and the constraint in the problem

minimize 2~Li

subject to x2 > |,
0 < x < 10

are not convex. Make a change of variables to rewrite this as a constrained 
convex optimization problem, and prove that the new objective and con­
straints are convex.

15.22. Show that the (A linear regression problem

minimize 11 Ax — b 111

can be expressed as a linear optimization problem. That is, for a matrix A E 
Afmxn(R) and a vector b E Rm, write a linear (hence convex) optimization 
problem whose optimizer y*  can be used to find a vector x*  E Rn that solves 
the optimization problem

minimize ||Ax — b||i. (15.45)

Identify how to obtain the solution x*  from y*.
15.23.  Prove that the Markowitz portfolio optimization problem (see Section 14.6.4) 

is a convex optimization problem. Prove that it remains a convex optimiza­
tion problem even if short selling is prohibited.

*

15.24.  Let b E Rn and с E R, and let Q E Mn(W) be a symmetric matrix. The 
unconstrained optimization problem
*

minimize /(x) = xTQx — bTx + c

is not convex if Q is not positive definite. Recast it as a constrained convex 
optimization problem as follows:

(i) Find a change of variables x = 0(y) that converts the objective function 
into the form

/(</>(y)) = yTDy - rTy + c, (15.46)
where r E Rn and D = diag(di,..., dn) is diagonal (but the di are not 
necessarily positive).
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(ii) Show that if r = (ri,..., rn) and if y  = (7/1,..., yn) is any optimal point 
of (15.46), then for each i we have ггуг < 0. Hint: If not, show that 
changing the sign of yi gives a smaller value for the objective function.

*

(iii) Show that in a neighborhood of the optimal point y  we can change 
variables to z = [z± ... zn] 0 with y^ = sign(ri)A/%.

*

(iv) Show that the new objective function is a convex function of z and that 
the constraints on z are also convex, so that the new problem expressed 
in terms of z is a convex optimization problem.

15.25.  Consider the problem of fitting an ellipse to a set {(a^, ?л)}£1 °f points in 
R2.
*

(i) The general form of the ellipse can be written as

ax2 + bxy + cy2 + dx + ey = 1. (15.47)

Define the residual Ci at the point (xi,yi) by

ei = ax2 + bxiyi + cy2 + dxi + eyi — 1. (15.48)

Find a matrix A and a vector b such that the residual vector e satisfies

e = 4w — b, (15.49)

where w = (a, 6, c, d, e) is the parameter vector.
(ii) Write the problem of finding the ellipse (the parameters u, 6, c, d, and e) 

that minimizes the errors e relative to the norm || • ||i as an optimization 
problem in standard form (this need not be a convex problem).

(iii) Using techniques similar to those used in Exercise 15.22, rewrite the 
previous optimization problem as a linear problem.

15.26.  A posynomial is a function of the form*
N n

, I„) = ^2 Ci П ’ 
i=l j=l

where each is real and each Ci is positive. A geometric program is an 
optimization problem of the form

minimize /(x)
subject to G(x) 1, 

x 0, 
Я(х) = 1,

where f and each gi is a posynomial and each hi has the form cxf1 • • • x^1, 
with each E R and c > 0. Show that taking the logarithm of the new 
objective and new constraints transforms this into a convex optimization 
problem. Hint: Example 15.1.15 and Exercise 15.3 may be useful.

Remark 15.7.8. The maximum likelihood estimator for logistic regression 
(see Example 15.3.15) is a geometric program. Generally speaking, geometric 
programs are not convex, but the change of variables yi = log (a;*)  transforms 
a geometric program into a convex problem.
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15.27. Prove that the maximum value of — |АТАЛТА — ATb is |bT(AAT) xb, as 
claimed in Example 15.4.9. This proves that strong duality holds and hence 
d  =p.* *

15.28. Consider the problem

minimize x2 + y2
subject to x + у > 4,

x > 0, 
У > 0.

Find the Lagrangian, and the Lagrange dual function. Solve both the primal 
problem and the dual problem and compare the results.

15.29. Consider the problem
n

minimize cTx — log(^)
г=1

subject to rTx = s,
X 0,

where r, x E Rn. Find the Lagrange dual function. Hint: Since the inequality 
constraints are strict, you need not include the inequality constraints in the 
Lagrangian, but the infimum used to compute the dual is taken only over 
strictly positive values of x.

15.30. Let W E Mn(R) be positive definite. Consider the problem of choosing 
x E Rn to minimize xTPFx, subject to Xi E {—1,1} (which can be rewritten 
as x2 = 1) for every i. Let p  be the minimum value. For every choice of 
A E with (W + diag(A)) > 0 prove that p  > —

*
*

15.31. In a lot of optimization textbooks, the standard form of a linear optimization 
problem is to

minimize cTx
subject to Ax = b, (15.50)

x 0.

(i) Find the Lagrange dual function.
(ii) Find the dual problem for this problem.

15.32. Consider the optimization problem

• • • o/x J ifx^O.minimize 5(x) = <
I oo otherwis

subject to Ax b,
lTx = 1.

(i) Find the Lagrange dual of S and the corresponding dual optimization 
problem.

(ii) Under what circumstances would the weak Slater condition fail to hold 
for this problem?
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15.33. For each of Exercises 14.17-14.21, identify whether it satisfies the weak Slater 
condition.

15.34. For the logistic regression problem of Examples 15.3.15 and 15.5.12 show that 
the dual function

(N NN

£(log(l + e2i) + XiZi) + wT 57 Aij/iXj + Ь^Хгуг

15.38. Assuming that each gi is convex, prove that the logarithmic barrier (15.29) 
is also convex. Hint: It suffices to show that each — log(—g(x)) is convex.

15.39. Compute the derivative and the Hessian of f£ as defined in (15.30). More 
precisely, show that

(i)
7?А(х) = Г>/(х)-££^^, (15.51)

(ii)

n2 f M n2 f M D29i (x) Dgi (x^Dgi (x) \
+ ------)■ (15.52)

From (15.52) show that if f is convex and each gi is also convex, then 
so is f£.

15.40. Show that the gradient (15.51) of f£ is equivalent to the FONC from the 
KKT conditions (Theorem 14.4.5(i)) for a special choice of /it 0.

i— 1 i—1 2=1

is — oojmless every A*  is bounded by — 1 < A*  < 0, in which case it takes the 
value /(A) = (A*log( —AJ — (1 + A*)log(l  + AJ). Note: Assume that
tlog(^) = 0 when t = 0.

15.35. Prove the claim in Example 15.5.13 that the dual problem (15.25) of the 
(reformulated) soft-margin linear support vector machine primal is to choose 
w, 6, £ in order to

N N n

maximize — | 52 52 + 52
i—lj—l 2=1

N

subject to 52 = 0’
2 = 10 a Cl.

15.36. Consider again the linear optimization problem (15.50) of Exercise 15.31.
(i) Find the dual of the dual.

(ii) Show that (15.50) satisfies strong duality.
15.37.  Prove the claim in the proof of Theorem 15.5.6 that V is convex and not 

empty.
*
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15.41. Consider the minimization problem

minimize f(x) = x2 + 1 
subject to 2 < x < 4.

What is Д? Show that the only root of fe(x) that is in the feasible set is 
slightly larger than x = 2 when e is slightly larger than zero. Hence, the 
minimizer ж*(б)  converges to x = 2 (which is the solution).

15.42. Consider the problem in Exercise 15.32. Implement the logarithmic barrier 
method to solve this optimization problem as follows:

(i) Start with e0 = 1 and xq = (3.5,4.5). For each Newton step, given 
Xj choose the learning rate a by backtracking from 1 until the next 
step x' = Xj — aD2/£fc(xj)-1 Df£k(xj)T. This satisfies x' e & and 
/(x') + £fc6(x') < /(xj) + £fcb(xj). Once such an a has been found, set 
xj+1 = x' with that choice of a. Take also r = 0.01 and 0 = 0.25. 
Terminate the algorithm when < Ю-6.

(ii) Plot in the plane all the values of x^ that you found in the previous 
step.

15.43. Consider the simple minimization problem

minimize x3 + 2
subject to 1 < x < 4.

Set up the primal-dual algorithm by completing the following steps:
(i) Write the KKT conditions for this problem in the form r(a;,/Lt) = 0 as 

given in (15.42).
(ii) Find Dr (ж, д).

(iii) Plot the region in R3 corresponding to all ж, /it- satisfying the primal and 
dual feasibility constraints. Plot all the points (ж,  д)  that satisfy the 
KKT conditions. These are the points to which we expect the algorithm 
to converge.

* *

(iv) Identify and plot the points of the feasible set satisfying complementary 
slackness, that is, gig^x) = 0 for each i = 1,2.

15.44. Continuing with Exercise 15.43, complete one step of the primal-dual algo­
rithm, as outlined here. Hint: The algebra may become unpleasant, so feel 
free to use numerical or symbolic computing tools, or your own code whenever 
convenient.

(i) Plot the point (3,1,1) on the feasible set of Exercise 15.43 corresponding 
to the starting point x = 3 and = (1,1).

(ii) For this starting point and small e > 0, compute the steps Ax and A/it.
(iii) Compute a using Remark 15.7.5 for /3 = 0.9.
(iv) Show that the residual ||r(xr, д)|| decreases as a result of this step.

15.45. Implement the two methods in Algorithms 15.2 and 15.3, applying them to 
the problem in Example 15.7.4.
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15.46. Consider the quadratic optimization problem

minimize |xTQx + cTx 
subject to Ax b, (15.53)

where Q e Mn(R) is positive definite and A e Afmxn(R).
(i) Prove that (15.53) is a convex optimization problem.

(ii) By taking the “relaxed” KKT conditions (15.42), determine r(x, д) and 
Dr(x, fl).

(iii) Write a program to compute the minimizer.
15.47. Apply the code from the previous exercise to solve the following problem:

minimize 2x^ + x% — — 5^i — 2x2
subject to 3^i + 2x2 < 20,

—5^1 + 3^2 < 4, 
x± > 0, X2 > 0.

Notes
Our treatment of convexity and convex optimization was partially inspired by 
[BV04, Ber09]. Other references consulted on convex optimization include [Ber79, 
Biel5, BL06, CV13, Nes04, Becl4]. Exercise 15.24 is modeled after [Becl4, Section 
8.2.7]. Important references for the theory of duality include [BV04, CV13]. Our 
proof of strong duality from weak Slater is inspired by [Tanl5]. Our main source for 
the logarithmic barrier is [Ber09]. For a detailed analysis of the logarithmic barrier 
see [dH94].
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Let them eat cake.
—Marie Antoinette58

58Some historians contend that it is unlikely that Marie Antoinette ever actually said this, but the 
allegations that she did fueled revolutionaries and ultimately contributed to her demise. Had 
she been aware of Blackwell’s theorem, perhaps things would have gone better for her.

The previous chapters on optimization discuss how to make a single decision given 
a well-formulated problem. This chapter treats sequential decision making, or dy­
namic optimization, where a sequence of decisions are made at various points in 
time. Naturally, the decisions made at one point in time affect the later decisions, 
and so the goal in sequential decision making is to optimize over the entire time 
horizon of the problem, not just the immediate decision before us.

We begin by considering finite-horizon problems, where decisions are made at 
a finite number of points in time. Then we move to infinite-horizon problems, 
where time marches on forever. One of the hallmark achievements in the theory 
of dynamic optimization is Blackwell’s theorem, which gives a necessary condition 
for the unique solution to a general class of infinite-horizon dynamic optimization 
problems.

Many dynamic optimization problems fall under the category of investment­
consumption problems, where an economic agent has capital that is consumed at 
fixed periods over time. At each period, a portion of the capital is consumed, 
giving the consumer a certain amount of utility \ whatever is not yet consumed is 
usually invested so that it can grow, giving the agent more to consume later on. In 
variations of investment-consumption models, there can be an income, or inflow of 
capital, the ability to borrow and repay money, and sophisticated investment options 
with a portfolio of choices having uncertain (or probabilistic) outcomes. There can 
even be hazards, such as medical events or large capital purchases, corresponding 
to instantaneous costs or shifts in utility or income. Some models even allow for 
insurance and other derivative securities to be purchased. Indeed, many modern 
and widely used economic and financial models can be considered as variations of 
investment-consumption models.

717
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We begin by making considerable simplifications and idealizations of behavior. 
First, we assume that economic agents are rational,59 meaning that they will choose 
the sequence of decisions that maximizes their overall utility. To make this work, 
we make some assumptions on the mathematical properties of utility functions.

59There is some debate about whether this is a rational assumption to make.

We assume the agent’s utility is a smooth function и that takes as input the 
amount c of capital consumed. The output value u(c) represents the amount of 
utility enjoyed. This is quantified by a fictitious unit called utils. We assume that 
the more you consume, the happier you are, and so we require that u'(c) > 0. 
However, that happiness also diminishes as consumption increases, so twice the 
consumption does not give you twice the happiness. This observation is called the 
law of diminishing returns, and it essentially requires that u"(c) < 0. In other 
words, the utility function is increasing and concave; see Figure 16.1 for examples.

Another assumption is that, all things being equal, people prefer immediate 
gratification over delayed gratification, that is, I’d rather consume now (while my 
mouth is watering) than later. Mathematically this is expressed as saying that 
there is some /3 G (0,1] for which u(c) utils tomorrow is as desirable as /3u(c) utils 
today. The value (3 is called the discount factor and it varies from person to person 
depending on how well they can delay gratification. A value of (3 = 1 corresponds 
to someone who has no preference for anything today versus tomorrow, which is 
the same as not discounting at all. A value of /3 = 0 would correspond to some­
one who prefers to consume everything now, with no interest in having anything 
tomorrow (a hopeless addict), whereas values of /3 greater than 1 would correspond 
to people who actually prefer to wait until tomorrow (Scrooge). Since these patho­
logical extremes (J3 = 0 or /3 > 1) will result in starvation, we usually assume 
/Зе (0,1].

Finally, to prevent the agents from starving themselves, it is common to assume 
that u'(c) = oo as c —> 0+, which, in economics language, says that the marginal 
utility of consuming at least a tiny amount gets arbitrarily large as c —> 0+. The 
readers should convince themselves that this assumption guarantees it is never op­
timal to consume nothing.

16.1 Finite-Horizon Cake Eating
We begin the discussion of dynamic optimization by examining the cake-eating 
problem, which is a highly idealized model that contains many of the salient features 
of an investment-consumption problem. At each point in time t G {0,1,..., T}, the 
agent has wt_i units of cake going into the period and wt units of cake coming out 
of the period. The difference ct = wt — wt-i is the amount of cake consumed during 
the period, reaping a utility of u(ct) during that period as a result; see Figure 16.1. 
We constrain ct to be nonnegative, corresponding to the assumption that we can’t 
eat a negative amount of cake.

As indicated in the introduction, we assume that и is smooth, strictly increasing, 
and strictly concave. We also assume that iz'(c) —> oo as c —> 0+.

A sequence of decisions c = (cq, ..., cr) on how much cake to eat at each period 
in time is called a policy. The value of the policy is the present value (discounted



16.1. Finite-Horizon Cake Eating 719

Figure 16.1. Plot of the two utility functions used in Section 16.1.2. On the left 
is the logarithmic utility u(c) = log(c) and on the right is the utility for constant 
relative risk aversion with 7 = |. For both of these, the utility function u(c) is 
smooth, increasing, and concave, with limc^0+ u'(c) = oo.

lifetime utility) resulting from a given policy, that is,

т 
v(c) = £A(Ct). 

t=0

Our goal is to find the policy c with the most value for a given amount of cake w. 
In other words, we seek to solve the optimization problem

maximize
£=0

subject to
T
^Ct = W, 

t=0
ct>0, t = 0,l,...,T,

(16-1)

Reformulating this as the minimization problem

minimize

subject to

-52/3‘«(ct) 
t=0

T
^Ct = W, 

t=0
ct>0, t = 0,l,...,T,

(16-2)

shows the cake-eating problem is a convex optimization problem (see Exercise 16.1), 
and hence it has a unique solution.
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16.1.1 Euler Conditions
The Lagrangian for (16.2) is given by

т / т \
(с, А, д) = - ^u(ct) + A I ct ~ w j “ MTc- 

£=0 V=o /

Since limc^o+ ^z(c) = 00» the optimizer will satisfy Ct > 0 for all t; hence by com­
plementary slackness, each /it vanishes. Thus, we can use the simpler Lagrangian

т / т \
^(c,A) = -^/З‘и(с4) + А 52 ct-w . (16.3)

*=o v=o /
Taking the derivative of (16.3) with respect to ct and setting it equal to zero gives 

ay°/ = -^ct) + X = V.
OCt

In other words, A = iz'(co) = /W(ci) = f32uf(c2) = • • • = /3Ttt'(cr). This gives

u\ct) = MM W G {0,1,..., T - 1}. (16.4)

These equations are called Euler’s conditions, and they are necessary conditions 
for the maximizing solution. Since this problem is convex, the KKT first-order 
conditions are also sufficient (see Theorem 15.5.10), so a policy c is a maximizer if 
and only if it satisfies (16.4).

