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Preface 

The 5th Scientific Days of School Doctoral Mathematics and Computer Science 
Took place December 20–22, 2023, in Cheikh Anta Diop University of Dakar. 
They were organized by the School Doctoral Mathematics and Computer Science 
of Cheikh Anta Diop University of Dakar. The 5th edition received around 30 
submissions, and all were reviewed by the program committee. Each paper was 
assigned at least to two reviewers. After highly interactive discussions, a careful 
deliberation, the program committee selected around 20 for presentation. The 
authors of accepted paper were given a week to prepare final version for these 
proceedings. We would like to note that these scientific days offer a prestigious and 
conducive forum for researchers in the fields of Mathematics, Computer Science 
and Telecommunications to share their most recent findings, and engage with 
internationally renowned colleagues and experts, and in so doing contribute to 
the advancement of science. The purpose of this scientific event is to stimulate 
research values, explore emerging challenges in science, and bring to the fore the 
concrete applications of mathematics and computer science on modern society. We 
are deeply grateful to the program committee for their hard work, enthusiasm, 
and conscientious efforts to ensure that each paper received a thorough and fair 
review. We also would like to thank Ousmane Ndiaye for writing Springer to an 
accelerated schedule for writing the proceedings. We also wish to heartily thank 
Laila Mesmoudi for her useful help, as well as sponsors of the event: Centre 
d’Excellence Africain en Mathématiques, Informatique et TIC (CEA-MITIC), 
Centre d’Excellence Africain . >< Environnement, Santé, Sociétés . > (CEA-AGIR), 
Direction Générale du Chiffre et de la Sécurité des Systèmes d’Information (DCSSI) 
at Presidency of the republic of Senegal and Humboldt Chair at African Institute for 
Mathematical Sciences (AIMS) Senegal. Last but not least, we give thanks to all 
those who contributed to this event. 

Dakar, Senegal Cheikh Thiécoumba Gueye 
May 2024
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Chapter 1 
Mathematics and Computer Science 
in the Information Revolution 

Diaraf Seck 

Abstract This text is a presentation given during the doctoral sessions of the Ecole 
Doctorale Mathématiques et Informatique at Cheikh Anta Diop University. Our aim 
was simply to arouse the curiosity of those present, especially doctoral students in 
Mathematics, Computer Science, and Telecommunications. We set ourselves the 
goal of demonstrating the close link between Mathematics and Computer Science. 
After an overview of the background, we went on to look at some of the research 
topics that have interested us over the last 10 years, and which have the particularity 
of having a close link with Computer Science, with Mathematics as the main tool at 
our disposal. 

Keywords Linear Programming · Optimal Transport · Graphs · Optimization · 
Machine Learning · Deep Learning · Information theory · Information coding · 
Cryptography · Computer Science · Quantum model 

Introduction 

Boolean algebra, or Boolean calculus, is the part of mathematics concerned with 
an algebraic approach to logic, seen in terms of variables, operators, and functions 
on logical variables, which allows one to use algebraic techniques for dealing with 
two-valued expressions in the calculus of propositions. It was launched in 1854 by 
the British mathematician George Boole. Boolean algebra has many applications in 
computer science and in the design of electronic circuits. 

It was first used for telephone switching circuits by Claude Shannon. 

D. Seck ( ) 
Laboratoire des Mathématiques de la Décision et d’Analyse Numérique, Dakar Fann, Sénegal 

Ecole Doctorale de Mathématiques et Informatique U.C.A.D. Dakar, Dakar, Sénegal 
e-mail: diaraf.seck@ucad.edu.sn 
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4 D. Seck

Claude Elwood Shannon (April 30, 1916 in Michigan–February 24, 2001 in 
Massachusetts) was an American electrical engineer and mathematician. He is one 
of the fathers, if not the founding father, of Information theory 

Information theory, unspecified, is the common name for Shannon’s information 
theory, which is a theory using probabilities to quantify the average information con-
tent of a set of messages, whose computer coding satisfies a statistical distribution 
that we think we know. This field has its scientific origins with Claude Shannon who 
was its founder with his article A Mathematical Theory of Communication published 
in 1948. Before ending this brief introduction, let us mention some meanings on 
information coding, computer science, and cryptography:

• Information coding concerns the means of formalizing information in order to be 
able to manipulate it, store it, or transmit it. It is not interested in the content, but 
only in the form and size of the information to be encoded.

• Computer science is a field of scientific, technical, and industrial activity 
concerning the automatic processing of digital information by the execution of 
computer programs hosted by electrical–electronic devices: embedded systems, 
computers, robots, automata, etc.

• Cryptography is one of the disciplines of cryptology focused on protecting 
messages (ensuring confidentiality, authenticity, and integrity) often using secrets 
or keys. It is distinguished from steganography which causes a message to 
pass unnoticed within another message, while cryptography makes a message 
supposedly unintelligible to anyone other than the appropriate person. It has 
been used since ancient times, but some of its most modern methods, such as 
asymmetric cryptography, date from the late twentieth century. 

Cryptography is a writing technique where an encrypted message is written 
using secret codes or encryption keys. Cryptography is mainly used to protect a 
message considered confidential. 

The chapter is organized as follows: In the next section, we are going to do 
an overview about the birth of theoretical computer science. Section “Dialogue 
Between Mathematics and Computer Science, Some Works, and Illustrations” is  
devoted to a dialogue between Mathematics and Computer Science. And some 
illustrations coming from our own experiences will be introduced. And in the last 
section, we will discuss about the information revolution. 

Birth of Theoretical Computer Sciences [8] 

The Turing machine is an abstract machine model introduced in 1936 by the English 
researcher Alan Turing in a seminal article entitled On Computable Numbers, with 
an Application to the Entscheidungsproblem, in which he proposed an answer to 
a question posed 8 years earlier by the famous mathematician David Hilbert. This 
is the problem of decidability (in German “Entscheidungsproblem”), in essence: Is 
there an algorithm that decides whether a proposition stated in a logical system is 
valid or not?
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Why has the calculation model proposed by Alan Turing become an essential tool 
in fundamental computer science and mathematics? His machine is in fact widely 
used in computability theory, complexity theory, or approximation theory. The main 
reason is its extreme simplicity which made it possible to establish results that are 
undoubtedly much more difficult to demonstrate with less rudimentary models. This 
machine is in fact the simplest model that can be designed and which satisfies 
the informal but universal criteria which characterize an algorithm (determinism, 
discretion, finitude, generality, etc.) 

It should be noted that this model, like so many others, was created at a time 
when computers as we know them today did not exist, so it is above all an abstract 
tool. The generalization of computers in the 1950s and 1960s gave birth to the 
Register Addressable Memory (ram) model, closer to their physical and logical 
architecture. What is remarkable is that all these models were equivalent, and what 
can be calculated with model A can be calculated with model B and vice versa. 

It is commonly accepted that any abstract model of calculation respecting the 
informal conditions on which scientists agree to speak of an algorithm (except for 
quantum calculation that defines a new paradigm) results in a model equivalent to 
the previous ones. 

It should be kept in mind that the Turing machine is a universal model of 
calculation and that it can calculate anything that any physical computer can 
calculate (no matter how powerful it is). Conversely, what it cannot calculate cannot 
be calculated by a computer either. It therefore summarizes in a striking manner 
the concept of computer and constitutes an ideal support for reasoning around the 
notion of calculation or demonstration algorithm. 

Complexity theory is based on methods for solving decision problems that 
are unambiguously described or generated in an algorithm. An algorithm is of 
polynomial complexity if there exists a polynomial P such that the number of 
elementary instructions carried out during its execution on any data of size n is 
at most . P(n).

Definition 1.1 (Decision Problem) A decision problem is a problem whose solu-
tion is formulated in yes/no terms. 

Example 1.1 Given a graph .G = (X,E), does there exist a path of length . ≤ L?

Definition 1.2 (Class P) A problem is of polynomial complexity if there exists a 
polynomial complexity algorithm solving it. That is, if there exists an integer k for 
which the resolution time is .O(nk) with n the size of the instance. 

Definition 1.3 (NP-Hard) A problem that does not admit an algorithm for its 
solution in polynomial time is called an NP-hard problem. 

Definition 1.4 (NP Class) This is the abbreviation for Nondeterministic Polyno-
mial time. This class contains all the decision problems of which we can associate 
with each of them a set of potential solutions (from cardinal to worst exponential) 
such that we can check in polynomial time if a potential solution satisfies the 
question asked.
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Definition 1.5 (NP-Complete) A problem is said to be NP-complete if it is in NP. 

In complexity theory, an NP-complete problem or NPC problem (i.e., a complete 
problem for the NP class) is a decision problem verifying the following properties:

• It is possible to verify a solution efficiently (in polynomial time); the class of 
problems verifying this property is denoted NP.

• All the problems of the NP class are reduced to this one via a polynomial 
reduction; this means that the problem is at least as difficult as all other problems 
in the NP class.

• An NP-hard problem is a problem that satisfies the second condition and 
therefore may be in a larger problem class and therefore more difficult than the 
NP class. 

Remark 1.1

• Although we can quickly verify any proposed solution of an NP-complete 
problem, we do not know how to find one efficiently.

• This is the case, for example, of the traveling salesman problem or the knapsack 
problem. 

Remark 1.2

• All known algorithms for solving NP-complete problems have an exponential 
execution time depending on the size of the input data in the worst case and are 
therefore unusable in practice even for instances of moderate size.

• The second property of the definition implies that if there exists a polynomial 
algorithm to solve any NP-complete problem, then all problems of the NP class 
can be solved in polynomial time.

• Finding a polynomial algorithm for an NP-complete problem or proving that one 
does not exist would answer whether .P = NP or .P �= NP, an open question 
that is among the most important unsolved problems in mathematics to date. 

Dialogue Between Mathematics and Computer Science, Some 
Works, and Illustrations 

We are going to introduce very quickly three of eighteen Smale’s problems: 

Problem 3 . P = NP ?
Smale said “I sometimes think of this problem as a gift from computer scientists 
to mathematicians. It may help to put it in a form that looks more like traditional 
math.” 

Problem 9: On the Linear Programming Problem 
Is there a polynomial time algorithm on real numbers that decides whether the linear 
system of inequalities .Ax ≥ b has a solution?
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Problem 18: On the Limits of Intelligence 
What are the limits of intelligence, both artificial and human? 

For more details about these questionings, we invite the reader to see [7]. 

Social Network Problems [1, 2] 

A social network is longtime used to represent the interactions between the 
individuals (or the organizations) in different contexts. The network permits to 
represent the individuals (or organizations) and ties among them (the individuals 
or the organizations). 

Formally, a social network is modeled by an undirected or a directed graph 
.G(V,E), with .V = (v1, ..., vn) the set of nodes and .E ⊆ (V × V ) the set of 
edges or links. The nodes represent the individuals (or organizations) and the edges 
the relations between the individuals (or organizations). 

Influence maximization is to find a subset k-nodes (i.e., seeds set) in a social 
network that could maximize the influence spread. Mathematically we can define 
the problem as follows: Find . S∗

k such as 

. S∗
k = argmaxS⊆V,|S|=kσ (S),

where .σ(S) is an activation function which gives an integer. D. Kempe, J. Kleinberg, 
and E. Tardos in 2003 showed that this problem is NP - hard. It is very difficult to 
choose a small k-nodes (seeds set) which maximize the influence spread. 

Remark 1.3 The first works in the influence maximization problem are proposed 
by Domingos and Richardson in 2001 as an algorithmic problem. They modeled the 
problem using Markov random fields and proposed heuristic solutions. 

Spanning Graph and Geodesics One can propose a new approach to determine 
the seeds set. In the influence maximization problem in the social networks, the idea 
is to influence the maximum of nodes. In the propagation models, an active node 
never becomes inactive again. So the feedback in the active node is not necessary. 
Thus, the idea is to delete the cycles when we determine the seeds. So to determine 
the seeds, if a node u is chosen, then we eliminate all communication between them 
and all nodes .v /∈ neighbor(u). So all transitivity are eliminated in the graph before 
determining the seeds. Thus one determines a particular acyclic spanning graph 
from the initial graph. Yet the closeness centrality measure of the node . u gives the 
distance between it and the other nodes. The node that has the smallest closeness 
centrality can be considered as the central node of the network. The construction 
of the acyclic spanning graph begin with this node. And it is therefore possible to 
present two algorithms to find the acyclic spanning graph from a graph according to 
its connectivity. The input (of the algorithms) is a graph and the output an acyclic 
spanning graph which will maximize the influence spread.
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The centrality is a fundamental concept in network analysis. The centrality 
measure in a graph gives a strict indication of how connected a node in the 
network, this apply to social networks, information networks, biological networks, 
etc. Several centrality measures have been proposed, and they do not have the 
same importance in the network. One can cite the degree centrality, the closeness 
centrality, the betweenness centrality, the degree discount centrality, Diffusion 
Degree, etc. For the construction of the acyclic spanning graph to maximize the 
influence spread, one can use the centrality closeness measure which is a concept 
that can be naturally defined in the metric space where the notion of distance of an 
element and the space is defined. In graph theory, the closeness centrality for a node 
v is the sum of geodesic distances to all other nodes of v accessible from the latter. 

To calculate this measure, one can follow the next steps:

• Calculate the shortest path, which may also be known as the “geodesic distance,” 
between the node u and all other node different of .u.

• Calculate the sum of all the geodesic distances. 

. Cc(u) =
 

v∈V,v �=u
d(u, v)

with .d(u, v) the geodesics distance between u and . v.

Optimal Mass Transport for Activities Location Problem [3]

• The activities location problem is often formulated as a Quadratic Assignment 
Problem (QAP) by Koopmans and Beckmann (in 1957), which assigns n 
activities to n locations while minimizing the total cost location.

• The QAP is known to be NP-complete
• The question would be as follows: 

What is the optimal way to locate activities in the transportation network? 
How are the locations of clinics within a hospital decided? How to locate 
optimally administrative services?

• To address these challenges, there is the most challenging combinatorial opti-
mization problem.

• The main idea is as follows: 
Locations k and l are separated by a distances of dkl . On the other hand, 

entities i and j must exchange quantities of a given product fij . The cost of 
assigning i to k is cik , but an assignment also induces a product routing cost 
which is assumed to be proportional to the quantities of product to be exchanged 
and to the distance that separates the entities, i.e., fij dkl . 

The mathematical formulation of the Activities Location Problem (ALP) is given 
as follows. Let:
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• X = {1, ..., n} the set of activities and Y = {1, ..., n} the set of potential sites for 
new activities

• F = (fij )n×n the matrix of flows from activity i to activity j
• D = (dkl)n×n the matrix of distances from site k to site l
• C = (cik)n×n the cost of assigning activity i to site k, independent of other 

locations
• Pn the set of all permutations of {1, ..., n} in {1, ..., n}
• πik the assignment of activity i to site k 

The activity location problem can be modeled as a QAP, which is to find the 
minimum cost assignment (location) of n activities to n locations. For the ALP , 
the quadratic assignment formulation is shown in Eqs. (1.1)–(1.4) 

.(ALP) : min
π∈Pn

n 

i=1

n 

k=1

cikπik +
n 

i=1

n 

j=1

n 

k=1

n 

l=1

 ijklπikπjl . (1.1) 

s.t. 
n 

i=1 

πik = 1, ∀ k ∈ {1, . . . , n}. (1.2) 

n 

k=1 

πik = 1, ∀ i ∈ {1, . . . , n}. (1.3) 

πik ∈ {0, 1}, ∀ i, k ∈ {1, . . . , n}, (1.4) 

where 

.πik =
 

1, if activity i is located at zone k,

0, otherwise.
(1.5)

 ikjl = fij dkl is the cost of locating activity i at location k and activity j at location 
l.  ikjl in Eq. (1.1) is a cost variable representing the combination of quantitative 
and qualitative measures in ALP models. Equation (1.2) ensures that each location 
is assigned to only one activity. Equation (1.3) ensures that each activity is assigned 
to only one physical location. 

Discrete Optimal Transport Formulation of the Above Problem 
Assume we are given discrete measured metric spaces X = {x1, . . . , xn} and X = 
{y1, . . . , yn} with metrics dX and dY , respectively, and probability measures μX and 
μY , respectively. 

In the case where the marginals are given by convex combinations of Dirac 
measures supported in atoms {xi}i=1,...,n ⊂ X and {yk}k=1,...,n ⊂ Y , respectively, 
i.e., 

.μX =
n 

i=1

μX(xi)δxi , μY =
n 

k=1

μY (yk)δyk ,
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where δxi and δxk represents the Dirac mass at the points xi and xk , respectively. 
The transport plan between μX and μY is described by matrix (π(xi, yk))1≤i,k≤n 
satisfying the following set of constraints: 

.  (μX,μY ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π ∈ R
n×n :

n 

i=1

π(xi, yk) = μY (yk), for all 1 ≤ k ≤ n

n 

k=1

π(xi, yk) = μX(xi), for all 1 ≤ i ≤ n

0 ≤ π(xi, yk) ≤ 1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(1.6) 

In constraints (1.6), the first equation ensures that each location is assigned one and 
only one activity and the second equation ensures that each activity is assigned to 
one and only one physical location. 

The objective function of the problem is thus given by 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
π∈ (μX,μY )

L(π),

L(π) =
n 

i=1

n 

k=1

c(xi, yk)π(xi, yk)+

1

2

n 

i=1

n 

j=1

n 

k=1

n 

l=1

 X,Y π(xi, yk)π(xj , yl),

(1.7) 

where c(xi, yk) is the cost to transporting a unit mass from xi ∈ X to yk ∈ Y 
independently and the cost function  X,Y is constructed from the assumption that if 
a map pairs xi → yk and xj → yl , then the distance between xi and xj on X should 
match the distance between yk and yl on Y , where 

.  X,Y (xi, yk, xj , yl) := |dX(xi, xj )− dY (yk, yl)|p;p ∈ [1,∞)

is the distortion. 

Internet: Another Complex Graph 

How to evaluate the cost of transferring a mass distribution to an other mass 
distribution?

• Let the graph .G = (V ,E) be a discrete extension of the Ricci curvature which 
uses the concept of optimal transport on the graph.

• .d(x, y) defines the distance between each of couple vertices .(x, y) ∈ V × V .
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• This distance can be the number of minimal jumps, a weighting minimum on the 
distance, or any distance matrix.

• Consider a mass distribution .μ(x), ν(y) over the nodes of a graph, and we want 
to transfer the mass that initially exists to another distribution.

• This distribution can be seen as data to be moved between a source and one of 
the destinations in a network 

. 
 

x∈V
μ(x) = 1,

 

y∈V
ν(y) = 1,

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω∗(μ, ν) = argminω
 

x,y∈V
ω(x, y)d(x, y)

 

y∈V
ω(x, y) = μ(x), for all x ∈ V

 

x∈V
ω(x, y) = ν(y), for all y ∈ V

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

.ω(x, y) is the mass to be transported from x to y, and .d(x, y) is the transport cost 
of one unity from x to . y.

Definition 1.6 (Y. Ollivier, [6]) Let .(X, d) be a metric space with a random walk 
. m. Let .x, y ∈ X be two distinct points. The Ricci curvature of .(X, d,m) in the 
direction .(x, y) is 

. κ(x, y) := 1 − C(mx,my)
d(x, y)

,

C(ν1, ν2) := inf
ξ∈ (ν1,ν2)

∫

X×X
d(x, y)dξ(x, y),

where .C(ν1, ν2) is the . L1 transportation between .ν1 and ν2, and . (ν1, ν2) is the 
set of measures on .X×X projecting to . ν1 and . ν2. Intuitively .dξ(x, y) represents the 
mass that is sent from x to . y, hence the constraint on the projection of . ξ, ensuring 
that the initial measure is . ν1 and the final measure is . ν2.

.κ(x, y) = 1 − C(μ(x),ν(y))
d(x,y)

, C(μ, ν) = ∑
x,y∈V

ω∗(μ, ν)d(x, y). 

Numerical Approach of Network Problems in Optimal Mass 
Transportation [5] 

. min
{∫

�

dist (x,�)μ(x) dx : � ⊂ �}.

� is an admissible network with a finite length equal to L >  0.
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A possible discrete formulation of the problem is to introduce permutations σ. 
Let us take a permutation σ defined on Sm := {1, · · ·  ,m} such that σ(k) �= k. 
Let σ : Sm → Sm xk ∈ Rn , k  ∈ Sm, T  (xk) := yσ(k), xk is a data, T : Rn → Rn 

is the map transport μ(T −1(B)) = ν(B), ∀B ⊂ Rn, bounded, μ and ν are measures 
defined on Rn with equal total mass, and ‖.‖ is the Euclidean norm. 

Using the approximation formulae
∫
�
dist (x,�) dx ∼∑m 

k=1 d(xk, yk), the aim 
is to find all the points yk minimizing the following optimization problem: 

. min
m 

k=1

‖xk − yk‖2 (1.8) 

and such that 

. inf
σ

m−1 

k=1

‖yσ(k) − yσ(k+1)‖2 ≤ L.

This problem is equivalent to looking for the points yk minimizing the following 
one: 

. min
σ

m 

k=1

‖xk − yσ(k)‖2

under the constraints 

. 

m−1 

k=1

‖yk − yk+1‖ ≤ L.

For a scenario in Rn , n  ≥ 2, if we consider m points, the number of programs to be 
solved becomes mm. We leave the reader to verify that for: 

m = 3 points, we solve 27 programs. 
m = 4 points, we solve 256 programs. 
· · ·  

How is it possible to overcome this issue? 

A New Way to Study Linear Programming [4] 

We call linear programming problem any problem which can be stated as 

. max
n 

j=1

cj .xj cj ∈ R; n ∈ N ∗
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Constraints 

⎧ 
⎪⎨ 

⎪⎩ 

j=n∑
j=1 
ai,j .xj ≤ bi 

xj ≥ 0 
(1.9) 

ai,j , bi ∈ R; i = {1 . . . m} ⊂ N , 
j = {1 . . . n} ⊂ N . 

Recall that convex polyhedron on E is a set P : 

.P = {X ∈ R
n : A.X ≤ B }, (1.10) 

where . A : E −→ R is a linear application (.m ∈ N ; if .m = 0, P = E), 
.B ∈ R

m, and the inequality .A.X ≤ b must be considered step by step (row by row) 
in .Rm . (A.X)i ≤ bi ∀i ∈ {1, · · · ,m}.

In case of equalities as .C.X = d, it is always possible to come back to the 
form (1.10) if we replace an equality by two opposite inequalities .C.X ≤ d and 
.−C.X ≤ −d. We call polytop a convex and bounded polyhedron. 

Remark 1.4 The Hann–Banach theorems play a fundamental role in this work. 

The Sketch of the Algorithm 
In a maximization problem (a problem in which the purpose is to maximize the 
objective function, as it is the case in problem of the form (1.9)). 

Suppose .H : f (X) = α and K is the initial polytope defined by the set of 

constraints (1.9). If .H ∩ K = ∅, then we state .α := α

2
. That is to say that we split 

the gap between 0 and . α into two parts. It is the main idea of the algorithm. 
Now suppose that we have two values of . α, both . α0 and . α1 such that . H : f (X) =

α0 and K ∩H �= ∅ and .H : f (X) = α1 and K ∩H = ∅. Then we take a new value 

of .α = α0 + α1

2
. 

Then, two cases are possible: 

1. .H : f (X) = α and K ∩H = ∅, then put .α1 := α. 
2. .H : f (X) = α and K ∩H �= ∅, then put .α0 := α. 

And so on. 

Remark 1.5 The notation .i := i + 1 which has no sense in mathematical field is a 
notation of programming, meaning that the value of the memory cell i, at which the  
value 1 is added, is affected to the memory cell i. 

In this algorithm the chosen hyperplane is defined by 

.H = {x ∈ R
n /

n 

i=1

cixi = α}, (1.11)
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where .
n∑
i=1
cixi is the objective function (the one to maximize in our purpose) of 

the LP. 

Remark 1.6 From a geometric point of view, at each step of the algorithm, the new 
hyperplane is obtained from the previous one by a translation. In effect, we search 
the vectors which produce the space H defined by (1.11), and then we search an 
unitary vector . −→v as vectorial step. 

A Key Subproblem 
In this algorithm there is a major difficulty in the test for vacuity—or not—of the 
intersection between the hyperplane and the constraint’s polytope : 

.H
⋂
K = ∅ ? (1.12) 

The Number of General Steps 
Suppose that the second part starts with .f (x) = α, α ∈ N ∗, and the number of 
steps in order to reach a number in a unitary interval which contains solution will 
be .log2(α) due to the dichotomic choices. 

Lemma 1.1 The number of steps in order to reach a number in a unitary interval 
which contains solution is .�log2(α)�. 
In each step the considered space is split into two parts. In order to compute one 
iteration of the second part of the algorithm, it is necessary to compute also one of 
the first parts in order to test if the actual constraint polytope is both avoid or not. 

The Number of Steps Due to the Accuracy 
Suppose now the calculus to be in the unitary interval and an accuracy gap of 
.10−β, β ∈ N ∗. We can consider the unitary interval with .10β subintervals, and, 
in the worst case, it is necessary to compute .a = �log2 10β� steps in order to reach 
this subinterval. 

Lemma 1.2 The maximal number of additional steps due to an accuracy of . 10−β
is 

. a = �log2(10β)�, β ∈ N ∗.

Then, we have the following theorem: 

Theorem 1.1 The worst-case steps complexity of this algorithm is 

.O
(
(a + �log2 α�).n.m

)
, a, α ∈ R

∗. (1.13) 

As seen previously in the classical algorithms, it is necessary to consider the bit 
complexity of our algorithm. This complexity depends on the size of numbers of 
the problem:
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Lemma 1.3 The size of the numbers expressed in bits in the problem is majored by 

. L = �log2(max
i,j

{|ai,j |, |bi |, |cj |})�,

i ∈ {1, . . . , m}, j ∈ {1, . . . , n}.

But in each iteration of the algorithm, it is possible to use this complexity. From 
both Theorem 1.1 and Lemma 1.3, we deduce the following result: 

Theorem 1.2 The total bit-complexity of our algorithm is increased by 

.O
(
(a + �log2 α�).L.n.m

)
, a, α ∈ R∗. (1.14) 

Remark 1.7 The value of a depends on the tolerance gap.1 

Remark 1.8 The same result can be obtained by a direct reasoning. If . α ∈ N ∗
and the wanted accuracy is .10β , the maximal number of steps in a dichotomic way 
will be .�log2(α.β)�. Effectively, in this case, it is sufficient to consider that the 
initial interval .[0, α] is split into .(α.β) cells. It is also the meaning of the coefficient 
.(a + �log2 α�) in Eq. (1.13) with . a = �log2 10β�.
New codes and additional numerical tests need to be realized in order to be able to 
conclude if this new way brings a complete solution to this problem or not. 

Information Revolution 

Artificial Intelligence, Machine Learning, and Deep Learning 

Artificial Intelligence 

Artificial intelligence (AI) is a process of imitating human intelligence that relies 
on the creation and application of algorithms executed in a dynamic computing 
environment. Its goal is to enable computers to think and act like human beings. To 
achieve this, three components are necessary:

• Computer systems
• Data with management systems
• Advanced AI algorithms (codes) 

To get as close to human behavior as possible, artificial intelligence needs a high 
amount of data and processing capacity.

1 Which will be stated by the user of the algorithm. And as in the industrial world more you want 
accuracy, more you pay. 
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Today, AI is a thriving field with many practical applications and active research 
topics. We look to intelligent software to automate routine labor, understand speech 
or images, make diagnoses in medicine, and support basic scientific research. 

Right from the start, the pioneering researchers working on artificial intelligence 
set themselves the goal of solving problems that were difficult for human beings but 
relatively simple for computers, problems that could be described by a list of formal 
mathematical rules. 

The true challenge to artificial intelligence consists in solving the tasks that are 
easy for people to perform but hard to describe formally, meaning problems that we 
can solve intuitively and that we can sense such as speech and facial recognition. 

Machine Learning 

A machine learning algorithm is an algorithm that is able to learn from data. 
But what do we mean by learning? Mitchell (in 1997) provides the definition “A 
computer program is said to learn from experience E with respect to some class of 
tasks T and performance measure P, if its performance at tasks in T, as measured by 
P, improves with experience E.” One can imagine a very wide variety of experiences 
E, tasks T, and performance measures P. 

We can learn many areas from mathematics, but here we want to focus on 
the mathematics of Machine Learning, i.e., the mathematics behind Machine 
Learning algorithms: Linear Algebra, Vectorial and Matrices Calculus, Probability 
and Statistics, Optimization, Analytic Geometry, etc. Let us note that: Analytic 
geometry is an approach to geometry in which objects are described by equations or 
inequalities using a coordinate system. It is fundamental for physics and computer 
graphics. In analytical geometry, the choice of a reference is essential. All objects 
will be described relative to this referential (benchmark). 

Deep Learning 

The simple machine learning algorithms work very well on a wide variety of impor-
tant problems. However, they have not succeeded in solving the central problems 
in AI, such as recognizing speech or recognizing objects. The development of deep 
learning was motivated in part by the failure of traditional algorithms to generalize 
well on such AI tasks. 

Many machine learning problems become exceedingly difficult when the number 
of dimensions in the data is high. This phenomenon is known as the curse 
of dimensionality. Of particular concern is that the number of possible distinct 
configurations of a set of variables increases exponentially as the number of 
variables increases.
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• Local Constancy and Smoothness Regularization: In order to generalize well, 
machine learning algorithms need to be guided by prior beliefs about what kind 
of function they should learn. Previously, we have seen these priors incorporated 
as explicit beliefs in the form of probability distributions over parameters of the 
model. More informally, we may also discuss prior beliefs as directly influencing 
the function itself and only indirectly acting on the parameters via their effect on 
the function. 

Additionally, we informally discuss prior beliefs as being expressed implicitly, 
by choosing algorithms that are biased toward choosing some class of functions 
over another, even though these biases may not be expressed (or even possible to 
express) in terms of a probability distribution representing our degree of belief in 
various functions. 

Among the most widely used of these implicit “priors” is the smoothness prior 
or local constancy prior. This prior states that the function we learn should not 
change very much within a small region. 

Many simpler algorithms rely exclusively on this prior to generalize well, and 
as a result they fail to scale to the statistical challenges involved in solving AI-
level tasks. 

Manifold learning: An important concept underlying many ideas in machine 
learning is that of a manifold. A manifold is a connected region. Mathematically, 
it is a set of points, associated with a neighborhood around each point. From any 
given point, the manifold locally appears to be a Euclidean space. In everyday life, 
we experience the surface of the world as a 2D plane, but it is in fact a spherical 
manifold in 3D space. 

There are many other topics that involve in Deep Learning. Let us quote some of 
them below:

• Deep Feedforward Networks, Regularization for Deep Learning, Optimization 
for Training Deep Models, and Convolutional Networks

• Convolutional Networks and Sequence Modeling: Recurrent and Recursive Nets 
and Linear Factor Models

• Autoencoders and Representation Learning
• Monte Carlo Methods, Confronting the Partition Function, Approximate Infer-

ence, Deep Generative Models, etc.
• Information Geometry
• Stochastic Analysis
• Dynamical Systems
• Partial Differential Equations 

Quantum Model 

The existence of the laser and the transistor along with the possibility of producing 
images of the interior of our body thanks to magnetic resonance imaging (MRI) or
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even geolocating to the nearest meter on the surface of the Earth using a GPS..., 
we owe all these scientific discoveries to quantum physics and Albert Einstein. The 
latter helped advance the discipline in the first part of the twentieth century. This is 
when quantum physics began to emerge, when scientists realized that physics alone 
could not explain what happens at the microscopic level. 

To understand how the world works at the atomic scale, a new approach was 
needed: quantum physics. This allowed great advances, from the 1930s to the end 
of the 1980s. And then research took a further step by taking on the challenge of 
creating quantum computers, that is to say machines with increased computing 
power thanks to new technology. We can date this back to 1982. That year, 
American physicist Richard Feynman theorized “quantum simulators,” a new type 
of computer. 

In a classic computer, operation is done using “bits” which can take only two 
values: 0 or 1. This can be represented by a switch which is either on or off, a door 
open or closed. Qubits can be either 0, 1, or a combination of both at the same 
time. And this small detail of superposition of states is not one of them: It allows 
the quantum computer to carry out calculations much more quickly than traditional 
machines. 

Quantum computing is therefore capable of solving difficult problems that would 
be impossible to solve with computers currently sold commercially. For example, 
imagine you have a locked box and you need to find the right key to open it. If we 
try one key at a time, it would take a long time. But a quantum computer can try all 
the keys at once, making the search much faster. 

But all this is still very much in the realm of theory. 
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Chapter 2 
NLP and Some Research Results 
in Senegal 

Samba Ndiaye 

Abstract This chapter is an attempt to popularize science. It relies heavily on the 
INRIA seminar (https://fidle.cnrs.fr/w3/). Its objectives are on one hand to present 
NLP to PhD students and other researchers and on the other hand to take stock of the 
research done in Senegal in the field of NLP. We first introduce the basic definitions 
and concepts of NLP such as bags of words, TF-IDF, etc., before presenting 
new products such as LLMs and multimodal models. Finally, we have published 
publications obtained over the past five years by our research group in the field 
of NLP, PhDs, and master’s thesis defended (Kandé et al., icetas.etssm.org; Kandé 
et al., FWLSA-score: French and Wolof lexicon-based for sentiment analysis, 2019; 
Kandé et al., Vector space model of text classification based on inertia contribution 
of document, 2019; Kandé et al., A novel term weighting scheme model, 2018; 
Kandji and Ndiaye, Design and realization of an NLP application for the massive 
processing of large volumes of resumes, 2022; Samb et al., Improved bilingual 
sentiment analysis lexicon using word-level trigram, 2019). 

Keywords Natural Language Processing · Bag of Words · TF-IDF · 
Transformers · BERT · GPT · Large Language Models · Keyword Extraction 

NLP: Definition, Issues, etc. 

Definition 

Natural Language Processing (NLP) relies on machine learning models to process 
natural language. Before, we said Textmining. 
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Challenges 

Most of the information in organizations is not structured, as for the relational 
databases that we can deal with SQL queries. This information is the multiple doc-
uments received or sent, messages, emails, reports, etc. In short, textual documents. 
To provide solutions to these challenges, text mining as opposed to data mining has 
been proposed for the extraction of knowledge from texts with machine learning 
tools. 

The Tasks of NLP 

We can note several tasks related to NLP such as: 

• Classification of whole sentences: Analyze the sentiment of a review, and detect 
if an email is spam. 

• Classification of each word in a sentence: Identify the entities named (person, 
place, organization). 

• Text generation: Complete the start of a text with automatically generated text, 
and replace missing or hidden words in a text. 

• Extraction of an answer from a text: Given a question and context, extract the 
answer to the question based on the information provided by the context. 

• Generation of new sentences from a text: Translate a text in another language, 
and summarize a text. 

• Speech recognition and computer vision such as generating a transcription from 
an audio sample or description of an image. 

Representation Models/Word Embedding/Text Vectorization 

Word embeddings are a type of word representation that allows words to be 
represented as vectors in a continuous vector space .(x1, x2, ..., xn). These vectors 
capture the semantic meanings of the words, such that words with similar meanings 
are located in close proximity to one another in the vector space. There are 
several types of word embedding techniques, each with its own methodology and 
applications. Here are some of the most widely recognized types: 

• Bag-of-Words: The Bag-of-Words (BoW) model is a simple yet powerful 
approach used in natural language processing (NLP) and information retrieval 
(IR). It represents text data, such as sentences or documents, in a way that the 
structure or the order of words is disregarded, focusing instead on the occurrence 
of words within the document.
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• TF-IDF: A popular variant of Bag-of-Words that not only counts occurrences 
but also weights each word’s frequency by its inverse frequency across all 
documents. This helps in emphasizing words that are unique to a particular 
document. 

• Word2Vec [6]: Developed by a team at Google led by Tomas Mikolov, Word2Vec 
is one of the most popular techniques. It comes in two flavors: continuous bag-
of-words (CBOW) and Skip-Gram. CBOW predicts a word based on its context, 
whereas Skip-Gram does the opposite, predicting the context given a word. 

• GloVe (Global Vectors for Word Representation) [7]: Developed by Stan-
ford University researchers, GloVe is an unsupervised learning algorithm for 
obtaining vector representations for words by aggregating global word–word 
co-occurrence statistics from a corpus. The resulting embeddings showcase 
interesting linear substructures of the word vector space. 

• FastText [1]: Created by Facebook’s AI Research (FAIR) lab, FastText extends 
Word2Vec by not only considering whole words but also taking into account 
subword units (n-grams). This allows the model to capture the meaning of shorter 
words and understand suffixes and prefixes, making it better at handling rare 
words, misspellings, and morphologically rich languages. 

One can download pretrained models and use the word vectors directly. There 
are several types of pretrained integration models available online. For example, the 
model: 

• Glove-twitter-50 is a GloVe model of size 50 trained on a Twitter-previous 
dataset. 

• Glove-wiki-gigaword-100 is a size 100 GloVe model trained on Wikipedia 2014 
+ Gigaword. 

• word2vec-google-news-300 is a word2vec model of size 300 trained on Google 
News ( 100 billion words). 

Second Revolution in NLP: Transformer (Google 2017) 

New neural network architecture (DEEP LEARNING) allows calculations to be 
parallelized during Language Model training. The Transformer architecture was 
presented in June 2017 [13]. Initially, the research focused on the translation task. 
This was followed by the introduction of several influential models, including: 

• June 2018: GPT [10], the first pretrained and fine-tuned transformer on different 
NLP tasks and having obtained state-of-the-art results. 

• October 2018: BERT [3], another large pretrained model having been built to 
produce better text summaries. 

• February 2019: GPT-2 [11], an improved (and larger) version of GPT which was 
not directly made public due to ethical reasons.
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Fig. 2.1 Evolution of large language models 

• May 2020: GPT-3 [2], an even larger version than GPT-2 with very good 
performance on a variety of tasks not requiring fine-tuning (called zero-shot 
learning). 

• All mentioned transformers (GPT, BERT, etc.) were trained as language models. 
They were trained on a large quantity of raw texts in a self-supervised manner. 

• Self-supervised learning is a type of training in which the goal is automatically 
calculated from the model inputs. This means humans are not needed to label the 
data! 

• This type of model develops a statistical understanding of the language it was 
trained on, but it is not very useful for specific practical tasks. 

• For this reason, the pretrained model then goes through a process called transfer 
learning. During this process, the model is fine-tuned in a supervised manner 
(i.e., using human-annotated labels) for a given task. 

• An example task is to predict the next word in a sentence after reading the 
previous n words. 

• The general strategy to obtain better performance consists of increasing the size 
of the models as well as the quantity of data used for training them as shown in 
this Fig. 2.1. 

Unfortunately, training a model, and particularly a very large model, requires 
a significant amount of data. This becomes very expensive in terms of time and 
computational resources. In this case we speak of large language model or llm. 

LLMs are used for a variety of tasks, such as text generation, machine translation, 
classification text, answering questions, and code autocompletion.
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Generative AI 

Stable Diffusion XL 

Stable Diffusion XL (SDXL) [8] enhances the text-to-image generation capabilities 
of its predecessors through three significant advancements: 

• The model features a UNet architecture that is three times larger (see Fig. 2.2), 
and it integrates an additional text encoder (OpenCLIP ViT-bigG/14) alongside 
the original encoder, substantially expanding its parameter count. 

• It incorporates techniques for size and crop conditioning, allowing for the 
preservation of training data that would otherwise be discarded, and providing 
enhanced control over the cropping of generated images. 

• SDXL introduces a dual-stage generation process. Initially, the base model 
produces an image, which can also function independently. This image then 
serves as the input for the refinement model, which enhances the image with 
additional, high-quality details. 

Emu Video 

Emu Video [5] introduces a streamlined text-to-video generation technique utilizing 
our Emu model, a diffusion-based framework. This innovative architecture facili-
tates video generation from diverse inputs, including text, images, or a combination 
of both. The process is divided into two distinct phases: initially creating images 
from text prompts, followed by crafting videos that incorporate both the initial 
text and the generated images. This segmented approach enhances the efficiency of 
training video generation models. Our method demonstrates that a singular diffusion 
model can accomplish this segmented, or “factorized,” video generation process (see 
Fig. 2.3). We outline essential design strategies, such as optimizing noise schedules 
tailored for video diffusion and implementing a multi-phase training regimen. These 
strategies enable the direct creation of videos in higher resolutions. 

Fig. 2.2 SDXL architecture
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Fig. 2.3 Factorized text-to-video generation 

Fig. 2.4 ImageBind architecture 

ImageBind 

ImageBind [4] emerges as a part of Meta’s expanding suite of open-source AI 
tools, aligning with cutting-edge computer vision technologies such as DINOv2, 
which introduces a method for training high-performance vision models without the 
need for fine-tuning, and Segment Anything (SAM), a versatile segmentation model 
capable of identifying any object in any image in response to any user prompt. 
ImageBind enhances this collection by focusing on multimodal representation 
learning, aiming to unify various modalities, including images and videos, within 
a single coherent feature space. Looking ahead, ImageBind is positioned to harness 
the advanced visual features of DINOv2, potentially boosting its multimodal 
learning capabilities (see Fig. 2.4). 

Review of Open-Source Models 

LLAMA 2 

Llama 2 [12] is a set of transformer-based autoregressive causal language models 
designed to predict the next word(s) in a sequence given previous words. These 
models are trained through a self-supervised process on a large corpus of unlabeled 
data, totaling 2 trillion tokens from public sources, to minimize the difference 
between their predictions and the actual subsequent words. This training enables 
them to mimic linguistic and logical patterns found in the data, even though the 
specific data sources used are not disclosed in the research. Initially, these models 
do not directly answer prompts but generate text that is grammatically coherent 
with the given prompt. Specialized training methods like supervised learning and
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reinforcement learning are necessary to fine-tune these foundational models for 
specific tasks such as dialogue generation or creative writing. 

Llama 2 models, building on the legacy of the original LLaMa, have become 
the basis for several significant open-source language models, offering a versatile 
foundation for developing models tailored to specific purposes. 

BLOOM 

BLOOM [14] stands out as a groundbreaking open-access multilingual language 
model boasting 176 billion parameters, developed over 3.5 months using 384 A100– 
80GB GPUs. It requires 330 GB of storage for a checkpoint. This model is the 
result of a monumental collaboration involving over 1000 scientists alongside the 
formidable Hugging Face team, making it a significant achievement that such an 
expansive multilingual model is freely accessible to all. 

Operating as a causal language model, BLOOM is engineered to predict the 
subsequent token in a sequence based on the preceding ones. This approach, 
seemingly straightforward, enables the model to exhibit a form of reasoning 
capability. By predicting next tokens, BLOOM can weave together various concepts 
within sentences, tackling complex tasks like arithmetic, translation, and coding 
with a notable level of precision. 

Architecturally, BLOOM is built on the Transformer framework, featuring an 
input embeddings layer, 70 Transformer blocks, and an output layer designed 
for language modeling. Each Transformer block is equipped with a self-attention 
mechanism and a multilayer perceptron, refined with norms both before and after 
the attention process, facilitating its advanced language processing capabilities. 

Massively Multilingual Speech 

The Massively Multilingual Speech (MMS) [9] initiative has successfully tackled 
numerous obstacles by integrating wav2vec 2.0, a groundbreaking self-supervised 
learning model, with an innovative dataset. This dataset includes labeled data 
for over 1100 languages and unlabeled data spanning nearly 4000 languages. 
Remarkably, some languages covered, like Tatuyo, have merely a few hundred 
speakers and lack any prior speech technology. 

The findings from this project indicate that the MMS models surpass the 
performance of existing models, extending support to a scope of languages tenfold 
larger than before. Meta’s commitment to multilingualism is evident not only in 
speech but also in text: The NLLB project has expanded multilingual translation to 
200 languages, while the MMS project broadens the reach of speech technology to 
an even larger array of languages.
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Universal Speech Model 

The Universal Speech Model (USM) [15] represents a cutting-edge collection of 
speech models, boasting 2 billion parameters and trained across an extensive dataset 
comprising 12 million hours of speech and 28 billion sentences, covering more than 
300 languages. Designed for applications such as YouTube’s closed captioning, 
USM is capable of performing automatic speech recognition (ASR) not only for 
major languages like English and Mandarin but also for a diverse array of languages 
including Punjabi, Assamese, Santhali, Balinese, Shona, Malagasy, Luganda, Luo, 
Bambara, Soga, Maninka, Xhosa, Akan, Lingala, Chichewa, Nkore, Nzema, among 
others. Many of these languages have less than twenty million speakers, posing 
significant challenges in gathering sufficient training data. 

The approach demonstrates the effectiveness of leveraging a vast, unlabeled 
multilingual dataset for the initial pretraining of the model’s encoder, followed 
by fine-tuning with a smaller, labeled dataset. This strategy not only enables the 
recognition of these less commonly represented languages but also ensures the 
model’s adaptability to new languages and datasets. 
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Chapter 3 
On Absolute-Valued Algebras with 
Nonzero Central Element 

Alassane Diouf, Mbayang Amar, and Oumar Diankha 

Abstract Let . A be an absolute-valued algebra with nonzero element a such that a 
and . a2 are central, then . A is pre-Hilbert space and admits an involution. We also 
show that if . A is an absolute-valued algebra with nonzero central element satisfying 
.(x, x2, x) = (x2, x2, x2) = 0, then . A is finite-dimensional, flexible, and isomorphic 

to either . R, . C, . 
*

C, . H, . 
*

H, . O, or . 
*

O. 

Keywords Absolute-valued algebra · Division algebra · Central element · 
Involution 
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Introduction 

The absolute-valued algebras are introduced by Ostrowski 1918 [16]. We recall that 
a (not necessarily associative) real algebra .A �= 0 is said to be an absolute-valued 
algebra if its vector space is a normed space whose norm .  . satisfies .  xy =
 x  y for all .x, y ∈ A. If, moreover, the norm .  . comes from an inner product, 
then the algebra . A is said to be a pre-Hilbert absolute-valued algebra. 

Let . A be one of the principal absolute-valued algebras .C, .H, . O. The mapping 

. 〈., .〉 : A× A → R (x, y) �→ 〈x, y〉 = 1

2
(xy + yx)
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is an inner product [14, p. 208] which converts . A into an Euclidian space . (A,  . ) :
. x = √

xx = √
xx for all .x ∈ A, and we have: . xy =  x  y . In addition, the 

equalities .〈x(y + z), x(y + z)〉 =  x 2〈y + z, y + z〉 = 〈(y + z)x, (y + z)x〉, valid 
for all .x, y, z ∈ A, give 

. 〈xy, xz〉 = 〈yx, zx〉 =  x 2〈y, z〉.

Let . A be an absolute-valued algebra with unit, and then . A is isomorphic to 
. R, . C, . H (Hamilton’s quaternions), or . O (Cayley’s octonions) [22, Theoem 1]. 
Albert shows that every finite-dimensional absolute-valued algebra has dimension 
.n = 1, 2, 4 or 8 and is isotopic to one of the classical absolute-valued algebras . R, 
. C, . H, or . O [1]. 

Let .A ∈ {C,H,O}. We recall that . ∗A, . A∗, and . 
*

A are obtained by endowing the 
normed space . Awith the product .x ·y = xy, .x ·y = xy, and .x ·y = x y, respectively, 

where .x �→ x means the standard involution. We observe that . 
*

A contains a nonzero 
central idempotent. 

An algebra . A is called algebraic if .A(x) is finite-dimensional for all .x ∈ A and 
the bigger m such that .m = dim(A(x)) is called the degree of . A. Every absolute-
valued algebraic algebra is finite-dimensional [15] and of degree 1, 2, 4, or 8. The 
algebra . R is the unique absolute-valued algebra of degree 1. The absolute-valued 

algebras of degree 2 are . C, . ∗C, . 
*

C, . C∗, . H, . ∗H, . 
*

H, . H∗, . O, . ∗O, . 
*

O, . O∗, and . P [18]. We 

precise that the algebras . R, . C, . 
*

C, . H, . 
*

H, . O, . 
*

O, and . P satisfy the identity . (x, x2, x) =
0. 

In 1990, El-Mallah proves if . A is an absolute-valued algebra with nonzero central 
idempotent, then . A admits an involution [10]. 

In [17, Theorem 4.4], Rochdi and Rodriguez give a classification of finite-
dimensional absolute-valued algebras containing a nonzero central idempotent. 

In [5], the authors also gave a classification of finite-dimensional absolute-valued 
algebras containing a nonzero central idempotent. 

Recently, the absolute-valued algebras containing a nonzero central idempotent 
and satisfying an identity .(xp, xq, xr ) = 0 are fully described [3, 4, 8, 9, 11, 12]. 
They prove that . A is finite-dimensional. More precisely, if .(xp, xq, xr ) = 0 is 

symmetric, then . A is equal to . R, . C, . 
*

C, . H, . 
*

H, . O, or  . 
*

O, and if . (xp, xq, xr ) = 0
is asymmetric, then . A is equal to . R, . C, . H, or . O. 

In [6], the authors prove that if . A is a pre-Hilbert absolute-valued algebra 
satisfying .(x, x2, x) = (x2, y, x2) = 0, then . A is finite-dimensional, flexible, and 

isomorphic to either . R, . C, . 
*

C, . H, . 
*

H, . O, . 
*

O, or . P. 
In [7], the authors show that if . A is an absolute-valued algebra satisfying 

.(x, x, x) = 0 and containing a nonzero central element, then . A is isomorphic to 

. R, . C, . 
*

C, . H, . 
*

H, . O, or  . 
*

O. They also prove that if . A is an absolute-valued algebra 
satisfying .(x, x2, x) = 0 and containing an algebraic nonzero central element, then 

. A is isomorphic to . R, . C, . 
*

C, . H, . 
*

H, . O, or . 
*

O.
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Motivated by the following results, we were interested in the study of the 
absolute-valued algebras having a nonzero central element a. We have made one 
contribution in the case where a and . a2 are central (Theorem 3.1) and another 
contribution in the case where . A satisfies the identities . (x, x2, x) = (x2, x2, x2) =
0 (Theorem 3.2). In the first case we have shown that . A is pre-Hilbert space and 
admits an involution, and in the second case we have proved that . A is finite-

dimensional, flexible, and isomorphic to either . R, . C, . 
*

C, . H, . 
*

H, . O, or . 
*

O. The second 

case directly implies that . R, . C, . 
*

C, . H, . 
*

H, . O, and . 
*

O are the only third power-
associative absolute-valued algebras with nonzero central element. 

Preliminary Notes 

By an algebra we mean a vector space . A over . R endowed with a bilinear mapping 
.(x, y) �→ xy from .A × A to . A called the product of the algebra. Given elements 
.a, b, c in any algebra, we set .(a, b, c) := (ab)c − a(bc) for the associator of a, b, 
and c; .[a, b] := ab− ba for the commutator of a and b. We recall that an element a 
is central if .[a, x] = 0 for all x in . A. An algebra . A is called flexible if . (x, y, x) = 0
for all .x, y ∈ A. We denote by .A(x), the subalgebra generated by every element 
.x ∈ A. An element .x ∈ A is called algebraic if .A(x) is finite-dimensional. 

Let .x ∈ A. If .[x2, x] = 0, then we can set .x3 := x2x = xx2. 
An involution on an absolute-valued algebra . A is a mapping .x �→ x* from . A to 

. A satisfying: 

(1) . (αx + βy)* = αx* + βy*

(2) . x** = x

(3) . xx* = x*x

(4) . (xy)* = y*x*

(5) .  x* =  x 
for all .x, y ∈ A and .α, β ∈ R. Axiom . (5) follows immediately from the others [19]. 
Given an absolute-valued algebra . A with involution, we denote by . Aa the set of all 
self-adjoint elements of . A and by . As the set of all skew elements of . A. We have  
.Aa := {x ∈ A : x∗ = x} and .As := {x ∈ A : x∗ = −x}. Obviously, we have 
.A = Aa⊕As , as a direct sum of subspaces. We will assume that the involution of . A
is nontrivial if .As �= 0. Clearly, . A contains a unique nonzero self-adjoint idempotent 
[21]. If .B := Re ⊕ As is finite-dimensional, then .A = B and the idempotent e is 
central [9, Lemma 3.2]. 

Recall that an algebra . A is said to be third power associative if it satisfies 
the identity .(x, x, x) = 0, which can also be rewritten as .[x2, x] = 0. As an  
immediate consequence, a third power-associative algebra satisfies the identity 
.(x2, x2, x2) = 0. Every algebra satisfying the identity .(x, x, x) = 0 also satisfies 
the identity .(x, x2, x) = 0 [2, Lemma 2.1].
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Let us consider the identities of the form .(xp, xq, xr ) = 0 with .p, q, r ∈ {1, 2}. 
For our convenience, we will say that such an identity is symmetric when . p = r

and asymmetric otherwise. Thus the symmetric identities are 

. (x, x, x) = 0, (x, x2, x) = 0, (x2, x, x2) = 0 and (x2, x2, x2) = 0,

whereas the asymmetric identities are 

. (x2, x, x) = 0, (x, x, x2) = 0, (x2, x2, x) = 0, and (x, x2, x2) = 0.

Main Results 

Lemma 3.1 Let (A,  . ) be an absolute-valued algebra containing a norm-one 
element a such that [a2, a] = [a2, a3] = [a2, (a2)2] =  0 and a3 ∈ Lin{a, a2}. 
Then, we have A(a) = Lin{a, a2}. 
Proof If a and a2 are collinear, then the result is obvious. Suppose that a and a2 
are not collinear. As {a, a2} is commutative, so Lin{a, a2} is an inner-product space 
[22, Lemma 1]. 

Now, let a0 ∈ Lin{a, a2} such that  a0 =  1 and a0 ∈ a⊥. Then a0 = αa + βa2 

with α, β ∈ R and β �= 0. As a2 0 commutes with a2 and  a2− a2 0 =  (a− a0)(a+ 
a0) =  a − a0  a + a0 =  2, we have a2 + a2 0 = 0 [22, Lemma 3]. We get 

. 0 = a2 + a20

= a2 + (αa + βa2)2

= a2 + α2a2 + 2αβa2a + β2(a2)2

= (1+ α2)a2 + 2αβa3 + β2(a2)2,

so (a2)2 = −  
1 

β2 [ (1+ α2)a2 + 2αβa3]. 
As a3 ∈ Lin{a, a2}, we have  a3 = γ a  + δa2 with γ,  δ  ∈ R, which implies that 

. (a2)2 = − 1

β2 [ (1+ α2)a2 + 2αβ(γ a + δa2)]

= − 1

β2 [ (1+ α2)a2 + 2αβγ a + 2αβδa2]

= − 1

β2 [ 2αβγ a + (1+ α2 + 2αβδ)a2],

so (a2)2 ∈ Lin{a, a2}. We realize that A(a) = Lin{a, a2}. 
�
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Theorem 3.1 Let (A,  . ) be an absolute-valued algebra containing a nonzero 
element a such that a and a2 are central. Then A is pre-Hilbert space and admits 
an involution. 

Proof We can assume without loss of generality that  a =  1. We will distinguish 
the following cases: 

First case If a is collinear to a2, then a2 = γ a, where γ ∈ R\{0}. By putting, 
a0 = γ −1a, we have  a2 0 = γ −1a = a0. This implies that a0 is a nonzero central 
idempotent of A. 

Second case If a is not collinear to a2, as the  set  {a, a2, a3} is commutative, so 
Lin{a, a2, a3} is an inner-product space [22, Lemma 1]. 

We assume that dim(Lin{a, a2, a3}) = 3. There exist a norm one a0 ∈ 
Lin{a, a2, a3} orthogonal to a and a2. We get 

. a20 − a2 =  (a0 − a)(a0 + a) =  a0 − a  a0 + a = 2. (3.1) 

Since a2a2 0 = a2 0a2, then we have a2 0 + a2 = 0 [22, Lemma 3]. 
We have also that 

. a20 − (a2)2 =  (a0 − a2)(a0 + a2) =  a0 − a2  a0 + a2 = 2. (3.2) 

As a2 0 = −a2, so we have  (a2)2a2 0 = a2 0(a2)2. We deduce that a2 0 + (a2)2 = 0 [22, 
Lemma 3]. We realize that (a2)2−a2 = (a2−a)(a2+a) = 0. AsA has no divisors 
of zero, we have a2 = a or a2 = −a. Absurd, because a is not collinear to a2. This  
implies that dim(Lin{a, a2, a3}) = 2, so a3 ∈ Lin{a, a2}. 

Lemma 3.1 gives that A(a) = Lin{a, a2}. As A(a) is two-dimensional division 
algebra, then A(a) = Lin{a, a2} contains a nonzero idempotent e0 [20]. Then e0 = 
ηa + ζa2, where (η, ζ ) ∈ R

2\{(0, 0)} is a nonzero central idempotent of A. 
In all casesA contains a nonzero central idempotent, and consequentlyA is pre-

Hilbert space and A admits an involution [10, Theorem 3.6 and Theorem 3.7]. 
�
The following result follows from Theorem 3.1 and [3, 4, 8, 9, 11, 12]. 

Corollary 3.1 Let (A,  . ) be an absolute-valued algebra satisfying (xp , xq , xr ) = 
0, and containing a nonzero element a such that a and a2 are central. Then A is 
finite-dimensional. More precisely, we have: 

(1) If (xp , xq , xr ) = 0 is asymmetric, then A is power associative, that is, A is 
equal to R, C, H, or  O. 

(2) If (xp , xq , xr ) = 0 is symmetric, then A is flexible, that is, A is equal to R, C,
*

C, H,
*

H, O, or
*

O. 

Theorem 3.2 Let (A,  . ) be an absolute-valued algebra with nonzero central 
element satisfying (x, x2, x)  = (x2, x2, x2) = 0. Then A is finite-dimensional, 
flexible, and isomorphic to either R, C,

*

C, H,
*

H, O, or
*

O.
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Proof We can assume without loss of generality that  a =  1. We will distinguish 
the following cases: 

First case If a is collinear to a2, then a2 = γ a, where γ ∈ R\{0}. This implies that 
a0 = γ −1a is a nonzero central idempotent of A, so  A admits an involution [10, 

Theorem 3.7]. We deduce that A is isomorphic to R, C,
*

C, H,
*

H, O, or
*

O [4]. 

Second case If a is not collinear to a2, we note that a3 is defined because a is 
central. By linearizing (x, x2, x)  = 0, we obtain 

. (x, x2, y) + (x, xy + yx, x) + (y, x2, x) = 0 (3.1).

Taking x = a and y = a2 in (3.1), we obtain 

. 0 = (a, a2, a2) + (a, a3 + a3, a) + (a2, a2, a)

= (a, a2, a2) + (a2, a2, a)

= a3a2 − a(a2)2 + (a2)2a − a2a3

= a3a2 − a2a3

= [a3, a2].

As the set {a, a2, a3} is commutative, so Lin{a, a2, a3} is an inner-product space 
[22, Lemma 1]. Suppose that dim(Lin{a, a2, a3}) = 3. There exist a norm one 
a0 ∈ Lin{a, a2, a3} orthogonal to a and a2. We have  

.  a20 − a2 =  (a0 − a)(a0 + a) =  a0 − a  a0 + a = 2,

and 

.  a20 − (a2)2 =  (a0 − a2)(a0 + a2) =  a0 − a2  a0 + a2 = 2.

There are α, β, γ ∈ R such that a0 = αa+βa2+γ a3, so  a2 0 = α2a2+β2(a2)2+ 
γ 2(a3)2 + 2αβa3 + 2αγ aa3 + 2βγ a2a3. 

We have [(a2)2, a2] =  (a2)2a2 − a2(a2)2 = (a2, a2, a2) = 0. Linearizing (3.1), 
we obtain 

. (x, xy + yx, y) + (x, y2, x) + (y, x2, y) + (y, xy + yx, x) = 0 (3.2).

Taking x = a and y = a2 in (3.2), we have  

.0 = (a, a3 + a3, a2) + (a, (a2)2, a) + (a2, a2, a2) + (a2, a3 + a3, a)

= 2[(a, a3, a2) + (a2, a3, a)]
= 2[(aa3)a2 − a(a3a2) + (a2a3)a − a2(a3a)]
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= 2[(aa3)a2 − a2(a3a)] 
= 2[aa3, a2]. 

Putting x = a and y = (a2)2 in (3.1), we get 

. 0 = (a, a2, (a2)2) + (a, a(a2)2 + (a2)2a, a) + ((a2)2, a2, a)

= (a, a2, (a2)2) + ((a2)2, a2, a)

= a3(a2)2 − a(a2(a2)2) + ((a2)2a2)a − (a2)2a3

= a3(a2)2 − (a2)2a3

= [a3, (a2)2].

By linearizing (x2, x2, x2) = 0, we obtain the identity 

. (x2, x2, xy + yx) + (x2, xy + yx, x2) + (xy + yx, x2, x2) = 0 (3.3).

Putting x = a and y = a2 in (3.3), we derive that 

. 0 = (a2, a2, a3 + a3) + (a2, a3 + a3, a2) + (a3 + a3, a2, a2)

= 2[(a2, a2, a3) + (a2, a3, a2) + (a3, a2, a2)]
= 2[(a2)2a3 − a2(a2a3) + (a2a3)a2 − a2(a3a2) + (a3a2)a2 − a3(a2)2]
= 4[(a2a3)a2 − a2(a2a3)] because [a3, (a2)2] = 0

= 4[a2a3, a2].

Taking x = a and y = a2a3 in (3.1), we have  

. 0 = (a, a2, a2a3) + (a, a(a2a3) + (a2a3)a, a) + (a2a3, a2, a)

= (a, a2, a2a3) + (a2a3, a2, a)

= a3(a2a3) − a(a2(a2a3)) + ((a2a3)a2)a − (a2a3)a3

= a3(a2a3) − (a2a3)a3

= [a3, a2a3].

Linearizing (3.3), we obtain 

.(x2, x2, y2) + (x2, xy + yx, xy + yx) + (x2, y2, x2)

+(xy + yx, x2, xy + yx) + (xy + yx, xy + yx, x2) + (y2, x2, x2) = 0 (3.4).
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Putting x = a and y = a2 in (3.4), we derive that 

. 0 = (a2, a2, (a2)2) + (a2, a3 + a3, a3 + a3) + (a2, (a2)2, a2)

+(a3 + a3, a2, a3 + a3)

+(a3 + a3, a3 + a3, a2) + ((a2)2, a2, a2)

= (a2, a2, (a2)2)) + (a2, a3 + a3, a3 + a3) + (a3 + a3, a2, a3 + a3)

+(a3 + a3, a3 + a3, a2) + ((a2)2, a2, a2)

= (a2)2(a2)2 − a2(a2(a2)2) + ((a2)2a2)a2 − (a2)2(a2)2

+4[(a2, a3, a3) + (a3, a2, a3) + (a3, a3, a2)]
= (a2, (a2)2, a2) + 4[(a2a3)a3 − a2(a3)2 + (a3a2)a3 − a3(a2a3)

+(a3)2a2 − a3(a3a2)]
= 4[(a2a3)a3 − a2(a3)2 + (a3a2)a3 − a3(a2a3) + (a3)2a2 − a3(a3a2)]
= 4[(a3)2a2 − a2(a3)2 + 2((a2a3)a3 − a3(a3a2))]
= 4[(a3)2a2 − a2(a3)2] + 8[(a2a3)a3 − a3(a3a2)]
= 4[(a3)2, a2].

We realize that [a2, a2] = [a2, a3] = [a2, (a2)2] = [a2, aa3] = [a2, a2a3] =  
[a2, (a3)2] =  0, so 

. [a2, a20] = [a2, α2a2 + β2(a2)2 + γ 2(a3)2 + 2αβa3 + 2αγ aa3 + 2βγ a2a3]
= α2[a2, a2] + β2[a2, (a2)2] + γ 2[a2, (a3)2] + 2αβ[a2, a3]

+2αγ [a2, aa3] + 2βγ [a2, a2a3]
= 0.

As [a2, a2 0] =  0 and  a2 0 − a2 =  2, we have a2 0 + a2 = 0 [22, Lemma 3]. The 
equality a2 0 = −a2 implies (a2)2a2 0 = a2 0(a2)2. Moreover as  a2 0 − (a2)2 = 2, we 
realize that a2 0+(a2)2 = 0 [22, Lemma 3]. We have (a2)2−a2 = (a2−a)(a2+a) = 
0. As A has no divisors of zero, we get a2 = a or a2 = −a. Absurd, because a is 
not collinear to a2. This implies that dim(Lin{a, a2, a3}) = 2, so a3 ∈ Lin{a, a2}. 

Lemma 3.1 implies that A(a) = Lin{a, a2}, so  a is algebraic. This implies that 

A is isomorphic to either R, C, 
∗ 
C, H, 

∗ 
H, O, or  

∗ 
O [7, Theorem 3]. 
�

We have the following consequences of Theorem 3.2. 

Corollary 3.2 ([13, Theorem 2.1]) Let (A,  . ) be a third power-associative 
absolute-valued algebra with nonzero central element. ThenA is finite-dimensional 
and isotopic to R, C, H, or  O.
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Corollary 3.3 ([7, Theorem 1.]) Let (A,  . ) be a third power-associative 
absolute-valued algebra with nonzero central element. ThenA is finite-dimensional 

and is isomorphic to either R, C,
*

C, H,
*

H, O, or
*

O. 

Corollary 3.4 Let (A,  . ) be an absolute-valued algebra with nonzero central 
element. Then the following statements are equivalent: 

(1) A is third power associative. 
(2) A satisfies (x, x2, x)  = (x2, x2, x2) = 0. 
(3) A is finite-dimensional and is isomorphic to either R, C,

*

C, H,
*

H, O, or
*

O. 

By combining Theorem 3.2 and [7, Theorem 3], we also have the following 
corollary. 

Corollary 3.5 Let (A,  . ) be an absolute-valued algebra having nonzero central 
element a and satisfying (x, x2, x)  = 0. Then the following statements are 
equivalent: 

(1) a is an algebraic element. 
(2) The norm  . comes from an inner product. 
(3) A is third power associative. 
(4) A satisfies (x2, x2, x2) = 0. 
(5) A is finite-dimensional and is isomorphic to R, C,

*

C, H,
*

H, O, or
*

O. 
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Chapter 4 
On Algebraic Algebras Without Divisors 
of Zero Satisfying . (xp, xq, xr) = 0

Mohamed Traoré and Alassane Diouf 

Abstract Let . A be an algebraic algebra without divisors of zero of degree . = 8 with 
a nonzero idempotent e such that .[e, I (A)] = 0 (resp., e is omnipresent). Then the 
following assertions are equivalent: 

(1) . A is quadratic with unit . e.
(2) . A is power associative. 
(3) . A satisfies .(x, xq, xr ) = 0 and e is a generalized left unit. 
(4) . A satisfies .(xp, xq, x) = 0 and e is a generalized right unit. 
(5) . A satisfies .(xp, xq, xr ) = 0 and e is a generalized unit. 

Keywords Division algebra · Algebraic · Quadratic · Power commutative · 
Power associative · Third power associative · Generalized left unit 

Mathematics Subject Classification 17A05, 17A30, 17A35 

Introduction 

In this chapter, the algebras are considered over . R and .p, q, r ∈ {1, 2}. The study of 
real division algebras was born since the construction of quaternions by Hamilton 
and octonions by Cayley in the middle of the 19 century. Despite its long history, the 
problem of classifying finite-dimensional real division algebras (FDRDA) remains 
open. Theorems (1, 2, 4, 8) state that the dimension of an FDRDA may be only 
1, 2, 4, and 8 [5, 20, 21, 23]. The classification problem of FDRDA is solved 
completely in dimension one [26, 27] and two [2–4, 6, 17, 19, 22] and partially 
in four and eight dimensions. In dimension 4, the classification is effective for 
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power-commutative algebras [11], including quadratic algebras [15, 16, 27] and 
flexible algebras [4, 10]. The corollary of Hopf’s theorem proves that every finite-
dimensional real commutative division algebra with unit is isomorphic to . R or . C
[21]. The Yang–Petro’s theorem shows that every two-dimensional real division 
algebra with unit is isomorphic to . C [29, 30]. Every real Cayley algebra (different 
from . R) has degree 2 [8]. 

A well-known Albert’s result [1, Theorem 2] asserts that an algebra . A is power 
associative if and only if . A satisfies the identities .(x, x, x) = 0 and .(x2, x, x) = 0. 
The four-dimensional third power-associative division algebras have been studied 
[13, 14]. 

