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Preface

The present book has been thought as a bibliographical complement for the
disciplines of Methods of Applied Mathematics taught in one or two semesters in
courses of Mathematics, Applied Mathematics, Physics and Engineering. Besides,
we believe that it may well serve as a didactic support for several other disciplines.

For the sake of simplicity and clarity we have chosen a philosophy of learning by
doing: it is our belief that if the student does not practice while attempting a regular
course, he/she will hardly be able to apply his/her knowledge when necessary.

For this reason, chapters have been written in increasing levels of difficulty, as
well as the solved exercises presented in each chapter. Proposed exercises, however,
are not ordered the same way. All proposed exercises are accompanied by their
solutions or by some hint for solving them, so that the student will be able to
measure his/her own progress. With the exception of Chap. 11, all chapters are
written according to the following structure: after a brief introduction in which
we present a résumé of the theory, we propose and solve some examples and
then solved exercises are discussed step-by-step; each chapter ends with about 50
proposed exercises, with answer and/or suggestion, to be solved by the student.

In Chap. 1 we discuss a few simple linear, first-order and second-order ordinary
differential equations. Some nonlinear ordinary differential equations are also
discussed, namely the Riccati and Bernoulli equations. In Chap. 2, after a brief
review of power series, we discuss the general method for solving linear ordinary
differential equations with variable coefficients known as Frobenius method. In
Chap. 3 we study some properties of functions of a complex variable in order to
introduce, in Chap. 4, the so-called special functions, which are constructed by
means of the hypergeometric function. Having studied such functions, we present
in Chap. 5 the Fourier, Fourier-Bessel, and Fourier-Legendre series.

Chapter 6 is entirely devoted to Fourier and Laplace integral transforms, with
emphasis on the evaluation of inverse Laplace and Fourier transforms. In Chap. 7
we study Sturm-Liouville systems and introduce the concept of Green’s function. In
Chap. 8 we present linear, second-order partial differential equations with emphasis
on their classification before studying, in Chap. 9, the method of separation of
variables and the way to find solutions of such equations satisfying given boundary
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and initial value conditions. In Chap. 10 we present a brief introduction to fractional
calculus, discussing two types of fractional derivatives and the Mittag-Leffler
functions. Finally, in Chap. 11 we present some classical applications of the theory
previously developed, solving completely three or more examples and leaving a list
of exercises to be solved by the student.

It would be useless to try to name all the people who, in one way or another,
helped this work. First of all, we wish to express our gratitude to our wives, Ivana
and Maria. We also would like to mention especially Professors Waldyr Alves
Rodrigues Júnior, in memoriam, Erasmo Recami, in memoriam, Jayme Vaz Júnior,
Márcio José Menon, Quintino Augusto Gomes de Souza, and Hamilton Germano
Pavão, whose support and incentive were fundamental for the accomplishment of
this work. Also, we would like to express our gratitude to the many students whose
suggestions and/or corrections contributed a lot to improve this work. Finally, we
would like to express our sincere thanks to the anonymous ad hoc advisors and the
editor Robinson dos Santos for several useful suggestions.

Campinas, São Paulo, Brazil Edmundo Capelas de Oliveira
June 2024 José Emílio Maiorino
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Chapter 1
Ordinary Differential Equations

Mathematics is the queen of sciences.

1777 – Johann Carl Friedrich Gauss – 1855

In this chapter, we present some basic material on linear ordinary differential
equations of the first and second order. Some special first-order nonlinear ordinary
differential equations are also mentioned, namely the Bernoulli [1654 – Jacob
Bernoulli – 1705] and Riccati [1676 – Jacopo Francesco Riccati – 1754]
equations.

1.1 Preliminaries and General Concepts

In this section, we introduce the concepts of ordinary differential equation, order of
a differential equation, linearity, solution of an ordinary differential equation, and
the Cauchy [1789 – Augustin Louis Cauchy – 1857] problem.

1.1.1 Ordinary Differential Equation

Let x ∈ R denote an independent variable and y ∈ R the dependent variable,
which we call the unknown function. A differential equation is an equation
involving the independent variable x, the unknown function y, and its derivatives
y′, y′′, y′′′, . . . , y(n); it can be written in the general form

F
(
x, y′, y′′, y′′′, . . . , y(n)

)
= 0.

As the unknown function depends on just one independent variable, x, the
differential equation is called an ordinary differential equation. If the unknown

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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2 1 Ordinary Differential Equations

function depends on more than one independent variable, we will have a partial
differential equation, a concept presented in Chap. 8.

Example 1.1 These are some examples of ordinary differential equations:

(a)
d

dx
y(x) ≡ dy

dx
≡ y′ = 0, (b)

d2

dx2 y(x) + y(x) = 2022,

(c) y y′′ − 4y′ + 4y = x2, (d) (x2 + 1)dy + x3 dx = 0,

(e) y′′ + 8y′ + y4 = 0, (f) y
d5y

dx5
+ x

d2y

dx2
= 2021.

Here, x is the independent variable and y = y(x) is the dependent variable, that is,
the unknown function. �

1.1.2 Order

The order of an ordinary differential equation is the order of the derivative of highest
order that appears in the equation.

Example 1.2 The equations in Example 1.1 have orders (a) First, (b) Second, (c)
Second, (d) First, (e) Second, and (f) Fifth, respectively. �

Another importat criterion for classifying differential equations is their linearity
or nonlinearity.

1.1.3 Linearity

Let x, y ∈ R and y = y(x). The differential equation F(x, y, y′, . . . , y(n)) = 0
is called linear if F is a linear function of variables y, y′, . . . , y(n); otherwise, the
differential equation is called nonlinear.

Example 1.3 In what concerns their linearity, the equations in Example 1.1 are,
respectively, (a) Linear, (b) Linear, (c) Nonlinear, (d) Linear, (e) Nonlinear, and (f)
Nonlinear. �

1.1.4 Solutions

The solution of an ordinary differential equation is a function y = f (x), defined on
an open interval a < x < b, such that when we substitute y = f (x) along with
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its derivatives into the expression of the differential equation, it becomes an identity
on the interval a < x < b. In what follows, we distinguish, a general solution,
containing arbitrary constants, and a particular solution.