16.1.2 *Two  Canonical Examples
Most dynamic optimization problems do not have a nice closed-form solution and 
need to be solved numerically. Here are two special cases which do have closed-form 
solutions.

Logarithmic Utility

A commonly used utility function is u(c) = logc; see Figure 16.1. We solve it for 
different values of T G N.

Case T = 0. If there is only one period, then it is optimal to eat all the cake at 
once. Thus, co = w.

Case T = 1. If there are two periods, then we eat all of the cake in two periods. 
So we have co + ci = w. By Euler’s condition, we also have that u'(cq) = /3u'(ci), 
which implies that

1 = £
Co Cl

Simplifying gives the two linear equations

cq + ci = w and ci = /3cq

with two unknowns co and ci. Hence, we have the unique solution

w _ (3w
с»=1Тз “d C1 = iTe-
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Case of general T. The same type of argument as in the previous cases shows 
that the solution for general T is

w
co =

, et ft™
and ct = /3 c0 = T = • (16.5)

2^r=o P

Constant Relative Risk Aversion

A more general utility function used in many economic and financial models is the 
constant relative risk aversion utility given by

u(c) = ------ i, (16.6)
1-7

where 7 > 0 is a constant that represents risk aversion. Figure 16.1 shows a plot of 
this utility function for 7 = The case of 7 = 0 corresponds to u(c) = c — 1, or no 
risk aversion (called risk neutral). As 7 becomes larger, u(c) becomes more concave 
(since u,f(c) = —7c-7-1), corresponding to greater risk aversion. And when 7 —> 1, 
1’Hopital’s rule shows that (16.6) becomes log(c).

Using Euler’s condition’s one can show that the optimal solution for constant 
relative risk aversion is

W t/
C° ~ ZLo ~ @ C° - 1 - /3(т+1)/7 ’ 167

See Exercise 16.6 for details.

16.1.3 The Optimality Principle
Since closed-form solutions are special, we need tools that work more generally. We 
turn to the Bellman optimality principle, which plays an important role in Dijkstra’s 
algorithm (see Section 4.2.4) and many other optimization methods.

Recall that Bellman’s optimality principle says that from any point along an 
optimal path, the remaining path is optimal for the corresponding problem initiated 
at that point. If the shortest route from Salt Lake City to Los Angeles passes 
through Las Vegas, then the last part of that route, from Las Vegas to Los Angeles, 
must be the shortest route from Las Vegas to Los Angeles. We state this in cake­
eating terms with the following definition and proposition.

Proposition 16.1.1 (Finite-Horizon Optimality Principle). Let V(a, 6, w) 
denote the value for the optimal policy of the cake-eating problem on {a, a + 1,... ,6}

b

maximize /3*iz(c t)
t—a

h' н (16.8)subject to > ct = w,
t—a

ct > 0 Vt G {u, a + 1,..., b}.
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For any к G {0,..., T — 1} we have

V(0,T,w)= sup (V(O,Aj,t/) +V(fc + l,T,w -?/)). (16.9)
?/e[o,w]

Proof. Given any у G (0, w), let Cq, ..., c£ be the optimal policy for V(0, k, y), and 
let c£+1,...,cj be the optimal policy for V(k + 1, T, w — y). The tuple Cq, ..., cj 
satisfies 

т к т
Ct =^2Ct + 52 c*t=y + w-y = w 

t—0 t—0 t—k-^-1

and 
т к т

52/3‘U(Ct*)  = l?u(c* t) = V(O,fc,y) + V(fc + l,T,w-y).
t—0 t—0 t—k-^-1

This implies

т
1/(0, T, w) = sup > sup (1/(0, k, y) + V(k + 1, T, w — yf),

c-° t—0 ?/e[0,w]

where the supremum is taken over all policies c / 0 with Q = w. Conversely, 
given any c 0 with ct = w, let у = 52t=o We have ct =w ~У,
which yields 

т
<V(O,k,y)+V(k+l,T,w-y) < sup (V(0,k,y) + V(k + l,T,w - y)). 

t=o ?/e[o,w]

Taking the supremum on the left gives

V(0,T,w)< sup (V(O,fc,^) + V(fc + l,T,w-</)). □ 
ye[o,w]

The following corollary is an important special case of the Bellman principle.

Corollary 16.1.2. For any T G N and any w > 0 the maximum value of the 
objective function V(0,T,w) in problem (16.8) satisfies

1/(0, T, w) = sup u(y) + /31/(0, T — 1, w — y). (16.10)
ye[o,w]

Proof. The proof is Exercise 16.2. □

Section 16.2 describes how to use the optimality principle to compute a solution 
to the cake-eating problem.

16.1.4 Optimal Growth
Suppose that, rather than cake, you have an investment portfolio that grows over 
time. You must balance consuming some of your assets now (say, to pay for food, 
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housing, and other comforts) against the need to save and/or invest for future 
consumption. This is the optimal growth problem.

The optimal growth problem is like the cake-eating problem, but where cake 
is replaced by capital. At the beginning of each period you have xt > 0 units of 
capital. Assume that you cannot borrow, so that xt G [0, oo). Also assume that 
investing xt units of capital at the beginning of the period gives a return of f(xt) 
units at the end of the period, after which a consumption decision is made. Here 
we assume the function f is continuously differentiable, strictly increasing (/' > 0), 
and concave (/" < 0). Further, assume that /(0) = 0.

After the investment outcome is realized, you may choose to consume Ct units, 
where 0 < ct < f(xt)- After consumption, you have xt+i = — Ct for the next
period. Finally, the utility function u(c) depends only on the amount of capital con­
sumed. As before, assume that и is continuously differentiable, strictly increasing 
(u' > 0), and strictly concave (u" < 0) with limc^0+ iz'(c) = oo.

Assuming an initial capitalization of x^^ solve the dynamic optimization problem

maximize c
subject to

52
t=0
0 < Ct < f(xt)
Xt+l = f(xt) - Ct

Vf e {o, 1,... ,T}, 
Vt e 1}.

(16.11)

Specifying the amount ct to consume is equivalent to specifying the amount xt+i 
to invest at the next period, so we can reformulate the problem as that of choosing 
{a?i,..., xt} to

т
maximize ftulflxt) — #t+i) 

£=0
subject to 0 < Xt+\ < \/t G {0,1,..., T — 1}.

Reformulating the problem as a minimization problem gives

т
minimize - ’V frufJtxt) - xw) X ' t=0

subject to 0 < xt-\-i < f(xt) Vt G {0,1,..., T — 1}.

(16.12)

Example 16.1.3. If f(x) = x, then this model is the same as the cake-eating 
problem. In this case, unconsumed capital does not grow or shrink.

The Lagrangian is

т т т
^(х,Д,р) = -^/futffxt) -Xt+1) +52Mt(®t+1 - /(xt)) - 52^4+1-

£=0 £=0 £=0

Since limc^0+ u'(c) = oo, it is never optimal to choose ct = 0 (or = f(xt)). 
Moreover, since /(0) = 0, choosing xt+i = 0 means that xt-\~k = 0 for all к > 0; 
this would be equivalent to setting T = t. Finally, since u'(c) > 0 for all c > 0, it 
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is never optimal to allow #t+i >0- So we always assume that 0 < xt+\ < f(xt) 
for t G {0,... ,T — 1} and x?+i = 0. Therefore, by complementary slackness, we 
have fjLt = 0 = vt for all t, and the first-order KKT conditions reduce to the usual 
unconstrained FONC, which gives60

60 Note that terms corresponding to and q^^+1 <^° n°t s^ow UP these equations because
#0 is the initial capitalization, hence fixed, and жт+1 = 0.

0 = j3s~lu'(f(xs-i) - Xs) - /3sf'(xs')u'(J(xs') - xs+i) Vs € {1,... ,T},

where хт+i = 0. These give the Euler conditions

Pf'(xa)u\f(xa) - xs+i) = u'(f(xa-i) - xs) Vs € {1,... ,T}.

Expressed in terms of x and c, the Euler equations are usually called the envelope 
condition'.

/3/'(^+1)tz'(cs+1) = u\cs) Vs G {0,..., T - 1}, (16.13)

where ст = xt (at the end, all remaining capital must be consumed).
Translated into economics jargon, the envelope condition states that the marginal 

benefit u'(cs) of extra consumption today is equal to the discounted marginal cost 
/3/'(a;s+i)?z'(cs+i) in terms of lost production (and hence consumption) tomorrow. 
In some cases the Euler equations or envelope condition can be solved explicitly, 
but in most cases we must turn to the Bellman principle.

For the optimal growth problem, one case of Bellman optimality (the analogue 
of Corollary 16.1.2) is the following.

Proposition 16.1.4. Define V(a,b,w) to be the value of the optimal policy for the 
optimal growth problem on {a, a + 1,..., b}

b

maximize - xt+l)
t—a

subject to 0 < xt+! < f (xt), t G {a + 1,..., 6},
Xa = w.

Thus for any к G {0,..., T — 1} we have

V(0, T, w) = sup - у) + /3V(0, T - 1, y)), (16.14)
ye[o,/(w)]

and the maximum value V (0, T, w) is realized with the policy x^,... ,x? if and only 
if the maximum value V(0,T — 1,y) is realized with the policy x^... ,x? and the 
supremum is realized with у = x±.

Proof. The proof is Exercise 16.5. □

The next section describes how to use the optimality principle to compute a 
solution to the optimal growth problem.
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16.2 Dynamic Optimization Problems and Value Iteration
In this section, we describe a general setting for a large class of dynamic optimization 
problems and show how Bellman’s principle can be applied to solve these problems, 
using a method called value iteration.

16.2.1 The General Framework
As discussed in the introduction of this chapter, there are many variations of 
investment-consumption problems. Here we create a framework that includes many 
of these variations and many other types of dynamic optimization problems. In all 
cases, we seek the policy that maximizes the present value.

Many dynamic optimization problems can be described in the following terms:
• A discrete set T of time periods (often called decision epochs). In this section 

(and the previous section) we use T = {0,1,... ,7},  but in Section 16.3 we 
also consider T = N.

*

• A set S' of states (for example, the amount of cake remaining).
• A set As of allowable actions for each state s G S (for example, the amount 

of cake one can choose to eat).
• A law of motion, or transition function

^t+i = 9^t-> at)
that describes how the state changes, depending on the previous state and the 
action.

• A time discount factor /3 G (0,1].
• A reward ut(s,a) for taking action a while being in state s at time t. Often 

и only depends on a and the state s affects и only by its effect on the set of 
allowable actions.

Given an initial state so and a law of motion g, dynamic optimization is about 
choosing a policy of action a = (at)tej to

maximize / /^u^s^at) 
ter

subject to $t+i = g(st,at) \ft G T.

Problems in this general framework will have a set of Euler equations. The Bellman 
optimality principle can be applied to give an algorithm (called value iteration, 
which we describe in Section 16.2.5) for solving the problem.

Example 16. 2.1. In the cake-eating problem with an initial amount of cake 
equal to wq, the state wt at time t is the amount of cake available, and the state 
space S is [0, wq] C R. For a given state (amount of cake) w, the allowable 
actions are to eat some amount of cake c G [0,w], so Aw = [0, w]. Finally, the 
law of motion is

wf+i = wt - ct. (16.15)
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Example 16. 2.2. In the optimal growth problem we take T = {0, ...,T}, 
and the state of the system at each period is the amount of capital Xt- We 
can assume that xt € [0,oo), so the state space is S = [0, oo). The set of 
allowable actions Ax for state x is Ax = [0, After consumption, we have 
я^+i = f(xt) — Ct units, so the transition function is g(x, c) = /(^) — c.

Remark 16.2.3. These models can account for multiple states at once (say we 
have both cake and pie to eat) by taking S to be a higher-dimensional space like 
Rn.

16.2.2 Example: Human Capital
Consider an individual entering the workforce whose pay at time period t is based 
on the product of the hours ht > 0 worked during that period and her level st > 0 
of skill. Assuming that she retires after T periods, the present value of her lifetime 
earnings is given by

Assume that the worker can increase her skill level by spending some hours 
training instead of working. The state of this system at time t is the worker’s skill 
level st G S = [0, oo). We take the ratio of skill increase at = as the action
at time t. Assume that if she spends all her time working and not training, then 
her skill level depreciates at a rate of 6 >0, so at > 1 — 6. She can grow her skill 
level at a rate of A > 0 if she devotes all her time to training, so at < 1 + A. Thus, 
the set of allowable actions As = A = [1 — J, 1 + A] is the same for every state s, 
and the transition function is = g(st,at) = atst.

Assume that the hours available to work in a given period are given by a C1, 
decreasing function ф of the ratio at = St+i/st. Therefore, the reward for taking 
action a at state s is u(s, a) = зф(а). We normalize so that ф(1 — 5) = 1 and 
</>(1 + A) = 0.

We write this as the dynamic optimization problem

maximize 
(<o (16.16)

subject to (1 — < s*+i  < (1 + A)st Vf G {0,..., T}, 

where the initial skill level is so > 0. As in the case of optimal growth, we have 
written this problem so that the state variables St are also the decision variables.

16.2.3 Motion on a Grid
Dynamic optimization has many applications beyond economics problems. One 
simple example is the problem of motion on a grid. Consider a robot that moves 
around on the following grid until it reaches the yellow square, at which point it 
stops moving:
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and it may move either horizontally or vertically to an adjacent square. Each move 
has a cost of 1, but entering the red square also gives a reward of 1.7. The goal is 
to choose a sequence of actions that maximize the total reward.

The state space of this problem is the set of the nine squares of the grid, and 
the allowable actions for a given state are the horizontally and vertically adjacent
squares.

A = {2,4}, 
A4 = {1,5,7}, 
Л7 = {4,8},

A2 = {1,3,5}, 
A5 = {2,4,6,8}, 
Л8 = {5,7,9},

Аз = {2,6}, 
А6 = {3,5,9}, 
Ад = 0.

The transition function is simply g(s, a) = a. The reward u(a) for action a is

u(a) = -1
0.7

if a 1, 
if a = 1.

(16.17)

And, of course, the reward for no action (in state 9) is 0.
To write the Bellman equation, let V(to, f i, s) be the maximal reward achievable 

from time to to time ti starting in state s. We have

V(0, T, s) = sup (u(a) + 0V(O, T - 1, a)). 
aEAs

16.2.4 *Example:  Inventory Management

61 Transaction costs are costs paid regardless of the size of the order—for example, the cost paid 
to a broker for facilitating the purchase, or the cost of paying a truck driver to go pick up the 
order in your truck.

62Marginal costs are the price paid per unit in addition to the fixed transaction costs.

Consider a merchant who can sell, at a fixed price p, up to one unit each day of a 
certain product (she can buy or sell fractions of a unit). If less than one unit is in 
inventory in a given day, she will sell all her remaining inventory that day. In other 
words, if she has x > 0 units in stock, she will sell min{a;, 1} units each day.

Assume that she can order у units for inventory at the beginning of a day, paying 
immediately and then receiving delivery at the end of the day. We assume that the 
cost of that order is my + 6, where b > 0 is the transaction cost61 and m > 0 is the 
marginal cost.62

She doesn’t want to order too often because of the transaction costs, and she 
doesn’t want to order too much at once because of the storage costs involved in 
holding inventory—assume she must pay rx for storing x units for one day, at some 
fixed rate r > 0.
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We further assume that 0 < m < p/(l + r), because if m > p/(l + r), then 
no orders will ever be placed, and if m = 0, then the optimal choice would be a 
one-time infinite order. Assume also that b > 0; otherwise the optimal policy is to 
order one unit per day.