By definition an absolute-valued algebra is an algebra . A over . K(.K = R or 
. C) endowed with an absolute value, i.e., a norm .‖ · ‖ on the vector space of . A
satisfying .‖xy‖ = ‖x‖‖y‖ for all .x, y ∈ A. Let  .A ∈ {C,H,O}. We recall that . ∗A
is obtained by endowing the normed space . A with the product .x · y = xy, where 
.x �→ x means the standard involution. In [9], the authors studied finite-dimensional 
absolute-valued algebras containing a generalized left unit. We also note that if . A
is a pre-Hilbert absolute-valued algebra satisfying .(x2, y, x2) = 0 and containing a 
generalized left unit e which is an idempotent, then . A is finite dimensional with left 
unit e and is isomorphic to . R, . C, . ∗C, . H, . ∗H, . O, or . ∗O [12, Theorem 3]. 

Let . A be an algebra satisfying the identity .(xp, xq, xr ) = 0. In [13], the authors 
prove that if . A is a division algebra of degree .≤ 4 with slightly generalized unit, 
then . A is power associative. In [24], the authors show that if . A is unitary, then . A
is third power associative. They also prove that if . A is an algebraic unital algebra 
without divisors of zero of degree . = 8, then . A is quadratic. If . (xp, xq, xr ) = 0
is asymmetric and the algebra . A with no nonzero joint divisor of zero, containing 
a nonzero central idempotent and satisfying an identity .(xp′

, xq ′
, xr ′

) = 0, where 
.(p′, q ′, r ′) /∈ {(p, q, r), (3 − r, 3 − q, 3 − p)}, then . A is a unital power-associative 
algebra [7]. 

Motivated by these results, we became interested in the study of algebraic 
algebras without divisors of zero satisfying the identity .(xp, xq, xr ) = 0. We  
have brought about some conditions leading to the associativity of the powers 
(Theorems 4.1 and 4.2). 

Notations and Preliminary Results 

Notations Let A be an algebra over a field of characteristic zero. We denote by: 

(1) A(x), the subalgebra generated by every element x ∈ A. 
(2) [x, y], the commutator xy − yx of x, y ∈ A. 
(3) (x, y, z), the associator (xy)z − x(yz) of x, y, z ∈ A. 

Definitions An algebra A is called: 

(1) Third power associative if (x, x, x)  = 0 for all x ∈ A.
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(2) Power commutative if A(x) is commutative for all x ∈ A. 
(3) Quadratic if it has a unit element e and x2, x, e  are linearly dependent. 
(4) Power associative if A(x) is associative for all x ∈ A. 
(5) A division algebra if Lx : A → A a �→ xa and Rx : A → A a �→ ax are 

bijective for all x in A\{0}. 
(6) Algebraic if A(x) is finite dimensional for all x ∈ A and the bigger m such that 

m = dim(A(x)) is called the degree of A. We note deg(A) = m. 

Let A be an algebra with two-dimensional subalgebras. A nonzero idempotent 
of A is said to be omnipresent if it belongs to every subalgebra of dimension two 
[11, page 1208]. 

A nonzero element e of an algebra A is called a generalized left unit if e(xy) = 
x(ey) for all x, y ∈ A. It is called a generalized unit if it satisfies both equalities 
e(xy) = x(ey) and (xy)e = (xe)y for all x, y ∈ A [9]. 

Let a ∈ S(H) and b ∈ S(H)\{−1, 1}, and we denote by H(a, b) and ∗H(a, b) the 
algebras having H as underlying normed space and products x
y given respectively 
by axyb and xayb [25]. We note that a is a generalized left unit of H(a, b) and a is 
a generalized left unit of ∗H(a, b). However, none of these algebras contains a left 
unit. 

Given an algebra A with product (x, y) �→ xy, the  opposite algebra A(0) of 
A is defined as the algebra consisting of the vector space of A and the product 
(x, y) �→ yx. Denoting by (·, ·, ·)(0) the associator in the algebra A(0) and [·, ·](0) 
the commutator in the algebra A(0), it is clear that 

.(x, y, z)(0) = −(z, y, x) for all x, y, z ∈ A. (4.1) 

As a first consequence of (4.1), we deduce that 

.A is associative ⇔ A(0) is associative. (4.2) 

As a second consequence of (4.1), we see that the following assertions are 
equivalent: 

.

(i) A satisfies the identity (xp, xq, xr ) = 0,

(ii) A(0) satisfies the identity (xr , xq, xp) = 0.
(4.3) 

We note that A is power associative if and only if A(0) is power associative [7], 
and A is quadratic if and only if A(0) is quadratic. 

Lemma 4.1 Let A be a right division algebra having generalized left unit e which 
is an idempotent. If A satisfies the identity (x, xq , xr ) = 0, then A is a unital third 
power-associative algebra.
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Proof For all x in A, we have  e(xe) = xe. We deduce that Le ◦ Re = Re, and 
consequently Le ◦ Re ◦ R−1 

e = Re ◦ R−1 
e . We realize that Le = IA and then e is a 

left unit. The result is a consequence of [13, Proposition 3]. 
�
Lemma 4.2 Let A be a right division algebra having a generalized unit e which is 
an idempotent. If A satisfies the identity (xp , xq , xr ) = 0, then A is a unital third 
power-associative algebra. 

Proof It is clear that e(xe) = xe, and for the same arguments as before, we realize 
that e is a left-unit. As (ex)e = ex, we deduce that xe = x, and consequently e is 
the unit element ofA. This implies thatA is third power associative [13, Proposition 
2]. 
�
Lemma 4.3 Let A be a right division algebra of degree  = 8 having an idempotent 
e. Then A is power commutative in each one of the following cases: 

(1) e is a generalized unit and A satisfies (xp , xq , xr ) = 0. 
(2) e is a generalized left unit and A satisfies (x, xq , xr ) = 0. 

Proof 

(1) As e is a generalized unit, then e is a unit element and A is third power 
associative (Lemma 4.2). Let x ∈ A\{0}, and then dim(A(x)) ≤ 4. Also A(x) 
is a third power-associative division algebra, containing a central idempotent. 
We realize that A(x) is power commutative [14, Theorem 3], and consequently 
A(x) is commutative. Hence A is power commutative. 

(2) As e is a generalized left unit, then e is a unit element and A is third power 
associative (Lemma 4.1). The same arguments as before conclude this case.


�

Main Results 

Proposition 4.1 Let A be a right division algebra of degree  = 8, containing a 
nonzero idempotent e. Then the following conditions are equivalent: 

(1) A satisfies (x, xq , xr ) = 0 and e is a generalized left unit. 
(2) A is quadratic. 

Proof The implication 2) ⇒ 1) is obvious. 
1) ⇒ 2). Let  x ∈ A\{0}. Lemmas (4.1 and 4.3) prove that A(x) is commutative 

division algebra with unit e. This implies that A(x) is isomorphic to R or C [20, 21]. 
Consequently, A is quadratic. 
�

Let A be one of the algebras C, H, or  O. The algebra ∗A, with multiplication 
x
y = xy, contains a generalized left unit and satisfies all identities (x2, xq , xr ) = 
0, but it is not a third power-associative algebra. So the hypothesis of e is a right-
generalized unit in Proposition 4.2 can be removed. We have the following result.
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Proposition 4.2 Let A be a right division algebra of degree  = 8, containing a 
nonzero idempotent e. Then the following conditions are equivalent: 

(1) A satisfies (xp , xq , xr ) = 0 and e is a generalized unit. 
(2) A is quadratic. 

Proof The implication 2) ⇒ 1) is clear. 
1) ⇒ 2). Let  x ∈ A\{0}. Lemmas (4.2) and (4.3) prove that A(x) is commutative 

division algebra with unit e, so  A(x) is isomorphic to R or C [20, 21]. We deduce 
that A is quadratic. 
�
Corollary 4.1 Let A be a right division algebra of degree  = 8, containing a 
nonzero idempotent e. The following assertions are equivalent: 

(1) A is quadratic. 
(2) A satisfies (x, xq , xr ) = 0 and e is a generalized left unit. 
(3) A satisfies (xp , xq , xr ) = 0 and e is a generalized unit. 

Theorem 4.1 Let A be an algebraic algebra without divisors of zero of degree  = 8 
and containing a nonzero idempotent e such that [e, f ] =  0 for all f ∈ I (A). The 
following assertions are equivalent: 

(1) A is quadratic. 
(2) A is power associative. 
(3) A satisfies (x, xq , xr ) = 0 and e is a generalized left unit. 
(4) A satisfies (xp , xq , x)  = 0 and e is a generalized right unit. 
(5) A satisfies (xp , xq , xr ) = 0 and e is a generalized unit. 

Proof The implications 1) ⇒ 2), 1) ⇒ 3), 1) ⇒ 4), and 1) ⇒ 5) are obvious. 
2) ⇒ 3). It is clear that A satisfies (x, xq , xr ) = 0 for fixed q, r ∈ {1, 2}. Now  

let x ∈ A\{0}. The subalgebra A(x) is a finite-dimensional associative algebra, so 
A(x) is isomorphic to R, C, or  H [18]. As deg(H) = 2, we deduce that A(x) is 
isomorphic to R or C. Let  f the unit element of A(x). We assume that e − f  = 0. 
ThenA(e−f )  is isomorphic to R or C. There is a ∈ A(e−f )  such that (e−f )a  = 
e −f = e2 −f 2 = (e −f )(e +f ). Then a = e +f ∈ A(e −f ), and consequently 
e, f ∈ A(e − f ). We realize that A(e − f )  is unitary and contains at least two 
idempotents, absurd. We deduce that e = f , so  ex = xe = x, for all x ∈ A. We  
realize that e is a generalized left unit and A satisfies (x, xq , xr ) = 0. 

3) ⇒ 1). Let  x ∈ A\{0}. Then A(x) is finite-dimensional division algebra, 
so A contains a nonzero idempotent f [28]. As f e  = ef = ef 2 = f (ef  ), we  
have ef = e = e2. This implies that e = f , consequently e ∈ A(x). Lemmas (4.1 
and 4.3) prove thatA(x) is power commutative with unit e, soA(x) is commutative, 
which implies that A(x) is isomorphic to R or C [20, 21]. This proves that A is 
quadratic. 

4) ⇒ 1). Suppose that A satisfies (xp , xq , x)  = 0 and e is a generalized right 
unit. Then A(0) satisfies (x, xq , xp ) = 0, and e is a generalized left unit of A(0). As  
e is an idempotent of A(0) such that [e, f ](0) = 0 for all f ∈ I (A(0) ) and 3) ⇒ 1), 
we deduce that A(0) is quadratic, so A is quadratic.
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5) ⇒ 1). Let  x ∈ A\{0}. The subalgebra A(x) is finite-dimensional division 
algebra, so A(x) contains a nonzero idempotent f [28]. For the same argument as 
before, we prove that f = e ∈ A(x). Then Lemmas (4.2) and (4.3) prove that 
A(x) is power commutative with unit e. We realize that A(x) is finite-dimensional 
commutative division algebra with unit. Hence A(x) is isomorphic to R or C [20, 
21]. Consequently, A is quadratic. 
�

We have the following preliminary results. 

Lemma 4.4 Let A be an algebraic algebra without divisors of zero of degree
 = 8, containing a nonzero single idempotent e. Then the following conditions are 
equivalent: 

(1) A is quadratic. 
(2) A is power associative. 
(3) A satisfies (x, xq , xr ) = 0 and e is a generalized left unit. 
(4) A satisfies (xp , xq , xr ) = 0 and e is a generalized unit. 

Proof The implications 1) ⇒ 2), 1) ⇒ 3), and 1) ⇒ 4) are obvious. 
2) ⇒ 1). Let  x ∈ A\{0}. The subalgebra A(x) is finite-dimensional associative 

division algebra. This implies that A(x) is isomorphic to R, C, or  H [18]. As 
deg(H) = 2, we deduce that A(x) is isomorphic to R or C. We realize that e is 
the unit element of A(x), so  ex = xe = x for all x ∈ A, and consequently, A is 
quadratic. 

3) ⇒ 1). Let  x ∈ A\{0}, and then A(x) is finite-dimensional division algebra 
containing e [28]. Lemmas (4.1) and (4.3) prove that A(x) is power commutative 
with unit e (e is a generalized unit), and we realize thatA(x) is commutative, which 
implies that A(x) is isomorphic to R or C [20, 21], so A is quadratic. 

4) ⇒ 1). Let  x ∈ A\{0}. The subalgebra A(x) is finite-dimensional division 
algebra, so A(x) contains e [28]. Lemmas (4.2 and 4.3) prove that A(x) is power 
commutative with unit e. We realize that A(x) is finite-dimensional commutative 
division algebra with unit, so A(x) is isomorphic to R or C [20, 21]. This implies 
that A is quadratic. 
�
Lemma 4.5 Let A be an algebra without divisors of zero such that A(x) is 
isomorphic to either R or C for all nonzero x in A. Then A has only a single 
nonzero idempotent. 

Proof Let e ∈ A be an arbitrary nonzero idempotent, and assume that A contains a 
nonzero idempotent f  = e with [f, e] =  0. The operator Le−f : y �→ (e − f )y  of 
the division algebra A(e − f )  is bijective. As e − f = (e − f )(e + f ),  the element 
e + f = L−1 

e−f (e − f )  belongs to A(e − f ), and it must be its unit element that we 
note 1e−f . Now, 

.e = (e + f ) + (e − f )

2
, f = (e + f ) − (e − f )

2
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belong toA(e−f ). This implies that the division unital algebraA(e−f ) contains 
three distinct nonzero idempotents: 1e−f = e + f, e, f, absurd. 

So two arbitrary nonzero commuting idempotents are equal. 
Now suppose that A contains a nonzero idempotent f  = e. We have (e − f )2 = 

2(e + f )  − (e + f )2 ∈ A(e − f )  ∩ A(e + f ).  So (e − f )2 commutes with both 
e − f and e + f , and then [(e − f )2, e] = [(e − f )2, f ] =  0. We distinguish the 
following two cases: 

(1) IfA(e−f )  = A(e+f ), then e, f belong to the commutative algebraA(e−f ),  
absurd. 

(2) If A(e − f )  = A(e + f ), then dim
(
A(e − f ) ∩A(e + f )

) = 1, and there is a 
nonzero idempotent g ∈ A such that (e − f )2 = λg with λ ∈ R \ {0}. Now, we 
have [g, e] =  λ−1[(e −f )2, e] =  0 and [g, f ] =  λ−1[(e−f )2, f ] =  0 leading 
to the absurdity e = g = f. 

Note that the single nonzero idempotent of A is the unit element of any 
subalgebra A(x), x ∈ A \ {0}. 
�
Theorem 4.2 Let A be an algebraic algebra without divisors of zero of degree  = 8 
and containing a nonzero omnipresent idempotent e. The following assertions are 
equivalent: 

(1) A is quadratic. 
(2) A is power associative. 
(3) A satisfies (x, xq , xr ) = 0 and e is a generalized left unit. 
(4) A satisfies (xp , xq , xr ) = 0 and e is a generalized unit. 
(5) A satisfies (xp , xq , x)  = 0 and e is a generalized right unit. 

Proof The implications 1) ⇒ 2) and 1) ⇒ 5) are obvious. 
2) ⇒ 3). Let  x ∈ A\{0}. Then A(x) is a finite-dimensional associative division 

algebra. The Frobenius’s theorem proves thatA(x) is isomorphic to R, C, or  H [18]. 
As deg(H) = 2, we deduce that A(x) is isomorphic to R or C. Lemma 4.5 proves 
that e is the single nonzero idempotent of A. Lemma 4.4 concludes this case. 

3) ⇒ 4). Let  x ∈ A\{0}. ThenA(x) is a division algebra such that dim(A(x)) ≤ 
4. We will distinguish the following cases: 

First case. If dim(A(x)) = 1, it is clear that A(x) is isomorphic to R [26, 27]. 
Second case. If dim(A(x)) = 2, then e ∈ A(x). As A(x) satisfies (y, yq , yr ) = 

0 for all y ∈ A(x), Lemma 4.1 proves that A(x) is unitary. We deduce that A(x) is 
isomorphic to C [29, 30]. 

Third case. If dim(A(x)) = 4, we have e ∈ A(x) and deg(A(x)) = 4. AsA(x) 
satisfies (y, yq , yr ) = 0 for all y ∈ A(x), Lemma 4.1 proves that A(x) is unitary 
and third power associative, absurd [13, corollary2] and [24, Proposition 5.1]. 

Consequently, A(x) is isomorphic to R or C for all x ∈ A\{0}. Lemma 4.5 
implies that e is the single nonzero idempotent of A. Finally, Lemma 4.4 concludes 
this case. 

4) ⇒ 1). Let  x ∈ A\{0}. ThenA(x) is a division algebra such that dim(A(x)) ≤ 
4. We have the following cases:
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First case. If dim(A(x)) = 1, it is obvious thatA(x) is isomorphic to R [26, 27]. 
Second case. If dim(A(x)) = 2, we deduce that e ∈ A(x). It is clear that A(x) 

satisfies (y, yq , yr ) = 0 for all y ∈ A(x). Lemma 4.2 proves that A(x) is unitary, 
so A(x) is isomorphic to C [29, 30]. 

Third case. If dim(A(x)) = 4, we have e ∈ A(x) and deg(A(x)) = 4. AsA(x) 
satisfies (y, yq , yr ) = 0 for all y ∈ A(x), Lemma 4.2 implies that A(x) is third 
power associative with unit e, absurd [13, corollary2] and [24, Proposition 5.1]. 

We realize that A(x) is isomorphic to R or C for all x ∈ A\{0}. Lemma 4.5 
proves that e is the single nonzero idempotent of A. In last, Lemma 4.4 proves that 
A is quadratic. 

5) ⇒ 1). Suppose that A satisfies (xp , xq , x)  = 0 and e is a generalized 
right unit. This implies that A(0) satisfies (x, xq , xp ) = 0 and e is an omnipresent 
generalized left unit of A(0). As 3) ⇒ 1), we deduce that A(0) is quadratic, so A is 
quadratic. 
�
Corollary 4.2 Let A be an algebraic algebra without divisors of zero of degree  = 8 
with left unit. The following assertions are equivalent: 

(1) A is quadratic. 
(2) A is power associative. 
(3) A satisfies (x, xq , xr ) = 0. 
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Chapter 5 
Computing Minimal Free Resolutions 
over Monomial Semirings with 
Coefficients in D-A Rings 

Guy Mobouale Wamba, Soda Diop, and Djiby Sow 

Abstract The study of Gröbner–Shirshov bases in a field, where the set of 
monomials is a semiring, was first extended to valuation rings by Yatma et al. 
In a subsequent development, S.Diop et al. further generalized these methods to 
the setting of D-A rings (divisible and annihilable rings), preserving the semiring 
structure for the set of monomials, whether commutative or not. Using the approach 
introduced by Diop et al. in the commutative case, we propose a new technique for 
computing a minimal free resolution for the ideal I as an R module. This extension 
of the method shows the variety and applicability of the Gröbner–Shirshov basis 
framework in various algebraic settings. 

Keywords Divisible and annihilable ring · Semiring · Gröbner–Shirshov basis · 
Free resolution 
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Introduction 

In commutative algebra and algebraic geometry, the study of ideals and their 
properties is very important [2, 13]. Ideals are fundamental in understanding the 
geometric and algebraic structures associated with polynomial rings. One crucial 
aspect of studying ideals is their resolution, which provides valuable information 
about their structure and behavior. In particular, the minimal free resolution offers a 
powerful tool to investigate ideals’ complex nature and associated modules. When 
investigating ideals within polynomial rings, one fundamental question arises: How 
can we describe an ideal in terms of a simpler, more transparent structure? The 
concept of resolution provides an answer to this question. A resolution of an ideal 
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allows us to break it down into simpler components or modules, providing a detailed 
description of the ideal’s structure [3]. 

A minimal free resolution is a special type that captures an ideal’s essential 
properties while minimizing the complexity of the modules involved. It aims to 
represent an ideal as a sequence of free modules, each connected by a homomor-
phism, which preserves certain algebraic properties [3, 14]. Importantly, minimal 
free resolutions possess several desirable properties that make them invaluable in 
various areas of mathematics, including algebraic geometry, commutative algebra, 
and algebraic topology. It is for example used to compute the cohomology group 
.Extis(A,B) for further modules .A,B [6, 8]. 

In the context of minimal free resolution, one powerful tool for constructing 
such resolutions and studying ideals is the theory of Gröbner bases. Gröbner 
bases systematically generate canonical representatives for the ideals, allowing 
us to perform computations and simplify the resolution process. The algorithmic 
nature of Gröbner bases facilitates the practical implementation and computational 
exploration of minimal free resolutions. It has been widely studied for submodules 
with coefficients over fields (see [1, 5, 9, 10]). 

More recently, in 2019, S.Diop et al. [12] have been computing a minimal 
free resolution of .Z-ideal .Z(I )R of R as R module from ideal I of R where 
.R = Z[x1, . . . , xn]. 

In 2020, Ihsen Yengui et al. [7] computed a free resolution for an ideal of the 
Bézout rings. 

In this chapter, we are interested in studying this problem in a polynomial 
semiring over the D-A rings. To do this, we revisit the method introduced in 
[11] for computing Gröbner–Shirshov bases for an ideal of semi-algebra in the 
commutative case. The main goal is to use this method to propose a technique 
for computing minimal free resolution for an ideal of semi-algebra. Indeed, we 
consider a semi-algebra .DRig[X] where .Rig[X] = (X∗, ·, 1, θ), a commutative 
monomial semiring over .X = {x1, . . . , xn} and . D a D-A ring. This leads us to the 
Syzygy Theorem introduced in section “Properties of Gröbner–Shirshov Bases”, 
and this theorem is very useful for this method and works as follows: Consider 
a representable order on D-A ring . D. Using an admissible monomial order in the 
algebra .Rig[X] and well-founded order in D-A ring . D, we define a well-founded 
order on the semi-algebra .DRig[X]. Therefore, if .G = {g1, . . . , gk} is a Gröbner– 
Shirshov basis for ideal of .DRig[X] w.r.t. well-founded order, then Propositions 5.2 
and 5.3 prove that the set of all syzygies obtained from .S-polynomials and .A-
polynomials, .T = {T1, . . . , Tk} with . k ≥ 1, is an .AS-reduced. These results are 
used to construct the Syzygy Theorem 5.2 (to obtain a Gröbner–Shirshov basis 
for syzygies submodule .syz(g1, . . . , gr ) w.r.t. the order induced by well-founded 
order). Thus, it becomes easy to compute a free resolution for the ideal of semi-
algebra .DRig[X], and at each step, one uses some trick in [12] to obtain a minimal 
free resolution for an ideal of .DRig[X]. 

In the last section of this chapter, we generalize the computation of free 
resolutions for a monomial semiring over D-A ring .DRig[X]. We end the paper with 
some examples, including an example where we compute a minimal free resolution
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on a semiring over a Gaussian integer ring modulo 12 (i.e., .D = Z12[i], where 
.i = −1). 

Preliminaries and Notations 

Let . D be a commutative ring with the identity element . 1D. The ring . D is called a 
divisible and annihilable ring, simply denoted by a .D − A ring, if: 

(1) For each element in . D, its representative form is computable. 
(2) There exist a representable order < on . D and a division algorithm, such that for 

any .a, b ∈ D−{0}, both .r = rem(a, b) < b and .q = quot(a, b) are computable 
such that .a = qb + r . 

(3) For any .c ∈ D − {0}, .ann(c) is computable (note that .ann(c) is the smallest 
generator of .ANN(c), where .ANN(c) is the set of the annihilators of c, and it is 
a principal ideal ring for a .D − A ring . D). 

Recall that a .D − A ring is a Noetherian ring. The following rings . Zn and .Zn[i] can 
be viewed as D-A rings. For the properties of .D − A rings, see [4, 11]. 

Let X be a finite and non-empty set, and denote .X∗ the set of words over 
X. We denote by .(X∗, ·, 1) free monoid generated by X, where the unit element 
(denoted “1”) is the empty word. The semiring generated by X is .(X∗, ◦, ·, θ, 1), 
where .(X∗, ◦, θ) is a commutative monoid with neutral element . θ and the law . ·
is distributive with respect to . ◦ from left and right. We denote the semiring by 
.Rig[X] = (X∗, ·, ◦). 

Total order . ≺ on .X∗ is admissible if it satisfies the following condition: For any 
.u, v,w, t ∈ X∗, .u ≺ v ⇒ wut ≺ wvt . 

An ordering . ≺ on .Rig〈X〉 is called a monomial ordering if: 

(a) It is a total ordering, and it means u, v are always comparable under . ≺ for any 
.u, v ∈ Rig[X]. 

(b) It is a well ordering; there is no infinite decreasing sequence in .Rig[X] with 
respect to . ≺. 

(c) It is compatible with the semiring structure: For any . u, v,w ∈ Rig[X], t ′, w′ ∈
X∗, we have  

. u ≺ v ⇒
®

u ◦ w ≺ v ◦ w

t ′uw′ ≺ t ′vw′ .

An admissible monomial order on .Rig[X] and a representable order on . D defines 
a well-founded order . < on polynomials in .DRig[X] in a natural way. 

For the properties and the notations on the semiring . Rig[X], see [11]. 
In the following, we assume that D is a .D − A ring, and the groupoid algebra 

.DRig[X] is the semiring algebra in the not necessarily commutative variables . X =
{x1, · · · , xk} with .k ≥ 1. Further, an admissible monomial order is defined such
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that we can define the leading monomial, the leading coefficient, and the leading 
term of a given polynomial .p ∈ DRig[X], denoted by .Lm(p), .LC(p), and .LT(p), 
respectively. Moreover, we denote .p − LT(p) by .Rest(p). 

For convenience, if we say .LT(p) = cm is a term in .DRig[X], then usually it 
means that .c ∈ D−{0} is the leading coefficient and that m is the leading monomial 
in .Rig[X]. Let . m1 and . m2 be monomials in .Rig[X], and we say .m1|m2 if there exist 
.s, s′ ∈ X∗ and .u ∈ Rig[X] such that : . m2 = sm1s

′ ◦ u.

Moreover, let .LT(p1) = c1m1 and .LT(p2) = c2m2 be terms in .DRig〈X〉, and we 
say .LT(p1)|LT(p2) if .c1|c2 in D and .m1|m2 in .Rig[X]. 

Let . < be an admissible order on .DRig[X]. For any two polynomials . f, g ∈
DRig[X], we say that .f < g if and only if: 

(1) .LM(f ) < LM(g) or 
(2) .LM(f ) = LM(g) and .LC(f ) < LC(g) or 
(3) .LC(f ) = LC(g) and . Rest(f ) < Rest(g)

Let .f, g, p ∈ DRig[X] be three polynomials. Then, we say that: 

(1) f is reduced to g modulo p, denoted .f −→p g, if there exists a term am in f 
such that:

 .Lm(p) divides m, i.e., there exist .s, s ∈ X∗, .u ∈ Rig[X] such that 
.m = sLM(p)s′ ◦ u

 a is reducible modulo .LC(p), i.e., .a = q.LC(p) + r with . r =
rem(a,LC(p)) < a and . q = quot(a,LC(p))

and .g = f − qsps′ ◦ u. 
Put .f = am + f1, and then .g = rm + f1 − qsRest(p)s′ ◦ u. 

(2) f is reduced to g modulo G where G is a polynomial set, denoted .f −→G g, 
if there exists p in G such that .f −→p g. 

(3) .g ∈ DRig〈X〉 is the form normal of f modulo G if .f −→G g and g not is 
reducible modulo G. Note that .−→G is Noetherian. 

4) We denote by .−→∗ the reflexive and transitive closure of .−→, and .−→+ is the 
transitive cloture of .−→. Moreover, .−→k means k consecutive steps of . −→
for a given integer k. We denote also by .←→∗ the smallest equivalence relation 
containing .←→. 

Definition 5.1 (Gröbner–Shirshov Basis) Let G be a finite set of polynomials in 
.DRig[X]. The set  G is a Gröbner–Shirshov basis of .I = 〈G〉 if every polynomial in 
.I = 〈G〉 can reduce to 0 modulo G. 

Given .c1, c2 ∈ D − {0}, two comparable elements, the bigger element is reducible 
modulo the smaller. If .rep(c1) ≥ rep(c2), then . c1 is reducible modulo . c2, i.e., 
.rem(c1, c2) < c1. We have the following definition: 

Definition 5.2 (.S-polynomial) Let .pi = cimi + Rest(pi) with .LM(pi) = mi and 
.LC(pi) = ci for .i = 1, 2. Let .rep(c1) ≥ rep(c2), and if there exist .s1, s2 ∈ X∗ and 
.u1, u2 ∈ Rig[X] such that
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. ω = LCM(s1m1, s2m2) = s1m1 ◦ u1 = s2m2 ◦ u2,

then we define the .S-polynomial of . p1 and . p2 with respect to . ω as follows: 

. S(p1, p2)ω = s1p1 ◦ u1 − qs2p2 ◦ u2.

. ω is ambiguity of the .S-polynomial .S(p1, p2)ω, and .q = quot(c1, c2). 

Let .f = cm + Rest(f ) ∈ DRig[X]. The .A-polynomial of f is the polynomial 

. Apol(f ) = ann(c).f = ann(c).Rest(f ).

If the polynomial f in .DRig[X] is nonzero and .ann(LC(f )) = 0, then .Apol(f ) = 0. 
Let .g1 = c1m1 + Rest(g1) be another polynomial in .DRig[X] such that . g1 =

Apol(f ) = ann(LC(f )).(Rest(f )). If . g1 is nonzero in .DRig[X], then we have . g2 =
Apol(g1) = Apol2(f ) is the polynomial of . g1. If . g2 is nonzero, we can continue 
this process until .Apol(gk) = Apolk+1(f ) = 0 for some .k ∈ N. This process 
will terminate after at most n steps where n is the number of terms in f . We get a 
finite sequence of .A-polynomials, .g1, · · · , gn, where .gk = Apolk(f ) 
= 0 for all 
.k = 1, · · · , n, and .Apol(gk) = 0. 

The notions of .A-polynomial are well known for Gröbner–Shirshov bases over 
the ring. They allow us to reduce a polynomial when its leading coefficient is a zero 
divisor. For the properties and the notations on .A-polynomials, see [4, 11]. 

Definition 5.3 Let G be a subset of semi-algebra .DRig[X]. Then G is: 

(i) .A-reduced if every .A-polynomial in .SAP(G) can reduce to 0 of the relation 
.−→∗. 

(ii) .S-reduced if every .S-polynomial can reduce to 0 of the relation . −→∗, for  
every pair of polynomials of G. 

(iii) .AS-reduced if it is .A-reduced and .S-reduced. 

Properties of Gröbner–Shirshov Bases 

In this section, we introduce key properties of Gröbner–Shirshov bases that will 
play a fundamental role in the following discussions. The results presented here are 
similar to those presented in a previous paper [11]. 

The results discussed in this section will form the basis of our further work. 
Rather than provide explicit proof in this section, we aim to succinctly articulate 
these properties and set the stage for their application and significance in the 
following parts of the paper. 

Lemma 5.1 Let G be a subset .S-reduced of .DRig[X] and .f ∈ DRig[X] such that 
.f −→∗ 0, and there exists .p ∈ G such that .LT(p) divides .LT(f ).
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Lemma 5.2 Assume that G is .S-reduced. Let .pi = cimi + Rest(pi), . i =
1, 2, be the polynomials in G such that .simi ◦ ui = m with .mi = LM(pi), 
.si ∈ X∗, and .ui ∈ Rig[X]. Then there exists .h ∈ G such that .LM(h)|m and 
.LC(h)|rgcd(LC(p1),LC(p2)). 

Lemma 5.3 Assume that G is .S-reduced. Let .pi = cimi + Rest(pi), . i =
1, 2, be the polynomials in G such that .simi ◦ ui = m with .mi = LM(pi), 
.si ∈ X∗, and .ui ∈ Rig[X]. Then there exists .h ∈ G such that .LM(h)|m and 
.LC(h)|rgcd(LC(p1),LC(p2)). 

Now we can extend the lemma 5.3 in the case of multiple polynomials in G. So the  
following lemma is its generalization. 

Lemma 5.4 Assume that G is .S-reduced. Let .pi = cimi + Rest(pi), . 1 ≤ i ≤
k, be the polynomials in G such that .simi ◦ ui = m with .mi = LM(pi), 
.si ∈ X∗ and .ui ∈ Rig[X]. Then there exists .h ∈ G such that .LM(h)|m and 
.LC(h)|rgcd(LC(p1),LC(p2), · · · ,LC(pk)). 

Now define the notion of the weak standard representation of a polynomial f . 
This is a rewriting of f with polynomials in G. 

Definition 5.4 (Weak Standard Representation) Let .f ∈ DRig[X] and .pi ∈ G. 
The polynomial f has a weak standard representation w.r.t. G if there exist . sij , s′

ij ∈
X∗ and .uij ∈ Rig[X] such that .f =

n∑

i=1

aisipi ◦ ui with ai ∈ D, which satisfy the 

following condition: 

. LC(aisipi ◦ ui) 
= 0 and LM(aisipi ◦ ui) ≤ LM(f )

Remark 5.1 for all .1 ≤ i ≤ n. If .f = 0, then we say .f = 0 is the weak standard 
representation of f w.r.t. G. 

The notion of weak standard representation is a powerful tool for understanding 
and characterizing elements within the semiring associated with a given Gröbner– 
Shirshov basis. 

Lemma 5.5 Let .f ∈ DRig[X] such that .f −→∗ 0. Then f has a weak standard 
representation w.r.t. G. 

Lemma 5.6 Let p be a polynomial in G and let .f = a.sp ◦ u be a polynomial of 
.DRig[X], with .a ∈ D, .s ∈ X∗, .u ∈ Rig[X]. If the subset G is .A-reduced, then f 
has a weak standard representation w.r.t. G. 

The following Theorem 5.1 provides a unified understanding of the conditions 
characterizing Gröbner�Shirshov bases in terms of .A.S-reduction, weak stan-
dard representation, and leading term factorization.
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Theorem 5.1 (Composition-Diamond Lemma for Commutative Semiring) Let 
G be polynomials set in .DRig[X] and . < an well-founded order on .DRig[X]. Then 
the following statements are equivalent: 

(1) The set G is a Gröbner–Shirshov basis in .DRig[X]. 
(2) The set G is .A.S-reduced. 
(3) For .f ∈ I = 〈G〉, the polynomial f has a weak standard representation w.r.t. 

G. 
(4) For .f ∈ I = 〈G〉, there exists a polynomial h in G such that . LT(f ) = s.LT(h)◦

u for some .s, s′ ∈ X∗ and .u ∈ Rig[X]. 
In Theorem 5.1, each of these conditions is equivalent to the others, offering 
different perspectives on the nature of Gröbner–Shirshov bases in commutative 
semirings. 

Moreover, the study of the quotient semi-algebra .DRig[X]/I requires choosing 
a good representative. Hence, we can select .N(f |G) as the representative of . f̄ , 
meaning .f̄ = N(f |G), because the normal form of f modulo I is unique. Thus, 
the following result. 

Proposition 5.1 Let .I = 〈G〉 be an ideal of .DRig[X] and .f̄ , ḡ ∈ DRig[X]/I . 
Then, the following statements hold: 

(1) .f̄ = ḡ if and only if .N(f |G) = N(g|G). 
(2) .f̄ = N(f |G). 

We present an algorithm designed to compute the Gröbner–Shirshov basis in the 
case of a monomial semiring .DRig[X] with coefficients in a D-A ring, using a well-
founded order. 

Algorithm 1 systematically computes the Gröbner–Shirshov basis for a given 
ideal in .DRig[X] using the given polynomial subset F . By iteratively applying 
.A-polynomial and .S-polynomial operations and performing reduction steps, 
Algorithm 1 ComputeGröbnerShirshovBasis transforms the set F into the 
minimal Gröbner�Shirshov basis G. The resulting basis G is representative 
of the reduced forms of polynomials in the given ideal, providing a valuable tool for 
algebraic computations in the given ring. 

To illustrate the application of the proposed algorithm, we consider the following 
example in which we compute the minimal Gröbner�Shirshov basis for a 
given set of polynomials over a monomial semiring with coefficients in a D-A ring, 
with respect to well-founded order. 

Example 5.1 Given .R = Z12[i]Rig[X] where .i2 +1 = 0 and .X = {x, y}, compute 
a Gröbner–Shirshov basis of .F = {f1 = (5+3i)x2y◦x−y, f2 = (3+2i)xy2◦y−x}. 
We assume the length lexicographic order induced by .y > x and .<Zn[i]. 

Since that .5 + 3i = 6 + 6i, is a divisor of zero in .Z12[i], thus 

. Apol(f1) = ann(LC(f1)) · rest(f1) = (6 + 6i)y = f3.

We have the new polynomial . f3 from . f1 and .F = {f1, f2, f3}.
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Algorithm 1: ComputeGröbnerShirshovBasis 
Input: Ring R = DRig[X], X = {x, y}; 
polynomial set F = {fi, fj } that generate ideal I; 
A well-founded order < on DRing[X] 
Output: Gröbner-Shirshov basis G for the given ideal in DRig[X] 

1 F_new ← F; 
2 G ← {}  ; // Initialize an empty set to store the Gröbner-Shirshov basis. 
3 while  F_new is not empty do 
4 for  each polynomial fi in F_new do 
5 if  LC(fi) has a non-trivial annihilator in D then 
6 Add Apol(fi ) to F_new ; // Compute A-polynomials. 
7 end  
8 end  

9 for  each pair (fi , fj ) in F_new do 
10 Identify S−polynomial with respect to an ambiguity ω; 
11 Compute S(fi , fj )ω; 
12 if S(fi , fj )ω 
= 0 then 
13 Add S(fi , fj )ω to F_new ; // Compute S−polynomials. 
14 end 
15 end 

16 for each polynomial fi in F_new do 
17 Check if fi is reducible modulo other polynomials in G; 
18 if reducible then 
19 Replace fi with the reduced form ; // Reduce polynomials. 
20 end 
21 end 
22 G ← F_new; 
23 end 
24 return G ; // Final Gröbner-Shirshov basis. 

.3 + 2i is not a zero divisor in . Z12[i], so no .A-polynomial is generated from . f2. 
From polynomials . f1 and . f2, computation of .S-polynomial, starting firstly to 

look at the .S-polynomial with respect to ambiguity .ω0 = LM(f1)y = xLM(f2): 

. S(f1, f2)ω0 = f1 − qxf2 = [(5 + 3i)x2y ◦ x − y]y − (−3 − i)

x[(3 + 2i)xy2 ◦ y − x] = (−3 − i)x2 − y2 = f4

the new polynomial .f4 = (−3 − i)x2 − y2 and the set F become . F =
{f1, f2, f3, f4}. 

From the polynomials 1 and 3, computing of .S-polynomial, starting firstly to 
look the .S-polynomial with respect to ambiguity .ω1 = LM(f1) = x2LM(f3) ◦ x: 

. S(f1, f3)ω1 = qf1 −x2f3 ◦x = 6[(5+3i)x2y ◦x −y]− (6+6i)x2y ◦x = 6y = f

where .q = quot(LC(f3),LC(f1)) = 6 because .6 + 6i = 6(5 + 3i).
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In fact, since that .f3 = 6(5 + 3i)y = (5 + 3i)f is multiple of f , then . f3 is 
deleted and one fixed .f = f3′ . Thus, we have the following polynomial . f3′ = 6y
and the set F become .F = {f1, f2, f3′ , f4}. 

Furthermore, as .LM(f3′) = y divide .LM(f1) = x2y ◦ x, . f1 is reducible modulo 
. f3′ , i.e., .f1 −→f3′ f1′ , which implies that 

. f1′ = s1f1 − qf3′s2 ◦ u = (5+ 3i)x2y ◦ x − y − 6x2y ◦ x = (−1+ 3i)x2y ◦ x − y,

where .5+3i = 6.(1)+(−1+3i) with .q = 1 and .s1 = x2, .s2 = 1, .u = x. We delete 
the polynomial . f1, one obtains the following polynomial .f1′ = (−1+3i)x2y◦x−y, 
and the set F becomes .F = {f1′, f2, f3′ , f4}. 

From the polynomials . f1′ and . f3′ , computing the .S-polynomial, starting by look-
ing at the .S-polynomial with respect to ambiguity. .ω2 = LM(f1′) = x2LM(f3′)◦x: 

. S(f1′ , f3′)ω2 = qf1′ − x2f3′ ◦ x = (3 − 3i)[(−1 + 3i)x2y ◦ x − y] − 6x2y ◦ x

= −(3 − 3i)y = f,

where .6 = (−1+3i)(3−3i). Since that .LM(f3′) divides, .LM(f ) then, f is reducible 
modulo . f3′ , i.e., .f −→f3′ f ′, one has . f ′ = f − qs1f3′s2 ◦u = −(3− 3i)y + 6y =
(3 + 3i)y, where .q = −1 because .−3 + 3i = 6 · (−1) + (−3 − 3i). In fact, since 
that polynomial .f3′ = 6y = i(−1 + 3i)(3 + 3i)y = i(−1 + 3i)f is multiple of . f ′, 
one deletes . f3′ . Whence the following polynomial .f ′ = f3′ = (3+ 3i)y and the set 
F become .F = {f1′, f2, f3′′ , f4}. 

From the polynomials . f1′ and . f3′′ , computing of .S-polynomial, starting firstly to 
look at the .S-polynomial with respect to ambiguity . ω3 = LM(f1′) = x2LM(f3′′) ◦
x: 

. S(f1′ , f3′′)ω3 = qf1′ − x2f3′′ ◦ x = −3[(−1 + 3i)x2y ◦ x − y] + (3 + 3i)x2y ◦ x

= 3y = f,

where .3 + 3i = −3(−1 + 3i). Since that . f3′′ = (3 + 3i)y = −3(−1 + 3i)y =
(−1 + 3i)f is a multiple of f , one deletes the polynomial . f3′′ . Thus, we obtained 
the new polynomial .f3′′′ = f = 3y and the set F become .F = {f1′ , f2, f3′′′ , f4}. 

We have known also that .LM(f3′′′) divides .LM(f1′) so .f1′ −→f3′′′ f1′′ ’, i.e., 
.f1′′ = f1′ − qs1f3′′′s2 ◦ u = −x2y ◦ x − y, where .s1 = x2, .s2 = 1, .u = x, and 
.q = i because .−1 + 3i = 3.(i) − 1. One deletes the rule . f1′ , and one obtained 
the new following polynomial .f1′′ = f = −x2y ◦ x − y and the set F become 
.F = {f1′′ , f2, f3′′′ , f4}. 

From the polynomials . f2 and .f3′′′ , computing of .S-polynomial, starting firstly to 
look at the .S-polynomial with respect to ambiguity .ω4 = LM(f2) = LM(f3′′′)◦xy2: 

.S(f2, f3′′′)ω4 = f2−qf3′′ ◦xy2 = (3+2i)xy2◦y−x−3xy2◦y = 2ixy2◦y−x = f,
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where .q = 1 because .3 + 2i = −3.(1) + 2i. Since that .LM(f3′′′) divides, . LM(f )

then, f is reducible modulo .f3′′′ , i.e., .f −→f3′′′ f ′, one has . f ′ = f −qs1f3′′′s2◦u =
2ixy2 ◦ y − 3ixy2 ◦ y = −ixy2 ◦ y − y, where .q = 1 because .2i = 3 · (i) − i, 
.s1 = 1, .s2 = 1, and .u = xy2. So one deletes the polynomial f . In fact, since that 
polynomial .f2 = (3 + 2i)xy2 − x = (2 − 3i)f ′ is a multiple of . f ′, one deletes 
the polynomial . f2. Whence the new polynomial .f2′ = f2 = −ixy2 ◦ y − x and F 
become .F = {f1′′ , f2′ , f3′′′ , f4}. 

From the polynomials . f2′ and .f3′′′ , computing of .S-polynomial, starting firstly to 
look the .S-polynomial with respect to ambiguity .ω5 = LM(f2′) = LM(f3′′′) ◦ xy2: 

. S(f2′ , f3′′′)ω5 = qf2′ − f3′′ ◦ xy2 = 3i[−ixy2 ◦ y − x] − 3xy2 ◦ y = −3ix = f,

where .q = 3i because .3 = −i.(3i). Whence the new polynomial . f5 = f = −3ix
and F become . F = {f1′′ , f2′ , f3′′′ , f4, f5}.

From the polynomials . f2′ and . f5, computing of .S-polynomial, starting firstly to 
look at the .S-polynomial with respect to ambiguity .ω6 = LM(f2′) = LM(f5)y

2◦y: 

. S(f2′ , f5)ω6 = qf2′ − f5y
2 ◦ y = −3ixy2 ◦ y − 3x + 3ixy2 ◦ y = −3x = f,

where .q = 3 because .−3i = −i.(3). Since that .f5 = −3ix = if is a multiple 
of f , so we delete the . f5 and fixed the new polynomial .f5′ = f = −3x and F 
become .F = {f1′′ , f2′ , f3′′′ , f4, f5′ }. Furthermore, as .LM(f5′) divides .LM(f4), . f4
is reducible modulo . f5′ , i.e., .f4 −→f5′ f4′ , which implies that . f4′ = f4−qs1f5′s2◦
u = (−3− i)x2−y2+3x2 = −ix2−y2, where .q = 1 because . −3− i = −3.(1)− i

and .s1 = x, .s2 = 1 .u = 0. One deletes the polynomial . f4, and one obtains the new 
polynomial .f4′ = −ix2 − y2 and the set F become .F = {f1′′ , f2′ , f3′′′ , f4′ , f5′ }. 

After the above steps, we get a minimal Gröbner�Shirshov basis of poly-
nomials . f1 and . f2 over .(Z12[i])[x, y] with .i2+1 = 0, which consists of polynomials 
corresponding to . f1′′ , . f2′ ,.f3′′′ , . f4′ , . f5′ , i.e., 

. F = {f1′′ , f2′ , f3′′′ , f4′ , f5′ }.

In Example 5.1, we demonstrated the computation of a Gröbner�Shirshov basis 
over the semi-algebra .DRig[X], where D is a ring of Gaussian integers modulo. 
Specifically, we considered the semi-algebra .R = Z12[i]Rig[X] with . i2 + 1 = 0
and the set of polynomials .F = {f1, f2}, where .f1 = (5 + 3i)x2y ◦ x − y and 
.f2 = (3 + 2i)xy2 ◦ y − x. The computations were done with respect to a length 
lexicographic order induced by .y > x and .< Zn[i]. 

The Gröbner�Shirshov basis was obtained step by step, introducing new 
polynomials and eliminating redundant ones by computations of .S-polynomial and 
.A-polynomials. The final Gröbner–Shirshov basis for the ideal generated by F 
was determined to be .F = {f1′′ , f2′ , f3′′′ , f4′ , f5′ }, where .f1′′ = −x2y ◦ x − y, 
.f2′ = −ixy2 ◦ y − x, .f3′′′ = 3y, .f4′ = −ix2 − y2, and .f5′ = −3x.



5 Computing Minimal Free Resolutions over Monomial Semirings with. . . 63

This example shows the effectiveness of the Gröbner�Shirshov basis calcu-
lation in handling polynomials over .DRig[X] in the given algebraic setting. The 
resulting basis provides a concise representation of the ideal generated by the initial 
set of polynomials. 

Syzygies Theorem 

For .r > 1, denote by .(e1, . . . , er ) the standard basis for free .R-module .F = Rr . 
Let .f1, . . . , fr ∈ R and . < be an admissible order in .Rig[X]. Our goal is to define 

Schreyer’s ordering also called the ordering . >1 in . F induced by .f1, . . . , fr and . <. 

Definition 5.5 (Schreyer’s Ordering) Given a monomial ordering . < on R and 
nonzero polynomials .f1, . . . , fr ∈ R, we define the Schreyer’s ordering .>1 on 
F induced by . < and .f1, . . . , fr as follows: Let .xαei and .xβej be monomials in F . 
One says that 

.xαei >1 xβej if and only if: 

1. .xαLM(fi) > xβLM(fj ). 
2. .xαLM(fi) = xβLM(fj ) and .i > j ∀ α, β ∈ N

n. 

Example 5.2 Consider the polynomials . g1 = 5xy2 ◦ y ◦ x + xy ◦ 1, g2 = 2x2y ◦
y − 1 ◦ xy in .R = DRig[X] with .D = Z6. Using length lexicographic ordering and 
the monomial ordering . >, .LM(g1) = xy2 ◦ y ◦ x and .LM(g2) = x2y ◦ y. Let us 
compare the monomials .xye1 and .x2y2e2 with . >1 in R induced by .g1, g2 and . >: 

1. .xyLM(g1) = x2y3 ◦ xy2xy3 ◦ x2y. 
2. .x2y2LM(g2) = x4y3 ◦ x2y3. 

Since .xyLM(g1) >Ln x2y2LM(g2), then .xy2e1 >1 x2y2e2. 

Remark 5.2 Consider a Gröbner�Shirshov basis .G = {g1, . . . , gr } for the 
ideal I in the ring R. According to the Composition-Diamond Lemma for Gröbner– 
Shirshov structures (cf. Theorem 5.1), for any pair .(i, j) with .1 ≤ j < i ≤ r , 
the remainder obtained by the division of the .S-polynomial .S(gi, gj )ω and the 
.A-polynomial .Apol(pi) by G is exactly zero. In such cases there exist elements 
.h1, . . . , hs ∈ R which satisfy: 

. S(gi, gj )ω = sigi ◦ ui − qsjgj ◦ uj =
r∑

k=1

f
ij
k gk ◦ ui + 0 and Apol(gi)

= ann(LC(gi)).gi =
r∑

k=1

hi
kgk + 0,

and this means that
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. 

r∑

k=1

f
ij
k gi◦ui−LC(gj )

LC(gi)
sigi◦ui+sj gj ◦uj = 0 and

r∑

k=1

hi
kgk−ann(LC(gi)).gi = 0,

where .
LC(gi)

LC(gj )
= quot(LC(gi),LC(gj )) = q. Thus, we have 

. f
ij
1 g1◦u1+. . .+. . .+gj (f

ij
j +sj )◦uj+gi(f

ij
i − LC(gi)

LC(gj )
sj )◦ui+. . .+f ij

r gr◦ur = 0

and 

. g1h1 + . . . + gjhj + . . . + gi(hi − ann(LC(gi))) + . . . + grhr = 0.

The following sets 

. Gij = (f
ij
1 ◦u1, . . . , (f

ij
j +sj )◦uj , . . . , (f

ij
i − LC(gj )

LC(gi)
si)◦ui, . . . , f

ij
r ◦ur) ∈ Rr

and 

. Ki = (h1, . . . , (hi − ann(LC(gi))), . . . , hr ) ∈ Rr

are syzygies of .g1, . . . , gr . Thus, the set of all syzygies obtained from our .S-
polynomials and .A-polynomials is .T = {Gij ,Ki |1 ≤ j < i ≤ r}. 
Therefore, by definition 5.2, .S(gi, gj )ω = qsigi ◦ ui − sj gj ◦ uj and . Apol(gi) =
ann(c).gi , respectively. This leads to .

LC(gi)

LC(gj )
siLT(gi) ◦ ui − sjLT(gj ) ◦ uj = 0. 

That is, 

. siLM(gi) ◦ ui = sjLM(gj ) ◦ uj

observed that for all .i > j , we have the following relation 

. LT(f
ij
k gk) ≤ LT(S(gi, gj )) ≤ sjLT(gj ) ◦ uj = LC(gi)

LC(gj )
siLT(gi) ◦ ui.

Since that .siLM(gi) ◦ ui = sjLM(gj ) ◦ uj , hence, for .i > j , then by the Schreyer’s 
ordering . <1, we have the leading term of . Gij

. LT(Gij ) = −LC(gj )

LC(gi)
(si ◦ ui)ei .

In the same way, for all i and each k, . LT(hi
kgk) ≤ LT(Apol(gi)) ≤

ann(LC(gi))LT(gi). Thus, we have the leading term of .Ki
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. LT(Ki) = ann(LC(gi))LT(gi)ei .

The following Proposition 5.2 establishes a fundamental connection between 
Gröbner–Shirshov bases and the syzygy module of an ideal I in a ring  R. 

Proposition 5.2 (Division in Syzygy Module) Let I be an ideal of R. Let . G =
{g1, . . . , gr} be a Gröbner–Shirshov basis for I with respect to the order . <. Then the 
set .T = {T1, . . . , Tk} is .S-reduced of G if for every vector polynomial .H ∈ syz(G), 
then there exists a vector polynomial .Q ∈ T such that .LT(Q) divides .LT(H) w.r.t. 
Schreyer order . >1 induced by . < and .g1, . . . , gr . 

Proof Let .H = a.me+Rest(H) ∈ G such that .H −→∗ 0. We proceed by induction 
on H , by using Schreyer’s order . >1. 

Since .H −→∗ 0 ⇐⇒ ∃k ≥ 0 such that .H −→k 0: 

(1) If .k = 0, then .H = 0. By definition 5.4, there exists .P ∈ T such that 
.LT(P )|LT(H) w.r.t. Schreyer’s ordering. 

(2) Assumption of recurrence: Suppose that .Q −→∗ 0 with .Q < H : 

– For .Q −→∗ 0 with .Q < H according to Lemma 5.1, there exists . P ∈ T

such that .LT(P )|LT(Q) w.r.t. Schreyer’s ordering induced by . < and G. 
– Further, since that relation .−→∗ is reflexive and transitive closure of relation 

.−→, we can consider .H −→+ 0. By the rule satisfied by .−→+, there 
exists .T1 ∈ T such that .LT(T1)|LT(Q) w.r.t. the Schreyer’s ordering, i.e., 
there exists .t = a.me in H such that .m = s1.m1e1 ◦ u1 where . m1e1 =
LM(T1), .s1 ∈ X∗, .u1 ∈ Rig[X], and .a = q1.LC(T1) + b1 with . b1 =
rem(a,LC(T1)) < a = LC(H) and .q1 = quot(a,LC(T1)), set .LC(T1) = c1. 
By rule of the relation .−→∗, we can assume .H −→∗ H ′ −→T1 Q −→∗ 0. 

If .b1 
= 0, then .LT(Q) = b1.me. Since .Q −→∗ 0 with .Q < H by 
assumption of recurrence, there exists .T2 ∈ T such that .LT(T2)|LT(Q) w.r.t. 
Schreyer’s ordering, i.e., .m = s2.m2e2◦u2, where .m2e2 = LM(T2), .s2 ∈ X∗, 
.u2 ∈ Rig[X], and .a = q.LC(T2) + b2 with . b2 = rem(a,LC(T2)) < a =
LC(H) and .q = quot(a,LC(T2)), set .LC(T2) = c2. By the properties of ring 
D-A, we have .c2 ≤ b1. But since that, .m1|m and .m2|m so . s1m1e1 ◦ u1 =
me = s2m2e2 ◦ u2 (with .e = e2). We can so compute the .S-polynomial of 
. T1 and . T2 w.r.t. . ω1. Thus we have 

. S(T1, T2)ω1 = s1.T1 ◦ u1 − q2.s2.T2 ◦ u2,

where .q2 = quot(c1, c2) and .c1 = q2.c2 + b2 with .b2 = rem(c1, c2) < c1. 

. S(T1, T2)ω1 = b2.me + s1.Rest(T1) ◦ u − q2.s2.Rest(T2) ◦ u2,

which leads to .LT(S(T1, T2)ω) = b2.me = b2.s2m2e2 ◦ u2, which means 
that



66 G. M. Wamba et al.

. 

{
LM(S(T1, T2)ω1) = me = s2m2e2 ◦ u2

LC(S(T1, T2)ω1) = b2 < c1 < a = LC(H)
.

If .b2 
= 0, then .S(T1, T2)ω1 < H , and then by assumption of recurrence, 
there exists . T3 in . T such that .LT(T3) divides .LT(S(T1, T2)ω), i.e., . LM(T3) =
m3e3|LM(S(T1, T2)ω1) = me and .LC(T3) = c3|LC(S(T1, T2)ω1) = b2. By  
the properties of the .D − A ring . D, we have .c3 < b2. We observe that . m3|m
and .m2|m so .s2.m2e2 ◦ u2 = me = s1m3e3 ◦ u3 (here .e3 = e = e2). We can 
compute the .S-polynomial of . T2 and . T3 w.r.t. . ω2. Thus, we have 

. S(T2, T3)ω2 = s2T2 ◦ u2 − q3s3T3 ◦ u3,

where .q3 = quot(c2, c3) and .c2 = q3.c3 + b3 with . b3 = rem(c2, c3) < c2

. S(T2, T3)ω2 = b3.me + s2Rest(T2) ◦ u2 − q3s3Rest(T3) ◦ u3,

which leads to 

. 

{
LM(S(T2, T3)ω2) = me = s1m3e3 ◦ u3

LC(S(T2, T3)ω2) = b3 < c2 < b1 < a = LC(H).

If .b3 
= 0, then .S(T2, T3)ω2 < H . Since the ring D is Noetherian and 
that .{bi}1≤i≤N is strictly decreasing, we can continue the above process until 
.bN+1 = 0. Thus, we obtain a sequence of finite 

. a = b0 > b1 > b2 > · · · > bN > bN+1 = 0

the corresponding polynomials in .T = {T1, T2, . . . , TN+1} with . Ti =
cimiei + Rest(Ti), for all .1 ≤ i ≤ N + 1. According to Lemma 5.1 
.cN+1mk+1eN+1|a.me, and for .1 ≤ i ≤ N + 1 that is to say 
.LT(TN+1)|LT(H). It follows that .TN+1 is the polynomial we were looking 
for in . T. 

In conclusion, Proposition 5.2 asserts that given a Gröbner–Shirshov basis G for I , 
a chosen set . T is .S-reduced if it satisfies a crucial condition related to the leading 
terms of vector polynomials in the syzygy module. This condition ensures that, 
under Schreyer’s order induced by the monomial order . < and the elements of the 
basis G, the chosen set . T possesses a divisibility property crucial for studying the 
algebraic structure of the ideal. This proposition not only provides a theoretical 
framework for understanding the division properties within the syzygy module but 
also serves as a practical tool for computational algebraic tasks involving Gröbner– 
Shirshov bases and syzygies in ring theory. 

The following algorithm shows that there exists a division for Syzygy module . T
in .DRig[X].
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Algorithm 2: DivisionSyzygyModule 
Input: A Gröbner-Shirshov basis G = {g1, . . . , gr } for the ideal I in DRig[X]. 
A set of vector polynomials T = {T1, . . . , Tk} in DRig[X]. 
A well-founded order < on DRig[X] is used to compute the Gröbner-Shirshov basis. 
Output: True if T is S-reduced w.r.t. G. False otherwise. 

1 for  k = 1, . . . , s  do 
2 Compute the S polynomials S(T )ω for all pairs of vector polynomials (Ti , Tj ) in T 

with respect to ambiguity ω, using Schreyer’s order >1 and G as a basis: 
3 for  each pair (Ti , Tj ) in T do 
4 Compute S(T )ω using Schreyer’s order >1 and G. 
5 end  
6 Compute the normal form N(H)  for each vector polynomial H in syz(G), the syzygy 

module of G, using Schreyer’s order >1 and G as the basis: 
7 for  each vector polynomial H in syz(G) do 
8 Compute N(H)  using Schreyer’s order >1 and G. 
9 Set found = False. for each vector polynomial Q in T do 

10 Compute LT(H) and LT(Q) using the Schreyer order >1 induced by < and G. 
11 if LT(Q) divides LT(H) with respect to Schreyer’s order >1 and G then 
12 Set found = True and break. 
13 end 
14 end 
15 if found = False then 
16 return False (T is not S-reduced). 
17 end 
18 end 
19 end 
20 return True (T is S-reduced). 

Compute the .S-polynomials .S(T) for all pairs of vector polynomials .(T i, Tj) in 
T, using Schreyer’s order . >1 and G as a basis: 

Now consider the vector polynomial H , written in the form .H = as.P ◦u, where 
.P ∈ T , .a ∈ D, .s ∈ X∗, and .u ∈ Rig[X]. The following Proposition 5.3 establishes 
an important result concerning the weak representation of elements in the syzygy 
module .syz(G) associated with a Gröbner–Shirshov basis G for an ideal I . 

Proposition 5.3 (Weak Representation of SyzygyModule) Let . G = {g1, . . . , gr }
be a Gröbner–Shirshov basis for I w.r.t. the ordering . <. Assume that the set 
.T = {T1, . . . , Tk} is .A-reduced of F . Then .H ∈ syz(G) ⊂ F has a weak standard 
representation w.r.t. the Schreyer’s ordering . >1 induced by . < and .g1, . . . , gr . 

Proof Assume that set . T is .A-reduced. If .H ∈ T, then . Apol(H) −→∗ 0 ⇐⇒ ∃k ≥
0 such that .Apol(H) −→k 0. Reasoning by recurrence on f : 

(1) If .H = 0, it is obvious that by Remark 5.1 .H = 0 is the weak standard 
representation of H w.r.t. . T. 

(2) If .H = a.sP ◦ u, let us show that H has a weak standard representation by 
recurrence by P using Schreyer’s order . >1:
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(a) Let P be nonzero minimal polynomial in . T and assume that .Apol(P) 
= 0. 
Since . T is .A-reduced, then there exist some polynomial .Q ∈ T such 
that .Apol(P ) = b1s1Q ◦ u1 with .b1 ∈ D, .s1 ∈ X∗, and .u1 ∈ Rig[X]. 
This means that .LM(Q) ≤ LM(Apol)(P ) < LM(P ), which leads to 
.LM(Q) < LM(P ). Thus .Q < P . This leads to a contradiction because 
Q is a polynomial in . T. Hence, .Apol(P ) = 0: 

i. If .LC(a.sP ◦ u) = a.LC(P ) 
= 0, then H has a weak standard 
representation w.r.t. . T. 

ii. If .LC(H) = LC(a.sP ◦ u) = a.LC(P ) = 0, then there exists . ak ∈ D

such that 

. H = aksApolk(P ) ◦ u and akLC(Apolk) 
= 0.

Since .Apol(p) = 0, then .H = 0. Hence, by Remark 5.1, H has a weak 
standard representation w.r.t. . T. 

(3) Assumption of recurrence: Assume that for all vector polynomials .L ∈ F such 
that vector polynomial .L = b.sQ ◦ v where .Q ∈ F and .Q < H , then L has a 
weak standard representation w.r.t. . T. 

1. Since the vector polynomial is equal, .H = a.sP ◦ u with .P ∈ T. We discussed 
the following conditions: 

(a) If .LC(H) = aLC(P ) 
= 0, then H has a weak standard representation w.r.t. 
. T. 

(b) If .LC(H) = a.LC(P ) = 0, then there exists .ak ∈ D such that 

. H = ak.sApolk(P ) ◦ u1 and ak.Apolk(P ) 
= 0.

Since .P ∈ T so .Apolk(P ) −→∗ 0. Thus, by Lemma 5.5, .Apolk(P ) has a 
weak standard representation w.r.t. . T that is to say 

. Apolk(P ) =
n∑

i=1

bisiPi ◦ ui,

where .bi ∈ D, .si ∈ X∗, and .ui ∈ Rig[X], .pi ∈ Rig[X] and 

. 

{
LM(bisiPi ◦ ui) ≤ LM(Apolk(P ))

LC(bisiPi ◦ ui) = biLC(Apolk(P )) 
= 0.

Thus, we obtain 

.H = ak.s(

n∑

i=1

bi.siPi ◦ ui) ◦ u1 =
n∑

i=1

akbissiPi ◦ sui ◦ u,
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and setting .vi = sui ◦ u, .zi = s1si , and .cik = akbi , we have  

. H =
n∑

i=1

cikziPi ◦ vi .

Since .LM(Pi) ≤ LM(cijkziPi ◦ vi) ≤ LM(Apol(P )) < LM(P ), so  
.LM(Pi) < LM(P ), which implies .Pi < P . Furthermore, by assumption 
of recurrence, each .cikziPi ◦vi has a standard representation w.r.t. . T. While 
replacing each .cikziPi ◦ vi by its standard representation, we obtain a weak 
standard representation of H . 

Assuming that a specially chosen set . T is .A-reduced with respect to the free module 
F , Proposition 5.3 asserts that every element H in .syz(G) has a weak standard 
representation under Schreyer order . >1. 

This result highlights the structured nature of syzygy modules and their con-
nection to Gröbner–Shirshov bases, providing valuable insights into the algebraic 
properties of ideals in the context of computational algebra and ring theory. The 
notion of weak standard representation, as demonstrated in this chapter, serves as 
a powerful tool for understanding and characterizing elements within the syzygy 
module associated with a given Gröbner–Shirshov basis. 

The following algorithm shows that there exists a weak standard representation 
for Syzygy module . T in .DRig[X]. 

Using Propositions 5.2 and 5.3, we now give the following Theorem 5.2, which 
will be very useful for characterizing the existence of a Gröbner–Shirshov basis for 
.Syz(g1, . . . , gr ) with respect to Schreyer’s ordering induced by the monomial order 
. < and G. 

Theorem 5.2 establishes a fundamental equivalence between the properties of 
Gröbner–Shirshov bases and the syzygy module associated with an ideal I in a ring 
R. 

Theorem 5.2 (Syzygy Theorem) Let I be the ideal of R. Let .G = {g1, . . . , gr } be 
a Gröbner–Shirshov basis for I w.r.t. the ordering . <. Then the set . T = {T1, . . . , Tk}
forms a Gröbner–Shirshov basis for .syz(g1, . . . , gr ) w.r.t. the ordering . >1 induced 
by . < and .g1, . . . , gr if and only if the subset G is .AS-reduced. 

This theorem 5.2 can be proved by using the same argument as in Propositions 5.2 
and 5.3, respectively. We omit the details. 

This theorem asserts that the set . T, composed of carefully selected elements . Ti , 
forms a Gröbner–Shirshov basis for the syzygy module .syz(g1, . . . , gr ) precisely 
when the Gröbner–Shirshov basis .G = {g1, . . . , gr} is .AS-reduced. Theorem 5.2 
highlights the intricate interplay between the algebraic structure of Gröbner– 
Shirshov bases and the syzygy module and provides a powerful criterion for 
determining when a chosen set becomes a Gröbner–Shirshov basis for the associated 
syzygy module. This theorem not only enhances our theoretical understanding of 
syzygies but also has practical implications for computational algebra and ring 
theory, making it a key result in the study of algebraic structures and ideals.
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Algorithm 3: WeakRepresentationSyzygyModule 
Input: A Gröbner-Shirshov basis G = {g1, . . . , gr } for the ideal I in DRig[X]. 
A set of vector polynomials T = {T1, . . . , Tk} that is A-reduced with respect to G. 
The vector polynomial H = as.P ◦ u, where P ∈ T, a ∈ D, s ∈ X∗, and  u ∈ Rig[X]. 
Output: True if  H has a weak standard representation with respect to G. False otherwise. 

1 for  k = 1, . . . , s  do 
2 Compute the syzygy module syz(G) of the Gröbner-Shirshov basis G. 
3 Compute the A-polynomial of all polynomials in T using the Schreyer’s ordering >1 

and G: 
4 for  each nonzero vector polynomial H = a · s · P ◦ u in T do 
5 For every nonzero minimal polynomial P in T, find a polynomial Q in T such that 

Apol(P ) = b · s · Q ◦ v with Q ≤ P . 
6 if  Q exists in T then 
7 if  Apol(P ) = 0 then 
8 return  True (H has a weak standard representation w.r.t T). 
9 end  

10 end 
11 else if LC(H) = a · LC(P ) 
= 0 then 
12 return True (H has a weak standard representation w.r.t T). 
13 end 
14 end 
15 end 
16 if LC(H) = a · LC(P ) = 0 then 
17 Find ak ∈ D such that H = ak · s · Apolk (P ) ◦ u and ak · Apolk (P ) 
= 0. 
18 if Apolk (P ) −→∗ 0 then 
19 if Apol(P ) = 0 then 
20 return True (H = 0). 
21 end 
22 end 
23 end 
24 return True (H has a weak standard representation w.r.t T). 

The following algorithm computes a Gröbner–Shirshov basis for Syzygy module 
.Syz(G) in .DRig[X]. 
Example 5.3 Suppose we want to find a syzygy of the ring R for the ideal 
.I = 〈f1 = (5 + 3i)x2y ◦ x − y, f2 = (3 + 2i)xy2 ◦ y − x〉 generated by 
. f1 and . f2 in R. We will fix the lexicographic ordering with .y > x as the well-
founded order. In Example 5.1, it was demonstrated that the set G forms a minimal 
Gröbner�Shirshov basis for .I = 〈f1, f2〉 with respect to the well-founded 
order. 

Let us arrange the polynomials in the set G with respect to the negative reverse 
lexicographic ordering . ds : .F = {g1 = f5′ , g2 = f3′′ , g3 = f4′ , g4 = f1′′ , g5 = f2′ }. 