Example 1.4 Considering again Example 1.1, we have that:
Equation (a) has the general solution y = f (x) = C, where C is an arbitrary

constant, and a particular solution y = f (x) = 2022
Equation (b) has the general solution y = f (x) = C1 cos x + C2 sin x + 2022,

with C1 and C2 arbitrary constants. A particular solution is y = f (x) = 2022. �

1.1.5 Initial Value Problem

The general form (implicit form) of a first-order ordinary differential equation is
F(x, y, y′) = 0. Sometimes, it is possible to isolate the derivative y′, writing the
equation in the equivalent form (explicit form)

y′ = f (x, y). (1.1)

We are thus writing the first derivative y′ in terms of the dependent variable—the
unknown function—and of the independent variable.

In real problems, we usually need to find more than just a function satisfying
Eq. (1.1). It is also necessary that the function assumes a certain value y0—the initial
value—when the independent variable x is equal to a given value x0. We call this
condition, a condition imposed on y(x) at point x0, the initial condition.

The problem of finding a solution of Eq. (1.1) satisfying the initial condition
(condition imposed at a point) yx=x0 = y0 is known as Cauchy problem.
Geometrically this means that we are searching for a curve, named integral curve,
that passes through the point P(x0, y0) of the xOy plane.1

The general solution of Eq. (1.1) is a function y = f (x, C), depending on an
arbitrary constant C, such that (i) y satisfies Eq. (1.1) for all values of constant C

and (ii) whatever the initial condition y(x0) = y0, we can always find a value C0 for
the constant C such that the function y = f (x, C0) satisfies the initial condition.

Given a general solution, a particular solution of Eq. (1.1) is a function obtained
from the general solution by assigning a specific value to the arbitrary constant C.

Example 1.5 Let x ∈ R. Show that the solution of the initial value problem

{
y′ − 2y = −4x, y = y(x),

y(0) = 1

is given by y(x) = 2x + 1.

1 Theorems on the existence and uniqueness of solutions to the Cauchy problem can be found in
references [1–3].
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First, we verify that y(x) = 2x + 1 satisfies the linear, first-order ordinary
differential equation aforementioned. Evaluating its derivative we find that y′(x) =
2; substituting the result into the differential equation, we get

2 − 2(2x + 1) = 2 − 4x − 2 = −4x.

As for the initial condition, we see that

y(0) = 2 · 0 + 1 = 1.

Since y(x) = 2x + 1 satisfies the differential equation and the initial condition, it is
the solution of the initial value problem. �

1.2 First-Order Ordinary Differential Equations

We now turn our attention to the linear first-order ordinary differential equation,
for which we discuss a few elementary integration methods. We shall also mention
some specific nonlinear first-order differential equations, the Bernoulli and Riccati
equations.

1.2.1 The Linear Equation

Let x ∈ R. The first-order ordinary differential equation

dy

dx
+ p(x) y = q(x), (1.2)

where p(x) and q(x) are known functions defined on the open interval (a, b), is
called a linear first-order ordinary differential equation on the interval (a, b). In
order to solve this ordinary differential equation, we assume that functions p(x)

and q(x) are continuous on the interval (a, b). If p(x) = 0, the ordinary differential
equation can be solved by direct integration, as shown as follows.

1.2.2 Direct Integration

Let x ∈ R. Consider the linear first-order ordinary differential equation

d

dx
y(x) = f (x) (1.3)
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where f (x) is a nonhomogeneous—i.e. nonnull—term, independent of the depen-
dent variable y. Then, integrating both sides of Eq. (1.3) we obtain

y(x) =
∫ x

f (ξ) dξ + C ≡ F(x) + C,

where C is an arbitrary constant. This expression is the general solution of the linear
ordinary differential equation, as it contains an arbitrary constant.

Notice that an entirely analogous reasoning can be used, for example, for a linear
second-order ordinary differential equation of the type

d2y

dx2 = g(x).

In this case, the general solution contains two arbitrary contants because we have
two sucessive integrations. The generalization for an arbitrary order n ∈ N is
imediate.

Example 1.6 Solve the initial value problem (uniform motion)

⎧
⎨
⎩

d

dt
s(t) = v, v = constant,

s(0) = s0 = constant.

Integrating both sides of the linear first-order ordinary differential equation we
have

s(t) = vt + C,

with C an arbitrary constant. Imposing the initial condition, i.e., substituting t = 0
into the last equation, s(0) = v · 0 + C = s0, we get

s(t) = s0 + vt,

which is the well-known horary equation of uniform motion, characterized by
having a constant speed. �

1.2.3 Integrating Factor

If p(x) �= 0 in Eq. (1.2), we introduce the so-called integrating factor, denoted by
μ(x), so as to turn the ordinary differential equation in a form in which we can use
direct integration. Indeed, multiplying both sides of Eq. (1.2) by
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μ(x) = exp

(∫ x

p(ξ) dξ

)
,

we can write, after simplification,

d

dx
[y(x) μ(x)] = q(x) μ(x).

Integrating both sides with respect to variable x and solving for y(x), we obtain the
general solution (it contains an arbitrary constant) of the linear first-order ordinary
differential equation:

y(x) = 1

μ(x)

∫ x

q(ξ) μ(ξ) dξ + C

μ(x)
,

where C is an arbitrary constant. μ(x), which transforms the left side of Eq. (1.2)
into an exact derivative, is known as the integrating factor to this differential
equation.

It is worth mentioning that the uniqueness, the existence, and the stability of
the solution for the linear initial value problem, i.e., the linear first-order ordinary
differential equation with a given initial condition, can be proved as a theorem [4].

Example 1.7 Let x ∈ R. Solve the linear initial value problem

⎧⎨
⎩

d

dx
y(x) − y(x) = x,

y(0) = 0.

Comparing this problem with the general form of the integrating factor, we can
see that, in this case, the integrating factor is

μ(x) = exp

(∫ x

(−1) · dξ
)

.

Calculating the integral, we have μ(x) = e−x . Multiplying both sides of the
ordinary differential equation by μ(x) and simplifying, we get

d

dx

[
y(x) e−x

] = x e−x.