Here the state of the system at time t is the amount of inventory, measured by 
the state variable Xt, and the decision to make each time is the amount to order, 
measured by the decision variable yt. So the state space is S = [0, oo), and the set 
of allowable actions A = [0, oo) is the same for all states. The transition function 
is the amount of inventory available at the beginning of time t + 1:

xt+i = Xt + yt - min{a;t, 1}.

The reward in a given period t is the profit:

u(xt,yt) =pmin{l,£t} - rxt -
b + myt
0

if Vt > 0, 
if yt = 0.

See Exercise 16.11 for more details on this problem.

16.2.5 Value Iteration
The optimality principle gives a general method for solving finite-horizon dynamic 
optimization problems called value iteration, namely, first solving the problem for 
T = 0, and then for T = 1, and so forth, until reaching the desired value of T. In 
other words, the solution is computed using bottom-up dynamic programming (see 
Section 4.1).

Example 16.2.4. In the cake-eating problem, the first step of the algorithm 
is to find V(0,0, w) for every w. Since it is not optimal to leave any cake 
remaining, we have Cq = w and V(0,0, w) = u(w). The second step is to 
compute V(0,1, w) for every w, using (16.10).

V(0, l,w)= sup (u(y) + /?V(0,0, w — p)) = sup (u(y) + /3u(w — p)).

The problem becomes more complicated as more time steps are considered. 
To make it more computable, we discretize w; that is, we assume that the cake 
is initially cut into N equal pieces and that each decision involves choosing a 
whole number of pieces to consume or leave for later. This means the state 
space is {0, and the set of allowable actions for state is
Ak = {0, ^,..., A;^}. Thus, the problem becomes that of computing

V fo, 1, k^\ = max (и (n^z\ + /3V fo, 0, (k — n)^^ 
\ NJ ne{o,...,fc} v V NJ \ v JNJJ

for each к G {0,1,...,7V}. This is a straightforward discrete optimization 
problem that can be solved by brute force—just compute

u (n v)+ (°’ °’ ~v)
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for every n G {0,..., k} and choose the largest. Continuing in the same 
manner for each consecutive t € {2,..., T} gives

V max и 
nE{0,...,/c} v)+(fc -n) v)

for each к G {0,..., N}. At each step, after computing all the V(0, t, & the 
values of V(0, t — 1, k^) are no longer needed and may be discarded.

Remark 16.2.5. Value iteration is formulated in terms of the optimal value, rather 
than in terms of the policy that achieves that optimal value. But each step of the 
algorithm involves solving the optimization problem

V(0, T, w) = sup (u(y) + /ЗУ(0, T — 1, w — y)), 
у

and the optimizer у can be saved at each step to identify the overall optimizing 
policy.

Nota Bene 16.2.6. As mentioned in Nota Bene 13.3.2, the word program­
ming is used to mean many things in applied mathematics (we could say it is 
overloaded). Optimization problems are often called programs, and program­
ming is often used to mean solving these programs. For example, linear opti­
mization problems are often called linear programs, and the simplex method 
is often called linear programming.

Dynamic optimization problems are also often called dynamic programs, 
and the various methods (especially value iteration) for solving a dynamic 
optimization problem are often called dynamic programming. The confusion is 
heightened by the fact that using value iteration to solve dynamic optimization 
problems is an example of dynamic programming in the sense of Section 4.1. 
Conversely, many important algorithms that use dynamic programming in 
the sense of Section 4.1 rely, at heart, on Bellman’s optimality principle, and 
the problems they solve can often be reformulated as dynamic optimization 
problems.

Of course, not all solutions to dynamic optimization problems rely on dy­
namic programming. For example, the analytic solutions to the cake-eating 
problems described in Section 16.1.2 do not use dynamic programming. Also, 
Blackwell’s theorem, described in Section 16.3, leads to two other methods, 
called successive approximation and policy iteration, for computing the opti­
mizer.

16.2.6 Example: Value Iteration for Motion on a Grid
The problem of optimal movement on a grid can be solved with value iteration. For 
simplicity of exposition we assume that /3 = 1 for the rest of this section (so the 
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robot feels no loss from delayed consumption), but the case of general /3 G (0,1) is 
no harder to compute.

If T = 0, then there is only one move, and V(0,0, s) = maxaeAs so the 
optimal choice is to move into the red square if possible, earning a reward of 1.7—1 = 
0.7. All other moves have reward of —1. Thus, if the robot is in squares 1, 3, or 5, 
then its optimal move is 1 and its reward for that move is 0.7. If it is in the yellow 
square, then it has no moves, and the reward is 0. If it is in any other square, 
all moves have reward —1. Below we have labeled each square s with the value 
V(0,0,s):

0.7 -1 0.7

-1 0.7 -1

-1 -1 0

Considering the case of T = 1, we have

V (0,1,1) = max (u(a) + V(0,0, a)) = max(0.7 — 1, —1 — 1) = —0.3, 
ae{2,4}

V (0,1,2) = max + V(0,0, a)) = -1 + 0.7 = -0.3, 
ae{l,3,5}

V (0,1,7) = max (u(a) + V(0,0, a)) = -2, 
a€{4,8}

V (0,1,8) = max (u(a) + V(0,0,a)) =-0.3, 
a€{5,7,9}

V (0,l,9) = 0.

Labeling each square s with V(0,1, s) gives

-0.3 -0.3 -0.3

-0.3 -0.3 -0.3

—2 -0.3 0

Similarly, for V(0,2,s) we have

0.4 -1.3 0.4

-1.3 0.4 -1.0

-1.3 -1 0
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Vista 16.2.7. Many dynamic optimization problems, especially those with 
a random aspect (see the next chapter), are called reinforcement learning 
problems. These are an important topic in machine learning. When the ideas 
of this chapter and the next are combined with other methods of machine 
learning, like deep neural networks, they become even more powerful. For 
example, such reinforcement learning methods have been successful in training 
robots, such as self-driving cars, to navigate complex environments, as well 
as training a computer to dominate humans and other computer systems in 
chess, go, and other complex strategy games.

16.2.7 *Variants  and Applications of Investment-Consumption
Dynamic investment-consumption problems can go in many directions. The prob­
lems could includes uncertain or risky growth, in which case they are called stochas­
tic investment-consumption problems. We discuss these in Section 17.1. There are
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Figure 16.2. Efficient decision making. Source: XKCD, Randall Munroe, http: 
//xkcd. com/1445/ 
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also situations where a person may have a one-time decision to make, and so the 
solution to the investment-consumption problem tells them when to pull the trigger 
on that decision. For example, you might have an annuity or pension that you can 
start drawing an income from. The longer you wait, the more the monthly payout, 
but the less time you will have to enjoy that payout, since you will be that much 
closer to death. These are called optimal starting or optimal stopping problems. 
There are also problems with uncertain horizons, such as when you are going to die. 
You don’t want to outlive your wealth, since you can’t live comfortably without 
money. But you can’t take it with you, so you also want to enjoy as much as you 
can before you die.

Investment-consumption problems are pervasive in finance and economics. For 
example, a government can use these same ideas to think about how to reallocate 
money through taxation to maximize social welfare. And companies can use these 
ideas to make decisions about using marketing and capital investment budgets to 
increase sales.

16.3 Infinite-Horizon Dynamic Optimization
The previous two sections considered dynamic optimization problems where the 
horizon is finite, signifying that the problems have an end. In some situations, 
however, we want an infinite horizon. For example a corporation, a government, 
or a large nonprofit foundation may want to make decisions that are optimal in 
perpetuity. In these cases, the present value (or discounted lifetime utility) is an 
infinite series instead of a finite sum. What’s remarkable about these problems is 
that they are often simpler to solve than finite-horizon problems. In this section, 
we examine a few infinite-horizon problems and prove Blackwell’s theorem, which 
gives general conditions for when an infinite-horizon solution exists.

16.3.1 Cake Eating
Consider the infinite-horizon cake-eating problem

oo
maximize

K. (16.18)
subject to 2 ct —

£=0
ct > 0 Vt e N.

This is just (16.1) in the limit that T —> oc. Here we define the value function of 
the infinite-horizon cake-eating problem to be V(w) = Iw^oo V(0,T, w). This is 
the maximum discounted infinite-horizon utility that comes from an initial quantity 
w of cake.

Reindexing (16.18) gives

oo oo oo
52 ^u(ct) = «(co) + /3 52 /3t-1«(ct) = «(co) + /3 52 ^U(C‘)’ 
£=0 £=1 f=0
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where ct = Q+i. Note that

oo oo
W - Co = ^Ct = ^Jct.

Thus, by the principle of optimality, the infinite-horizon version of the Bellman 
equation can be expressed as

V(w) = sup (u(c) + /3V(w — c)). (16.19)
cE[0,w]

Note that the same result occurs if we let the finite horizon T go to infinity in the 
finite-time Bellman equation (16.10).

Remark 16.3.1. It is often convenient to replace today’s consumption with the 
difference between today’s cake and tomorrow’s cake. Specifically, we can denote 
tomorrow’s inventory of cake as w' = w — c and rewrite (16.19) as

V(w) = sup (u(w — wf) + ftV(w'Y). (16.20)
wzE[0,w]

Remark 16.3.2. The expressions (16.19) and (16.20) cover a broad class of prob­
lems, not just cake eating. Hence one should consider what follows to be of broad use 
in dynamic optimization even though the primary focus is the cake-eating problem.

Remark 16.3.3. A policy for a finite-horizon dynamic optimization problem is a 
choice of values for each of the control variables in the problem. But in the case 
of a cake-eating problem with infinite horizon, the Bellman equation shows that 
the optimal policy boils down to deciding how much cake to consume now, given w 
units of cake. This means that a policy is determined by a function 7Г : R+ —> 
where 7r(w) G [0, w] is the amount of cake this policy dictates should be consumed 
if the current amount of cake is w.

16.3.2 *A  Canonical Example Revisited
In some special cases the Bellman equation can be solved explicitly. Here are two 
examples of how that can be done in the special case of cake eating with logarithmic 
utility.

Limiting Solution as T oo

Consider the dynamic optimization problem (16.19) with the log-utility function 
ti(c) = logc. This can be thought of as the limiting case as T —> oo in the finite- 
horizon problem in Section 16.1.2. Taking this limit gives Ct = /3*  (1 — /3)w, and thus
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the total utility is 
oo oo

V(w) = 52^u(c‘) = /3*  log (/3*(1  - /3)w)

63The word ansatz (pronounced ON-zahts) is German, meaning an initial setup, a starting point, 
or an approach.

£=0 £=0
oo

= 52 log /? + log (1 - /3) + log w) 
£=0 
(oo \ / oo \ / oo \
52^*)  log i3 +152^*)  i°g(1 + (52^)logw
t=o / v=o / v=o /

= /1 log^+-^ log (1-^) + -^ logw. (16.21)
(1 ~ P) 1 - P 1 - P

Note that we weren’t really precise in the analysis here. We implicitly passed 
the limit through the sum by taking the limiting solution for the consumption 
and then summing it infinitely many times. This can be done rigorously, but even 
without being rigorous about these limiting operations, it is straightforward to check 
that the solution we found satisfies the infinite-horizon optimality principle (16.19). 
Blackwell’s theorem (Theorem 16.3.4) shows that this is the unique solution to that 
equation, so it must be the optimal solution.

Undetermined Coefficients

Consider again the dynamic optimization problem (16.19) with the log-utility func­
tion u(c) = log c. Another approach to finding a solution is to guess the form using 
the method of undetermined coefficients (sometimes called the method of inspired 
guessing), where we make an assumption (called an ansatz63) about the form of 
the solution, and solve for the coefficients. It is not always clear how to choose 
an ansatz (hence the inspired guessing), but in this case it is not unreasonable to 
guess that since the utility of eating w units of cake now is log(w), then the optimal 
utility might also be of the form V(w) = a + b log w for some positive values of a 
and b. This is our ansatz. If there exist a and b that satisfy the equation

a + blogw = sup (logc + P (a + 6log (w — c))), (16.22)
ce[o,w]

then we have a solution. Take the derivative of the right-hand side (without the 
sup) with respect to c and set it equal to zero. This gives

oJ-Д
c w — c

which yields c = Plugging the optimal c back into (16.22) gives
71 1 W ( 7 1 \

a + blog w = log + /3 la + blog I .

Expanding and simplifying gives

a + 6 log w = logw — log (1 + /36) + /За + /36 log/36 + /36 log w — /36 log (1 + /36).
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Since this must hold for all w, we assume that

b log w = log w + /3b log w,

or equivalently that b = 1 + /36, which simplifies to b = Consider now the 
terms that are independent of w:

a(l — /3) = — log (1 + /36) + /36 log /36 - /36 log (1 + /36)
= /36 log /36 — 6 log 6,

which simplifies, after substituting 6 = to give

“=(Г^р1О1!в+гЬ1О|!(1-'’)-

Thus, the ansatz works and we have a solution

VW = (i lo§ U - /?) + log w>

which is the same as (16.21).

16.3.3 Blackwell’s Theorem
The previous two examples give a candidate solution to the infinite-horizon cake­
eating problem, but they do not guarantee that this candidate is actually optimal. 
Blackwell’s theorem guarantees that such a solution is unique and hence it must 
be optimal. In fact, Blackwell’s theorem gives fairly general conditions for proving 
both existence and uniqueness of a solution. Moreover, it provides another general 
approach, called successive approximation, for finding the solution numerically. The 
proof follows from the contraction mapping principle (see Volume 1, Section 7.1).

Theorem 16.3.4 (Blackwell’s Theorem). For any set X C Rn, let L°°(X;R) 
denote the set of all bounded functions f : X —> R with sup-norm ||/||oo •= 
supxex |/(x)| • IfT: L°°(X;R) —> L°°(X;R) is an operator satisfying

(i) (monotonicity) If f,g e L°°(X;R) satisfy f < g, then T[f] < T[g\.

(ii) (discounting) There exists some /3 G (0,1) such that for all a > 0 and all 
f G L°°(X;R) we have T[f + a] < T[f]+/3a.

Then T is a contraction mapping with constant /3.

Proof. Given the hypothesis, for any f,g€ L°°(X; R), we have f < g + \\f — <j||oo- 
Thus,

T[f] < т[д + II/ - pU] < T[g] + (3\\f - д\\ж,
which implies T[f] — T[g] < /3||/ — <j||oo. Interchanging f and g gives the other 
direction, and thus

\\T[f] -П?]||оо < /W-<7l|oo. □

Recall that L°°(X;R) is a Banach space (Volume 1, Theorem 5.7.6), and so 
the contraction mapping principle (Volume 1, Theorem 7.1.7) guarantees that any 
contraction mapping has a unique fixed point. Combined with Blackwell’s theorem, 
this proves there is a unique solution to the Bellman equation (16.19).
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Theorem 16.3.5. The Bellman equation for the infinite-horizon cake-eating prob­
lem (16.20) on a compact interval X = [0, M] (that is, for any w G [0, M]) has a 
unique solution V G L°°(X;R).

Proof, Following (16.20), consider the map T : L°°(X;R) —> L°°(X;R) given by

T[/](w) = SUP (u(w — wf) + /3f(w')). (16.23)
w'E [0,w]

We call this the Bellman operator] see Exercise 16.13 for details. Note that a 
function V is a fixed point of T if and only if it satisfies

V (w) = sup (u(w — w') + /3V (w'ffi (16.24)
w'E[0,w]

that is, it is a fixed point of T if and only if it satisfies the optimality principle.
We claim that I is a contraction, and thus it has a unique fixed point V. It 

suffices to show that T is monotonic and discounting.
(i) Monotonicity: If /i(w) < /2^) for all w, then

sup (u(wf — w) + /3/i(w')) < sup (u(wf — w) + /3/2(w')) 
w'E[0,w] w'E[0,w]

for all w] that is, T[/i](w) < T[/2](w) for all w.

(ii) Discounting: Note that

T[/ + a](w) = sup (u(wf - w) + /3(/(w') + a)) 
w'E[0,w]

= sup (u(wf — w) + /3f(wf) + /За) 
w'E[0,w]

= T[/](w)+/3a. □

16.3.4 Successive Approximation
Blackwell’s theorem and Theorem 16.3.5 suggest an iterative method, to maximize 
the infinite-horizon utility V in the cake-eating problem (16.20). We call this suc­
cessive approximation, but it is also the infinite-horizon version of value iteration. 
Start with any guess Vq € L°°(X;R) and define Vi(w) = T[VJ)](w). By iterating, 
we have

Vfc+1(w) = m](w). (16.25)
In the limit, we have the unique solution V(w) = lim/c-^ 14 (w). The limit V is 
guaranteed to exist by the contraction mapping principle (Volume 1, Theorem 7.1.7), 
and V G L°°(X;R) by completeness.