When computing the Gröbner–Shirshov basis, we observe that . S(g1, g2)ω12 =
S(g3, g5)ω35 = 0. Furthermore: 

.S(g1, g3)ω13 = y2g1 − 3xg3 = −ix2g1
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Algorithm 4: ComputingGröbnerShirshovBasisSyzygy 
Input: A set of vector polynomials T = {T1, . . . , Tk} in DRig[X]. 
A minimal Gröbner-Shirshov basis G = {g1, . . . , gr } for the ideal I in DRig[X]. 
A well-founded order < on DRig[X] is used to compute the Gröbner-Shirshov basis. 
Output: True if T forms a Gröbner-Shirshov basis for syz(g1, ..., gr ). False otherwise. 

1 for  k = 1, . . . , s  do 
2 Compute the S-polynomials S(T ) for all pairs of vector polynomials (Ti , Tj ) in T with 

respect to a specific ambiguity ω, using Schreyer’s ordering >1 and G as the basis: for 
each pair (Ti , Tj ) in T do 

3 Compute S(Ti , Tj )ω using Schreyer’s ordering >1 and G. 
4 end  
5 Compute the normal forms N(S(T )) for each S-polynomial S(T ) using Schreyer’s 

ordering >1 and G as the basis: for each S-polynomial S(T ) do 
6 Compute N(S(T )) using Schreyer’s ordering >1 and G. 
7 end  
8 for  each polynomial f in G do 
9 for  each vector polynomial T in T do 

10 Compute the S-polynomial S(f, T )ω using Schreyer’s ordering >1 and G as 
the basis: 

11 Compute N(S(f, T )ω) using Schreyer’s ordering >1 and G. 
12 if any N(S(f, T )ω) is nonzero then 
13 return False (T is not AS-reduced). 
14 end 
15 end 
16 end 
17 end 
18 return True (T forms a Gröbner-Shirshov basis for syz(g1, . . . , gr )). 

S(g2, g3)ω23 = yg2 + 3g3 = ixg1 

S(g1, g4)ω14 = (xy ◦ 1)g1 − 3g4 = 3g2 

S(g2, g4)ω24 = (x2y ◦ x)g2 + 3yg4 = −yg2 

S(g3, g4)ω34 = (x2y)g3 − y2g4 = −ix2(x2y ◦ x) + y3 −→g4 −yg3 

S(g1, g5)ω15 = (xy2 ◦ y)g1 + 3ig5 = ixg1 

S(g2, g5)ω35 = (xy ◦ 1)g2 − 3ig5 = −ig1 

S(g4, g5)ω45 = yg4 + ixg5 = g3. 

Observe that the following relations: . G31 = (−(ix2 + y2), 0, 3x, 0, 0), G32 =
(ix,−y,−3, 0, 0), G41 = (−(xy ◦ 1), 1, 0, 3, 0), G42 = (0,−(x2y ◦ x +
y), 0,−3y, 0), G43 = (0, 0,−(x2y ◦ x + y, y2, 0), G51 = (−(xy2 ◦ y −
ix), 0, 0, 0,−3ix), G52 = (−i,−(xy ◦ 1), 0, 0, 3i), G54 = (0, 0, 1,y ,−ix) are 
syzygies of .g1, g2, g3, g4, g5 w.r.t. Schreyer’s order induced by well-founded order 
. <. By the Syzygy theorem 5.2, the set  

.T = {G31,G32,G41,G42,G43,G51,G52,G54}
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forms a minimal Gröbner�Shirshov basis for .syz(g1, g2, g3, g4, g5) w.r.t. 
Schreyer’s order induced by . < and .g1, g2, g3, g4, g5. 

Minimal Free Resolution in DRig[X] 

Given an ideal .I = 〈G〉 of .R = DRig[X], this section presents a method for 
computing a minimal free resolution for I as an R module. The approach is to 
compute a minimum free resolution for I using syzygy theorems. 

Let .I = 〈f1, . . . , fr 〉 represent a two-sided ideal of R, and consider a 
minimal Gröbner�Shirshov basis .G = {g1, . . . , gr} for I with respect to some 
monomial order . >. We can then construct the following maps: 

. 

Since .{g1, . . . , gr} form a minimal Gröbner�Shirshov basis for I , by the  
Syzygy Theorem 5.2), one can find a minimal Gröbner–Shirshov basis . {T1, . . . , Tr1}
for .syz(g1, . . . , gr ) ⊂ F1. 

Now consider the map .α1 : F1 −→ ker(φ1) = 〈g1, . . . , gr 〉. By the inclusion 
map . i1 we have the following commutative diagram: 

. 

and adding these to the sequence, we obtain the following exact sequences: 

. 

Now let us compute .ker(φ2). Since .{T1, . . . , Tr1} forms a Gröbner�Shirshov 
basis for .syz(g1, . . . , gr ) w.r.t. the Schreyer’s ordering .<1 induced by . < and 
.{g1, . . . , gr}, then the remainder of the division’s algorithm of . S(Ti, Tj )1≤j<i≤r1

by .{T1, . . . , Tr1} is zero. For each such .S-polynomials and .A-polynomials, one can 
collect the corresponding syzygy . Tij (playing the role of .Gij seen in Remark 5.2), 
and using Theorem 5.2, one sees that the set . {Tij ∈ syz(T1, . . . , Tr1)/ 1 ≤
j < i ≤ r1} forms a Gröbner�Shirshov basis for . syz(T1, . . . , Tr1) =
syz(syz(g1, . . . , gs)) w.r.t. the Schreyer’s ordering .<2 induced by .<1 and 
.{T1, . . . , Tr1}. Assume without loss of generalities that . 〈Tij ∈ syz(T1, . . . , Tr1)/ i >

j 〉 = 〈G1, . . . ,Gr2〉 and the set .{G1, . . . , Gr2} form a minimal Gröbner�Shirshov 
basis for .syz(syz(g1, . . . , gs)), and then:
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. ker(φ2) = syz(syz(g1, . . . , gr )) = 〈G1, . . . ,Gr2〉.

Consider the map .α2 : Fr2 −→ ker(φ2), and using the inclusion maps . i2 we get 
the following commutative diagrams: 

. 

Adding these to sequence precedent, we get the following exact sequences 

. 

Continuing this way and so forth, this leads to a free resolution not necessarily finite. 
To obtain a finite and minimal free resolution, we use the technique used in [12] 
based on Hilbert’s syzygies theorem. The degree reverses lexicographic ordering is 
the best choice for this method. 

Theorem 5.3 Let .R = DRig[X] be a .D − A ring, and then any finitely generated 
. R−module F has a minimal free resolution of length .Kdim R, 

where .Kdim R is the Krull dimension of the polynomial ring .R = DRig[X]. 
If the ring . D is a ring of integers modulo p,(.Z/pZ), the Krull dimension of . D is 

0. Therefore, the Krull dimension of R is equal to p. But, if the ring . D is a Gauss 
integer ring modulo p (.Z[i]/pZ = Zp[i], where .i2 + 1 = 0), then we have two 
cases: 

1. If the integer p is prime number, then the Krull dimension of . D is 1. 
2. If instead we take p to be a composite number, then Krull dimension of . D will 

be either 1 or 2. 

By applying the technique used in [12], we obtain the following short exact 
sequence: 

. 

Theorem 5.4 (Existence of Minimal Free Resolution) Let .I = 〈f1, . . . , fr 〉 be 
an ideal of .R = DRig[X], and let .G = {g1, . . . , gr } be a minimal Gröbner– 
Shirshov basis for I with respect to a monomial order . >. Suppose m and n are 
dimensioned such that .m ≤ n and I have a minimal free resolution of length 
between m and n. Then, there exists a minimal free resolution for I : 

.0 → Rn φn−→ . . .
φk+1−−→ Rn−k φk−→ . . .

φ2−→ Rm φ1−→ I → 0.
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Algorithm 5: ComputeMinimalFreeResolution 
Input: Ideal I = 〈f1, . . . , fr 〉 of R = DRig[X], 
Monomial order > on R, 
A polynomial set G = {f1, . . . , fr } that generate ideal I; 
Dimensions m and n such that m ≤ n. 
Output: Minimal free resolution for I 

1 Procedure: 
1. Initialize resolution: F ← ∅. 
2. Set k = 1. 
3. while k ≤ n: 

(a) ComputeGröbnerShirshovBasis(G) // Compute Gröbner-Shirshov basis 
for I. 

(b) ComputingGröbnerShirshovBasisSyzygy(G) // Compute Gröbner-Shirshov 
basis for syzygy Tk. 

(c) Set Tk = {H1, . . . , Hs}, where each Hi is a syzygy polynomial. 
(d) Update resolution: F ← F ∪ Tk . 
(e) Increment k. 
(f) Arrange Tk // Arranged according to degree reverses lexicographic 
ordering ds. 

4. Return the sequence 0 → Rn φn −→ . . .  
φ2 −→ Rm φ1 −→ I → 0, where each φi corresponds to 

the matrices formed by the polynomials in F . 

Theorem 5.4 establishes the existence of a minimal free resolution and provides 
a constructive algorithm for its computation, combining the theoretical and com-
putational aspects of minimal free resolution in the context of Gröbner–Shirshov 
bases. 

Moreover, the resolution can be constructed algorithmically using Algorithm 5, 
which computes both Gröbner–Shirshov basis for ideal I and Gröbner–Shirshov 
basis for syzygies and forms a minimal free resolution. 

To illustrate the application of the proposed algorithm ComputeMinimalFree 
Resolution 5, we consider the following example in which we compute the 
minimal free resolution for a given set of polynomials over a monomial 
semiring with coefficients in a D-A ring, with respect to well-founded order. 

Example 5.4 Let us compute a minimal free resolution for I in . R =
DRig[x, y] where the ideal . I = 〈f1 = (5+3i)x2y◦x−y, f2 = (3+2i)xy2◦y−x〉
and .D = Z12[i] with .i2 + 1 = 0. Since .dim(R) is between 3 and 4, we know 
in advance that I has a minimal free resolution of length between 3 and 4. In 
Example 5.1, the set .G = {f1′′ , f2′ , f3′′′ , f4′ , f5′ } is a minimal Gröbner–Shirshov 
basis for I in R. This leads to the exact following sequence: 

. R5 −→ I −→ 0

and note that: .ker(φ1) = syz(g1, . . . , gr ) (∗). This sequence can be represented as 
follows:
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. 

In Example 5.3 we have seen that . T = {G32,G41,G42,G43,G51,G52,G54}
is the minimal Gröbner�Shirshov basis for .syz(g1, g2, g3, g4, g5) w.r.t. the 
Schreyer’s ordering induced by . < and .g1, g2, g3, g4, g5. These lead to the exact 
sequences 

. 

Observe the following leading monomials of the set . T, .LM(G31) = y2e1, 
. LM(G32) = ye2, LM(G41) = (xy ◦ 1)e1, LM(G42) = (x2y ◦ x)e2, LM(G43) =
(x2y ◦ x)e3, LM(G51) = (xy2 ◦ y)e1, .LM(G52) = (xy ◦ 1)e2, LM(G54) = ye4. 
Let us arrange these polynomials as follows: . H1 = G32,H2 = G54,H3 =
G31,H4 = G41, H5 = G52, H6 = G51, H7 = G42, H8 = G43. Since the 
set .T1 = {H1,H2,H3,H4,H5,H6,H7,H8} is a minimal Gröbner�Shirshov 
basis for .syz(g1, g2, g3, g4, g5) w.r.t. . <1 induced by . > and .g1, g2, g3, g4, g5, then 
all the .S-vector polynomials and .A-vector polynomials reduce to 0 modulo . T. 
Observe that: 

. S(H2,H1)ω21 = S(H5,H1)ω51 = . . . = S(H5,H4)ω54 = S(H6,H2)ω62

= S(H6,H3)ω63 = S(H6,H5)ω65 = 0.

Furthermore, since .S(H8,H1) = . . . = S(H8,H7) = 0, hence, 

.S(H4,H3)ω43 = y2H − (xy ◦ 1)H3 = y2(e2 + 3e4) − (x2y ◦ x)

(−ixe1 + 3e3) −→H1 yH7;
S(H7,H5)ω75 = H7 − xH5 = 3(−ye4 − ixe5) + (−ye2 + ixe1) −→H2 H1;
S(H7,H1)ω71 = yH7 − (x2y ◦ x)H1 = −y2(ye2 + 3ye4)

−(x2y ◦ x)(ixe1 − 3e3) −→H7 (xy ◦ 1)H3,

S(H6,H4)ω64 = H6 − yH4 = (ixe1 − ye2) − 3(ixe5 + ye4) −→H1 3H2;
S(H6,H3)ω63 = yH6 − (xy ◦ 1)H3 = xy(ie1 − 3ie5) − (xy ◦ 1)

(−ix2e1 + 3xe3) −→H5 (x2y ◦ x)H1

S(H5,H1)ω51 = yH5 − (xy ◦ 1)H1 = y(−ie1 + 3ie5) − (xy ◦ 1)

(ixe1 − 3e3) −→H1 yH5
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and thus, the following relations: . G′43 = (0, 0,−(xy ◦ 1), y2, 0, 0,−y, 0), G′51 =
(0, 0, 0, 0, y, 0, 0, 0), G′75 = (1, 0, 0, 0, x, 0, 1, 0), G′71 = (−(x2y◦x), 0,−(xy◦
1), 0, x, 0, y, 0), G′63 = (−(x2y ◦ x), 0,−(xy ◦ 1), 0, 0, y, 0, 0), and G′64 =
(0,−3, 0,−y, 0, 1, 0, 0) are syzygies for .H1,H2,H3,H4,H5,H,H8, and by 
the Syzygy Theorem 5.2, the set from a minimal Gröbner–Shirshov basis for 
.syz(H1,H2,H3,H4,H5,H6,H7,H8) w.r.t. the Schreyer’s ordering . <2 induced by 
. <1 and .H1, . . . , H8. These lead to the exact sequences: 

. 

and set .T1 = {G′43,G′51,G′63,G′64,G′71,G′75}, where .LM(G′43) = (xy ◦ 1)e3, 
. LM(G′51) = ye5, LM(G′63) = (x2y ◦ x)e1, LM(G′64) = ye4, LM(G′71) =
(x2y ◦ x)e1, LM(G′75) = xe5. Let us arrange these polynomials as follows: 
.P1 = G′75, P2 = G′64, P3 = G′51, P4 = G′43, P5 = G′71, P6 = G′61. Since 
the set .T1 = {P1, P2, P3, P4, P5, P6} is a minimal Gröbner�Shirshov basis 
for .syz(H1,H2,H3,H4,H5,H6,H7,H8) w.r.t. .<1 induced by . > and .H1, . . . , H8, 
these lead to 

. S(P4, P1) = . . . = S(P4, P3) = S(P6, P1) = . . . = S(P6, P4)

= S(P5, P1) = . . . = S(P5, P4) = 0.

Further, we have the following .S-polynomials, . S(P3, P1)ω31 = xP3+yP1 = y(e7−
e6) −→P1 yP3 and .S(P6, P5)ω65 = P6 − yP5 = y2(e6 − e7) −→P1 −xP3. Thus, 
these relations .G′′31 = (y, 0, 0, 0, 0, 0) and .G′′65 = (0, 0, x, 0, x, 0,−y, 1) are 
also the syzygies for .P1, . . . , P6. Thus, the set .T2 = {G′′31,G′′65} is a minimal 
Gröbner�Shirshov basis for .syz(P1, P2, P3, P4, P5, P6) w.r.t. .<2 induced by 
. <1 and .P1, . . . , P6. These lead to the exact sequences: 

.
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Let us arrange these polynomials as follows: .Q1 = G′′′65,Q2 = G′′′64. Since 
.S(Q2,Q1)ω21 = 0, .syz(Q2,Q1) = 0. Thus, we have the following minimal free 
resolution 

. 

In conclusion, we have successfully computed a minimal free resolution for 
the given ideal I in the ring .R = DRig[x, y], where the ideal . I = 〈f1 = (5 +
3i)x2y ◦ x − y, f2 = (3 + 2i)xy2 ◦ y − x〉. 

Using a minimal Gröbner�Shirshov basis, we constructed the exact 
sequences representing the minimal free resolution. This minimal free 
resolution has been organized into a sequence of free modules and 
homomorphisms: 

. 

This example shows that the ideal I in the given semiring with coefficients in 
the Gaussian integer ring modulo 12 (.R = DRig[x, y] with .D = Z12[i] where 
.i2 + 1 = 0) has a minimal free resolution of length 4. The calculation included both 
Gröbner�Shirshov basis for ideal .I = 〈G〉 and Gröbner�Shirshov basis 
for Syzygy, demonstrating their effectiveness in resolving ideals in this algebraic 
setting. 
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Chapter 6 
Schur Complement and Inequalities of 
Eigenvalues on Block Hadamard Product 

Abdoulaye Mbaye and Etienne Mbaye 

Abstract The Schur complement theory is very important in many areas such as 
statistics, matrix analysis, numerical analysis, and control theory. It is a powerful 
tool to discuss many significant results. In this chapter, we establish two inequalities 
on the eigenvalues of Schur complement of the block Hadamard product, deduce 
one important corollary, and illustrate them in numerical examples. 

Keywords Block matrices · Division algebra · Block matrices · Block 
Hadamard product · Eigenvalue 

Introduction 

In paper [2] the authors generalize Kronecker product for block matrices, mention 
some of its properties, and apply it to the study of a block Hadamard product of 
positive semidefinite matrices which was defined in [3]. Also generalizations of 
Schur’s theorem were obtained in [4]. 

By using the definition and the properties of block Hadamard product, in [1] 
useful inequalities were obtained, and some numerical examples which confirm the 
theoretical analysis were given. 

Let . N be the set of positive integers. For .n, p, q ∈ N let . Mn be the linear space 
of .n × n matrices with complex entries and let .Mp,q(Mn) be the space of . p × q

block matrices .A = (Aαβ)
β=1,...,q
α=1,...,p, whose .α, β entry belongs to . Mn. 

Let .A = (Aαβ), .B = (Bαβ) ∈ Mpq(Mn), where each block is an . n × n

matrix with complex entries. The block Hadamard product of . A and . B is . A B =
(AαβBαβ), where .AαβBαβ denotes the usual matrix product. 
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Let .α ⊂ {1, 2, · · · , p}, .β ⊂ {1, 2, · · · , q} be the index sets and . αc =
{1, 2, · · · , p} \ α, .βc = {1, 2, · · · , q} \ β be the complements of . α and . β, and 
their cardinalities are . |α| and . |β|. 

Let .A(α, β) denote the submatrix of A with the block rows indexed by . α and 
block columns indexed by . β. We will write .A(α) for .A(α, α). If  .|α| = |β| and 
.A(α, β) is nonsingular, the block of the Schur complement of .A(α, β) is 

. A/A(α, β) = A
(
αc, βc

)− A
(
αc, β

)
(A (α, β))−1 A

(
α, βc

)
.

.A/A(α) is noted .A/α. 
If every .n× n block of A commutes with every .n× n block of B, we call these 

matrices block commuting, and we denote this by .AbcB. 
Let . A be a Hermitian matrix in . Mn. We denote by .λmin(A) and .λmax(A) the 

smallest and largest eigenvalues, respectively, of the matrix . A. 

Theorem 6.1 See Theorem 1 in [1]. 
Let . A and . B ∈Mp be positive semidefinite and .AbcB, and then 

. (A B)/α ≥ A/α B/α

. 

Proposition 6.1 See Proposition . 3.2 in [2]. 
If . A and . B ∈Mp are positive semidefinite and .AbcB, then 

. λmin(A)λmin(B) ≤ λmin(A B)

. λmax(A B) ≤ λmax(A)λmax(B).

Corollary 6.1 Let .A, B ∈Mp(Mn) and .AbcB. 
If . A and . B are positive semidefinite, then .A B is positive semidefinite. 
If . A and . B are positive definite, then .A B is positive definite. 

Theory and Main Results 

Theorem 6.2 Let A and B ∈ Mp(Mn) be positive definite matrices such that AbcB. 
Then 

. λmin

î
(A B)/α − A/α B/α

ó
≤ λmin

î
(A B)/α

ó
− λmin

Ä
A/α B/α

ä

. λmax

î
(A B)/α − A/α B/α

ó
≥ λmax

î
(A B)/α

ó
− λmax

Ä
A/α B/α

ä
.

Proof Let A and B ∈ Mp(Mn) be positive definite matrices such that AbcB:
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1. A/α B/α ≥ [
λmin(A/α B/α)

]
In −

[
λmin(A/α B/α)

]
In ≥ −A/α B/α 

(A B)/α − [
λmin(A/α B/α)

]
In ≥ (A B)/α − A/α B/α 

λmin 

ï 
(A B)/α − [

λmin(A/α B/α)
]
In 

ò 
≥ λmin 

ï 
(A B)/α − A/α B/α 

ò 

λmin 

ï 
(A B)/α 

ò 
− λmin 

ï 
(A/α B/α) 

ò 
≥ λmin 

ï 
(A B)/α − A/α B/α 

ò 
. 

2. [λmax(A/α B/α)]In ≥ A/α B/α 
−[λmax(A/α B/α)]In ≤ −A/α B/α 
(A B)/α − [λmax(A/α B/α)]In ≤ (A B)/α − A/α B/α 
λmax 

ï 
(A B)/α − [λmax(A/α B/α)]In 

ò 
≤ λmax 

ï 
(A B)/α − A/α B/α 

ò 

λmax 

ï 
(A B)/α 

ò 
− λmax 

ï 
(A/α B/α) 

ò 
≤ λmax 

ï 
(A B)/α − A/α B/α 

ò 
.

  
Corollary 6.2 Let A and B ∈ Mp(Mn) be positive definite matrices such that 
AbcB. Then: 

1. λmin 
î 
(A B)/α 

ó 
≥ λmin 

Ä 
A/α B/α 

ä 
. 

2. λmax 
î 
(A B)/α 

ó 
≥ λmax 

Ä 
A/α B/α 

ä 
. 

Proof 

1. (A B)/α ≥ A/α B/α 
(A B)/α ≥ A/α B/α ≥ 

ï 
λmin(A/α B/α) 

ò 
In 

(A B)/α ≥ 
ï 
λmin(A/α B/α) 

ò 
In 

λmin 

ï 
(A B)/α 

ò 
≥ λmin 

ï[
λmin(A/α B/α)

]
In 

ò 
= λmin(A/α B/α) 

λmin 

ï 
(A B)/α 

ò 
≥ λmin(A/α B/α). 

2. (A B)/α ≥ A/α B/αï 
λmax(A B)/α 

ò 
In ≥ (A B)/α ≥ A/α B/α ï 

λmax(A B)/α 
ò 
In ≥ A/α B/α 

λmax[(A B)/α] = λmax 

ï[
λmax(A B)/α

]
In 

ò 
≥ λmax[A/α B/α] 

λmax[(A B)/α] ≥ λmax[A/α B/α]. 
Theorem 6.3 Let A and B ∈ Mp(Mn) be positive definite matrices such that AbcB. 

Then 

. λmin

îÄ
(A B)/α

ä−1ó≤λmin

îÄ
A/α B/α

ä−1ó≤λmin

îÄ
A/α
ä−1ó

λmin

îÄ
B/α
ä−1ó

.

Proof Let A and B ∈ Mp(Mn) be positive definite matrices such that AbcB.
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(A B)/α and A/α B/α are positive definite. 
This means that λmin 

î 
(A B)/α 

ó 
> 0 et  λmin 

î 
A/α B/α 

ó 
> 0. 

By using Corollary 6.1, we have  λmax 
î 
(A B)/α 

ó 
≥ λmax 

î 
A/α B/α 

ó 
. 

Then 
ï 
λmax 

î 
(A B)/α 

óò−1 
≤ 
ï 
λmax 

î 
A/α B/α 

óò−1 
. 

⇔ λ−1 max 
î 
(A B)/α 

ó 
≤ λ−1 max 

î 
A/α B/α 

ó 
⇔ λmin 

îÄ 
(A B)/α 

ä−1ó ≤ λmin 
îÄ 
A/α B/α 

ä−1ó 
(∗) 

A/α, B/α and A/α B/α are positive definite, then λmin(A/α) > 0, 
λmin(B/α) > 0 and λmin

(
A/α B/α

)
> 0. 

By using Proposition 6.1 λmin(A/α)λmin(B/α) ≤ λmin

(
A/α B/α

)

0 < λmin(A/α)λmin(B/α) ≤ λmin

(
A/α B/α

)

î 
λmin(A/α)λmin(B/α) 

ó−1 ≥ 
î 
λmin

(
A/α B/α

)ó−1 
λ−1 min

(
A/α

)
λ−1 min

(
B/α

) ≥ λ−1 min

(
A/α B/α

)

λmax 
îÄ 
A/α 
ä−1ó 

λmax 
îÄ 
B/α 
ä−1ó ≥ λmax 

îÄ 
A/α B/α 

ä−1ó 
(∗∗). 

After (∗) and (∗∗), we have:  λmin 
îÄ 

(A B)/α 
ä−1ó ≤ λmin 

îÄ 
A/α B/α 

ä−1ó ≤ 

λmin 
îÄ 
A/α 
ä−1ó 

λmin 
îÄ 
B/α 
ä−1ó 

. 

Example 6.1 See Example 1 dans [1]. 
Let A et B be M2(M2) positive definite block matrices. 

A = 
ñ 

A11 A12 

A21 A22 

ô 
= 

⎡ 

⎢⎢⎢⎢⎢ 
⎣ 

5 2  . 1 0  
2 3  . 0 1  
.  . . .  .  
1 0  . 5 2  
0 1  . 2 3  

⎤ 

⎥⎥⎥⎥⎥ 
⎦ 

, B  = 
ñ 

B11 B12 

B21 B22 

ô 
= 

⎡ 

⎢⎢⎢⎢⎢ 
⎣ 

3 1  . 1 0  
1 2  . 0 1  
.  . . .  .  
1 0  . 3 1  
0 1  . 1 2  

⎤ 

⎥⎥⎥⎥⎥ 
⎦ 

A B = 
ñ 

A11B11 A12B12 

A21B21 A22B22 

ô 
= 

⎡ 

⎢⎢⎢⎢⎢ 
⎣ 

17 9 . 1 0  
9 8  . 0 1  
. .  .  .  .  
1 0  . 17 9 
0 1  . 9 8  

⎤ 

⎥⎥⎥⎥⎥ 
⎦ 

A/α = A/A11 = A22 − A21A
−1 
11 A12 = 

ñ 
5 1  
2 3  

ô 
− 
ñ 
1 0  
0 1  

ôñ  
5 1  
2 3  

ô−1 ñ 
1 0  
0 1  

ô 
= ñ 

52/11 24/11 
24/11 28/11 

ô 

B/α = B/B11 = B22 − B21B
−1 
11 B12 = 

ñ 
3 1  
1 2  

ô 
− 
ñ 
1 0  
0 1  

ôñ  
3 1  
1 2  

ô−1 ñ 
1 0  
0 1  

ô 
= ñ 

13/5 6/5 
6/5 7/5 

ô 

(A B)/α = (A B)/A11 B11 = A22 B22 − A21 B21(A11 B11)
−1A12 B12
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(A B)/α = 
ñ 
17 9 
9 8  

ô 
− 
ñ 
1 0  
0 1  

ôñ  
17 9 
9 8  

ô−1 ñ 
1 0  
0 1  

ô 
= 
ñ 
927/55 504/55 
504/55 423/55 

ô 
. 

The characteristic polynomial of (A B)/α : p[(A�B)/α](λ) = 55λ2 − 1350λ + 
2511. 

The eigenvalues of (A B)/α are: λ1 = 
135 

11 
− 

252
√
5 

55 
= 2, 0274703576 and 

λ2 = 
135 

11 
+ 

252
√
5 

55 
= 22, 517984188. 

A/α B/α= 
ñ 
52/11 24/11 
24/11 28/11 

ô
 
ñ 
13/5 6/5 
6/5 7/5 

ô 
= 
ñ 
52/11 24/11 
24/11 28/11 

ôñ  
13/5 6/5 
6/5 7/5 

ô 
= ñ 

164/11 96/11 
96/11 68/11 

ô 
. 

The characteristic polynomial of A/α B/α : p[A/α�B/α](λ) = 11λ2 − 232λ + 
176. 

The eigenvalues of A/α B/α are λ1 = 
116 

11 
− 

48
√
5 

11 
= 0, 78806700727 and 

λ2 = 
116 

11 
+ 

48
√
5 

11 
= 20, 302842084. 

(A B)/α − A/α B/α = 
ñ 
927/55 504/55 
504/55 423/55 

ô 
− 
ñ 
164/11 96/11 
96/11 68/11 

ô 
= ñ 

107/55 24/55 
24/55 83/55 

ô 
. 

The characteristic polynomial of (A B)/α−A/α B/α:p[(A�B)/α−A/α�B/α](λ) = 
55λ2 − 190λ + 151. 

The eigenvalues of (A B)/α − A/α B/α are λ1 = 
19 

11 
− 

12
√
5 

55
= 

1, 2394033504 et λ2 = 
19 

11 
+ 

12
√
5 

55 
= 2, 2151421042. 

The matrix (A B)/α−A/α B/α is Hermitian, and its eigenvalues are positive. 
Then (A B)/α − A/α B/α is positive definite. 

λmin

[
(A B)/α

] − λmin

(
A/α B/α

) = 
135 

11 
− 

252
√
5 

55 
− 
Å
116 

11 
− 

48
√
5 

11 

ã 
= 

19 

11 
− 

12
√
5 

55 
. 

Then we have λmin

[
(A B)/α − A/α B/α

] = λmin

[
(A B)/α

] − 
λmin

(
A/α B/α

)

λmax

[
(A B)/α

]− λmax

(
A/α B/α

) = 
135 

11 
+ 

252
√
5 

55 
− 
Å
116 

11 
+ 

48
√
5 

11 

ã 
= 

19 

11 
+ 

12
√
5 

55 
. 

Then we have λmax

[
(A B)/α − A/α B/α

] = λmax

[
(A B)/α

] − 
λmax

(
A/α B/α

)
.
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Conjecture 

Let . A and .B ∈ Mp(Mn) be positive definite matrices such that .AbcB. Then we 
conjecture that 

. λmin

î
(A B)/α − A/α B/α

ó
= λmin

î
(A B)/α

ó
− λmin

Ä
A/α B/α

ä

. λmax

î
(A B)/α − A/α B/α

ó
= λmax

î
(A B)/α

ó
− λmax

Ä
A/α B/α

ä
.
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Chapter 7 
A Perturbed Mann-Type Algorithm for 
Zeros of Maximal Monotone Mappings 

Oumar Abdel Kader Aghrabatt, Aminata D. Diene, and Ngalla Djitte 

Abstract Let E be a uniformly convex and uniformly smooth real Banach space 
and . E∗ its dual. Let .A : E → E∗ be a bounded maximal monotone mapping 
such that .A−1(0)  = ∅. We first introduce the algorithm: For given .x1 ∈ E, let  
.{xn} be generated by the formula: . xn+1 = xn − λnJ

−1Axn − λnθn(xn − x1), n ≥
1, where J is the normalized duality mapping from E into . E∗ and . λn and . θn are 
positive real numbers in .(0, 1) satisfying suitable conditions. Next, we obtain the 
strong convergence of the sequence .{xn} to the solution of the equation . Au = 0
closest to the initial point . x1. Using this result, we deal with the convex minimization 
problem. Our results improve and unify most of the ones that have been proved in 
this direction for this important class of nonlinear mappings. Furthermore, our new 
technique of proof is of independent interest. 

Keywords Maximal monotone mapping · Zeros · Convex minimization problem 

Backround 

Let H be a real Hilbert space with inner product .〈·, ·〉H and norm .‖·‖H . An operator 
.A : H → H with domain .D(A) is called monotone if for every .x, y ∈ D(A), the  
following inequality holds: 

.〈x − y,Ax − Ay〉H ≥ 0, (7.1) 
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and it is called strongly monotone if there exists .k ∈ (0, 1) such that every . x, y ∈
D(A) satisfies 

.〈x − y,Ax − Ay〉H ≥ k‖x − y‖2H . (7.2) 

Such operators have been studied extensively (see, e.g., Bruck Jr [5], Chidume [9], 
Martinet [31], Reich [39], Rockafellar [51]) because of their role in convex analysis, 
in certain partial differential equations, in nonlinear analysis and optimization 
theory. 

The extension of the monotonicity definition to operators defined from a Banach 
space has been the starting point for the development of nonlinear functional anal-
ysis. The monotone maps constitute the most manageable class because of the very 
simple structure of the monotonicity condition. The monotone mappings appear 
in a rather wide variety of contexts since they can be found in many functional 
equations. Many of them also appear in calculus of variations as subdifferential of 
convex functions (see, e.g., Pascali and Sburian [37], p. 101, Rockafellar [51]). 

The first extension involves mappings A from E to . E∗. Here and in the sequel, 
.〈·, ·〉 stands for the duality pairing between (a possible normed linear space) E and 
its dual . E∗. Let  E be a real normed space. A mapping .A : E → E∗ with domain 
.D(A) is called monotone if for each .x, y ∈ D(A), the following inequality holds: 

.
〈
x − y,Ax − Ay

〉 ≥ 0, (7.3) 

and it is called strongly monotone if there exists .k ∈ (0, 1) such that for each . x, y ∈
D(A), the following inequality holds: 

.〈x − y,Ax − Ay〉 ≥ k‖x − y‖2. (7.4) 

The second extension of the notion of monotonicity to real normed spaces involves 
mappings A from E into itself . Let  E be a real normed space. For .q > 1, define the 
multivalued map .Jq : E → 2E∗

by 

. Jq(x) := {u∗ ∈ E∗ : 〈x, u∗〉 = ‖x‖.‖u∗‖, ‖u∗‖ = ‖x‖q−1}

The map . Jq is called the generalized duality map on E. If  .q = 2, . J2 is called 
normalized duality map and is denoted by J . In a real Hilbert space H , J is the 
identity map on H . It is easy to see from the definition that 

. Jq(x) = ‖x‖q−2J (x), and 〈x, jq(x)〉 = ‖x‖q, ∀ jq(x) ∈ Jq(x).

A mapping .A : E → E with domain .D(A) is called accretive if for all .x, y ∈ D(A), 
the following inequality is satisfied: 

.‖x − y‖ ≤ ‖x − y + s(Ax − Ay)‖ ∀ s > 0. (7.5)
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It is called m-accretive if, in addition, the graph of A is not properly contained in 
the graph of any other accretive operator .A′ : E → E. It is well known that A is m-
accretive if and only if A is accretive and .R(I + tA) = E for all .t > 0. If  E is a real 
Hilbert space, accretive mappings are called monotone mappings and m-accretive 
mappings are called maximal monotone mappings. 

Such operators have been studied extensively (see, e.g., [20–22, 40, 51]) because 
of their role in convex analysis, in certain partial differential equations, in nonlinear 
analysis and optimization theory. 

As a consequence of a result of Kato [28], it follows that A is accretive if and 
only if for each .x, y ∈ D(A), there exists .j (x − y) ∈ J (x − y) such that 

.〈Ax − Ay, j (x − y)〉 ≥ 0. (7.6) 

Finally, A is called strongly accretive if there exists .k ∈ (0, 1) such that for each 
.x, y ∈ D(A), there exists .j (x − y) ∈ J (x − y) such that 

.〈Ax − Ay, j (x − y)〉 ≥ k‖x − y‖2. (7.7) 

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert 
spaces, monotonicity and accretivity coincide. 

For accretive-type operator A, solutions of the equation .Au = 0, in many cases, 
represent equilibrium state of some dynamical system (see, e.g., [9], p.116). 

For approximating a solution of .Au = 0 (assuming existence), where . A : E →
E is of accretive type, Browder [4] defined an operator .T : E → E by .T := I − A, 
where I is the identity map on E. He called such an operator pseudo-contractive. 
One can observe that zeros of A correspond to fixed points of T . For Lipschitz 
strongly pseudo-contractive maps, Chidume [13] proved the following theorem. 

Theorem C1 (Chidume, [13]) Let .E = Lp, 2 ≤ p < ∞, and .K ⊂ E be 
nonempty closed convex and bounded. Let .T : K → K be a strongly pseudo-
contractive and Lipschitz map. For arbitrary .x0 ∈ K , let a sequence .{xn} be defined 
iteratively by .xn+1 = (1 − λn)xn + λnT xn, n ≥ 0, where .{λn} ⊂ (0, 1) satisfies 
the following conditions: .(i)

 ∞
n=1 λn = ∞, (ii)

 ∞
n=1 λ2n < ∞. Then, . {xn}

converges strongly to the unique fixed point of T . 

By setting .T := I − A in Theorem C1, the following theorem for approximating 
a solution of  .Au = 0 where A is a strongly accretive and bounded operator can be 
proved. 

Theorem C2 Let .E = Lp, 2 ≤ p < ∞. Let .A : E → E be a strongly accretive 
and bounded map. Assume .A−1(0)  = ∅. For arbitrary .x0 ∈ K , let a sequence 
.{xn} be defined iteratively by .xn+1 = xn − λnAxn, n ≥ 0, where . {λn} ⊂ (0, 1)
satisfies the following conditions: .(i)

 ∞
n=1 λn = ∞, (ii)

 ∞
n=1 λ2n < ∞. Then, 

.{xn} converges strongly to the unique solution of .Au = 0. 

The main tool used in the proof of Theorem C1 is an inequality of Bynum [6]. 
This theorem signaled the return to extensive research efforts on inequalities in



88 O. A. K. Aghrabatt et al.

Banach spaces and their applications to iterative methods for solutions of nonlinear 
equations. Consequently, Theorem C1 has been generalized and extended in various 
directions, leading to flourishing areas of research, for the past 30 years or so, 
for numerous authors (see, e.g., Censor and Reich [8], Chidume [13], Chidume 
[11, 12], Chidume and Ali [10], Chidume et al. [14], Chidume and Chidume [15, 16], 
Chidume and Osilike [19], Chidume and Djitte [17, 18], Deng [23], Zhou and Jia 
[60], Liu [30], Qihou [38], Reich [41–43], Reich and Sabach [44, 45], Weng [47], 
Xiao [50], Xu [52, 56, 58], Berinde et al. [3], Moudafi [33–35], Moudafi and Thera 
[36], Xu and Roach [54], Xu et al. [55], Zhu [61], and a host of other authors). 
Recent monographs emanating from these researches include those by Berinde [2], 
Chidume [9], Goebel and Reich [24], and William and Shahzad [49]. 

Unfortunately, the success achieved in using geometric properties developed 
from the mid-1980s to early 1990s in approximating zeros of accretive-type 
mappings has not carried over to approximating zeros of monotone-type operators 
in general Banach spaces. 

Attempts have been made to overcome this difficulty by introducing the inverse 
of the normalized duality mapping in the recursion formulas for approximating 
zeros of monotone-type mappings. 

Let E be a normed linear space. A monotone mapping .A : E → 2E∗
is said to 

be maximal if its graph .G(A) = {(x, y) : y ∈ Ax} is not properly contained in the 
graph of any other monotone mapping. We know that if A is maximal monotone, 
then the zero set of A, .A−1(0) := {x ∈ E : 0 ∈ Ax}, is closed and convex. It is 
also known (see, e.g., Kohshada and Takahashi [29] for more details) that if E is 
reflexive, strictly convex, and smooth, then a monotone mapping A from E into . E∗
is maximal if and only if .R(J + λA) = E∗ for each .λ > 0. 

A function .F : E → (−∞,+∞] is said to be proper if the set . {x ∈ R : F(x) ∈
R} is nonempty. A proper function .F : E → (−∞,+∞] is said to be convex if for 
all .x, y ∈ E and .α ∈ [0, 1] the following holds 

. F
Ä
αx + (1 − α)y

ä
≤ αF(x) + (1 − α)F (y).

Also F is said to be lower semicontinuous if the set .{x ∈ R : F(x) ≤ r} is 
closed in E for all .r ∈ R. For the proper lower semicontinuous function . F : E →
(−∞,+∞], Rockafellar [51] proved that the subdifferential mapping, . ∂f : E →
2E∗

of f defined by 

. ∂f (x) = {x∗ ∈ E∗ : f (y) − f (x) ≥ 〈y − x, x∗〉 ∀ y ∈ E
}
,

is maximal monotone. 
Let E be a Banach space and .A : E → 2E∗ be a maximal monotone mapping. 

Then we consider the problem of finding a point .u ∈ E such that .0 ∈ Au. Such a 
problem is connected with the convex minimization problem. In fact, if . F : E →
(−∞,+∞] is a proper lower semicontinuous convex function, then we have that 
.0 ∈ Au if and only if .F(u) = min

x∈E
F(x).
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A well-known method for solving the inclusion .0 ∈ Au in Hilbert space H is the 
Proximal Point Algorithm: 

.x1 ∈ H, xn+1 = Jrnxn, n ≥ 1, (7.8) 

where .{rn} ∈ (0,∞) and .Jr = (I + rA)−1, r > 0. This algorithm was first 
introduced by Martinet [31]. In 1976, Rockafellar [51] proved that if . lim inf rn > 0
and .A−1(0)  = ∅, then the sequence .{xn} defined by (7.8) converges weakly to 
an element of .A−1(0). Later, many researchers have studied the convergence of 
the sequence defined by (7.8) in a Hilbert space (see, for instance, Güler [25], 
Solodov and Svaiter [46], Kamimura and Takahashi [26], Lehdili and Moudafi 
[46]). In particular, Kamimura and Takahashi [48] obtained the following strong 
convergence: 

Theorem KT Let H be a real Hilbert space and .A : H → 2H be a maximal 
monotone mapping. For .u ∈ H , let .{xn} be a sequence defined by 

. xn+1 = αnu + (1 − α)Jrnxn, n ≥ 1,

where .{αn} ∈ (0, 1) and .{rn} ∈ (0,∞) satisfy: .limn→∞ αn = 0, .
 

αn = ∞, and 
.limn→∞ rn = ∞. If .A−1(0)  = ∅, then the sequence .{xn} converges strongly to Pu, 
where P is the metric projection of H onto .A−1(0). 

In the case of Banach spaces, for finding zeros point of a maximal monotone 
mappings by using the Proximal Point Algorithm, Kohshada and Takahashi [29] 
introduced the following iterative sequence for a monotone mapping .A : E → 2E∗

: 

.x1 = u ∈ E, xn+1 = J−1
Ä
αnJu + (1 − α)JJrnxn

ä
, n ≥ 1, (7.9) 

where .Jrn := (J +rnA)−1, and J the duality mapping from E into . E∗, . {αn} ∈ (0, 1)
and .{rn} ∈ (0,∞) satisfy .limn→∞ αn = 0, .

 
αn = ∞ and .limn→∞ rn = ∞. They  

proved that if E is smooth and uniformly convex and A maximal monotone with 
.A−1(0)  = ∅, then the sequence .{xn} converges strongly to an element of .A−1(0). 
This result extends Theorem KT to Banach spaces. However, the algorithm requires 
the computation of .(J + rnA)−1xn at each step of the process, which makes its 
implementation difficult for applications. 

Following the work of Kohshada and Takahashi [29], in [59], Zegeye introduced 
an iterative scheme for approximating zeros of maximal monotone mappings 
defined in uniformly smooth and 2-uniformly convex real Banach spaces. In fact, 
he proved the following theorem. 

Theorem Z (Zegeye [59]) Let E be a uniformly smooth and 2-uniformly convex 
real Banach space with dual . E∗. Let .A : E → E∗ be a Lipschitz continuous 
monotone mapping with constant .L > 0 and .A−1(0)  = ∅. For given .u, x1 ∈ E, 
let .{xn} be generated by the algorithm
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. xn+1 = J−1
Ä
βnJu + (1 − βn)(Jxn − αnAxn)

ä
, n ≥ 1,

where J is the normalized duality mapping from E into . E∗ and .{αn} and .{βn} are 
real sequences in .(0, 1) satisfying .(i) limn→∞ βn = 0, .(ii)

 
βn = ∞, and 

.(iii) αn = o(βn). Suppose that .Bmin ∩
Ä
AJ−1

ä−1
(0)  = ∅. Then .{xn} converges 

strongly to .x∗ ∈ A−1(0) and that .R(Ju) = Jx∗ ∈
Ä
AJ−1

ä−1
(0), where R is a 

sunny generalized nonexpansive retraction of . E∗ onto .

Ä
AJ−1

ä−1
(0). 

Remark 1 In Theorem Z, the author imposed the condition . Bmin∩
Ä
AJ−1

ä−1
(0)  =

∅. This condition is not easy to check because the set .Bmin and .
Ä
AJ−1

ä−1
(0) are 

not known precisely. 

Remark 2 It is well known that if E is a reflexive real Banach space and . A :
E → E∗ is monotone and continuous such that .D(A) = E, then A is maximal 
monotone. Therefore, the class of bounded maximal monotone mappings constitutes 
a superclass of that of Lipschitz monotone mappings, used in Theorem Z. 

In a recent work, Mendy et al. introduced and studied a new iterative scheme 
for approximating zeros of bounded maximal monotone mappings. In fact, they 
consider the following iterative algorithm defined as follows: For given .x1 ∈ E, let  
.{xn} be generated by the formula: 

.xn+1 = J−1[Jxn − λnAxn − λnθn(Jxn − Jx1)], n ≥ 1, (7.10) 

where J is the normalized duality mapping from E into . E∗ and . λn and . θn are 
positive real numbers in .(0, 1) satisfying suitable conditions. Then they obtained 
the following strong convergence result. 

Theorem MA (Mendy et al. [32]) For .q > 1, let  E be a 2-uniformly convex and 
q-uniformly smooth real Banach space and .A : E → E∗ be a bounded maximal 
monotone mapping such that .A−1(0)  = ∅. Then, there exists .γ0 > 0 such that if 
.λn < γ0θn for all .n ≥ 1, the sequence .{xn} given by (7.10) converges strongly to 
some .x∗ ∈ A−1(0). 

Recently, Sene et al. in [53] introduced a new Krasnoselskii-type algorithm for 
approximating zeros of Lipschitz and strongly mappings in some Banach spaces. 
They proved the following results. 

Theorem SA1 (Sene et. al. [53]) Let E be a 2-uniformly smooth Banach space. Let 
.A : E → E∗ be a L-Lipschitz and k-strongly monotone mapping with . A−1(0)  = ∅
and such that 

. L2(d2 − 1) < k2.

For given .x1 ∈ E, let .{xn} be a sequence defined as follows:
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.xn+1 = xn − λJ−1Axn, n ≥ 1, (7.11) 

where .λ ∈ (α1, α2) with .α1 = k
L2 and α2 = k+

√
k2−L2(d2−1)

L2 . Then, the 
sequence .{xn} converges strongly to . x∗, the unique solution of .Au = 0. 

Theorem SA2 (Sene et al. [53]) Let .E = Lp, 1 < p ≤ 2 and let .A : E → E∗ be 
an L-Lipschitz and k-strongly monotone mapping with .A−1(0)  = ∅ and such that 

. L2(d2 − 1) < k2.

Assume that .2 − k2

L2 < p ≤ 2. For arbitrary .x1 ∈ E, let .{xn} be a sequence defined 
as follows: 

.xn+1 = xn − λJ−1(Axn), n ≥ 1, (7.12) 

where .λ ∈ (β1, β2) with . β1 = k
L2 and β2 = k+

√
k2−L2(2−p)

L2 .

Then, the sequence .{xn} converges strongly to . x∗, the unique solution of .Au = 0. 

Following the work of Sene et al. in [53], Adoum et al. in [1] proposed a Mann-
type algorithm for approximating zeros of bounded strongly monotone mappings in 
certain Banach spaces. They obtained the following result. 

Theorem AA (Adoum et al. [1]) For .1 < p ≤ 2, let  E be a uniformly smooth and 
p-uniformly convex real Banach space with dual space . E∗. Let .A : E → E∗ be a 
bounded and strongly monotone map. Assume that .J−1A is strongly accretive. For 
arbitrary .x1 ∈ E, let .{xn} be a sequence defined iteratively as follows: 

.xn+1 = xn − λnJ
−1Axn, n ≥ 1, (7.13) 

where .λn ∈ (0, 1) is a decreasing real sequence satisfying . (i) lim λn =
0 and (ii)

 
λn = ∞ and .

 
λ2n < ∞. Then, there exists .δ > 0 such that, if 

.λn ≤ δ, the sequence .{xn} converges strongly to .x∗ ∈ E, the unique solution of 

.Au = 0. 

In this chapter, we introduce a new iterative algorithm to approximate zeros of 
bounded maximal monotone mappings defined in some real Banach spaces. The 
algorithm proposed here is simpler than the one introduced by Mendy et al. in [32] 
and does not require the computation of resolvent in the process and no continuity 
assumption is made. The results obtained in this work extend and unify those 
obtained by Kohshada and Takahashi [29], Zegeye [59], Sene et al. [53], Adoum 
et. al. [1], and most of the results that have been proved in this direction for this 
important class of nonlinear mappings. Then, we apply our results to the convex 
minimization problem. Finally, our method of proof is of independent interest.
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Preliminaries 

Let E be a normed linear space. E is said to be smooth if 

. lim
t→0

‖x + ty‖ − ‖x‖
t

(7.14) 

exists for each .x, y ∈ SE . (Here .SE := {x ∈ E : ||x|| = 1} is the unit sphere of E.) 
E is said to be uniformly smooth if it is smooth and the limit is attained uniformly 
for each .x, y ∈ SE , and E is Fréchet differentiable if it is smooth and the limit is 
attained uniformly for .y ∈ SE . 

Let E be a real normed linear space of dimension .≥ 2. The  modulus of 
smoothness of . E , . ρE , is defined by 

. ρE(τ) := sup
ß‖x + y‖ + ‖x − y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

™
; τ > 0.

A normed linear space E is called uniformly smooth if 

. lim
τ→0

ρE(τ)

τ
= 0.

If there exist a constant .c > 0 and a real number .q > 1 such that .ρE(τ) ≤ cτq , 
then . E is said to be q-uniformly smooth. 

A normed linear space E is said to be strictly convex if: 

. ‖x‖ = ‖y‖ = 1, x  = y ⇒
∥∥∥

x + y

2

∥∥∥ < 1.

The modulus of convexity of E is the function .δE : (0, 2] → [0, 1] defined by 

. δE(ε) := inf
¶
1 − 1

2
‖x + y‖ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

©
.

E is uniformly convex if and only if .δE(ε) > 0 for every .ε ∈ (0, 2]. For .p > 1, E is 
said to be p-uniformly convex if there exists a constant .c > 0 such that . δE(ε) ≥ cεp

for all .ε ∈ (0, 2]. Observe that every p-uniformly convex space is uniformly convex. 
Typical examples of such spaces are the . Lp, . �p , and .Wm

p spaces for .1 < p < ∞, 
where 

. Lp (or lp) or Wm
p is

®
2 − uniformly smooth and p−uniformly convex if 2 ≤ p < ∞;
2 − uniformly convex and p−uniformly smooth if 1 < p < 2.

It is well known that E is smooth if and only if J is single valued. Moreover, if E 
is a reflexive smooth and strictly convex Banach space, then .J−1 is single valued, 
one-to-one, surjective, and it is the duality mapping from . E∗ into E.
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Remark 3 Note also that a duality mapping exists in each Banach space. From 
[27], this mapping is known precisely in .lp, LP ,Wm,p spaces, .1 < p < ∞, and is 
given in such spaces by: 

(i) . lp : Jx = ‖x‖2−p
lp

y ∈ lq , x = (x1, x2, · · · , xn, · · · ), y =
(x1|x1|p−2, x2|x2|p−2, · · · , xn|xn|p−2, · · · )

(ii) . Lp : Ju = ‖u‖2−p
Lp

|u|p−2u ∈ Lq

(iii) . Wm,p : Ju = ‖u‖2−p
Wm,p

 
|α≤m|(−1)|α|Dα

Ä
|Dαu|p−2Dαu

ä
∈ W−m,q

where .1 < q < ∞ is such that . 1/p + 1/q = 1.

In the sequel, we shall need the following results. 

Theorem 1 (H. K. Xu [56]) 
Let .q > 1 and E be a real Banach space. Then the following are equivalent: 

(i) E is q-uniformly smooth . 
(ii) There exists a constant .dq > 0 such that for all .x, y ∈ E, 

.||x + y||q ≤ ||x||q + q〈y, jq(x)〉 + dq ||y||q . (7.15) 

Lemma 1 (Chidume et. al [14]) Let E be a real normed linear space and .q > 1. 
Then, the following inequality holds: 

.||x+y||q ≤ ||x||q+q〈y, jq(x+y)〉 ∀ jq(x+y) ∈ Jq(x+y), ∀ x, y ∈ E. (7.16) 

Lemma 2 (Xu [57]) Let .{ρn} be a sequence of nonnegative real numbers satisfying 
the following inequality: 

.ρn+1 ≤ (1 − αn)ρn + αnσn + γn, (7.17) 

where .{αn}, {σn} and .{γn} are real sequences satisfying: . (i) {αn} ⊂ (0, 1),
 

αn =
∞.

(ii) .lim sup
n→∞

σn ≤ 0 and (iii) .γn ≥ 0,
 

γn < ∞. Then, the sequence .(ρn) converges 

to zero as .n → ∞. 

Main Results 

For .q > 1, let  E be a q-uniformly smooth and strictly convex real Banach space 
with norm .‖ · ‖ and dual space . E∗. For  .A : E → E∗ a mapping, let the sequence 
.{xn} be generated iteratively from .x1 ∈ E by
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.xn+1 = xn − λnJ
−1Axn − λnθn(xn − x1), n ≥ 1, (7.18) 

where J is the normalized duality mapping from E into . E∗ and .{λn}, .{θn} are real 
sequences in .(0, 1) satisfying, here and elsewhere, the following conditions: 

. (i) lim
n→∞ θn = 0; (ii)

∞∑

n=1

λnθn = ∞, λq−1
n = o(θn); (iii)

lim sup
n→∞

Ä
θn−1
θn

− 1
ä

λnθn

≤ 0,
∞∑

n=1

λq
n < ∞.

Remark 4 Real sequences that satisfy conditions (i)–(iii) are .λn = (n + 1)−a and 
.θn = (n + 1)−b, .n ≥ 1 with .0 < b < (q − 1)a, . 1

q
< a < 1 and .a + b < 1. 

In fact, . (i), . (ii), and the second part of .(iii) are easy to check. For the first part of 
condition .(iii), using the fact that .(1 + x)s ≤ 1 + sx, for  .x > −1 and .0 < s < 1, 
we have 

. 0 ≤
Ä

θn−1
θn

− 1
ä

λnθn

=
îÄ
1 + 1

n

äb − 1
ó

· (n + 1)a+b

≤ b · (n + 1)a+b

n
= b · n + 1

n
· 1

(n + 1)1−(a+b)
→ 0 as n → ∞.

The following result will be useful. 

Theorem 2 (Reich, [7]) Let E be a uniformly smooth real Banach space, and let 
.A : E → 2E be m-accretive with .D(A) = E. Let . Jtx := (I + tA)−1x, t > 0
be the resolvent of A, and assume that .A−1(0) is nonempty. Then for each .x ∈ E, 
. lim
t→∞ Jtx exists and belongs to .A−1(0). 

The following is a consequence of Theorem 2. 

Lemma 3 Let E be a uniformly convex and uniformly smooth real Banach space, 
.x1 ∈ E, and let .A : E → E∗ be a maximal monotone mapping such that . A−1(0)  =
∅. Assume that .J−1A : E → E is accretive. Then, there exists a sequence .{yn} in 
E such that: 

.θn(yn − x1) + J−1Ayn = 0, ∀ n ≥ 1; . (7.19) 

yn → y∗ with y∗ ∈ A−1(0), (7.20) 

where J is the normalized duality mapping from E into . E∗. 

Proof Since E uniformly convex and uniformly smooth, then the duality mapping 
J from E into . E∗ is single valued, onto, and one-to-one, and its inverse .J−1 exists 
and is the duality mapping of . E∗. Let  .x1 ∈ E and set .yn := (I + tnJ

−1A)−1x1,
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where .tn = (θn)
−1 ∀ n ≥ 1. Then we have: 

.θn(yn − x1) + J−1Ayn = 0, n ≥ 1, (7.21) 

and from Theorem 2, it follows that 

.yn → y∗ with y∗ ∈ (J−1A)−1(0), (7.22) 

which implies that .Ay∗ = 0. 

We now prove the following theorem. 

Theorem 3 For .q > 1, let  E be a q-uniformly smooth and strictly convex real 
Banach space with norm .‖ · ‖ and dual space . E∗. Let .A : E → E∗ be a bounded 
mapping such that .A−1(0)  = ∅. Assume that .J−1A : E → E is m-accretive. Then, 
there exists .γ0 > 0 such that if .λn < γ0θn for all .n ≥ 1, the sequence .{xn} given 
by (7.18) converges strongly to some .x∗ ∈ A−1(0). 

Proof Let .x∗ ∈ E be a solution of the equation .Ax = 0. There exists . r > 0
sufficiently large such that .x1 ∈ B(x∗, r

2 ). Define .B = B̄(x∗, r). Since A is 
bounded, it follows that .J−1A(B) is bounded. Consequently, 

. M0 := sup
¶
‖J−1Ax + θ(x − x1)‖q : x ∈ B , 0 < θ ≤ 1

©
+ 1 < ∞.

Set 

. Mq := dqM0; γ :=
Ä2q − 1

2qMq

ä
rq,

where . dq denotes the constant appearing in Theorem 1. 

Now, assume that .λq−1
n ≤ γ θn for all .n ≥ 1. 

Step 1. We prove that the sequence .{xn} is bounded. In fact, we prove that . xn ∈ B

for all .n ≥ 1. The proof is by induction. By construction, .x1 ∈ B. Suppose that 
.xn ∈ B for some .n ≥ 1. We prove that .xn+1 ∈ B. 

Using the recursion formula (7.18) and .(ii) of Theorem 1, we have  

. ‖xn+1 − x∗‖q = ‖xn − x∗ − λn(J
−1Axn + θn(xn − x1))‖q

≤ ‖xn − x∗‖q − qλn〈J−1Axn + θn(xn − x1), jq(xn − x∗)〉
+ dqλq

n‖J−1Axn + θn(xn − x1)‖q

≤ ‖xn − x∗‖q − qλn〈J−1Axn + θn(xn − x1), jq(xn − x∗)〉 + λq
nMq.

Using the fact that .J−1A is accretive, we obtain 

.〈J−1Axn+ θn(xn−x1), jq(xn−x∗)〉 ≥ θn‖xn−x∗‖q + θn〈x∗−x1, jq(xn−x∗)〉.
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Therefore, we have the following estimates: 

. ‖xn+1 − x∗‖q ≤ (1 − qλnθn)‖xn − x∗‖q − qλnθn〈x∗ − x1, jq(xn − x∗)〉 + λq
nMq

≤ (1 − qλnθn)‖xn − x∗‖q + qλnθn‖x∗ − x1‖‖xn − x∗‖q−1 + λq
nMq

≤ (1 − qλnθn)‖xn − x∗‖q + qλnθn

Ä 1
q

‖x∗ − x1‖q + 1

q ′ ‖xn − x∗‖q
ä

+λq
nMq,

with .1/q + 1/q ′ = 1. Thus, 

. ‖xn+1 − x∗‖q ≤ (1 − λnθn)‖xn − x∗‖q + λnθn‖x∗ − x1‖q + λq
nMq.

So, using the induction assumption, the fact that .x1 ∈ B(x∗, r/2) and the condition 
.λ

q−1
n ≤ γ θn, we obtain 

. ‖xn+1 − x∗‖q ≤ rq .

Therefore .xn+1 ∈ B. Thus by induction, .xn ∈ B for all .n ≥ 1. 

Step 2.We prove that .‖xn+1 − yn‖ → 0 as .n → 0. From step 1, we have .{xn} ⊂ B. 
Since .{yn} is bounded (being a convergent sequence) and A is bounded on B, there 
exists some positive constant M such that: 

. ‖xn+1−yn‖q = ‖xn − yn − λn(J
−1Axn + θn(xn − x1))‖q

≤ ‖xn − yn‖q − qλn〈J−1Axn + θn(xn − x1), jq(xn − yn)〉
+ dqλq

n‖J−1Axn + θn(xn − x1)‖q

≤ ‖xn − yn‖q − qλn〈J−1Axn + θn(xn − x1), jq(xn − yn)〉 + Mqλq
n.

Using (7.21) and the fact that A is accretive, we have 

. 〈J−1Axn + θn(xn − x1), jq(xn − yn)〉 = 〈J−1Axn − J−1Ayn, jq(xn − yn)〉
+θn‖xn − yn‖q

+〈J−1Ayn + θn(yn − x1), jq(xn − yn)〉

≥ θn

q

∥∥∥xn − yn

∥∥q .

Therefore, 

.‖xn+1 − yn‖q ≤ (1 − λnθn)‖xn − yn‖q + Mqλq
n. (7.23) 

Using again the fact that A is accretive, we have
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. ‖yn−1 − yn‖ ≤
∥∥∥yn−1 − yn + 1

θn

Ä
J−1Ayn−1 − J−1Ayn

ä∥∥∥.
Observing from (7.21) that 

. yn−1 − yn + 1

θn

Ä
J−1Ayn−1 − J−1Ayn

ä
= θn − θn−1

θn

(yn−1 − x1),

it follows that 

.‖yn−1 − yn‖ ≤ θn−1 − θn

θn

‖yn−1 − x1‖. (7.24) 

By Lemma 1, we have  

. ‖xn − yn‖q = ‖(xn − yn−1) + (yn−1 − yn)‖q

≤ ‖xn − yn−1‖q + q〈yn−1 − yn, jq(xn − yn)〉.

Using Schwartz’s inequality, we obtain 

.‖xn − yn‖q ≤ ‖xn − yn−1‖q + q‖yn−1 − yn‖‖xn − yn‖q−1. (7.25) 

Using (7.23), (7.24), (7.25), and the fact that .{xn} and .{yn} are bounded, we have 

. ‖xn+1 − yn‖q ≤ (1 − λnθn)‖xn − yn−1‖q + C
Äθn−1 − θn

θn

ä
+ Mqλq

n

= (1 − λnθn)‖xn − yn−1‖q + (λnθn)σn + γn

for some positive constant C where 

. σn := C
Ä

θn−1−θn

θn

ä
λnθn

= C
Ä θn−1

θn
− 1

λnθn

ä
, γn := Mqλq

n.

Thus, by Lemma 2, .xn+1 − yn → 0. Using  (7.22), it follows that .xn → y∗ and 
.0 ∈ Ay∗. This completes the proof. 

Remark 5 For .E = Lp or .Wm,p, .1 < p < ∞, if  .A : E → E∗ is maximal 
monotone, then .J−1A : E → E is m-accretive, where J is the duality mapping of 
E. 

From Remark 5 and the fact that . Lp and .Wm,p spaces are 2-uniformly smooth for 
.2 ≤ p < ∞ and p-uniformly smooth for .1 < p < 2 and using Remark 3, we have  
the following corollaries. 

Corollary 1 Let .E = Wm,p, .1 < p < ∞, and let .A : E → E∗ be a bounded and 
maximal monotone mapping such that .A−1(0)  = ∅. Then, there exists .γ0 > 0 such
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that if .λn < γ0θn for all .n ≥ 1, the sequence .{xn} given by (7.18) converges strongly 
to some .x∗ ∈ A−1(0). 

Corollary 2 Let .E = Lp, .1 < p < ∞, and . Lq its dual space. Let . A : Lp → Lq

be a bounded and maximal monotone mapping such that .A−1(0)  = ∅. For arbitrary 
.x1 ∈ E, let .{xn} be a sequence defined iteratively as follows: 

.xn+1 = xn − λn‖Axn‖2−q
Lq

|Axn|q−2Axn − λnθn(xn − x1), n ≥ 1, (7.26) 

where J is the normalized duality mapping from E into . E∗ and .{λn}, .{θn} are real 
sequences in .(0, 1) satisfying, here and elsewhere, the following conditions: 

. (i) lim
n→∞ θn = 0; (ii)

∞∑

n=1

λnθn = ∞, λq−1
n = o(θn); (iii)

lim sup
n→∞

Ä
θn−1
θn

− 1
ä

λnθn

≤ 0,
∞∑

n=1

λq
n < ∞.

Then the sequence .{xn} defined by .(7.26) converges strongly to .x∗ ∈ E, the unique 
solution of .Au = 0. 

Corollary 3 Let H be a real Hilbert space and let .A : H → H be a bounded and 
maximal monotone mapping such that .A−1(0)  = ∅. For arbitrary .x1 ∈ H , let  . {xn}
be a sequence defined iteratively as follows: 

.xn+1 = xn − λnAxn − λnθn(xn − x1), n ≥ 1, (7.27) 

where J is the normalized duality mapping from E into . E∗ and .{λn}, .{θn} are real 
sequences in .(0, 1) satisfying, here and elsewhere, the following conditions: 

. (i) lim
n→∞ θn = 0; (ii)

∞∑

n=1

λnθn = ∞, λq−1
n = o(θn); (iii)

lim sup
n→∞

Ä
θn−1
θn

− 1
ä

λnθn

≤ 0,
∞∑

n=1

λq
n < ∞.

Then the sequence .{xn} defined by .(7.27) converges strongly to .x∗ ∈ E, the unique 
solution of .Au = 0. 

Proof The proof follows from the fact that Hilbert spaces are 2-uniformly smooth 
and in addition the duality map J is identity map.
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Application to Differentiable Convex Minimization Problems 

In this section, we study the problem of finding a minimizer of a differentiable 
convex function f defined from a real Banach space E to . R. 

In the sequel we will need the following result. 

Lemma 4 (Chudime et al. [14]) Let E be normed linear space and . f : E → R

a real-valued convex function. Assume that f is bounded. Then the subdifferential 
map .∂f : E → 2E∗

is bounded on bounded subsets of E. 

Lemma 5 (Rockafellar [51]) Let E be normed linear space and .f : E → R a 
proper, lower semicontinuous convex function. Then the subdifferential map, . ∂f :
E → 2E∗

, is maximal monotone. 

We now prove the following theorem. 

Theorem 4 Let E be a q-uniformly smooth and strictly convex real Banach. Let 
.f : E → R be a differentiable, bounded convex real-valued function which satisfies 
the growth condition: .f (x) → +∞ as .‖x‖ → +∞. For arbitrary .x1 ∈ E, let . {xn}
be the sequence defined iteratively by 

.xn+1 = xn − λnJ
−1(df (xn)) − λnθn(xn − x1), n ≥ 1, (7.28) 

where J is the normalized duality mapping from E into . E∗ and .{λn}, .{θn} are real 
sequences in .(0, 1) satisfying, here and elsewhere, the following conditions: 

. (i) lim
n→∞ θn = 0; (ii)

∞∑

n=1

λnθn = ∞, λq−1
n = o(θn); (iii)

lim sup
n→∞

Ä
θn−1
θn

− 1
ä

λnθn

≤ 0,
∞∑

n=1

λq
n < ∞.

Then, f has a unique minimizer .x∗ ∈ E, and the sequence .{xn} defined by (7.28) 
converges strongly to . a∗. 

Proof Since E is q-uniformly smooth, then it is reflexive. Therefore, from the 
growth condition, the continuity, and the strict convexity of f , f has a unique 
minimizer . x∗ characterized by .df (x∗) = 0. Finally, from Lemma 4 and Lemma 5, 
the differential map .df : E → E∗ is bounded and maximal monotone. Therefore, 
the proof follows from Theorem 3. 

Acknowledgments The authors thank the referees and the editors of the Journal for their work 
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Chapter 8 
On Rickart and Baer Semimodules 

Mamadou Lamine Diallo, Jean Raoult Tsiba, and Djiby Sow 

Abstract This chapter generalizes the Rickart (resp., Baer) property on semirings 
and semimodules. We introduce weak Rickart (resp., Baer ) semimodules and then 
identify i-Rickart semimodules as a specific subclass of the former. Basic links 
between the different Baer and Rickart semimodules are discussed. A characteri-
zation of the Rickart semimodules by their endomorphism semiring is provided. 

Keywords Weak Rickart semirings · Weak Rickart semimodules · Weak Baer 
semirings · Weak Baer semimodules · i-Rickart semirings · i-Rickart 
semimodules · i-Baer semirings · i-Baer semimodules 

Introduction 

An idempotent . e of a ring . R is such that .e2 = e. Then clearly the corresponding 
decomposition .R = eR ⊕ (1− e)R is useful to determining the structure of . R. The  
Rickart and Baer properties are based on connections of idempotents to annihilators 
of a ring. It is useful in solving a linear equation in one unknown .ax = b, where 
.a /= 0. The general class of rings in which the last equation is solvable includes 
that of Rickart and Baer. Again a good setting to solve completely a finite system of 
linear equations is . R such that the direct sum of copies of . R inherits the Rickart and 
Baer property. 