Integrating with respect to variable x we get the equation y(x) e−x =
∫ x

ξ e−ξdξ ,

whose integration by parts furnishes y(x) e−x = −x e−x − e−x + C with C a
constant. It then follows that

y(x) = −x − 1 + C ex.
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Imposing the initial condition, y(0) = −1 + C = 0, we find C = 1 and we finally
get

y(x) = −x − 1 + ex,

which is the solution of the linear initial value problem. �

1.2.4 Separable Equations

A first-order ordinary differential equation is said to be separable if it is possible to
express it in one of the forms

dy

dx
= f (x)

g(y)
or

dx

dy
= h(x)

i(y)
,

with g(y) �= 0 [i(y) �= 0].
In order to solve an ordinary differential equation of the first form, we rewrite it

as

g(y)dy = f (x)dx

whose integration furnishes

G(y) =
∫ y

g(η)dη =
∫ x

f (ξ)dξ = F(x) + C,

where C is an arbitrary constant. F(x) and G(y) are the so-called primitives of f (x)

and g(y), respectively. For the second form, see Example 1.8.

Example 1.8 Let x ∈ R
∗. Solve the ordinary differential equation, with y(x) �= 0,

dy

dx
= y

x
.

This ordinary differential equation is separable and can be written as

dy

y
= dx

x
,

whose integration furnishes

ln |y| = ln |x| + C1,
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where C1 is an arbitrary constant. This equation can be put in the form

|y| = C · |x|,

with C = eC1 , another arbitrary constant. �

1.2.5 Exact Equation

Let M = M(x, y) and N = N(x, y). An ordinary differential equation written in
the form

M(x, y) + N(x, y)
dy

dx
= 0 (1.4)

is called exact if the condition

∂M

∂y
= ∂N

∂x
(1.5)

is satisfied at each point of the domain D = {(x, y) ∈ R
2/a < x < b, c < y < d}.

Then, there exists a function F(x, y) such that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

The solution of the ordinary differential equation will be

F(x, y) = C,

with C an arbitrary constant.
It is important to note that, when condition Eq. (1.5) is not satisfied, it is possible

to obtain, in certain cases, an integrating factor, which will turn the original ordinary
differential equation into an exact equation. For the general case, see reference [4].

Example 1.9 Let x ∈ R and y �= 0. Solve the ordinary differential equation

(
2xy + 1

y

)
dx +

(
y − x

y2

)
dy = 0 .

Comparing this expression with Eq. (1.4), we find

M(x, y) = 2xy + 1

y
and N(x, y) = y − x

y2 .
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Evaluating the partial derivatives, Eq. (1.5), we get

∂M

∂y
= − 1

y2
and

∂N

∂x
= − 1

y2
.

Thus, the condition is satisfied and the ordinary differential equation is exact.
In order to find F(x, y), we integrate the first relation, M(x, y), with respect to

variable x, obtaining

F(x, y) = x2 + x

y
+ g(y),

where g(y) is an arbitrary function depending on y only.
Differentiating F(x, y) with respect to variable y and using the expression for

N(x, y) we find

− x

y2 + g′(y) = N(x, y) = y − x

y2 ,

that is,

g′(y) = 1

y

and so

g(y) = ln |y| + D,

where D is an arbitrary constant. Going back to the expression for F(x, y), we
finally find the general solution

x2 + x

y
+ ln |y| = C,

with C another arbitrary constant. �
In many cases, it is possible to introduce a change of variable (substitution)

that would reduce the original ordinary differential equation to an equation that
can be more easily solved. We present here some examples of this method. One of
them, in particular, is used to convert a nonlinear differential equation, the so-called
Bernoulli equation, into a linear ordinary differential equation.
I. Separable equation Let a, b, c ∈ R. Consider the (linear or nonlinear) first-order
ordinary differential equation

y′ = f (ax + by + c)
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with b �= 0. If we introduce the change of variable v = ax + by + c, it becomes the
ordinary differential equation

dv

dx
= b f (v) + a,

which is separable and can be written in the form

dv

b f (v) + a
= dx.

II. Homogeneous type Ordinary differential equations of the type

dy

dx
= f

(y

x

)
,

are sometimes called ordinary differential equations of the homogeneous type. We
introduce the substitution v = y/x to get

dv

f (v) − v
= dx

x
,

which is also separable.
III. Bernoulli equation Let P(x) and Q(x) be continuous functions. Consider the
ordinary differential equation

dy

dx
+ P(x)y = yαQ(x),

with y = y(x) and α a real constant. This differential equation is known as Bernoulli
equation. If α = 0, this is a linear nonhomogeneous equation, and if α = 1 it is
linear and homogeneous. For all other values of α it will be nonlinear. Assume that
α �= 0 and α �= 1 and introduce the substitution

v = y1−α.

This converts the nonlinear ordinary differential equation into a linear ordinary
differential equation:

dv

dx
+ (1 − α)P (x)v = (1 − α)Q(x) .

Example 1.10 Let y = y(x). Solve the following initial value problem:

{
(2x − y)dy + (x − 2y + 3)dx = 0,

y(0) = 0.
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Note that this ordinary differential equation is not an exact equation. So, we
introduce a linear transformation to convert it into an equation of the homogeneous
type. To this end, consider the changes

x = z + α and y = t + β,

where α and β are constants to be determined. In the new variables z and t , the
ordinary differential equation has the form

[2z − t + (2α − β)]dt + [z − 2t + (α − 2β + 3)]dz = 0.

To reduce this equation to an equation of the homogeneous type, we must find the
values of α and β which satisfy the system

{
2α − β = 0,
α − 2β = −3.

The solution is α = 1 and β = 2. Thus, the ordinary differential equation can be
written as

dt

dz
= 2t − z

2z − t
,

which can be recognized as a differential equation of the homogeneous type.
Introducing the substitution v = t/z we get

v − 2

1 − v2
dv = dz

z
.

Using partial fractions, we obtain
∫ −1/2

1 − v
dv +

∫ −3/2

1 + v
dv =

∫
dz

z
,

whose integration furnishes

1

2
ln |1 − v| − 3

2
ln |1 + v| = ln |z| + A,

where A is an arbitrary constant. A few simple manipulations allow us to write for
the solution

(1 − v) = C z2(1 + v)3,

where C is another arbitrary constant. Going back to the old variables x and y, we
obtain

x − y + 3 = C (x + y − 1)3 .
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Imposing the initial condition y(0) = 0, we find that C = −3 and we finally get

x − y + 3 = −3 (x + y − 1)3,

which is the solution of the initial value problem. �

1.3 Second-Order Ordinary Differential Equations

Let A(x), B(x) and C(x) be coefficients, which will be considered real, and y =
y(x), the dependent variable. A linear, second-order ordinary differential equation
for the function y(x) is given, in its most general form, by

A(x)y′′(x) + B(x)y′(x) + C(x)y(x) = F(x),

with A(x) �= 0 and where the primes denote differentiation with respect to the
independent variable x. Assuming that A(x), B(x), C(x) and F(x) are continuous
functions on an interval I , the ordinary differential equation aforementioned may be
transformed into

y′′(x) + p(x)y′(x) + q(x)y(x) = f (x) . (1.6)

If f (x) = 0, it is called a homogeneous differential equation. For this reason, the
equation obtained from Eq. (1.6) by suppressing the independent term f (x) (also
called the nonhomogeneous term) is called the homogeneous equation associated
with Eq. (1.6).