Performing successive approximation by hand can get really gross really fast and 
when there’s a nice closed-form solution, it’s usually easier to solve (16.24) directly 
than it is to carry out successive approximations by hand. However, successive 
approximation does lend itself nicely to numerical approximation. One easy way 
to approximate the sequence (I4)fceN numerically is by discretizing the state space 
X = [0, М]. We do this by choosing a number N and dividing X into N intervals 
of length M/N. The optimization problems defining T and the final optimal policy 
are now reduced to searching over a set of N values of the form w = kM/N for 
к G {0,..., N — 1}. Generally, this approximation method converges linearly, at a 
rate equal to the contraction coefficient /3.
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Example: Cake Eating by Successive Approximation

Consider the infinite-horizon cake-eating problem with utility u(c) = y/c. Let the 
initial guess be Vb = 0. Iterating gives

Vi(w) = sup (u(w — w') + 0) = \/w 
w'E[0,w]

with a maximizer of wf = 0. The Bellman operator (16.23) on this function is

V2(w) = T[Vi](w) = sup (u(w — w') + /3Vi(w')) = sup (д/w — w' + /Зл/й/). 
w'E[0,w] w'E[0,w]

A little calculus shows that the maximizer is

B2
w> = (16,26)

which yields
V2(w) = T[Vi](w) = 0 + ^^.

Iterating again (see Exercise 16.14) gives

Va(w) = T[V2](w) = sup (iz(w - w') + /3V2(w')) = л/1 + Д2 + /34\/w 
w'E[0,w]

with a maximizer of

w 1 + I32+^W' (16.27)

Indeed we can show that i:

/к-1 \ V2
Vfc(w) = I j y/w,

\t=0 /

then

Vfe+1(w) = T[Vfc](w) =

where the maximizer is

sup (u(w — wf) + (3Vk (w')) 
»'e[o,w]

■ fc \ V2

t=o /

/32 + /34 + • • • + /32fc
-------------------------------- II)
1 + /32 + /3*  + --- + /32к ■

(16.28)

In the limit, we have

V(w)
w 

1-/32'
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16.3.5 Policy Iteration
From Remarks 16.3.1 and 16.3.3, we know a value function V has a corresponding 
policy % satisfying

7r(w) = argmax (u(w — y) + (3V (?/)), (16.29)
?/e[o,w]

which gives
V(w) = u(w — 7r(w)) + /3V(tt(w)). (16.30)

As with the infinite-horizon value iteration (given by successive approximation) we 
can also iterate on the policy function and get convergence.

Starting with an initial guess 7r0, we solve for the value function Vo, which is 
given by

V0(w) = u(w - 7Г0(м)) + ^Vb(7T0(w))
= u(w - 7r(w)) + /3 (u(w - 7To(7rO(w))) + j3V(7To(7To(w))))

oo
= 52^tw(7ro(w)-7ro+1(w))> (16.31)

where 7Tq denotes the £-fold composition 7Tq ° ttq ° • • • ° ttq. Since the policy 7Tq is 
unlikely to be optimal the value function Vo is also unlikely to be optimal. Hence 
we can identify a better policy 7Ti by solving

7Ti(w) = argmax (u(w - y) + /3VG(y)).
?/e[o,w]

We then find V± by either computing

oo
Vi (w) = 52 /3*и(тг{  (w) - 7rJ+1 (w)) (16.32)

or by computing

Vi(w) = T[V0](w) = sup (u(w - у) + Ж(у))- (16.33)
ye[o,w]

Repeating gives a sequence of policy functions (iVk)keN and value functions (Vfc)fceN- 
Blackwell’s theorem does not apply directly to policy iteration, but these sequences 
can be shown generally to converge to the optimal policy 7r and corresponding value 
function V.

Example: Cake Eating by Policy Iteration

Assume as before that u(c) = y/c. Given the initial guess 7Tq = 0, we have that 
(16.31) simplifies to

Vq(w) = y/w.
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We improve the policy by solving

7Ti(w) = argmax (u(w - у) + /3V0(y)), 
?/e[o,w]

which we can show is
Д2 

%1(w) = T+^w-

Hence we update the value function (see Exercise 16.15), using either (16.32) or 
(16.33), to get

Vl(w) = д/1 +

This example of policy iteration is the same as value iteration, except that the 
indices are offset by one (for example, 7Ti is the same as (16.26)). In deterministic 
problems this can be the case, in particular if the initial guess with policy iteration 
7Tq corresponds to the initial guess with value iteration Vo, but in stochastic cases 
or if the initial policy is randomly selected, they are usually different, and policy 
iteration often converges much faster.

Example: Motion on a Grid

Consider again the case of a robot moving on a 3 x 3 grid described in Section 16.2.3. 
Each move gives a reward of —1, but entering the red square gives a reward of 1.7. 
Once the robot enters the yellow square, it stops moving, but until then it must 
move with every time step.

The infinite-horizon version of this problem can be attacked in at least two 
ways. The first is to use finite-time value iteration repeatedly, for longer and longer 
horizons, until the system stabilizes and gives the same answers with each iteration. 
In this specific example, the system stabilizes at step t = 19, meaning that the 
optimal value function is the same for all time t > 19.

Alternatively, we can use policy iteration with random initialization, which 
works well for this problem. As indicated, let 7r0 be randomly initialized, where 
the policy at each square is to move in the direction of the unique arrow pointing 
out of the square. The value Vb(s) is also indicated in this diagram at each square 
s. Note that there is no discounting for this problem (so (3 = 1).

The value function Vo(5) was computed here for each s by simply starting at s and 
following the policy 7To(s), recording the reward tt(7To(s)) as the value, and then 
taking action 7ro(7ro(s)) and adding и(тго(тго($))) to the value, and so on, to get

oo
V0(S) = £u(ir*( S)).
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Now compute the new policy 7Ti(s) = argmaxaeAs (u(a) + Vo(s)), as follows. 
The policy for states 1, 4, and 7 does not change because every action for these 
states gives the value — oo. But for some states a change in policy improves the 
value:

711(2) = argmax(—1 + /3V0(«)) = 3, 
aE{l,3,5}

71*1(5)  = argmax (—1 + ^Vb(a)) = 6, 
aE{2,4,6,8}

71*1(8)  = argmax(—1 + /3V0(«)) = 9.
ae{5,7,9}

Here we show the new policy 7Ti, together with the new value function Vi:

-4
1

-3 H ► -2
I1

-3
1

—2 -
1

► -1
I1

—2 - ► -1 -
I

-> 0

Repeating the process gives a new policy tt2 and a new value function V2:

-2.3:► -3 H ► -2
I

-3
I

—2 -
1

► -1 
I1

—2 - ► -1 -
1

♦ 0

It is straightforward to check that V2 = T[Vi] = T[V2], so U2 is a fixed point of T 
and thus must satisfy the Bellman equation.

Since we used /3 = 1, Blackwell’s theorem does not guarantee that the value 
function obtained by this policy is the unique solution of the Bellman equation, but 
it can be verified that it agrees with the optimal value found using value iteration. 
Note that policy iteration converges to an optimal policy in only two steps in this 
example, while value iteration for the same problem takes 19 steps to converge.

Not a Bene 16.3.6. Although the optimal value is unique when /3 € (0,1), 
the optimizing policy need not be unique. Under discounting, Blackwell’s 
theorem guarantees that the optimal value function is the unique fixed point 
of T, but it does not uniquely determine which policy achieves that value. In 
the motion-on-a-grid example there are many different policies that produce 
the same optimal value function. For example, the arrow from 4 to 7 could 
be replaced with an arrow from 4 to 5 and still yield the same optimal value 
function.
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Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.

16.1. Assuming that a given smooth utility function и satisfies и' > 0 and u" < 0, 
with limc^0+ u'(c) = oo, reformulate the finite-horizon cake-eating problem 
as a convex optimization problem, and prove that it is convex.

16.2. Prove Corollary 16.1.2.
16.3. Let u(c) = let w > 0, and let /3 G (0,1). Use the Euler conditions to 

solve the cake-eating problem for this и and for general T.
16.4. Assume you are given a general smooth utility function и satisfying u' > 0 and 

u" < 0, with limc^0+ u'(c) = oo, and a smooth technology function f (that is 
strictly increasing (/' > 0) and concave (/" < 0), with /(0) = 0 as described 
in Section 16.1.4). Reformulate the finite-horizon optimal growth problem 
(16.11) as a convex optimization problem, and prove that it is convex.

16.5. Prove Proposition 16.1.4.
16.6.  Carefully write out the details of the proof of (16.7) and verify that letting 

7 —> 1 gives (16.5).
*

16.7. Find the Euler conditions for the human capital problem (16.16) and write 
the Bellman optimality equation (the analogue of (16.10)) for this problem. 
To simplify the problem, you may assume that (1 — S)st < < (1 + X)st
for all t < T and that s^+i = (1 — S)st.

16.8. Suppose that utility in period t of the cake-eating problem depended on 
the consumption in both the current and the previous time period; that is, 
suppose the utility is given by u(ct, Describe how this could be fit into 
the general form of Section 16.2.1. Identify the state space, allowable actions, 
transition function, and reward function. Hint: Consider a two-dimensional 
state space. What is the corresponding Bellman equation (the analogue of 
(16.10))?

16.9. Verify all of the details of the value-iteration example in Section 16.2.6: For 
each of the nine states s in the table, explicitly compute V(0, T, s) for each 
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T G {0,..., 3}. Also compute the optimal policy for each initial state and 
each choice of T G {0,..., 3}.

16.10. Code up the value iteration method for finding the optimal value function 
V(0, T, s) in the 3x3 grid motion problem. Your code should accept a time 
T and a dictionary и of rewards for each action and return the value function 
V(0, T, s) for every s G {1,..., 9}. Apply your method to the example in the 
text with utility given by (16.17). Compare your results to those in the text, 
and find the value of T where V(0, t, s) = V(0, t + 1, s) for all t > T.

16.11.  Formulate the inventory management problem as a dynamic optimization 
problem (like (16.16) or (16.11)). Write out the Euler conditions and the 
Bellman equation (the analogue of (16.10)) for this problem.

*

16.12. Solve the infinite-horizon version of the cake-eating problem with the utility 
function given in Exercise 16.3.

16.13. Prove that the Bellman operator T in Theorem 16.3.5 actually takes bounded 
functions to bounded functions; that is, show that T : L°°(A; R) —> L°°(A; R).

16.14. Consider the infinite-horizon cake-eating problem with u(c) = y/c. Compute 
the following steps using successive approximation:

(i) V2(w) = y/l+l32y/w.

(ii) V3(w) = y/1 + (32 + (34y/w.

(iii) If I4(w) = ^/^t=o then I4+i(w) = \/Et=o

(iv) Show that V(w) = lim^oo Vfc(w) = satisfies (16.23).

(v) Show that 7r(w) = lim/--^ 7Tfc(w) = /32w.
16.15. Compute Vi for the infinite-horizon cake-eating problem using both methods 

(16.32) and (16.33).
16.16. Prove that the Bellman equation for the infinite-horizon version of the human 

capital problem has a unique solution whenever the state space S is bounded.
16.17.  Code up the policy iteration method for the 3x3 grid motion problem. Your 

code should accept a dictionary и of rewards for each action and a dictionary 
% giving the initial policy for each state s G {1,..., 9}. It should return the 
optimal value function and an optimal policy.

*

Notes
Exercise 16.8 was inspired by [AC03], which is a great resource for economic models 
using dynamic optimization. More advanced books are [SLP89, LS18].



Stochastic Dynamic 
Optimization

It’s not hard to make decisions when you know what your values are.
—Roy E. Disney

The previous chapter treats deterministic dynamic optimization problems, which 
means that the outcomes of each decision are known and certain. In this chapter, we 
consider the case where the outcomes of each decision are unknown and uncertain. 
Such problems and situations are often called stochastic.

A crucial factor in the study of dynamic optimization is the agent’s knowledge 
of the state of a problem. Even if the actual state is known by someone else, the 
agent may not know it. For example, in a poker game, I want to know whether the 
player across from me has a full house. She knows what she has, but I don’t. To her 
it’s deterministic and to me its stochastic. One of the major challenges in stochastic 
dynamic optimization is accounting for what is known to the decision maker at the 
time the decision is to be made. This gets even more complicated when one has 
to balance the cost of obtaining knowledge (exploration) with the benefit of using 
knowledge to optimize a utility (exploitation). This trade-off between exploration 
and exploitation is a major theme of stochastic dynamic optimization.

17.1 Markov Decision Processes
In this section, we consider uncertainty in dynamic optimization. A very natural 
setting for many such problems is the Markov decision process, which we describe 
here, along with several examples.

17.1.1 Markov Decision Processes
A discrete-time Markov process or Markov chain is a discrete-time stochastic process 
(a sequence of random variables) Xq, ..., where each Xn+i depends only on Xn. 
That is to say, the conditional probability given all earlier states is the same as the 
conditional probability given only the preceding state Xn\ so, for all sequences 
xq, ..., xn, rrn+i, we have

- P(An_|-i = xn+i |Xq = xq, X± = Xi,..., Xn = xn) = P(Xn+i = xn+i |Xn = xn).

743
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A Markov decision process can be thought of as a Markov chain combined with 
decisions and rewards. It is a stochastic dynamic optimization problem where the 
states of the problem evolve according to a Markov chain and where decisions are 
made along the way to maximize a utility function.

Example 17.1.1. The board game Monopoly is a Markov decision process. 
The players’ movements around the board according to sequential dice rolls 
can be considered a Markov chain. But the players also decide whether to buy 
properties, houses, and hotels, and they pay or receive money depending on 
who owns the property and how many houses or hotels are on the property. 
The additional aspect of decision making with rewards and penalties makes 
this game a Markov decision process.

Definition 17.1.2. A discrete-time Markov decision process (MDP) is a tuple 
(T,S)As,pt(s' | s,a),rt(s, s',a),/3), where

• T is a set of discrete time periods (sometimes called decision epochs/*

• S is a set of states;

• for each s G S, the set As is the set of allowable actions;

• (3 G (0,1] is a discount factor;

• for each t G T, s, s' G S, and a G As, the transition probability pt(s' | s,u) 
is the probability of ending in state s', given that the process is in state s and 
action a is taken;

• rt(s, s', a) is the reward or expected reward for ending in state s' if the process 
is currently in state s and action a is taken.

Finally, we require that Y^s'esP^8' I = 1? corresponding to the fact that these 
are probabilities.

The process is called Markov because the probabilities pt(s' | s, a) do not depend 
on any previous states or actions—only the current state s and the current action 
a. Of course the current state s may be a result of previous states and actions, but 
the process is still Markov as long as any effect of those previous states and actions 
on current transition probabilities is completely captured by the current state s.

For convenience we normally take T = {0,1,2,..., T} or T = N. When T is 
finite, we say that the problem has a finite horizon. When T is infinite, we say that 
the problem has an infinite horizon.

Remark 17.1.3. Although we require T to be discrete, the state space S and the 
set As need not be discrete.
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For any MDP the main problem is to find the optimal policy, which is a sequence 
of actions that maximize the present value of expected rewards. The dynamic 
optimization methods of the previous sections can be used to solve these problems. 
Consider the case where the transition probabilities are not time dependent. Let 
R(t, s) be the maximum present value of the expected reward after t time periods, 
starting in state s. Bellman’s optimality principle applies and takes the form

R(t + 1, s) = max (p(s' | s, a)rt(s, s', a) + /3R(t, sf)). (17.1)
s'es

In the case of a finite horizon, we can solve this recursively. In the case of an infinite 
horizon, Blackwell’s theorem applies, and we may start with any initial guess for 
R(t, s) and iterate the Blackwell contraction mapping to converge on the unique 
solution.

17.1.2 Example: Stochastic Optimal Growth
Suppose that, as in Section 16.1.4, we have a production function f(xt), but at 
each time step this is now also multiplied by a random variable Zt to give a total 
output of Ztf{xt). The variable Zt is often called a random shock and is meant to 
account for both good and bad outcomes that might affect output. Examples include 
technological advances, crop failures, weather, and political strife. We assume that 
the sequence of shocks is a Markov chain (this could also include the case where 
they are i.i.d.).