In 1946, C. E. Rickart studied .C⋆-algebras, Banach algebras with involution . ⋆

such that .||xx⋆|| = ||x||2, which satisfy that the right annihilator of every single 
element is generated by a projection (.e2 = e and .e⋆ = e). 

In 1960, S. Maeda [17] defined Rickart rings in an arbitrary setting after 
Kaplansky’s work on Baer semirings in 1955 [5]. A ring is called right Rickart 
if an idempotent generates the right annihilator of every single element. Hattori 
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[10] introduced in 1960 right p.p. rings, rings with the property that every principal 
right ideal of . R is projective; it was later shown that right p.p. rings are precisely 
right Rickart rings. Much work was developed by authors such as Berberian, E.P. 
Armendariz [2], S.K. Berberian, G.M. Bergman [3], S. Endo [6], M.W. Evans [7], 
I. Kaplansky [12], and W.K. L.Small [19]). 

In 2004, Baer modules were introduced, for the first time, by Rizvi and Roman 
[18]. . M is called right Baer semimodule if the right annihilator in . M of every subset 
of the endomorphism semiring S of . M is generated by an idempotent of . S. Replac-
ing every subset by every element of . S, Rizvi and Roman defined again Rickart 
modules in 2010 [15]. Although many works generalize the Rickart and Baer 
properties in module theory, as far as we know, Gupta et al. first introduce Rickart 
semirings theory [8]. Semirings generalize rings and distributive bounded lattices 
not necessarily with subtraction. Semirings and their semimodules differ from rings 
and modules, respectively, in that they do not necessarily admit subtraction. They 
have important uses in many areas of Computer Science and Mathematics, such as 
Automata Theory, Tropical Geometry, and Idempotent Analysis. Our reference is 
Golan’s book [9] for semirings and their semimodules, Wisbauer’s book [20] for  
modules, and Birkenmeier–Park–Rizvi’s book [4] for the Rickart property. 

In our work we introduce the Rickart (resp., Baer) property on semirings and 
semimodules. We study weak Rickart (resp., weak Baer) semimodules and i-Rickart 
semimodules. Many properties on Baer and Rickart semirings and semimodules 
over semirings are discussed. 

This chapter is divided into three sections as it follows. 
In section “Introduction”, we present some preliminaries. 
In section “Preliminaries”, we characterize some Rickart (Baer) semimodules by 

their endomorphisms. 
In section “Characterizations of i-Rickart Semimodules”, we exhibit links 

between the properties and generalize a well-known result of L. Small. 

Preliminaries 

Basic Notions 

Throughout this chapter, . R is a semiring with unit and . M is a unital right .R-
semimodule. For a right .R-semimodule . M , .S = EndR(M) will denote the 
endomorphism semiring of . M . Then . M can be viewed as a left .S-right .R-
bisemimodule. For .ϕ ∈ S, .ker(ϕ) and .imϕ (or . ϕM) stand for the kernel and the 
image of . ϕ (or proper image), respectively. The notations .N ⊆ M , .N ⩽ M , 
.N ⩽esse M , .N ⩽⊕ M , .N ⩽⊕̄ M , and .N ⊴ M mean that . N is a subset, a 
subsemimodule, an essential subsemimodule, a direct summand, a weak summand, 
and a fully invariant subsemimodule of . M , respectively. By . R, . Q, . Z, and . N, we  
denote the ring of reals, rationals, integers, and natural numbers, respectively. .Nn
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will denote .N/Nn and .Matn×n(R) denotes an .n × n matrix semiring over . R. For . M

and . M ' two .R-semimodules, .homR(M,M ') and .homR(M,M) = EndR(M) denote 
the semiring of homomorphism from . M to . M ' and the endomorphism semiring 
of . M , respectively. For .g ∈ homR(M,M ') and .f ∈ homR(M ',M '') such that 
.g(M) ⊆ M ', the composition of maps .f og is denoted . fg, and then . f og(m) =
fg(m) = f (g(m)),∀m ∈ M. We also denote .rM(I) = {m ∈ M|Im = 0}, 
.rS(I ) = {ϕ ∈ S|Iϕ = 0} for .∅ /= I ⊆ S; .rR(N) = {r ∈ R|Nr = 0}, 
.lS(N) = {ϕ ∈ S|ϕN = 0} for . N ⩽ M.

Recall the following definitions and properties: 

(a) Let . M , . N be .R-semimodules and .f ∈ homR(M,N): 

1. .f (M) = imf = {f (m) : m ∈ M} is said to be the proper image of f. 
2. .Imf = {b ∈ M : b + f (m) = f (m

'
), for somem,m

' ∈ M} the image 
or extended image of f. .Imf = {x ∈ M : x =imf 0M }. .imf ⊆ Imf . 
.ker(f ) = {m ∈ M : f (m) = 0N } is the kernel of . f . 

3. . f is said to be k-regular, if .f (x1) = f (x2) implies .x1 + k1 = x2 + k2, for 
some .k1, k2 ∈ ker(f ). f is said to be i-regular if .f (M) = Im(f ). f is said to 
be regular if . f is i-regular and k-regular. 

4. .f (M) ⊊ Imf . And .f (M) = Imf iff . f is i-regular. 

(b) Let . R be a semiring, .a ∈ R, and .S ⊆ R a subset: 

1. The right annihilator of .a ∈ R is the ideal .rR(a) = {r ∈ R : ar = 0}. 
Similarly, .lR(a) means the left annihilator of . a. 

2. . R is called right Baer semiring if for every nonempty subset . S of . R, there 
exists an idempotent .e ∈ R such that .rR(S) = eR [8]. 

3. . R is called right Rickart semiring (or p.p. semiring) if for every .a ∈ R, there 
exists an idempotent .e ∈ R such that .rR(a) = eR [8]. 

(c) Let . N1 and . N2 be subsemimodules of . M: 

1. If .M = N1 + N2 and .N1 ∩ N2 = {0}, then . M is a weak sum of . N1 and . N2, 
and we denote .M = N1⊕̄N2. The decomposition of .m ∈ M into .xi ∈ Ni is 
not necessarily unique. 

2. Let .M = N1 + N2 and .N1 ∩ N2 = {0} such that every element m of . M
decomposes uniquely .m = n1 + n2, where .ni ∈ Ni . Then . M is called direct 
sum and . Ni a direct summand of . M . This is denoted by .M = N1 ⊕ N2. By  
Remark 2.2. in [1], a direct summand of . M is subtractive. 

3. For every subsemimodule N of M , the Bourne congruence relation on M is 
defined by: .m1,m2 ∈ M , .m1 ≡N m2 if .m1+n1 = m2+n2, with .n1, n2 ∈ N . 
The restriction of the Bourne equivalence relation .≡N1 to . N2 and .≡N2 to . N1
is trivial, meaning that the projection . p1 of M on . N1 along . N2 and that of M 
on . N2 along .N1 , p2, is well defined on . M . 

(d) Let .I ≤ R be an ideal and .N ≤ M a subsemimodule:
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1. I is subtractive, if .a + b ∈ I and .a ∈ I imply that .b ∈ I for all .a, b ∈ R. 
Similarly, . N is subtractive, if .n + n' ∈ N and .n ∈ N imply that .n' ∈ N for 
all .n, n' ∈ M . 

2. Direct summands of M in [1], .ker(f ), .Im(f ), and annihilators are subtrac-
tive. 

3. If .M = M1 ⊕ M2 = M and .N ≤ M is subtractive, then .N = N1 ⊕ N2 , 
where .Ni = Ni ∩ Mi from Lemma 2.3. of [1] (semi-modularity law). 

(e) For the definition of a Baer module and a Rickart module, refer to [16] and [18]. 

Introduction to Rickart Semirings and Semimodules 

We introduce weak Rickart semirings and weak Rickart semimodules. 

Weak Rickart Semirings 

M and N are R-semimodules, I an ideal of a semiring S, and e ∈ homR(M, N). 
Recall that: 

1. e(M) = {n ∈ N/  m  + e(m1) = e(m2), m1,m2 ∈ M} = {n ∈ N /  n  ≡eM 0}. 
2. I = {s ∈ S /  s  + i1 = i2, where i1, i2 ∈ I } = {s ∈ N/  s  ≡I 0}. 
e(M), denoted Im(e)  or ImN(e), and I are the subtractive closure of eM and I , 
respectively. For a ∈ S, let  I = aS, and then aS allows defining the notion of 
i-regular element of S. 

Definition 8.1 Let a be an element of a semiring S: 

i a is said to be left (resp., right) i-regular element, if aS = aS (resp., Sa = Sa). 
ii a is i-regular, if a is left and right regular, and in others words aS = aS = Sa = 

Sa. 

Note that if S is commutative, then a left i-regular is right i-regular, and thus it is 
i-regular. 

Recall that in [17] a ring  R is right Rickart, if for every a ∈ R, rR(a) = eR, with 
e2 = e in R. Then rR(a) = eR is a direct summand of R, which is not the case in 
coming generalizations. 

Gupta et al. in [8] have proposed a definition of Rickart semiring that extends the 
property of Rickart rings in semirings theory. In their sense a semiring S is said to 
be a Rickart semiring if, for every r ∈ S, there exists an idempotent e of S such that 
rS(r) = eS. The following new definition generalizes Rickart semiring in semiring 
theory. In fact the generating idempotent e is not necessarily i-regular. 

Definition 8.2 A commutative semiring S is said to be a weak-Rickart (w-Rickart 
briefly ) semiring if, for every r ∈ S, there exists an idempotent e of S such that 
rS(r) = ImS(e).
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Definition 8.3 Let M be a R-semimodule and ϕ ∈ EndR(M). M is said to be a 
weak-Rickart, w-Rickart briefly, semimodule if, for every ϕ ∈ EndR(M), there 
exists an idempotent e of EndR(M) such that ker(ϕ) = Im(e). 

Example 8.1 Let M = ({0, 1, 2, 3}, gcd, 0) and B = ({0, 1},+,×, 0, 1), the  
boolean semiring. Then M is a B-semimodule, with scalar multiplication defined, 
for every (m, r) ∈ M × B, by m.r = 0, if r = 0, else m.r = m. {0}, {0, 2}, 
{0, 3} and M stand for kernel of some endomorphism of M and are generated by 
non-i-regular idempotent. One can verify that ϕ2, such that ϕ2(1) = ϕ2(3) = 1 and 
ϕ2(2) = 2, is an idempotent of End(M). Then ker(0S) = ϕ2(M) = {0, 1, 2} =  
ImM(ϕ2) = {0, 1, 2, 3}. It is true that gcd(3, ϕ2(1)) = ϕ2(1) ⇔ gcd(3, 1) = 1, and 
then 3 ∈ ImM(ϕ2), while 3 /∈ ϕ2(M). 

We propose a semiring which is not Rickart. 

Example 8.2 The semiring (R = 
Ç
N N  
0 N 

å 
,+, ×, 0R, 1R) has EndR(R) ∼= R. 

First, the set of idempotents of R is Id(R)  = {0R, e10, e01, e11, 1R} ∪ {ep; p ∈ N}, 
where : 0R = 

Ç
0 0  
0 0  

å 
, e10 = 

Ç
1 0  
0 0  

å 
, e01 = 

Ç
0 0  
0 1  

å 
, e11 = 

Ç
1 1  
0 0  

å 
, ep = 

Ç
0 p 
0 1  

å 
, 

and 1R = 
Ç
1 0  
0 1  

å 
. 

Let r0 = 
Ç
0 1  
0 0  

å 
, and then rR(x0) = 

Ç
0 N 
0 0  

å 
. Since ∀ e ∈ Id(R), rR(x0) /= 

ImR(e), R is not Rickart. 

Example 8.13 proves that the class of i-Rickart semimodules is strictly contained 
in that of w-Rickart semimodules. 

Example 8.3 Let R be the semiring as in Example 8.13, and it is remarkable that 
R is a w-Rickart R-semimodule without being an i-Rickart semimodule. 

Characterizations of i-Rickart Semimodules 

Endomorphism Semiring of i-Rickart Semimodules 

If . M is a w-Rickart R-semimodule, then the Rickart property on . M may go through 
.S = EndR(M). This happens, if for every .ϕ ∈ S, .ker(ϕ) = ImM(e) with 
. e an i-regular idempotent of . S. We identify a subclass of w-Rickart semirings 
and w-Rickart semimodules too, using the newly introduced notion of i-regular 
idempotent. Example 8.13 (resp.,8.1) proves that the class of i-Rickart semirings 
(resp., semimodules) is strictly contained in that of w-Rickart semirings (resp., 
semimodules).
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Definition 8.4 A semiring . S is said to be an i-Rickart semiring if, for every . r ∈ S,

there exists an i-regular idempotent e of . S such that .rS(r) = eS. 

The next two examples are i-Rickart semirings as integral semidomains. Let 
.icm(x, y) be the smallest common multiple of the numbers . x and . y. 

Example 8.4 a. The semiring . (R = {0, 1, 2},max,min, 0, 2)
b. The semiring .(R = {0, 1, 2}, gcd, lcm, 0, 1), with . gcd(0, 0) = 0

In the following, we specify i-Rickart semimodules as a subclass of w-Rickart 
semimodules. 

Definition 8.5 A .R-semimodule . M is said to be an i-Rickart semimodule if, for 
every .ϕ ∈ EndR(M), there exists an i-regular idempotent e of .EndR(M) such that 
.ker(ϕ) = ImM(e) = e(M). 

Example 8.5 Let .B = {0, 1} be the boolean semiring and .A = ∏∞
i=1 B the usual 

semiring product. It is a commutative and idempotent semiring. 
Consider the next infinite sequence of . 0 and . 1: 

– .T0 = {(an)
∞
n=1 ∈ A such that .∃ k ∈ N, .∀n ⩾ k, .an = 0}. 

– .T1 = {(an)
∞
n=1 ∈ A such that .∃ k ∈ N, .∀n ⩾ k, .an = 1}. 

– .B∞ = T0 ∪ T1. 

As .B∞ is closed under laws on . A and contains the zero sequence and the unit one, it 
is a subsemiring of .

∏∞
i=1 B, and then it is a semiring. Let us prove that . S is i-Rickart 

semiring using the definition. 
Note that every sequence .a = (an)

∞
n=1 has a unique complement . a⊥ = (a⊥

n )∞n=1
sequence, where .aa⊥ = a⊥a = 0 and .a⊥ + a = 1A. Thus for every a, . rB∞(a) =
a⊥(B∞), so that .B∞ is i-Rickart. 

Lemma 8.1 Let . M and . N be R-semimodules and .f ∈ homR(M,N) an .R-
homomorphism. Assume that .ker(f ) = eM where . e is an idempotent of . EndR(M).

Then .f e = 0, and for each .h ∈ EndR(M), we have: .f h = 0 implies that .h = eh. 

Proof .ker(f ) = eM implies that . f e(M) = f (eM) = f (ker(f )) = 0 ⇔ f e = 0.
For the second part, we have .f h = 0 implies that .h(M) ⊆ ker(f ) = eM . 

Let .m ∈ M , then .h(m) ∈ h(M) ⊆ eM , and thus there exists .m' ∈ M such that 
.h(m) = e(m') ⇒ eh(m) = ee(m') = e(m') = h(m). We conclude that .h = eh. 

The recall of in part a obviously leads to the following useful remark. 

Remark 8.1 Let .f, g ∈ EndR(M), where . M is an R-semimodule. If . ker(f ) =
ImM(g) and . g is i-regular, then . ker(f ) = ImM(g) = gM.

Proposition 8.1 Let . M be an i-Rickart R-semimodule. Then .EndR(M) is an i-
Rickart semiring. 

Proof To prove that . S is an i-Rickart semiring, let us justify that every nonzero 
.ϕ ∈ S .rS(ϕ) is generated by an i-regular idempotent .e ∈ S, clearly .rS(ϕ) = ImS(e).
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M is an i-Rickart semimodule and then .rM(ϕ) = ImM(e), for some i-regular 
idempotent .e ∈ S. Hence .ϕ(ImM(e)) = 0. Since .eM ⊆ ImM(e), then . ϕ(eM) =
0 = ϕe(M) so that .ϕe = 0 or .e ∈ rS(ϕ). We wish to show that .rS(ϕ) = ImS(e): 

– Let .z ∈ ImS(e), and then .z + e(s1) = e(s2) so that . ϕ(z) + ϕe(s1) = ϕe(s2) ⇔
ϕ(z) + 0 = 0 ⇔ z ∈ rS(ϕ). Then we do have: . ImS(e) ⊆ rS(ϕ).

– Conversely, let .ψ ∈ rS(ϕ), and then .ϕψ = 0 ⇒ ϕ(ψ(M)) = 0, which leads to 
.ψ(M) ⊆ rM(ϕ) and .ψ(m) ∈ rM(ϕ), for all .m ∈ M. Since . rM(ϕ) = ImM(e) =
eM , as . e is i-regular, then .ψ(M) ⊆ eM . Due to Lemma 8.1 and Remark 8.1, we  
obtain that .ψ = eψ ∈ eS ⊆ ImS(e), proving .rS(ϕ) = ImS(e) = eS, which 
justifies .EndR(M) is an i-Rickart semiring. 

Example 8.6 Let . M be the .R-semimodule in Example 8.1. .EndR(M) can be 
summarized as follows: 
.ϕ2
4 = ϕ0 and .∀i /= 4, ϕ2

i = ϕi ; . ϕ2ϕ3 = ϕ4ϕ3 = ϕ4ϕ5 = ϕ2; ϕ5ϕ3 = ϕ3ϕ2 = ϕ3;
.ϕ2ϕ4 = ϕ2ϕ5 = ϕ4 and .ϕ3ϕ4 = ϕ3ϕ5 = ϕ3. Note that . ϕ3 and . ϕ5 are not i-regular. 

Let us introduce a generalized version of the notion of .k-local retractability for 
semimodules and prove that it is the necessary condition to ensure that . M and 
.EndR(M) are simultaneously w (resp., i)-Rickart. Zelmanowitz regular modules 
are proved to be .k-local-retractable [21]. 

Definition 8.6 A R-semimodule M is called w-k-local-retractable ( resp., i-k-
local-retractable ) if for every .ϕ ∈ EndR(M) and every nonzero element . m ∈
rM(ϕ) = ker(ϕ), there exists a homomorphism .ψm : M → rM(ϕ) such that 
.m ∈ ImM(ψm) ⊆ rM(ϕ) ( resp., .m ∈ ψm(M) ⊆ rM(ϕ)). 

Proof 

(a) Every w-Rickart .R-semimodule . M is w-k-local-retractable. 
(b) Every i-Rickart R-semimodule . M is i-k-local-retractable. 

Proof Let . M be a w-Rickart semimodule, .ϕ ∈ EndR(M), and .0 /= m ∈ rM(ϕ). We  
have .rM(ϕ) = ImM(e), as . M is a w-Rickart semimodule, and thus . m ∈ ImM(e) ⊆
rM(ϕ). Hence M is w-k-local-retractable. 
Similarly, we prove (b). 

The following lemma is proved similarly as Lemma 8.1. 

Lemma 8.2 Let . R be a semiring and .r ∈ R. Assume that .rR(r) = eS with . e an 
idempotent of . S. Then .re = 0, and for .r ' ∈ S, we have : .rr ' = 0 implies that 
.r ' = er '. 

Proposition 8.2 For a .R-semimodule . M , the following assertions are equivalent: 

(a) . M is an i-Rickart .R-semimodule. 
(b) .EndR(M) is an i-Rickart semiring and . M is i-k-local-retractable. 

Proof .a) ⇒ b) comes out of Proposition 8.1 and Proposition . 
.b) ⇒ a) Let .ϕ ∈ EndR(M) = S. Let us prove : . rM(ϕ) = ker(ϕ) = ImM(e),

where .e2 = e is i-regular.
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Since . S is i-Rickart, .rS(ϕ) = ImS(e) = eS, for some i-regular . e2 = e.

Then .ϕe = 0, which implies that .ImM(e) ⊆ kerϕ. Conversely, let . m ∈ rM(ϕ)

be nonzero. Since . M is i-k-local-retractable, there exists .ψm such that . m ∈
ImM(ψm) ⊆ ker(ϕ), and thus we deduce .ϕψm = 0 , so ψm ∈ rS(ϕ). Since . S is 
i-Rickart, then .rS(ϕ) = ImS(e) = eS implies that .ψm ∈ eS, so that by Lemma 8.1 
.ψm = eψm. Moreover . m ∈ ImM(ψm) ⇔ m ∈ ImM(eψm) ⇔ ∃ x1, x2 :
m + eψm(x1) = eψm(x2) ⇔ ∃ x1, x2 : m + e(ψm(x1)) = e(ψm(x2)). Hence 
.m ∈ ImM(e) and . rM(ϕ) ⊆ ImM(e).

Endomorphism Semiring of i-Baer Semimodules 

We extend the Baer property to semirings by identifying w-Baer semirings and i-
regular Baer semirings, a subclass of the former. Here we require the annihilator of 
any subset to have an idempotent generator. 

Definition 8.7 Let . S be a semiring: 

i. . S is a weak-Baer (w-Baer, briefly) semiring if, for every subset .S' ∈ S, there 
exists an idempotent e of . S such that .rS(S') = ImS(e). 

ii. . S is an i-Baer semiring if, for every .S' ∈ S, there exists an i-regular idempotent 
e of . S such that .rS(S') = eS. 

Similarly, we define weak-Baer semimodules and i-regular Baer semimodules. 

Definition 8.8 Let . M be a .R-semimodule, and .S' ⊆ S = EndR(M): 

i. . M is a w-Baer semimodule if .rM(S') = Im(e) for some idempotent .e ∈ S. 
ii. . M is an i-Baer if .rM(S') = Im(e) for some i-regular idempotent e of .End(M). 

Example 8.7 

– . N and .Q+ are integral semidomains. Thus . N and .Q+ are Baer (Rickart) 
semirings. Hence . NN and .Q

+
Q+ are Baer (Rickart) semimodules. 

– . B2 the boolean semiring is a Baer .N-semimodule as .S = EndB(Z2) = {0S, 1S}, 
so that .ker(ϕ) is trivial for every .ϕ ∈ S. 

– To show that . Q+ is a Baer .N-semimodule, it suffices to prove that .ker(ϕ) = 0 for 
every nonzero .ϕ ∈ EndN(Q+). 

Theorem 8.1 Let . M be an i-Baer semimodule. Then .EndR(M) is an i-Baer 
semiring. 

Proof Let .I ⊆ EndR(M) be a subset. We wish to prove that .rS(I ) is generated 
by an i-idempotent of .EndR(M) to satisfy the definition of an i-Baer semiring. We 
already know that .rM(I) = ImM(e) with . e an i-regular idempotent of .EndR(M), 
as . M is an i-Baer semimodule. Let us prove that .rS(I ) = ImS(e) = eS. 

.eS ⊆ rS(I ) comes out of what follows : .rM(I) = ImM(e) = eM . Since . eM ⊆
ImM(e), then .I (eM) ⊆ I (ImM(e)) = 0 ⇒ Ie(M) = I (eM) = 0. Thus .Ie =
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0 ⇔ e ∈ rS(I ) ⇔ eS ⊆ rS(I ). It remains to prove the reverse inclusion, . rS(I ) ⊆
eS. Take  .ϕ ∈ rS(I ) and .m ∈ M , and then . Iϕ = 0 ⇔ Iϕ(M) = I (ϕM) =
0 ⇔ ϕ(M) ⊆ rM(I), since .rM(I) = eM , then .ϕ(M) ⊆ eM and by lemma 8.1 
.eϕ = ϕ ⇔ ϕ ∈ eS. Therefore .rS(I ) = eS, as desired. 

We generalize the notions of retractability and quasi-retractability. Examples of 
retractable or quasi-retractable modules are in [22]. Baer semimodules are quasi-
retractable. 

Definition 8.9 Let . M be an .R-semimodule: 

i . M is said to be retractable of type 1 if for every nonzero subsemimodule . N of 
. M , there exists a nonzero endomorphism . ϕ such that .ϕ(M) ⊆ N . 

ii . M is said to be retractable of type 2 if for every nonzero subsemimodule . N of 
. M , there exists a nonzero endomorphism . ϕ such that .Imϕ ⊆ N . 

iii . M is said to be quasi-retractable of type 1 if for every nonzero .I ⩽S S, there 
exists nonzero . ϕ such that .ϕ(M) ⊆ rM(I)). 

Equivalently : . ∀0 /= I ⩽S S, [rM(I) /= 0] ⇒ [rS(I ) /= 0].
iv . M is said to be quasi-retractable of type 2 if for every nonzero .I ⩽S S, there 

exists a nonzero . ϕ such that .ImM(ϕ) ⊆ rM(I). 

Remark 8.2 It is clear that .ii ⇒ i, and if . M is subtractive, then . ii ⇔ i.

It is obvious that .iii ⇔ iv since an annihilator is subtractive. 
. iv ⇒ iii.

Lemma 8.3 Let . M be an .R-semimodule: 

i If . M is retractable, then . M is quasi-retractable. 
ii If . M is Baer, then . M is quasi-retractable. 

Proof 

i Let us prove that: .[∀I ⩽ S] .[rM(I) /= 0 ⇒ rS(I ) /= 0]. Since . M is retractable and 
.rM(I) is a nonzero subsemimodule of . M , there exists nonzero .ϕ ∈ S, such that 
.ImM(ϕ) ⊆ rM(I). Since . [ϕ(M) ⊆ ImM(ϕ) ⇒ I (ϕ(M)) ⊆ I (ImM(ϕ))] ⇒
[Iϕ(M) ⊆ 0], then .Iϕ = 0. Hence .0 /= ϕ ∈ rS(I ), as desired. 

ii Let us prove that .rS(I ) /= 0 is nonzero for every nonzero subset .I ⊆ S. Since . M is 
a Baer semimodule, then .rM(I) = ImM(e) for some nonzero idempotent . e of . S. 
We pretend that .rS(I ) contains . e. We have .rM(I) = ImM(e) ⇒ I (ImM(e)) = 0, 
and since .eM ⊆ ImM(e), then .I (eM) = I (eM) = 0. Therefore . Ie = 0 ⇔ e ∈
rS(I ), so .rS(I ) /= 0 is nonzero, as sought. 

Note that quasi-retractability generalizes retractability. 
Let . M be a .R-semimodule. 
We introduce a condition on the intersection of kernels of every subset of 

.S = End(M), denoted .(CK), and a condition on the intersection of annihilators in 

.End(M), called .(CA). These two conditions, along with quasi-retractability of . M , 
are needed to characterize some class of Baer semimodules by their endomorphism 
semiring.
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Definition 8.10 Let . M a .R-semimodule: 

a . M has .(CK) condition means every intersection of kernels of .ϕ ∈ End(M) is 
nonzero. 

Equivalently: .∀I ⊆ S, rM(I) /= 0, in other words .
⋃

ϕ∈I ker(ϕ) /= 0. 
b . M has .(CA) condition means: For . I ⊆ S,

if there exists an idempotent .e ∈ S such that .rS(I ) = ImS(e), then 
. rS(I )

⋃
rS(e) = 0.

It is remarkable that .(CK) ⇒ non(CA) is equivalent to the quasi-retractability of 
the semimodule in question. If . M satisfies .(CK), while .(CA) is true, then . M is not 
quasi-retractable. 

For examples of semimodules . M with .(CA) condition, take Baer semimodules, 
which are always quasi-retractable. Every semimodule . M does not have . (CK)

condition. Take .I = {p, p⊥}, and then .ker(p)
⋃
ker(p⊥) = 0, where . p and . p⊥

are orthogonal complements endomorphisms of a semimodule. 
Now we can fully characterize Baer semimodules with .(CA) condition, using the 

notion of quasi-retraceability. 

Theorem 8.2 Let . M be a semimodule with .(CA) condition. Then the following 
statements are equivalent: 

i . M is an i-Baer semimodule. 
ii .S = EndR(M) is an i-Baer semiring and . M is quasi-retractable. 

Proof i, . ⇒. ii The first part is achieved by Theorem 8.1 and Lemma 8.3. 
i . ⇐ ii Let .I ⊆ End(M) a subset. 
We wish to show : .rM(I) is generated by an i-idempotent . e of . S. 
We know .rS(I ) = ImS(e) for some i-idempotent of . e of . S, since . S is an i-Baer 

semiring. 
Let us show : .rM(I) = ImM(e) = eM . First we show .ImM(e) = eM ⊆ rM(I). 
From .eS ⊆ ImS(e) and .rM(I) = ImS(e) = eS ⇒ I (eS) = 0, we deduce that 

.Ie(S) = I (eS) = 0, and thus .Ie = 0. Then . Ie = 0 ⇒ ∀ϕ ∈ I, ϕe(M) = ϕ(eM) =
ϕ(ImM(e)) = 0, and thus . ImM(e) ⊆ rM(I).

Conversely, let us show that .rM(I) = ImM(e). Assuming the opposite means 
that .ImM(e) ⊊ rM(I), which implies that there exists nonzero .x ∈ rM(I), in other 
words, . M has .(CK) condition by the alleged assumption. But by hypothesis . M
already has .(CA) condition, and thus . M is not quasi-retractable, contradicting the 
hypothesis of quasi-retractability of . M . Hence we must admit that there does not 
exist nonzero .x ∈ rM(I) such that . x is not in . eM . Therefore . rM(I) = eM =
ImM(e), so that . M is an i-Baer semimodule. 

Example 8.8 Let us prove that the Rickart semiring . (R = {0, 1, 2}, gcd, lcm, 0, 1)
in Example 8.4 (in part . c.) is a  .R-Baer semimodule . R which has (CA) condition 
and satisfies the theorem. 

The multiplication by the elements of . R gives all the elements of .S = End(R), 
which is summarized in the first table. . ϕx denotes the multiplication by the element 
. x. The last two give the laws in .End(R).
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.ϕ0 .ϕ1 . ϕ2

.0 .0 .0 . 0

.1 .0 .1 . 2

.2 .0 .2 . 2

.+ .ϕ0 .ϕ1 . ϕ2

.ϕ0 .ϕ0 .ϕ1 . ϕ2

.ϕ1 .ϕ1 .ϕ1 . ϕ1

.ϕ2 .ϕ2 .ϕ1 . ϕ2

.◦ .ϕ0 .ϕ1 . ϕ2

.ϕ0 .ϕ0 .ϕ0 . ϕ0

.ϕ1 .ϕ0 .ϕ1 . ϕ2

.ϕ2 .ϕ0 .ϕ2 . ϕ2

The Rickart .R-semimodule . R is a Baer one, as .End(M) is a semidomain: 

– Clearly from table 1, . M has not .(CK), as all kernels are trivial. 
– .End(M) is Baer, as it is zero divisor free and . M has .(CA) condition for the same 

reason. 

Example 8.9 Let us prove that the Rickart semimodule .M = ({0, 1, 2},max, 0) on 
the boolean .R = {0, 1} semiring endowed with operation as in Example 8.1 is a .R-
Baer semimodule without (CK) condition and satisfies the theorem. .S = End(R) is 
defined in the following table. 

.ϕ0 .ϕ1 .ϕ2 .ϕ3 .ϕ4 . ϕ5

.0 .0 .0 .0 .0 .0 . 0

.1 .0 .1 .1 .2 .0 . 0

.2 .0 .2 .1 .2 .1 2 

Let us prove that . M is a Baer .R-semimodule . R: 

– Table 1 shows that .I = {ϕ4, ϕ5} ⊆ EndR(M) is the only subset such that 
.∩ϕ∈I kerϕ /= {0}. Indeed .∩ϕ∈I ker(ϕ = {0, 1}; otherwise .∩ϕ∈I ker(ϕ) /= {0}. 

– We can verify that .rS(I ) = {ϕ0, ϕ2, ϕ4} = Im(ϕ2), with . ϕ2 an idempotent 
and .rS(ϕ2) = {ϕ0}, so that .rS(I ) ∩ rS(e) = {ϕ0}. Then . M is quasi-retractable. 
Therefore . M is an i-Baer semimodule, by Theorem 8.2. 

Links Between Rickart and Baer Properties 

Rickart Semimodules Versus Baer Semimodules 

We first generalize the notion of a direct summand and then introduce intersection 
properties. 

Definition 8.11 Let . R be a semiring and . I an ideal of . R: 

– . I is a left w-Id-ideal (for weakly idempotent ideal), if . I = {a ∈ R, a ≡eR 0} =
ImR(e), where . e is an idempotent of . R. If . e is i-regular, then .I = e(R) is said to 
be a left i-Id ideal. Analogously we define right w-Id-ideal and right i-Id ideal. 

– . I is said to be a w-Id ( i-Id )ideal, if . I is both left and right w-Id ( i-Id ).
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Definition 8.12 Let . R be a semiring: 

1. . R has the w-Id IP property, if for every two idempotents .e1, e2 ∈ S, there exists 
an idempotent .e ∈ S such that .Im(e1) ∩ Im(e2) = Im(e). 

If the involved idempotents are i-regular, . R has i-Id IP. 
Equivalently, the intersection of every finite subset of w-Id-ideals is a w-Id 

ideal. 
The strong version is: 

2. . R has the w-Id SIP property (i-Id SIP property), if the intersection of every subset 
of w-Id-SIP (i-Id-SIP) is a w-Id ideal (i-Id ideal). 

The next example of semiring has w-Id-SIP property. 

Example 8.10 Let .M = ({0, 1, 2},max, 0) and .R = (N,+,×, 1, 0), with scalar 
multiplication defined as follows: .∀(m, r) ∈ M × R mr = m. Then . M is a .R-
semimodule. The table defining .EndR(M) does show that . M has w-Id IP property. 

.ϕ0 .ϕ1 .ϕ2 .ϕ3 .ϕ4 . ϕ5

.0 .0 .0 .0 .0 .0 . 0

.1 .0 .1 .1 .2 .0 . 0

.2 .0 .2 .1 .2 .1 2 

The possible intersections of w-Id subsemimodules . {0}, .{0, 1}, and .{0, 2} are w-
Id subsemimodules. 

The next example of semiring has not the w-id IP property. 

Definition 8.13 Let . M be a .R-semimodule: 

1. A subsemimodule . N of . M such that .N = ImM(e) for some idempotent 
.e ∈ End(M) is called a weak-Id subsemimodule (briefly denoted w-Id 
subsemimodule). 

2. If .N = eM , with .e2 = e, we say that . N is an i-Id subsemimodule. 

In both cases, . e is a generating idempotent ( or generator ) of . eM or .ImM(e). It may  
not be unique. If . e is i-regular, then w-Id subsemimodule satisfies both definitions. 

Note that for a ring, the w-id ideals are the direct summands of the ring, and 
the w-id subsemimodules of a module coincide with the direct summands of the 
module. 

If we assume that . e is not i-regular, then w-Id ideal (subsemimodule) is not a 
direct summand as it is not subtractive by Remark 2.2. in [1]. 

Definition 8.14 Let . M be a .R-semimodule: 

1. . M has the w-Id IP property, if for every two idempotents .e1, e2 ∈ S, there exists 
an idempotent .e ∈ S such that .Im(e1) ∩ Im(e2) = Im(e). 

If the involved idempotents are i-regular, . M has i-Id IP.
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Equivalently, the intersection of every finite subset of w-Id subsemimodules 
is a w-Id subsemimodule. 

The strong version is: 
2. . M has the w-Id SIP property (i-Id SIP property), if the intersection of every 

subset of w-Id subsemimodules (i-Id-SIP property) is a w-Id subsemimodule (i-
Id SIP property). 

Example 8.11 The semiring .(R =
Ç
N N

0 N

å
, +, ×, 0R, 1R) of the Example 8.2 

has not w-id IP. Indeed .e11(R)∩ep(R) =
Ç
0 1
0 0

å
=
Ç
0 N

0 0

å
/= ImR(e), and then . R

has not w-Id property. Meanwhile, the Rickart semimodule in Example 8.10 clearly 
has the property. Then these properties allow us to characterize w-Baer semimodules 
in terms of w-Rickart semimodules. 

Remark 8.3 Example 8.2 provides a . RR semimodule that does not have the w-Id 
property. 

We introduce conditions on the intersection of kernels and annihilators: 

1. .AIP (.SAIP ), for annihilators (strong annihilators) intersection property 
2. .KIP (.SKIP ), for kernels (strong kernels) intersection property 

Definition 8.15 Let . R be a semiring and . M a .R-semimodule, with .I ⊆ End(M): 

– . R has .AIP , if .
⋃

r∈I rR(r) is a w-Id ideal of . R, for every finite . I . 
In others words .

⋃
r∈I rR(r) = ImR(e), with .e2 = e ∈ S. If  . I is arbitrary, . M

has .SAIP . 
– . M has .KIP , if .

⋃
ϕ∈I ker(ϕ) is a w-Id subsemimodule of . M , for every finite . I . 

In others words .
⋃

ϕ∈I ker(ϕ) = ImM(e), with .e2 = e ∈ S. If  . I is arbitrary, 
. M has .SKIP . 

Remarkably, these two conditions help us to reformulate the Rickart (Baer)property. 
Let us first begin with a lemma. 

Lemma 8.4 If . R is w-Rickart and has w-.Id SIP , then . R has .SAIP . 

Proof Since . R is w-Rickart, annihilator of every singleton of R is an w-Id ideal of 
. R. Furthermore, by definition 8.12, Id-SIP assumption implies that R has SAIP. 

Proposition 8.3 The following assertions are equivalent: 

1. . R is a w-Baer semiring. 
2. . R has .SAIP . 
3. . R is a w-Rickart semiring and . R has w-Id SIP. 

Similarly, for a semimodule, the following are equivalent: 
4. . M is a w-Baer semimodule. 
5. . M has .SKIP . 
6. . M is a w-Rickart semimodule and . M has w-Id SIP.
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Proof .1) ⇔ 2) is obvious by the definitions. For .3) ⇒ 2 holds out of lemma 8.4, 
while the converse is obvious. 

Similarly, we prove that .4), 5) and . 6 are equivalent. 

Rickart Semirings Versus Baer Semirings 

Recall that L. Small has established a well-known result on rings (Theorem 7.55, 
[13]) which has been extended to modules theory in theorem 4.5 [15] by Rizvi. 
We generalized it to some semirings and semimodules as well. We give additional 
definitions and extend two lemmas similar to that of 4.3 and 4.4 in [15] by Lee and 
proposition 6.59 in [14] by Lam.  

To generalize L. Small’s result we need to reformulate a lemma of Lam, using the 
concepts of w-Id-ideals (not necessarily direct summands) and properties on them. 
We also assume that w-d Ideals are uniquely generated, which means if . a and . b are 
two different idempotents, then .ImR(a) /= ImR(b). 

We first define an orthogonally finite semiring and a condition based upon it. 

Definition 8.16 Let . R be a semiring: 

R is said to be orthogonally finite, if . R has no infinite set of nonzero orthogonal 
idempotents. 

R is said to be having orthogonally finite property (briefly OFP) on w-Id ideals, if: 
R is orthogonally finite implies that . R satisfies DCC on w-Id ideals. 

Lemma 8.5 Let . R be a Rickart semiring with OFP such that w-Id-ideals are 
uniquely generated. Then the following are equivalent: 

R satisfies ACC on right w-Id ideals. 
R satisfies DCC on left w-Id ideals. 
R is orthogonally finite. 

Proof .1 ⇔ 2. Assume that .Im
R
(e1) ⊊ Im

R
(e2) ⊊ ... ⊊ Im

R
(en) ⊊ .... is a 

nonstationary sequel of right w-Id-ideals, as all . ei are pairwise different idempotents 
of . R. Since . R is w-Rickart, then .r

R
(ei) = ImR(fi), where .f 2

i = fi is in . R. Then left 
annihilators imply the nonstationary following sequel of left w-Id ideals . Im

R
(f1) ⊊

Im
R
(f2) ⊊ ... ⊊ Im

R
(fn) ⊊ ..... All  . fi are pairwise different idempotents of 

M too, and thus the inclusion is strict. Therefore the sequels are simultaneously 
stationary or nonstationary. Hence we get (1) and (2) are equivalent. 

.3 ⇒ 1 comes out of assumption that . R has .OFP condition. 

.1 ⇒ 3. Assume that . R is not orthogonally finite, say .(e1)i∈I is an infinite family 
of pairwise orthogonal idempotents of . R. Take .cn = e1+e2+...en for .n ⩾ 1. We can 
verify that .(c1)i∈I is a family of pairwise orthogonal idempotents of . R. Moreover, 
.cn+1cn = (e1 + e2 + ... + en + en+1)(e1 + e2 + ... + en) = c2n = cn, which is 
equivalent to .cncn+1 = cn /= cn+1. Therefore hypothesis ensures that . cnR /= cn+1R

for all . n, so (1) fails.
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Note that we already have an obvious instance where w-Ricart semirings are w-
Baer semirings. To obtain this result, we have assumed that . R is w-Rickart semiring 
with the strong version of w-Id property, say w-Id SIP, unlike what is done in what 
follows. 

Now we can fully characterize w-Baer semirings having OFP condition by w-
Rickart semirings with AIP condition. In some way, the next theorem extends L. 
Small theorem to semirings with assumption that different idempotents of . S = 
EndR(M) generate different w-Id ideals of . S. 

Theorem 8.3 Let . R be an .OFP semiring such that w-Id-ideals are uniquely 
generated. Then R is a w-Rickart semiring iff R is a w-Baer semiring. 

Proof From the definitions, a w-Baer semiring is always w-Rickart. It suffices to 
show that . R is a w-Baer, using the definition. Let .I = (ϕi)i∈I ⊆ S = End(R). Let  
us show that .rR(I ) = ImR(e) for some idempotent .e ∈ S. 

Indeed .rR(I ) = ⋃
i∈I ker(ϕi), and by Rickart assumption . M has .AIP , then for 

.i ∈ I, there exists .e2 i = ei in . S such that .ker(ϕi) = ImR(ei), and thus . rR(I ) =
⋃

i∈I ImR(ei). Since the idempotent orthogonally finiteness of . S amounts to . S has 
DCC by lemma 8.5, we pretend that .

⋃
i∈I ImR(ei) is a w-Id ideal. Let us assume 

the opposite and show that we can build a nonstationary sequel. Note that the w-Id 
ideal hypothesis ensures that every finite intersection of .ImR(ei) is a w-Id ideal one. 
Hence . ImR(e1) ⊋ ImR(e1) ∩ ImR(e2) ⊋ ImR(e1) ⊋ ImR(e2) ∩ ImR(e3) ⊋ ... 
is a nonstationary sequel which is a contradiction. Therefore the last sequel should 
end at some index . k. Hence .rR(I ) = ⋃

i∈I ker(ϕi) = ImR(ek). 

Corollary 8.1 Let . R be an orthogonally finite semiring with w-Id IP property such 
that w-Id ideals are uniquely generated. Then the R-semimodule . R is w-Rickart if 
and only R is w-Baer R-semimodule . R. 

Example 8.12 Let .B∞ be as in Example 8.5. . S is i-Rickart semiring. 
Note that every sequence .a = (an)

∞
n=1 has a complement . a⊥ = (a⊥

n )
∞
n=1 

sequence, where .aa⊥ = a⊥a = 0 and .a⊥ + a = 1A. 
Now let us prove that it is not i-Baer, using L. Small theorem. .B∞ has an infinite 

set of nonzero orthogonal idempotents. Take the infinite set C of all elements of . B∞ 

having 1 at i-th position and 0 elsewhere. Clearly .C ⊆ B∞ and every two elements 
of C are orthogonal. Hence .B∞ is not an i-Baer though it is an i-Rickart one. 

Example 8.13 Let .R = {0, 1, a, b} be the semiring equipped with commutative 
laws as follows: .∀x ∈ R, x + x = x + 0 = x; .x + 1 = 1 and .ab = 0x = 0; 1x = x. 
We can verify that 

.{0, a} and .{0, b} are the only subtractive and nontrivial ideals of . R. . rR(a) = {0, b} =  
bR = {0, a, b} =  ImR(b) and .rR(b) = {0, a} =  bR = {0, a, b} = ImR(a). 

Hence . R and .End(R) are w-Rickart semirings. 
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Weak-Rickart Semimodules 

Let .ϕ ∈ homR(M,N). 
Using Bourne congruence relation on . N , . ϕ(M) = ImN(ϕ) = {y ∈ N : y ≡ϕM

0N } = {y ∈ N : y + ϕ(m1) = ϕ(m2)} defines the subtractive closure of .ϕ(M). 
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Chapter 9 
Completion Fractions Modules of 
Filtered Modules over Non-necessarily 
Commutative Filtered Rings 

Abdoulaye Mane, Mohamed Ben Maaouia, and Mamadou Sanghare 

Abstract In this chapter, .(A, (In)n∈N) is a filtered noncommutative ring, S is 
a saturated multiplicative subset of A satisfying the left Ore conditions, and 
.(M, (Mn)n∈N) is a filtered left A-module. 

The main results in this chapter are the following theorems: 

.• .̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 and ∃n0 ∈ N, n ≥ n0, xn ∈ S

©
, the set of classes of 

Cauchy sequences in A with values in S that do not converge to 0, is a saturated 
multiplicative subset of . ̂A satisfying the left Ore conditions. 

.• .̂S−1
̂A is isomorphic to .S̆−1A. 

.• .̂S−1 “M is a left .Ŝ−1A-module and is isomorphic to .Ŝ−1M . 

.• .
�̨S−1(M/N) is isomorphic to .̂S−1(“M)/̂S−1(“N). 

.• .
�̋S−1(A/I) is isomorphic to .̂S−1( ̂A)/̂S−1(̂I ). 
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Introduction 

In this chapter, the rings are unitary, associative, not necessarily commutative, and 
the modules are left modules unifiers. 

Let G be a group and . T a topology on G. We say that G is a topological 
group if the topology . T is compatible with the structure of the group G; that is, 
the application .(x, y) �→ x + y defined from .G × G to G and the application 
.x �→ −x defined from G to G are continuous. Any filtered group .(G, (Gn)n∈N) is 
equipped with a topology compatible with its group structure where the family . {Gn}
constitutes a system of neighborhoods of 0. 

A filtered ring (resp., module) is a ring A (resp., module M) equipped with a 
filtration .(In)n∈N (resp., .(Mn)n∈N) formed by left or right ideals (resp., submodules 
of M). Thus we consider that any filtered ring (resp., module) is equipped with 
the topology associated with its filtration as a group . We are interested in 
the localization of the completion rings of non-necessarily commutative filtered 
rings and completion modules of filtered modules on non-necessarily commutative 
filtered rings. To do this, we use a saturated multiplicative part S of a filtered ring 
.(A, (In)n∈N) not necessarily commutative which verifies the conditions of Ore on 
the left. In this chapter, we mainly use the following references [1–4, 6], and [5]. 

Thus, we have obtained the results organized as follows: 
In section “Definitions and Preliminary Results” we constructed: 

• The filtered group .(“G, (“Gn)n∈N), which is the completion of the filtered group 
. (G, (Gn)n∈N)

• The filtered ring .( ̂A, (̂In)n∈N), which is the completion of the filtered ring 
. (A, (In)n∈N)

• The filtered module .(“M, (“Mn)n∈N), which is the completion of the filtered 
module . (M, (Mn)n∈N)

In section “On the Localization of Completion Modules”: 

• We have constructed .̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 and ∃n0 ∈ N, n ≥ n0, xn ∈ S

©
, 

the set of classes of Cauchy sequences in A with values in S that do not converge 
to 0. This set is a multiplicatively saturated subset of . ̂A satisfying the left Ore 
conditions (see Theorem 9.3). 

• We have shown that the ring .̂S−1
̂A is isomorphic to the ring .Ŝ−1A the completion 

of the fraction ring .S−1A (see Theorem 9.5). 
• If .(M, (Mn)n∈N) is a filtered left .(A, (In)n∈N)-module, we have shown that the 

left .̂S−1
̂A-module .̂S−1 “M is isomorphic to the left .Ŝ−1A-module .Ŝ−1M (see 

Theorem 9.6). 
• If .(M, (Mn)n∈N) is a filtered left .(A, (In)n∈N)-module, we have shown that for 

any S-saturated submodule N of M , . “N is an .̂S-saturated submodule of . “M , and 

.“N = (iŜ
M̂

)−1(N ′) and .“N = (φ ◦ iŜ
M̂

)−1(N ′), where . N ′ is a submodule of .̂S−1 “M .
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• If .(M, (Mn)n∈N) is a filtered left .(A, (In)n∈N)-module, we have shown that for 

any S-saturated submodule N of M , we have . �̨S−1(M/N) ∼= �̌S−1(M)/S−1(N) ∼=
̂S−1(“M)/̂S−1(“N) (see Theorem 9.10). 

• If .(A, (In)n∈N) is a filtered ring, we have shown that for any left ideal I of A, 

.
�̋S−1(A/I) ∼= �̌S−1(A)/S−1(I ) ∼= ̂S−1( ̂A)/̂S−1(̂I ) (see Theorem 9.10). 

Definitions and Preliminary Results 

Definition 9.1 Let S be a non-empty subset of a ring A. We say that S is 
multiplicative if: 

1. 1 ∈ S and 0  ∈ S. 
2. ∀s, t ∈ S, st ∈ S. 
Definition 9.2 Let A be a ring, and S a multiplicative subset of A. We say that S is 
saturated if for all a, b ∈ A such that ab ∈ S, we have  a ∈ S and b ∈ S. 
Definition 9.3 Let A be a ring and S a subset of A. We say that S is invariant if, for 
every nonzero element a ∈ A, we have  aS = Sa. 

Definition 9.4 Let A be a ring, and S a saturated multiplicative subset of A. We say  
that S satisfies the left (resp., right) Ore conditions if: 

1. S is left permutable (resp., right permutable): For every (a, s) ∈ A × S, there is 
(b, t) ∈ A × S such that ta  = bs (resp., at = sb). 

2. S is left reversible (resp., right reversible): For every a ∈ A, if there is s ∈ S such 
that as = 0 (resp., sa = 0), then there is t ∈ S such that ta  = 0 (resp.,  at = 0). 

Definition 9.5 Let N be a submodule of a left A-module M , and S a left-saturated 
multiplicative subset of A satisfying the left Ore conditions. We say that N is left 
saturated for S in M if, for all s ∈ S and x ∈ M such that sx ∈ N , then x ∈ N . It is  
also said that N is S-saturated in M . 

Topological Group 

Definition 9.6 Let G be a group. We call a descending (resp., ascending) filtration 
of group G any sequence (Gn)n∈N of normal subgroups of G such that: 

1. Gn+1 ⊂ Gn (resp., Gn ⊂ Gn+1) ∀n ∈ N. 
2. ∪

n∈N Gn = G. 

And we say that G is a filtered group by (Gn)n∈N denoted by (G, (Gn)n∈N).
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Theorem 9.1 Let (G, (Gn)n∈N) be a filtered group. Then, G is equipped with a 
topological group structure whose open sets are the subsets K ⊆ G such that for 
all x ∈ K , there is n ∈ N such that x + Gn ⊆ K . 

Proof Suppose that the filtration (Gn)n∈N is ascending. Let T = {K ⊂ G|∀x ∈ 
K, ∃n ∈ N, x  + Gn ⊂ K} be the set associated with the filtration (Gn)n∈N: 

1. Let us show that T endows G with a topological structure: 

(a) G and ∅ ∈  T . Indeed, let + :  G × G −→ G 
(x, y) �→ x + y 

be an application. Then for 

all (x, n) ∈ G × N, + restricted to {x} ×  Gn is an application such that 
+({x}×  Gn) = {x}+  Gn = {x + y,∀y ∈ Gn}. In particular, replacing {x} by 
∅, there is n0 ∈ N such that 
+(∅ ×  Gn0) = ∅ +  Gn0 = ∅ ⊂ ∅, and hence ∅ ∈ T . 

For G, we have for all n ∈ N, 0 + Gn ⊂ G = ∪
n∈N Gn ∈ T . 

(b) Let {Ui}i∈I ∈ T be any family. Then, for all x ∈ ∪
n∈I 

Un, there is i0 ∈ I such 
that x ∈ Ui0 . Now  Ui0 ∈ T , so there is n0 ∈ N such that x + Gn0 ⊂ Ui0 ⊂ 
∪

n∈I 
Ui , which proves that ∪

n∈I 
Ui ∈ T . 

(c) Let U1, · · ·  , UN ∈ T , for any given N ∈ N. Then, for all 
x ∈ n ∩

i=1 
Ui implies x ∈ Ui, i  ∈ {1, · · ·  , N}. Now  Ui ∈ T , so there is n ∈ N 

such that x + Gn ⊂ Ui, i  ∈ {1, · · ·  , N}; hence, x + Gn ⊂ n ∩
i=1 

Ui , which 

proves that 
n ∩

i=1 
Ui ∈ T . 

2. Let us show that T is compatible with the group structure of G. 
Just show that the applications defined by 
− :  G −→ G such that x �−→ −x and + :  G × G −→ G such that 

(x, y) �−→ x + y, 
where G × G is endowed with the product topology, are continuous: 

(a) Let x ∈ G such that there is U ∈ T such that x ∈ −−1U . Then, x ∈ −−1U 
implies that −x ∈ U , so there is  n ∈ N such that −x + Gn ⊂ U , which 
implies −(x − Gn) ⊂ U . Furthermore, Gn is a subgroup, so −Gn = Gn. 
Thus, −(x − Gn) = −(x + Gn) ⊂ U . It follows that x + Gn ⊂ −−1(U), and 
therefore the map − is continuous. 

(b) Consider G × G equipped with the product topology defined by: 

. T × T = {U × V,∀ U,V ∈ T }.

Let (x, y) ∈ G × G such that there is U ∈ T such that (x, y) ∈ +−1(U). 
Then, (x, y) ∈ +−1(U) ⇒ +(x, y) = x + y ∈ U 

⇒ ∃n ∈ N, x  + y + Gn ⊂ U
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⇒ ∃n ∈ N, (x  + Gn) + (y + Gn) ⊂ U, since Gn is a normal subgroup. Then, 
(x + Gn) × (y + Gn) ⊂ G × G is a neighborhood of (x, y) for the product 
topology, and+((x+Gn)×(y+Gn)) = (x+Gn)+(y+Gn) ⊂ U . Therefore, 
(x + Gn) × (y + Gn) ⊂ +−1(U), showing that the map + is continuous. 

In duality, if (Gn)n∈N is decreasing, it is shown in the same manner that T forms a 
group topology. 

Corollary 9.1 Let (G, (Gn)n∈N) be a filtered topological group. Then, for every 
n ∈ N, Gn is an open set in G. 

Completion Modules of Filtered Rings and Filtered Modules 

Let .S(G) be the set of all sequences with values in G such that .S(G), equipped with 
the operation induced by G, is a group. 

Definition 9.7 Let .(G, (Gn)n∈N) be a filtered group equipped with the topology 
associated with the filtration .(Gn)n∈N. We say that a sequence . (xn) ∈ S(G)

converges if there is .x ∈ G such that for all . Gn, there is .n0 ∈ N such that for 
all .m ≥ n0, we have .x − xm ∈ Gn. 

Definition and Notation 1 Let .(G, (Gn)n∈N) be a filtered group equipped with the 
topology associated with the filtration .(Gn)n∈N. A Cauchy sequence is any sequence 
.(xn) ∈ S(G) such that: .∀Gn, ∃n0 ∈ N,∀p, q ≥ n0 ⇒ xp − xq ∈ Gn. We denote 
by .C(G) the set of Cauchy sequences. 

Remark 9.1 According to the definitions above, every convergent sequence is 
Cauchy. 

Proposition 9.1 Let .(G, (Gn)n∈N) be a filtered group equipped with the topology 
associated with the filtration .(Gn)n∈N. Then, the set of Cauchy sequences . C(G)

forms a subgroup of .S(G). 

Definition 9.8 Let .(G, (Gn)n∈N) be a filtered group (resp., .(A, (In)n∈N), a filtered 
ring (resp., .(M, (Mn)n∈N) a filtered module), B a non-empty subset of G (resp., A, 
resp., M), and .(un) a sequence with values in G (resp., A, resp., M). We say that 
.(un) has support in B if all the terms of .(un) are elements of B except, perhaps, for 
a finite number of terms (that is, .∃n0 ∈ N,∀n ≥ n0, un ∈ B). 

Theorem and Notations 1 Let .(G, (Gn)n∈N) be a filtered group equipped with the 
topology associated with .(Gn)n∈N. Then, the binary relation . R on .C(G) defined by 

. ∀(xn), (yn) ∈ C(G), (xn)R(yn) ⇔ (xn) − (yn) = (xn − yn) → 0

is an equivalence relation. The quotient set .C(G)/R =
¶‘(xn) | (xn) ∈ C(G)

©
is 

denoted . “G, where .‘(xn) is the equivalence class of .(xn).
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Proposition 9.2 Let .(G, (Gn)n∈N) be a filtered group equipped with the topology 
associated with the filtration .(Gn)n∈N. For any sequence .(xn) ∈ C(G) converging 
to .x ∈ A, then .‘(xn) = x̂, where .x̂ = (x, · · · , x) is the class of the constant sequence 
.(xn), for all .n ∈ N, such that .xn = x. 

Theorem and Definition 1 Let .(G, (Gn)n∈N) be a filtered group equipped with the 
topology associated with the filtration .(Gn)n∈N, and let . “+ be the map defined by 

. “+ : “G × “G → “G
(‘(xn),‘(yn)) �→‘(xn)“+‘(yn) = �̋(xn + yn)

.

Then, .(“G,“+) is a group called the completion of G. 

Proof Let us show that . “+ is well defined. 

Let .(‘(xn),‘(yn)) and .(‘(x′
n),
‘(y′

n)) ∈ “G × “G such that .(‘(xn),‘(yn)) = (‘(x′
n),
‘(y′

n)). 

We want to demonstrate that .‘(xn)“+‘(yn) =‘(x′
n)“+‘(y′

n). 

By assumption, .(‘(xn),‘(yn)) = (‘(x′
n),
‘(y′

n)). Therefore: . 

®‘(xn) =‘(x′
n)‘(yn) =‘(y′
n)

⇒®
(xn) − (x′

n) = (xn − x′
n) → 0

(yn) − (y′
n) = (yn − y′

n) → 0
⇒

(xn) + (yn) − (x′
n) − (y′

n) → 0 ⇒ ‘(xn)“+‘(yn) = ‘(x′
n)“+‘(y′

n). Therefore, . “+ is an 
internal composition law on . “G. 

The properties of the operation that define the group are evident. Therefore, 
.(“G,“+) is a group. 

Lemma 9.1 Let .(G, (Gn)n∈N) be a filtered group. Then, every subgroup H of G is 
a filtered group. 

Proof Let .Hn = H ∩ Gn for all .n ∈ N. Then, for each .n ∈ N, the  sets  . Hn are 
subgroups of H as groups. Since .(Gn)n∈N is a filtration, .(H, (Hn)n∈N) forms a 
filtered subgroup H . 

Definitions 9.1 Let .(G, (Gn)n∈N) be a filtered group, and let H be a subgroup of 
G. Then, .(Hn)n∈N is called the induced filtration of the filtration .(Gn)n∈N of G on 
H , where .Hn = H ∩ Gn for all .n ∈ N. 

Proposition 9.3 Let .(G, (Gn)n∈N) be a filtered group, and let H be a subgroup 
of G. Then, . “H , the completion of H equipped with the topology associated with 
the induced filtration .(Hn)n∈N from the filtration .(Gn)n∈N of G, is isomorphic to a  
subgroup of . “G. 

Proof Let .H =
¶‘(xn) ∈ “G | xn ∈ H,∀n ∈ N

©
: 

1. Let us show that . H is a subgroup of . “G:
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(a) We have: .H ⊂ “G by definition, and .H  = ∅. Indeed, .̂0 ∈ H because .0 ∈ H . 
(b) Let .‘(xn),‘(yn) ∈ H, and then . xn, yn ∈ H,∀n ∈ N ⇒ xn + yn ∈ H,∀n ∈

N ⇒‘(xn)“+‘(yn) ∈ H. 
(c) Let .‘(xn) ∈ H, and then . xn ∈ H,∀n ∈ N ⇒ −xn ∈ H,∀n ∈ N ⇒ −̂(xn) ∈

H. 

Therefore, . H is a subgroup of . “G. 
2. Let . ψ be the natural correspondence defined by: 

. 
ψ “H → H‘(xn) �→ ψ(‘(xn)) =‘(xn).

(a) . ψ is indeed a function. 
(b) . ψ is a group homomorphism. 
(c) . ψ is bijective. Indeed: 

. ∗ For all .‘(xn) ∈ H, we have:  . (xn) ∈ C(H) ⇒ −(xn) ∈ C(H) ⇒ (xn) −
(xn) → 0 ⇒ ‘(xn) = −̂(xn) ∈ “H according to Theorem 1. Thus, for all 
.‘(xn) ∈ H, there is .‘(yn) ∈ “H (by taking .‘(yn) = −̂(xn)) such that . ψ(‘(yn)) =‘(xn), hence the surjectivity of . ψ . 

. ∗ Let .‘(xn) ∈ Ker(ψ); then .ψ(‘(xn)) = ‘(xn) = ̂0. Thus, .Ker(ψ) =
¶
̂0

Ĥ

©
, 

indicating that . ψ is injective. 

We conclude that . ψ is bijective. 

Remark 9.2 In the following, we consider that . “H is a subgroup of . “G. 

Proposition 9.4 Let .(G, (Gn)n∈N) be a filtered group and . “G its completion. Then, 
.(”Gn)n∈N is a filtration of the group . “G. 

Proof See 9.1 and 9.3. 

Corollary 9.2 Let .(G, (Gn)n∈N) be a filtered group and . “G its completion. Then, 
. “G is equipped with a topological group structure associated with the filtration 
.(”Gn)n∈N. 

Theorem and Definition 2 Let .(A, (In)n∈N) be a filtered ring where  .(In)n∈N is a 
sequence of left (resp., right) ideals, and let . “× be the correspondence defined by: 

. “× : ̂A × ̂A → ̂A

(‘(xn),‘(yn)) �→‘(xn)“×‘(yn) = �̋(xn × yn)

.

Then, .( ̂A,“+,“×) is a ring called the completion of A:
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Proof 

1. According to Theorem 1, .( ̂A,“+) is a group, and it is abelian because .(A,+) is 
abelian. 

2. Let .‘(an),‘(a′
n),
‘(bn),‘(b′

n) ∈ ̂A, and suppose that .(‘(an),‘(bn)) = (‘(a′
n),
‘(b′

n)). Let  

us show that .‘(an)“×‘(bn) =‘(a′
n)“×‘(b′

n). 

We have : .(‘(an),‘(bn)) = (‘(a′
n),
‘(b′

n)) ⇒ . 

®‘(an) =‘(a′
n)‘(bn) =‘(b′
n)

⇒
®

(an − a′
n) → 0

(bn − b′
n) → 0

⇒ (an − a′
n)(bn − b′

n) → 0.
But .an − a′

n, bn − b′
n ∈ A for all .n ∈ N; thus, . (an − a′

n)(bn − b′
n) = anbn −

a′
nb

′
n − an(bn − b′

n)− (an − a′
n)b

′
n for all .n ∈ N. Consequently, . (anbn − a′

nb
′
n) =

(an − a′
n)(bn − b′

n) + (an)(bn − b′
n) + (an − a′

n)(b
′
n). Since . (an − a′

n)(bn −
b′
n) → 0, (an − a′

n) → 0 and .(bn − b′
n) → 0, we have  .(anbn − a′

nb
′
n) → 0. 

Thus, .(̂anbn) = (̂a′
nb

′
n) ⇔ ‘(an)“×‘(bn) = ‘(a′

n)“×‘(b′
n). Therefore, . “× is an internal 

composition law. 

The properties that define the ring . ̂A are evident. 

Proposition 9.5 Let A be a ring and I a left (resp., right) ideal of A. Then, . ̂I is an 
ideal of . ̂A. 

Proof 

1. According to Proposition 9.3, . ̂I is a subgroup of .( ̂A,“+). 
2. Suppose that I is a left ideal. 

Let .‘(an) ∈ ̂A and .‘(xn) ∈ ̂I . Then, .‘(an)“×‘(xn) = (̂anxn). Since .anxn ∈ I for 
all .n ∈ N, it follows that .‘(an)“×‘(xn) = (̂anxn) ∈ ̂I . Thus, . ̂I is a left ideal. 

3. If I is a right ideal, we can show similarly by taking .‘(an) ∈ ̂A and .‘(xn) ∈ ̂I , 
and .‘(xn)“×‘(an) = (̂xnan) ⇒ xnan ∈ In for all .n ∈ N. Therefore, . (̂xnan) ∈ ̂I ⇒‘(xn)“×‘(an) ∈ ̂I . 

Therefore, . ̂I is a left (resp., right) ideal of . ̂A. 

Theorem 9.2 Let .(A, (In)n∈N) be a filtered ring where .(In)n∈N is a sequence of left 
ideals, and .(M, (Mn)n∈N) be a left-filtered A-module where .(Mn)n∈N is a sequence 
of submodules of M . Let . ̂· be the correspondence defined by: 

. ̂· : ̂A × “M → “M
(‘(an),‘(mn)) �→‘(an)̂·‘(mn) = �̧(an · mn)

.

Then, .(“M,“+, ·̂) is a left . ̂A-module. 

Proof 

1. Let .‘(an),‘(a′
n) ∈ ̂A and .‘(mn),‘(m′

n) ∈ “M . Suppose .(‘(an),‘(mn)) = (‘(a′
n),
‘(m′

n)), 

and let us show that .‘(an)̂·‘(mn) =‘(a′
n)̂·‘(m′

n).
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We have .(‘(an),‘(mn)) = (‘(a′
n),
‘(m′

n)), which means 

. 

{

(an − a′
n) → 0

(mn − m′
n) → 0

⇒ (an − a′
n)(mn − m′

n) → 0.

Now, for all .n ∈ N, consider the expression 

. (an − a′
n)(mn − m′

n) = anmn − anm
′
n − a′

nmn + a′
nm

′
n.

This simplifies to 

. anmn − a′
nm

′
n = (an − a′

n)(mn − m′
n) + (an − a′

n)m
′
n + a′

n(mn − m′
n)

. ⇒ (anmn − a′
nm

′
n) = (an − a′

n)(mn − m′
n) + (an − a′

n)(m
′
n) + (a′

n)(mn − m′
n).

Now, since .(an − a′
n) → 0, .(mn − m′

n) → 0, and .(an − a′
n)(mn − m′

n) → 0, we  

conclude that .(anmn − a′
nm

′
n) → 0. This implies .‘(an)̂·‘(mn) −‘(a′

n)̂·‘(m′
n) = ̂0. 

Thus, .‘(an)̂·‘(mn) =‘(a′
n)̂·‘(m′

n), showing that . ̂· is an external composition law. 

The properties that define the . ̂A-module . “M are evident. 

Proposition 9.6 Let .(A, (In)n∈N) be a filtered ring where  .(In)n∈N is a sequence 
of left (resp., right) ideals, and .(M, (Mn)n∈N) be a filtered left  A-module where 
.(Mn)n∈N is a sequence of submodules of M and . “M be its completion. Then, for any 
submodule N of M , its completion . “N is a submodule of . “M . 

Proof According to Proposition 9.3, . “N is a subgroup of .(“M,“+). Let  .‘(an) ∈ ̂A and 
.‘(mn) ∈ “N ; we want to show that .‘(an)̂·‘(mn) ∈ “N . 

Since .‘(an) ∈ ̂A and .‘(mn) ∈ “N , it follows that .(an) ∈ C(A) and .(mn) ∈ C(N). 
This implies .an ∈ A and .mn ∈ N for all .n ∈ N. Therefore, .(an) · (mn) ∈ C(N), and 

thus, .‘(an)̂·‘(mn) = �̨(an) · (mn) ∈ “N . Consequently, . “N is a submodule of . “M . 

On the Localization of Completion Modules 

On the Localization of Completion Rings and Modules 

Theorem 9.3 Let (A, (In)n∈N) be a filtered ring where (In)n∈N is a sequence of 
left (resp., right) ideals, and ̂A be its completion. Let S be a saturated multiplicative 
subset of A that satisfies left Ore conditions, and let 

.̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©
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be the set of classes of Cauchy sequences in A with values in S that do not converge 
to 0. Then, ̂S is a saturated multiplicative subset of ̂A that satisfies the left Ore 
conditions. 