The general solution of the ordinary differential equation Eq. (1.6) is

y(x) = yH (x) + yP (x),

where yH (x) is the general solution of the homogeneous differential equation and
yP (x) is a particular solution of the nonhomogeneous equation. For a linear and
homogeneous second-order ordinary differential equation, its general solution will
be given by the sum of two linearly independent functions y1(x) and y2(x), each
of which multiplied by an arbitrary constant, i.e., yH (x) will have the form

yH (x) = Ay1(x) + By2(x),

where A and B are arbitrary constants. Each function yi(x), i = 1, 2, is a solution
of the homogeneous ordinary differential equation, and any possible solution may
be written as a linear combination of them.

In order to solve the nonhomogeneous differential equation, it is enough to
know one solution of the associated homogeneous equation. From this solution,
by reduction of order (PE. 1.16), we may obtain the second, linearly independent
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solution for the same homogeneous differential equation. Once both linearly
independent solutions of the homogeneous differential equation are known, we may
find a particular solution of the corresponding nonhomogeneous equation by using
the method of variation of parameters, also called Lagrange [1736 – Joseph Louis
Lagrange – 1813] method.

The complete solution of an ordinary differential equation involves also the
imposition of constraints on the general solution, by imposing that the function
obtained should satisfy certain boundary conditions or initial conditions appearing
in the real problem that has given rise to the equation.

Example 1.11 Let y = y(x). Classify the differential equation

(1 − x2)
d2

dx2 y(x) − 2x
d

dx
y(x) + �(� + 1)y(x) = 2022

with � = 0, 1, 2, . . .
This is an ordinary (only one independent variable) differential equation, second-

order (highest order of the derivative), linear (all coefficients are function of the
independent variable and y(x) and its derivatives are linear), nonhomogeneous
(the second member is not zero), with nonconstant (i.e. variable) coefficients. The
corresponding homogeneous differential equation is known as Legendre equation;
its general solution is given by Legendre polynomials and Legendre functions, both
depending on the parameter �, as we will see in Chap. 4. �

As they are very common and useful, we will present the methods for solving
differential equations with constant coefficients and differential equations of the
Euler [1707 – Leonhard Euler – 1783] type.

1.3.1 Equations with Constant Coefficients

We want to solve a linear homogeneous second order ordinary differential equation
with constant coefficients,

y′′(x) + ay′(x) + by(x) = 0,

where x ∈ R and a and b are constants. As the derivative of an exponential function
is equal to the same exponential function multiplied by a constant factor, we suppose
a solution of the form

y(x) = emx ,

with m a constant parameter.
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Substituting y(x) and its derivatives into the equation given, we obtain an
algebraic equation of the second degree in variable m, called auxiliary equation,
also known as characteristic equation, given by

m2 + am + b = 0 ,

and whose roots are m1 and m2. If m1 �= m2, we immediately have two linearly
independent solutions, y1(x) = em1x and y2(x) = em2x . When the algebraic
equation found has only one root, i.e., a double root m, we suppose a solution
with the form y = emx v(x) and look for another linearly independent solution
by reduction of order.

Example 1.12 Let x ∈ R. Solve the initial value problem

{
y′′ − 6y′ + 5y = 0,

y(0) = 1 and y′(0) = 5.

Let y(x) = eλx , with λ a constant parameter. The characteristic equation is

λ2 − 6λ + 5 = 0

and its roots are λ1 = 1 and λ2 = 5. The roots are different; hence, the solution of
the ordinary differential equation can be written as

y(x) = A ex + B e5x,

with A and B arbitrary constants. Using the initial conditions, we get

y(0) = A + B = 2 and y′(0) = A + 5B = 5

whose solution is A = 0 and B = 1. So,

y(x) = e5x

is the solution of the initial value problem. �

1.3.2 Equations of the Euler Type

Let x ∈ R. We call ordinary differential equation of the Euler type all equations of
the form

x2y′′(x) + axy′(x) + by(x) = 0,
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where a and b are constants. The solution of such ordinary differential equation is
obtained by supposing that it has the form

y(x) = xm,

wherem is a constant parameter. This leads, as in the case of the ordinary differential
equation with constant coefficients, to an algebraic equation for m:

m(m − 1) + am + b = 0 .

If this algebraic equation has two distinct roots m1 and m2, then y1 = xm1 and
y2 = xm2 are the two linearly independent solutions sought. If m1 = m2, we just
need to find a second linearly independent solution by reduction of order.

Example 1.13 Let x ∈ R
∗. Solve the ordinary differential equation

x2 d2

dx2
y(x) + 4x

d

dx
y(x) + 2y(x) = 0 .

This ordinary differential equation can be identified with an ordinary differential
equation of the Euler type. So, we search a solution of the form y(x) = xm,
where m is a parameter to be determined. Introducing this solution into the ordinary
differential equation, we obtain an algebraic equation given by

m2 + 3n + 2 = 0,

whose roots are m = −1 and m = −2.
As the roots of the algebraic equation are different, we have obtained the general

solution (containing two arbitrary constants) of the ordinary differential equation,

y(x) = Ax−1 + B x−2,

where A and B are two arbitrary constants. �

1.4 Solved Exercises

SE 1.1 (Integranting Factor) As we have seen, an integrating factor, denoted μ =
μ(x, y), if it exists, converts an ordinary differential equation into an exact ordinary
differential equation. It is possible to demonstrate that a function μ(x, y) defined on
an interval I , with continuous first order partial derivatives, is an integrating factor if

μ

(
∂M

∂y
− ∂N

∂x

)
= N

∂μ

∂x
− M

∂μ

∂y
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is valid on I , where M = M(x, y) and N = N(x, y) are given in Eq. (1.4). In the
particular case in which μ = μ(y) (a similar argument is valid for μ = μ(x)) is a
function depending on y only, we obtain, using the preceding equation,

μ

(
∂M

∂y
− ∂N

∂x

)
= −M

∂μ

∂y

which can be written in the following form

− ∂μ

∂y
= 1

M

(
∂M

∂y
− ∂N

∂x

)
μ, (1.7)

which is a separable ordinary differential equation. As a particular case, discuss the
equation

d

dx
y(x) = −3y2 + 2

3xy2 .