To formulate this as an MDP, let the state st = (x^Zt) G S = [0, oo) x [0, oo). 
In state (ж, г) an allowable action is to consume c units, where 0 < c < zf(x), 
so the set of allowable actions for state (a?,z) is = [0, zf(x)\. After 
consumption at time t, we have xt+\ = ztf(xt) — ct, so the transition probability is

Pt ((a/, /) | (#, z), c) = < 0
71 V h J [P(Zt^=zf\Zt = z)

if xf zf(x) — c, 
if xf = zf(x) — c.

Finally, the reward is given by the utility function tt(ct), which depends only on 
the amount ct of capital consumed. As before we assume that и is continuously 
differentiable, strictly increasing (y! > 0), and strictly concave (u" < 0) with 
limc^0+ u'(c) = oo.

We wish to maximize the expected utility over time. The problem is to find the 
optimal policy ct = c{xtl zt) that determines the choice of how much to consume at 
each stage, given this period’s capital xt and this period’s shock Zt = zt. That is, 
assuming that the initial state (xq, zq) is given, the problem is to choose the policy 
(cJteT in order to

maximize

subject to

Ef
_t=o

0 < ct < ztf(xt)
Xt+l = Ztf(xt) - Ct

VteT,
Vf e {o,...,t- i}.

(17.2)

The notation Et here means the expected value, given that we know everything up 
to time t, including Zt = zt and xt. Equivalently, we can formulate the problem as 
that of finding an optimal xt+i = x(xtlzt) and then compute ct = ztf(xt) — xt+i-
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As with the deterministic case (16.13), we get the Euler equations (the envelope 
condition):

U'(ct) = Ж [U'(ct+1)Zt+1/'(xt+1)] (17.3)

for all t G {0,..., T — 1}. The envelope condition is proved in Exercise 17.6.

Example 17.1.4. A Cobb-Douglas technology function is a technology func­
tion of the form f(xt) = xf. Assume a Cobb-Douglas technology function 
and a log-utility u(ct) = logQ. The envelope condition gives

— — /Ж*  ---- Zt+iaxf+i
ct Lct+i

(17.4)

This can be solved analytically with the following ansatz:

Xt+1 = 0ztXt and ct = (1 - 9)ztXt

for some в to be determined. Plugging into (17.4) gives

(1-J)^ l(l-9)Zt+1x?+lZt+iaX^
= <Л ----иг-----(1 — 0)xt+i

Since Xt+i is determined after Zt is realized, there’s no random variable in the 
expectation, which gives

(l-0)ztaf (1 - 9)xt+1_ (1 - 0)xt+1 (1 - e)6ztxf'

Thus, when 0 = a/3, we have equality. It follows that the optimal policy is 
given by

xt+i = a/3ztxf and ct = (1 - a/3)ztxf.

Remark 17.1.5. Following (17.1), we also have the Bellman formulation

V(xt,zt) = sup (u(ct) + /3Ef (V(j:f+i,Zt+i)))
ct,xt+1

subject to Ct + Xt+! = ztf(xt).

As in the deterministic case, this can be used to compute optimal solutions using 
value iteration and policy iteration, but we don’t dive into this here. For details, 
see the computer lab manual that accompanies this text.

17.1.3 Example: Unemployment and Partial Insurance
Consider a variant of the cake-eating problem where the cake is capital (money) 
and the cake eaters are workers who not only have some initial amount of capital to 
consume but also earn a wage each period. Since this is money and not cake, we also 
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assume they can earn some interest by investing the money. Finally, since the job 
market is not entirely stable, there is a chance of losing one’s job. Luckily, many 
workers have some access to unemployment insurance that pays a little benefit 
during periods of unemployment, but the benefit is usually not sufficient, so it 
makes sense to save something as an emergency fund for times of unemployment. 
The goal is to find the optimal amount to consume and to save each period, in order 
to maximize expected utility over all time T = {0,1,...,7*}.

The first step of this problem is to formulate this as an MDP. The evolution 
of this process depends both on current wealth and current employment status, 
suggesting the choice of S = [0, oo) x {1,0} as the state space, where 1 represents the 
state of being employed and 0 the state of being unemployed. We assume that the 
income for each period is w when employed and b (the benefit) when unemployed. 
Any savings grow at a rate of r per period, so if xt is the total amount of money 
available at the beginning of time t, then before we must decide the amount Ct 
to consume, the money first grows to (1 + r)xt and the wage or benefit is paid. 
Assuming no borrowing, the amount consumed must be nonnegative and no more 
than the total (1 -\-r)xt + w, if employed, or (1 -\-r)xt + 6, if unemployed. Thus, the 
set As of available actions for a state s E S' is

As
[0, (1 + r)x + w] if s = (ж, 1), 
[0, (1 + r)x + 6] if s = (ж, 0).

Employment status is assumed to be a Markov chain, so the probability of being 
employed or unemployed next period depends on current employment status. Let 
the transition probability matrix for employment status be

Poo Poi
Pio Pn

where the probability of staying employed is рц, the probability of getting a new 
job if unemployed is рю, and so forth. Further assume that the transition from one 
employment status at time t to another at time t+1 occurs after wage or benefit has 
been paid and after the decision ct has been made. Thus the transition probability 
p(s' | s,c) for moving from state s to state s', after taking action c, is

p(s' | s, c) = <

Poo 
Poi 
Pio 
Pn
0

if s = (ж, 0) and s' = ((1 + r)x + b — c, 0),
if s = (ж, 1) and s' = ((1 + r)x + w — c, 0),
if s = (ж, 0) and s' = ((1 + r)x + 6 — c, 1),
if s = (ж, 1) and s' = ((1 + r)x + w — c, 1),
otherwise.

The reward at each time step is determined only by the utility ?z(c), satisfying the 
same assumptions as in the original cake-eating problem.

Let V1(£rt) denote the maximum expected utility attainable if the worker is 
employed at time t and has wealth xt, and let VQ(xt) denote the maximum expected 
utility if the worker is unemployed at time t. The Bellman equation for this situation 
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breaks into two cases:

Vx(o:t) = sup (u(ct) +/3(pnV1(®t+i) +pi0V0(a:t+i))) 
Xt+1

with ct = (1 + r)xt + w —

V°(art) = sup (u(ct) + /3(poiV1(®t+i) +pooV°(a:t+i)))
Xt+1

with ct = (1 + r)xt + b —

17.1.4 Example: Uncertain Robot Motion
Consider a variant of the grid-motion problem of Sections 16.2.3 and 16.3.5, where 
a robot moves around on the grid until it reaches the yellow square, at which point 
it stops moving.

The robot may attempt to move horizontally or vertically to an adjacent square, but, 
for each of the other adjacent squares, it could move to that square with probability 
p instead. Each move has a cost of 1, but entering the red square gives a reward of 
1.7. The goal is to choose a policy that will maximize the lifetime reward of moving 
around the grid.

In this setting T = N because there is no upper bound on the number of steps 
that will be taken before reaching the yellow square. The state space of this MDP 
is the set of the nine squares of the grid, and the allowable actions for a given state 
are the horizontally and vertically adjacent squares:

A, = {2,4}, A2 = {1,3,5}, Л3 = {2,6},
Л4 = {1,5,7}, Л5 = {2,4,6,8}, Aq = {3,5,9},
A7 = {4,8}, A8 = {5,7,9}, A9 = 0.

The transition probabilities are

P
p(s' \s,a)= < 1 - (|XS| - l)p 

0

if s' e As \ {a}, 
if s' = a, 
otherwise.

This problem is amenable to the same solution techniques as the deterministic 
infinite-horizon problems of the previous chapter.
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17.2 Bandit Problems
The bandit problem was formulated during the [Second World] War, and efforts to 
solve it so sapped the energies and minds of Allied analysts that the suggestion was 
made that the problem be dropped over Germany, as the ultimate instrument of in­
tellectual sabotage.
—Peter Whittle

An important class of Markov decision processes is the class of bandit problems. 
These are problems that can be modeled as a row of slot machines.64 Each machine 
has its own initially unknown payout distribution. Which machines should gamblers 
play to maximize their total expected reward? To do this optimally they must 
balance between exploration and exploitation. In other words, the gamblers must 
learn while also trying to maximize their return. These types of problems arise in 
many settings, ranging from testing of pharmaceuticals to Internet advertising.

64A slot machine is sometimes called a one-armed bandit.

17.2.1 Multiarmed Bernoulli Bandits
In a bandit problem the states of the system are usually not physical states but 
rather information states—the state of our current knowledge about the reward 
distribution of each machine. Possible actions are the choice of which machine’s 
lever (arm) to pull.

First consider the case of a single machine with a Bernoulli payout distribution 
of fixed, unknown probability 0. That is, the machine pays a fixed amount J with a 
fixed, but unknown, probability 0, and it pays nothing with probability 1 — 0. The 
state of our knowledge is the number of wins and losses already observed, so the 
state space is N x N = {(a, b) | a, b e N}.

Each successful pull of the machine’s arm results in an update from state (a, b) 
to state (a + 1,6), while each failed pull updates to state (a, b + 1). Thus, the 
transition probability is given by

p(fa + 1,6) | (a, 6)) = 0 and p((u, b + 1) | (a, 6)) = 1 — 0.

We can estimate the value of 0 using the MLE:

0= .a -|- b

Of course if there have been no pulls, that is, if the state is (0,0), then the estimate 
is undefined. If the machine is in state (a, 6), the estimated expected payout of the 
next pull is JO. We also include discounting, so the estimated expected present 
value of pulling the arm at time t is r = fF^JO, where /3 e (0,1] is the discount 
factor.

For a collection of n independent Bernoulli machines, where machine i has actual 
payout Ji and unknown probability 0г, the state space for the whole collection of 
machines is the product

S = (N x N) x (N x N) x • • • x (N x N) = (N x N)n.
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The set of possible actions is A = {1,..., n}, corresponding to the choices of which 
machine to play.

The expected (undiscounted) reward for decision i in state (si,...,sn) is the 
expected reward for playing machine i in state Si = (a^bi) at time t; so,

r((si,s2,...,sn),«) = n(Si) = e(Si)Ji.

Transitions change only the state of (our knowledge of) the one machine whose 
arm was pulled, and in that case the transition probability is determined by that 
one machine. So, given action г, the transition probabilities of going from state 
($i,..., sn) to state (si,..., s'n) are

X) I 01,-•• = if sfm = Sm for all m г, 
if sfm Sm for any m i.

Application 17.2.1. Multiarmed Bernoulli bandit problems have been used 
in a medical setting to improve clinical trials. In a typical clinical trial ap­
plication, there are n treatments (arms). These treatments can be given to a 
patient repeatedly, in any order. Each treatment results in either success or 
failure. Discounting applies here because if a treatment succeeds, the reward 
of being healed is affected by timing: patients prefer to be healed sooner than 
later, and if they spend more time suffering and more money on treatments 
over a longer period of time, this reduces their total utility of being healed. 
Thus a success results in a reward of the form /3t~1, where /3 G (0,1] is the 
discount factor. If the treatment fails, obviously the patient isn’t healed and 
has no reward.

One policy for a multiarmed bandit problem is to pull the arm for which the 
current expected reward is largest. An arm i e {1,..., n} in state Si = bi) has 
expected reward OiJi = aa^b. Ji. Thus, this policy pulls arm j with

j = argmax OiJi. (17.5)

While this policy may seem good, it is not optimal because it is myopic—it 
does not address the possibility of greater future rewards from identifying a better 
machine. If there is a tie, where the means of two arms are equal and maximal, but 
the estimated variance of one is much greater than the other, then it is advantageous 
to select the arm with greater estimated variance, since the outcome of that pull 
will give more information than pulling the low-variance arm. If the expected value 
of the lower-variance arm is only slightly higher than that of the higher-variance 
arm, then it should still be advantageous to select the arm with greater variance, 
but the previous policy does not account for that.

A better policy would be to formulate this as a recursive dynamic optimization 
problem. In the case that n = 2, setting 7?(ai, 6i, «2, Л, Л, N) to be the maximal
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total reward obtainable starting in state ((«i,6i), («2,^2)) over N periods, we seek 
to solve

7?(ai, 61, a2, b2, Ji, J2, N) =max < —Q1 [Jx + /37?(ai + 1,61, a2, b2, N — 1)]
[ «1 + 01

H-------- — f3R(ai, b± + 1, a2, b2, N — 1),
«1 + Oi

—^-7—[Л + ДК(«1, bi, a2 + 1, b2, N — 1)]

69 1H-------- — f3R(ai, bi, a2, b2 + 1, N — 1) > .
a2 + b2 J

(17.6)

This can be used to recursively compute the value of R(ai,bi,a2,b2,Ji,J2,N) in 
terms of four values of R, where N is replaced by N — 1, and each of those requires 
four values of R, where N — 1 is replaced by N — 2, and so on, ultimately requir­
ing computation of O(4N) values of R. Computing iteratively (bottom-up dynamic 
programming), instead, requires computing values of R(ai -Hi, 61 + ji,a2 + i2, b2 + 
J2, Л, Л, £) for all values ofte{l,2,..., N} and all values of ii, i2, ji, j2 such that 
й + ji + h + 7’2 = t, thus requiring the computation of J2^LiP4(£) = О (TV4) values 
of R, where p±(t) is the number ways of writing t as a sum of four nonnegative 
integers. More generally, for a bank of bandits with n arms, the corresponding iter­
ative computation requires O(7V2n) subcomputations. This becomes very difficult, 
computationally, as N —> 00 even for relatively small values of n. Thus, for a very 
long or infinite horizon we need another approach.

17.2.2 Indexing
Indexing gives an alternative algorithm for deciding the optimal next action for a 
general Bernoulli bandit process with n arms with infinite horizon. The idea of 
the index is to compare a bandit in state (a, b) to a simple bandit with known, 
fixed payout. We call a one-armed bandit a simple bandit with reward r if it has an 
(undiscounted) expected value of r. Here we mean that r is the true expected value 
and not an estimate of its value. The expected present value (that is, the value 
now, after discounting) for an infinite lifetime of playing this simple bandit is

00
52=
£=0

Г

Consider now the special case of a two-arm Bernoulli bandit, where arm 1 has a 
payout of Ji and an (unknown) success probability 0, which currently we estimate 
to be 0 = a/(a + b), having observed a successes and b failures. Arm 2 is a simple 
bandit with reward J2. Let R(a, b, Ji, J2) denote the optimal expected reward from 
playing this bandit system with infinite horizon, and with starting state (u, b) on the 
first machine. Note that R(a, b, Ji, J2) = JiR(a, b, 1, J2/J1), so setting r = J2/Ji 
and finding R(a, b, l,r) for all a,b,r will give the general case just by multiplying 
by Ji. From now on we use the notation R(a, b, r) = R(a, b, 1, r).
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The Bellman equation for this situation is

J a(l + /3R(a+ l,6,r)) +b/3R(a,b+ l,r) r 17? a, b, r) = max 7--------------------- ——-----------------------,  ----- -  f . 17.7
[ a + b 1 — p )

A rough argument for why the Bellman equation takes this form is given at the end 
of this section.

If r is very small, then the second term inside the maximum in (17.7) is 
very small, while the first term is at least so the first term is larger, and pulling 
the first arm is the better choice. Alternatively, if r is very large, then it should 
never make sense to pull the first arm, so R(a, b, r) should be equal to the expected 
reward of always pulling the second arm. If B(a, 6, r) is a continuous function 
of r, then there must be some value of r where the two arms give the same expected 
reward, that is, when the two inner terms of (17.7) are equal:

т a b
= —— [1 + /37?(a + l,6,r)] + —~/3R(a,b + l,r). (17.8)J. p a | о cl | о

It can be shown that there is a unique value of r that satisfies (17.8). This value is 
called the Gittins index.

Definition 17.2.2. The Gittins index z/(u, 6,1) of a Bernoulli bandit in state (a, 6) 
with a winning payout of 1 is defined to be the value of r that makes (17.8) hold:

v(a, b, 1) = [1 + f3R(a + 1,6, z/(a, 6,1))]

+ ^-/3R(a, 6 + 1, p(a, 6,1))
a + b

(17.9)

Define b, J) = Jv(a, b, 1) for all J.

It follows immediately from the definition that the present value of an arm in 
state (a, 6) with payout J is the same as the present value of a simple bandit with 
reward z/(u, 6, J).