Proof 

1. We have ̂0 /∈ ̂S. Indeed, suppose that ̂0 ∈ ̂S, then 0 ∈ S, which is absurd. 
2. Let the constant sequence (xn) = (1), it is a convergent sequence, and thus,

̂1 ∈ ̂S. 
3. Let ‘(xn),‘(yn) ∈ ̂S. We have  ‘(xn)“×‘(yn) = (̂xnyn). Since S is multiplicative, 

xnyn ∈ S for all n ∈ N, and thus (̂xnyn) ∈ ̂S. Therefore, ‘(xn)“×‘(yn) ∈ ̂S. This  
shows that ̂S is multiplicative. 

4. Let us show that ̂S is saturated. 
Let ‘(xn),‘(yn) ∈ ̂A such that ‘(xn)“×‘(yn) ∈ ̂S. We have  ‘(xn)“×‘(yn) = (̂xnyn) ∈

̂S, implying that xnyn ∈ S for all n ∈ N. Since S is saturated, it follows that xn 
and yn ∈ S for all n ∈ N. Therefore, ‘(xn) and ‘(yn) ∈ ̂S. Then ̂S is saturated. 

5. Let us show that ̂S satisfies the left Ore conditions: 

a. Let ‘(an) ∈ ̂A and ̂(sn) ∈ ̂S. Let us demonstrate that there are ‘(bn) ∈ ̂A and
̂(tn) ∈ ̂S such that ̂(tn)“×‘(an) = ‘(bn)“×̂(sn). 

We have ‘(an) ∈ ̂A and ̂(sn) ∈ ̂S, so  an ∈ A and sn ∈ S,∀n ∈ N. Since 
S is left permutable, there are sequences (bn) ∈ A and (tn) ∈ S such that 
tnan = bnsn, ∀n ∈ N. Thus, (̂tnan) = (̂bnsn) ⇔ ̂(tn)“×‘(an) = ‘(bn)“×̂(sn). 
Therefore, for any ‘(an) ∈ ̂A and ̂(sn) ∈ ̂S, there are ‘(bn) and ̂(tn) such that
̂(tn)“×‘(an) = ‘(bn)“×̂(sn). 

b. Let‘(an) ∈ ̂A. Suppose there is ̂(sn) ∈ ̂S such that‘(an)“×̂(sn) = ̂0. Let us show 
that there is ̂(tn) ∈ ̂S such that ̂(tn)“×‘(an) = ̂0. 

We have ‘(an)“×̂(sn) = ̂0 ⇒ (an)×(sn) → 0 ⇒ (ansn) → 0 ⇒ (

ansn 
1

) → 
0S−1A ⇒

(

an 
1 × sn 

1

) = (

an 
1

) × (

sn 
1

) → 0S−1A. 

But 
Ä

sn 
1 × 1 

sn 

ä 
= (

sn 
1

) × 
Ä 

1 
sn 

ä 
= 1, and then [(

an 
1

) × (

sn 
1

)] × 
Ä 

1 
sn 

ä 
→ 

0S−1A × 
Ä 

1 
sn 

ä 
= 0S−1A 

⇒ (

an 
1

) × 
î
(

sn 
1

) × 
Ä 

1 
sn 

äó 
→ 0S−1A ⇒ (

an 
1

) → 0S−1A ⇒ (an) → 0 ⇒ 
‘(an) = ̂0. 

Therefore, there is ̂(tn) ∈ ̂S (by taking ̂(tn) = ̂(sn)) such that ̂(tn)“×‘(an) =
̂0. 

Theorem 9.4 Let (A, (In)n∈N) be a filtered ring where (In)n∈N is a sequence of 
left (resp., right) ideals, and ̂A be its completion. Let S be a saturated multiplicative 
subset invariant of A and let 

.̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©
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be the set of classes of Cauchy sequences in A with values in S that do not converge 
to 0. Then, ̂S is a saturated multiplicative subset of ̂A that satisfies the left Ore 
conditions. 

Proof According to Theorem 9.3, ̂S is multiplicative, saturated, and left permutable. 
Thus, it suffices to show that it is left reversible. 

Let ‘(an) ∈ ̂A. Suppose there is ̂(sn) ∈ ̂S such that ‘(an)“×̂(sn) = ̂0, and let us 
show that there is ̂(tn) ∈ ̂S such that ̂(tn)“×‘(an) = ̂0. 

We have ‘(an)“×̂(sn) = ̂0 ⇒ (an) × (sn) = (ansn) → 0. Since ansn ∈ anS = 
San for all n ∈ N (as S is invariant), for every n ∈ N, there is tn ∈ S such that 
ansn = tnan for all n ∈ N. Let  (tn) be the sequence with terms tn, and then (ansn) = 
(tnan) → 0, implying ̂(tn)“×‘(an) = ̂0. Therefore, ̂S is left reversible. 

Corollary 9.3 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence of 
left (resp., right) ideals, and ̂A be its completion. Let S be a central subset of A and 
let 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

be the set of classes of Cauchy sequences in A with values in S that do not converge 
to 0. Then, ̂S is a saturated multiplicative subset of ̂A that satisfies the left Ore 
conditions. 

Lemma 9.2 Let (A, (In)n∈N) be a filtered ring where (In)n∈N is a sequence of left 
(resp., right) ideals. Let S be a saturated multiplicative subset of A that satisfies left 
Ore conditions. Then, (S−1In)n∈N is a filtration of S−1A. 

Theorem 9.5 Let (A, (In)n∈N) be a filtered ring where (In)n∈N is a sequence of 
left (resp., right) ideals, and ̂A be its completion. Let S be a saturated multiplicative 
subset of A that satisfies left Ore conditions (resp., invariant, resp., central), and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences in A with values in S that do not converge to 
0. Then, the correspondence ψ defined by 

. 
ψ : Ŝ−1A → ̂S−1

̂AÄ̂
an

sn

ä
�→ ”(an)”(sn)

is an isomorphism of rings. 

Proof 

1. Let us show that ψ is a function.
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Let
Ä̂

an 
sn 

ä 
and
Ä̂

bn 
tn 

ä 
∈ Ŝ−1A such that

Ä̂
an 
sn 

ä 
=
Ä̂

bn 
tn 

ä 
. Let us show that 

ψ 
ÅÄ̂

an 
sn 

äã 
= ψ 

ÅÄ̂
bn 
tn 

äã 
. 

By
Ä̂

an 
sn 

ä 
=
Ä̂

bn 
tn 

ä 
⇒ 
Ä

an 
sn 

ä 
− 
Ä

bn 
tn 

ä 
= 
Ä

an 
sn 

− bn 
tn 

ä 
→ 0 ⇒ ∃un, vn ∈ S,∀n ∈ 

N such that 
Ä

an 
sn 

ä 
− 
Ä

bn 
tn 

ä 
= 
Ä

unan−vnbn 
unsn 

ä 
= (unan−vnbn) 

(unsn) → 0 with unsn = 
vntn,∀n ∈ N. 

Let (un) and (vn) be the sequences with general terms un and vn, respectively, 
and since unsn = vntn,∀n ∈ N, then (unsn) = (vntn) ⇒ (un) × (sn) = (vn) × 
(tn), where (un), (vn) ∈ C(S). 

Then, (unan−vnbn) 
(unsn) = (un)×(an)−(vn)×(bn) 

(un)×(sn) → 0⇒ (un)×(an)−(vn)×(bn) → 0 
and 

(un) × (sn)  → 0. 
Thus, we have® 
(un) × (an) − (vn) × (bn) → 0 
(un) × (sn)  → 0 

with (un) × (sn)=(vn) × (tn), where (un), 

(vn) ∈ C(S) 

⇒ 
®‘(un)“×‘(an) = ‘(vn)“×‘(bn) ‘(un)“×̂(sn)  = ̂0 

with ‘(un)“×̂(sn) = ‘(vn)“×̂(tn), where ‘(un), 

‘(vn) ∈ ̂S 
⇒ ”(un)×̂”(an) ”(un)×̂”(sn) 

= ”(vn)×̂”(bn) ”(un)×̂”(sn) 
⇒ ”(un)×̂”(an) ”(un)×̂”(sn) 

= ”(vn)×̂”(bn) ”(vn)×̂(̂tn) 
⇒ ”(an) ”(sn) 

= ”(bn)

(̂tn) 
. 

Then ψ 
ÅÄ̂

an 
sn 

äã 
= ψ 

ÅÄ̂
bn 
tn 

äã 
. 

2. Let us show that ψ is a ring homomorphism. 

Let ”(an) ”(sn) 
, ”(bn)

(̂tn) 
∈ ̂S−1

̂A. We have:  

a. Let
Ä̂

an 
sn 

ä 
,
Ä̂

bn 
tn 

ä 
∈ Ŝ−1A, and let us show that ψ 

ÅÄ̂
an 
sn 

ä “+Ä̂ bn 
tn 

äã 
= 

ψ 
ÅÄ̂

an 
sn 

äã “+ψ 
ÅÄ̂

bn 
tn 

äã 
. 

ψ 
ÅÄ̂

an 
sn 

ä “+Ä̂ bn 
tn 

äã 
= ψ 

Å �̌Ä
an 
sn 

ä 
+ 
Ä

bn 
tn 

äã 
= ψ 

Å �̋Ä
an 
sn 

+ bn 
tn 

äã 
= 

ψ 
Å �̌Ä

unan+vnbn 
unsn 

äã 
with unsn = vntn, where un, vn ∈ S,∀n ∈ N. 

Let (un) and (vn) be the sequences with general terms un and vn, 
respectively. Since unsn = vntn, ∀n ∈ N, we have  (unsn) = (vntn) ⇒ 
(un) × (sn) = (vn) × (tn), where (un), (vn) ∈ C(S), and hence 

ψ 
ÅÄ̂

an 
sn 

ä “+Ä̂ bn 
tn 

äã 
= ψ 

Å �̌Ä
unan+vnbn 

unsn 

äã 
= �̋(unan+vnbn)

 (unsn) 
with ‘(un)“×̂(sn) = 

‘(vn)“×̂(tn), where ‘(un),‘(vn) ∈ ̂S because (unsn) = (vntn) ⇒ (un) × (sn) = 
(vn) × (tn), where (un), (vn) ∈ C(S).
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⇒ ψ 
ÅÄ̂

an 
sn 

ä “+Ä̂ bn 
tn 

äã 
= ψ 

Å �̌Ä
unan+vnbn 

unsn 

äã 
= �̋(unan+vnbn)

 (unsn) 
= 

”(un)×̂”(an) ”(un)×̂”(sn) 
“+”(vn)×̂”(bn) ”(un)×̂”(sn) 

= ”(un)×̂”(an) ”(un)×̂”(sn) 
“+”(vn)×̂”(bn) ”(vn)×̂(̂tn) 

= ”(an) ”(sn) 
“+”(bn) ”(sn) 

= ψ 
ÅÄ̂

an 
sn 

äã “+ψ 
ÅÄ̂

bn 
tn 

äã 
. 

Then, ψ 
ÅÄ̂

an 
sn 

ä “+Ä̂ bn 
tn 

äã 
= ψ 

ÅÄ̂
an 
sn 

äã “+ψ 
ÅÄ̂

bn 
tn 

äã 
. 

b. Let us show that ψ 
ÅÄ̂

an 
sn 

ä “×Ä̂ bn 
tn 

äã 
= ψ 

ÅÄ̂
an 
sn 

äã “×ψ 
ÅÄ̂

bn 
tn 

äã 
. 

We have: 

ψ 
ÅÄ̂

an 
sn 

ä “×Ä̂ bn 
tn 

äã 
= ψ 

Å �̌Ä
an 
sn 

ä 
× 
Ä

bn 
tn 

äã 
= ψ 

Å �̋Ä
an 
sn 

× bn 
tn 

äã 
= ψ 

Å Ä̇
znbn 
wnsn 

äã 

with wnan = zntn, where wn ∈ S, zn ∈ A,∀n ∈ N. 
Let us define (wn) and (zn) as the sequences of general terms wn and zn, 

respectively. Then, ψ 
ÅÄ̂

an 
sn 

ä “×Ä̂ bn 
tn 

äã 
= ψ 

Å Ä̇
znbn 
wnsn 

äã 
=  (znbn)

 (wnsn) 

= ”(zn)×̂”(bn)

(̂wn)×̂”(sn) 
= ”(an) ”(sn) 

“×”(bn)

(̂tn) 
= ψ 

ÅÄ̂
an 
sn 

äã “×ψ 
ÅÄ̂

bn 
tn 

äã 

with ‘(wn)“×‘(an) = ̂(zn)“×̂(tn), where ‘(wn) ∈ ̂S, ̂(zn) ∈ ̂A because 
wnan = zntn, where wn ∈ S, zn ∈ A,∀n ∈ N. Then, we have 

ψ 
ÅÄ̂

an 
sn 

ä “×Ä̂ bn 
tn 

äã 
= ψ 

ÅÄ̂
an 
sn 

äã “×ψ 
ÅÄ̂

bn 
tn 

äã 
. 

c. We have: 

1 S−1A 
= ‘Ä 1 1 ä , and then ψ(1 S−1A 

) = ψ 
Å ‘Ä 1 

1 

äã 
=

(

1̂
1̂

)

= 1
Ŝ−1Â . 

Then, ψ is a ring homomorphism. 
3. Let us consider the correspondence: 

. 
ϕ : ̂S−1

̂A → Ŝ−1A”(an)”(sn)
�→
Ä̂

an

sn

ä
.

Let us show that ϕ is a map. 

Let ”(an) ”(sn) 
, ”(bn)

(̂tn) 
∈ ̂S−1

̂A such that ”(an) ”(sn) 
= ”(bn)

(̂tn) 
, and let us show that ϕ 

Å ”(an) ”(sn) 

ã 
= 

ϕ 
Å ”(bn)

(̂tn) 

ã 
. 

We have: ϕ 
Å ”(an) ”(sn) 

ã 
=
Ä̂

an 
sn 

ä 
. 

But ”(an) ”(sn) 
= ”(bn)

(̂tn) 
⇒ ”(an) ”(sn) 

“+(−”(bn)

(̂tn) 
) = ̂0 ⇒ ”(un)×̂”(an)−”(vn)×̂”(bn) ”(un)×̂”(sn) 

= ̂0 ⇒ 
�̋(unan−vnbn)

 (unsn) 
= ̂0
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⇒ (unan − vnbn) → 0 et  (unsn)  → 0, where ‘(un)“×̂(sn) = ‘(vn)“×̂(tn), where ‘(un),‘(vn) ∈ ̂S. 

Then, (unan−vnbn) 
(unsn) → 0 ⇒ (unan) 

(unsn) − (vnbn) 
(unsn) → 0 ⇒

Ä̂
unan 
unsn 

ä 
=
Ä̂

vnbn 
unsn 

ä 
⇒ 

ϕ 
Å ”(an) ”(sn) 

ã 
= ϕ

(

 (vnbn)

 (unsn)

)

= ϕ 
Å ”(un)×̂”(bn) ”(un)×̂”(sn) 

ã 
= ϕ 
Å ”(un)×̂”(bn) ”(vn)×̂(̂tn) 

ã 
= ϕ 
Å ”(bn)

(̂tn) 

ã 
, where 

‘(un)“×̂(sn) = ‘(vn)“×̂(tn). Thus ϕ 
Å ”(an) ”(sn) 

ã 
= ϕ 
Å ”(bn)

(̂tn) 

ã 
. 

Moreover, we have: 

a. ψ ◦ ϕ 
Å ”(an) ”(sn) 

ã 
= ψ 

Å 
ϕ 
Å ”(an) ”(sn) 

ãã 
= ψ 

ÅÄ̂
an 
sn 

äã 
= ”(an) ”(sn) 

, for all ”(an) ”(sn) 
∈ ̂S−1

̂A. 

Then, ψ ◦ ϕ = id
Ŝ−1Â . 

b. ϕ ◦ψ 
ÅÄ̂

an 
sn 

äã 
= ϕ 
Å 

ψ 
ÅÄ̂

an 
sn 

äãã 
= ϕ 
Å ”(an) ”(sn) 

ã 
=
Ä̂

an 
sn 

ä 
, for all

Ä̂
an 
sn 

ä 
∈ Ŝ−1A. 

Then, ϕ ◦ ψ = id S−1A 
. 

Thus, ϕ and ψ are bijective, and each one is the inverse of the other (ϕ−1 = ψ 
and ψ−1 = ϕ). 

Corollary 9.4 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence of 
left ideals, and ̂A its completion. Let S be a saturated multiplicative subset of A that 
satisfies the left Ore conditions (resp., invariant, resp., central). Let (M, (Mn)n∈N) 
be a left A-module filtered, where (Mn)n∈N is a sequence of submodules of M , and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 and ∃n0 ∈ N, n ≥ n0, xn ∈ S

©
,

the set of classes of Cauchy sequences in A with values in S that do not converge to 
0. Then: 

1. The module ̂S−1 “M has a left Ŝ−1A-module structure. 

2. The module Ŝ−1M has a left ̂S−1
̂A-module structure. 

Proof It suffices to set: 

1.
Ä̂

an 
sn 

ä
•̂ (̂mn)

(̂tn) 
= ψ 

Å ”(an) ”(sn) 

ã
•̂ (̂mn)

(̂tn) 
. 

2. ”(an) ”(sn)
•̂
Ä̂

mn 
tn 

ä 
= ψ−1 

Å ”(an) ”(sn) 

ã
•̂ 
Å

(̂mn)

(̂tn) 

ã 
. 

Theorem 9.6 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence of left 
ideals, ̂A its completion, S a saturated multiplicative subset of A that satisfies the 
left Ore conditions (resp., invariant, resp., central), (M, (Mn)n∈N) a left  A-module, 
where (Mn)n∈N is a sequence of submodules of M , and 

.̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©
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the set of classes of Cauchy sequences of A with values in S that do not converge 
to 0. Then, the left ̂S−1

̂A-module ̂S−1 “M and the left Ŝ−1A-module Ŝ−1M are 
isomorphic. 

Proof Let us consider the correspondence: 

. 
ϑ : Ŝ−1M → ̂S−1 “MÄ̂

mn

sn

ä
�→ (̂mn)”(sn)

.

1. Let us show that ϑ is a map. 

Let
Ä̂

mn 
sn 

ä 
,
Ä̂

m′
n 

s′
n 

ä 
∈ Ŝ−1M such that

Ä̂
mn 
sn 

ä 
=
Ä̂

m′
n 

s′
n 

ä 
, and let us show that 

ϑ 
ÅÄ̂

mn 
sn 

äã 
= ϑ 
ÅÄ̂

m′
n 

s′
n 

äã 
. 

We have:Ä̂
mn 
sn 

ä 
=
Ä̂

m′
n 

s′
n 

ä 
⇒ 
Ä

mn 
sn 

ä 
−

(

m′
n 

s′
n

)

=
(

mn 
sn 

− m′
n 

s′
n

)

=
(

xnmn−ynm′
n 

xnsn

)

→ 0 with 
xnsn = yns

′
n, where xn, yn ∈ S,∀n ∈ N. 

Let (xn) and (yn) be the sequences of general terms xn and yn, respectively, 
and as xnsn = yns

′
n where xn, yn ∈ S,∀n ∈ N, then (xn) × (sn) = (yn) × 

(s′
n) where (xn), (yn) ∈ C(S). And then

(

xnmn−ynm′
n 

xnsn

)

= (xnmn−ynm′
n) 

(xnsn) → 0 ⇒ 
(xnmn − ynm

′
n) → 0 et  (xnsn)  → 0, and then we have:® 

(xnmn − ynm
′
n) → 0 

(xnsn)  → 0 with (xn)× (sn) = (yn)× (s′
n) where (xn), (yn) ∈ C(S) 

⇒ 
® 

(xn) · (mn) − (yn) · (m′
n) → 0 

(xn) × (sn)  → 0 
with (xn) × (sn) = (yn) × (s′

n) where 

(xn), (yn) ∈ C(S) 

⇒ 
®‘(xn)̂·‘(mn) = ‘(yn)̂·‘(m′

n) ‘(xn)“×̂(sn)  = ̂0 
with ‘(xn)“×̂(sn) = ‘(yn)“×̂(s′

n) where 

‘(xn),‘(yn) ∈ ̂S. ⇒ ”(xn)̂·(̂mn) ”(xn)×̂”(sn) 
= ”(yn)̂·̂(m′

n) ”(yn)×̂”(s′
n) 

⇒ (̂mn) ”(sn) 
= ̂(m′

n) ”(s′
n) 

⇒ ϑ 
ÅÄ̂

mn 
sn 

äã 
= 

ϑ 
ÅÄ̂

m′
n 

s′
n 

äã 
. 

2. Let us show that ϑ is a module homomorphism: 

a. Let
Ä̂

mn 
sn 

ä 
,
Ä̂

m′
n 

s′
n 

ä 
∈ Ŝ−1M , and let us show that ϑ 

ÅÄ̂
mn 
sn 

ä “+Ä̂m′
n 

s′
n 

äã 
= 

ϑ 
ÅÄ̂

mn 
sn 

äã “+ϑ 
ÅÄ̂

m′
n 

s′
n 

äã 
. 

We have: 

ϑ 
ÅÄ̂

mn 
sn 

ä “+Ä̂m′
n 

s′
n 

äã 
= ϑ 

Ç �̨Ä
mn 
sn 

+ m′
n 

s′
n 

äå 
= ϑ 

Ç �̌Ä
xnmn+ynm′

n 
xnsn 

äå 
with xnsn = 

yns
′
n where xn, yn ∈ S,∀n ∈ N.
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Let (xn) and (yn) be the sequences of general terms xn and yn, respectively, 
and since xnsn = yns

′
n where xn, yn ∈ S,∀n ∈ N, then (xn) × (sn) = 

(yn) × (s′
n) where (xn), (yn) ∈ C(S). Therefore, ‘(xn)“×̂(sn) = ‘(yn)“×̂(s′

n) 
where ‘(xn),‘(yn) ∈ ̂S. 

Then, ϑ 
ÅÄ̂

mn 
sn 

ä “+Ä̂m′
n 

s′
n 

äã 
= ϑ 
Ç �̌Ä

xnmn+ynm′
n 

xnsn 

äå 
= �̌(xnmn+ynm′

n)
 (xnsn) 

= 
Ä ”(xn)×̂(̂mn)+̂”(yn)×̂̂(m′

n) 
ä 

”(xn)×̂”(sn)
= ”(xn)×̂(̂mn) ”(xn)×̂”(sn) 

“+”(yn)×̂̂(m′
n) ”(xn)×̂”(sn) 

= ”(xn)×̂(̂mn) ”(xn)×̂”(sn) 
“+”(yn)×̂̂(m′

n) ”(yn)×̂”(s′
n) 

= (̂mn) ”(sn) 
“+̂(m′

n) ”(s′
n) 

= ϑ 
ÅÄ̂

mn 
sn 

äã “+ϑ 
ÅÄ̂

m′
n 

s′
n 

äã 
. 

b. Let
Ä̂

an 
sn 

ä 
∈ Ŝ−1A,

Ä̂
mn 
tn 

ä 
∈ Ŝ−1M , and let us show 

ϑ 
ÅÄ̂

an 
sn 

ä
•̂
Ä̂

mn 
tn 

äã 
=
Ä̂

an 
sn 

ä
•̂ϑ 
ÅÄ̂

mn 
tn 

äã 
. 

We have: 

ϑ 
ÅÄ̂

an 
sn 

ä
•̂
Ä̂

mn 
tn 

äã 
= ϑ 

Å �̋Ä
an 
sn 

• mn 
tn 

äã 
= ϑ 

Å �̧Ä zn·mn 
wn×sn 

äã 
with wnan = zntn 

where wn ∈ S, zn ∈ S,∀n ∈ N. 
Let (wn) and (zn) be the sequences of general terms wn and zn, respec-

tively, and since wnan = zntn where wn ∈ S, zn ∈ S,∀n ∈ N, then 
(wn) × (an) = (zn) × (tn) where (wn) ∈ C(S), (zn) ∈ C(A) ⇒ ‘(wn)“×‘(an) =
̂(zn)“×̂(tn) where ‘(wn) ∈ ̂S, ̂(zn) ∈ ̂A. 

Then: 

ϑ 
ÅÄ̂

an 
sn 

ä
•̂
Ä̂

mn 
tn 

äã 
= ϑ 

Å �̋Ä
an 
sn 

• mn 
tn 

äã 
= ϑ 

Å �̧Ä zn·mn 
wn×sn 

äã 
=  (znmn)

 (wnsn) 
= 

”(zn)̂·(̂mn)

(̂wn)×̂”(sn) 
= ”(an) ”(sn)

•̂ (̂mn)

(̂tn) 
by ‘(wn)“×‘(an) = ̂(zn)“×̂(tn) where ‘(wn) ∈ ̂S, ̂(zn) ∈ ̂A. 

Since Ŝ−1A and ̂S−1
̂A are isomorphic, then let us set ”(an) ”(sn)

�
Ä̂

an 
sn 

ä 
, and 

then 

ϑ 
ÅÄ̂

an 
sn 

ä
•̂
Ä̂

mn 
tn 

äã 
= ”(an) ”(sn)

•̂ (̂mn)

(̂tn) 
=
Ä̂

an 
sn 

ä
•̂ (̂mn)

(̂tn) 
=
Ä̂

an 
sn 

ä
•̂ϑ 
ÅÄ̂

mn 
tn 

äã 
. 

Then ϑ is a module homomorphism. 
3. Let us show that ϑ is bijective. 

To do this, consider the correspondence: 

. 
φ : ̂S−1 “M → Ŝ−1M

(̂mn)”(sn)
�→
Ä̂

mn

sn

ä .

Let us show that φ is a function. 
Let (̂mn) ”(sn) 

,
̂(m′

n)

(̂tn) 
∈ ̂S−1

̂A such that (̂mn) ”(sn) 
= ̂(m′

n)

(̂tn) 
, and let us show that 

φ 
Å

(̂mn) ”(sn) 

ã 
= φ 
Å
̂(m′

n)

(̂tn) 

ã 
.
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We have: φ 
Å

(̂mn) ”(sn) 

ã 
=
Ä̂

mn 
sn 

ä 
. 

But (̂mn) ”(sn) 
= ̂(m′

n)

(̂tn) 
⇒ (̂mn) ”(sn) 

“+(−̂(m′
n)

(̂tn) 
) = ̂0 ⇒ ”(un)×̂(̂mn)−”(vn)×̂̂(m′

n) ”(un)×̂”(sn)
= ̂0 ⇒ 

�̌(unmn−vnm′
n)

 (unsn) 
= ̂0 

⇒ (unmn − vnm
′
n) → 0 and (unsn)  → 0 with ‘(un)“×̂(sn) = ‘(vn)“×̂(tn) where ‘(un),‘(vn) ∈ ̂S. 

Then, (unmn−vnm′
n) 

(unsn) → 0 ⇒ (unmn) 
(unsn) − (vnm′

n) 
(unsn) → 0 ⇒

Ä̂
unmn 
unsn 

ä 
=
Ä̂

vnm′
n 

unsn 

ä 
⇒ 

φ 
Å

(̂mn) ”(sn) 

ã 
= φ 
Å
 (vnm′

n)

 (unsn) 

ã 
= φ 
Å ”(un)×̂̂(m′

n) ”(un)×̂”(sn) 

ã 
= φ 
Å ”(un)×̂̂(m′

n) ”(vn)×̂(̂tn) 

ã 
= φ 
Å
̂(m′

n)

(̂tn) 

ã 
by 

‘(un)“×̂(sn) = ‘(vn)“×̂(tn). Then φ 
Å

(̂mn) ”(sn) 

ã 
= φ 
Å
̂(m′

n)

(̂tn) 

ã 
. Moreover, we have: 

(a) ψ ◦φ 
Å

(̂mn) ”(sn) 

ã 
= ψ 

Å 
φ 
Å

(̂mn) ”(sn) 

ãã 
= ψ 

ÅÄ̂
mn 
sn 

äã 
= (̂mn) ”(sn) 

, for all (̂mn) ”(sn) 
∈ ̂S−1 “M . 

Then, ψ ◦ φ = id
Ŝ−1M̂ . 

(b) φ ◦ ψ 
ÅÄ̂

mn 
sn 

äã 
= φ 

Å 
ψ 
ÅÄ̂

mn 
sn 

äãã 
= φ 

Å
(̂mn) ”(sn) 

ã 
=
Ä̂

mn 
sn 

ä 
, for all

Ä̂
mn 
sn 

ä 
∈

Ŝ−1M . Then, φ ◦ ψ = id S−1M 
. 

Thus, φ and ϑ are bijective, and each is the inverse of the other (φ−1 = ϑ and 
ϑ−1 = ψ). 

We thus conclude that ϑ is a left Ŝ−1A-module isomorphism.

̂S-Saturated Submodules of Completion Modules 

Lemma 9.3 Let (A, (In)n∈N) be a filtered ring where (In)n∈N is a sequence of left 
ideals, ̂A its completion, S a saturated multiplicative subset of A that satisfies the 
left Ore conditions (resp., invariant, resp., central), (M, (Mn)n∈N) a left  A-module 
filtered, where (Mn)n∈N is a sequence of submodules of M , and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge to 
0. Then, the correspondence defined by 

. 
φ : ̂S−1 “M → Ŝ−1M

(̂mn)”(sn)
�→
Ä̂

mn

sn

ä .

is a left ̂S−1
̂A-module isomorphism.
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Proof See Theorem 9.6. 

Definitions 9.2 Let N be a submodule of a left A-module M and S a saturated 
multiplicative subset of A that satisfies the left Ore conditions. We say that N is left 
S-saturated in M if for all s ∈ S, x ∈ M such that sx ∈ N , then x ∈ N . 

Proposition 9.7 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence 
of left ideals, S a saturated multiplicative subset of A that satisfies the left Ore 
conditions (resp., invariant, resp., central), N an S-saturated submodule of a filtered 
left A-module (M, (Mn)n∈N), where (Mn)n∈N is a sequence of submodules of M , 
and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge to 
0. Then, the completion of N , “N , is ̂S-saturated in “M . 

Proof By Proposition 9.6, “N is a submodule of “M . Let ̂(sn) ∈ ̂S,‘(xn) ∈ “M such 
that ̂(sn)̂·‘(xn) ∈ “N , and let us show that‘(xn) ∈ “N . We have ̂(sn)̂·‘(xn) = (̂snxn) ∈ “N , 
so (snxn) ∈ C(N), which implies that snxn ∈ N,∀n ∈ N. Since N is S-saturated in 
M , then xn ∈ N,∀n ∈ N. Thus, (xn) ∈ C(N), so  ‘(xn) ∈ “N . Therefore, we conclude 
that “N is ̂S-saturated in “M . 

Theorem 9.7 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence of left 
ideals, S a saturated multiplicative subset of A that satisfies the left Ore conditions 
(resp., invariant, resp., central), N an S-saturated submodule of a filtered left A-
module (M, (Mn)n∈N), where (Mn)n∈N is a sequence of submodules of M , and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge 
to 0. Then, “N is ̂S-saturated in “M if and only if there is a submodule N ′ of the
̂S−1

̂A-module ̂S−1 “M such that “N = (iŜ
M̂ 

)−1(N ′). 

Proof It should be noted that the correspondence 

. 
iŜ
M̂

: “M → ̂S−1 “M
‘(mn) �→ (̂mn)

(sn)

is the canonical morphism: 

1. Suppose that “N is a ̂S-saturated submodule of “M . We will show that there is a 

submodule ̂N ′ of the left ̂S−1
̂A-module ̂S−1 “M such that “N = (iŜ

M̂ 
)−1(N ′). It  

suffices to show that “N = (iŜ
M̂ 

)−1(̂S−1“N).
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We have “N ⊂ (iŜ
M̂ 

)−1(̂S−1“N)  by iŜ
M̂ 

(“N)  ⊆ ̂S−1“N . 

Let ‘(mn) ∈ (iŜ
M̂ 

)−1(̂S−1“N)  ⇒ iŜ
M̂ 

(‘(mn)) = (̂mn)

1̂ 
∈ ̂S−1“N,  and then there 

is ‘(an) ∈ “N, ̂(sn) ∈ ̂S such that (̂mn)

1̂ 
= ”(an) ”(sn) 

⇒ ”(un)×̂(̂mn) ”(un) 
= ”(vn)×̂”(an) ”(vn)×̂”(sn) 

with 

‘(un) = ‘(vn)“×̂(sn) and ‘(un)“×‘(mn) = ‘(vn)“×‘(an) where (‘(un), ‘(vn)) ∈ ̂A ×
̂S, since ‘(un)“×‘(mn) ∈ “N ⇒ ‘(mn) ∈ “N because “N is ̂S-saturated. Therefore, 

(iŜ
M̂ 

)−1(̂S−1“N)  ⊂ “N . 

We deduce that “N = (iŜ
M̂ 

)−1(̂S−1“N)  and let N ′ = ̂S−1“N , hence the existence 

of N ′ such that “N = (iŜ
M̂ 

)−1(N ′). 
2. Suppose that there is a submodule N ′ of the left ̂S−1

̂A-module ̂S−1 “M such that “N = (iŜ
M̂ 

)−1(N ′). We will show that “N is ̂S-saturated in “M . 

Let ‘(mn) ∈ “M and ̂(sn) ∈ ̂S such that ̂(sn)“×‘(mn) ∈ “N , and let us show that ‘(mn) ∈ “N . 

We have ̂(sn)“×‘(mn) ∈ “N , and then iŜ
M̂ 

((̂snmn)) =  (snmn)

1̂ 
∈ N ′ by the 

assumption. Thus, ”(sn)×̂(̂mn)

1̂ 
∈ N ′. But ̂(sn) ∈ ̂S implies that 1̂ ”(sn) 

∈ Ŝ−1A, 

and thus 1̂ ”(sn)
•̂”(sn)×̂(̂mn)

1̂ 
= (̂mn)

1̂ 
∈ N ′. Therefore, ‘(mn) ∈ “N . We conclude that “N 

is ̂S-saturated in “M . 

Corollary 9.5 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence of 
left ideals, S a multiplicative subset of A that satisfies the left Ore conditions (resp., 
invariant, resp., central), and N an S-saturated submodule of a filtered left A-
module (M, (Mn)n∈N), where (Mn)n∈N is a sequence of submodules of M , and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences in A with values in S that do not converge 
to 0. Then, “N is ̂S-saturated in “M if and only if there is a submodule N ′ of the
Ŝ−1A-module Ŝ−1M such that “N = (φ ◦ iŜ

M̂ 
)−1(N ′). 

Proof Consider the exact sequence: “M 
iŜ

M̂
  ̂S−1 “M 

φ
  Ŝ−1M and then, 

φ◦iŜ
M̂ 

is well defined, and thus, there is a submodule N ′ of the Ŝ−1A-module Ŝ−1M 

such that “N = (φ ◦ iŜ
M̂ 

)−1(N ′). 

Proposition 9.8 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence 
of left ideals, S be a saturated multiplicative subset of A that satisfies the left Ore 
conditions (resp., invariant, resp., central), and (M, (Mn)n∈N) be a filtered left A-
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module, where (Mn)n∈N is a sequence of submodules of M , and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge 
to 0. Then, for any submodule N of the ̂S−1

̂A-module ̂S−1 “M (resp., Ŝ−1A-module

Ŝ−1M), we have ̂S−1((iŜ
M̂ 

)−1(N)) = N (resp., ̂S−1((φ ◦ iŜ
M̂ 

)−1(N)) = N ). 

Proof For all submodules N of the ̂S−1
̂A-module ̂S−1 “M , let us show that

̂S−1((iŜ
M̂ 

)−1(N)) = N : 

1. Let us show that ̂S−1
(

(iŜ
M̂ 

)−1(N)

)

⊂ N . 

Let (̂mn) ”(sn) 
∈ ̂S−1

(

(iŜ
M̂ 

)−1(N)

)

⇒ ‘(mn) ∈ (iŜ
M̂ 

)−1(N) and ̂(sn) ∈ ̂S ⇒
(̂mn)

1̂ 
∈ N and 1̂ ”(sn) 

∈ Ŝ−1A, and thus 1̂ ”(sn)
•̂ (̂mn)

1̂ 
= (̂mn) 

(sn) ∈ N . Then, we have

̂S−1((iŜ
M̂ 

)−1(N)) ⊂ N . 

2. Inversely, let us show that N ⊂ ̂S−1
(

(iŜ
M̂ 

)−1(N)

)

. 

Let (̂mn) ”(sn) 
∈ N , and then (̂mn) ”(sn) 

∈ ̂S−1 “M ⇒ ‘(mn) ∈ “M . But, (̂mn)

1̂ 
= 

”(sn)

1̂
•̂ (̂mn) ”(sn) 

∈ N , and then iŜ
M̂ 

(‘(mn)) ∈ N ⇒ ‘(mn) ∈ (iŜ
M̂ 

))−1(N) ⇒ (̂mn) ”(sn) 
∈

̂S−1
(

(iŜ
M̂ 

)−1(N)

)

. Thus, 

N ⊂ ̂S−1
(

(iŜ
M̂ 

)−1(N)

)

. 

We conclude that for any submodule N of the ̂S−1
̂A-module ̂S−1 “M , we have  

. ̂S−1((iŜ
M̂

)−1(N)) = N.

Similarly, we can show that ̂S−1((φ ◦ iŜ
M̂ 

)−1(N)) = N using Corollary 9.5. 

Corollary 9.6 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence of 
left ideals, and let S be a saturated multiplicative subset of A that satisfies the left 
Ore conditions (resp., invariant, resp., central), and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences in A with values in S that do not converge 
to 0. Then, for any ideal I of ̂S−1

̂A (resp., Ŝ−1A), we have ̂S−1((iŜ
M̂ 

)−1(I )) = I 
(resp., ̂S−1((φ ◦ iŜ

M̂ 
)−1(I )) = I ).
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Theorem 9.8 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence 
of left ideals, S a saturated multiplicative subset of A that satisfies the left Ore 
conditions (resp., invariant, resp., central), (M, (Mn)n∈N) a filtered left  A-module, 
where (Mn)n∈N is a sequence of submodules of M , and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge to 
0. Then, there is an increasing bijection (for inclusion) from the set of submodules 
of the ̂S−1

̂A-module ̂S−1 “M to the set of submodules of the ̂A-module “M saturated 
for ̂S. 

Proof Let E
Ŝ−1M̂ be the set of submodules of ̂S−1 “M , E

M̂ be the set of submodules 

of “M that are ̂S-saturated, and ψ be the correspondence defined by 

. 
ψ : E

Ŝ−1M̂
→ E

M̂

N �→ (iŜ
M̂

)−1(N)
.

ψ is a map by definition: 

1. Show that ψ is surjective. 
Let N ′ ∈ E

M̂ . By definition of the localization morphism iŜ
M̂ 
, there is N ∈ 

E
Ŝ−1M̂ such that i

Ŝ

M̂ 
(N) = N ′. Thus, N = (iŜ

M̂ 
)−1(N ′) = ψ(N ′). Hence, ψ is 

surjective. 
2. Let us show that ψ is injective. 

Suppose N1, N2 ∈ E
Ŝ−1M̂ such that ψ(N1) = ψ(N2). We will show that 

N1 = N2. 

Since ψ(N1) = ψ(N2), we have  (iŜ
M̂ 

)−1(N1) = (iŜ
M̂ 

)−1(N2) ⇒
̂S−1((iŜ

M̂ 
)−1(N1)) = ̂S−1((iŜ

M̂ 
)−1(N2)) 

⇒ N1 = N2 by Proposition 9.8. Thus, ψ is injective. 

Therefore, ψ is bijective: 

3. Let us show that ψ is increasing. 
Let N1, N2 ∈ E

Ŝ−1M̂ , and let us show that ψ(N1) ⊂ ψ(N2). 

Suppose ‘(mn) ∈ ψ(N1), then ψ(  ‘(mn)) ∈ N1 ⊂ N2 ⇒ ‘(mn) ∈ (iŜ
M̂ 

)−1(N2) = 
ψ(N2). Therefore, ψ is increasing. 

Therefore, there is an increasing bijection (for inclusion) from the set of submodules 
of the ̂S−1

̂A-module ̂S−1 “M to the set of submodules of the ̂A-module “M saturated 
for ̂S. 

Corollary 9.7 Let (A, (In)n∈N) be a filtered ring where (In)n∈N is a sequence 
of left ideals, S a saturated multiplicative subset of A that satisfies the left Ore
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conditions (resp., invariant, resp., central), (M, (Mn)n∈N) a filtered left  A-module, 
where (Mn)n∈N is a sequence of submodules of M , and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge to 
0. Then, there is an increasing bijection (for inclusion) from the set of submodules 

of the Ŝ−1A-module Ŝ−1M to the set of submodules of the ̂A-module “M saturated 
for ̂S. 

Corollary 9.8 Let (A, (In)n∈N) be a filtered ring where (In)n∈N is a sequence 
of left ideals, S a saturated multiplicative subset of A that satisfies the left Ore 
conditions (resp., invariant, resp., central), (M, (Mn)n∈N) a filtered left  A-module, 
where (Mn)n∈N is a sequence of submodules of M , and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge to 
0. If  M is Noetherian (resp., Artinian), then ̂S−1 “M and Ŝ−1M are also Noetherian 
(resp. Artinian). 

Theorem 9.9 Let (A, (In)n∈N) be a filtered ring where  (In)n∈N is a sequence of left 
ideals, S a saturated multiplicative subset of A that satisfies the left Ore conditions 
(resp., invariant, resp., central), N a S-saturated submodule in a filtered left A-
module (M, (Mn)n∈N), where (Mn)n∈N is a sequence of submodules of M , and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge to 
0. Then, the ̂S−1

̂A-module ̂S−1 
Ä“M/“N 

ä 
is isomorphic to ̂S−1(“M)/̂S−1(“N). 

Proof Let ψ be the match defined by 

. 

ψ : ̂S−1
Ä“M/“Nä→ ̂S−1(“M)/̂S−1(“N)

((̂mn))”(sn)
�→

Å
(̂mn)”(sn)

ã
.

1. Let us show that ψ is a map. 

Let ((̂mn)) ”(sn) 
, (̂(m

′
n)) ”(s′
n) 

∈ ̂S−1(M/N) such that ((̂mn)) ”(sn) 
= (̂(m′

n)) ”(s′
n) 

, and let us show that 

ψ 
Å 

((̂mn)) ”(sn) 

ã 
= ψ 

Ç 
(̂(m′

n)) ”(s′
n) 

å 
. 

We have
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((̂mn)) ”(sn) 
= (̂(m′

n)) ”(s′
n) 

, and then there is ‘(xn),‘(yn) ∈ ̂S such that:
{‘(xn)  

Ä‘(mn) 
ä 

=‘(yn)  
Ä‘(m′

n) 
ä 

‘(xn)“×̂(sn) =‘(yn)“×̂(tn) 
⇒ 
®‘(xn)̂·‘(mn) = ‘(yn)̂·‘(m′

n) ‘(xn)“×̂(sn) = ‘(yn)“×̂(tn) 
⇒ ”(xn)̂·(̂mn) ”(xn)×̂”(sn) 

= 
”(yn)̂·̂(m′

n) ”(yn)×̂(̂tn)

(̂mn) ”(sn) 
= ̂(m′

n)

(̂tn) 
⇒ 
Å

(̂mn) ”(sn) 

ã 
= 
Å
̂(m′

n)

(̂tn) 

ã 
. Then, ψ 

Å 
((̂mn)) ”(sn) 

ã 
= ψ 

Ç 
(̂(m′

n)) ”(s′
n) 

å 
. 

2. Let us show that ψ is a morphism of ̂S−1
̂A-modules: 

a. Let ((̂mn)) ”(sn) 
, (̂(m

′
n)) ”(s′
n) 

∈ ̂S−1(M/N), and show that 

ψ 
Ç 

((̂mn)) ”(sn) 
+̄ (̂(m′

n)) 
(s′

n) 

å 
= ψ 

Å 
((̂mn)) ”(sn) 

ã “̄+ψ 
Ç 

(̂(m′
n)) ”(s′
n) 

å 
. 

We have 

ψ 
Ç 

((̂mn)) ”(sn) 
+̄ (̂(m′

n)) 
(s′

n) 

å 
= ψ 

Ç ”(xn).((̂mn)) ̄+”(yn).(̂(m′
n)) ”(yn)×̂”(s′

n) 

å 
with 

‘(xn)“×̂(sn) = ‘(yn)“×̂(s′
n), where ‘(xn),‘(yn) ∈ ̂S 

= 
Å ”(xn)×̂((̂mn))+̂”(yn)×̂(̂(m′

n)) ”(yn)×̂”(s′
n) 

ã 

= 
Å ”(xn)×̂((̂mn)) ”(yn)×̂”(s′

n) 

ã“̄+ 
Å ”(yn)×̂(̂(m′

n)) ”(yn)×̂”(s′
n) 

ã 

= 
Å ”(xn)×̂((̂mn)) ”(xn)×̂”(sn) 

ã“̄+ 
Å ”(yn)×̂(̂(m′

n)) ”(yn)×̂”(s′
n) 

ã 
by ‘(xn)“×̂(sn) = ‘(yn)“×̂(s′

n) 

= 
Å

(̂mn) ”(sn) 

ã“̄+ 
Å
̂(m′

n) ”(s′
n) 

ã 
= ψ 
Å 

((̂mn)) ”(sn) 

ã“̄+ψ 
Ç 

(̂(m′
n)) ”(s′
n) 

å 
. 

Then, ψ 
Ç 

((̂mn)) ”(sn) 
+̄ (̂(m′

n)) 
(s′

n) 

å 
= ψ 

Å 
((̂mn)) ”(sn) 

ã “̄+ψ 
Ç 

(̂(m′
n)) ”(s′
n) 

å 
. 

b. Let ”(an)

(̂tn) 
∈ ̂A, ((̂mn)) ”(sn) 

∈ ̂S−1(M/N), and show that 

ψ 
Ç ”(an)

(̂tn)
 (̂(m′

n)) 
(sn) 

å 
= (̂mn)

(̂tn)
 ψ 
Å 

((̂mn)) ”(sn) 

ã 
. 

We have : 

ψ 
Å ”(an)

(̂tn)
 ((̂mn)) 

(sn) 

ã 
= ψ 

Ç ”(yn).(̂(m′
n)) ”(xn)×̂(̂tn) 

å 
with ‘(xn)“×‘(an) =‘(yn)“×̂(sn) where 

(‘(xn), ‘(yn)) ∈ ̂S × ̂A 

= ψ 
Ç 

(”(yn)×̂”(m′
n)) ”(xn)×̂(̂tn) 

å 
= 
Ç 

(”(yn)×̂”(m′
n)) ”(xn)×̂(̂tn) 

å 

= 
Ç 

(”(yn)×̂”(m′
n)) ”(xn)×̂(̂tn) 

å 
= 
Å ”(an)

(̂tn)
 ((̂mn)) 

(sn) 

ã 
= ”(an)

(̂tn)
 
Å 

((̂mn)) 
(sn) 

ã 
= ”(an)

(̂tn)
 ψ 
Å 

((̂mn)) 
(sn) 

ã 
.
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Thus, ψ 
Ç ”(an)

(̂tn)
 (̂(m′

n)) 
(sn) 

å 
= (̂mn)

(̂tn)
 ψ 
Å 

((̂mn)) ”(sn) 

ã 
. 

Then ψ is as morphism of modules. 
3. Let us show that ψ is bijective: 

a. Let us show that ψ is injective. 

Let ((̂mn)) ”(sn) 
∈ Ker(ψ), then ψ 

Å 
((̂mn)) ”(sn) 

ã 
= 
Å 

((̂mn) ”(sn) 

ã 
= ¯̂0

Ŝ−1(M̂)/Ŝ−1(N̂)  ⇒
(̂mn) ”(sn) 

= ̂0 ⇒ ‘(mn) = ̂0 by ̂(sn)  = ̂0 ⇒ ((̂mn)) ”(sn) 
= ¯̂

0 ”(sn) 
= ¯̂0

Ŝ−1
(

M̂/N̂
), and thus 

Ker(ψ) = 
ß ¯̂0

Ŝ−1
(

M̂/N̂
)

™ 
. Then, ψ is injective. 

b. Let us show that ψ is surjective. 

It is evident that ψ is surjective because for all 
Å 

((̂mn) ”(sn) 

ã 
∈ ̂S−1(“M)/̂S−1(“N),  

there is ((̂mn)) ”(sn) 
∈ ̂S−1 

Ä“M/“N 
ä 
such that ψ 

Å 
((̂mn)) ”(sn) 

ã 
= 
Å 

((̂mn) ”(sn) 

ã 
. 

Then, ψ is bijective. 

We conclude that the ̂S−1
̂A-module ̂S−1 

Ä“M/“N 
ä 
is isomorphic to ̂S−1( “M)/̂S−1(“N). 

Corollary 9.9 Let (A, (In)n∈N) be a filtered ring where (In)n∈N is a sequence of left 
ideals, S a saturated multiplicative subset of A that satisfies the left Ore conditions 
(resp. invariant, resp. central) and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge to 
0. Then, the ̂S−1

̂A-module ̂S−1 
Ä
̂A/̂I 
ä 
is isomorphic to ̂S−1( ̂A)/̂S−1(̂I ). 

Theorem 9.10 Let (A, (In)n∈N) be a filtered ring where (In)n∈N is a sequence 
of left ideals, S a saturated multiplicative subset of A that satisfies the left Ore 
conditions (resp., invariant, resp., central), and 

. ̂S =
¶‘(xn) ∈ ̂A |‘(xn)  = ̂0 et ∃n0 ∈ N, n ≥ n0, xn ∈ S

©

the set of classes of Cauchy sequences of A with values in S that do not converge to 
0. And  N an S-saturated submodule in a left A-module (M, (Mn)n∈N), and then: 

1. �̨S−1(M/N) ∼= �̌S−1(M)/S−1(N) ∼= ̂S−1(“M)/̂S−1(“N). 

2. �̋S−1(A/I) ∼= �̌S−1(A)/S−1(I ) ∼= ̂S−1( ̂A)/̂S−1(̂I ). 

Proof 

1. Let us consider the correspondence:
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. 

ϕ : �̨S−1(M/N) → ̂S−1(“M)/̂S−1(“N)Ä̂
mn

sn

ä
�→

Å
(̂mn)”(sn)

ã .

a. Let us show ϕ is a map. 

Let
Ä̂

mn 
sn 

ä 
,

Å̂ 
m′

n 
s′
n 

ã 
∈ �̨S−1(M/N) such that

Ä̂
mn 
sn 

ä 
=
Å̂ 

m′
n 

s′
n 

ã 
and show that 

ϕ 
ÅÄ̂

mn 
sn 

äã 
= ϕ

(Å̂ 
m′

n 
s′
n 

ã)
. 

We have:Ä̂
mn 
sn 

ä 
=
Å̂ 

m′
n 

s′
n 

ã 
⇒ 
Å 

mn 
sn 

− m′
n 

s′
n 

ã 
→ 0, and then ∀n ∈ N there is xn, yn ∈ S 

such that 
Å 

xnmn−ynm′
n 

xnsn 

ã 
→ 0 with xnsn = yns

′
n. 

But 
Ä 

1 
xnsn 

ä 
× (

xnsn 
1

) = 1S−1A, and thus 
Ä 

1 
xnsn 

ä 
× 
Å 

xnmn−ynm′
n 

xnsn 

ã 
→ 0 ⇒ Å 

xnmn−ynm′
n 

1 

ã 
→ 0 ⇒ (xnmn − ynm′

n) → 0 ⇒ (xnmn − ynm
′
n) → 0. 

Let (xn), (yn) be the sequences of general terms xn, yn, respectively, and 
since xnsn = yntn, where xn, yn ∈ S, thus (xn) × (sn) = (yn) × (s′

n), where 
(xn), (yn) ∈ C(S). 

Then, we have® 
(xnmn − ynm

′
n) → 0 

(xn) × (sn) = (yn) × (s′
n) 

with (xn), (yn) ∈ C(S) 

⇒ 
® 

(xn) × (mn) − (yn) × (m′
n) → 0 

(xn) × (sn) = (yn) × (s′
n) 

with (xn), (yn) ∈ C(S) 

⇒ 
®‘(xn)“×‘(mn) =‘(yn)“×‘(m′

n) ‘(xn)“×̂(sn) =‘(yn)“×̂(s′
n) 

with ‘(xn), ‘(yn) ∈ ̂S 

⇒ ”(xn)×̂(̂mn) ”(xn)×̂”(sn) 
= ”(yn)×̂̂(m′

n) ”(yn)×̂”(s′
n) 

⇒ (̂mn) ”(sn) 
= ̂(m′

n) ”(s′
n) 

⇒ 
Å

(̂mn) ”(sn) 

ã 
= 
Å
̂(m′

n) ”(s′
n) 

ã 
⇒ 

ϕ 
ÅÄ̂

mn 
sn 

äã 
= ϕ

(Å̂ 
m′

n 
s′
n 

ã)
. 

b. Let us show that ϕ is a module morphism: 

i. Let
Ä̂

mn 
sn 

ä 
,

Å̂ 
m′

n 
s′
n 

ã 
∈ �̨S−1(M/N), and show that 

ϕ

(Ä̂
mn 
sn 

ä“̄+
Å̂ 

m′
n 

s′
n 

ã)
= ϕ 
ÅÄ̂

mn 
sn 

äã “̄+ϕ

(Å̂ 
m′

n 
s′
n 

ã)
.
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We have: 

ϕ

(Ä̂
mn 
sn 

ä“̄+
Å̂ 

m′
n 

s′
n 

ã)
= ϕ

( �̌Å 
mn 
sn 

+ m′
n 

s′
n 

ã)
, and then ∀n ∈ N, there is 

xn, yn ∈ S such that 

ϕ

(Ä̂
mn 
sn 

ä“̄+
Å̂ 

m′
n 

s′
n 

ã)
= ϕ

( �̌Å 
mn 
sn 

+ m′
n 

s′
n 

ã)
= ϕ

( �̌Å 
xnmn+ynm′

n 
xnsn 

ã)
with 

xnsn = yns
′
n. 

Let (xn), (yn) be the sequences of general terms xn, yn, respectively, and 
since xnsn = yns

′
n, where xn, yn ∈ S, thus (xn)×(sn) = (yn)×(s′

n), where 

(xn), (yn) ∈ C(P ) ⇒‘(xn)“×̂(sn) = ‘(yn)“×̂(s′
n), where ‘(xn), ‘(yn) ∈ ̂S. 

Then, we have: 

ϕ

(Ä̂
mn 
sn 

ä“̄+
Å̂ 

m′
n 

s′
n 

ã)
= ϕ

( �̌Å 
xnmn+ynm′

n 
xnsn 

ã)
= 
Ç �̨(xnmn+ynm′

n)

 (xnsn) 

å 
= 

Å ”(xn)̂·(̂mn)+̂”(yn)̂·̂(m′
n) ”(xn)×̂”(sn) 

ã 

= 
Å ”(xn)̂·(̂mn) ”(xn)×̂”(sn) 

“+”(yn)̂·̂(m′
n) ”(xn)×̂”(sn) 

ã 
= 
Å ”(xn)̂·(̂mn) ”(xn)×̂”(sn) 

“+”(yn)̂·̂(m′
n) ”(yn)×̂”(s′
n) 

ã 
= 
Å

(̂mn) ”(sn) 
“+̂(m′

n) ”(s′
n) 

ã 
= Å

(̂mn) ”(sn) 

ã“̄+ 
Å
̂(m′

n) ”(s′
n) 

ã 

= ϕ 
ÅÄ̂

mn 
sn 

äã “̄+ϕ

(Å̂ 
m′

n 
s′
n 

ã)
. 

ii. Let
Ä̂

an 
sn 

ä 
∈ Ŝ−1A,

Ä̂
mn 
tn 

ä 
∈ �̨S−1(M/N), and show that 

ϕ 
ÅÄ̂

an 
sn 

ä̂
 
Ä̂

mn 
tn 

äã 
=
Ä̂

an 
sn 

ä¯̂ ϕ 
ÅÄ̂

mn 
tn 

äã 
. 

We have: 

ϕ 
ÅÄ̂

an 
sn 

ä̂
 
Ä̂

mn 
tn 

äã 
= ϕ 
Å �̋Ä an 

sn
 mn 

tn 

äã 
, and then ∀n ∈ N, there is zn,wn ∈ S 

such that 

ϕ 
ÅÄ̂

an 
sn 

ä̂
 
Ä̂

mn 
tn 

äã 
= ϕ 
Å �̋Ä an 

sn
 mn 

tn 

äã 
= ϕ 
Å Ä̇

znmn 
wnsn 

äã 
with wnan = zntn. 

Let (zn), (wn) be the sequences of general terms zn,wn, respectively, 
and since wnan = zntn, where wn ∈ S, zn ∈ A,∀n ∈ N, thus (wn) × 
(an) = (zn) × (tn), where (wn) ∈ C(S), (zn) ∈ C(A) ⇒ ‘(wn)“×‘(an) =
̂(zn)“×̂(tn), where ‘(wn) ∈ ̂S, ̂(zn) ∈ ̂A. 

Therefore, we have: 

ϕ 
ÅÄ̂

an 
sn 

ä̂
 
Ä̂

mn 
tn 

äã 
= ϕ 

Å Ä̇
znmn 
wnsn 

äã 
= 
Å ”(zn)̂·”(mn

(̂wn)×̂”(sn) 

ã 
with ‘(wn)“×‘(an) =

̂(zn)“×̂(tn) where ‘(wn) ∈ ̂S, ̂(zn) ∈ ̂A.
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⇒ ϕ 
ÅÄ̂

an 
sn 

ä̂
 
Ä̂

mn 
tn 

äã 
= 
Å ”(zn)̂·”(mn

(̂wn)×̂”(sn) 

ã 
= 
Å ”(an) ”(sn)

•̂ (̂mn)

(̂tn) 

ã 
= 
Å ”(an) ”(sn) 

ã 
¯̂• 
Å

(̂mn)

(̂tn) 

ã 
=

Ä̂
an 
sn 

ä ¯̂• 
Å

(̂mn)

(̂tn) 

ã 

=
Ä̂

an 
sn 

ä ¯̂• 
Å

(̂mn)

(̂tn) 

ã 
=
Ä̂

an 
sn 

ä ¯̂•ϕ 
ÅÄ̂

mn 
tn 

äã 
. 

iii. We have 1 �̧S−1(M/N) 
= ‘Ä 1̄ 1 ä , and thus 

ϕ(1 �̧S−1(M/N) 
) = ϕ 

Å‘Ä 1̄ 
1 

äã 
=

(

1̂
1̂

)

= 
Ä 
1
Ŝ−1(M̂) 

ä 
= 1

Ŝ−1(M̂)/Ŝ−1(N̂)  . 

c. Let us show that ϕ is bijective: 

i. Let us show that ϕ is injective. 

Let
Ä̂

mn 
sn 

ä 
∈ Ker(ϕ), and then ϕ 

ÅÄ̂
mn 
sn 

äã 
= ¯̂0 ⇒ 

Å
(̂mn) ”(sn) 

ã 
= ¯̂0 ⇒

(̂mn) ”(sn) 
∈ ̂S−1(“N)  ⇒ ‘(mn) ∈ “N, ̂(sn) ∈ ̂S ⇒ mn ∈ N,  sn ∈ S,∀n ∈ N ⇒ 

mn = 0̄, sn ∈ S, ∀n ∈ N. 
As 
Ä

mn 
sn 

ä 
is the sequence of general term mn 

sn 
and mn = 0̄,∀n ∈ N, thenÄ̂

mn 
sn 

ä 
= ‘Ä 0̄ 

sn 

ä 
= ̂0̄ ⇒ Ker(ϕ) =

{

̂0̄
}

. Therefore, we deduce that ϕ is 
injective. 

ii. Let us show that ϕ is surjective. 

Let 
Å

(̂mn) ”(sn) 

ã 
∈ ̂S−1(“M)/̂S−1(“N)  ⇒ (̂mn) ”(sn) 

∈ ̂S−1(“M) ⇒ 
‘(mn) ∈ “M, ̂(sn) ∈ ̂S ⇒ 
mn ∈ M, sn ∈ S,∀n ∈ N ⇒ mn ∈ M/N, sn ∈ S,∀n ∈ N. 

Let 
Ä

mn 
sn 

ä 
be the sequence with general term mn 

sn 
∈ S−1(M/N), 

and then
Ä̂

mn 
sn 

ä 
∈ �̨S−1(M/N). This implies that for any 

Å
(̂mn) ”(sn) 

ã 
∈

̂S−1(“M)/̂S−1(“N), there is
Ä̂

mn 
sn 

ä 
∈ �̨S−1(M/N) such that ϕ 

ÅÄ̂
mn 
sn 

äã 
= Å

(̂mn) ”(sn) 

ã 
, demonstrating the surjectivity of ϕ. 

We conclude that ϕ is an isomorphism of modules. Therefore, we have �̨S−1(M/N) ∼= ̂S−1(“M)/̂S−1(“N). 

d. On the other hand, we have: �̨S−1(M/N) ∼= �̌S−1(M)/S−1(N), and indeed, let 
us consider the correspondence 

.
Ψ : S−1(M/N) → S−1(M)/S−1(N)

m
s

�→ m̄
s
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is an isomorphism of modules according to [2]. 

Thus, we have S−1(M/N) � S−1(M)/S−1(N) ⇒ �̨S−1(M/N) ��̌S−1(M)/S−1(N). 

Finally, we have �̨S−1(M/N) ∼= �̌S−1(M)/S−1(N) ∼= ̂S−1(“M)/̂S−1(“N). 

2. To show that �̋S−1(A/I) ∼= �̌S−1(A)/S−1(I ) ∼= ̂S−1( ̂A)/̂S−1(̂I ), it suffices to 
consider the ring A as an A-module. 
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Chapter 10 
On S-Lifting Semimodules over 
Semirings 

Moussa Sall, Landing Fall, and Djiby Sow 

Abstract The notion of lifting module is well studied in rings and module theory. 
Recently, many concepts in rings and modules were introduced in semirings and 
semimodules such us radical of semiring, projective covers of semimodules, and 
superfluous subsemimodules. In this chapter, we introduce the notion of s-lifting 
semimodules, and we study their properties. 

Keywords Subtractive semimodule · S-Lifting semimodule · Local direct 
summand · Small subsemimodule 

Introduction 

Extending semimodules are generalization of injective semimodules and, dually, 
lifting semimodules generalize projective supplemented semimodules. Every mod-
ule has an injective hull, but it does not necessarily have a projective cover. This 
creates a certain asymmetry in the duality between extending modules and lifting 
modules because in any module M there exists complements for any submodule N , 
but, by contrast, supplements for N in M need not exist. The terms extending and 
lifting were coined by Oshiro [2]. Several results concerning lifting modules have 
appeared in the literature in recent years. In addition, progress in other branches of 
module theory has also had a flow-on effect, providing further enrichment to lifting 
module theory. 

Moreover, the notion of lifting modules is largely developed by J. Clark, C. 
Lomp, N. Vanaja, and R. Wisbauer [1]; thus, the study of their results in theory 
semimodules is very interesting. 
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Let M be a semimodule over a semiring R. An equivalence relation . ρ on M is 
an R-congruence relation if and only if 

.[mρm
 
and .nρn

 ] ⇒ [(m + n)ρ(m
 + n

 
) and . (rm)ρ(rm

 
)] ∀m,m

 
, n, n

 ∈ M

and .r ∈ R. 
So R-congruence relation . ρ is trivial if .mρm

 ⇔ m = m
 
. 

Consider the subsemimodule N of M . Then N induces on M an R-congruence 
relation . ≡N , known as the Bourne relation defined by . ∀m,m

 ∈ M; m ≡N m
 ⇔

∃n, n
 ∈ N such that .m + n = m

 + n
 
. 

The set of all the equivalences classes modulo “. ≡N” denoted by .M/N is such 
that .(M/N, +, .) is an R-semimodule which is called quotient semimodule where 
the operations are defined by .

  +  : m + m = m + m and .
  .  : rm = rm. 

Let .M1, M2 be two subsemimodules of M . 

– M is a direct weak sum of . M1 and . M2 (denoted .M = M1⊕M2) if . M = M1+M2
and .M1 ∩ M2 = {0}. 

– M is a direct strong sum of . M1 and . M2 (denoted by .M = M1 ⊕ M2) if and only 
if .M = M1 + M2 and the restriction “.≡M1” to  . M2 and the restriction “.≡M2” to  
. M1 are trivial. 

– A subsemimodule K of M is called a direct summand if there exists . K  ≤ M

such that .M = K ⊕ K  . 
A subsemimodule N of M is subtractive (= k-subsemimodule) if . ∀ x, y ∈

M, (x + y ∈ N, y ∈ N) ⇒ x ∈ N , and in addition, M is called subtractive if 
every subsemimodule of M is subtractive. 

– A subsemimodule N of M is called a fully invariant subsemimodule of M if for 
every endomorphism . ϕ of M , .ϕ(N) ⊆ N . 

In this chapter we study some properties of lifting semimodules over semirings. 
Indeed, we prove that an R-semimodule M is s-lifting if and only if for every 
subtractive subsemimodule N of M , there is a strong direct sum . M = M1 ⊕ M2
such that .M1 ≤ N and .N ∩ M2 
 M (i.e., .N ∩ M2 is small in M ). 

In addition we prove that if M is subtractive and . M = M1 ⊕ M2 ⊕ . . . ⊕ Mn

is a finite strong direct sum, such that every supplement subsemimodule of M is 
fully invariant, then M is s-lifting if and only if it is amply supplemented, and 
.∀i, Mi is s-lifting. And to finish, considering the R-semimodule . M = x

i∈I Mi

which is a subtractive and amply supplemented, we prove that if for every coclosed 
subsemimodule K of M , with .M = K + Mi or .M = K + x

i �=j∈I Mj , is a direct 

summand of M , then for every supplement . K
 
of . Mi or .

x
i �=j∈I Mj , in  M , .M/K

 
is 

s-lifting and . K
 
is a direct summand of M . This chapter is organized as follows: 

– Section “Introduction” is about the basic notions, where more notions are 
defined. 

– In section “Basic Notions”, we study the notions of s-lifting semimodule. 
– In section “S-Lifting Semimodules”, we study the direct sums of s-lifting 

semimodules.
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In the following, R is always an associative, commutative semiring with unit and 
.1R �= 0R , and the direct summands are strong direct summands. 

Basic Notions 

Let M be an R-semimodule and .N,H,L three subsemimodules of M . We have the  
following definitions. 

– A proper subsemimodule S of M is called a small subsemimodule of M if for all 
subsemimodules T of M , .S + T = M implies that .T = M . It is indicated by the 
notation .S 
 M and .Rad(N) = E

K
N K . If  S is not small in M , we denote 
.S �
 M . 

The semimodule M is called hollow if every proper subsemimodule of M is 
small in M . 

– The subsemimodule N of M is called a supplement of L in M if . N + L = M

and .N ∩ L 
 N . In addition, if N is subtractive, it is trivial to see that N is a 
supplement of L in M if and only if it is minimal with the property of .N+L = M . 

The subsemimodule N of an R-semimodule M is called a weak supplement 
of L if .N + L = M and .N ∩ L 
 M (see [1]). 

If every subsemimodule of M has a supplement (respectively, a weak sup-
plement), then M is called a supplemented semimodule (respectively, weakly 
supplemented semimodule). 

M is amply supplemented if .M = L + N implies there exists a supplement 
K of L such that .K ≤ N . 

– If .H ≤ N and .N/H 
 M/H , then H is called a coessential subsemimodule of 
N in M , and it is denoted by .H ≤ce N . 

The subsemimodule N of M is coclosed in M (denoted by .N ≤cc M) if N 
has no proper coessential subsemimodule in M . 

H is called an s-closure of N in M if H is coessential subsemimodule of N 
and H is coclosed in M . 

– The R-semimodule M is called simple if it has no nontrivial subsemimodules. 
In addition, if M is a direct sum of simple semimodules, we say that it is 

semisimple. 
– An internal direct sum .

x
I Ai of subsemimodules of M is called a local direct 

sum of M if, given any finite subset F of the index set I , the direct sum . 
x

i∈F Ai

is a direct summand of M . 

In the following we give an example of subtractive subsemimodule, weakly direct 
sum, and strong direct sum. 

Example 10.1 Let .R = {0; 1} be the Boole semiring and the set .M = {0; 1; a; b}. 
Define on M the operations ." + " and ." × " as follows: 

.0 + 0 = 0; 1 + 1 = 1 + a = a + 1 = 1 + b = b + 1 = a + b = b + a = 1. 

.a + 0 = 0 + a = a + a = a; b + 0 = 0 + b = b + b = b.
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.0 × 0 = 0 × 1 = 1 × 0 = 0 × a = 0 × b = 0; 1 × 1 = 1; 1 × a = a; 1 × b = b. 