Solution To discuss this particular case, involving the nonlinear first order ordinary
differential equation

d

dx
y(x) = −3y3 + 2

3xy2
,

we first write it in a more adequate form,

(3y3 + 2) dx + 3xy2 dy = 0 .

Comparing this last equation with Eq. (1.4), we see that M(x, y) = 3y3 + 2 and
N(x, y) = 3xy2. Evaluating the first order partial derivatives, we obtain

∂M

∂y
− ∂N

∂x
= 9y2 − 3y2 = 6y2

and we conclude that the ordinary differential equation is not exact, and its
integrating factor depends on variable y only.

Using Eq. (1.7), we write this separable ordinary differential equation

−dμ

dy
= 6y2

3y3 + 2
μ .

Solving this ordinary differential equation, we find the integrating factor

μ(y) = C (3y3 + 2)−
2
3 ,
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where C is an arbitrary constant. Multiplying the ordinary differential equation by
the integrating factor, we can write

(3y3 + 2)
1
3 dx + (3y3 + 2)−

2
3 3xy2 dy = 0 .

Identifying this last equation with Eq. (1.4), we can write new functions M and N ,

M̄(x, y) = (3y3 + 2)
1
3 and N̄(x, y) = (3y3 + 2)− 2

3 3xy2. Using these values for M̄

and N̄ , we have

∂M̄

∂y
− ∂N̄

∂x
= 1

3
(3y3 + 2)−

2
3 · 3 · 3y2 − 3 · y2 · (3y3 + 2)−

2
3 = 0.

Thus, multiplying the ordinary differential equation by the integrating factor, it was
converted into an exact ordinary differential equation, whose integration is shown
in Example 1.9.

SE 1.2 (Bernoulli Equation) Let x ∈ R
∗ and y(x) = y. Solve the nonlinear first-

order ordinary differential equation

dy

dx
+ y

x
= y4x.

Solution As the unknown, dependent variable is raised to the fourth power in the
right-hand side of this equation, the equation is obviously nonlinear. Identifying
it with a Bernoulli equation, we find α = 4, p(x) = 1/x and q(x) = x. In
order to transform the Bernoulli equation, a nonlinear ordinary differential equation,
into a linear first-order differential equation, we introduce the following change of
dependent variable:

v = 1

y3 .

Evaluating the derivative, substituting it into the Bernoulli equation and simplifying,
we get

dv

dx
− 3

v

x
= −3x,

which is a linear first-order nonhomogeneous ordinary differential equation. In order
to solve this differential equation, we proceed as when we got the general form of
the solution of a linear first order ordinary differential equation.

The methodology to be employed will be clearer when we study linear second-
order ordinary differential equations, as proposed in PE. 1.16. We show that a
linear second-order ordinary differential equation, under certain conditions, can be
transformed into a linear first-order ordinary differential equation, which we are
supposed to be able to solve.
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We start with the corresponding homogeneous ordinary differential equation,

dv

dx
− 3

v

x
= 0 .

This is a separable equation whose general solution is given by

v(x) = c x3,

where c is an arbitrary constant. Now, we look for a solution of the respective
nonhomogeneous ordinary differential equation, which we denote v(x), such that
we have v(x) = c(x) x3, that is, we now consider the arbitrary constant as a
function of the independent variable. Evaluating the derivatives with the help of
the chain rule, substituting into the nonhomogeneous ordinary differential equation
and simplifying, we obtain an ordinary differential equation for c(x),

c′(x) = − 3

x2 ,

whose solution is given by c(x) = 3
x

+ c1 where c1 is another arbitrary constant.
Using this expression in v(x), we have v(x) = 3x2 + c1x

3. Finally, with
v(x) known, we obtain, formally, the general solution of the Bernoulli differential
equation

y(x) = 1

3x2 + c1x3
,

with c1 an arbitrary constant, which can be determined by imposing a specific
condition on the solution.

SE 1.3 (Method of Variation of Parameters) Find a solution for the nonhomoge-
neous linear second-order ordinary differential equation

y′′ + y = sin x ,

satisfying the conditions y(0) = 1 and y′(0) = 1/2.

Solution The solution of the respective homogeneous ordinary differential equation
(an equation with constant coefficients)

y′′ + y = 0

is given by yH (x) = A sin x + B cos x, where A and B are two arbitrary constants.
We will use the method of variation of parameters to obtain a particular solution

for the nonhomogeneous ordinary differential equation, even though in this case it



1.4 Solved Exercises 19

would be easier to start with a linear combination of sines and cosines and substitute
it into the nonhomogeneous differential equation in order to find the coefficients
which would make that linear combination a solution of that equation (this is the
method of undetermined coefficients). See an explicit example of the application of
this method in Chap. 11, SE 11.2.

Let us then suppose that constants A and B are functions of x, i.e., suppose that
A = u1(x) and B = u2(x); a particular solution of the nonhomogeneous ordinary
differential equation will have the form

yP (x) = u1(x) sin x + u2(x) cos x, (1.8)

where u1(x) and u2(x) will be determined from two conditions. The first condition
to be imposed is, of course, that yP (x) be a solution of the nonhomogeneous
ordinary differential equation. However, this condition is not sufficient to univocally
determine u1(x) and u2(x), and this leaves us free to impose another arbitrary
condition upon these functions, which will allow us to simplify the solution of this
problem.

Differentiating the expression for yP (x) we have

y′
P (x) = u′

1(x) sin x + u1(x) cos x + u′
2(x) cos x − u2(x) sin x.

As we are free to impose a second condition, we choose that

u′
1(x) sin x + u′

2(x) cos x = 0,

whence it follows that

y′
P (x) = u1(x) cos x − u2(x) sin x. (1.9)

The second derivative of yP (x) then becomes

y′′
P (x) = u′

1(x) cos x − u1(x) sin x − u′
2(x) sin x − u2(x) cos x. (1.10)

Now, using the first condition, we replace Eqs. (1.9) and (1.10) into the nonho-
mogeneous ordinary differential equation and we get

u′
1(x) cos x − u′

2(x) sin x = sin x.