The Algorithm

Assuming the Gittins index can be calculated in a reasonable amount of time, this 
leads to an algorithm for deciding the optimal next action for a general Bernoulli 
bandit process with n arms. Assume that for each i the zth arm is in state (a*,  b^ 
and has winning payout J*.  For each arm i compute the index i/(ai,bi,Ji) and 
then select the arm with the greatest index. This is the optimal policy because 
arm i is equivalent in expected present value to a simple bandit with reward 
v(ai, bi, Ji), and thus the bandit with the highest index is the choice with the highest 
expected value.
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We approximate the Gittins index as follows. First, if a + b is large enough, then 
the MLE 0 = is a good estimate of the true probability 0, so it is reasonable, in 
that case, to assume that the first arm is a simple bandit with known probability 0. 
Doing this amounts to replacing the first part of (17.7) with the expected present 
value . Thus, it is reasonable to choose a large value M and assume that

Finally, z/(a, 6,1) must be approximated when a + b < M. This can be done with a 
variant of the bisection algorithm from Section 12.2 to find a value of r that comes 
close to giving equality in (17.8), but where each function evaluation R(a + 1,6, r) 
or R(a, b + l,r) is computed recursively, using (17.7) and (17.10).

Alternatively z/(a, 6,1) can be computed with an exhaustive (brute force) search, 
as follows: Choose a fine grid of К possible values r e (0,1), and for each a, b e 
N x N with a + b < M use (17.7) and otherwise use (17.10) to compute R(u, 6, r), 
recursively. Then approximate z/(a, 6,1) as the value of r in the grid that comes 
closest to giving equality in (17.8).

The brute force index algorithm requires a constant number of computations 
per choice of a,b,r, so it has total complexity O(KM(M + 1)) to approximate the 
Gittins index, which is generally much cheaper to compute than (17.6) for large N.

Remark 17.2.3. If the computation of the Gittins index is only needed for arms 
in states (u^M with ai + bi > m, then there is no need to compute the values 
R(a, b, r) for a + 6 < m.

Example 17.2.4. Gittins index computation for M = 4.
We show how to approximate the Gittins indices z/(u,6,1) for all states 

(a, 6) with a + b < M = 4 for a bandit process having discount factor /3 = 0.9.
First select a grid of r-values, say, {0.01, 0.02,..., 0.98,0.99}. One must 

iterate through all the choices of r, but for purposes of this example, assume 
that the current choice is r = 0.35. This gives

r 0.35
1-/3 1-0.9 3,5

To simplify notation for this example, since r = 0.35 is fixed here, write 
R(a, b) = R.(a, b, r). To initialize, approximate 7?(a, b) for a + b = 4 by using 
(17.10).

Я(0,4) = max{0,3.5} = 3.5, 

7?(1,3) = max{2.5,3.5} = 3.5, 
7?(2,2) = max{5,3.5} = 5, 

7?(3,1) = max{7.5,3.5} = 7.5, 

Я(4,0) = max{10,3.5} = 10.
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Now calculate for each a 4- b = 3 using (17.7):

Л(0, 3) = max <
Го з 1
-[1 + .9(3.5)] +-.9(3.5), 3.5 > = max{3.15,3.5} = 3.5,1 о о J

7?(1, 2) = max <
fl 2 1
-[1 + .9(5)] + -.9(3.5), 3.5 > = max {3.93,3.5} = 3.93,

1 о о J

R(2,1) = max <
f 2 1 1
- [1 + .9(7.5)] + - .9(5), 3.5 } = max {6.66,3.5} = 6.66,

1 о о J

R(3,0) = max <
f з o 1
-|1 + .9(10)] + -.9(7.5), 3.5 > = max{10,3.5} = 10.

Io о

And for a 4- b = 2, 

f 0 2 1
B(0,2) = max -[1 + .9(3.93)] 4- -.9(3.5), 3.5 = max {3.5,3.15} = 3.5,

7?(1,1) = max {|[1 + .9(6.66)] + |.9(3.93), З.б| = max{3.5,5.27} = 5.27, 

(2 0 I
Л(2,0) = max -[1 + .9(10)] + -.9(6.66), 3.5 = max{3.5,10} = 10.

And finally for a 4- b = 1,

R(fi, 1) = max {.97?(0, 2), 3.5} = 3.5,

R(l, 0) = max {1 + .9Я(2,0), 3.5} = 10.

The case of (a, b) = (0,0) does not make sense in the formulas and is not useful 
anyway, because the state (0,0) gives no information about the process.

The algorithm is finished by performing these same calculations for all r 
values and all (a, b) with 1 < a 4- b < 4. For each combination of a and 6, 
determine the value of r that most nearly satisfies (17.8)—this value of r is 
the (approximate) Gittins index z/(u, b, 1).

17.2.3 *Rough  Argument for Bellman

We give a heuristic argument, using (17.6), for why the Bellman equation (17.7) 
holds. First, if N = oo, then N — 1 = TV, and a change in the number of wins or 
losses on the second (known probability) machine will not change our knowledge of 
r, so we have R(a±, bi, «2, ^2, TV) = 7?(ai,bi,r). Next, wherever the MLE estimate 
02 = Q2+fe2 occurs in (17.6), replace it with the actual value 02 = P- Finally, the 
expected value of arm 2 is r = pJ%. Making these substitutions gives
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R(u, 6, r) = max| ——— [1 + f3R(a + 1,6, r)] H---- /3R(a, 6+1, r),
I a + b u + b

р[Л + PR(a, b, r)] + (1 - p)fiR(a, b, r)|
J (17.11)

= max| ——— [1 + f3R(a + 1,6, r)] H------- 6+1, r),
I a + 6 a + 6

r + f3R(a, 6, r)|.

If it is optimal to pull arm 2 at any time, then it must be optimal to pull arm 2 every 
time after that, since there will be no new information about arm 1, keeping the 
first part of (17.11) the same. Therefore, if the maximum is attained by the second 
term in (17.11), then we have R(a, 6, r) = r + f3R(a, b, r) and R(u, 6, r) = 7-/(1 — /3). 
This implies, regardless of which arm is optimal, that (17.7) holds.

17.3 Thompson Sampling
Although solving bandit problems using the Gittins index is much more efficient 
than value iteration, it is still costly for large-scale problems. In this section we 
describe a fast and powerful heuristic method, motivated by Bayesian estimation, 
for approximating the solution to a bandit problem. This method is sometimes 
called Thompson sampling and is widely used to identify optimal choices of which 
web pages to present to users, but it has many other applications as well.

17.3.1 The Bayesian Framework
We do not know the true values of the probabilities 0*,  but given a history of 
successful and unsuccessful pulls, we can say something about what range we think 
they might be in. If you have had one success and two failures on machine г, the 
MLE for Oi is Oi = |. But this estimate is probably not very useful, especially 
when it is based on so little information. Instead of choosing a single value 0*,  it is 
better to quantify our current knowledge in terms of a probability distribution for 
the value of Oi. This is the Bayesian framework (see Section 6.5).

In this setting, it is natural to use a prior distribution of the form Beta(u, 6) for 
0^ since Beta is the conjugate prior for the Bernoulli distribution. New information 
is incorporated by updating the prior to the appropriate posterior distribution. This 
framework allows us to fluidly incorporate new information as we seek to determine 
the true nature of Oi.

Recall from Section 5.6.2 that beta distributions Beta(a, 6) are defined on [0,1] 
and parametrized by a pair (a, 6). The distribution Beta(a, 6) has most of its mass 
concentrated around its mean Oi = a/(a + 6), and it becomes more concentrated 
around a/(a + 6) as a + 6 gets larger. Moreover, the distribution Beta(l, 1) is the 
uniform distribution UniformQO, 1]), so it is a popular choice for a prior when there 
is no other information about the distribution of Oi.

Starting with the prior distribution Beta(u, 6), if the next pull is a success, the 
posterior distribution becomes Beta(u + 1,6). And if the next pull is a failure, then 
the posterior distribution is Beta (a, 6 + 1).

As we get more information, the sum a + 6 becomes larger, and the peak of 
Beta(u, 6) gets narrower, corresponding to a lower variance. In Figure 17.1, all
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Figure 17.1. Beta distributions Beta(a, 6) for various choices of a and b. All 
of these distributions have expected value but the variance decreases as a + b 
increases.

three distributions have expected value | and they become tighter around that 
value as we gain more information.

17.3.2 Thompson Sampling
The Thompson sampling algorithms is to take a sample from the current distribution 
for each arm and then pull the arm with the largest sample. Based on the outcome 
of the pull, the parameters are updated and the process is repeated. Thompson 
sampling is an old idea (dating to 1933) that has been rediscovered several times, 
but until recently it had not received much attention as a way to solve bandit prob­
lems because of a lack of good analysis about its performance. Empirical evidence 
suggests that it generally outperforms other solution methods. In some restricted 
cases its performance has also been analyzed and shown to be equal to or better 
than other known competitors. For an implementation of Thompson sampling, see 
Algorithm 17.1.

Example 17. 3.1. In the case of a two-armed Bernoulli bandit problem in 
state ((ui, 6i), («2, ^2)), with a beta distribution Beta(a,6i)  for the para­
meter 9г, simply draw a sample from Beta(ai,6i) and a sample #2 from 
Beta(«2,62), and then choose the arm whose sample value is greater. After 
making the pull, update the distributions and repeat the process.

*

If we started with uniform priors Beta(l, 1) for each arm and have drawn 
98 times from the first arm with 39 successes and 7 times from the second 
arm with 2 successes, then the two current distributions are Beta(40,60) and 
Beta(3,6), respectively; see Figure 17.2.
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Figure 17.2. Samples drawn from the two distributions Beta(40,60) and 
Beta(3,6). Although the mode of the blue distribution is much less than that of 
the green, the high variance of the blue and low variance of the green mean that 
there is still a good chance of drawing a blue sample (blue diamond) that is greater 
than the green sample (green diamond).

Example 17. 3.2. Consider a situation where a projector can take replace­
ment bulbs from various manufactures, and the manufacturers all charge the 
same price for a bulb. The bulbs are expensive, so you want to buy your bulbs 
from the manufacturer whose bulbs last the longest. This can be modeled as 
a variant of the bandit problem, where the greedy approach would be to buy 
from the manufacturer whose bulbs have the longest expected life, based on 
what you have observed in the past, but it could be that some other manu­
facturer actually has bulbs that last longer, on average, and you just haven’t 
gathered enough data to observe that.

We assume that bulb life has an exponential distribution Gamma(l,A), 
which has an expected value of 1/A. The conjugate prior for the exponential 
distribution is A ~ Gamma(a, 6), with expected value | (see (5.26)). Thus, for 
the zth manufacturer, we associate a distribution of the form Gamma(n^^z) 
for some choice of Oi > 0 and bi > 0.

If all the bulb manufacturers claim their bulbs have the same lifetime €, 
then before sampling any bulbs it is natural to take аг and bi such that y- = | 
for the prior. The more believable the manufacturers’ claims of lifetime are, 
the larger ai and bi should be (corresponding to a smaller variance |£). Thus, 
one choice of prior, if we are not very certain of the manufacturers’ claims, 
would be Сатта(Ц), whereas if we believe the claims more strongly, we 
could take Gamma(10,10£).

Each time a bulb from manufacturer i burns out, having lasted for time 
t, we update the prior Gamma(a^, £>?:) to the posterior Gamma(n^ + 1, +1)
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(see Section 6.5.4). To use Thompson sampling in order to choose which 
manufacturer to buy from next, simply draw ti from each of the updated 
distributions and select the manufacturer i with the largest value of t^. Once 
the next bulb burns out, if it was made by manufacturer j and lasted for time 
t, then update the corresponding aj and bj to the posterior aj + 1 and bj +1 
and repeat the process.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

def thompson(theta,N): 
и и и

Thompson sample to choose the arm, then simulate a pull, 
then update. Repeat N times.

theta : array of true probabilities for the arms
N : total number of pulls to make

Return percentage of successes up to each time step 
и и и

# Initialize
n = len(theta) # Number of arms
a = np.ones(n) # Initial 'a' hyperparameters
b = np.ones(n) # Initial 'b' hyperparameters
X = np.random.random(N) # Draw from [0,1] to simulate pulls 
traj = np.zeros(N) # Initial trajectory

for к in range(N):
draw = beta.rvs(a,b) # Thompson sample for all arms 
index = np.argmax(draw) # Identify arm to pull 
if X[k] <= theta [index] :

a[index] +=1 # Update posterior with success
traj [k] = traj [k-1] + 1 # Update trajectory 

else:
b[index] +=1 # Update posterior with failure
traj [k] = traj [k-1] # Update trajectory

return traj/np.arange(1,N+1)

Algorithm 17.1. Algorithm for using Thompson sampling to choose arms in N 
simulated pulls of a multiarmed Bernoulli bandit with true parameters theta and 
returning the percentage of successes after each pull. Here a pull on arm i (a draw 
from Bernoulli (0*),)  at stage к is accomplished by taking X[k] from Uniform(0,1) 
(Line 16^ and then returning success if X[k] < Oi (Line 22). Running this code 200 
times with N=5000 and theta= [0.30, 0.45, 0.23, 0.4] gives the results plotted in 
Figure 17.3. After a brief dip, while exploring, the average payout approaches the 
largest Bernoulli probability 0.45, demonstrating a successful balance of exploration 
and exploitation.
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Vista 17.3.3. Thompson sampling can also be used to minimize driving time 
for a commuter with multiple possible routes to work. We can formulate this 
problem as a stochastic graph optimization problem, where each route from 
home to work is composed of various edges in the graph, and the weights (av­
erage driving times) for each edge are unknown. Thompson sampling applied 
to the unknown parameters of the weight distributions can be used to find 
an advantageous balance between exploring new edges and exploiting what is 
already known. See [RRK017] for more on this application.

Sometimes it may be more convenient to take several samples from the distri­
butions before updating. Empirical evidence suggests that Thompson sampling is 
very robust even with this delayed updating.

One could continue the experiment indefinitely, but it is often useful to have 
criteria for stopping. First, we may want to run the process for a minimum period 
of time, regardless of results, just to ensure that we have enough data to make a 
decision and that the results are not overly influenced by a small number of random 
draws. A second stopping criterion could be that there be a certain probability 
(typically 95%) that one of the variations is the best.

It may seem that these two criteria should be enough, but in some cases the 
experiment could last a very long time using just these criteria. For example, 
consider the case that two variations have nearly the same value of 0. In this case 
it is very difficult to determine which is best, but it is also not very important to 
decide between them, since the results are so similar. Thus it makes sense to use 
additional criteria that quantify the potential value remaining.

17.3.3 Application: Web Page Experiments

Bandit problems provide a way to balance exploration and exploitation when ex­
perimenting with variations of a web page. Suppose a business wants to test new 
versions of a web page. The goal of the page might be to get the user to click a 
certain link or to make a purchase. When the user does this, we call it a conversion. 
The conversion rate, or CvR, is the proportion of web page visits that results in a 
conversion. The site designer wants to determine which variation of the web page 
has the best CvR.

We can formulate this situation as a bandit problem by considering each page 
as a different arm. Each page has some unknown probability (the CvR) that a user 
will perform the desired action. The company then wants to experiment with giving 
different users different versions of the page in order to determine which variation 
is most successful.

A more classical approach is to explore first and then exploit by using a method 
called A/В testing. This involves splitting traffic between each variation for a long 
enough period of time to give sufficient data to determine the best arm with some 
level of confidence.

The bandit approach has significant advantages over a classical A/В test. First, 
the bandit method generally converges more quickly. Second, an A/В requires that
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Figure 17.3. Plot of average payout over 5000 steps for Thompson sampling for 
a Bernoulli bandit with true probabilities 0q,. .., $3 = (0.30,0.45,0.23,0.4), starting 
with a uniform (Beta(l, 1)) distribution for each 0i, as in Algorithm 17.1. This plot 
shows the result of repeating the experiment 200 times and averaging the results at 
each time step. After a brief dip while exploring, the average payout approaches the 
largest Bernoulli probability o/0.45.

one generate enough data to have substantial confidence (say 95%) that there is a 
real difference between the options.

Another advantage of the bandit approach is that it balances exploitation with 
exploration, whereas the A/В test primarily focuses on collecting data (exploration 
without exploitation) for the initial, often very long period, before it uses that data 
(exploitation without further exploration). As the bandit process proceeds and we 
gain more information, we allocate more visits to the variation that we believe has 
a better CvR, hence gaining more conversions.