Then .(M, +, ×) is a commutative left R-semimodule. In addition, we have: 

.• Subtractivity: .{0; a} is a subtractive subsemimodule of M , but  .{0; 1; a} is not 
subtractive (because .1 + b = 1 ∈ {0; 1; a}, 1 ∈ {0; 1; a} and .b �∈ {0; 1; a}). 

.• Weakly direct sum: .M = {0; a} + {0; 1; b}, {0; a} ∩ {0; 1; b} = {0} and . 1 =
0+ 1 = a + b. Since .a �= 0 and .b �= 1, the decomposition of 1 is not unique, and 
hence .M = {0; a}⊕{0; 1; b}. 

.• Strong direct sum: .M = {0; a}+{0; b}, there does not exist . x, y ∈ {0; a} | 0+x =
b + y, therefore .m ≡{0;a} m

 ⇔ m = m
 
, ∀ m,m

 ∈ {0; b}, and hence the 
restriction of .≡{0;a} to .{0; b} is trivial. Similarly, the restriction of .≡{0;b} to . {0; a}
is trivial. 

Thus .M = {0; a}⊕{0; b}. 

S-Lifting Semimodules 

Definition 10.1 Let M be an R-semimodule. M is called lifting if for every 
subsemimodule N of M there exists a direct summand K of M such that K ≤ N 
and N/K 
 M/K . 

Definition 10.2 An R-semimodule M is called s-lifting if for every subtractive 
subsemimodule N of M there exists a direct summand K of M such that K ≤ N 
and N/K 
 M/K . 

Example 10.2 Let R = {0; 1} be the Boole semiring and the set M = 
{0; 1; a; b}. 
(1) Define on M the same operations " + " and " × " as in Example 10.1. 

Then (M, +, ×) is a lifting R-semimodule. 
Indeed, the only subsemimodules of M are {0}, {0, 1}, {0, a}, {0, b}, {0, 1, a}, 

{0, 1, b}, and M . Clearly, {0, 1} 
 M, {0, 1, a}/{0, a} 
 M/{0, a}, {0, 1, b}/ 
{0, b} 
 M/{0, b}, and since {0}, {0, a}, and {0, b} are the direct summands of 
M (see Example 10.1), then (M, +, ×) is lifting. 

(2) Define on M the operations " ∗ " and "." as follows: 
0 ∗ 1 = 1 ∗ 0 = 1 ∗ 1 = 1 ∗ a = a ∗ 1 = 1 ∗ b = b ∗ 1 = 1. 
a ∗ a = a ∗ 0 = 0 ∗ a = a; b ∗ b = b ∗ 0 = 0 ∗ b = b; a ∗ b = b ∗ a = 0. 
a.0 = 0.a = b.0 = 0.b = 0.0 = 0.1 = 1.0 = 0; 1.1 = 1; 1.a = a; 1.b = b. 

Then (M, ∗, .)  is an R-semimodule which is not s-lifting. 
Indeed, consider the subsemimodule N = {0, a, b} of M . Clearly, N is 

subtractive and the only direct summand of M contained in N is {0}. Since 
N + {0, 1} =  M and {0, 1} �= M , N �
 M , therefore N/{0} �
 M/{0}, and 
hence (M, ∗, .)  is not s-lifting.
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(3) Define on M the operations as follows: 0R = 0M, 1R = 1M = 1, 
1+1 = a +1 = 1+a = 1+b = b+1 = a +b = b+a = a +a = b+b = 1; 
b + 0 = 0 + b = b; a + 0 = 0 + a = a; a.0 = 0.a = b.0 = 0.b = 0; 1.a = 
a.1 = a; 
1.b = b.1 = b. 

Then (M, +, .)  is an R-semimodule S-lifting, but it is not lifting. 
Indeed, clearly, the only subtractive subsemimodule of M is {0}, and, then M 

is s-lifting. The only direct summand of M contained in {0; 1; a} is {0}. Since 
M = {0; 1; a} + {0; 1; b} and {0; 1; b} �= M , then {0; 1; a}/{0} �
 M/{0}; 
therefore, M is not lifting. 

Similar as in [1], 3.6, by subtractivity, we can define a coclosed subsemimodule as 
follows: 

Definition 10.3 A subsemimodule L of a subtractive R-semimodule M is coclosed 
if and only if for any proper subsemimodule K ⊆ L, there is a subsemimodule N 
of M such that L + N = M and N + K �= M . 

Proposition 10.1 Let M be a weakly supplemented subtractive R-semimodule and 
N ≤ M . The following statements are equivalent: 

(1) N is a supplement subsemimodule. 
(2) N is coclosed in M. 
(3) For all X, X ≤ N and  X 
 M implies that X 
 N . 

Proof (1) ⇒ (2): Let  N be a supplement subsemimodule of M , then there exists 
a subsemimodule L of M such that N is minimal of the propriety N + L = M 
(because since M is subtractive, then N is subtractive). Let K ≤ N such that 
N/K 
 M/K . 

. N + L = M ⇒ N + (K + L) = M

⇒ (N + (K + L))/K = N/K + (K + L)/K = M/K

⇒ (K + L)/K = M/K (because N/K 
 M/K)

⇒ K + L = M.

Since N is minimal with the propriety N + L = M , we conclude that N = K; 
therefore, N is coclosed. 

(2) ⇒ (3): Let  X ≤ N such that X 
 M . Let  X
 ≤ N such that X + X = N . 

Assume that X
 �= N . By Definition 10.3, there is K ≤ M such that M = N +K 

and X
 + K �= M . And hence M = N + K = X + X + K; since X 
 M , 

X
 + K = M , which is a contradiction; therefore, X

 = N . Thus X 
 N . 
(3) ⇒ (1): Since M is a weakly supplemented, there exists a subsemimodule H 

of M such that N + H = M and N ∩ H 
 M . 
Since N ∩ H ≤ N and N ∩ H 
 M , from (3), we conclude that N ∩ H 
 N .
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Now we have N + H = M and N ∩ H 
 N ; therefore N is a supplement of 
H in M . Thus N is a supplement subsemimodule, and hence these statements are 
equivalent. ��
Remark 10.1 Every supplement subsemimodule of a subtractive semimodule M is 
coclosed in M . 

Lemma 10.1 A subtractive R-semimodule M is amply supplemented if and only if 
it is weakly supplemented and every subsemimodule has an s-coclosure in M . 

Proof ⇒) Let K ≤ M . Since M is amply supplemented, M is weakly supple-
mented and supplemented. Let L be a supplement of K in M . Then M = K + L 
with K ∩ L 
 L and so K ∩ L 
 M . Since M is amply supplemented, there exists 
a supplement N of L such that N ⊆ K . Then M = N + L and N ∩ L 
 N . We  
claim that N is an s-coclosure of K in M . As a supplement subsemimodule, N is 
coclosed in M (from Remark 10.1). Since M is subtractive, K is subtractive, and 
hence K = N + (K ∩ L) (by modularity condition). 

Let us prove that K/N 
 M/N . Let  H be a subsemimodule of M containing N 
such that K/N +H/N  = M/N . Then (K +H)/N  = M/N ; since M is subtractive, 
K + H = M and hence (K ∩ L) + H = M (because K = N + (K ∩ L) and 
N ⊆ H ); therefore, H = M (because K ∩ L 
 M) and so H/N  = M/N . Thus 
K/N 
 M/N . 

Therefore N is an s-coclosure of K in M . 
⇐) Assume that M is weakly supplemented, and every subsemimodule of M 

has an s-coclosure in M . Let  K, L ≤ M with M = K + L. Since M is weakly 
supplemented, there is a weak supplement T of K such that T ⊆ L. Then M = K + 
T and K∩T 
 M . Suppose N is an s-coclosure of T in M , then T/N 
 M/N and 
N ≤cc M; since M is subtractive and T/N  + (K + N)/N  = (K + T )/N  = M/N , 
then not only K + N = M , but also N ∩ K 
 M , and from proposition 10.1, 
N ∩ K 
 N (because N ≤cc M). Thus N is a supplement of K in M such that 
N ⊆ L. 

Similarly, we verify that K contains a supplement of L in M , and hence M is 
amply supplemented. ��
Proposition 10.2 (see [1], 22.3) 

Let M be a subtractive R-semimodule. Then the following statements are 
equivalents: 

(1) M is s-lifting. 
(2) M is lifting. 
(3) M is amply supplemented, and every supplement (namely, coclosed) subsemi-

module is a direct summand of M . 

Proof (1) ⇔ (2) Trivial. 
(2) ⇒ (3) Let N be a supplement subsemimodule of L in M . Then N + L = M 

and N ∩ L 
 N . By assumption, there exists a direct summand K of M such that 
K ≤ N and N/K 
 M/K . By Remark 10.1, N is coclosed in M (because M is 
subtractive) and hence N = K; therefore, N is a strong direct summand of M .
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Let L be a subsemimodule of M . Then there exists a strong direct summand H of 
M such that H ≤ L and L/H 
 M/H . So  M = H ⊕ H  

(a strong direct sum) for 
some H

 ≤ M . We show that H
 
is a supplement of L in M . Clearly, M = L + H  

. 
We claim that L ∩ H  
 H

 
. 

Let H
  ≤ H  

such that H
 = (L ∩ H  

) + H   
. Then M = L + H  = L + 

H
  
(because H

 = (L ∩ H  
) + H   

), and hence M/H = L/H + (H + H   
)/H 

and so (H + H   
)/H = M/H ( because L/H 
 M/H ), therefore, M = H + H   

. 
Since H

  ≤ H  
and M = H ⊕ H  

, then if h = h + h" with h ∈ H , h ∈ H  , 
and h  ∈ H   , we have  h ≡H h  , and then h = h  ∈ H   . Thus H  = H   

and 
so L ∩ H  
 H

 
. Thus L has a supplement, namely H

 
in M , and hence M is 

supplemented; therefore, it is weakly supplemented. By assumption, it is very easy 
to verify that every subsemimodule of M has an s-coclosure in M , and hence, from 
Lemma 10.1, M is amply supplemented. 

(3) ⇒ (2) Reciprocally, we suppose M is amply supplemented, and every 
supplement is a strong direct summand of M . 

Let N be a subsemimodule of M . Since M is subtractive and amply supple-
mented, N has an s-closure in M (see Lemma 10.1); therefore, there exists K ≤ N 
such that K ≤cc M and N/K 
 M/K so, by Lemma 10.1, K is supplement, and 
by assumption, K is a strong direct summand of M . Thus, for every subsemimodule 
N of M , there exists a strong direct summand K of M such that K ≤ N and 
N/K 
 M/K , and hence M is lifting. ��
Lemma 10.2 Let I, J be R-semimodules, f : I −→ J be an isomorphism, and S 
a subsemimodule of I . Then S 
 I if and only if f (S) 
 J . 

Proof Let S 
 I and H be a subsemimodule of J such that f (S)  + H = J . 
Then f −1(f (S) + H)  = f −1(J ) = I , and hence f −1(f (S)) + f −1(H) = 

S + f −1(H) = I . Since S 
 I , then f −1(H) = I = f −1(J ), and hence H = J , 
so f (S) 
 J . 

Conversely, considering the isomorphism f −1 and from what precedes, if 
f (S) 
 J , then S 
 I . ��
Theorem 10.1 An R-semimodule M is s-lifting if and only if for every subtractive 
subsemimodule N of M , there is a decomposition M = M1⊕M2 such that M1 ⊆ N 
and N ∩ M2 
 M . 

Proof Assume that M is s-lifting. Let N be a subtractive subsemimodule of M . 
Since M is s-lifting, there is a strong direct summand M1 of M such that M1 ≤ N 
and N/M1 
 M/M1. 

Since M1 is a strong direct summand of M , there is M2 ≤ M such that M = 
M1 ⊕ M2. 

Moreover, we want to verify that N ∩ M2 
 M . Consider the obvious 
isomorphism 

. f : M/M1 −→ M2

. x̄ �−→ x2
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with x = x1 + x2, where x1 ∈ M1 and x2 ∈ M2. It is very easy to verify that 
f (N/M1) = N ∩ M2. 

Indeed, let x2 ∈ f (N/M1). Then there is x̄ ∈ N/M1 such that f (x̄) = x2 with 
x = x1 + x2, x1 ∈ M1, x2 ∈ M2. 

x̄ ∈ N/M1 ⇒ ∃  x  ∈ N such that x̄ = x  . 
x̄ = x  ⇒ ∃  m1,m2 ∈ M1 such that x + m1 = x  + m2. Since m2 ∈ M1 ⊆ N , 

x
 + m2 ∈ N ; therefore x + m1 ∈ N and so x ∈ N (because N is subtractive and 

m1 ∈ M1 ⊆ N ). 
Hence x1 + x2 = x ∈ N , therefore x2 ∈ N (because N is subtractive and 

x ∈ M1 ⊆ N ) whence f (N/M1) ⊆ N . Since f (N/M1) ⊆ M2, we conclude that 
f (N/M1) ⊆ N ∩ M2 (∗) 

Let x2 ∈ N ∩ M2. Then x2 ∈ M2; therefore there is a unique x̄ ∈ M/M1 such 
that x = x1 + x2, where x1 ∈ M1, and f (x̄) = x2 (because f is an isomorphism). 

x2 ∈ N,  x1 ∈ M1 ⊆ N ⇒ x = x1 + x2 ∈ N , therefore x̄ ∈ N/M1, and hence 
x2 ∈ f (N/M1), so  N ∩ M2 ⊆ f (N/M1) (∗∗) 
(∗) and (∗∗) imply that f (N/M1) = N ∩ M2. Since N/M1 
 M/M1 and f is an 
isomorphism, f (N/M1) 
 M2 ⊆ M (from Lemma 10.2 ), therefore f (N/M1) 

M , and hence N ∩ M2 
 M . 

In sum, we have M = M1 ⊕ M2 such that M1 ⊆ N and N ∩ M2 
 M . 
Conversely, if N is a subtractive subsemimodule of M , then there is a decompo-

sition M = M1 ⊕ M2 such that M1 ⊆ N , N ∩ M2 
 M , and in considering the 
reciprocal bijection f −1 of f , we have  f −1(N ∩M2) = N/M1. Since N ∩M2 
 M 
and f −1 is a bijection, then N/M1 
 M/M1 (by Lemma 10.2). Thus M is s-lifting. 

��
Proposition 10.3 Let M be an s-lifting R-semimodule. Then every subtractive 
subsemimodule N of M can be written as N = N1 ⊕ N2 with N1 a strong direct 
summand of M and N2 
 M . 

Proof Let N be a subtractive subsemimodule of M . Since M is s-lifting, by 
Theorem 10.1, there is a decomposition M = M1 ⊕ M2 such that M1 ⊆ N and 
N ∩ M2 
 M . We consider N1 = M1, N2 = N ∩ M2. It is clear that N1 is a strong 
direct summand of M and N2 
 M . In addition, N = M1 + N ∩ M2 (because N is 
subtractive and M1 ⊆ N ); therefore N = N1 + N2. 

It is very trivial to see that N = N1⊕N2. Indeed let x, y ∈ N1 such that x ≡N2 y. 
Then there exist n2, n

 
2 ∈ N2 such that x + n2 = y + n 

2. Since n2, n
 
2 ∈ M2 

(because N2 ⊆ M2), x ≡M2 y; therefore x = y (because x, y ∈ N1 = M1 and 
M = M1 ⊕ M2), so “(≡N2)|N1” is trivial. 

Similarly, we prove “(≡N1)|N2” is trivial, and hence N = N1 ⊕ N2 with N1 a 
strong direct summand of M and N2 
 M . ��
Theorem 10.2 Let M be a subtractive R-semimodule. Then the following asser-
tions are equivalent: 

(1) M is s-lifting.
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(2) For every subsemimodule N of M , there is a decomposition M = M1 ⊕ M2 
such that M1 ⊆ N and N ∩ M2 
 M . 

(3) Every subsemimodule N of M can be written as N = N1⊕N2 with N1 a strong 
direct summand of M and N2 
 M . 

Proof By Theorem 10.1, we have  (1) ⇔ (2), and by proposition 10.3 we have 
(1) ⇒ (3). It stands to prove that (3) ⇒ (1). 

Let N be a subsemimodule of M . By assumption, N = N1 ⊕ N2 with N1 is a 
strong direct summand of M and N2 
 M . We show now  N/N1 
 M/N1. 

Let H be a subsemimodule of M such that N1 ⊆ H and N/N1+H/N1 = M/N1. 

. Hence N/N1 + H/N1 = M/N1 ⇒ (N + H)/N1 = M/N1

⇒ N + H = M(since M is subtractive)

⇒ N1 + N2 + H = M (because N = N1 ⊕ N2)

⇒ N2 + H = M (because N1 ⊆ H)

⇒ H = M (because N2 
 M)

⇒ H/N1 = M/N1

⇒ N/N1 
 M/N1.

And since N1 is a strong direct summand of M , we conclude that M is lifting. 
Thus, since M is subtractive, it is s-lifting (by definition 10.2). ��

Remark 10.2 The condition of subtractivity is fundamental in this theorem (see the 
following example). 

Example 10.3 Let R = {0; 1} be the Boole semiring and the set M = {0; 1; a; b}. 
Define on M the operations as follows: 0R = 0M, 1R = 1M = 1, 1 + 1 = 

1+a = 1+b = a +b = 0; a +a = a +0 = 0+a = a; b +b = b +0 = 0+b = 
b; a.0 = 0.a = b.0 = 0.b = 0; 1.a = a; 1.b = b. 

Then (M, +, .)  is R-semimodule S-lifting (see Example 10.2). Clearly, M is not 
subtractive because {0; 1} is not subtractive (because 1 + a = 0 ∈ {0; 1}, but  a �∈ 
{0; 1}). 

But, since the only strong direct summand of M contained in {0; 1} is {0} and 
M�= {0; 1}, then there is no decomposition M = M1 ⊕ M2 such that M1 ⊆ {0; 1} 
and {0; 1} ∩  M2 
 M . 

Corollary 10.1 Every hollow subtractive semimodule is s-lifting. 

Proof If N is a subsemimodule of a hollow subtractive semimodule M , we have  
N 
 M and N = {0} ⊕  N . By Theorem 10.2, M is s-lifting. ��
Theorem 10.3 Any coclosed subsemimodule (and hence every strong direct sum-
mand) of a subtractive s-lifting semimodule is s-lifting.
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Proof Let N be a coclosed subsemimodule of an s-lifting subtractive R-
semimodule M . Clearly, N is subtractive. Let K be a subsemimodule of N . Hence 
K is a subsemimodule of M , and since M is s-lifting, by Theorem 10.2, K can be 
written as K = K1 ⊕ K2 with K1 a direct summand of M and K2 
 M . Since 
K1 ≤ N is a strong direct summand of M , K1 is a strong direct summand of N 
(because M = K1 ⊕ K  

1 ⇒ N = N ∩ M = K1 + N ∩ K  
1). By Proposition 10.2, M 

is amply supplemented (because M is s-lifting), and hence M is supplemented, so 
it is weakly supplemented; therefore, by Lemma 10.1, K2 
 N (because N ≤cc M 
by proposition10.1). Hence K = K1 ⊕ K2 with K1 is a strong direct summand of 
N and K2 
 N , and hence, by Theorem 10.2, N is s-lifting. ��
Proposition 10.4 Let M be an s-lifting R-semimodule such that Rad(N) 
 N for 
every subtractive subsemimodule N ⊆ M . 

Then every subtractive local strong direct summand of M is a strong direct 
summand of M . 

Proof Let 
x 

K Mk be a subtractive local strong direct summand of M , and set 

. N =
x

K

Mk.

Since M is s-lifting and N is a subtractive subsemimodule of M , by Proposition 2.4, 
N can be written as N = T ⊕ S, where T is a strong direct summand of M and 
S 
 M . 

Let x ∈ S. We have  xR ⊆ x 
f ∈F Mf , where F is a finite subset of K . Then, 

since xR 
 M (because xR ⊆ S 
 M) and 
x 

k∈F Mk is a strong direct summand, 
let us prove that xR 
 x 

k∈F Mk . Assume that there exists L ≤ M such that 
xR + L = x 

k∈F Mk . Since M = x 
k∈F Mk ⊕ M  , we have  xR + L + M  = M . 

This implies xR + (M  + L) = M . Since xR 
 M , we have  M  + L = M and so 
L = x 

k∈F Mk; therefore, 

. 
7

y∈S

yR 
 Rad(N)

and so S ⊆ Rad(N). However, by hypothesis, Rad(N) 
 N and hence S 
 N ; 
therefore, N = T (because N = T ⊕ S) and so N is a strong direct summand 
of M . ��

Direct Sums of S-Lifting Semimodules 

In this section we look at the question of when s-lifting is preserved by finite (or 
infinite) direct sums. Moreover one of the most interesting questions concerning s-
lifting semimodules is when a finite (or infinite) direct sum of s-lifting semimodules 
is also s-lifting.
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Finite Direct Sums of S-Lifting Semimodules 

Theorem 10.4 Let K ⊂ V be two subtractive subsemimodules of semimodule M . 

(1) If K is a supplement in M , then K is supplement in V . 
(2) If V is a supplement, the following are equivalent: 

(a) K is supplement in V . 
(b) K is supplement in M . 

Proof 
(1) If K is a supplement in M , there is some subsemimodule P ⊂ M with 

K + P = M and K  + P �= M for a proper K  ⊂ K . 
By modularity, K + (P ∩ V )  = V (because V is subtractive and K ⊂ V ). 
Assume L + P ∩ V = V for some subsemimodule L ⊂ K . Then the equality 

V + P = K + P = M yields M = L + (P ∩ V )  + P = L + P and so, by the 
minimality of K , we get L = K . Thus K is a supplement of P in V . 

(2) By assumption there is a subsemimodule N ⊂ M with V + N = M , and for 
any proper subsemimodule V

 ⊂ V , V
 + N �= M . 

(a) ⇒ (b): There exists L ⊂ V with K + L = V and K   + L �= V for any 
proper subsemimodules K

  ⊂ K . Thus K + L + N = V + N = M . Assume that 
for some K

 ⊆ K , K
 + L + N = M . Put V

  = K  + L, then V   + N = M . Since 
K

 ⊆ K and K + L = V , then V   ⊆ V . 
We have V

  ⊆ V and V   + N = M; therefore, V
  = V by the minimality of V 

(see above) 
Hence V = V

  = K
 + L and V = K + L; thus K  = K by minimality. 

Therefore K is a supplement of L + N in M . 
(b) ⇒ (a) follows from (1). ��

Theorem 10.5 Let M = M1⊕. . .⊕Ml be a finite strong direct sum of semimodules 
Mi . Assume that M is subtractive, and every supplement subsemimodule of M is 
fully invariant. Then M is s-lifting if and only if it is amply supplemented and Mi is 
s-lifting for all 1 ≤ i ≤ l. 

Proof We suppose that M is s-lifting. By Proposition 10.2, M is amply supple-
mented, and by Theorem 10.2, Mi is s-lifting, ∀i ∈ {1; . . . ; l}. 

Conversely, we suppose that M is amply supplemented and Mi is s-lifting for all 
1 ≤ i ≤ l. 

Let N be a supplement subsemimodule of M . Let us prove that N = xl 
i=1(N ∩ 

Mi). 
We know that 

xl 
i=1(N ∩ Mi) ⊆ N . Let us prove that N ⊆ xl 

i=1(N ∩ Mi). 
Since M = xl 

i=1 Mi , we have for  n ∈ N ≤ M , n = El 
i=1 ni with ni ∈ Mi . It  

remains to prove that nt ∈ N for all 1 ≤ t ≤ l. Consider the canonical projection 
PMt : M −→ Mt , and then PMt (n) = El 

i=1 PMt (ni). We know that PMt (nt ) = nt 
and PMt (ni) = 0 for all i �= t . Then PMt (n) = nt . Since N is fully invariant, then 
nt = PMt (n) ∈ N . Thus N = xl 

i=1(N ∩ Mi).
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It is clear that N ∩ Mi is a subsemimodule of Mi and N ∩ Mi is a supplement 
subsemimodule in N because it is a strong direct summand of N , and since N 
is a supplement subsemimodule in M , N ∩ Mi is a supplement subsemimodule 
in M (from Theorem 10.1); therefore, by Theorem 10.1, N ∩ Mi is a supplement 
subsemimodule in Mi , and hence N ∩Mi is a strong direct summand of Mi (because 
Mi is s-lifting). Hence there is M

 
i ≤ Mi such that M

 
i ⊕ (N ∩ Mi) = Mi . We have  

now 

. M = M1 ⊕ . . . ⊕ Ml = M
 
1 ⊕ (N ∩ M1) ⊕ M

 
2 ⊕ (N ∩ M2) ⊕ . . .

⊕M
 
l ⊕ (N ∩ Ml)

= (N ∩ M1) ⊕ . . . ⊕ (N ∩ Ml) ⊕ M
 
1 ⊕ . . . ⊕ M

 
l

= N ⊕ M
 
1 ⊕ . . . ⊕ M

 
l .

Hence N is a strong direct summand of M . 
So M is amply supplemented, and every supplement subsemimodule of M is a 

strong direct summand of M; therefore, by Proposition 10.2, M is s-lifting. ��
Example 10.4 Consider (N; gcd; lcm). Set M = N, and  we  suppose  gcd(0, 0) 
= 0. 

Then M is a subtractive N-semimodule, and every supplement subsemimodule 
of M is fully invariant. 

Clearly, M is an N-semimodule; then, we prove that it is subtractive in showing 
every subsemimodule of M is a k-subsemimodule. 

It is clear that every k-subsemimodule of M is of the form nN, n  ∈ N, and 
{0},M  are trivial k-subsemimodules of M (because {0} = 0N and M = 1N). 

Let N �= {0} be a subsemimodule of M = N and x ∈ N . 
N �= {0} is a subsemimodule of M = N, and then it has a nonzero minimal 

element, say m. 
x ∈ N and m ∈ N ⇒ x + m = gcd(x, m) ∈ N . 
gcd(x, m)|m ⇒ 0 �= gcd(x, m) ≤ m, and hence gcd(x, m) = m (because m is 

a nonzero minimal element of N ). 
Hence m|x, and therefore x ∈ mN, so  N ⊆ mN (1). 
Let y ∈ mN. Then there exists α ∈ N such that y = mα = lcm(m, α). 
Since m ∈ N,  α  ∈ N, and N is an N-subsemimodule of M , lcm(m, α) ∈ N ; 

therefore y ∈ N . 
Hence mN ⊆ N (2). 
(1) and (2) ⇒ N = mN; therefore N is a k-subsemimodule of M , and M is 

subtractive. In addition, since the only supplement subsemimodules of M are M and 
{0} which are fully invariant, then every supplement subsemimodule of M is fully 
invariant.
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Arbitrary Direct Sums of S-Lifting Semimodules 

Lemma 10.3 Let K, L, and N be subtractive subsemimodules of an R-semimodule 
M . Assume that K + L = M and (K ∩ L) + N = M . Then K + (L ∩ N)  = 
L + (K ∩ N)  = M. 

Proof First observe that 

. K + (L ∩ N) = K + (L ∩ K) + (L ∩ N)

= K + (L ∩ ((L ∩ K) + N))(because L is subtractive and K ∩ L ⊂ L)

= K + (L ∩ M) = K + L = M.

Applying the same arguments to L + (K ∩ N)  yields L + (K ∩ N)  = M . ��
By subtractivity assumption and Lemma 10.3, we have the following proposition: 

Proposition 10.5 Let K, L, and N be subsemimodules of subtractive R-
semimodule M . 

If M = K+L, L ⊆ N , and N/L 
 M/L, then (K∩N)/(K∩L) 
 M/(K∩L). 

Proof Consider a subsemimodule X such that K ∩L ⊆ X ⊆ M and M/(K ∩L) = 
(K ∩ N)/(K  ∩ L) + X/(K ∩ L). Then M = X + (K ∩ N). 

By Lemma 10.3, M = N + (K ∩ X). Since N/L 
 M/L, this implies M = 
L + (K ∩ X). Again from Lemma 10.3, M = X + (K ∩ L), and hence M = X 
(because K ∩ L ⊆ X). 

Thus (K ∩ N)/(K  ∩ L) 
 M/(K ∩ L). ��
Lemma 10.4 Let M be a subtractive semimodule and K ⊆ L ⊂ M be 
subsemimodules. 

If K is a supplement in M and L/K is a supplement in M/K , then L is a 
supplement in M . 

By subtractivity assumption and Lemma 10.3, the proof is similar to those in module 
theory. But for the sake of completeness, we give a complete proof on the following. 

Proof Let L/K be a supplement of L
 
/K in M/K , and let K be a supplement of 

K
 
in M . Then M/K = L/K + L 

/K and (L/K) ∩ (L 
/K) 
 L/K . Moreover 

M = K + K  
and K ∩ K  
 K ⊆ L. Hence M = (L ∩ L 

) + K  
and M = L + L 

and so M = L + (K  ∩ L 
) (by Lemma 10.3). Now L = L ∩ (K + K  

) = K + 
(L ∩ K  

) (because L is subtractive and K ⊆ L) and (L ∩ L 
)/K 
 L/K (because 

(L∩L
 
)/K 
 L/K ⊂ (L/K)∩ (L

 
/K) and (L/K)∩ (L

 
/K) 
 L/K ) and so, by 

Proposition 10.5, (L∩L
 ∩K

 
)/(K ∩K

 
) 
 L/(K ∩K

 
) and so L∩L

 ∩K
 
 L. 

Thus L is a supplement of K
 ∩ L 

in M. ��
Theorem 10.6 Let M = x 

i∈I Mi be an arbitrary direct sum of R-semimodules 
Mi (i ∈ I, |I | ≥  2), for some index set, such that M is subtractive and amply 
supplemented.
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If for every coclosed subsemimodule K of M , with M = K + Mi or M = 
K + x 

i �=j∈I Mj , is a strong direct summand of M, then for every supplement K
 

of Mi or 
x 

i �=j∈I Mj in M , M/K
 
is s-lifting and K

 
is a strong direct summand of 

M . 

Proof Clearly, lifting and s-lifting are equivalent because M is subtractive. 
Assume that for every coclosed subsemimodule K of M , with M = K + Mi or 

M = K + x 
i �=j∈I Mj is a strong direct summand of M. 

Let K
 
be a supplement of Mi in M . Then, by Lemma 10.1, K

 
is coclosed in 

M , and hence, by assumption, K
 
is a strong direct summand of M . Since M is 

subtractive and amply supplemented, M/K
 
is amply supplemented. 

Let T/K
 
be a supplement in M/K

 
with K

 ⊆ T . Since K  
is a supplement 

in M , T is a supplement in M (by Lemma 10.4), and hence T is coclosed in 
M (by Lemma 10.1); therefore, by assumption, T is a strong direct summand 
of M , and hence T/K

 
is a strong direct summand of M/K

 
. Hence M/K

 
is 

amply supplemented and every supplement is a strong direct summand; thus, by 
Proposition 10.2, M/K

 
is lifting, so it is s-lifting. 

With the same arguments, we prove that every supplement K
 
of 

x 
i �=j∈I Mj in 

M is a strong direct summand of M and M/K
 
is s-lifting. ��

Example 10.5 Consider (N; gcd; lcm). Set M = N, and  we  suppose  gcd(0, 0) = 
0. Then M is a subtractive and amply supplemented N-semimodule. 

Clearly, M is subtractive (see Example 10.4), and since the only supplement 
subsemimodules of M are M and {0}, M is indecomposable, and hence it is amply 
supplemented. 
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Chapter 11 
A Contribution to the Study of a Class of 
Noncommutative Ideals Admitting Finite 
Gröbner Bases 

Laila Mesmoudi and Yatma Diop 

Abstract Considering a field . K of characteristic 0, the n-variate commutative 
polynomial ring .K[x1, . . . , xn] over . K, the  n-variate noncommutative polynomial 
ring .K X1, . . . , Xn over . K, and .γ : K X1, . . . , Xn −→ K[x1, . . . , xn] the 
application sending . Xi to . xi , Eisenbud et al. proved that for any ideal . I of 
.K[x1, . . . , xn], the ideal .J = γ −1(I) has a finite Gröbner basis. 

Y. Diop and D. Sow dealt with the opposite problem and proved that any 
noncommutative ideal which contains all commutators and has a finite Gröbner 
basis is a preimage of a commutative ideal by . γ . 

In this work, we prove that this application . γ can be replaced by any surjective 
homomorphism. Thus we generalize the two results previously cited. 

Keywords Finite Gröbner bases · Noetherian A-algebra · Surjective 
homomorphism · Universal property 

Introduction 

The Gröbner bases theory originated in Buchberger’s PhD thesis [3]. Recall that in 
the context of commutative multivariate polynomial rings .K[x1, . . . , xn] over a field 
. K, Hilbert’s basis theorem guarantees the existence of a finite generator set . (i.e., 
basis. ) for any ideal. But a generator set does not always solve the Ideal Membership 
Problem (IMP). 

In [3], Buchberger proved the existence of a class of finite bases with some 
particular and interesting properties which overcome the IMP. He called them 
Gröbner bases in homage to his advisor Wolfgang Gröbner. The history is largely 
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documented and can be found in many papers and books. Refer to [4] for  more  
details. 

Recall that a monomial order on .K[x1, . . . , xn] is a total and well order on the set 
of monomials of .K[x1, . . . , xn] which is compatible with the multiplication. When 
a monomial order . ≺ is fixed on .K[x1, . . . , xn], then the greatest monomial of a non-
nil polynomial f with respect to (.w.r.t. in short) . ≺ is called the leading monomial of 
f and denoted .LM≺(f ). This notion is extended to a set . G of non-nil polynomials. 
.LM≺(G) = {LM≺(f ), f ∈ G}. Then . G is a Gröbner basis of an ideal . I ⊂ K[x]
.w.r.t. a monomial order . ≺ if it satisfies . LM≺(G) =  LM≺(I) . 

Gröbner bases have several other applications. The Polynomial System Solving 
(PoSSo) is the most known among them. Namely, in the context of polynomial 
systems, Gröbner bases are an analog of the Gaussian elimination. Their efficiency 
in the resolution of such systems combined to the natural apparition of these systems 
in many modelizations (cryptology, robotic, statistics, etc.) is one of the causes of 
the success of this new mathematical domain. 

Gröbner bases were then extended in several ways and several algebras. In [2], 
Bergman generalized them in nonassociative algebras. 

Their extension in the noncommutative polynomial rings .K X1, . . . , Xn over a 
field . K [2, 8, 9] has as an immediate consequence the lost finiteness, i.e., there exist 
noncommutative polynomial ideals that do not have a finite Gröbner basis whatever 
the monomial order one considers. The classical example is the principal ideal . J =
 X1X2X1−X2X1 ⊂ K X1, X2 . Whatever the field . K and whatever the monomial 
order, a Gröbner basis of . J must contain the sequence . fn = X1X

n
2X1−Xn

2X1, n ∈
N

∗. It means that . J does not have a finite Gröbner basis. 
Hence, one must ask to know how to characterize noncommutative ideals that 

have a finite Gröbner basis .w.r.t. some monomial order. There is no general 
response to this question. But it is partially solved in [6] and [5]. 

Previous Works In [6], the authors consider the homomorphism . γ : K X1, . . . , Xn 
−→ K[x1, . . . , xn] which replaces . Xi by . xi and proved in Theorems 11.1 and 11.2 
that if . K is of characteristic 0, then any ideal . J of the type .J = γ −1(I) has 
a finite Gröbner basis. Furthermore, they proposed a nice technique to compute a 
finite Gröbner basis of a such type of noncommutative ideal . J from one of the 
corresponding commutative ideals . I. 

The paper [5] is about the opposite problem. Its authors keep the same application 
.γ : K X1, . . . , Xn −→ K[x1, . . . , xn] and proved in Theorem 3.5 that any 
noncommutative ideal . J which contains all commutators . XjXi − XiXj , i < j

and has a finite Gröbner basis can be expressed .J = γ −1(I) for some ideal . I of 
.K[x1, . . . , xn]. 
Our Contribution In this work, we prove that . γ can be replaced by any surjective 
homomorphism. Our reflexion is first of all a mathematical curiosity, but the result 
can be useful if one finds some surjective homomorphism with some properties. Our 
proof is based on a construction, and we will take advantage from the well-known 
universal property.
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Organization In section “Preliminaries”, we will recall some notions and results 
that we need to present our contribution in section “Our Contribution”. 

In all the rest of the chapter, A is a commutative ring with unity, and . (B,+B,×B)

and .(C,+C,×C) are two A-algebras. 

Preliminaries 

In this section, we recall some well-known properties. They are essential in some 
steps of our contribution. 

Definition 11.1 Let .f : B −→ C be an application. 

1. f is called an A-morphism if for any .a, b ∈ B, α ∈ A, we have  

.f (a +B b) = f (a) +C f (b). 

.f (a ×B b) = f (a) ×C f (b). 

.f (1A) = 1B. 

.f (αa) = αf (a). 

2. A morphism .f : B −→ C is called an endomorphism if .B = C. 
3. A morphism .f : B −→ C is called an isomorphism if it is bijective. 

Theorem 11.1 (Universal Property of Polynomial Ring) Let .(b1, . . . , xn) ∈ Bn. 
Then there exists a unique morphism of A-algebras .ϕ : A[x1, . . . , xn] −→ B which 
satisfies .ϕ(xi) = bi for any .1 ≤ i ≤ n. 

There is a general version of this property in [7, p.124] 

Proposition 11.1 Let f be a surjective endomorphism over a Noetherian ring. 
Then f is an isomorphism. 

Proof Let .f : A −→ A be morphism. Then .(ker(f n))n∈N∗ is an increasing ideal 
sequence. Since . A is Noetherian, then there exists .n0 ∈ N such that . ker(f n0) =
ker(f n) ∀n ≥ n0. 

Let us now prove that f is injective. 
Let .x ∈ A such that .f (x) = 0. Since f is surjective, then . f n is surjective for any 

.n ∈ N
∗. 

Since .f n0 is surjective, then there exists .a ∈ A such that .f n0(a) = x. Thus, 
.f n0+1(a) = f (f n0(a)) = f (x) = 0. 

Then .a ∈ ker(f n0+1) = ker(f n0). So  .x = f n0(a) = 0. It follows that f is 
injective and so it is an isomorphism. 

Definition 11.2 Elements .b1, . . . , bn of B are said to generate B if every element 
of B can be expressed as a polynomial in the . bi with coefficients in A. We then 
write .B = A[b1, . . . , bn], and we say that B is an A-algebra of finite type or finitely 
generated.
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Proposition 11.2 ([1, p.81]) If A is Noetherian, then any A-algebra of finite type is 
Noetherian. 

Our Contribution 

Recall that our goal is to generalize the two main results of the papers [6] and [5]. 
For that, we have first the following result. 

In the two following lemmas, the ring A is supposed to be Noetherian. 

Lemma 11.1 Let .{α1, . . . , αn} be a generator set of .A[x1, . . . , xn]. 
Then there exists an automorphism .g : A[x1, . . . , xn] −→ A[x1, . . . , xn] such 

that .g(αi) = xi ∀i. 

Proof Let .(α1, . . . , αn) ∈ (A[x1, . . . , xn])n. The universal property implies that 
there exists a unique homomorphism .α : A[x1, . . . , xn] −→ A[x1, . . . , xn] such 
that .α(xi) = αi ∀i. By the definition of . α, we have  .Im(α) = A[α1, . . . , αn]. 
Also .A[α1, . . . , αn] = A[x1, . . . , xn] since .{α1, . . . , αn} is a generator set of 
.A[x1, . . . , xn]. It follows that . α is a surjective endomorphism over a Noetherian 
ring. So . α is an isomorphism. Then we take . g = α−1

Lemma 11.2 Let .f : A X1, . . . , Xn −→ A[x1, . . . , xn] be a surjective morphism 
and .γ : A X1, . . . , Xn −→ A[x1, . . . , xn] which associates . Xi with . xi . Then 
there exists an isomorphism .g : A[x1, . . . , xn] −→ A[x1, . . . , xn] which satisfies 
.γ = g ◦ f . 

Proof Let .α1, . . . , αn ∈ A[x1, . . . , xn] such that .f (Xi) = αi ∀i. Since f is 
surjective, then the family .{α1, . . . , αn} generates the A-algebra .A[x1, . . . , xn]. By  
Lemma 11.1, there exits an isomorphism .g : A[x1, . . . , xn] −→ A[x1, . . . , xn] such 
that .g(αi) = xi ∀i. 

Thus .γ (Xi) = xi = g(αi) = g(f (Xi)) = g ◦ f (Xi) ∀i. So .γ = g ◦ f . 

Now we can present our result. Note that the proof is based on the previous lemma 
and the main results in [6] and [5]. 

Theorem 11.2 Let . K be a field of characteristic 0 and . f : K X1, . . . , Xn −→
K[x1, . . . , xn] a surjective homomorphism. Let .J ⊂ K X1, . . . , Xn be an ideal 
containing all commutators. Then the two following statements are equivalent. 

1. . J has a finite Gröbner basis. 
2. There exists an ideal .I ⊂ K[x1, . . . , xn] such that .J = f −1(I). 

Proof Let .J ⊂ K X1, . . . , Xn be an ideal containing all commutators. 
. 1) 
⇒ 2)
Suppose that . J has a finite Gröbner basis. Then Theorem 3.5 of [5] implies that 

there exists an ideal . I0 of .K[x1, . . . , xn] such that .J = γ −1(I0). 
By Lemma 11.2, we can write .γ = g ◦ f , where g is an automorphism of 

.K[x1, . . . , xn].
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. J = γ −1(I0) 
⇒ J = (g ◦ f )−1(I0)


⇒ J = f −1(g−1(I0))


⇒ J = f −1(I), with I = g−1(I0).

.2) 
⇒ 1). 
Suppose that .J = f −1(I) for some ideal .I ⊂ K[x1, . . . , xn]. 
Let .I1 = g(I). Then . I1 is an ideal since g is an automorphism. 

J = f −1(I) 
⇒ J = f −1(g−1(g(I)))


⇒ J = f −1(g−1(I1))


⇒ J = (g ◦ f )−1(I1)


⇒ J = γ −1(I1)

⇒ Theorem 2 of [6] implies that J has a finite Gröbner basis. 

Conclusion 

Now we have seen how to move from . γ to a surjective homomorphism f . As we  
underlined it in the Introduction section, this is first of all a mathematical curiosity, 
but if .J = γ −1(I) = f −1(I0), it can be more useful to work with the second 
expression if the ideal . I0 has some particularities. In other words, our result allows 
having a choice into how to express the noncommutative ideal which contains all 
commutators and which has a finite Gröbner basis. 

References 

1. M. F. ATIYAH, I. G. MACDONALD Introduction to commutative algebra, University of Oxford 
2. G. M. BERGMAN The diamond lemma for ring theory, Adv. Math. 29(1978), 178–218. 
3. B. BUCHBERGER Bruno Buchberger’s PhD thesis 1965 : An algorithm for finding the basis 

elements of the residue class of a zero dimensional ideal, Journal of Symbolic Computation 
41(2006) 475–511. 

4. D. COX, J. LITTLE, D. O’SHEA Ideals, Varieties and Algorithms An Introduction to Computa-
tional Algebraic Geometry and Commutative Algebra. Second edition Springer, Undergraduate 
Texts in Mathematics 1997 

5. Y. DIOP, D. SOW On finite noncommutative Gröbner bases, Algebra Colloquium 27:3 (2020) 
381–388. 

6. D. EISENBUD, I. PEEVA, B. STURMFELS Noncommutative Gröbner bases for commutative 
algebras, Proc. Amer. Math. Soc. 126(1998) 687–691 

7. N. JACOBSON Basic Algebra I Second Edition, Library of Congress Cataloging in Publication 
Data



166 L. Mesmoudi and Y. Diop

8. T. MORA An introduction to commutative and non-commutative Gröbner Bases, Journal of 
Theoretical Computer Science, 13(1994) 131–173 

9. R. B. MURRAY Free associative algebras, non-commutative Gröbner bases, and universal 
associative envelopes for non-associative structures, CMUC: Comment. Math. Univ. Carolin. 
55, 3(2014) 341–379



Chapter 12 
Construction of Numbers with the Same 
“Normality” Properties as a Given 
Number 

Khabane Ngom and Ismaila Diouf 

Abstract Let x be a positive real number and b an integer greater than or equal to 
2. In this chapter, we will construct from the expansion of x in base b an another 
real number y such that: 

– If x is normal in base b, then y is normal in base b. 
– If x is simply normal in base b, then y is simply normal in base b. 
– If x is abnormal in base b, then y is abnormal in base b. 

Keywords Normal numbers · Expansion of x in base b · Permutations · 
Lebesgue’s measure 

Introduction 

Any positive integer A is written uniquely in the form .A =
N7

k=0

akb
k with . N ∈ N

and, for all .i ∈ {0, . . . , N}, .ai ∈ {0, 1, . . . , b − 1}. The representation of A in base 
b is .aNaN−1 . . . a1a0. Throughout the rest, for any integer .b � 2 such that .b �= 10, 
.�x�b represents the integer part of x in base b. 

Let x be a positive real number and b an integer, .b � 2. There always exists a 
unique sequence of integers .(xn)n�1 between 0 and .b − 1 that verifies 

. x = �x� +
+∞7

k=1

xk

bk
.
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The expression .�x�b, x1x2x3 . . . is called the expansion of x in base b. Let . A =
{0, 1, . . . , b − 1} and S be a finite sequence of A. We denote .N(S, n) as the number 
of times that S appears among the first n digits after the comma of the expansion of 
x in base b. The real x is said: 

.• Simply normal In base b, if . ∀ a ∈ A lim
n→+∞

N((a), n)

n
= 1

b
.

.• Normal in base b, if it is simply normal in base . bk for any integer .k � 1, which 
means 

. ∀ k � 1,∀ S ∈ Ak, lim
n→+∞

N(S, n)

n
= 1

bk
.

.• Abnormal in base b, if it is not normal in base b. 

.• Absolutely normal, if it is normal in any base. 

.• Absolutely abnormal, if it is abnormal in any base. 

In 1909, Borel [6] introduced the concept of normal numbers and proved that 
almost all numbers are absolutely normal with respect to Lebesgue’s measure. 
Since rational numbers constitute an infinite class of absolutely abnormal numbers, 
therefore by this theorem irrational numbers are serious candidates for normal and 
absolutely normal numbers. A large number of irrationals have been proved to be 
normal or absolutely normal. 

In 1933, Champernowne [2] proved that the number . C10 = 0.123456789101112
.1314 . . ., formed from the concatenation of consecutive positive integers, is normal 
in base 10. He even extends this result to any base b. He observes that the number 
obtained by concatenating the sequence of consecutive positive integers written in 
any base b represents a b-normal number. 

Copeland and Erdös [3] proved in 1946 that the number . 0.235711131719232931
.37 . . ., obtained by the concatenation of consecutive prime numbers, is normal in 
base 10. In general, they show that if .(an)n�1 is an increasing sequence of positive 
integers (written in base b) such that for any positive real number .θ < 1, . #{ai �
x} > xθ , for .x � x0(θ), then the number .0.a1a2a3 . . . is normal in base b. 

Nakai and Shiokawa [5] proved that if .f ∈ R[X] such that .f (x) > 0 for .x > 0, 
then the number .0.�f (1)��f (2)��f (3)� . . ., where .�f (n)� represents the integer 
part of .f (n) in base b, is normal in base b. Since we have no shortage of normal 
numbers, it would be nice to see some abnormal numbers other than the rational 
numbers. 

Bailey and Crandall [1] show that for any .x ∈[0, 1], .f (x) =
+∞7

n=1

�nx�
2n

is an 

abnormal number in base 2. 
In May 2000, at a survey conference organized by Glynm Harman, Andrew 

Granville asked about an absolutely abnormal number. In response, Carl Pomerance 

suggested considering the Liouville number .l =
+∞7

n=1

(n!)−n!. Recall that a number
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. β is said to be a Liouville number if, given any integer m, there exists a rational . 
p

q

such that .0 <

∣∣∣∣β − p

q

∣∣∣∣ <
1

qm
. Note that it is known that any Liouville number is 

transcendent. So far, no one has proven that l is absolutely abnormal. 
Intrigued by Granville’s question, Martin [4] considered the very fastly growing 

sequence: 

. d2 = 22, d3 = 32, d4 = 43, d5 = 516, d5 = 516, d6 = 630517578125 . . .

with the recursive rule 

. dj = jdj−1/(j−1) (j ≥ 3).

Then he proved that the number 

. α =
+∞| |

j=2

Å
1 − 1

dj

ã
= 0.6562499999956991 999 . . . 999︸ ︷︷ ︸

23,747,291,5599s

85284042016 . . .

is a Liouville number and in fact an absolutely abnormal number. 
More generally, given any sequence of positive integers . n2, . n3, . . . , and  

. dj = jnj dj−1/(j−1) (j � 3)

and considering the number 

. α =
+∞| |

j=2

Å
1 − 1

dj

ã
.

Martin proved that . α is an absolutely abnormal number, thus providing an uncount-
able family of absolutely abnormal numbers. 

Our objective here is, from a positive real number x, to construct other real 
numbers y having the same normality properties as x, using the expansion of x 
in base b and the permutation on all the digits after the comma in this expansion. 

In section “Introduction” we will provide the necessary background for the 
demonstration of the main result, and in section “Preliminaries of the Main Result” 
we will present the main result and its demonstration. 

Preliminaries of the Main Result 

Remark 1.1 Denote 0b, the representation of 0 in any base b.
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We write {x} to designate the fractional part of x, and we thus have {x} =  x−�x�. 
It is easy to establish the following properties: 

Proposition 1.1 

1. �x� � x < �x� +  1, 0 � x − �x� < 1, x = �x� +  θ avec 0 � θ <  1. 
2. �x� + �y� � �x + y� � �x� + �y� +  1. 

Expansion of a Positive Real Number in Any Base 

Let .x ∈ R+ and b an integer greater than or equal to 2. We will construct two real 
sequences which will converge to x. Let .Pn = �bnx�. We construct the sequences 
. αn and . γn in the following way: 
.αn = b−nPn and .γn = b−n(Pn + 1). 
.Pn = �bnx� .
⇒ . Pn � bnx < Pn + 1

.
⇒ . b−nPn � x < b−n(Pn + 1)

so .αn � x < γn. 
Let us show that the sequence .(αn)n∈N is increasing. 

.
αn+1

αn

= b−n−1Pn+1

b−nPn

= Pn+1

bPn

or .Pn � bnx by multiplying by b, and we have 

.bPn � bn+1x .
⇒ .�bPn� � �bn+1x� because the integer part function is increasing. 

Therefore .bPn � Pn+1, thus .
Pn+1

bPn

� 1 and .
αn+1

αn

� 1, and hence the sequence 

.(αn)n∈N is increasing. 
Let us show that the sequence .(γn)n∈N is decreasing. 

.
γn+1

γn

= b−n−1(Pn+1 + 1)

b−n(Pn + 1)
= Pn+1 + 1

b(Pn + 1)
. 

We know that .Pn = �bnx�. 
Therefore .bnx < Pn + 1 . 
⇒ bn+1x < b(Pn + 1)

. 
⇒ �bn+1x� < b(Pn + 1)


⇒ Pn+1 < b(Pn + 1)


⇒ Pn+1 + 1 � b(Pn + 1)


⇒ Pn+1 + 1

b(Pn + 1)
� 1


⇒ γn+1

γn

� 1;

hence the sequence .(γn)n∈N is decreasing. 
In addition, .γn − αn = b−n(Pn + 1) − b−nPn = b−n. 
We have . lim

n→+∞(γn − αn) = lim
n→+∞ b−n = 0. Therefore the sequences . (αn)n�0

and .(γn)n�0 are adjacent to the common limit x.
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Proposition 1.2 

1. For all .n ∈ N
∗, the sequence .cn = Pn − bPn−1 is between 0 and .b − 1. 

2. .∀n ∈ N
∗, αn = α0 +

n7

k=1

ckb
−k . 

Proof 

1. We have for all .n ∈ N
∗, .γn = b−n(Pn + 1). As the sequence .(γn)n�0 is 

decreasing, therefore, .γn � γn−1. .b−n(Pn +1) � b−n+1(Pn−1 +1). This implies 
that 
.Pn + 1 � b(Pn−1 + 1); therefore .Pn − bPn−1 � b − 1. Therefore . cn = Pn −
bPn−1 � b − 1. Thus .cn � b − 1, . ∀ .n � 1. 

On the other hand, for the second inequality, we use a property of the integer 
part, namely . �x + y� � �x� + �y� for all real numbers x and y. 
. Pn = �bnx� = �b(bn−1x)�

. =
Ö

btimes︷ ︸︸ ︷
�bn−1x + · · · · · · + bn−1x�

è

�

Ö
btimes︷ ︸︸ ︷

�bn−1x� + · · · · · · + �bn−1x�
è

� b�bn−1x� = bPn−1.

Hence, .cn = Pn − bPn−1 � 0. 
Therefore . ∀ .n ∈ N

∗, 0 � cn � b − 1. 

2. Let us show by induction on .n ∈ N
∗ that .αn = α0 +

n7

k=1

ckb
−k . 

If .n = 1, we show that .α1 = α0 + c1b
−1. 

We have .cn = Pn − bPn−1, so . c1 = P1 − bP0
. α0 + c1b

−1 = α0 + b−1(P1 − bP0)

. = α0 + b−1P1 − P0

= α0 − P0 + b−1P1

= b−1P1 = α1, so the equality is verified at rank 1.

Assume that the property is true up to n. 
Let us prove that the property holds for .n + 1. 

.αn = b−nPn 
⇒ αn+1 = b−n−1Pn+1, since .cn = Pn − bPn−1, 
we have .Pn+1 = cn+1 + bPn, and then .αn+1 = b−n−1(cn+1 + bPn)
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. = b−n−1cn+1 + b−nPn

= b−nPn + b−(n+1)cn+1

= αn + b−(n+1)cn+1

= α0 +
n7

k=1

ckb
−k + b−(n+1)cn+1

= α0 +
n+17

k=1

ckb
−k. 
�

Let us show that the series .
7

k�1

ckb
−k converges. 

. ∀ .k ∈ N, .ckb
−k � (b − 1) · b−k , since the series .

7

k�1

(b − 1) · b−k has the same 

nature (in terms of convergence) as the geometric series .
7

k�1

b−k , and the latter is 

convergent because its reason .

∣∣∣∣
1

b

∣∣∣∣ < 1, so .

7

k�1

(b − 1) · b−k converges and the same 

is true for .
7

k�1

ckb
−k . 

We have .x = lim
n→+∞ αn = lim

n→∞(α0 +
n7

k=1

ckb
−k) = α0 +

+∞7

k=1

ckb
−k . 

So 

. x = �x� +
+∞7

k=1

ckb
−k.

Definition 1.1 The expression .�x�b, c1c2c3c4 . . . is called the expansion of x in 
base b. 

Case of Rational Numbers 

Theorem 1.1 A positive real number x is rational if and only if its decimal 
expansion is finite or infinite periodic. 

Proof Let x = 
p 
q 

be rational. If the quotient is in irreducible form, that is, p and q 
are relatively prime, we have several cases.
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• If q is the product of a power of 2 and a power of 5, the quotient has a finite 
decimal expansion. If this is not the case, the quotient has an infinite periodic 
decimal expansion whose shortest period has a length less than q − 1 depending 
only on q. If, in addition, q is prime with 10, this period begins immediately 
after the comma. When we perform the division of p by q, at each step, there 
are only q possible rests because the rest is always strictly less than the quotient. 
The division stops at the first nonzero rest, and the quotient has a finite decimal 
writing. If there is a nonzero rest, the quotient has a finite decimal writing. If 
this is not the case, we set p = Nq  + r0 and carry out successive divisions 

of 10rk by q, giving the quotient xk+1 and the rest rk+1. The quotient 
p 
q 

is the 

written �x�, x1x2x3 . . .. The rests are then always between 1 and q−1. We cannot 
perform q steps without encountering two identical rests. If we denote rk and 
rk+l , as the first two identical rests, the divisions of 10rk and 10rk+l by q will 
have the same quotient xk+1 = xk+1+l and the same rest rk+1 = rk+1+l , and so 
on. We therefore see a period of length l. 

• If q is a product of powers of 2 and 5, then the quotient is a decimal. If q = 2k5m, 

then 
p 
q 

= 
2m5k p 
2m5kq 

= 
2m5k p 
10m+k is a decimal and therefore has a finite expansion. 

• If q and 10 are coprime, the period begins just after the comma. The different 
rests ri are the rests of the Euclidean division of 10i r0 by q. If  rk = rk+l , then 
10k r0 and 10k+l r0 have the same rest, so 10k r0(10l − 1) is a multiple of q. As  q 
is prime with 10, q divides r0(10l − 1), which allow us to say that 10l r0 and r0 
have the same rest. r0 = rl , so  x1 = xl+1, and the period starts at x1. 

Reciprocally, we can assume 0 � x <  1. If the expansion of x is periodic, we have 
x = 0, b1b2 · · ·  bsa1a2 · · ·  ana1a2 · · ·  ana1a2 · · ·  an · · · . By multiplying by 10s , we  
therefore have 
10s x = b1b2 · · ·  bs, a1a2 · · ·  ana1a2 · · ·  an · · · =  b1b2 · · ·  bs +0, a1a2 · · ·  ana1a2 · · ·  
an · · · . We are thus led to prove that the number y = 0, a1a2 · · ·  ana1a2 · · ·  an · · ·  
is rational. We then multiply by 10n, and we have 10n y = a1a2 · · ·  
an, a1a2ana1a2 · · ·  an · · · =  a2a2 · · ·  an + y; hence 

y = 
a1a2 · · ·  an 

10n − 1 
∈ Q. 
�

Remark 1.2 

1. A real number x is rational if and only if its expansion in any base is finite or 
infinite periodic. 

2. The expansion of an irrational in any base is infinite nonperiodic. 

Examples 1.1 

1. The decimal expansion of the rational 13/11 is 1, 18181818181 818181 . . .  
2. The expansion of π in base 10 is 3, 141592653589793238462643 . . .  
3. The expansion of π in base 2 is 11, 00100100001111110110 . . .
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Definition 1.2 Let E be a set. The group of permutations of E denoted S(E) is 
the set of bijective applications of E on itself. Thus δ ∈ S(E) if and only if δ is a 
bijective map of E on E. 

Note that if card(E) = n, then card(S(E)) = n!. 

Main Result 

Theorem 2.1 Let x be a positive real number and b an integer greater than or 
equal to 2. 

There exists a unique sequence of integers (xn)n�1 between 0 and b − 1 such 
that the expansion of x in base b is �x�b, x1x2x3x4x5 . . .. Let A = {xn, n  ∈ N∗}. In  
other words, A is the set of digits appearing after the comma in the development of 
x in base b. 

If δ ∈ S(A), then the real y whose expansion in base b is �x�b, δ(x1)δ(x2)δ(x3) 
δ(x4) . . .  is such that: 

– If x is normal in base b, then y is normal in base b. 
– If x is simply normal in base b, then y is simply normal in base b. 
– If x is abnormal in base b, then y is abnormal in base b. 

Examples 2.1 We will give simple examples of applications of the theorem in some 
bases. 

1. The number x whose expression in base 2 is 0.1010101010 . . .  is simply normal 
in base 2 because here the frequency of appearance of the digits 0 and 1 is equal 

to 
1 

2 
. Here  A = {0, 1}. Let  δ ∈ S(A) such that δ(0) = 1, and δ(1) = 0. According 

to Theorem 2.1, the real y whose expression in base 2 is 
0. δ(1)δ(0)δ(1)δ(0)δ(l)δ(0)δ(1)δ(0)δ(1)δ(0) . . .  = 0.0101010101 . . .  

is simply normal in base 2. 
2. The number of Champernowne x = 0.123456789101112131415161718192021 

222324252627... is normal in base 10. Here A = {0, 1, 2, . . .  ,  9}. Let  δ ∈ S(A) 
such that δ(0) = 5, δ(1) = 3, δ(2) = 4, δ(3) = 6, δ(4) = 9, δ(5) = 7, δ(6) = 8, 
δ(7) = 2, δ(8) = 1 and δ(9) = 0. According to Theorem 2.1, the real number 

y = 0.δ(1)δ(2)δ(3)δ(4)δ(5)δ(6)δ(7)δ(8)δ(9)δ(1)δ(0)δ(1)δ(1) . . .  = 
0.3469782103533 . . .  

is normal in base 10. 
3. The base 2 expansion of π is 11.00100100001111110110 . . .. Here  A = {0, 1}. 

Let δ ∈ S(A) such that δ(0) = 1 and δ(1) = 0. According to Theorem 2.1, if 
we manage to show that the real y whose writing in base 2 is 

11.δ(0)δ(0)δ(1)δ(0)δ(0) . . .  = 11. 11011 . . .  
is normal in base 2, then π would be normal in base 2. 

Proof Let x be a positive real number and b � 2 a given integer.
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The expansion of x in base b is �x�b, x1x2x3x4 . . .  with (xn)n�1 a sequence 
between 0 and b − 1. Let A = {xn, n  ∈ N∗}. We have  A ⊂ {0, 1, . . . , b  − 1}. Let  
δ ∈ S(A). Let the number y be written in base b as �x�b, δ(x1)δ(x2)δ(x3)δ(x4) . . .. 

Let for j ∈ N, L = δ(xj+1)δ(xj+2) . . . δ(xj+k) be a sequence of length k in the 
base b expansion of y. Let  S = xj+1xj+2 . . . xj+k . Denote by N ′(L, n) the number 
of occurrences of L among the first n digits after the comma in the expansion of y 
in base b and N(S,  n)  the number of occurrences of S among the first n digits after 
the comma in the expansion of x in base b. 

Let us show that N ′(L, n) = N(S,  n)  ∀n ∈ N∗. 
Two cases are possible: Either L appears, or it does not appear in the expansion 

of y in base b. 

– If L does not appear in the expansion of y, then neither does S in the expansion 
of x because δ is bijective. So N ′(L, n) = N(S,  n)  = 0 ∀ n ∈ N. 

– If L appears in the expansion of y, 

we will draw the following schema to establish the idea:

�x�b, x1 x2 x3 . . . . . . xj+1 xj+2 . . . . . . . . . xj+k . . . . . . xj+1 xj+2 . . . . . .  
xj+k . . . xn . . .

�x�b, δ(x1)δ(x2)δ(x3) . . . δ(xj+1)δ(xj+2) . . . δ(xj+k) . . . δ(xj+1)δ(xj+2) . . .  
δ(xj+k) . . . δ(xn) . . .. 

We can clearly see here that each xi is aligned vertically with δ(xi). Thus each 
time S appears in the expansion of x at a position t � n − k, L appears at the same 
position t in the expansion of y and vice versa because δ is a bijection. So we see 
clearly that N ′(L, n) = N(S,  n)  ∀ n ∈ N∗. 

1. Assume that x is normal in base b. Let us show that in this case y is normal in 
base b. 

Since x is b-normal, then lim 
n→+∞ 

N(S,  n)  
n 

= 
1 

bk . It therefore follows that 

lim 
n→+∞ 

N ′(L, n) 
n 

= lim 
n→+∞ 

N(S,  n)  
n 

= 
1 

bk . 

So lim 
n→+∞ 

N ′(L, n) 
n

= 
1 

bk . Therefore y is normal in base b. 

2. Assume that x is simply normal in base b. Let us show that in this case y is 
simply normal in base b. 

lim 
n→+∞ 

N ′(L, n) 
n 

= lim 
n→+∞ 

N(S,  n)  
n 

= 
1 

b 
, because S is a sequence of length 

k and we know that x is simply normal in base b. So lim 
n→+∞ 

N ′(L, n) 
n 

= 
1 

b 
. 

Therefore y is simply normal in base b. 
3. Finally, assume that x is not normal in base b. 

So there exists F = xl+1xl+2 . . . xl+k a sequence of length k such that 

lim 
n→+∞ 

N(F,  n)  
n

�= 
1 

bk .
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By setting G = δ(xl+1)δ(xl+2) . . . δ(xl+k), lim 
n→+∞ 

N ′(G, n) 
n 

= lim 
n→+∞ 

N(F,  n)  
n

�= 
1 

bk . 

So lim 
n→+∞ 

N ′(G, n) 
n

�= 
1 

bk . Therefore y is also an abnormal number in base b, 

which completes the demonstration. 
�
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Chapter 13 
Robustness of Imputation Methods with 
Backpropagation Algorithm in Nonlinear 
Multiple Regression 

Castro Gbêmêmali Hounmenou , Milognon Boris Behingan , 
Christophe Archille Chrysostome , Kossi Essona Gneyou , 
and Romain Glèlè Kakaï 

Abstract Missing observations constitute one of the most important issues in data 
analysis in applied research studies. The magnitude and their structure impact 
parameters estimation in the modeling with important consequences for decision-
making. This chapter aims to evaluate the efficiency of imputation methods 
combined with the backpropagation algorithm in a nonlinear regression context. 
The evaluation is conducted through a simulation study including sample sizes (50, 
100, 200, 300, and 400) with different missing data rates (10, 20, 30 40, and 50%) 
and three missingness mechanisms (MCAR, MAR, and MNAR). Four imputation 
methods (Last Observation Carried Forward, Random Forest, Amelia, and MICE) 
were used to impute datasets before making prediction with backpropagation 
algorithm. 3-MLP model was used by varying the activation functions (Logistic-
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Linear, Logistic-Exponential, TanH-Linear, and TanH-Exponentiel), the number 
of nodes in the hidden layer (3–15), and the learning rate (20–70%). Analysis 
of the performance criteria (.R2, r , and RMSE) of the network revealed good 
performances when it is trained with TanH-Linear functions, 11 nodes in the 
hidden layer, and a learning rate of 50%. MICE and Random Forest were the most 
appropriate for data imputation. These methods can support up to 50% of missing 
rate with an optimal sample size of 200. 

Keywords Multilayer perceptron neural network · Regression model · 
Backpropagation · Missing data · Imputation method 

Introduction 

Let Y be a real random variable revealed mean depends on . x = (x1, · · · , xp) ∈
R

p, replications of the random vector . X, and the dependence may be nonlin-
ear, .E(Y |x1, · · · , xp) = ζ(x1, · · · , xp). This relation is equivalent to . Y =
ζ(x1, · · · , xp) + ϵ with .E(ϵ) = 0. Let a parametric nonlinear regression model 
be represented by .Y = ζ(x1, · · · , xp; θ) + ϵ, where . ζ is nonlinear with respect to 
. θ , the set of model parameters. This means that, for at least one . θi , the derivative 
of . ζ with respect to . θi depends on at least one of the parameters. For example, 
.ζ(x; θ) = θ1x1

1+θ2x2
is used by chemists. Differentiating . ζ with respect to . θ1 and 

. θ2 gives . ∂ζ
∂θ1

= x1
1+θ2x2

and . ∂ζ
∂θ2

= −x1x2θ1
(1+θ2x2)

2 . One of the nonlinear models that 
has received great attention last few years is the model based on artificial neural 
networks (ANNs). They are used in the fields of prediction and classification, 
fields in which regression models and other related statistical techniques have 
traditionally been used [1–4]. Multilayer perceptron neural networks (MLPs) are 
one of the architectures of ANNs acting as a type of regression model, not 
necessarily parametric, which enables complex functional forms to be modeled 
[5, 6]. In breeding, the knowing of production is necessary for specialists who need 
simple and accurate techniques to predict the production of meat, eggs, milk, etc. 
Production is influenced by interdependent factors, and MLPs offer more flexibility 
in describing their relationships. But data collected in the case of production are 
often small due to the cost of experimentation and seldom complete. Missing 
data are one of the most common problems for researchers in breeding [7]. It 
occurs because of human error, equipment failure, death of animal during the 
experiment, data collected with difficulty, official statistics not available, etc. [8– 
10, 12–19]. Analysis of incomplete datasets results in problems such as biased 
parameter estimates, inflation of standard errors, loss of information, and weak 
generalizability of results [11, 12, 17, 18]. Apart from Kohonen network [20], 
most of statistical analysis methods assume the absence of missing data and are 
only able to include observations for which every variables are measured [21]. 
To overcome this situation, rows with missing values can be deleted (deletion), 
but it leads to a loss of precision [22, 24] with weak sample size. To avoid this
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situation, imputation methods can be used. Different imputation methods exist based 
on different approaches: single imputation, multiple imputation, etc. [25, 26]. With 
imputation techniques, researchers can obtain complete data for their prediction. 