Thus, in order to determine u′
1(x) and u′

2(x) we must solve the following linear
system:

{
u′
1(x) sin x + u′

2(x) cos x = 0,
u′
1(x) cos x − u′

2(x) sin x = sin x.
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Applying Cramer’s [1704 – Gabriel Cramer – 1752] rule as if this system were a
system of linear algebraic equations with constant coefficients, we find that

u′
1(x) = sin x cos x and u′

2(x) = − sin2 x,

and integrating these equations we obtain

u1(x) = −1

4
cos 2x; (1.11)

u2(x) = −x

2
+ 1

4
sin 2x. (1.12)

Note that it is not necessary to add the integration constants, as we are searching
for one particular solution of the nonhomogeneous ordinary differential equation.

The solution of the nonhomogeneous ordinary differential equation is obtained
substituting Eqs. (1.11) and (1.12) into Eq. (1.8), and adding the result to the general
solution of the homogeneous ordinary differential equation. The result is

y(x) = C1 sin x + C2 cos x − x

2
cos x,

where C1 and C2 are arbitrary constants. Now, using the conditions given, we have

y(0) = C2 = 1 ⇒ C2 = 1 and y′(0) = C1 − 1

2
= 1

2
⇒ C1 = 1 .

From this result, it follows that the function that satisfies the ordinary differential
equation and the initial conditions is given by

y(x) = sin x + cos x − x

2
cos x.

SE 1.4 (Mass-Spring Problem with Forced Vibrations) Consider the undamped
motion of a mass m coupled to the extremity of a spring with elastic constant k.
Suppose that an external periodical force given by f0 sinμt , with f0 and μ real
constants, is applied to the mass. Using Newton’s [1642 – Isaac Newton – 1727]
second law, the ordinary differential equation (PE. 1.25) describing the motion of
the mass is given by

d2

dt2
x(t) + ω2x(t) = f0

m
sinμt, (1.13)

where ω2 = k/m is the frequency of the motion (harmonic oscillator).
(a) Show that the position x(t) of mass m is given by

x(t) = c1 cosωt + c2 sinωt + c3 sinμt,
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where c1 and c2 are arbitrary constants and c3 = f0/m(ω2 − μ2), with μ �= ω, and
(b) discuss the case in which ω = μ.

Solution (a) First, let us consider the corresponding homogeneous linear second
order ordinary differential equation

d2

dt2
x(t) + ω2x(t) = 0,

whose general solution is given by

x(t) = c1 cosωt + c2 sinωt,

where c1 and c2 are arbitrary constants.
In order to obtain a particular solution of the nonhomogeneous differential

equation, let us consider the combination

xp(t) = A cosμt + B sinμt,

as the second member of Eq. (1.13) is equal to the product of a constant by sinμt .
Then, differentiating this expression two times and replacing the result into the

nonhomogeneous ordinary differential equation, we may write

−Aμ2 cosμt − Bμ2 sinμt + Aω2 cosμt + Bω2 sinμt = f0

m
sinμt,

whence we obtain the following algebraic linear system:

⎧
⎨
⎩

−Aμ2 + Aω2 = 0

−Bμ2 + Bω2 = f0

m

whose solution is A = 0 and B = f0/m(ω2 − μ2). Thus, a particular solution of
the nonhomogeneous ordinary differential equation is

xp(t) = f0

m(ω2 − μ2)
sinμt,

withω �= μ. Combining this solution with the corresponding homogeneous ordinary
differential equation, we find for the displacement

x(t) = c1 cosωt + c2 sinωt + c3 sinμt,

where c3 = f0/m(ω2 − μ2).



22 1 Ordinary Differential Equations

(b) On the other hand, when ω = μ, the nonhomogeneous term is also a solution
of the respective homogeneous ordinary differential equation. Here, we will use
directly the method of variation of parameters in order to obtain a particular solution
for the nonhomegeneous ordinary differential equation.

From the solution of the homogeneous ordinary differential equation, with ω =
μ, we write the following equation

xp(t) = u(t) cosμt + v(t) sinμt,

where u(t) and v(t) are to be determined.
Differentiating the previous expression with respect to t , we get

x′
p(t) = u′ cosμt − μu sinμt + v′ sinμt + μv cosμt,

where we have omitted the explicit dependence on the independent variable. By
imposing the (free) condition

u′ cosμt + v′ sinμt = 0,

we get

x′
p(t) = −μu sinμt + μv cosμt.

Differentiating again with respect to t and inserting the result into the nonhomo-
geneous ordinary differential equation, we obtain

u′ sinμt − v′ cosμt = − f0

μm
sinμt

or rather, the following algebraic linear system for u′ and v′:
⎧⎨
⎩

u′ cosμt + v′ sinμt = 0,

u′ sinμt − v′ cosμt = − f0

μm
sinμt,

whose solution is given by

u′ = − f0

μm
sin2 μt and v′ = f0

μm
sinμt cosμt.

Integrating these expressions, we may write

u = − f0

2μm
t + f0

4μ2m
sin 2μt and v = − f0

4μ2m
cos 2μt.
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Then, going back to solution xp(t), we find a particular solution we are searching
for, given by

xp(t) = − f0

2μm
t cosμt,

from which we can write the general solution of the nonhomogeneous linear second-
order ordinary differential equation,

x(t) = c1 cosμt + c2 sinμt − f0

2μm
t cosμt,

where c1 and c2 are arbitrary constants.

SE 1.5 (The Radial Equation) When we use the method of separation of variables
(Chap. 9) for solving the Laplace [1739 – Pierre Simon Laplace – 1827] equation (a
partial differential equation satisfied, e.g. by electric and gravitational potentials) in
spherical coordinates, we obtain the so-called radial equation (a linear second order
ordinary differential equation that does not depend on the angle variables), given by

d2

dr2
R(r) + 2

r

d

dr
R(r) − �(� + 1)

r2
R(r) = 0,

where the separation constant � is a nonnegative integer.
(a) Solve the radial equation. (b) What shall we have to consider if we require (a

physical condition of the problem) that the (radial) solution be regular (Chap. 3) at
the origin?
Solution: (a) This ordinary differential equation is easily identified as an equation of
the Euler type, for which we must search for a solution with the form

R(r) = rα,

where α is a parameter that has to be determined.
Differentiating with respect to r and substituting the result into the ordinary

differential equation, we get an algebraic equation

[α(α − 1) + 2α − �(� + 1)] rα = 0,

whence it follows that α1 = � and α2 = −� − 1.
As � is a nonegative integer, α1 �= α2. Hence, the general solution is given by

R(r) = c1r
� + c2

r�+1 ,

where c1 and c2 are arbitrary constants.
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(b) As we are searching for solutions that are regular at the origin, r = 0, we
must impose that c2 = 0, whence it follows that

R(r) = c1r
�,

where c1 is an arbitrary constant.