Finally, an important benefit of the Thompson sampling approach to the bandit 
problem is that we can incorporate previous knowledge or beliefs into the model. 
Traditionally decisions about these sorts of problems might have been made by a 
marketer or a web page editor who would rely on intuition or experience to guess 
which page would have a better CvR. In Thompson sampling these opinions can 
still be incorporated as a prior—by choosing larger values of a and b for the arm 
the marketer or editor believes to be best. If the marketers or editors are correct, 
they will be rewarded with better initial CvR than starting with a naive Beta(l, 1), 
but, of course, over time the data swamp the prior, so, regardless of initial beliefs, 
the system should converge to the optimal solution.

Exercises
Note to the student: Each section of this chapter has several corresponding 
exercises, all collected here at the end of the chapter. The exercises between the 
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first and second lines are for Section 1, the exercises between the second and third 
lines are for Section 2, and so forth.

You should work every exercise (your instructor may choose to let you skip 
some of the advanced exercises marked with * *).  We have carefully selected them, 
and each is important for your ability to understand subsequent material. Many of 
the examples and results proved in the exercises are used again later in the text. 
Exercises marked with A are especially important and are likely to be used later in 
this book and beyond. Those marked with f are harder than average, but should 
still be done.

17.1. Formulate the following problem as a Markov decision process. What are the 
states, actions, transition probabilities, and reward function? Assume the 
following:

• You have a monopoly on widgets. In month i there is demand for di 
widgets. Demand changes each month as follows: If in any month i the 
demand falls to zero (di = 0), then in all subsequent months, there will 
be no demand (dj = 0 for all j > i). Otherwise, the demand di either 
grows by one with probability p+, remains the same with probability po, 
or shrinks by one with probability p_. Initially, the demand is do = 100.

• You have a factory with тг widget-making machines in month i. You 
can make each machine produce either zero or one widget each month. 
In addition you can buy up to К new machines each month or remove 
up to К old machines, and this will determine the number rrii+i of 
machines available for the subsequent month. Initially, you have no 
machines (mo = 0).

• Each new machine costs b dollars to buy (one time cost), к dollars to 
maintain per month, and r dollars to remove (one time cost).

• Each month, you choose to produce Wi widgets (which can be no more 
than your production capacity mJ. Each widget costs c dollars to make 
and sells for f dollars. Of course, you can’t sell more than the demand 
di or more than you actually produce Wi. For simplicity, assume f > c 
and that you cannot store unsold widgets for the next month.

• Your profit щ each month is the revenue from sales minus total operating 
costs. Your goal is to maximize the present value of the profit Ргщ 
for a given discount factor (3 e (0,1].

17.2. Write the Bellman optimality equation for the previous problem.
17.3. Formulate the following problem as a Markov decision process. What are the 

states, actions, transition probabilities, and reward function? Assume the 
following:
Let C be a set of cities which are joined by a set of roads B, where Rij e R 
means you can take a road from city i to city j. However, the traffic can 
prevent travel. Specifically, if you’re in city i and try to go to city J, you’ll

Although they are gathered together at the end of the chapter, we strongly 
recommend you do the exercises for each section as soon as you have completed the 
section, rather than saving them until you have finished the entire chapter.
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succeed with probability pij and fail with probability 1 — pij, in which case 
you stay in city г, and the probability of success does not depend on previous 
trials. If you fail, it takes u13 > 0 time, and if you succeed, it takes Vij > игз 
time. Your goal is to go from city c 6 C to city d 6 C in the minimum 
expected time (your utility is total commute time).

17.4. Write the Bellman optimality equation for the previous problem.
17.5. Explain (give an informal proof of) why the general Bellman equation (17.1) 

holds for every MDP.
17.6. Prove the envelope condition (17.3) for the stochastic growth problem. Hint: 

Consider using the Bellman equation.

17.7. Consider the problem of a pair (n = 2) of Bernoulli bandits having winning 
payouts of Ji and J2, respectively.

(i) If you are allowed only one pull, what is the optimal choice, starting in 
state ((ai,6i), (a2,62))?

(ii) What is the optimal expected reward 7?(«i, 61, a2,62,1) in this case?
17.8. Use the results of the previous problem and (17.6) to give a formula (with no 

unsolved terms of the form B(«, 5,«', 6', TV)) for the optimal expected reward 
B(«i, 61, «2,62,2) when you are allowed two pulls.

17.9. Code up a simulation of a single pull on an n-armed bandit system, as follows. 
Write a method called pull that takes the following input:

• An array of n probabilities 0i,..., 0n corresponding to the true proba­
bility of success for each arm,

• An array of payouts (Ji,..., Jn) for each arm.
• An action i indicating that arm number i should be pulled.

This should return the amount won and a pair (Да^Дб^) e {(1,0), (0,1)}, 
with (1,0) corresponding to a success of the zth arm (the one that was pulled), 
and (0,1) corresponding to a failure. Hint: To draw from a Bernoulli dis­
tribution with probability 0, you can draw и from a uniform distribution on 
[0,1] and then return success if и < 0. Alternatively, Bernoulli is a special 
case of binomial, and many computational systems already have methods for 
drawing from a binomial distribution.

17.10. Code up a solution to a general Bernoulli bandit process using the Gittins 
index algorithm discussed in the text.

(i) Write a method compute_R that accepts as input an integer M and 
floats r, /3 and returns an (ТИ + 1) x (ТИ + 1) array R.values with 
R.values [a,b] = R(a, b, r) for all a + b < M (the remaining entries 
in the array can be set to zero).
(a) Initialize using the assumption of (17.10) for a + b = M.
(b) Use the recursion (17.7) to find the other values for 1 < a + b < M.
(c) Apply your code to the situation of Example 17.2.4 and compare 

the results to that example.
(ii) Write a method gittins to approximate the Gittins index of each of 

the different arms. Your code should accept as input an array of floats
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(Ji,..., Jn), an array of states ((ai, 61),..., (an, 6n)), an integer Af, and 
an integer K. For each r in the grid of К points compute R(a, 6, r) and 
then for each a, b find the r which most nearly satisfies (17.8). Your 
method should return an array of floats z/((ui, bi), Ji),..., i/((an, bn), Jn) 
corresponding to the Gittins index of each arm.

17.11. Combine your code from the previous two problems to make a simulation 
for a Bernoulli bandit process/solution where one arm is pulled, the results 
are recorded, the next optimal arm (with the largest Gittins index) is then 
chosen and pulled, and the results are recorded, and so on for T iterations. 
Your code should accept

• an array of n probabilities 0i,..., 0n corresponding to the true proba­
bility of success for each arm;

• an array of payouts (Ji,..., Jn) corresponding to the payouts for each 
arm;

• an integer К number of grid points in [О, Л] to take each r from;
• an integer T number of iterations to repeat the process; and
• an integer M > T at which to initialize the method compute_R.

With these data, your code should do the following:
(i) Set the initial state as (1,1) for each arm.

(ii) For each iteration,
(a) use gittins to choose an action J;
(b) simulate the next pull on arm j using pull and record the resulting 

success or failure;
(c) update the state vector.

Your code should return the estimated probabilities ,..., 0n and the total 
payout gained by the actions taken.
Hint: In order to get this simulation to run in a reasonable amount of time, 
you may want to memoize results from compute_R.

17.12. Run both the Thompson sampling and the Gittins index simulations for T = 
100 iterations for a three-armed Bernoulli bandit process with equal payouts 
(all 1) and with true probabilities (01,02,#з) = (0.2,0.5,0.7). Compare the 
run times and the outcomes of each. Repeat the comparisons 20 times. Also 
compare results for other values of T.

17.13. Write a program that performs A/В testing. Have each arm tested m times to 
estimate each (0i,..., 0n) with the MLE estimator. Then choose the largest 
0i and use the remaining N — nm pulls (where N is the total number of 
pulls) to try to maximize the average payoff. Compare the average payout 
with Thompson sampling in Algorithm 17.1.

17.14. As an alternative to A/В testing, try randomly choosing arms (with replace­
ment) m times and give MLE estimates for each (0i,... , 0n). Then choose 
the largest 0i and use the remaining N — m pulls to try to maximize the av­
erage payoff. Compare the average payoff with A/В testing and Thompson 
sampling in Algorithm 17.1.
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17.15. Instead of evaluating algorithms based on average payout over time, reapply 
A/В testing and Thompson sampling but assess the quality with the dis­
counted utility function 52^ where щ is the payoff. By doing multiple 
runs, compute the expected utility and use that as the basis of comparison 
for deciding whether Thompson sampling is better than A/В testing.

17.16. Generalize Algorithm 17.1 by coding up a simulation of a Bernoulli bandit 
pro cess/solution where Thompson sampling can also accommodate an array 
of payouts (Ji,..., Jn) for each arm.

Notes
The example on unemployment insurance is from [Barl2]. For more about the 
Gittins index see [GGW11]. Google’s use of Thompson sampling is described in 
[Scol3]. For a detailed treatment of Thompson sampling, see [RRK017, Liul8].



The Greek Alphabet

I fear the Greeks even when they bring gifts.
—Virgil

Capital Lower Variant Name
A a Alpha
В P Beta
Г 7 Gamma
Д 6 Delta
E e € Epsilon
Z c Zeta
H p Eta
0 0 Theta
I L Iota
К Av X Kappa
A A Lambda
M Mu
N У Nu
77 e Xi
О 0 Omicron
П 7Г w Pi
p P p Rho
E (У Sigma
T T Tan
T V Upsilon
Ф Ф Phi
X X Chi
Ф Ф Psi
Q lv Omega
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68-95-99.7 rule, 242, 255, 260, 283 
cr-algebra, 220

A/В testing, 759
Abel’s theorem, 3
absolute

backward error, 498
condition number, 492 
error, 487

accuracy
of a computation, 497
of an estimator, 251 

active/binding constraint, 588, 596, 597, 
638

adjacency matrix, 112 
affine

function, 578
set, 473, 577 

algorithm, 4
AVL, 122
bandit selection via Git tins, 752
BFGS, 553
binary search, 65 
bisection, 529 
change-making, 144 
Chebyshev interpolation, 437
Clenshaw’s, 456 
conjugate-gradient, 562 
conjugate-gradient for quadratics, 

562
depth-first search, 150
Dijkstra’s, 156
Euclidean, 52
exact gradient descent, 536 
extended Euclidean, 54, 55 
fast Chebyshev interpolation, 437 
fast modular exponentiation, 57 
fast multiplication, 68 
Gauss-Newton, 547

Gittins index, 753 
gradient descent, 536 
greedy for TSP, 178 
heap sort, 126
Huffman encoding, 167
insertion sort, 16
Kruskal’s, 161
long addition, 13
long multiplication, 18
matrix multiplication

fast, 69
recursive, 69

maximum of a list, 8
merge sort, 68, 119, 143
merge sorted lists, 15
Monte Carlo dice estimate, 285
naive sort, 17
Newton’s method, 531 
periodic sampling reconstruction, 

364
Prim’s, 158, 160
recursive multiplication, 67
row reduction, 34
secant method, 533 
selection sort, 76, 126 
Thompson sampling, 756, 758 
tree sort, 126

algorithmic differentiation, 508
alias, 362 
alphabet, 164 
analytic

continuation, 87
function, 452, 507

annealing schedule, 305
ansatz, 734, 735, 746
antialiasing, 366
approximation algorithms, 179
Archimedean property, 50

777
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arithmetic-geometric mean inequality, 
676, 710

polynomial, 406
transformation, 406

Armijo condition, 541 Beta
array data structure, 107 distribution, 224
asymptotic beta

equivalence, 14 distribution, 226, 755
expansion, 96, 97 function, 92
growth, 8 BFGS

asymptotically unbiased, 247 limited memory, 555
automorphism, 137 method, 549, 551
auxiliary problem, 601 BFS, see breadth-first search
average word length, 165 bias, 247
AVL tree, 122 biased sample variance, 246

B+tree, 136
big-O, 8, 9, 97 
bilinear, 357

B-tree, 131 binary
back propagation, 508 code, 166
back substitution, 33 search, 63, 66
backtracking, 540 search tree, 118, 119
backward error, 498 binding, see active/binding
backward stability, 499 binomial
backward stable, 499 coefficients, 45
balance, 120, 121 distribution, 207, 214
balanced flow, 592 identities, 93
band limited, 325 series, 93
band-limited function, 361 theorem, 48
bandit birthday problem, 190

multiarmed Bernoulli, 749 bisection algorithm, 529
problem, 749 bit, 30
simple, 751 bivariate random variable, 228

barrier function, 698 Blackwell’s theorem, 735
barycentric Lagrange interpolation, 415 Bland’s rule, 605
base-10 floating-point, 490 BLAS, 32
Bayes’ rule, 197 Bohr-Mollerup theorem, 88, 106
Bayesian statistics, 224 bottom-up dynamic programming, 146
Bellman breadth-first search, 148, 151

equation, 147 Broyden’s method, 550
operator, 736 brute force, 141
optimality principle, 147, 148, 153, byte, 30

175, 729 
Bernoulli c.d.f., see cumulative distribution func­

bandit, 749 tion
distribution, 212 cake eating, 732
random variable, 207 Carmichael numbers, 60
trials, 199, 212 catastrophic cancellation, 6

Bernstein categorical distribution, 234
ellipse, 459 ceiling, 12
operator, 408 centered difference, 506
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central limit theorem, 185 
certificate of optimality, 609 
chain rule

for derivatives, 471
for probability, 193 

chaining, 299 
change of variables, 105 
change-making problem, 141 
characteristic function, 264, 265 
Chebyshev

approximation, 684 
basis, 434
extremizers, 422, 431 
polynomial, 405, 421, 423 
polynomial, monic, 420 
projections, 439 
zeros, 422, 431

child, 117
circulant matrix, 398
Clenshaw’s algorithm, 456
Clenshaw-Curtis quadrature, 443, 448 
closed walk, 110 
closed-form solution, 3
Cobb-Douglas technology function, 746 
code, see encoding scheme 
collectively exhaustive, 186, 197 
combinations, 45 
complementary slackness, 607, 610, 640 
complex

conjugate, 326
numbers, 326
step differentiation, 507 

complexity
spatial, 6, 7
temporal, 6, 7

concave function, 668 
condition

of a problem, 491
of the rootfinding problem, 434 

condition number
of a function, 492
of a matrix, 495, 496 

conditional
expectation, 239
gradient method, 655
probability, 191 

configuration, 594 
congruence, 56

conjugate
prior, 273
with respect to a matrix A > 0, 

557
continuity correction, 262 
continuous

distribution, 220, 222 
continuously differentiable, 467 
convergence

order of, 528
conversion rate, 759
convex

combination, 576
composition, 709
cone, 614
function, 668, 670, 708
hull, 576
optimization, 679
set, 575
span, 576

convolution, 355
circular, 356
linear, 360

cooling schedule, 305
coordinate descent, 557
coset, 56
cost function, see objective function
covariance, 231, 232
Cristofides’ algorithm, 179
critical point, 521, 628
cryptography, 60
cumulative distribution function, 221, 

229
curvature condition, 541
cycle, 110
cycling, 598

data structure, 107
Daubechies wavelet, 380, 388
daughter wavelet, 370 
decision

epochs, 725, 744
variables, 586

degrees of freedom, 226
denormalized numbers, 485
depth of recursion, 72
depth-first search, 148
deque, 137
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derivative, 467
as linear operator, 467
chain rule, 471
linearity, 468
of a parametrized curve, 463
product rule, 469
total, 467

descent direction, 543, 544
De Moivre’s formula, 327
DFS, see depth-first search
DFT, see discrete Fourier transform 
dictionary

data structure, 295
degenerate, 605
in linear optimization, 596 

difference operator, 20
differentiable

curve, 463
function, 467

Dijkstra’s algorithm, 152 
dimension

of a polyhedron, 588
of an affine set, 577

direct address table, 298 
directional derivative, 465
discount factor, 718
discounting, 718, 735, 739, 740, 749, 