Despite the success of MLPs in breeding and other disciplines, there are exist 
some factors that can affect its performances such as activation functions, learning 
rate, number of hidden layers, number of neurons in each hidden layer, etc. [28]. 
However there are no clear guidelines on which activation function performs better 
[29] and also about the value of the learning rate [28, 29]. Yet, a drawback of this 
type of network is that it requires a full set of input data. Therefore our study aims 
to evaluate the empirical robustness of imputation methods in nonlinear regression 
with backpropagation (BP) algorithm. 

The main objective of this chapter is to analyze the behavior of the imputation 
methods combined to the BP algorithm for the management of missing data. 
Specifically, we (i) analyze the effect of imputation methods on the structure of 
hyperparameters and (ii) determine the best imputation method according to sample 
size and the missing data rate with the best structure of hyperparameters for the 
multilayer perceptron neural network. 

Framework, Specification of Model, and Generation of a Data 
Population 

Types of Missing Data and Their Management 

Let .X = [xij ] be a data matrix of dimension .(n, p) of elements .xij ∈ R, where n 
and p elements of . N∗ are, respectively, the number of observations and the number 
of variables, and .xij is the value of the variable .j ∈ [[1, p]] for the observation 
.i ∈ [[1, n]]. Let .Z = [zij ], an indicator matrix of missing data elements . zij , such 
that .zij = 1 if . xij is missing and .zij = 0 otherwise, then we have .X = {Xobs,Xmis}. 
The matrix Z describes the structure of the missing data and is useful to treat it as 
a stochastic matrix. The statistical model for missing data are .P(Z|X, κ), where 
. κ is the parameter of the missing data process and .P(·) denotes the conditional 
distribution of Z given X of parameters . κ . The mechanism of missingness is 
determined by the dependency of Z on the variables in the dataset. According 
to [8], three categories of missing data can be distinguished: Missing Completely 
at Random (MCAR), Missing at Random (MAR), and Missing Not at Random 
(MNAR). 

Definition 1 (Missing Data Are “Missing Completely at Random”) Missing 
data are said to be MCAR when the fact of not having a value is totally independent 
of the variables X and we have 

.∀ X,P (Z|X, κ) = P(Z|κ). (13.1)



182 C. G. Hounmenou et al.

When the missing data are not MCAR, we need to know if differences in the 
characteristics of nonrespondents and respondents can be explained by variables 
common to respondents and nonrespondents. We note .Xobs , the observed part of 
the data X and .Xmis , the missing part. 

Definition 2 (Missing Data Are “Missing at Random”) The data are said to be 
MAR when the distribution of Z given X depends only on the variables recorded in 
the database .Xobs , and we have 

.∀ Xmis, P (Z|Xobs,Xmis, κ) = P(Z|Xobs, κ). (13.2) 

Definition 3 (Missing Data Are “Missing Non At Random”) The data are said 
to be MNAR when the distribution of Z given X also depends on .Xmis , and we have 

.∀ Xobs and Xmis, P (Z|Xobs,Xmis, κ) = P(Z|Xobs,Xmis, κ). (13.3) 

There are two basic methods for managing data matrices with missing values: 
(i) the deletion method and (ii) the imputation method [23]. The first one considers 
only the individuals for which all the data are available, i.e., to delete any individual 
having at least one missing value. The second consists in replacing the missing 
values in the dataset by estimated ones. Two imputation approaches are used: 
simple imputation and multiple imputation [30]. Single imputation is to fill in each 
missing value with a value. The second approach covers methods whose procedures 
are based on models. This is done by replacing the missing values with several 
simulated values to properly reflect the uncertainty that is attached to the missing 
data [31]. 

Factors Affecting the Predictive Performance of a Multilayer 
Perceptron Neural Network and Backpropagation Algorithm 

A multilayer perceptron neural network (MLP) is a feedforward neural network, 
consisting of a number of units (called neurons) connected by weight links. The 
units are organized in several layers, the first one is an input layer, the last one is 
an output layer, and the intermediate one can have one or several hidden layers. 
The input layer receives an external activation vector and transmits it via weighted 
connections to the units of the first hidden layer. These compute their activations 
and transmit them to the neurons in succeeding layers, see Fig. 13.1. 

Although multilayer perceptron neural networks have shown good predictive 
performance compared to classical methods, they are often affected by factors such 
as the number of neurons and layers, the choice of transfer functions, and the sample 
size. For more details, see [27]. The estimation of the network weights is done by 
minimizing a quadratic cost function. It can be done, among other things, by the BP 
algorithm, whose procedure is summarized as follows:
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Fig. 13.1 Example of a 
multilayer perceptron 
network with two hidden 
layers 

1. Initialize all weights to small random values in the interval [. −0.9, 0.9].  
2. Normalize the training data. 
3. Randomly permute the training data. 
4. For each training data k: 

(a) Compute the observed outputs by forward propagating the inputs. 
(b) Adjust the weights by backpropagating the observed error from the output 

layer toward the input layer: 

. wij (k + 1) = wij (k) + Δwij (k + 1) (13.4)

= wij (k) + ηδj (k + 1)yi(k + 1)

with .wij (k + 1), the adjusted weight for the neuron j ; .wij (k), the previously 
computed weight for the neuron j ; .0 ≤ η ≤ 1 representing the learning rate; 
.δj (k+1) the local gradient computed for the neuron j , and .yi(k+1) representing 
either the output of neuron i on the previous layer, if it exists, or the input i 
otherwise. 

5. Repeat steps 3 and 4 up to a maximum number of iterations or until the root mean 
square error is less than a certain threshold. 

Specification of Model and Generation of a Data Population 

The nonlinear regression model considered is a multilayer perceptron neural 
network with a hidden layer, and its expression is 

.Y = ζθ (x) + ϵ (13.5) 

with .E(ϵ) = 0; .x ∈ R
p is a vector of p inputs, and .Y ∈ R, .ζθ (x) ∈ R are, 

respectively, the observed output and the predicted output. 

.ζθ (x) = f2

Ç
w(2)f1

Ä
w(1)x + b(1)

ä
+ b(2)

å
, (13.6)
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where .θ =
Ä

w(1), b(1); w(2), b(2)
ä

and 

.θ =
Ä
w

(1)
11 , · · · , w

(1)
1p , · · · , w

(1)
m1 · · · , w

(1)
mp; b

(1)
10 · · · , b

(1)
m0;w

(2)
11 , · · · , w

(2)
1m, b(2)

ä
are 

the model’s parameters, and the total number of parameters is 

.nθ = m(p + 2) + 1, (13.7) 

with m the number of neurons in the hidden layer, . f2 is a transfer function applied 
to only neuron of the output layer, and . f1 is a vector composed of the same transfer 
function applied to each neuron in the hidden layer. 

In order to have data with multicollinearity, a nonlinear relationship between 
variables, and for predictive purposes, we used the results of Insect as Feed 
for West Africa project [51] which evaluated the effect of maggot meal 
on the growth and economic performance of guinea fowl. The dependent 
variable is .y = f ood economic eff iciency, and independent variables are 
. x = (x1 = dose with three modality (0, 50, and 100), x2 = age, x3 =
f ood consumption, x4 = weight). The predictive model obtained is 

. E(yt ) =
11⎲

i=1

w(2)
i

exp
(〈xt , w(1)

i 〉 + b
(1)
i

) − exp
î

− (〈xt , w(1)
i 〉 + b

(1)
i

)ó
exp

(〈xt , w(1)
i 〉 + b

(1)
i

) + exp
î

− (〈xt , w(1)
i 〉 + b

(1)
i

)ó + b(2),

(13.8) 
where . yt represents the t th observation .(t ∈ [[1, n]], n ∈ N

∗), . wi is the weight 
vector associated with the ith neuron in the hidden layer .(i ∈ [[1, 11]]), and 
. bi and b are, respectively, the bias of the ith neuron in the hidden layer and 
the bias applied to output neuron of 3-MLP model. The optimal parameters are 
.θ = (w(1), b(1), w(2), b(2)) with 

. w(1) =

⎡

⎢⎢⎣

−0.06 −0.87 0.33 −0.10 −0.15 0.08 −0.13 0.60 −0.07 0.04 −0.17
−0.06 0.41 −0.38 0.29 −0.18 −0.31 0.22 −0.44 −0.12 0.16 0.28
−0.13 0.47 −0.16 −0.27 0.22 0.20 −0.36 1.42 −0.13 0.27 −0.48
0.22 0.35 0.21 0.03 0.15 0.01 0.27 0.55 0.32 −0.43 0.37

⎤

⎥⎥⎦

b(1) = ⎡
0.31 0.65 0.45 −0.82 − 0.39 −0.38 −0.86 −0.01 −0.79 0.79 −0.43

⎤ ;
w(2) = ⎡

0.01 −0.38 0.15 −0.03 −0.05 0.04 −0.04 0.61 −0.01 −0.02 −0.05
⎤ ;

b(2) = −0.82.

The total number of parameters is .nθ = 67. 
A population of size .N = 10000 was obtained from Eq. (13.8) to which we added 

the error . ϵ of the Eq. (13.5) to compute Y . The error was generated according to 
.N (μ = 0, σ 2 = 1). The input variables . X1–. X4 related to Y were defined using their 
respective distributions, .X1 by resampling techniques, . X2 ∼ N (μ = 4.5, σ 2 =
2.30), .X3 ∼ N (μ = 29.95, σ 2 = 13.04), and . X4 ∼ N (μ = 239.76, σ 2 =
117.11).



13 Imputation Methods Combined with Backpropagation Algorithm 185

Simulation Study 

Seven factors were considered in this study. The study considered various factors, 
including the sample size (5 different sizes), the missingness mechanism (3 mech-
anisms), the missing data rate (5 rates), and the imputation methods (4 methods). 
Additionally, the factors influencing the predictive and explanatory performance of 
the MLP model were analyzed: the activation function (4 functions), the number of 
hidden neurons (13 sizes), and the learning rate (6 rates). For each sample size, we 
have a combination of .936,000 items, which is replicated 100 times. 

Sampling Size, Simulating Missingness, and Missing Data 
Imputation 

Five samples of different sizes . ni (.ni = 50, 100, 300, and 400) were extracted from 
the population using the bootstrap technique [32]. Three missingness mechanisms 
were considered, MAR, MCAR, and MNAR (see section “Framework, Specifica-
tion of Model, and Generation of a Data Population”) with five missing data rates 
(MRs) .(10, 20, 30, 40, and .50%) to generate incomplete datasets. Missingness 
simulation is conducted on each of the five complete data using MICE package 
[33] from software R 3.3.6 [34]. Each of these previously obtained missing data 
are imputed with Last Observation Carried Forward (LOCF), Random Forest (RF), 
Amelia (AMELIA), and Multivariate Imputation by Chained Equation (MICE) 
methods in R using, respectively, zoo [35], missForest [36], Amelia [21], and MICE 
package [33]. 

Prediction with 3-MLP in R Software 

Before performing the prediction, .75% of each imputed dataset is used to train 
the neural network and .25% to test trained network concerning its generalization 
capacity. Before performing the training and testing, the imputed datasets were 
normalized using min-max normalization technique [37]: 

.newv = v − minz

maxz − minz

(new max
z

−new min
z

) + new min
z

, (13.9) 

where v is an observation of vector z and .newv is a normalized observation. 
The function “mlp” of  RSNNS package [38] was used for the prediction. A 

3-MLP model (see Eq. (13.5)) was used by varying hyperparameters for each 
sample size of imputed dataset. Four combinations of activation functions (AFs) 
(.f1 and . f2, see Eq. 13.5) were used: (i) Logistic-Linear (LL), (ii) Logistic-
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Exponential (LE), (iii) TanH-Linear (TL), and (iv) TanH-Exponentiel (TE). The 
expression of activation functions considered is Linear, .h(x) = x, Logistic, 
.h(x) = 1

1+e−x , Exponential, .h(x) = ex , and Tangent hyperbolic, .h(x) = ex−e−x

ex+e−x . 
In additional, 13 numbers of nodes (Node) in the hidden layer were considered: 
.3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15. In addition, six learning rates (LRs) 
were considered: .20%, 30%, 40%, 50%, 60%, and . 70%, as well as five sample  
sizes of imputed dataset (Size). The considered learning algorithm is standard 
backpropagation (see section “Framework, Specification of Model, and Generation 
of a Data Population”). 

A total of 100 replications was performed on each size of imputed dataset to 
analyze the performance of the method. Initial weights were generated randomly 
according to the uniform law in the range of .−3 and 3. The stopping criteria used 
are the combination of a fixed number of epochs, NE. = 1000, and a sufficiently 
small training error less than or equal to .10−6. 

Performance Criteria and Statistical Method Comparison 

The performance criteria used are (i) coefficient of correlation, r , (ii) coefficient 
of determination, . R2, and (iii) Root Mean Squared Error, RMSE [39, 40]. In 
the formula below, y and . ζθ , respectively, denote observed outputs and predicted 
outputs, . ȳ and . ̄ζθ their mean, and n the test data size. 

.r =
∑

(yt − ȳt )(ζθ (xt ) − ζ̄θ (xt ))√∑
(yt − ȳt )2 × √∑

(ζθ (xt ) − ζ̄θ (xt ))2
(13.10) 

.R2 =
∑

(yt − ζθ (xt )) × (
∑

yt × ∑
ζθ (xt ))»

(
∑

y2
t − (

∑
yt )2)(

∑
ζθ (xt )2 − (

∑
ζθ (xt ))2)

(13.11) 

.RMSE =
Ã

1

n

n⎲

t=1

Ä
ζθ (xt ) − yt

ä2
. (13.12) 

The appropriate imputation method for a missing data mechanism giving the 
best configuration of model characteristics (13.5) with the BP algorithm and for an 
optimal sample size is the model for which we observe a high correlation between 
predicted and observed data (.|r| ≥ 0.8) [39], with . R2 close to “1” [41] and with a 
low value of RMSE [39]. 

To assess effects of factors (Size, MR, AF, Node, and LR) which affect 
performance of the 3-MLP model, the generalized linear models based on the beta
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distribution were run on . R2, . |r|, and the linear fixed effects models on RMSE for 
each missing data mechanism and by imputation method. 

Interaction plot was considered for significant interactions between the MLP 
hyperparameters by missing data mechanism. 

Mean, minimum, maximum, and .coeff icient of variation of the criteria 
considered (. R2, . |r|, and RMSE) were used to compare imputation method 
performances. 

Results 

Effect of Imputation Methods by Missing Data Mechanism on 
the Performance of the Hyperparameter Structure of the 3-MLP 
Model 

Table 13.1 shows the results of the effect of the imputation methods (Amelia, 
LOCF, RF, and MICE) by missing data mechanism (MAR, MACR, and MNAR) 
on the performance of the hyperparameter structure (AF, LR, and Node) of the 3-
MLP model. The analysis shows that AF, LR, and Node significantly affect the 
performances of the imputation methods whatever the missing data mechanism 
(.p < 0.05). However, the second-order interaction of these factors (AF:LR:Node) 
did not impact (.p > 0.05) the performances of imputation methods for across 
the three missing data mechanisms. The predictive performances (. R2 and r) of the 
imputation methods used were not affected by the interaction between learning rate 
and the number of neurons in the hidden layer (LR:Node) but had a significant 
impact on the root mean square error (RMSE) for each missing data mechanism. 
By considering the interaction between the activation function and the number of 
neurons in the hidden layer (AF:Node), we observed that from a missing data 
mechanism to another, the predictive performances of AMELIA and LOCF were 
not affected by this interaction. However, those of RF and MICE were significantly 
affected. About the RMSE, apart the one of LOCF under MAR assumption, others 
were significantly affected by this interaction. Results also revealed a significant 
effect on the performances of imputation methods concerning the interaction 
between the activation function and the learning rate (AF:LR) for all missing data 
mechanism. 

Effect of Imputation Methods by Missing Data Mechanism on 
the Performance of Activation Function and Learning Rate 

The interaction plots revealed that under MAR assumption, the performances of 
imputation methods increase with the learning rate when we use activation functions
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Table 13.1 Effect of imputation methods by missing data mechanism on the structure of 
hyperparameters: results of GLM and linear models 

Amelia LOCF RF MICE 

Factors .R2 RMSE r .R2 RMSE r .R2 RMSE r .R2 RMSE r 

MAR 

AF 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

LR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Node 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

AF:LR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

AF:Node 0.439 0.001 0.434 0.526 0.092 0.500 0.001 0.001 0.001 0.001 0.001 0.001 

LR:Node 0.999 0.001 0.999 0.999 0.098 0.999 0.999 0.001 0.999 0.999 0.001 0.999 

AF:LR:Node 0.999 0.001 0.999 0.999 0.001 0.999 0.999 0.001 0.999 0.999 0.001 0.999 

MCAR 

AF 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

LR 0.001 0.001 0.001 0.997 0.001 0.994 0.001 0.001 0.001 0.001 0.001 0.001 

Node 0.001 0.001 0.001 

0.001 

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

AF:LR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

AF:Node 0.999 0.001 0.999 0.999 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 

LR:Node 0.999 0.001 0.086 0.999 0.098 0.999 0.999 0.203 0.999 0.999 0.001 0.999 

AF:LR:Node 0.999 0.001 0.999 0.999 0.001 0.999 0.999 0.001 0.999 0.999 0.001 0.999 

MNAR 

AF 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

LR 0.001 0.001 0.001 0.997 0.001 0.994 0.001 0.001 0.001 0.001 0.001 0.001 

Node 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

AF:LR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

AF:Node 0.783 0.001 0.776 0.872 0.001 0.870 0.001 0.001 0.001 0.001 0.001 0.001 

LR:Node 0.999 0.001 0.999 0.999 0.036 0.999 0.999 0.001 0.999 0.999 0.002 0.999 

AF:LR:Node 0.999 0.001 0.999 0.999 0.001 0.999 0.999 0.001 0.999 0.999 0.001 0.999 

Cells contain p-value; AF, activation function; LR, learning rate 

such as TanH-Linear (TL), Logistic-Linear (LL), and Logistic-Exponential (LE), 
see Fig. 13.2. Contrary to those activation functions, TanH-Exponential (TE) starts 
to decrease after 30% of learning rate. The best values of .R2 and r was obtained 
with the TanH-Linear activation function followed by Logistic-Exponential and 
Logistic-Linear. About the RMSE, the Logistic-Exponential yields the highest 
values indicating that the network commits more error with this activation function. 
TanH-Exponential activation function gave the best RMSE. With this activation 
function, the error varies slightly the learning rate increases contrary to the other 
function. The latter increased when the learning rate increases. For TanH-Linear 
and Logistic-Linear, the RMSE was closed but after 40%. Logistic-Linear yields an 
RMSE greater than the other one. 

Similar trends have been observed when the missingness mechanism is either 
MCAR or MNAR. Thus, the highest values of . R2 and r have been observed with 
TanH-Linear, while the lowest values have been observed with TanH-Exponential.
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Fig. 13.2 Interaction plot of AF:LR for . R2, RMSE, and r under MAR assumption 

As observed under MAR assumption, the TanH-Exponential function commits little 
error when the data are MCAR or MNAR. For the three missingness mechanisms, 
the predictive performances of the imputation methods vary slightly after 50% 
of learning rate indicating that the neural network can be trained with 50% of 
learning rate for each activation function. More a little variation of the error has 
been observed from 50% of learning rate for Tanh-Exponential and TanH-Linear 
contrary to Logistic-Exponential and Logistic-Linear which continues to increase. 

Effect of Imputation Methods by Missing Data Mechanism on 
the Performance of Activation Function and Node 

The performances of imputation methods according to the activation function and 
the number of node in the hidden layer for the three missingness mechanisms 
revealed almost the same performance, see only Fig. 13.3. The predictive perfor-
mances of imputation methods improve with the increase of the number of nodes 
for all missing data mechanism. When data are MAR, . R2, and r values for the
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Fig. 13.3 Interaction plot of AF:Node for . R2, RMSE, and r under MAR assumption 

TanH-Linear activation function were greater than the values recorded with the other 
activation functions. The Logistic-Linear yields the lowest values of . R2 and r. The 
same trend has been observed under MNAR assumption. However, under MCAR 
assumption, it is TanH-Exponential activation function which had the lowest values 
of .R2 and r for LOCF method. Concerning the errors commit by the model, it 
became more and more lower when the number of hidden neurons increased and this 
for all the imputation methods for the three missing data mechanisms. The model 
commits more errors with the Logistic-Exponential activation function when the 
TanH-Exponential functions commit fewer errors. The errors when the activation 
functions are Logistic-Linear and TanH-Linear were lower than the one with 
Logistic-Exponential. For these two activation functions, the RMSE was similar 
from 3 to 7 neurons. After seven nodes, the model with TanH-Linear was better 
than the one with Logistic-Exponential. The trend of RMSE observed under MAR 
assumption was similar to the one observed under MCAR and MNAR assumptions. 

We also noticed that for the three missing data mechanisms a low variation of 
the performances (. R2, r, and RMSE) was observed whatever the imputation method 
used after 11 nodes in the hidden layer.
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Effect of Imputation Methods on Size and the Missing Data Rate 

Table 13.2 shows how sample size, missing rate, and their interaction affect the 
performances of imputation method according to the missing data mechanism. 
The interaction between size and missing rate highly significantly affected the 
performances of imputation methods whatever the missing data mechanism (. p <

0.01). The interaction plot under MAR, MCAR, and MNAR is showed similar 
trends and only for MAR presented in Fig. 13.4. 

When the data are MAR, an improvement of . R2 and r had been noticed for LOCF 
method from 50 to 200 sample size whatever the missing data rate considered. But 
after 200, the predictive performances start to decrease. The RMSE for this method 
under the same missingness assumptions followed the same trend. The values were 
close between the missing data rates and varied slightly for sample sizes between 50 
and 200 but increased for sample sizes above 200. For RF and MICE the predictive 
performances increased when the sample size is between 50 and 200 whatever the 
missing data rate. However after 200, predictive performances vary slightly. Under 
200, RMSE did not vary greatly but increased from 200. With Amelia, a large 
difference has been noticed among missing rate under 200 sample size for . R2 and r. 
However, for low missing rate (10 and 20), the performances were better. After 200 
sample size, no major difference has been noticed. The trend of RMSE shows that 
the error is less with low missing data rate and increases after 100 sample size. 

Under MCAR assumption, the error was closed for all missing data rates for 
LOCF, Random Forest, and MICE. It varies slightly under 200 sample size. The 
predictive performance of LOCF was best with 10% and 40% of missing rate at 200 
and 300 sample sizes, respectively. However, the RMSE was greater with 40% of 

Table 13.2 Effect of imputation methods on size and missing data rate: results of GLM and linear 
models 

Amelia LOCF RF MICE 

Factors .R2 RMSE r .R2 RMSE r .R2 RMSE r .R2 RMSE r 

MAR 

Size 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

MR 0.001 0.001 0.001 0.001 0.101 0.001 0.001 0.045 0.001 0.001 0.074 0.001 

Size:MR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

MCAR 

Size 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

MR 0.001 0.001 0.001 0.001 0.108 0.001 0.001 0.016 0.001 0.001 0.165 0.001 

Size:MR 0.001 0.001 0.001 0.001 0.129 0.001 0.001 0.060 0.001 0.001 0.001 0.001 

MNAR 

Size 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

MR 0.001 0.001 0.001 0.001 0.038 0.001 0.001 0.182 0.001 0.001 0.005 0.001 

Size:MR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Cells contain p-value
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Fig. 13.4 Interaction plot of Size:MR for . R2, RMSE, and r under MAR assumption 

missing rate. About Random Forest and MICE, .R2 and r values were better with 
10% and 20% of missing rate, respectively, at 200 sample size. 

When data are MNAR, the performances obtained for LOCF were similar to 
what obtained under MAR assumptions. .R2 and r increased between 50 and 200 
sample sizes whatever the missing data rate but decrease after 200. Error was 
closed between missing rates and was best under 200 sample size. The performance 
of Random Forest method is best with 40% of missing rate at 200 sample size. 
However, with 20, 30, and 50% of missing rate, values of . R2 and r were closed to 
the one obtained with 40%. The error did not vary among missing data rate. With 
MICE method, the error did not vary among missing data rate as observed with 
Random Forest. Values of . R2 and r were better with 10, 30, and 50% of missing data 
rate than the values with 20 and 40%. However, the differences were not important. 
Concerning Amelia method, large variation had been observed among missing data 
rate for all sample sizes. The error varied slightly for sample sizes below 100 and 
increased for sample sizes above 100. . R2 and r performed better for 10% and 20% 
missing data rates at a sample size of 100.
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Table 13.3 Mean and coefficient of variation of performances criterion according to imputation 
method and missing data mechanism 

MAR MCAR MNAR 

AMELIA Rsquare 65.22(15.88) 66.68(14.37) 64.49(16.79) 

RMSE 0.038(88,53) 0.037(87.74) 0.036(88.32) 

r 80.45(8.74) 81.43(7.55) 79.96(9.33) 

LOCF Rsquare 62.59(17.58) 59.28(17.82) 63(16.76) 

RMSE 0.035(89.15) 0.034(91.40) 0.035(89.41) 

r 78.76(9.57) 76.64(9.66) 79.04(9.14) 

RF Rsquare 66.46(12.62) 65.77(15.56) 67.35(13.79) 

RMSE 0.035(88.26) 0.035(87.71) 0.035(88.94) 

r 81.34(6.58) 80.78(8.90) 81.84(7.39) 

MICE Rsquare 66.19(15.46) 66.34(14.85) 66.82(13.03) 

RMSE 0.035(89.17) 0.035(88.59) 0.034(88.86) 

r 81.07(8.35) 81.19(7.98) 81.55(6.81) 

Comparison of Imputation Methods 

The mean and coefficient of variation the performance criteria according to impu-
tation method and missing data mechanism are presented in Table 13.3. There is 
not a great variation among imputation method under the assumption that data are 
missing at random. However, LOCF method has the lowest value of . R2 (62.59%). 
For the other imputation methods used in this study, the values obtained were closed 
(65.22%, 66.46%, and 66.19%, respectively, for AMELIA, RF, and MICE). The 
error committed by the model (RMSE) was similar for all imputation methods. The 
coefficient of correlation was also low with LOCF (78.76%) compared to the others 
methods (80.45%, 81.44%, and 81.07%, respectively, for AMELIA, RF, and MICE). 

When data are MCAR, a similar trend is observed like under MAR assumption. 
The lowest .R2 and r were obtained with LOCF method (59.28%) when those of 
AMELIA, RF, and MICE were, respectively, 66.68%, 65.77%, and 66.34% for . R2. 
Regarding the coefficient of correlation, it is also lower (76.64%) when using LOCF 
for imputation compared to AMELIA (81.43%), RF (80.78%), and MICE (81.19%). 
The RMSE was similar between methods (0.035 for RF and MICE; 0.037 and 0.034, 
respectively, for AMELIA and LOCF). 

Under the assumption that data are MNAR, the trend for . R2 and r was different 
contrary to the values observed when data are MAR and MCAR. .R2 was lower 
with AMELIA (64.49%) and LOCF (63%) than those of RF (67.35%) and MICE 
(66.82%). As observed with the other missing data mechanism, RMSE was similar 
under MNAR assumption. The error was 0.036 for AMELIA, 0.035 for LOCF and 
RF, and 0.034 for MICE. About the coefficient of correlation, it does not vary greatly 
from a method to another. Thus we recorded 79.96%, 79.03%, 81.84%, and 81.55% 
for AMELIA, LOCF, RF, and MICE, respectively.
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Discussion 

Effect of Imputation Method by Missing Data Mechanism on the 
Structure of Hyperparameters of 3-MLP Models 

For each imputation method, the interaction between AF:LR and AF:Node signif-
icantly impacts the performances of the network for any missing data mechanism. 
The performance of the 3-MLP models is best when the network is trained with the 
TanH-Linear activation function, 11 nodes in the hidden layer, and a learning rate of 
50%. The accuracy of TanH-Linear activation function is much better than the other 
functions. For the number of nodes, even if the error continuous to decrease after 11 
nodes, the gain of the model in terms of prediction has not increased considerably. 
More, [40, 41, 49] suggest to set the number of nodes in the hidden layer to a 
minimum as possible because a network with a large number of nodes increases 
the computational time needed for training. Our findings about the number of nodes 
in the hidden layer are in agreement with those of [50] which states that the best 
approach to set the number of nodes in the hidden layer is to start with a small 
number of nodes and increase until no major improvement in the performances 
is obtained. As regards the learning rate, after 50%, the predictive ability of the 
network is still increasing. But this increase in the predictive ability is not important, 
and a larger learning rate causes network to be more unstable as the error increases. 
Our results for the optimum learning rate are in agreement with those of the author 
in [50] who said that if the value of the learning rate is large, the network may show 
oscillatory response because of the larger changes in the synaptic weight which may 
cause network to be unstable. However our optimum value of learning rate (50%) is 
less than 60% suggested by Rajasekaran and Pai [52]. Another study conducted by 
Nagori [29] set the optimum learning rate as 35% which is less than the one of [52] 
and the one of our study. This difference can be due to the domain of application 
which is different. 

On the other hand, it should be underlined that the BP algorithm used to train 
models is intrinsically sensitive to the quality of the data with which it is fed. 
When data are incomplete due to missing values, this can disrupt the learning 
process and influence model performance. What is more, every imputation method, 
whether based on simple techniques such as Last Observation Carried Forward 
(LOCF) or more complex ones such as Random Forest methods, introduces a certain 
level of bias into the imputed data. This bias can have a significant impact on 
the hyperparameter structure of 3-MLP models, as it influences the distribution 
of the data used for training. Similarly, different missing data mechanisms, such 
as completely random missing data (MCAR), random missing data (MAR), and 
nonrandom missing data (MNAR), can have different effects on the way data are 
imputed and, consequently, on the structure of model hyperparameters. Finally, the 
interaction between model hyperparameters, such as the activation function, the 
number of nodes in the hidden layer, and the learning rate, can also play a crucial 
role in overall model performance. By understanding and taking account of these
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different factors, it is possible to improve the robustness and generalizability of 
machine learning models in contexts where missing data are commonplace. 

Effect of Imputation Methods on Size and Missing Data Rate 

Both size and missing data rate affect imputation methods. No matter the mechanism 
and the method used, the error increased when the sample size increased for all 
missing rates. Apart from Amelia, the optimal size is 200 for the others methods 
under the three missingness mechanisms. For Amelia the optimal sample size is 
200 under MAR and MCAR assumption but 100 when the missingness mechanism 
is MNAR. LOCF can support missing data rate up to 50% with an optimal sample 
size of 200 under MAR and MNAR assumptions. This method performs better with 
10% under MCAR assumption. Since differences between missing data rate are not 
important, Random Forest and MICE can support up to 50% of missing rate at an 
optimal sample size of 200. Results are not in agreement with those reported by the 
authors in [42] who found that error decreased when the sample size increased no 
matter the missing rate. The difference might be explained by the fact that in our 
study imputed data pass through the network before evaluating the performances. 

The complexity of imputation methods plays a crucial role. Some methods, such 
as Amelia, rely on more complex multiple imputation models, which can make them 
more sensitive to different sample sizes and missing data mechanisms than simpler 
methods such as last observation carried forward (LOCF). Secondly, sensitivity to 
missing data mechanisms can be considered. Each method may react differently 
depending on whether the missing data follows a completely random, random, or 
nonrandom pattern. Finally, the interaction between the imputation process and 
the learning process, as observed in our study where imputed data are used in the 
neural network, may modify the optimal performance and sample size required. 
These different factors could underline the importance of considering the diversity 
of imputation methods and missing data mechanisms in analytical decision-making. 

Comparison of Imputation Methods 

Four imputation methods have been used in this study, and results show that there is 
not a great variation among imputation method under the assumption that data are 
MAR and MNAR. However, Random Forest method and MICE seem to perform 
well than AMELIA and LOCF since they have less error. Our findings are in 
agreement with the results of [43–45]. These authors compare nine imputation 
methods by considering the three missingness mechanisms (MAR, MCAR, and 
MNAR). They found that MICE multiple imputations are overall the best approach. 
Another research of [36] compared the random forest method to kNN imputation 
[46], MissPALasso (a method based on EM algorithm, proposed by Städler and
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Bühlmann [47] and MICE [33]). For these authors, random forest could outperform 
other imputation methods. Results of these authors are similar to our findings. 
Indeed in this study random forest and MICE yield similar performances. 

Under MCAR assumptions, LOCF is not indicated to handle missing data since 
it gives low . R2. This confirms the conclusion of [48] which states that single 
imputation and LOCF are not optimal approaches for missing value imputation, as 
they can cause bias and lead to invalid conclusions. More, Ref. [13] states that single 
imputation is not solidly grounded in mathematical foundations, and they exist 
merely for their ease of implementation. Most of the imputation methods assume 
that data are missing at random. Our results show that even if this assumption is 
violated, they perform well since the performances recorded for AMELIA, RF, and 
MICE do not vary greatly from a missing data mechanism to another. These findings 
are in agreement with [14] which states that MICE is especially suitable in MAR 
settings. But the authors in [15] and [16] point out that MICE is also capable to deal 
with MNAR schemes. 

It is important to stress out that, when performing the presented imputation 
methods, the default settings were used, and tweaking parameters may improve 
the performance of these methods. This was also mentioned by Stavseth et al. [54] 
in his study on a comparison of six different imputation methods for categorical 
questionnaire data. Since missing data can impact significantly the quality of the 
analyses, it may impact decision-making processes. For [54], regardless of the 
quality of the statistical method and the robustness of the results, no imputation 
method can really compensate for the fact that data are effectively missing. Some 
considerations such as the nature of missing data, the percentage of missing data, the 
relationships among variables, the types of the data, and the domain of application 
should guide the choice of method [53, 55]. 

Conclusion 

The possibility to combine imputation methods to multilayer neural network has 
been accessed in this study through four methods (Amelia, LOCF, Random Forest, 
and MICE) for any missing data mechanism by controlling the hyperparameters 
(activation function, number of hidden neurons, and learning rate). From our 
findings, single imputation is not an optimal approach to deal with missing data. 
However MICE multiple imputation and RF are more appropriate. Even if these 
methods outperform the two others (Amelia and LOCF), the best solution is to 
employ maximal efforts to avoid missing data during data collection. With regard to 
hyperparameters, to learn the model with the BP algorithm, the performance criteria 
showed that the combination of TanH-Linear activation functions is best suited to 
implement the network with 11 nodes in the hidden layer with a learning rate of 
50%. However, for further studies, most adapted and developed methods have to be 
compared with the best method found in this study using other learning methods.
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Chapter 14 
A Better Random Forest Classifier: 
Labels Guided Mondrian Forest 

Ismaël Koné, Adama Samaké, Behou Gérard N’Guessan, 
and Lahsen Boulmane 

Abstract A novel class of Random Forests (RFs), namely Mondrian Forests (MFs), 
which are an ensemble of Mondrian Trees, achieves competitive performance 
relatively to classical Breiman RFs. They have attractive properties like performing 
Bayesian inference at the tree level and being trainable online. However, they 
perform poorly in the presence of less or low predictive power features. Thus, we 
propose to extend MF by using label information during splits in order to make 
them more accurate and robust. We showed an increase in performance when using 
labels during splits on four datasets where we notice a big improvement on a 
dataset containing many non-predictive features which is very important as feature 
relevancy is unknown at first. Additionally, this extension yields equal or superior 
performance relatively to classical RFs. 

Keywords Mondrian forests · Random forests · Entropy · Information gain · 
Bayesian inference 

Introduction 

Mondrian forests [1] (MFs) are a recently introduced class of classification random 
forest (RF) algorithms trainable online that perform Bayesian inference at the 
tree level. Consequently, they provide better calibrated probabilities compared to 
classical random forests [2]. However, no label information is involved during 
splitting operations when building each Mondrian tree. Thus, when data contains 
many low predictive power features, Mondrian forests perform poorly [1], while this 
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is almost always the case in real-life scenarios, where low predictive power features 
are unknown at first. To deal with these shortcomings, we propose to introduce 
a random node optimization operation using labels to guide splits as in random 
forests (section “Method”). Then we will study the effect of such change on the 
performance of the algorithm (section “Experiment 1”) comparatively to the original 
Mondrian forests. We will also study the impact on the online training property 
(section “Experiment 2”). Finally, we will compare it to classical random forests 
(section “Experiment 3”). 

Background 

RFs are a class of machine learning algorithms that have successfully been deployed 
in many systems. This is due in part to their underlying simplicity, robustness, 
accuracy, and scalability [3]. Also they have this nice property of feature importance 
ranking which allows assessing predictive power of features. Nevertheless, they lack 
well-calibrated probabilities [4]. For example, we train a random forest on a training 
data. If we apply the trained random forest on a new data different from those of the 
training set, it will give a result with high confidence. Thus, they are not suitable for 
applications requiring good probability assessment such as in medicine. Conversely, 
MFs provide well-calibrated probability assessment at the tree level [5]. This is the 
case as the feature space is split only inside the bounding box or extent of feature 
values of the training data. The bounding box is obtained by taking the minimum 
and maximum values on each feature of the training data. Therefore data outside that 
bounding box will receive a lower probability proportional to how far it is from the 
training data. To illustrate, let us visualize an example of decision tree (DT) versus 
Mondrian tree (MT) with a toy dataset (Fig. 14.1). We notice that DT affects the 
same high probability (bright color) inside each class of decision boundaries, while 
MT gives lower probability (dark color) to data outside the extent or bounding box 
of the toy dataset. 

(a) A dataset of 3 

classes (one per color) 

(b) Decision bound-

aries from a decision 

tree 

(c) Decision bound-

aries from a mondrian 

tree 

Fig. 14.1 Difference between MT (c) and  DT  (b) on a toy dataset (a). Brighter color means higher 
probability of the associated class, and darker color means lower probability. In (c) the dashed 
rectangle is the bounding box of the data
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Another interesting property of MT is that it can be trained in an online fashion. 
Moreover, the distribution of the online version matches that of the batch version on 
the whole dataset which is a very important property notably when models need to 
be updated with new incoming data. Thus, we do not need to retrain models with 
the whole updated datasets which save computational resources and time. 

Despite these properties, splits occurring during MT construction do not use 
label information. This results in a poor performance when a dataset contains many 
low predictive power features. Consequently, we cannot use them to rank feature 
importance which is a very important property in building models and making 
decisions. Consequently, the main question is can we get Mondrian forests to use 
label information to fully benefit from random forests’ properties additionally to its 
well-calibrated probabilities? 

Method 

Our approach consists of applying a random node optimization as in random forests 
to split the data .D(⊂ R

D , .D ∈ N) based on label information. We choose the 
information gain (IG) derived from the Shannon entropy (H) [6]: 

.IG(δ, ξ,D) = H(D) − 1

|D|
⎲

i∈{R,L}
|Di |H(Di ) (14.1) 

.H(D) = −
⎲

c∈C
p(c|D)log2(p(c|D)) (14.2) 

with 

. DR = {x ∈ D|xδ ≥ ξ},DL = {x ∈ D|xδ < ξ }

.δ ∈ {1, ...,D} is a feature or dimension of the data . D, .ξ ∈ R is a location or 
threshold on . δ, and . |.| means the cardinality of a set. . C is the set of classes or labels 
associated with each data in .x ∈ D. .DR and .DL are subsets of . D after the split 
based on feature . δ at threshold . ξ . The probability .p(c|D) is the proportion of data 
with label . c in . D. 

The optimization aims at selecting the couple .(δ∗, ξ∗) out of .T × Q randomly 
sampled split candidates .(δt , ξq) ∈ {1, ...,D} × R that maximize the information 
gain (IG): 

.δ∗, ξ∗ = argmax
{(δt ,ξq ),(t,q)∈{1,...,T }×{1,...,Q}}

IG(D, δt , ξq) (14.3) 

Algorithm 1 implements this selection.
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Algorithm 1 . MondrianTreeNodeOptimization(D, T ,Q)

1: Input: node data .D := {(Xi, yi )}ni=1, number of feature and threshold candidates . (T ,Q)

2: Output: split feature and location . (δ∗, ξ∗)
3: Algorithm: 
4: Initialize best Information Gain (IG): . g∗ = −1
5: for .t = 1, ..., T do 
6: Choose . δt with probability proportional to .(Xδt )max − (Xδt )min⊳ dimension-wise .min and 

. max
7: for .q = 1, ...,Q do 
8: Choose . ξtq uniformly from interval . [(Xδt )min, (Xδt )max ]
9: . g = IG(δt , ξtq ,D)

10: if .g∗ < g then 
11: . (g∗, δ∗, ξ∗) = (g, δt , ξtq )

12: end if 
13: end for 
14: end for 

Note that if we set T and Q to 1, we fall back to the original MF split procedure 
where no label is involved. We can notice that the selected feature has a probability 
proportional to the length of its range of values (line 6). This is due to the Mondrian 
process [7] which is the probabilistic generative process of the Mondrian tree 
construction. It has the effect of selecting features with a wider range of values 
more often than smaller ones. 

Given we plug in this algorithm in the Mondrian tree construction, what is the 
result on the performance? Does that really improve the performance when low 
predictive power features are present? How does it compare to the classical random 
forests? 

The next section attempts to answer these questions empirically. 

Experiments 

The main purpose of our experiments is to study the impact of using labels during 
splits in Mondrian tree and forests. Below are specific experiments we are going to 
conduct with their associated goals: 

• Experiment 1: effect of label guided splits relative to the original Mondrian forest 
on batch mode 

• Experiment 2: effect of labels on the online mode performance and its relation to 
batch mode 

• Experiment 3: comparison with classical random forests on batch mode 

We have used four datasets: usps [8–10], letter [11], and dna [12]. Table 14.1 
presents an overview of these datasets. Appendix provides more information about 
them and technical specifications of the experiments.
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Table 14.1 Brief structural 
description of the four 
datasets used for experiments 

Datasets 
Description usps satimage letter dna 

No. of features 256 36 16 180 

No. of classes 10 6 26 3 

Training set size 7291 3104 15, 000 1400 

Testing set size 2007 2000 5000 1186 

Also, we used the software developed by Balaji, the main author of the original 
Mondrian forest paper [1], ported to Python 3 and adapted it to implement our 
method accessible on GitHub.1 For comparisons with random forests, we used the 
sklearn implementation [14]. 

Results and Analysis 

All results in this section are reported performance on test partitions of each dataset 
(Table 14.1). 

Experiment 1 

Figure 14.2 shows the results of using labels to guide splits during Mondrian forest 
training. In the case of one tree, the improvement is significant with a jump between 
5% and 15% in accuracy. However, when ensembling trees, results are quite similar 
with a slight improvement (1.3%) in favor of our approach. One result is very 
singular, the dna dataset. We observe a big improvement of 25.3% in accuracy which 
is quite remarkable. This answers positively our question as the dna dataset contains 
many low predictive power features. Therefore using labels improved drastically the 
performance of Mondrian forests in the presence of low predictive power features 
and thus reinforces its robustness. 

Experiment 2 

Case of One Tree 

Looking at Fig. 14.3a, we see an important variance in results for online mode as 
we run the experiments five times (blue and green plots). This is a well-known

1 https://github.com/iskode/mondrianforest-labelsplit/ 

https://github.com/iskode/mondrianforest-labelsplit/
https://github.com/iskode/mondrianforest-labelsplit/
https://github.com/iskode/mondrianforest-labelsplit/
https://github.com/iskode/mondrianforest-labelsplit/
https://github.com/iskode/mondrianforest-labelsplit/
https://github.com/iskode/mondrianforest-labelsplit/
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Fig. 14.2 Experiment 1 results. Comparison between the original MF and our modified version in 
batch mode on the four datasets 

(a) 1 Mondrian Tree 

(b) 50 Mondrian Trees 

Fig. 14.3 (a) Comparison between performance of a Mondrian tree (a) trained with (blue) and 
without (green) labels in online mode and the reference batch mode without label (red). (b) The  
same for 50 trees. Vertical segments quantify each mini-batch’s variance 

property of decision tree: They have moderate to high variance [16, 17]. This 
variance is bigger for our approach than the original Mondrian tree across all four 
datasets, despite, being less accurate, it seems that the original Mondrian tree is 
more stable. Additionally, we notice that a Mondrian tree trained on batch mode 
gives consistently significant better results than being trained online on the same 
dataset.
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Fig. 14.4 Comparison between classical random forest and our extended Mondrian forest 

Case of 50 Trees 

Now (Fig. 14.3b), we notice a significant reduction of variance due to ensem-
bling [15–17]. Conversely, on the dna dataset, the variance has increased for the 
original Mondrian forest. It seems that ensembling trees make it stable. For our 
approach, the variance decreases but is still significant. That is a sign that we can 
increase the number of trees to still improve the performance. Now, the online 
version of our method matches approximately its batch counterpart except for the 
dna dataset where the former is closer but still below the later. 

Experiment 3 

Looking at Fig. 14.4, we notice that our method is equal to or slightly better than 
random forest from sklearn library for both one tree and a forest of 50 trees. The 
difference is more nuanced on the dna dataset. Also the gap is more important for a 
single tree than the ensemble of 50 trees. We can notice that the original Mondrian 
forest has comparable performance to both our extension and random forests [1] 
except when the dataset contains many low predictive power features as of the dna. 

Related Work 

There is a rich and huge literature on Random forest algorithms. One of the main 
best reviews on the subject is the technical report [18]. There are many specific 
random forest algorithms [19] sharing similarities with the original Mondrian forests 
as pointed by the authors [1]. Recall that MF has two main desirable features [1]: 

1. It performs Bayesian inference by a hierarchy of normalized stable process 
(HNSP).
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2. It can be trained on batch, and online and theoretical results show their 
distributions are both equivalent. 

There are many variants of random forest algorithms that only focus on one of those 
features and never accumulate them. 

We have many random forest algorithms that perform Bayesian inference [20, 
21]. Most of them impose a prior over the decision trees that depends on the data and 
approximate the posterior by Markov Chain Monte Carlo (MCMC) techniques [22]. 
One of the problems of these approaches is that they are computational heavy. It 
has been also shown that Bayesian model average performs worse than ensemble 
model combination [23]. Conversely, MF is on the one hand an ensemble model 
combination which is better than Bayesian model average. On the other hand, 
it performs Bayesian inference approximation at the tree level with efficiency 
comparable to top-down traversal in classical random forest inference. 

On the online tree algorithms, we have ORF-Saffari [24] and ORF-Denil [25]. 
However, they are memory inefficient [1]. Other algorithms focus only on the online 
growth of trees, not their ensemble, which are better than individual trees. 

It is clear that Mondrian forests uniquely gather these two interesting properties 
that are difficult to gather in a random forest-based algorithm. But they lack the 
involvement of label for finding optimal splits. Therefore, our contribution to use 
label during splits fills this gap and shows on par or better performance than classical 
random forests. 

One important remark is that using labels makes splits dependent on the order 
of data arrival. It means different orders of batch of data during online training 
will produce different splits and then different tree distributions. Therefore, the 
theoretical guarantee that batch and online MF distributions match does not hold 
anymore. Nonetheless, our experiments show that they are nearly equal except on 
the dna dataset where the gap is 3.5% which is still close. 

Conclusion 

In this chapter, we have extended Mondrian forests, a class of random forests, which 
uniquely gather many sought properties such as efficiency, well-calibrated probabil-
ity assessment, and online training. Our extension incorporates label information 
during splits using information gain maximization based on the entropy measure. 
Our experiments show an overall improvement in batch and online settings. 
Additionally, the resulting Mondrian forests yield equal or better performance than 
classical random forests based on our experiments. Over and above conducting more 
experiments on a large number of datasets, a good research venue would be to add 
the same extension to Mondrian forests for regression [26]. 
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Appendix 

Datasets 

We will use the same four datasets as in the original Mondrian forests paper [1]: 

– usps [8, 9] represents normalized handwritten digits, automatically scanned from 
envelopes by the US Postal Service. 

– satimage [10] consists of the multi-spectral values of pixels in .3 × 3 neighbour-
hoods in a satellite image and the classification associated with the central pixel 
in each neighbourhood. 

– letter [11] represents English alphabet recognition based on black and white 
rectangular pixels. 

– dna [12] represents 180 indicator binary variables where each 3 stands for 
nucleotides among only A.G,T,C. In particular, it has many low predictive power 
features [13]; precisely, only features from A61 to A120 (60 out of 180) provide 
good performance, which is suitable to answer our hypothesis. 

usps, satimages, letter, and dna datasets [8, 9]. The datasets (Table 14.1) have  
a different level of difficulties with a varying number of features and training 
versus testing size. In particular, the dna dataset has many low predictive power 
features [13], precisely only features from A61 to A120 (60) provide good 
performance, which is suitable to answer our hypothesis. 

Technical Specifications 

We used the software developed by Balaji, the main author of the original Mondrian 
forest paper2 and adapted it to implement our method. For comparisons with random 
forests, we used the sklearn implementation [14]. 

We will run our experiments on a single tree (DT or MT) and on a forest of 50 
trees (RF or MF). 

For training MT or MF, we set split parameters (number of split candidates) 
.T = √

D as is the default value of sklearn random forests and .Q = 6 as it gives 
a good result across all datasets. But these parameters can be further optimized via

2 https://github.com/balajiln/mondrianforest 

https://github.com/balajiln/mondrianforest
https://github.com/balajiln/mondrianforest
https://github.com/balajiln/mondrianforest
https://github.com/balajiln/mondrianforest
https://github.com/balajiln/mondrianforest
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cross validation as part of the model selection. Additionally, we do not use bootstrap 
which consists of using a different subset of the data to train each tree. 

In order to compare fairly RF from sklearn and our MF, we use the same settings 
as MF. In other words, we used the following settings (from sklearn API) for the 
RF: 

. ◦ n_estimators = 1 or 50 (number of trees) 

. ◦ criterion = ’entropy’ (information gain IG) 

. ◦ bootstrap = False 

. ◦ max_features = ’auto’ equivalent to . 
√

D
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Chapter 15 
Remote Sensing of Artisanal Mines 
Buried in the Ground by Infrared 
Thermography Using UAV 

Adama Coulibaly, Ibrahima Ngom, Jean Marie Dembele, Ibrahima Diagne, 
Ousmane Sadio, Marc Momar Tall, Moustapha Ndiaye, and Abdou Diop 

Abstract The antipersonnel and anti-tank landmines create a lot of human and 
material damage in the Sahel countries affected by terrorism. Explosive mine 
detection methods are based on tools handled by human operators and target 
industrial metal mines. These methods are risky and limited because the types of 
mines most commonly used in the Sahelian context are mainly homemade and are 
encased in various local materials such as metal, plastic, glass, ceramic, or wood. 
This chapter presents a solution for remote sensing of artisanal mines buried in the 
ground using infrared thermography. A DJI Phantom 4 Quadcopter equipped with a 
FLIR thermal camera and a GNSS sensor performs an automatic low-level flyover of 
the potentially mined road. Thermal images of the road are collected with an overlap 
rate of 80% and referenced with the GNSS sensor. Photogrammetry algorithms are 
used to process the thermal images to detect and locate anomalies related to the 
presence of buried mines. Despite the limitations due to environmental influences, 
the model showed a detection rate of 75% during flights at an altitude of 6m and 
a speed of 3m/s. The experimental results show a good correlation between the 
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thermal contrast of the mathematical model and the cooler areas containing a mine-
related chemical substance. 

Keywords Artisanal explosive mines · Buried in the ground · Infrared 
thermography · Remote sensing · UAV 

Introduction 

Burkina Faso is facing a serious security crisis manifested by terrorist acts of all 
kinds in several regions of the country. The army, in the process of recapturing 
areas under terrorist control, is carrying out offensive actions against armed groups 
and also humanitarian actions for the benefit of the populations of regions cut 
off from the capital. However, the pursuit of these actions by road is strongly 
disrupted by improvised explosive devices consisting of antipersonnel and anti-
tank mines. These types of homemade explosive landmines are encased in wood, 
ceramic, or plastic and are difficult to detect because they are completely buried 
in the ground. Existing landmine detection methods are based on metal sensors 
manipulated by human operators or mounted on demining vehicles. These methods 
are ineffective in searching for plastic, ceramic, or wooden cased mines. They also 
present risks related to the proximity of the operators to the explosive devices. With 
the technological advances marked by the advent of artificial intelligence, drones 
are increasingly used in several fields, including landmine detection. They have 
the advantage of integrating different types of mine sensors and being autonomous 
or remotely piloted, which improves safety because the operator is distant from 
the dangerous area. The objective of this chapter is to study a solution for remote 
sensing of homemade mines by infrared thermography using UAV. The remainder 
of this chapter is organized as follows. Section “Related Works” provides an 
overview of related works on the topic. Section “Materials and Methodology” 
describes the working methodology and materials used. Section “Results” presents 
the experimental results of the studied model. And section “Discussions” is devoted 
to the discussion of the results. 

Related Works 

A great deal of research has been conducted in the field of explosive landmine 
detection. These researches have focused on both detection techniques and com-
munication of information. Gooneratne et al. [1] and Siegel [2] reviewed landmine 
detection technologies. They identified two main families of mine detection meth-
ods: biological (guard dogs, rats, plant leaves, bees, and bacteria) and technological 
(metal sensors, nuclear quadruple resonance (NQR), ground-penetrating radar 
(GPR), laser, X-ray, ultrasound, and microwave). Their study revealed that most 
technologies could be installed on a robot or drone to avoid loss of life. Yoo et al.
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[3] worked on a drone equipped with a magnetometer for metal mine detection. 
Their prototype includes a ground control system, a flight control system, and 
a magnetometer. The metallic AP (M16) and AT (M15) mines and low metal 
content AT (M19) mines were detected successfully in field tests under the proposed 
conditions. The low metal content AP (M14) mine was not detected. Castiblanco et 
al. [3] proposed a low-cost ARdrone 2.0 drone as a complementary tool for visual 
landmine detection in rural scenarios. Their system consists of a UAV and a base 
station that manages both the flight controls and the landmine detection algorithms. 
Experimental results show an effective percentage of the detection over 80% at an 
altitude of 1m with a flight speed of 2.2m/s. But their prototype does not take into 
account the precise location of the detected mine. Ganesh et al. [4] adopted a two-
step detection methodology: detection of the metal mine and its photography by 
an infrared camera. The system consists of a metal detector, an infrared camera, a 
GPS sensor, a GSM modem, and an Arduino UNO board. The operation of their 
system is independent of the drone. Their system was able to detect mines and send 
a message containing the longitude and latitude of the detected mine by the GPS 
using a GSM module. Colorado et al. [5] integrated computer vision algorithms into 
a UAV to perform terrain mapping and visual detection of landmine-like objects 
in real time. Despite hardware limitations, their system was able to detect partially 
buried objects in different types of terrain with a detection percentage of over 80%. 
The authors [6, 7] have worked on mine detection using infrared thermography. 
Their system is not embarked on a drone but allows detecting in the invisible. 
Their experience has shown that mine detection using infrared thermography is 
valid under specific conditions such as on fine sand. Gracias et al. [8] worked on a  
dataset of thermographic images for the detection of buried landmines. Their work 
consisted of capturing aerial infrared images of a terrain where elements with char-
acteristics similar to antipersonnel mines type leg-breaker were buried. The dataset 
had 2700 thermographic images acquired at different heights, using a Zenmuse XT 
infrared camera, embedded in the DJI Matrice 100 drone. An automatic detection 
methodology for leg-breaker Antipersonnel Landmines (APLs) was developed by 
Forero-Ramirez et al. [9] based on digital image processing techniques and pattern 
recognition, applied to thermal images acquired by means of an Unmanned Aerial 
Vehicle (UAV) equipped with a thermal camera. They obtained remarkable results 
using aMultilayer Perceptron (MLP) classifier, reaching average percentages of suc-
cess in detecting suspicious areas with the presence of these artifacts about 97.1% 
for images acquired at 1 m from the ground and 88.8% at higher altitudes. Baur et al. 
[10] focused their work on developing and testing an automated technique of remote 
landmine detection and identification of scatterable antipersonnel landmines in 
wide-area surveys. Their findings are based on the analysis of multispectral and ther-
mal datasets collected by an automated UAV-survey system, which used scattered 
PFM-1-type landmines as test objects. The study also presents results from efforts 
to automate landmine detection using supervised learning algorithms, specifically a 
Faster Regional-Convolutional Neural Network (Faster R-CNN). The RGB visible 
light Faster R-CNN demo yielded a 99.3% testing accuracy for a partially withheld 
testing set and 71.5% testing accuracy for a completely withheld testing set.
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These related works have explored several robots and UAV-based solutions for 
detecting landmines. But most of these solutions are only applicable to industrial 
metal mine partially buried. The scope of these researches does not include artisanal 
mines, which are encased in a variety of local materials with different properties. 

Materials and Methodology 

Method 

The method used in this chapter includes three phases. 

1. Data collection: Dji Phantom 4 UAV equipped with FLIR thermal camera and 
GNSS sensor performs an automatic mapping mission of the road to be inspected 
at an altitude of 6m and a speed of 3m/s. The geo-referenced thermal images are 
captured with a coverage rate of 80% and sent in real time to the supervision 
tablet via the radio control. 

2. Image alignment and reconstruction of the road to be inspected: The images 
are imported into the FLIR photogrammetry tool, which allows them to be 
grouped and matched using GNSS coordinates in order to obtain a complete 
thermal image of the inspected road. 

3. Thermal processing: The photogrammetry algorithm processes the thermal 
contrast of the image to identify temperature differences and generate reports. 
The target areas are then located using their GNSS coordinates. 

Presentation of the Explosive Mine 

A mine is a device designed to be placed under or on the ground and to be exploded 
by the presence, proximity, or contact of a person or a vehicle [11]. If the mine is 
intended to disable, injure, or kill one or more persons, it is termed antipersonnel 
(AP). When the target is a vehicle, the mine is called an anti-tank (AT) mine. In 
general, the mine consists of an ignition device (igniter, detonator), a warhead, 
a safety device, and the whole contained in an envelope with projectiles (refer 
Fig. 15.1a) [12]. The homemade variant of the mines (refer Fig. 15.1b) contains an 
excessive quantity of composite products including explosives, recovered ammuni-
tion (bombs, shells, etc.), and various casings (metal, plastic, wood, and ceramic). 

Infrared Thermography 

In the electromagnetic spectrum, infrared is located between the visible and the 
microwaves. The main source of infrared radiation is heat or thermal radiation. Any 
object with a temperature above absolute zero (.−273.15C or 0K) emits radiation in
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Fig. 15.1 Mine overview [12, 13]. (a) Structure of mine. (b) Plastic coated mine 

the infrared range. The infrared thermography is the process consisting in carrying 
out thermal images by infrared by highlighting by sets of color the differences 
of temperature [14]. The thermal imaging or thermogram consists in transforming 
measurements of the infrared radiation into a radiometric image corresponding to 
the values of temperature. Thus, each pixel of the radiometric image is a temperature 
measurement. Thermal cameras are designed to transform infrared signatures into 
something visible to humans. 

Mathematical Modeling 

The detection of a mine buried in the ground is based on the fact that the ground does 
not return infrared in the same way depending on whether or not there is a buried 
mine [15]. Thus, thermal infrared detection is based on the differential heating or 
cooling of the ground. This difference is small and is only noticeable under favorable 
thermal conditions. The night is best suited for the detection of the mine by the 
thermal method. The principle is as follows: 

1. During the day, the mine (plastic, wood, and ceramic) does not conduct the Sun’s 
heat well, so that the thermal energy supplied by the Sun remains at the surface: 
The ground above the mine is warmer during the day [15–18]. 

2. At night, since this surface has not collected heat, it does not release any and 
remains relatively cold [15–18]. 

But several parameters must be taken into account, some of which are shown in 
Fig. 15.2: 

– The emissivity of the buried mine .e = l − p (p reflection factor of the body and 
l the wavelength) 

– The albedo .A = Rr
Rs

(with . Rr the reflected radiation and . Rs the received solar 
radiation)
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Fig. 15.2 Mathematical model [9] 

– The temperature of the environment . Tenv

– The atmospheric temperature . Tatm

– The altitude of the drone d 
– The depth of the mine . L2
– The received solar radiation . Rs

– The type of mine 

For a black body, the spectral radiance is given by Planck’s law: 

L0(l,T ) = 
2 × h × c2 

(e 
h×c 

l×k×T − 1) × l5 
[9] (15.1) 

with .L0(l,T ): spectral radiance . (W × m−3 × sr−1)

h: Planck’s constant . (6.62617 × 10−34 × J × s)

c: celerity . (299792458m × s−1)

k: Boltzmann’s constant . (1.38 × 10−23 × J × K−1)

T : absolute temperature of black body in Kelvin 
Radiation absorbed by the surface .Rabs = (1−−A)×Rs with .A = 36% [17] for  

the Earth which gives .Rabs = 64%×Rs . The soil has a more or less great capacity to
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store thermal energy by conduction in depth during the day and to restore it during 
the night. This capacity is called thermal inertia noted I : 

.I = √
kt × pc (15.2) 

with . kt thermal conductivity, . pc volumetric heat capacity, and . I (J ×m−2 ×K−1 ×
s−1/2). 

Stefan Boltzmann’s law gives the power of thermal radiation captured by the 
camera: 

.P = e × j × T 4 (15.3) 

with j Stefan’s constant .(5.671 × 10−8 × W × m−2 × K−4 and .e = 1 case of 
black body (.e < 1 for real materials) [7]. 

Let 

.y = h × c

l × k
(15.4) 

The radiometric temperature is written as 

Tl = y 
ln 2×y×c×k 

l4×L0(l,T )+1 

[9] (15.5) 

Materials and Tools Used 

The experiment required a DJI Phantom 4 drone (Fig. 15.3) equipped with a FLIR 
View 336 thermal camera and GNSS geotagger to perform the low-level automatic 
mapping mission of the potentially mined road. The high-resolution long-wave 
thermal camera (.7.5−13.5 um) is mounted on a dial that stabilizes the image and 

Fig. 15.3 UAV, radio control, and FLIR control module
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Fig. 15.4 Mission planning. (a) Atmospheric conditions. (b) Site of the experiment 

allows the lens to rotate 360. ◦. The drone has a 15 minutes flight time and 128GB 
internal storage capacity. A tablet combined with the radio control and the FLIR 
thermal control module is used to supervise the flight. Processing is done on a PC 
HP EliteBook Intel(R) Core(TM) I7-7600U, CPU @ 2.8GHz 2.9GHz with 16GB 
of RAM. Twelve inert landmines are used for the experiment. The software tools 
used are: 

– UAV Forecast for pre-flight weather and safety forecast (Fig. 15.4a) 
– PiX4Dcapture for the planning of the mapping mission (Fig. 15.4b) 
– DJI GO 4 for flight supervision 
– FLIR UAS for thermal camera setup 
– FLIR Tools Studio for thermal image processing (Fig. 15.6) 

Results 

The experimental study is carried out on an unpaved road with a maximum width of 
6m  (Fig. 15.4b). For this study, we used inert mines which are safe in handling and 
are used to study the operation of the real mine. The model used is materialized in 
Fig. 15.2 with the parameters of Table 15.1. The values of emissivity e and albedo 
A are chosen according to the soil type of the road portion. The albedo is .36% for 
soil, and the emissivity is .0.39 for clay soil [17]. The parameters . L1 and D are the 
actual dimensions of the mine envelope used. As for the value of . L2, it represents the 
maximum depth from which thermal detection is possible according to the sunshine 
data of the area. The section of road used for the experiment is 1.5 km long. Twelve 
inert handmade mines distributed in Table 15.2 are buried at random 100m apart 
along the road for the experiment.
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Table 15.1 Parameters table 

Environment parameters UAV-mine parameters 

Emissivity Albedo Altitude Height Width Depth 

e A d .L1 D . L2

0.39 0.36 6m 15 cm 40 cm 5 cm  

Table 15.2 Repartition of 
mines 

Plastic Metal Wood Ceramic 

3 3 3 3 

Fig. 15.5 Temperature variation of ground with and without buried mine 

The experiment is carried out in two phases: 

1. Phase 1: To highlight the difference in temperature between the soil with mine 
and the soil without mine, we extract the temperature profiles of the two surfaces 
using an infrared thermometer. This phase takes place in the time interval from 
8:00 pm to 5:00 am. The temperature of the two surfaces close to the road, one 
over a plastic-coated mine and the other without a mine, is measured every 5 
minutes. The temperature profile readings from this experiment are plotted in 
Fig. 15.5. The observation is that the temperature of the soil with mine is lower 
than that of the soil without mine, and the average difference is .0.818C. This 
reflects the fact that the area above the buried mine is relatively cooler than the 
area without mine. 

2. Phase 2: The UAV then conducts mapping flights of the area of interest according 
to the scheduled missions to collect thermal images. Three mapping missions 
were scheduled at night time slots: mission 1: 6:00 pm–7:00 pm, mission 2:
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Fig. 15.6 Thermography results. (a) Infrared image. (b) Thermal treatment result 

Table 15.3 Detection results Mission Plastic Metal Wood Ceramic Total 

Mission 1 0 0 0 0 0 0% 

Mission 2 3 0 3 3 9 75% 

Mission 3 1 0 0 2 3 25% 

8:00 pm–9:00 pm, and mission 3: 11:00 pm–0:00 am. The choice of these three 
time intervals is motivated by the variations observed in the previous experiment. 
According to the parameters set on the drone: speed (3m/s), altitude (6m), and 
coverage rate (80%), each mission collected 750 thermal images. These images 
from each mission are processed by the FLIR Report Studio photogrammetry 
tool. The results of the image alignment and the thermal contrast analysis 
report are given in Fig. 15.6a, b, respectively. The color palette and the target 
temperature range are automatically set by the photogrammetry tool but can 
be modified if needed. The colors of the palette have the following meanings: 
Yellow indicates a hot zone, green symbolizes a medium temperature, and blue 
corresponds to the cold zone. 

The results of mine detection during the three mapping missions are shown in 
Table 15.3. Mission 1 detected no mine, i.e., a rate of 0%. Mission 2 detected 9 
mines out of 12, including plastic-cased, wooden, and ceramic mines, i.e., a rate 
of 75%. Mission 3 detected one plastic and two ceramic mines, i.e., a rate of 25%. 
Each detected mine is located through its associated coordinates. 

Discussions 

The experimental results of the system show a high detection rate for plastic, 
ceramic, and wooden cased mines during mission 2. The detection rate is low for 
the two other missions and also for the metal clad mines. Indeed, metal has a high
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thermal conductivity compared to wood, plastic, and ceramic. Therefore the results 
of the phase 1 experiment are not verified with the metal mine. The low detection 
rates during missions 1 and 3 are explained by the heat restitution conditions during 
these periods. In Burkina, the time interval from 6:00 pm to 7:00 pm corresponds to 
nightfall. Thus, the process of heat restitution is not yet effective, which does not 
allow us to observe the differences in temperature between zones. As for the time 
interval of mission 3, it corresponds to a period when the ground is quite cooled, 
which also does not allow the differentiation of temperature between different 
areas. Our solution focuses on the detection of artisanal mines completely buried 
on the roads. The difference between an industrially manufactured mine and a 
handcrafted mine lies essentially in the envelope. Industrial lead is generally metal-
jacketed, while artisanal lead can be plastic, wooden, or ceramic-jacketed. These 
local materials do not have the same physical characteristics as metal. Previous 
work has focused on the detection of metal mines partially buried in the ground. In 
our case, the mine is completely buried in the ground, making detection uncertain. 
Our results are therefore better for plastic, wood, and ceramic mines, confirming 
the results of our first experiment. But our experiment failed to detect metal mines, 
whereas earlier work showed better results for metal mines and limited results for 
plastic, wood, and ceramic mines. Our results would be negatively impacted by the 
effect of vegetation and also by the presence of other types of objects buried on the 
road. Thus extraneous objects may constitute false positives in the results. Taking 
environmental factors into account and choosing the right period for data collection 
will ensure reliable results. 

Conclusion 

The remote detection of explosive mines buried in the ground remains a major 
concern for Sahelian countries facing the terrorist phenomenon. In this chapter, 
we have studied a solution for remote sensing of artisanal mines buried in the 
ground by infrared thermography using a drone. This first experiment that concerned 
roads gave satisfactory results for wooden, plastic, and ceramic mines, despite 
the influence of many external factors. Each detected target is located through 
its GNSS coordinates provided. The accuracy in localization can be improved by 
using an RTK drone with centimeter accuracy. As for the accuracy of the detection 
by infrared thermography, it is strongly dependent on environmental factors, the 
judicious choice of the period of collection of the thermal images as well as the 
setting up of the photogrammetry tool. 

The performance of the model used in this chapter can be improved by adding 
the thermal and magnetic characteristics of metal mines for a complete solution. 
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Chapter 16 
Implementation of EdDSA in the 
Ethereum Blockchain 

Mamadou Cherif Kasse and El Hadj Modou Mboup 

Abstract Blockchain technology is widely used across various domains for its 
security and distributed ledger capabilities. To secure transactions, most blockchain 
platforms such as Ethereum employ the Elliptic Curve Digital Signature Algorithm 
(ECDSA). 