1.5 Proposed Exercises

PE 1.1 Let y = y(x). Solve the linear ordinary differential equation

y′ + 2 sin x · y = 2 sin x.

PE 1.2 Solve the initial value problem

⎧
⎨
⎩

d

dx
y(x) − 2 tan x · y(x) = 1,

y(0) = 1/2.

PE 1.3 Let y(x) = y > 0. Solve the ordinary differential equation

dy

dx
= 3

2

x2ex3

y
.

PE 1.4 Let y = y(x). Solve the linear ordinary differential equation

x2y dy + (y2x + x)dx = 0.

PE 1.5 Determine the solution for the initial value problem

⎧⎨
⎩

x

2
dx +

(
3y2 − x2

y

)
dy = 0,

y(1) = 1,

with y = y(x) �= 0.

PE 1.6 Let y = y(x). Solve the ordinary differential equation

dx

dy
=

√
x + y − √

x − y√
x + y + √

x − y
, x > 0, x ≥ |y|.

PE 1.7 Let y = y(x). Obtain the solution for the ordinary differential equation

dy

dx
= cos2(x − y).
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PE 1.8 Let y = y(x) and x ∈ R
∗. Let f (y) be a continuous and integrable

function. Solve the ordinary differential equation

y2dx − [2xy + f (y)]dy = 0.

PE 1.9 Let x = x(y) �= 0. Obtain the solution for the initial value problem

⎧⎨
⎩

dx

dy
+ x

y
= 2,

x(1) = 2.

PE 1.10 Let y = y(x). Solve the first-order nonlinear ordinary differential equation

(x − y)dy − (2x + y − 3)dx = 0.

PE 1.11 Find a general solution for each of the following ordinary differential
equations with constant coefficients (y = y(x)):

(a) y′′ + ω2y = 0 with ω2 = a positive constant.
(b) y′′ + 2y′ + y = 0.
(c) y′′ + 5y′ + 4y = 0.
(d) y′′ + 2y′ + 2y = 0.

PE 1.12 Discuss, according to whether the parameter λ is positive, null or negative,
the possible solutions of the ordinary differential equation for y = y(x),

y′′ + λy = 0.

PE 1.13 With a2 a positive constant, solve the ordinary differential equation
(assume x �= 0 and y = y(x))

x2y′′ + 2xy′ + a2

x2 y = 0.

PE 1.14 Find the general solution for the following equation of the Euler type (y =
y(x)):

x2y′′ − 4xy′ + 4y = 0.

PE 1.15 Solve the ordinary differential equation

(1 + x3)y′′ − 3x2y′ = 0,

satisfying the conditions y(0) = 0 and y(1) = 5.
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PE 1.16 (Reduction of Order) Assume that y1(x) �= 0 is a solution of

y′′ + p(x)y′ + q(x)y = 0.

The method of reduction of order consists of searching for a second, linearly
independent solution of the form y2(x) = y1(x)v(x). Replace y2(x) into the
equation given and from the equation obtained for v(x) show that

v(x) =
∫ x exp{− ∫ x′

p(x′′)dx′′}
[y1(x′)]2 dx′,

and thus that a second solution is given by

y2(x) = y1(x)

∫ x exp{− ∫ x′
p(x′′)dx′′}

[y1(x′)]2 dx′.

PE 1.17 Knowing that y1(x) = x3 is a solution of

x2y′′ − 5xy′ + 9y = 0,

obtain its general solution.

PE 1.18 Knowing that y1(x) and y2(x) are two linearly independent solutions of
the ordinary differential equation

A(x)y′′ + B(x)y′ + C(x)y = 0,

show that the Wronskian [1778 – Józef Maria Hoene Wrónski – 1853] W ,
defined as

W = det

∣∣∣∣
y1(x) y2(x)

y′
1(x) y′

2(x)

∣∣∣∣ = y1(x)y′
2(x) − y2(x)y′

1(x),

is equal to

W = K exp

(
−

∫ x B(x′)
A(x′)

dx′
)

,

where K is a constant.

PE 1.19 (Bessel [1784 – Friedrich Wilhelm Bessel – 1846] Equation)
Knowing that

y1(x) = x−1/2 cos x
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is a solution of the Bessel equation (Chap. 4) of order 1/2,

x2y′′ + xy′ +
(

x2 − 1

4

)
y = 0, (x > 0),

obtain another linearly independent solution. Calculate the Wronskian.

PE 1.20 (Legendre [1752 – Adrien Marie Legendre – 1833] Equation) Know-
ing that y1(x) = x is a solution of the Legendre equation (Chap. 4) of order 1,

(1 − x2)y′′ − 2xy′ + 2y = 0

find the other linearly independent solution. Calculate the Wronskian.

PE 1.21 Let y = y(x). Solve the nonhomogeneous ordinary differential equation

xy′′ + y′ = x2.

PE 1.22 Let y = y(x). Find a particular solution for the equation

y′′ − 4y = −x2 + 2x − 3.

PE 1.23 Let y = y(x). Solve the nonhomogeneous linear third-order ordinary
differential equation

y′′′ + y′ = sec x,

satisfying y(0) = y(π) = 0, using the method of variation of parameters.

PE 1.24 Let y = y(x). Solve the ordinary differential equation

y′′ + ω2y = sinω0x,

where ω and ω0 are positive constants, analysing the cases (a) ω �= ω0 and (b)
ω = ω0.

PE 1.25 (Damped Harmonic Oscillator) Solve the problem of a damped har-
monic oscillator (Chap. 11), whose differential equation is

mẍ + λẋ + kx = f (t),

where x = x(t), and the dots denote differentiation with respect to time t . The
parameters m, λ and k are positive constants. Discuss the results obtained in terms
of the possible values of m, λ and k.