751
discrete

Fourier transform, 324, 346, 348
inverse, 351

inner product, 347
probability measure, 186
probability space, 187
random variable, 205

discrete probability
measure, 186

distribution
discrete, 212

divide-and-conquer, see recursive al­
gorithm

divided difference, 418
division theorem, 50
double-precision, 484
doubly linked list, 116 
downsampling, 390, 392 
draws, 245
dual

feasibility, 640
optimization problem, 688

linear, 607, 608
duality

gap, 692
linear, 607
strong, 690

linear, 609
weak, 685

linear, 607, 608
dynamic

optimization, 717
stochastic, 743

programming, 142, 143 
bottom-up, 146 
top-down, 143

edge, 108, 109
effective domain, 668
efficient

frontier, 654
market hypothesis, 184

eight queens problem, 311
ellipsoid method, 697
encoding, 163

average word length, 165
prefix codes, 165
scheme, 164
uniquely decipherable, 164

entering variable, 597
envelope condition, 724
epigraph, 673
equality constraint, 621
equally likely outcomes, 188
equivalence relation, 14
estimate, 246
estimators, 246
Euclid, 52
Euler

conditions, 720
formula, 327, 341

event, 186
exact quadrature, 446
exhaustive method, 141, 301 
expectation, see expected value 
expected value, 207
exploration versus exploitation, 743
exponent, 483
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exponential distribution, 226
expression swell, 504

fair, 189
falling power, see Pochhammer sym­

bol
Farkas’ lemma, 612
fast Fourier transform, 346, 351, 352
fast wavelet transform, 374, 378
father function, 367
feasibility, 586, 601, 621, 624, 638, 640, 

679
Fermat’s little theorem, 55, 59
FFT, see fast Fourier transform
Fibonacci

heap, 157, 161, 184
numbers, 75, 145

FIFO, see first in, first out
financial computations, 490
finite

calculus, fundamental theorem of, 
21

convolution theorem, 358 
finite-horizon

cake eating, 718
optimality principle, 721

first in, first out, 116
first-order necessary condition, 521
fitness, 309, 310
floating point

arithmetic, 483
base-10, 490
in financial calculations, 490
instability

addition and subtraction, 488 
numbers, normalizing, 484 
operations, 30, 31, 483
testing for equality, 488

FONC, see first-order necessary con­
dition

forest, 113
forward

difference, 506
error, 497

Fourier
analysis, 323
basis, 347
series, 324, 331-333, 339

transform 
continuous, 337 
discrete, see discrete Fourier trans­

form
Fourier inversion formula, 278
fraction of a floating-point number, 484
freshman’s dream, 59
fully polynomial-time approximation 

scheme, 179
fundamental bridge, 253, 290 
fundamental theorem

of finite calculus, 21
of linear optimization, 587, 590 

FWT, see fast wavelet transform

gamma
distribution, 224, 225
function, 85, 87

Gauss-Newton algorithm, 546, 547
Gaussian distribution, 224
Gaussian quadrature, 449

with other polynomials, 452 
gcd, see greatest common divisor, 51 
genetic algorithms, 281, 301, 307

crossover, 308
encoding, 310
mutation, 308
selection, 309

geodetic problem, 574
geometric

distribution, 218
program, 712
series, 24

Gibbs phenomenon, 338, 397
Gittins index, 752
global minimizer, 520, 622, 638
golden ratio, 75
gradient, 467

descent, 535, 536, 555
projection method, 656

graph, 673
connected, 111
directed, 108
disconnected, 111
search, 148
simple, 109
theory, 108
undirected, 109
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weighted, 152
graph of a function, 473
greatest common divisor, 51
greedy algorithm, 142, 153, 158, 161, 

178, 181

Haar
daughter wavelet, 370
decomposition theorem, 377
mother wavelet, 370
scaling function, 367
wavelets, 366

Hadamard product, 358
Hahn-Banach theorem, 584
half space, 578, 580
Hamiltonian

cycle, 176
path, 173

harmonic analysis, 323
hash

collision, 297
function, 294, 295

perfect, 298
simply uniform, 298

table, 295, 296
hashing, 281, 294
heap, 125-127, 130
heapify, 130
height in a tree, 120
Hermite polynomial, 423
Hessian matrix, 476
heuristics, 178
hinge loss

function, 709
regularized, 681

horizon
finite, 717, 728
infinite, 717, 732-736, 739, 748, 

751
of a Markov decision process, 744

Horner’s method, 4, 398
Huffman encoding, 163, 167
human capital, 726
hyperplane, 473, 578, 579, 595

parallel, 614

i.i.d., see independent, identically dis­
tributed

IEEE 754 standard, 484
ill conditioned, 434, 493
implicit function theorem, 474, 475
importance sampling, 287, 289
inclusion-exclusion, 37, 40, 42 
independent

events, 198, 199
identically distributed, 246
random variables, 210, 230
variables in linear optimization, 

596
indicator random variable, 213
inequality constraint, 621
infeasible, 586
infinite-horizon dynamic optimization, 

732
insert, 126
instantaneous code, 164
interior point methods, 685, 697
interpolation, 405, 410, 411

barycentric Lagrange, 410, 415
Chebyshev, 431

fast, 434
error, 430
Lagrange, 410, 412, 414
Newton, 410, 417
polynomial, 410, 411

inventory management, 727
inversion sampling, 287, 291
iterative

programming, 143, 146
solver, 528

Jensen’s inequality, 667, 675
joint

cumulative distribution function, 
229

probability density function, 229
probability mass function, 228

Karush-Kuhn-Tucker, 638
and Lagrange, 644
conditions, 640
first-order condition, 640
from strong duality, 692
second-order necessary condition, 

645, 646
key, 118, 295
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KKT, see Karush-Kuhn-Tucker 
knapsack problem, 174 
Kolmogorov, Andrei, 185 
Krein-Milman, 590
Kronecker delta, 332
Krylov

subspace, 35, 563

I1 linear regression problem, 711
Lagrange

basis functions, 412, 449
first-order condition, 627
first-order necessary condition, 627
interpolation, 410, 412, 414
second-order necessary condition, 

633
Lagrange dual, 685
Lagrange dual function, 687
Lagrange-Hermite interpolation, 417
Lagrangian, 631, 643
Laguerre polynomial, 423
Laplace’s method, 92, 95
last in, first out, 116
law

of diminishing returns, 718
of large numbers, 253, 255, 257
of motion, 725
of the unconscious statistician, 209

leaf, 117
leakage, 398
learning rate, 536
least squares

nonlinear, 546, 547, 574
ordinary, 648, 650, 652, 664
total, 649, 650, 664
with equality constraints, 652

leaving variable, 597
left continuous, 367
left-left imbalance, 123
left-right imbalance, 123
Legendre polynomial, 419, 423, 449
lemmata, 70
level set, 474, 527, 539
Levenberg-Marquardt

algorithm, 548
modification, 545

lexicographic perturbation rule, 606
LIFO, see last in, first out

likelihood, 248
line fitting, 648
linear

optimization, 575, 586, 729
fundamental theorem of, 590

search, 63
systems, 32

linearly separable, 680
linked list, 115
little-o, 8, 9, 97
load factor, 299
local minimizer, 520, 622, 638
logarithmic barrier, 698
logarithms

to prevent underflow and over­
flow, 490

logistic
distribution, 315
loss function, 709
regression, 683

LogSumExp, 481, 482, 673
loop interchange, 35
loop-invariant code motion, 35, 36 
loss function, see objective function 
LOTUS, see law of the unconscious 

statistician
LU decomposition, 33

machine epsilon, 487
mantissa, see significand
marginal, 230

probability density function, 229
probability mass function, 229

market clears, 591
Markov chain, 743
Markov decision process, 744
master theorem, 64, 65, 70
matrix

-vector multiplication, 31
multiplication, 32, 69

fast, 69
maximum

a posteriori estimate, 272
likelihood estimate, 248

MDP, see Markov decision process
mean, 207
mean squared error, 546
measure theory, 185
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memoization, 143 
merging sorted lists, 15 
method of undetermined coefficients, 

734
millennium problems, 173 
minimax

inequality, 685, 686
theorem, 430 

minimizer, 520 
minimum

mean squared error estimator, 252 
spanning tree, 157 
value, 520

Minkowski 
sum, 614 
theorem, 584 

Minkowski-Steinitz, 590 
MLE, see maximum likelihood esti­

mate 
mode, 241 
modular arithmetic, 56 
modulo, 56 
modulus

of a complex number, 326 
monic

Chebyshev 
polynomial, 420

Chebyshev polynomial 
second kind, 432 

polynomial, 420 
monotonically decreasing, 80 
monotonicity, 735 
Monte Carlo methods, 281 
Morse code, 163 
mother wavelet, 366, 370 
MST, see minimum spanning tree 
multinomial

coefficient, 47 
distribution, 228, 229 
theorem, 49 

multiplication rule, 44 
multiresolution analysis, 379 
multivariate random variable, 228 
music, 336 
mutation, 308 
mutually exclusive, 186

naive sorting, 16

NaN, 485
nearest-neighbor heuristic, 178 
negative binomial distribution, 218 
network flow, 591
Newton interpolation, 417
Newton’s method, 4, 530, 541, 542
Newton-Cotes quadrature, 443 

composite, 441
NLS, see nonlinear least squares 
node in a graph, 108 
nodes

for interpolation, 405
for numerical quadrature, 441 

noise, 324 
nondeterministic polynomial, 173 
nonlinear least squares, 546 
normal

distribution, 224, 225 
equation, 568 
space, 626

NP, see nondeterministic polynomial 
NP-complete, 174 
NP-hard, 173 
numerical 

approximation, 5 
computing, 30 
instability, 5 
stability, 501

Nyquist 
frequency, 361, 362, 364-366, 400 
rate, 361-365

objective function, 300, 519, 520 
open

addressing, 300 
walk, 110

optimal growth problem 
deterministic, 722, 726 
stochastic, 745

optimal point, see optimizer 
optimality principle, 721 
optimization

basic definitions, 520 
linear, 585, 591, 680 

optimizer, 144, 520 
orthogonal

complement, 370 
polynomials, 419
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overflow, 489

p.d.f., see probability density function 
p.m.f., see probability mass function 
pairwise independence, 199
parallel, 614
parent, 117
partial derivative, 466
partition of unity, 406
Pascal’s

rule, 47
triangle, 47

path, 110
payoff function, see objective function 
periodic

sampling theorem, 325, 363
vector, 355

permutations, 45
perpendicular bisector, 579
piecewise

continuous, 336
Lipschitz, 336

pigeonhole principle, 190, 298
Pochhammer symbol, 37, 39
point estimates, 245
pointer, 108
Poisson distribution, 215, 216
policy, 718

iteration, 729, 738
polyhedron, 587
polynomial

Chebyshev, 423
Hermite, 423
Laguerre, 423
Legendre, 423

pop, 117, 126
portfolio optimization, 653
posterior distribution, 267, 755
posynomial, 712
power set, 186
precision

of a computation, 497
of an estimator, 251

preimage, 206
present value, 718
primal

feasibility, 640
optimization problem, 688

linear, 607, 608
primal-dual

convex optimization, 702
prime, 55
primitive

operation, 6
root of unity, 330

prior distribution, 267, 268, 755
priority queue, 125, 130
probability

density function, 222
mass function, 206
measure, 221
space, 221

product
Cartesian, 44
rule, 469

production schedules, 591
projection onto a convex set, 581
proposal distribution, 292
prosecutor’s fallacy, 200
pseudopolynomial, 176
push, 117
put, see insert
pyramid scheme, see fast wavelet trans­

form

QR decomposition, 35
quadratic optimization problem, 525
quadrature, 441

Clenshaw-Curtis, 443
Gaussian, 449
Newton-Cotes, 443

composite, 443
Riemann, 442

quasi-Newton methods, 542
queue, 116
quotient, 50
quotient rule, 481

random shock, 745
random variable, 205, 221

Bernoulli, 207
bivariate, 228
multivariate, 228
realization of, 245
univariate, 228

realization of a random variable, 245 
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rectified linear unit, 515
recursive algorithm, 61
regular point, 622, 639
regularization, 546
reindexing, 25
reinforcement learning, 731
rejection sampling, 287, 292
relative

backward error, 498
condition number, 492
error, 487
forward error, 497

relatively prime, 55
relax constraints, 681
relaxed problem, 703
remainder, 50
repeated trials, 213
residual

for conjugate gradient, 558
for nonlinear least squares, 546

right rotation, 123
rising power, see Pochhammer sym­

bol
risk neutral, 721
Ri vest-S hamir-Adleman cr у pt osy st em, 

55
robot motion on a grid, 739
robust regression, 684
Rodrigues’ formula, 425 
root

of a linked list, 115
of a tree, 117
of unity, 330, 347
simple, 494

rotation in an AVL tree, 123
round-off error, 5
row vector, notation, 467
RSA, see Rivest-Shamir-Adleman cryp­

tosystem
Runge’s phenomenon, 429

saddle point, 527
sample

from a distribution, 246
mean, 246
of a signal, 324, 346
space, 185
variance

biased, 246, 247
unbiased, 248

scalar multiplication, 31
scale

of gamma distribution, 278
scaling

function, 366, 367, 380
relation, 369

scheduling problems, 180
search tree, 118
secant method, 530, 532
second-order

necessary condition, 523
sufficient condition, 524

selection
bias, 204
in a genetic algorithm, 309
sort, 76

separated sets, 582
separating hyperplane theorem, 584
set data structure, 149, 295, 296
shadow prices, 611
Shannon sampling theorem, 364
Sherman-Morrison formula, 550
Sherman-Morrison-Woodbury, 555 
sift

down, 128
up, 127

sign
of a complex number, 329
of a floating-point number, 483

signal, 323, 324
significand, 483
simple

bandit, 751
root, 494

simplex method, 575, 591, 593, 729
Simpson’s rule, 444
simulated annealing, 281, 300, 301
singular point, 622
slack variables, 594
Slater’s condition, 690, 691
softmax function, 468
son functions, 367, 381
sparse, 325, 367

matrix, 35
stability, 5, 491, 497, 501
stack, 116



Index 787

standard
deviation, 210
error, 283
form

of a linear problem, 586
of a nonlinear problem, 621
of an equality-constrained prob­

lem, 622
normal distribution, 225

statistic, 246
steepest descent, 536
Stirling’s approximation, 85, 86, 88-

90, 95
stochastic, 180, 743

dynamic optimization, 743
hill climbing, 301
hill sliding, 301
model, 180

Strassen algorithm, 32, 69
strict minimizer, 520
strictly

concave function, 668
convex function, 668
separated sets, 582

strong duality, 685, 690
linear, 609

strongly connected, 111
subgraph, 109
sublinear, 11, 528
substitution rule, 57
successive approximation, 729, 735, 736 
summation

by parts, 38
changing order of, 26
linearity, 20
product rule, 38
techniques, 37

superlinear, 528
superposition principle, 323
support

of a continuous distribution, 224
of a discrete distribution, 212
of a function, 212, 367

support vector classifier, 680
hard-margin, 689
soft-margin, 695

supporting
half space, 582

hyperplane, 582
supporting hyperplane, 580
swamp the prior, 271

tangent
curve, 464
plane, 473
space, 473, 625
vector, 464

target distribution, 292
Taylor formula

multivariate, 478
univariate, 477

telescoping series, 22
Thompson sampling, 755
thrice continuously differentiable, 477
top-down dynamic programming, 143 
total

derivative, 467
probability, 195

transition probability, 744
translation operator, 38
trapezoid rule, 443
traveling salesman problem, 176
tree, 117

AVL, 124
B+tree, 136
B-tree, 131
binary, 118
directed rooted, 113, 117
undirected, 113

truncated
exponential distribution, 293
Fourier series, 339

twice continuously differentiable, 476
twiddle factor, 352

unbiased sample variance, 248
unconstrained optimization, 520
underflow, 489
undetermined coefficients, 447
uniform distribution, 224
unimodal, 82
unit round-off, 487
univariate random variable, 228
utility, 520, 717

value
function, 732
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iteration, 725, 728
of a policy, 718

Vandermonde matrix, 447, 454
variance, 210
velocity, 464 
vertex

of a convex set, 588
of a graph, 108, 109

walk, 110
Wallis integral, 89, 94
Watson’s lemma, 98
wavelet, 325, 366

analysis, 323
approximation, 372
decomposition, 376
detail, 372

weak
duality, 608, 688
Slater condition, 690

Weierstrass approximation, 405, 406,
409

weight
for numerical quadrature, 441
function, 423
of graph edge, 152

well-conditioned problem, 493
well-ordered set, 49
well-ordering axiom, 50
white noise, 353
Wilkinson polynomial, 428
Wolfe conditions, 541

Young’s inequality, 675

zero locus, 579
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