However, the use of ECDSA can pose risks, such as the inadvertent exposure of 
the private key in case of errors, thus facilitating obtaining corresponding signatures 
for various documents. To address this issue, a solution emerges: the integration of 
the Edwards-curve Digital Signature Algorithm (EdDSA). By opting for EdDSA to 
generate transaction signatures, several advantages emerge, such as increased speed, 
optimal performance, and enhanced independence in random number generation. 
Indeed, this innovative proposition significantly bolsters security compared to 
the conventional use of ECDSA, marking a substantial advancement within the 
Ethereum ecosystem. 

Furthermore, we have implemented both algorithms to sign and verify Ethereum 
transactions to make a performance comparison. The implementation is carried out 
in Python on an Intel Core i3 processor with 8 GB of RAM and a 64-bit operating 
system. 

Keywords EdDSA · Ed25519 · ECDSA · Ethereum · Transaction · Blockchain 

Introduction 

The blockchain proves to be an exceptionally promising and revolutionary tech-
nology because it contributes to reducing security risks, eliminating fraud, and 
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establishing unparalleled transparency. Thanks to this technology, it becomes 
possible to ensure transparency in food supply chains, secure medical data, and 
reshape our approach to data processing and ownership. Blockchain technology also 
enables cryptocurrencies like Ethereum and other digital information to flow freely 
between individuals without the intervention of intermediaries. 

By integrating this advancement, signature algorithms play a crucial role in 
consolidating this freedom of exchange. Indeed, through sophisticated digital sig-
nature mechanisms, the blockchain secures transactions while allowing for smooth 
and autonomous circulation of cryptocurrencies and digital data among concerned 
parties. This combination of technologies ensures increased integrity and trust in a 
constantly evolving digital environment. In the context of blockchain, a signature 
scheme generally works as follows: 

• Each network participant generates a key pair: a private key and a public key. 
• When a transaction is initiated, it is signed with the sender’s private key, creating 

a unique digital signature attached to the transaction. This signature serves 
as proof of authentication and guarantees the transaction’s integrity. Network 
nodes, using the corresponding public key, can verify the signature’s validity 
and, consequently, the legitimacy of the transaction. 

All these operations are based on public key cryptography, specifically elliptic 
curve cryptography, which relies on the properties of elliptic curves in finite fields. 

The Ethereum platform uses the ECDSA, specifically with the secp256k1 curve, 
which is widely accepted and recommended by various standardization and nor-
malization organizations, including the Federal Information Processing Standards 
(FIPS) [1], to provide transactional security. However, ECDSA uses a randomly 
generated value during the signature called a nonce, and it has been established that 
even a slight nonce leakage can potentially lead to full key recovery, as demonstrated 
by Diego F. et al. in [2]. It was mentioned in [3] that this vulnerability manifested 
in Sony’s ECDSA implementation when signing code for the PlayStation 3, thereby 
exposing Sony’s long-term secret key. ECDSA is also vulnerable to side-channel 
attacks. To illustrate, Nguyen and Shparlinski described in [4] an algorithm that 
exploits lattice techniques to derive the long-term ECDSA key using only 3 bits 
of the nonce value from several hundred signatures. These 3 bits can come from 
side-channel attacks. 

However, EdDSA [5], developed by Daniel J. Bernstein [6], in addition to 
its security level and runtime performance, uses deterministic nonces, making it 
less vulnerable to the aforementioned attacks. The idea of producing signatures 
deterministically was proposed by Barwood in [7]. EdDSA encompasses two 
variants, Ed25519 and Ed448. Ed25519 is preferred over Ed448 because it requires 
fewer resources while ensuring entirely adequate security [5]. EdDSA is based on 
the Schnorr signature algorithm, which provides advantages such as the use of 
key and signature aggregation for multiple parties. These features are particularly 
beneficial for blockchain platforms like Ethereum because they allow for efficient 
grouping of keys and signatures, which can enhance system performance and overall 
efficiency. In other words, EdDSA offers advanced aggregation mechanisms that 
make it particularly well suited for blockchain scenarios where speed and efficiency
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are crucial. It has been proven that EdDSA is much faster in terms of signature 
generation and signature verification than ECDSA, as demonstrated by Guruprakash 
J et al. in [8]. With all these elements, EdDSA is a promising candidate for enhanced 
security with better performance in the Ethereum blockchain. 

Related Work 

The comparative evaluation of digital signature algorithms, particularly ECDSA 
and EdDSA, in the context of blockchains, is an active research topic. Numerous 
studies have been conducted to understand the advantages and disadvantages of 
each algorithm in terms of security, performance, and efficiency. 

Guruprakash J et al. [8] conducted a comprehensive performance comparison 
between ECDSA and EdDSA, focusing on their usage in blockchain and IoT. Their 
results showed that, despite the higher complexity of EdDSA, it offered significant 
advantages in terms of signature computation time and energy consumption. 

Research by Bernstein et al. [6] demonstrates that EdDSA is resistant to side-
channel attacks and that its performance potentially surpasses that of ECDSA. 
Basha et al. [9] conducted an in-depth analysis of how the EdDSA can enhance 
the security of digital signatures in blockchain transactions. They highlight specific 
advantages that EdDSA brings in terms of resistance to side-channel attacks and 
fault attacks, making it an attractive choice for ensuring transaction integrity in 
blockchain environments. 

Barenghi et al. [10] examined the vulnerability of ECDSA and EdDSA to 
fault attacks, concluding that the robustness of EdDSA was superior due to its 
deterministic construction. 

Our Contributions 

In this chapter, we propose the integration of the EdDSA digital signature algo-
rithm (particularly, the Ed25519 variant) into Ethereum transactions, replacing the 
ECDSA. To do this, we first evaluate the performance of the ECDSA and EdDSA 
signature algorithm by implementing both algorithms in Python. We measured 
execution time, memory consumption, and other key parameters to assess their 
efficiency in a simulated Ethereum blockchain environment. The obtained data was 
thoroughly analyzed to determine which algorithm provides better performance 
in terms of speed and efficiency. Following our comparative analysis, we then 
embarked on a crucial step: the integration of EdDSA using the Ed25519 signature 
scheme within the Ethereum environment for transaction signing. We examined the 
specific requirements of Ethereum’s transaction format, including how signatures 
are handled in transactions to enable the use of EdDSA instead of ECDSA. Our 
implementation of EdDSA for Ethereum transaction signing provides a compelling 
proof of concept for the viability of this alternative in a real-world context.
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Organization of the Paper 

This document is organized as follows: In section “Preliminaries”, we discuss 
the transition to Elliptic Curves and EdDSA, along with a brief comparison 
between EdDSA and ECDSA. In section “Ethereum Transaction”, we present 
Ethereum transactions and how they utilize signature algorithms. Section “Ed25519 
Signature” covers the Ed25519 signature algorithm, detailing its key generation, 
signing, and signature verification operations. In section “Integration”, we propose 
the integration of EdDSA for signing Ethereum transactions. Section “Security and 
Performance” focuses on the security of EdDSA, accompanied by a performance 
comparison. Finally, we conclude this document in section “Conclusion”. 

Preliminaries 

Notation: 

– p indicates the prime number defining the underlying field. 
– GF. p Finite field with p elements 
– EdDSA Edwards-curve Digital Signature Algorithm 
– ENC(N) The encoding of N in little-endian form as a b-bit string. 

Elliptic Curve Cryptography 

Over the past decade, we have witnessed a gradual transition in the field of 
digital signatures. It began with the shift from RSA signatures to DSA signatures, 
ultimately leading to elliptic curve-based signatures. Over time, these advancements 
have primarily aimed at optimizing the performance of these techniques. Modern 
cryptography currently favors the use of ECDSA due to several factors such as 
reduced key and signature sizes, the level of security it provides, and improved 
performance [11]. Elliptic curves have largely supplanted previous methods, notably 
DSA. In this lineage, Edwards curves have emerged as a successor to elliptic curves, 
bringing notable enhancements to this field. 

Harold Edwards, in 2007, delved deeply into the family of elliptic curves 
and introduced a new variant known as Edwards curves. This innovation laid 
the foundation for the Edwards-curve Digital Signature Algorithm (EdDSA). The 
EdDSA offers standardized performance and successfully addresses many security 
issues that traditional digital signature systems faced.
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Table 16.1 Comparison of EdDSA vs ECDSA 

Attributes Edwards curve DSA Elliptic curve DSA 

Curves .ax2 + yx2 = 1 + dx2y2 . y2 = x3 + ax + b

Signature scheme Schnorr signature scheme ElGamalsignature scheme 

Performance Faster Slower 

Order Not prime order Prime order possible 

Key recovery Not possible Possible 

Curve safety More Less 

Curve form General Subset 

Curve arithmetic Faster addition Slower 

Group law Complete Exception 

Elliptic Curve and Edwards 

EdDSA is a deterministic signature scheme that uses the elliptic curves Ed25519 
and Ed448 [12]. Unlike ECDSA, which relies on cyclic groups over the finite field 
of the curve and the discrete logarithm problem, as well as a variant of the El Gamal 
signature, EdDSA is based on the Schnorr signature scheme, making it simple, 
secure, and faster compared to ECDSA. 

Comparison of EdDSA vs ECDSA 

Basic arithmetic operations, the group law, and the prime order are optimized 
in EdDSA. EdDSA offers a high level of curve security and high performance, 
preventing security vulnerabilities. In the event of key loss or theft, recovery is 
impossible in EdDSA. Table 16.1 provides a comparison between EdDSA and 
ECDSA, based on sources [12, 13]. 

Ethereum Transaction 

Transactions are interactions among participants within a blockchain. In Ethereum, 
there are two types of transactions: user transactions and contract transactions. 
User transactions are used to transfer cryptocurrency (Ether in Ethereum) to a 
specific address. Contract transactions allow users, such as application developers, 
to execute predefined functions in smart contracts. These contracts are immutable 
computer programs deployed on the Ethereum blockchain [14]. This section 
examines in detail the essential components of an Ethereum transaction and the 
complex signing process that ensures the security and integrity of operations.
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Ethereum Transaction Format 

In the standard transaction format (Nonce, Gas Price, Gas Limit, To, Value, Data, 
v,r,s), only six elements are used, i.e., without v, r, and s, but with the new format, 
there are nine elements. 

If this new format is used, then the v of the signature must be set to 
. {0,1. }+ CHAIN_ID * 2 . + 35, where . {0,1. } is the parity of the y-value of the curve 
point for which r is the x-value in the secp256k1 signature process. If you choose 
to hash only six values, then v continues to be defined as . {0,1.} + 27 as before. 

This value is included to prevent simple replay attacks [16]. 

Practical Ethereum Transaction Signature 

To create a valid transaction, the sender must perform a digital signature of the 
message using the elliptic curve signature algorithm. However, this “transaction 
signature” actually pertains to the Keccak-256 hash of the transaction data serialized 
according to the RLP scheme. It is important to note that the signature is applied to 
the hash of the transaction data, not the transaction itself. To sign a transaction in 
Ethereum, the initiator must: 

1. Develop a data structure for a transaction that includes nine elements: nonce, 
gasPrice, gasLimit, to, value, data, chainID, 0, 0. 

2. Generate an RLP-encoded message from the transaction data structure, creating 
a serialization of the message. 

3. Calculate the Keccak-256 hash (SHA3 family) of this serialized message. 
4. Sign the hash of the message with its ECDSA private key. The ECDSA [17] 

signature process, summarized, proceeds as follows: 

• Computation of a random number called nonce (k) 
• Computation of r . = k.G, where G is the base point of the secp256k1 curve. 
• Computation of s .= k−1(H(M)+r.sk), where H is the SHA-256 hash function 

and sk is the private key 

5. Use “v”: The “v” value in Ethereum is added to indicate which of the two public 
keys (compressed or uncompressed) should be used to verify the signature. The 
value of “v” depends on the Ethereum network (mainnet, Goerli, Sepolia, etc.) 
and whether the public key is compressed or uncompressed. 

6. Add the values “v,” “r,” and “s” to the transaction. 
7. Broadcast the signed transaction on the Ethereum network. Miners on the 

network receive the transaction, verify it, and add it to the next block if they 
deem it valid.
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Ed25519 Signature 

The signature system is defined on the elliptic curve group: 
E = . {(x,y) . ∈ . Fq* . Fq : -. x2+ . y2= 1+ .dx2

.y2
. }

where d = -.
121665

121666
. ∈ . Fq and q = .2255 - 19. The neutral element of the group is 

0 =(0,1), and the complete addition law of the Edwards curve is 

(. x1,. y1) + (. x2,. y2) = (.
x1y2 + x2y1

1 + dx1x2y1y2

, .
y1y2 + x2x1

1 − dx1x2y1y2

) 

The number of points on the elliptic curve is . |E. |=8*L, where 
L =  .2255+ 27742317777372353535851937790883648493 is prime. The base point 
B, as defined in RFC [5], has an order equal to L. The base point was selected as 
the point with the smallest “u” coordinate in the Montgomery representation (u = 9) 
[18]. 

Algorithm 1 Key generation 
Require: k(An EdDSA secret key is a string of b bits) 

1. . H(k) ← (h0, h1, ..., h2b−1)

2. . a ← 2b−2 +∑
3⩽i⩽b−3 2

ihi

3. . A ← a · B

4. return ENC(A) 

Algorithm 2 Signature generation 
Require: M,(h0, h1, ..., h2b−1), B and A  

1. a ← 2b−2 +∑
3⩽i⩽b−3 2

i hi 
2. h ← H(hb, ..., h2b−1,M)  
3. r ← h mod L  
4. R ← r · B 
5. h ← H(R,  A,  M)  
6. S ← (r + ah) mod L 
7. return (R,S) ; 

Algorithm 3 Signature verification 
Require: M,A 

if R ∈ E and S ∈ {0, 1, ..., L − 1} and 8S · B = 8 · R + 8H(R,  A,  M)  · A ∈ E then 
return True ; 

else 
return False ; 

end if 
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Integration 

Description 

In this section, we propose the integration of the EdDSA signature algorithm 
into the Ethereum transaction signing process for enhanced security and improved 
performance. 

Integration of EdDSA into Ethereum Transaction Signing 

ECDSA uses elliptic curves over finite fields to perform signature computations. 
In ECDSA, signature generation involves selecting a random nonce, followed by 
complex computations based on hash functions and mathematical operations on the 
elliptic curve. Additionally, the “v” value is added to the signature to indicate which 
public key is used for verification. EdDSA simplifies the signature process by using 
Edwards curves. In EdDSA, signature generation is done deterministically, using 
a hash function to generate a nonce from the private key and the message. Unlike 
ECDSA, EdDSA directly generates a single signature value, eliminating the need for 
the “v” value. This simplified approach makes EdDSA more efficient and less prone 
to human errors, and most importantly, it significantly speeds up transaction signing 
because by removing the “v” value, transactions consume less data. In practice, 
when using EdDSA, the transaction signing process follows the steps outlined in 
section Practical Ethereum Transaction Signature, with the following replacements 
for steps 4, 5, and 6: 

4 Sign the hash of the message with the EdDSA private key. The EdDSA signature 
process involves the following steps: 

a Generate a random number called nonce (r). 
b Calculate the Edwards curve point: R . = r . · B, where B is the base point of the 
Ed25519 curve. 

c Calculate the scalar “s” using s . = r . +H(R.|| A || M) . · sk, where H is the SHA-
512 hash function, A is the public key, and sk is the private key. 

5 Do not use “v”: Unlike ECDSA, EdDSA does not need the “v” value to indicate 
which public key to use for signature verification because the EdDSA signing 
process directly generates a single signature value. 

6 Add the “r” and “s” values to the transaction.
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Security and Performance 

Security Analysis of Ed25519 

EdDSA is appreciated for its level of security and resistance against certain well-
known attacks, mainly due to its deterministic construction. The primary distinction 
between deterministic and random signature schemes lies in nonce generation. In 
random schemes, this relies on the use of a random number generator, while in 
deterministic schemes the nonce is typically a function of the input message and the 
private key. Despite its deterministic construction, EdDSA can still be vulnerable to 
fault attacks. 

The first fault injection attack against elliptic curve cryptography was proposed 
by Biehl et al. [19]. They demonstrated that if the base point B is tampered with 
during signature operations and if the ECC implementation does not check whether 
this point resides on the curve or not, then computations will be performed on 
another curve where the Discrete Logarithm Problem (DLP) can be easily solved 
using the Pohlig–Hellman algorithm. This attack was later improved upon by Ciet 
et al. [20]. They showed that the altered base point value can be recovered from 
the erroneous output. Furthermore, they demonstrated that a fault occurring in 
system parameters such as field definition or curve coefficient values can lead to 
the recovery of the secret key. 

Malleability We see no relevance of “malleability” to the standard definition of 
signature security. For instance, consider a slight modification to the system where 
S would be replaced with -S and A with -A. This would turn one valid signature into 
another valid signature for the same message, but with a new public key. However, 
this modification still would not achieve the attacker’s goal, which is to forge a 
signature for a new message under a target public key. 

Fault Attack Y. Romailler et al. [21] used the deterministic construction of EdDSA 
to perform a fault attack based on disrupting step 5 of Algorithm 2 when calculating 
the signature. They demonstrated that if the output of the hash is altered and changed 
to a value h. 

' /= h, this will lead to a faulty signature (R,S. 
'
), so only the second part 

of the signature is modified, and the value of a can be recovered as follows: 
a = (S - S. 

'
)(h - h. 

'
). −1 mod L 

The values R, A, and M are known, so the value of h can be computed, but the 
value of h. 

'
must be known or guessed. This limitation can be circumvented if the 

fault model is adequately characterized and if the altered value can be estimated 
during a post-processing phase. For example, they used the fault model as a random 
byte e .∈ {1, 2, . . . , 255} injected at a random offset i after the hash computation. 
The complete fault verification algorithm for their fault attack model proceeds as 
follows: 

If the algorithm returns ERROR, it means that the injected fault did not 
correspond to a single random byte error. A solution has been proposed in [21] 
to counteract this attack. Our implementation is resistant to these types of attacks
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Algorithm 4 Ed25519 fault post-processing 

Require: M,A,(R,S) and (R,S
'
) 

h ← H(R,  A,  M)  
i ← 0 
for i ← 32 do 

e ← 1 
for i ← 256 do 

h
' ← 28i e ⊕ h 

a ← (S − S '
)(h − h'

)−1 mod L 
if a · B == A  then 

return a 
end if 
e ← e + 1 

end for 
i ← i + 1 

end for 
return ERROR 

because it is based on RFC 8032 [5], in which several implementation methods have 
been proposed to protect against these kinds of attacks. 

Side-Channel Attack Samwel et al. [22] demonstrated the possibility of side-
channel attacks on the SHA512 hash function utilized in EdDSA. As a protective 
measure, they propose introducing randomness into the hash output. Their attack 
relies on Ed25519 as implemented in WolfSSL on an STM32F4 microcontroller. In 
the generation of the Ed25519 signature, it is known that the public key is computed 
as follows: R . = r.B. Samwel et al. extracted the ephemeral key r from its scalar 
multiplication with the base point of the curve. 

Performance and Comparison 

ECDSA vs. EdDSA Here, we present a comparison of the EdDSA signature 
algorithm with the ECDSA signature algorithm in Ethereum transaction signing. 
The implementation is done in Python on an Intel Core i3 processor with 8 GB of 
RAM and a 64-bit operating system. The comparison is based on the execution 
time of various algorithms (key generation, signature generation, and signature 
verification) with a key size of 256 bits. 

The execution times are listed in Table 16.2. We measure the speed of our 
implementation (the number of CPU cycles required to process 1 byte) as 

. 
execution t ime(s) ∗ processor f requency(Hz) 

size  of  the  test  f  ile  (bytes)  
. 
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Table 16.2 Execution times for Ed25519 and ECDSA 

Schemas 

Cycles Execution time (in seconds) 

Key 
generation 

Signature 
generation 

Signature 
verification 

Key 
generation 

Signature 
generation 

Signature 
verification 

Ed25519 18732 15838 46455 0.05 0.04 0.13 

ECDSA 190493 182239 164711 0.54 0.51 0.46 

Discussion As we know, EdDSA (Ed25519) and ECDSA have a similar key size 
of 256 bits and offer the same level of security at 128 bits. 

With our implementation, we can observe that the key generation, signature 
generation, and signature verification processes are much faster in Ed25519 than 
in ECDSA. This is highly advantageous in a distributed environment like the 
blockchain. 

Conclusion 

As a first contribution, we proposed the use of EdDSA in Ethereum transaction 
signatures instead of ECDSA. Furthermore, we implemented both signature algo-
rithms for signing Ethereum transactions in a simulated environment. As shown in 
Table 16.2, EdDSA is significantly faster than ECDSA. 
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Chapter 17 
Vulnerability Prediction of Web 
Applications from Source Code Based 
on Machine Learning and Deep 
Learning: Where Are At? 

Mawulikplimi Florent Gnadjro and Samba Diaw 

Abstract With the rise of new information technologies around the world, many 
distributed applications and web applications have emerged, so it is important 
to make them secure. Despite the emphasis placed by software security experts 
on the need to build secure web applications, the number of new vulnerabilities 
found in web applications is growing. Machine Learning (ML) and Deep Learning 
(DL) through their vulnerability prediction approach are increasingly being offered 
for source code analysis, providing a powerful way to make web applications 
less vulnerable. Many ML- and DL-based approaches have been proposed to 
automatically detect, locate, and repair software vulnerabilities. Although ML-
based are more effective than vulnerability analysis tools based on static source 
code analysis by security experts, accurately identifying types of vulnerabilities and 
estimations severity remains challenging. The graphical representation of source 
code, the best vulnerability differentiation, and the support of a large corpus 
of vulnerabilities are not at least. This thesis aims to study the prediction of 
vulnerabilities in web applications from source codes using ML and DL techniques. 
A comprehensive review of the literature on the different approaches proposed for 
the prediction of vulnerabilities of web applications will allow us to identify the 
current state of research and challenges in this field, thus positioning us well to make 
a significant contribution in the prediction of vulnerabilities of web applications 
using the techniques of ML and DL. 

Keywords Machine learning · Deep learning · Vulnerabilities · Security · 
Source code · Vulnerability prediction 
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Introduction 

The growth of web applications has been significant over the last decade. According 
to figure provided by Kepios, the number of Internet users increased from 2.177 
billion in January 2012 to 4.95 billion in January 2022, an average annual growth 
of 8.6% over the past decade as a whole. These figures show that the use of web 
applications is widespread and continues to grow. By most estimates, more than 
three quarters of cybercrime attacks target applications and their vulnerabilities. 
However, this growth has also led to an increase in the number and complexity 
of software vulnerabilities. Software vulnerabilities can be exploited by attackers to 
access confidential information and cause significant damage. These flaws are often 
due to programming or design errors, but can also result from insufficient security 
practices. 

Faced with this challenge, it is therefore crucial to integrate automatic detection 
and correction of vulnerabilities into the web applications development process. 
Nowadays, instead of using static source code analysis tools, researchers and soft-
ware engineers use machine learning (ML) and deep learning (DL) for predicting 
vulnerabilities in source code. Examples: vulnerabilities detection in source code 
using machine learning [2] and source code representation [3]. The increased 
availability of data (source code) is driving growing interest in deep learning. 
Researchers are particularly interested in deep learning because it promises good 
results without requiring an extraction process as required by traditional machine 
learning models [5]. By leveraging machine learning capabilities, developers and 
security experts can identify and correct potential vulnerabilities in the early stages 
of development, which can significantly reduce the time and costs associated with 
correcting security issues at a later stage. 

The remainder of this chapter is structured as follows. First, we present the back-
ground and issues of this work. In section “Purposes”, we present the purpose, while 
section “Related Works” deals with the related works on vulnerability prediction 
of web applications from source code using ML and DL. In section “Research 
Direction”, we discuss the research direction. Finally, we conclude this work by 
recalling the problem and objectives of this work while indicating our research 
direction. 

Background and Issues 

Developed to meet a multitude of our needs, web applications are now essential 
tools in our daily lives. Web applications have grown considerably in recent years, 
just like technologies in general. The complexity of the technologies used today to 
create web applications (Java, C, C++, Groovy, JavaScript, PHP, Ruby, J2E, etc.) 
makes it particularly difficult to prevent the introduction of vulnerabilities in these 
applications and to estimate or predict their presence. In addition, network security
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and firewall installation do not provide adequate protection against attacks because 
these applications are by definition public and accessible to everyone, and most 
vulnerabilities are due to programming errors in the application itself [6]. 

According to statistics from Common Vulnerabilities and Exposures (CV) [7, 8], 
in 2020 and the first six months of 2021, the world saw a record number of exploited 
software security vulnerabilities. Thanks to these statistics, we can see the threats 
faced by web applications. Web application vulnerabilities can be severe, ranging 
from loss of information or disclosure of secret information to manipulation and 
system failure. All can have a serious impact on businesses, governments, society, 
and individuals. An exploit such as ransomware, for example, has shut down 
hospitals, telecommunications services, and transportation systems and caused 
damage in the hundreds of millions of dollars [9]. 

Many vulnerabilities are caused by subtle code flaws, covering a few or even 
a single line of code [10] in web applications. Most security problems in web 
applications are related to the exploitation of source code vulnerabilities. Manual 
detection of these vulnerabilities is very difficult and costly in terms of time and 
budget. Consequently, the use of tools that help developers and decision-makers 
to automatically predict vulnerable components is necessary, because it minimizes 
the search effort and helps to minimize the costs involved in remediation of 
vulnerabilities. This is how source code flaws have been discovered using static 
and dynamic analysis techniques. However, static analysis techniques are known to 
generate a high number of false positive results, whereas dynamic analysis tools are 
designed to underestimate the number of flaws in a program and are therefore prone 
to false negatives. In addition, tactic analysis techniques can require significant 
computing resources, while dynamic analysis tools increase the size and execution 
time of a program. 

As a result, these techniques cannot yet be seamlessly integrated into continuous 
delivery pipelines of today’s web applications. In this respect, machine learning 
(ML) techniques seem to have become a very attractive alternative to traditional 
software defect detection and correction techniques. Given the growing interest in 
ML applications in source code, several studies have begun to apply ML for bug 
prediction. 

Purposes 

The general goal of our study is the prediction of vulnerabilities in web applications 
based on machine learning and deep learning. To achieve this, we propose an 
innovative approach the takes into account the following criteria: 

Accuracy in Vulnerability Detection Static analysis tools can only detect generic 
errors using a list of static rules and predefined vulnerability models. They do not 
allow for in-depth precision of vulnerabilities and their causes.
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Granularity of Detection Vulnerability within source code must be identified at a 
finer granularity to locate the vulnerability and facilitate correction. 

Graphical Representation of Code Source A method of detecting vulnerabilities 
automatically and intelligently, using a tools operation at source code level to 
provide an intermediate graphical representation of source code and a graphical 
neural-network-based model for vulnerability prediction. A major challenge is the 
representation of code source in a form that effectively captures the syntax and 
semantics of the source code, given that each developer has his or her own style of 
code writing, choice of variable names, etc. . . In addition, different programming 
languages are used by developers. 

A Vulnerability Classification Model Using Deep Learning Exploring possible 
ways of leveraging learning techniques to apply a model trained on a certain 
language to other languages. 

Related Works 

Vulnerability Datasets 

Data plays a crucial role in the creation and evaluation of software vulnerability 
detection models based on machine learning (ML) and deep learning (DL) [1, 19– 
21]. Vulnerability detection models rely on datasets to learn how to identify security 
flaws. Over the last decade, various vulnerability-related test suites and datasets 
have emerged, each with specific objectives. These sets were then adopted by other 
security researchers looking for relevant data to train or evaluate their techniques. 
The quality of datasets can be assessed by various factors such as data source, data 
size and scale, data types, and preprocessing steps performed on the data [4]. In this 
section, we review the data used in vulnerability detection studies and proceed to 
an in-depth analysis of the data processing steps, as well as an origin of the data, 
data types, and in the following section their representation. Consequently, there is 
a gap in research on how to obtain sufficient datasets to facilitate the training of 
ML/DL models for source code vulnerability detection. Our preliminary analysis 
dealing with vulnerability datasets reveals that these can be classified into three 
categories, namely reference sources, collected sources, and hybrid sources. These 
include open-source projects, public vulnerability databases, and bug repositories 
[19]. The limitations identified in the existing datasets are related to obsolete 
library dependencies: Some vulnerabilities in the dataset from [19] are no longer 
reproducible due to obsolete library dependencies. This may affect the relevance of 
some vulnerabilities for current research: data size; although the dataset contains 
information, it does not necessarily cover all existing vulnerabilities. This may 
limit the graphical representation for certain categories of vulnerabilities. One of 
the challenges of detecting and correcting vulnerabilities in source code is the
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insufficient amount of data available for training operations. Our aim is to aggregate 
a diverse set of programs or code extracts covering different application domains, 
programming languages, and vulnerability types. From the data collected, we 
will carefully select the programs to be included in our reference dataset. This 
selection process will take into account elements such as program complexity, 
vulnerability diversity, and code quality. Our aim will be to create a comprehensive 
set that addresses a wide range of maintainable vulnerabilities and reflects real-life 
situations. 

Source Code Representation 

Source code representation plays an important role in vulnerability prediction using 
ML/DL. In order to carry out our research, we investigated the following two 
questions: 

Q1: What studies address source code representation models? 
Q2: Which model offers the best source code representation for machine learning? 

The more features we capture from the data, the better the modeling we can perform. 
Related studies such as [3, 14–17] inform us that methods such as fastText BERT, 
word2vec are effective for source code representation. Our results show that all code 
presentation methods are suitable for representation, but the BERT for code model 
is more promising because it takes less time to implement. 

According to the studies carried out at article level [3], the Long Short-Term 
Memory (LSTM) model achieved an exceptional overall accuracy of 93.8% in 
predicting Python source code vulnerabilities. Analyzing the different types of 
vulnerabilities, they noted slight variations in model performance depending on 
source code integration. However, the prediction model based on the word2vec 
representation of the code clearly outperformed the models using fastText and 
BERT to detect SQL injections. In the case of command injection, cross-site request 
forgery (XSRF), remote code execution, and graph disclosure, BERT-based models 
outperformed models using the other two encoding methods. 

The challenges identified by these articles include programming complexity, 
code representation, improving semantic representations, and the use of different 
classifiers. Thus, in our work we will study the representation of source code in a 
form that effectively captures the syntax and semantics of source code, given that 
each developer has his or her own style of writing code, choosing variable names. . . 

Machine Learning Detection 

Article [18] presents an empirical study on the use of machine learning (ML) and 
statistical techniques to predict software vulnerabilities. The authors evaluate the
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performance of these techniques using data from ten open-source software projects 
and according to various criteria such as accuracy. The study evaluates nine machine 
learning methods (feed-forward neural network with backpropagation (FFBPNN), 
cascading feed-forward neural network with backpropagation (CFBPNN), adaptive 
neuro fuzzy inference system (ANFIS), multilayer perceptron (MLP), support 
vector machine (SVM), bagging, M5Rrule, and M5P. Reduced error pruning and 
three statistical techniques (Alhazmi–Malaiya Model, Linear Regression, Logistic 
Regression Model). The authors conclude that machine learning techniques show 
a remarkable improvement in software vulnerability prediction over statistical vul-
nerability prediction models. The applicability of the techniques is examined in two 
approaches, namely suitability and predictive capability. However, the authors high-
light some limitations in the application of machine learning techniques, namely 
insufficient training data: The article points out that access to large and diverse 
datasets is often limited, which can lead to bias and generalization errors; model 
interpretability: Some models such as deep neural networks lack interpretability. It 
is therefore essential to understand how models make their decisions in order to 
apply them effectively in real-life scenarios. 

The referenced article [13] reviews papers that have studied machine learning 
approaches to detecting and correcting vulnerabilities in source code. Their studies 
have raised a number of challenges in the detection and correction of vulnerabilities 
in source code, namely the definition of a repository: It is essential to establish a set 
of benchmarks for evaluating the performance of models; language coverage and 
error types: Models must be able to detect vulnerabilities in different programming 
languages and for different error types, nonlinear code structure. With this in mind, 
our research will focus on the definition of a standard repository and a study of 
language coverage. 

Deep Learning Detection 

We are now presenting some articles on vulnerability prediction using deep learning. 
Previous peer-reviewed investigations have been carried out on similar topics, and 
we will discuss them in the following lines. Indeed, we carried out a systematic 
survey to see the various works carried out by researchers over the last seven (07) 
years in vulnerability prediction in source code with an ML/DL-based approach 
in order to better understand the challenges. In [11], the authors studied the use 
of heterogeneous graphs to represent both the syntactic and semantic structure 
of source code. They use neural networks on heterogeneous graphs to learn to 
reason about these complex structures. These models propagate information on the 
nodes and edges of the graph. The article evaluates this approach on two tasks: 
Code comment generation: predicting relevant comments for code snippets; method 
naming: finding appropriate names for methods in code. Their work has shown that 
using heterogeneous graphs to represent the structure of source code, and exploiting
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this information to improve the semantic understanding of programs, is a very 
effective way to improve the quality of code. 

Ref. [12] carried out their work on vulnerability detection through source code, 
also proposing a tool called JCPG (Java Code Property Graph). This tool allows 
source code to be represented in the form of graphs fed by a pretrained GNN 
(Graph Neural Network) model to perform classification tasks. Experimental results 
show that the model outperforms the static analyzers and GNN models previously 
used for dataset. So the combination of a tool that operates at source code level to 
generate an intermediate graphical representation with a GNN model can be used as 
a vulnerability prediction tool. 

To deepen their study, future work could focus on improving graph representa-
tions (explore other types of graphs such as data dependency graphs to capture more 
information about code structure, investigate methods for integrating vulnerability-
specific contextual information into graph representations), learning transfer (study 
how to transfer knowledge learned from one vulnerability dataset to other program-
ming languages or vulnerability types), a diversified dataset (create larger and more 
diversified vulnerability datasets, covering different vulnerability categories and 
programming languages, explore data from open-source and proprietary projects), 
and assessing the robustness of models in the face of adverse attacks. Our study 
covers the analysis of the source code but above all of the vulnerabilities written by 
a developer rather than focusing on the malicious code injected by a hacker or hacker 
and also deals with the points related to precision in the prediction of vulnerability 
in the source code. 

Discussion 

Studies diverge according to the specific types of faults they target. This diversity 
leads to the creation of a variety of fault models, with implications for representation 
choices. These factors seem to determine whether a tool can automatically correct 
bugs or simply detect them. In general, syntactic errors are easier to spot, while 
vulnerabilities pose more complex challenges. Given this complexity, most studies 
focus more on defects than on vulnerabilities. This hypothesis is justified by 
examining studies on the datasets used by researchers. Synthetic datasets are mainly 
used by vulnerability detection tools. It should be noted that vulnerability prediction 
tools use real projects and manage to identify vulnerabilities, but this cannot be done 
effectively on a large scale and without a large number of misclassifications. We 
find that defect correction tools can achieve their intended purpose using simpler 
representations, while defect detection tools use more advanced and combined 
representations. Defect prediction tools use more advanced and combined repre-
sentations. This also shows that tackling vulnerabilities and semantic defects is 
probably more difficult, so large-scale automatic correction is not yet possible. 
ML/DL approaches have been widely explored by researchers, but they also have 
their limitations:
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Lack of Training Data For ML/DL models to be effective, high-quality training 
data is required. It should be noted that vulnerabilities are often rare and difficult to 
find in datasets. 

Code Characteristics Extracting meaningful characteristics from source code is a 
challenge. Traditional methods focus on basic metrics such as code length, but this 
may not be enough. 

Class Imbalance Vulnerabilities are often in the minority compared to healthy 
code. This can lead to class imbalance and affect model performance. 

Generalization Models may overlearn the specifics of training datasets and fail to 
generalize correctly to new codes. 

Although ML/DL approaches have shown promising results, it is essential to 
combine them with other methods and consider their limitations for accurate 
vulnerability prediction in source code. This chapter is motivated by the need 
to discover models in the rapidly evolving field of ML for source code. Among 
the challenges to finding effective solutions are high-quality datasets of real, 
representative, and correctly labeled data. Effective source code representation is 
capable of semantic understanding in terms of goals and relationships. 

Solution Architecture 

Recent years have seen the emergence of ML for vulnerability scanning. A typical 
ML pipeline comprises several important stages: data collection and preparation, 
model training, and finally evaluation and deployment. As a rule, the tool is 
monitored, maintained, and improved after deployment. For implementation, we 
will follow the steps below: 

Data Collection Collect a set of source code data containing code examples with 
and without vulnerabilities. The data will come from code repositories, vulnerability 
databases, or other sources. 

Data Preprocessing Clean and normalize data. Extract relevant features from the 
code, such as tokens, n-grams, embeddings, etc. 

Model Selection Select an appropriate ML/DL model for the vulnerability predic-
tion task. Examples of models: neural networks, convolution networks, recurrent 
networks, etc. An in-depth study will be carried out in this respect. 

Model Training Divide data into training and test sets. Train the model on the 
training set using backpropagation and optimization techniques. 

Model Evaluation Evaluate model performance on the test set. Use metrics such 
as precision, recall, F-measurement, etc.
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Model Optimization Adjust model hyperparameters to improve performance. Use 
techniques such as grid search, cross-validation, etc. 

Model Deployment Integrate the model into a real-time vulnerability detection 
system. Monitor model performance in production. Integrate machine learning into 
development tools. Analysis results can be used to enhance existing vulnerability 
detection tools ; integrating machine learning models into IDEs (integrated devel-
opment environments) could help developers detect and correct vulnerabilities more 
effectively. 

Continuous Updating Regularly update the model with new data to maintain 
accuracy. Retrain the model as required. 

Research Direction 

This research aims to explore new approaches for efficiently detecting vulnerabil-
ities in source code. We propose to use heterogeneous graphs to represent both 
the syntactic and semantic structure of the code, taking into account the different 
relationships between elements. We will then apply deep learning techniques to 
learn how to reason about these complex structures. Our aim is to improve the 
accuracy of vulnerability detection, while taking into account the specific challenges 
associated with these domains. Although datasets contain information, they do 
not necessarily cover all existing vulnerabilities. This may limit the graphical 
representation for certain categories of vulnerability. To improve the relevance of 
the dataset, it is essential to broaden the analysis corpus. Apart from supporting 
vulnerability prediction and automated remediation, research work can be directed 
into other application areas, such as vulnerability classification or analysis of 
vulnerability-related code changes. The results of the analysis can be used to 
enhance existing vulnerability detection tools by integrating machine learning 
models into IDEs (integrated development environments) to help developers detect 
and correct vulnerabilities more effectively. 

Conclusion 

Web applications are vulnerable to a wide range of security threats. Other than 
system vulnerabilities, most vulnerabilities are due to application bugs. For this 
reason, many techniques have been proposed in the literature to detect and prevent 
attacks on web applications due to poor security practices. The aim of this chapter 
is to position ourselves in according with the subject of prediction vulnerabilities in 
web application source code based on machine learning and deep learning. 

To clarify our topic, we first conducted a search and selected a few journals, 
surveys, and conference papers based on vulnerability prediction in the source code



246 M. F. Gnadjro and S. Diaw

of web applications based on machine learning and deep learning over the last seven 
(07) years. As a research direction, our next paper will focus on data collection. 
These will come from code repositories, vulnerability databases, or other sources. 
The aim will be to provide quality data on which to base the application of the 
representation model. 
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Chapter 18 
Business Process Management and 
Process Mining on the Large: Overview, 
Challenges, and Research Directions 

Mouhameth Fadal M. Aidara, Samba Diaw, and Mamadou Lakhassane Cisse 

Abstract This review addresses the integration of Business Process Management 
(BPM) and Process Mining (PM) in the context of Industry 4.0’s digital trans-
formation. It highlights how BPM enhances business process efficiency, reducing 
costs and boosting profit, while PM, leveraging data from event logs, offers insights 
into actual process execution, bridging data and process science. Despite their com-
plementary nature, the extent of BPM and PM integration remains underexplored. 
This review synthesizes existing literature and identifies future research directions, 
aiming to inform researchers and practitioners in these evolving fields. 

Keywords Business process management · Process mining · Business processes 

Introduction 

The advent of Industry 4.0, marked by a significant digital transformation, has 
reshaped the landscape of business processes toward unprecedented efficiency [1], 
necessitating a deeper understanding of Business Process Management (BPM) and 
Process Mining (PM). BPM, a discipline focused on the discovery, modeling, 
analysis, improvement, and optimization of business processes, plays a crucial 
role in reducing production costs and enhancing organizational profit [2, 3]. 
Complementing BPM, PM emerges as a field concentrating on the discovery, 
monitoring, and improvement of real processes through the extraction of knowledge 
from event logs, bridging data science and process science [4]. This review aims to 
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provide a comprehensive analysis of BPM and PM, exploring their integration and 
intersection and highlighting potential research directions. 

Motivations for this research are grounded in the rapid advancement of Industry 
4.0 and the digitalization of business operations [5], emphasizing the significance 
of BPM and PM in this context. The review intends to explore the synergies 
between these disciplines, aiming to enhance the digital transformation journey 
of businesses. Key challenges and opportunities within BPM and PM, including 
their role in addressing Industry 4.0 challenges, enhancing productivity, and their 
evolving relationship with new technologies, are discussed. 

This review aims to conduct an overview on BPM and PM, covering their defini-
tion, scope, and methodologies. The research also aims to explore the integration of 
BPM and PM with AI and Machine Learning techniques, addressing key challenges 
such as event data extraction and cleaning, business process model automatic 
(re)design, augmenting Process Mining with domain expertise, and common sense. 

The organization of the review is structured in the following manner: section “” 
provides an exploration of Business Process Management (BPM), covering its def-
inition, fundamental concepts, and challenges. Section “Comprehensive Overview 
of Process Mining: Definitions, Scope, and Fundamental Concepts” shifts the focus 
to Process Mining (PM), where it examines its definition, fundamental concepts, 
and challenges faced in this domain. Section “Research Directions” is dedicated 
to discussing the research directions that have been identified. Conclusively, 
section “Conclusion” presents a comprehensive summary of the key findings and 
delineates the implications for future research endeavors. 

Business Process Management (BPM): Definition, Evolution, 
Scope, Challenges 

Definition 

The concept of BPM, well known in the process experts community, has known 
a plethora of definitions in the literature. All those definitions essentially converge 
toward the same intellection of BPM as a management science of business pro-
cesses. Simply put, Business Process Management is a best practice management 
principle embraced and applied by organizations with the aim to uphold their 
competitive advantage [6]. It encloses a set of techniques, methods, and tools 
to efficiently govern operational business processes with the ultimate goal of 
maximizing their performance [2]. As mentioned, BPM basically operates on 
business processes. In a nutshell, a business process is a series of tasks performed 
within an organization for the purpose of creating an output [7].
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Exploring the Dynamics of Business Processes: Taxonomy, 
Components, and Essentials 

Operational Business Processes Taxonomy The scope of Business Process Man-
agement (BPM), as defined in section “Definition”, focuses primarily on operational 
business processes, excluding strategic organizational processes and implicit pro-
cesses [8]. Weske places business goals and strategies at BPM’s highest abstraction 
layer [9]. Operational business processes are concrete sequences of activities 
aimed at achieving organizational goals and delivering client-specific outcomes 
[10]. These contrast with strategic processes, which guide an organization’s future 
direction (ABPMP, 2013). Zur Muehlen et al. categorize operational processes into 
core (or identity) processes, which generate the organization’s primary products or 
services, and Support processes, which internally aid core processes’ execution [11]. 

Business Process Components A business process is a structured combination of 
events, activities, and decision points aimed at achieving specific outcomes. Events 
are defined as instantaneous occurrences without duration, marking significant 
points within a process. Activities constitute concrete work performed in a process 
and can be further divided into simpler units termed tasks. Decision points within 
a process represent critical moments where choices are made, influencing the 
process’s direction [2, 9]. 

Key elements of a business process also encompass actors, who can be internal 
(such as employees within the organization) or external (such as clients or partners). 
Physical objects and informational objects also play roles in the process, the 
former being tangible items involved in the process and the latter referring to 
data or documents used or generated. The execution of a business process leads to 
outcomes, which are of value to at least one customer, defining the process’s success 
or failure [2]. 

With reference to the preceding and simply put, we define a business process as 
a series of organized tasks, conducted by actors, influenced by events and decisions, 
culminating in outcomes beneficial to customers. 

Business Process Management (BPM) is then redefined here as an overarching 
framework that employs various methodologies, techniques, and tools for enhancing 
the efficiency and effectiveness of these business processes. The focus of BPM is on 
identifying, analyzing, redesigning, executing, and monitoring business processes 
to optimize performance [2, 9]. 

This approach underscores the importance of business processes as central 
elements within BPM. 

Essential Business Processes Corporations rely on fundamental business pro-
cesses for value creation in product or service delivery. Key processes include: 

– Order-to-Cash (O2C): This process begins with a customer order and ends with 
product/service delivery and payment collection [2].
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– Quote-to-Order (Q2O): Starting with a client’s quote request and concluding 
with order placement, this process often precedes O2C [2]. 

– Issue-to-Resolution (I2R): Initiated by a user issue with a product or service, it 
concludes with a mutually agreed solution between client and supplier [2]. 

– Application-to-Approval (A2A): Relevant in contexts like grant or program 
applications, this process spans from application submission to its approval or 
rejection [2]. 

BPM Life Cycle Overview Business Process Management (BPM) focuses on 
continually and incrementally improving business processes to enhance operational 
business processes efficiency [3]. A critical aspect is the BPM life cycle, which 
is a series of phases forming a loop for ongoing process improvement [12]. This 
concept, extensively detailed by Van der Aalst [3] and others such as Netjes 
[8], Hallerbach [12], Houy [13], Weske [9], and Zur Muehlen [11], provides a 
framework for process analysis, design, management, and improvement. The BPM 
lifecycle model by Van der Aalst [3], which is the focus of this review, aligns closely 
with Workflow Management (WFM) and is structured into four stages: Design, 
Configuration, Enactment, and Diagnosis. These stages cover respectively the 
(re)design of processes, their implementation in a Workflow Management System 
(WFMS), execution and stakeholder participation, and finally, using execution data 
for process improvement and issue identification [3]. Van der Aalst highlights the 
integral role of IT and process automation in BPM life cycle [3]. 

Critical Challenges in Business Process Management to Address 

In advancing from the foundational understanding of Business Process Management 
(BPM), it is imperative to address the multifaceted challenges it encounters, 
particularly in the context of digital innovation and the evolving business landscape: 

– BPM-Driven Value Creation from Data: The surge in data and technologi-
cal advancements significantly alters business operations, demanding profound 
changes in BPM. Organizations face socio-technical barriers in harnessing data 
for value creation, posing a challenge in integrating data-driven approaches both 
technically and culturally [14]. 

– Expansive BPM: Despite significant investments in BPM, many organizations 
experience fragmented processes, lacking a holistic view [14]. This limitation 
became pronounced during the COVID-19 pandemic, as organizations struggled 
with uncoordinated process changes [15]. Addressing “big processes,” those 
extending beyond organizational boundaries and intertwined with various dis-
ciplines, remains a critical challenge [14]. 

– Automated Process (Re-)Design: The trend toward “hyperautomation” has 
heightened the expectation of automating process operations [16]. However, pro-
cess (re-)design largely remains manual, cognitively demanding, and susceptible
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to errors. The creativity required for (re-)design and the complex socio-technical 
nature of processes pose significant hurdles to automation [14]. 

– Constructing Digital Twins: Business processes frequently undergo changes, 
both organic and planned, such as task reordering or automation [17]. These 
interventions impact various performance measures, creating a challenge in 
constructing digital twins that accurately reflect these dynamic changes [14]. 

– Lack of Objectivity in Process Descriptions: Process models are central to 
BPM [18] but often lack objectivity in terms of terminology, perspectives, 
and granularity [14]. This issue extends to manual model creation and process 
discovery algorithms, impacting the effective utilization of models [19]. 

– Augmenting Process Mining with Common Sense and Domain Knowledge: 
Event logs of medium quality present challenges in process mining, requiring the 
application of human common sense and domain expertise, which often remains 
unutilized by algorithms [14]. 

– Mining Processes Using Stochastic Data: The rise in event data from diverse 
sources, including sensors with varying quality, leads to challenges in creating 
accurate process logs. This results in uncertain sensor data, complicating process 
mining tasks when dealing with stochastic rather than deterministic data [14]. 

Comprehensive Overview of Process Mining: Definitions, 
Scope, and Fundamental Concepts 

Introduction 

Over the preceding twenty years, the field of process mining has emerged as an inno-
vative research domain, focusing on the analysis of business processes using event 
data as a primary source [20]. Distinct from conventional data mining approaches, 
which primarily concentrate on extracting relationships from the attributes of data, 
process mining uniquely prioritizes the exploration of business process models 
through the utilization of event data [21]. This transition to a comprehensive, end-
to-end process viewpoint is enabled by the growing accessibility of event data, 
in conjunction with the development of methodologies in process discovery and 
conformance checking [20]. 

Business process models (BPMs) are crucial representations of organizational 
workflows, facilitating their analysis, simulation, verification, and implementation 
via specialized software systems [21]. Traditionally, BPMs were crafted manually, 
devoid of any empirical grounding [9]. This approach has been rendered obsolete by 
the pervasive availability of event logs, which capture detailed traces of process exe-
cution by humans, machines, and software systems [4]. Process mining techniques 
leverage these event logs to automate the discovery, analysis, and improvement of 
business processes, offering significant advantages over manual approaches [20].
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In essence, Process Mining acts as a nexus between Process Science and Data 
Science, employing data (specifically, event data) to discover process models [4]. 

Definition 

As defined by Wil van der Aalst, often referred to as the “Godfather of Process 
Mining,” Process Mining is a field that aims to discover, monitor, and enhance actual 
processes [21]. This is achieved by extracting knowledge from event logs, which are 
abundantly available in contemporary information systems [4, 20]. 

Event Logs: The Foundation for Process Mining Initiatives 

The ubiquity of digital event data spans all sectors, economies, organizations, and 
homes, and its volume is expected to increase exponentially [22]. This pervasive 
presence of data enables novel approaches to process analysis, relying on empirical 
observations rather than manually constructed models [21]. 

Event logs, fundamentally, are records generated within information systems 
during the execution of business processes [4]. These logs, however, are not 
immediately accessible in a usable format. They need to be extracted, cleaned, 
and converted into XES (Extensible Event Stream), the data format understood by 
classical process mining techniques [20]. The process of extracting and purifying 
event logs constitutes the initial phase in process mining and often demands 
considerable effort and time. In fact, when initiating process mining projects, the 
tasks of event data extraction and cleansing can take approximately 80% of the 
project’s duration [20]. 

Exploring the Various Types of Process Mining 

Building upon the foundational role of event logs in process mining, it is crucial to 
examine the spectrum of methodologies employed in this domain. These diverse 
types of process mining transform event log data into actionable insights, each 
method providing unique approaches to analyze and improve business processes: 

– Process Discovery: This involves creating a process model based on observed 
example behaviors from event logs. The model should avoid overfitting (merely 
replicating observed traces) and underfitting (allowing behavior unrelated to what 
was observed) [4]. 

– Conformance Checking: This type requires both an event log and a process 
model. The aim is to identify discrepancies between the log and the model,
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effectively measuring how well the actual process executions conform to the 
predefined model [4]. 

– Performance Analysis: This type of process mining aims to improve processes 
by identifying performance-related issues, such as delays, limited production, 
missed deadlines, and quality problems, by analyzing frequency and time 
information in event logs [20]. 

– Comparative Process Mining: It involves the analysis of multiple event logs, 
which could be from different locations, time periods, or case categories. 
This method is used to identify differences and commonalities, facilitating 
benchmarking and root cause analysis [20]. 

– Predictive Process Mining: This forward-looking approach uses discovered 
process models to predict future states of the process, employing machine 
learning techniques to forecast potential bottlenecks, deviations, or compliance 
issues [20]. 

– Action-Oriented Process Mining: This type focuses on converting process 
mining diagnostics into actionable improvements. It involves using process 
mining insights to initiate direct actions or process changes, often assisted by 
low-code automation platforms or Robotic Process Automation (RPA) for task 
automation [20]. 

Critical Challenges in the Field of Process Mining 

Process mining, an integral component in the analysis of business processes, faces a 
spectrum of challenges that are pivotal to its effective application and advancement. 
The following enumerates and elaborates on these key challenges: 

– Finding, Merging, and Cleaning Event Data: The challenge involves address-
ing issues such as distributed data sources, incomplete data, the presence of 
outliers, and varying granularity levels in event logs [21]. 

– Dealing with Complex Event Logs Having Diverse Characteristics: This 
challenge focuses on managing event logs with varying characteristics, including 
handling extremely large logs and deriving reliable conclusions from smaller logs 
[21]. 

– Creating Representative Benchmarks: The objective is to develop benchmarks 
comprising example datasets and quality criteria for comparing and enhancing 
tools and algorithms in process mining [21]. 

– Dealing with Concept Drift: This involves understanding and managing 
changes in the process during analysis, which is crucial for process management 
[21]. 

– Improving the Representational Bias Used for Process Discovery: The 
challenge here is to refine the selection of representational biases to achieve high-
quality process mining results [21].
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– Balancing Between Quality Criteria such as Fitness, Simplicity, Precision, 
and Generalization: The task is to develop models that perform well across 
four quality dimensions: fitness, simplicity, precision, and generalization [21]. 

– Cross-organizational Mining: This challenge addresses the analysis of event 
logs from multiple organizations, including cooperative processes like supply 
chains and shared infrastructure [21]. 

– Providing Operational Support: The focus here is on using process mining for 
real-time operational support, encompassing detection, prediction, and recom-
mendation activities [21]. 

– Combining Process Mining with Other Types of Analysis: The challenge is 
integrating process mining with various analytical approaches like optimization, 
data mining, simulation, and visual analytics [21]. 

– Improving Usability for Non-experts: This involves designing user-friendly 
interfaces for process mining tools that automatically adjust settings and suggest 
analysis types [21]. 

– Improving Understandability for Non-experts: The goal is to present results 
in an easily understandable manner and clearly indicate the trustworthiness of 
the findings to prevent misinterpretations [21]. 

Research Directions 

In light of the evolving complexities and emerging challenges in Process Mining and 
Business Process Management (BPM), we propose the following future research 
directions that hold significant potential for advancing these fields. These directions, 
which will be the main focus of our future works, aim to meticulously address 
the critical issues identified and pave the way for more efficient, accurate, and 
user-friendly process analysis techniques. Our dedicated efforts in these areas will 
seek to transform the theoretical and practical aspects of process mining and BPM, 
responding dynamically to the needs of an ever-changing business landscape: 

– Advanced Frameworks for Data Integration and Cleaning: Research should 
focus on developing sophisticated frameworks for efficiently finding, integrating, 
and cleaning data from varied and distributed sources. Automated data cleaning 
algorithms, real-time data quality assessment tools, and meta-models for data 
standardization are pivotal areas that can substantially enhance the quality and 
usability of event data in process mining. 

– Hybrid Analytical Approaches in Process Mining: The integration of process 
mining with other analytical methods such as predictive analytics, simulation, 
and artificial intelligence, including machine learning and natural language 
processing, offers a promising avenue for comprehensive process analysis. This 
integration can lead to the development of hybrid analytical frameworks that 
provide deeper insights into business processes.
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– Innovations in Automated Process (Re-)Design: Automating the process of 
redesigning business processes is a challenging yet crucial area. Future research 
should explore AI-driven process optimization algorithms and simulation-based 
design testing to enable effective and efficient process (re-)design. 

– Augmenting Process Mining with Domain Expertise and Common Sense: 
Incorporating domain-specific knowledge and common-sense reasoning into 
process mining algorithms is essential for enhancing their applicability and 
relevance. Developing models for contextual data interpretation and collaborative 
mining techniques, where domain experts can contribute to and refine the 
analysis, will significantly improve the outcomes of process mining. 

Each of the aforementioned research directions presents a unique opportunity 
to delve deeply into the specific challenges faced by Process Mining and 
BPM. In our future works, we are committed to exploring and thoroughly 
investigating these areas, with the aim of unlocking new avenues for innovation 
and development in these fields. By rigorously studying these challenges, we 
intend to contribute significantly to a more nuanced understanding of business 
processes. Our efforts will be geared toward developing robust and effective 
process management strategies, particularly critical in the context of our increas-
ingly data-driven world. This focused exploration in our forthcoming research 
endeavors promises to yield valuable insights and advancements in Process 
Mining and BPM. 

Conclusion 

In conclusion, this review extensively explores the integration of Business Process 
Management (BPM) and Process Mining (PM) within the digital transformation 
landscape of Industry 4.0. It delves into the definitions, scope, and methodologies 
of BPM and PM, highlighting their critical roles in enhancing business process 
efficiency and providing insights through data analysis. The challenges and future 
research directions identified in this review underscore the need for advanced 
frameworks in data integration, hybrid analytical approaches, automated process 
(re-)design, and the incorporation of domain expertise in process mining. This 
comprehensive analysis not only provides a deeper understanding of BPM and PM 
but also opens avenues for future research, aiming to improve and innovate business 
processes in the digital era. 

References 

1. V. Kondarevych, K. Andriushchenko, N. Pokotylska, G. Ortina, O. Zborovska, and L. Budnyak, 
“Digital Transformation of Business Processes of an Enterprise,” TEM Journal, vol. 9, no. 4, 
2020.



258 M. F. M. Aidara et al.

2. M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of business process 
management. Springer, 2 ed., 2018. 

3. W. M. Van Der Aalst, “Business process management: A personal view,” Business Process 
Management Journal, vol. 10, no. 2, 2004. 

4. W. Van der Aalst, Process mining: Data science in action. 2016. 
5. Heiner Las, Peter Fettke, Hans Georg Kemper, Thomas Feld, and Michael Hoffmann, “Industry 

4.0,” Business and Information Systems Engineering, 2014. 
6. R. Y. Y. Hung, “Business Process Management as competitive advantage: A review and 

empirical study,” Total Quality Management and Business Excellence, vol. 17, no. 1, 2006. 
7. A.-W. Scheer, ARIS — Business Process Frameworks. 1999. 
8. M. Netjes, H. A. Reijers, and W. M. Van Der Aalst, “Supporting the BPM life-cycle with 

FileNet,” in CEUR Workshop Proceedings, vol. 364, 2006. 
9. M. Weske, Business process management: Concepts, languages, architectures, second edition. 

2012. 
10. ABPMP, Guide to the business process management common body of knowledge (BPM 

CBOK). 2013. 
11. M. Zur Muehlen and D. T. Y. Ho, “Risk management in the BPM lifecycle,” in Lecture Notes 

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics), vol. 3812 LNCS, 2005. 

12. A. Hallerbach, T. Bauer, and M. Reichert, “Managing process variants in the process life cycle,” 
in ICEIS 2008 - Proceedings of the 10th International Conference on Enterprise Information 
Systems, vol. 2 ISAS, 2008. 

13. C. Houy, P. Fettke, and P. Loos, “Empirical research in business process management - analysis 
of an emerging field of research,” Business Process Management Journal, vol. 16, no. 4, 2010. 

14. I. Beerepoot, C. Di Ciccio, H. A. Reijers, S. Rinderle-Ma, W. Bandara, A. Burattin, D. Cal-
vanese, T. Chen, I. Cohen, B. Depaire, G. Di Federico, M. Dumas, C. van Dun, T. Fehrer, 
D. A. Fischer, A. Gal, M. Indulska, V. Isahagian, C. Klinkmüller, W. Kratsch, H. Leopold, 
A. Van Looy, H. Lopez, S. Lukumbuzya, J. Mendling, L. Meyers, L. Moder, M. Montali, 
V. Muthusamy, M. Reichert, Y. Rizk, M. Rosemann, M. Röglinger, S. Sadiq, R. Seiger, 
T. Slaats, M. Simkus, I. A. Someh, B. Weber, I. Weber, M. Weske, and F. Zerbato, “The 
biggest business process management problems to solve before we die,” Computers in Industry, 
vol. 146, 2023. 

15. A. Van Looy, “How the COVID-19 pandemic can stimulate more radical business process 
improvements: Using the metaphor of a tree,” Knowledge and Process Management, vol. 28, 
no. 2, 2021. 

16. Kasey Panetta, “Gartner top strategic technology trends for 2021.,” 2020. 
17. M. Reichert and B. Weber, Enabling flexibility in process-aware information systems: Chal-

lenges, methods, technologies. 2012. 
18. M. Malinova and J. Mendling, “Identifying do’s and don’ts using the integrated business 

process management framework,” Business Process Management Journal, vol. 24, no. 4, 2018. 
19. C. Klinkmüller and I. Weber, “Every apprentice needs a master: Feedback-based effectiveness 

improvements for process model matching,” Information Systems, vol. 95, 2021. 
20. W. M. van der Aalst, “Process Mining: A 360 Degree Overview,” in Lecture Notes in Business 

Information Processing, vol. 448, 2022. 
21. W. V. D. Aalst, “Process Mining: Overview and Opportunities,” ACM Transactions on 

Management Information Systems, vol. 3, no. 2, 2012. 
22. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers, “Big data: 

The next frontier for innovation, competition, and productivity,” McKinsey Global Institute, 
no. June, 2011.


	Preface
	Scientific Days of Doctoral School of Mathematics and Computer Sciences December 20, 21, 22 , 2023—UCAD, Dakar (Senegal)
	Program Committee
	Organization Committee

	Contents
	Part I Invited Talks
	1 Mathematics and Computer Science in the Information Revolution
	Introduction
	Birth of Theoretical Computer Sciences T
	Dialogue Between Mathematics and Computer Science, Some Works, and Illustrations
	Social Network Problems GMOS1,GMOS2
	Optimal Mass Transport for Activities Location Problem KNS
	Internet: Another Complex Graph
	Numerical Approach of Network Problems in Optimal Mass Transportation NNMS
	A New Way to Study Linear Programming LNS

	Information Revolution
	Artificial Intelligence, Machine Learning, and Deep Learning
	Artificial Intelligence
	Machine Learning
	Deep Learning

	Quantum Model

	References

	2 NLP and Some Research Results in Senegal
	NLP: Definition, Issues, etc.
	Definition
	Challenges

	The Tasks of NLP
	Representation Models/Word Embedding/Text Vectorization
	Second Revolution in NLP: Transformer (Google 2017)
	Generative AI
	Stable Diffusion XL
	Emu Video
	ImageBind

	Review of Open-Source Models
	LLAMA 2
	BLOOM
	Massively Multilingual Speech
	Universal Speech Model

	References


	Part II Contributed Talks: Mathematics and Modeling
	3 On Absolute-Valued Algebras with Nonzero Central Element
	Introduction
	Preliminary Notes
	Main Results
	References

	4 On Algebraic Algebras Without Divisors of Zero Satisfying (xp, xq, xr)=0
	Introduction
	Notations and Preliminary Results
	Main Results
	References

	5 Computing Minimal Free Resolutions over Monomial Semirings with Coefficients in D-A Rings
	Introduction
	Preliminaries and Notations
	Properties of Gröbner–Shirshov Bases
	Syzygies Theorem
	Minimal Free Resolution in DRig[X]
	References

	6 Schur Complement and Inequalities of Eigenvalues on Block Hadamard Product
	Introduction
	Theory and Main Results
	Conjecture
	References

	7 A Perturbed Mann-Type Algorithm for Zeros of Maximal Monotone Mappings
	Backround
	Preliminaries
	Main Results
	Application to Differentiable Convex Minimization Problems
	References

	8 On Rickart and Baer Semimodules
	Introduction
	Preliminaries
	Basic Notions
	Introduction to Rickart Semirings and Semimodules
	Weak Rickart Semirings


	Characterizations of i-Rickart Semimodules
	Endomorphism Semiring of i-Rickart Semimodules
	Endomorphism Semiring of i-Baer Semimodules

	Links Between Rickart and Baer Properties
	Rickart Semimodules Versus Baer Semimodules
	Rickart Semirings Versus Baer Semirings
	Weak-Rickart Semimodules


	References

	9 Completion Fractions Modules of Filtered Modules over Non-necessarily Commutative Filtered Rings
	Introduction
	Definitions and Preliminary Results
	Topological Group
	Completion Modules of Filtered Rings and Filtered Modules

	On the Localization of Completion Modules
	On the Localization of Completion Rings and Modules
	S"0362S-Saturated Submodules of Completion Modules

	References

	10 On S-Lifting Semimodules over Semirings
	Introduction
	Basic Notions
	S-Lifting Semimodules
	Direct Sums of S-Lifting Semimodules
	Finite Direct Sums of S-Lifting Semimodules
	Arbitrary Direct Sums of S-Lifting Semimodules

	References

	11 A Contribution to the Study of a Class of Noncommutative Ideals Admitting Finite Gröbner Bases 
	Introduction
	Preliminaries
	Our Contribution
	Conclusion
	References

	12 Construction of Numbers with the Same ``Normality'' Properties as a Given Number
	Introduction 
	Preliminaries of the Main Result 
	Expansion of a Positive Real Number in Any Base
	Case of Rational Numbers

	Main Result
	References


	Part III Contributed Talks: Computer Science and Telecommunications
	13 Robustness of Imputation Methods with Backpropagation Algorithm in Nonlinear Multiple Regression
	Introduction
	Framework, Specification of Model, and Generation of a Data Population
	Types of Missing Data and Their Management
	Factors Affecting the Predictive Performance of a Multilayer Perceptron Neural Network and Backpropagation Algorithm
	Specification of Model and Generation of a Data Population

	Simulation Study
	Sampling Size, Simulating Missingness, and Missing Data Imputation
	Prediction with 3-MLP in R Software
	Performance Criteria and Statistical Method Comparison

	Results
	Effect of Imputation Methods by Missing Data Mechanism on the Performance of the Hyperparameter Structure of the 3-MLP Model
	Effect of Imputation Methods by Missing Data Mechanism on the Performance of Activation Function and Learning Rate
	Effect of Imputation Methods by Missing Data Mechanism on the Performance of Activation Function and Node
	Effect of Imputation Methods on Size and the Missing Data Rate
	Comparison of Imputation Methods

	Discussion
	Effect of Imputation Method by Missing Data Mechanism on the Structure of Hyperparameters of 3-MLP Models
	Effect of Imputation Methods on Size and Missing Data Rate
	Comparison of Imputation Methods

	Conclusion
	References

	14 A Better Random Forest Classifier: Labels GuidedMondrian Forest
	Introduction
	Background
	Method
	Experiments
	Results and Analysis
	Experiment 1
	Experiment 2
	Case of One Tree
	Case of 50 Trees

	Experiment 3

	Related Work
	Conclusion
	Appendix
	Datasets
	Technical Specifications

	References

	15 Remote Sensing of Artisanal Mines Buried in the Ground by Infrared Thermography Using UAV
	Introduction
	Related Works
	Materials and Methodology
	Method
	Presentation of the Explosive Mine
	Infrared Thermography
	Mathematical Modeling
	Materials and Tools Used

	Results
	Discussions
	Conclusion
	References

	16 Implementation of EdDSA in the Ethereum Blockchain
	Introduction
	Related Work
	Our Contributions
	Organization of the Paper

	Preliminaries
	Elliptic Curve Cryptography
	Elliptic Curve and Edwards
	Comparison of EdDSA vs ECDSA


	Ethereum Transaction
	Ethereum Transaction Format
	Practical Ethereum Transaction Signature

	Ed25519 Signature
	Integration
	Description
	Integration of EdDSA into Ethereum Transaction Signing

	Security and Performance
	Security Analysis of Ed25519
	Performance and Comparison

	Conclusion
	References

	17 Vulnerability Prediction of Web Applications from Source Code Based on Machine Learning and Deep Learning: Where Are At?
	Introduction
	Background and Issues
	Purposes
	Related Works
	Vulnerability Datasets
	Source Code Representation
	Machine Learning Detection
	Deep Learning Detection
	Discussion
	Solution Architecture

	Research Direction
	Conclusion
	References

	18 Business Process Management and Process Mining on the Large: Overview, Challenges, and Research Directions
	Introduction
	Business Process Management (BPM): Definition, Evolution, Scope, Challenges
	Definition
	Exploring the Dynamics of Business Processes: Taxonomy, Components, and Essentials
	Critical Challenges in Business Process Management to Address

	Comprehensive Overview of Process Mining: Definitions, Scope, and Fundamental Concepts
	Introduction
	Definition
	Event Logs: The Foundation for Process Mining Initiatives
	Exploring the Various Types of Process Mining
	Critical Challenges in the Field of Process Mining

	Research Directions
	Conclusion
	References