PE 1.26 (RLC Electrical Circuit) Discuss the RLC electrical circuit shown in
Fig. 1.1, where R is the value of the resistance (measured in ohm—�); L is the
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Fig. 1.1 RLC electrical
circuit—PE 1.26

inductance (given in henry—H); C is the capacitance (measured in faraday—F) and
E represents the electromotive force (in volt—V).

PE 1.27 Let y = y(x). Find a particular solution for y′′ + y = tg x.

PE 1.28 (Whittaker [1873 – Edmund Taylor Whittaker – 1956] Equation)
The linear second order ordinary differential equation

xy′′ + (c − x)y′ − ay = 0,

with a and c constants and y = y(x), is called confluent hypergeometric equation.
With a change of dependent variable of the form

y(x) = xα eβx F (x),

with α and β constants to be determined, obtain the Whittaker equation (Chap. 4),

F ′′ +
(

−1

4
+ k

x
+

1
4 − m2

x2

)
F = 0,

where k and m are constants.

PE 1.29 (Green’s [1793 – George Green – 1841] Function) Supposing that
y1(x) and y2(x) are two linearly independent solutions of the homogeneous linear
ordinary differential equation associated with the nonhomogeneous linear ordinary
differential equation

y′′ + P(x)y′ + Q(x)y = f (x),

show that the expression

yp(x) = −y1(x)

∫ x y2(x
′)f (x′)

W(x′)
dx′ + y2(x)

∫ x y1(x
′)f (x′)

W(x′)
dx′,
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which is a particular solution of the nonhomogeneous equation, can be written in
the form

yp(x) =
∫ x

x0

G(x, t)f (t)dt,

where x0 is a fixed point and G(x, t), called Green’s function (Chap. 7), is given by

G(x, t) = 1

W(t)

∣∣∣∣
y1(t) y1(x)

y2(t) y2(x)

∣∣∣∣ ,

where W(t) is the Wronskian of functions y1(t) and y2(t).

PE 1.30 Using Green’s function, PE 1.29, solve the nonhomogeneous linear
second-order ordinary differential equation

y′′ + y = f (x),

with y(a) = 0 and y′(a) = 0, obtaining the expression

y(x) =
∫ x

a

f (t) sin(x − t)dt .

PE 1.31 Knowing that y(x) = x2 is a solution of the ordinary differential equation

x(x − 2)y′′ − 2(x − 1)y′ + 2y = 0,

find the general solution of the nonhomogeneous differential equation

x(x − 2)y′′ − 2(x − 1)y′ + 2y = 2x2 − 4x.

PE 1.32 Let y = y(x). Solve, using a method of your choice, the nonhomogeneous
linear second-order ordinary differential equation

x2y′′ − x(x + 2)y′ + (x + 2)y = −x3 − x − 2,

showing that its general solution is

y(x) = c1x + c2x ex +x2 − 1,

where c1 and c2 are arbitrary constants.

PE 1.33 Let y = y(x). Knowing that y = sin x is a solution of

tg2 x y′′ − 2 tg x y′ + (2 + tg2 x)y = 0,
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show that its general solution is

y(x) = c1 sin x + c2x sin x,

where c1 and c2 are arbitrary constants.

PE 1.34 Find the general solution

y(x) = c1x ex +c2x e−2x,

where c1 and c2 are arbitrary constants, of the ordinary differential equation

x2y′′ + (x2 − 2x)y′ − (2x2 + x − 2)y = 0,

beginning with the solution y(x) = x ex .

PE 1.35 Let y = y(x). Show that

xy′′ − 2(x − 1)y′ + 2(x − 1)y = 0

is equivalent, for a certain function v(x), to the ordinary differential equation v′′ +
v = 0. Solve the differential equation for y(x).

PE 1.36 Let y = y(x). Solve the equation

x2 d
2y

dx2
= 1.

PE 1.37 Let y = y(x). Solve the ordinary differential equation for

x2y′′ + xy′ − y = 0.

PE 1.38 Let y = y(x). Using the result of the previous exercise, show that the
general solution of the nonhomogeneous linear second-order ordinary differential
equation

x2y′′ + xy′ − y = −3x2 − 1

is given by

y = c1x + c2x
−1 + 1 − x2,

where c1 and c2 are arbitrary constants.
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PE 1.39 Let y = y(x). Find the solution to

(x − 1)y′′ − xy′ + y = 1,

knowing that y(x) = ex satisfies the corresponding homogeneous differential
equation.

PE 1.40 Let y = y(x). Solve the nonhomogeneous linear second-order ordinary
differential equation

(1 + x2)y′′ − 2xy′ + 2y = 1 + x2,

using the fact that y(x) = x is a solution of the ordinary differential equation

(1 + x2)y′′ − 2xy′ + 2y = 0.

PE 1.41 Find the form of Q(x) for which the ordinary differential equation

y′′ + ay′ + Q(x)y = 0,

where y = y(x) and a is a constant, can be transformed, with the substitution
y = v(x)f (x), into a Bessel differential equation of order n,

v′′ + 1

x
v′ +

(
1 − n2

x2

)
v = 0,

where v = v(x). Obtain the expression for f (x).

PE 1.42 Apply the transformation

y(x) = v(x) exp

(
−1

2

∫ x

P (x′)dx′
)

to the ordinary differential equation

y′′ + P(x)y′ + Q(x)y = 0.

Obtain in this way the so-called normal form,

v′′ + Iv = 0,

where v = v(x) and I (x) = Q(x)− 1
2P

′(x)− 1
4P

2(x) is called the invariant of the
ordinary differential equation.
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PE 1.43 Find the invariant in the normal form of the hypergeometric differential
equation (Chap. 4)

x(1 − x)ω′′ + [c − (a + b + 1)x]ω′ − abω = 0,

where a, b and c are constants and ω = ω(x).

PE 1.44 Find the invariant associated with the confluent hypergeometric differen-
tial equation (Chap. 4)

xω′′ + (c − x)ω′ − aω = 0,

where a and c are constants and ω = ω(x).

PE 1.45 The self-adjoint form of a linear second-order ordinary differential equa-
tion is that in which the equation for y = y(x) is written as

d

dx
[A(x)y′] + C(x)y = 0,

where A(x) and C(x) are functions of the coefficients of the original equation.
Obtain the self-adjoint form of Legendre’s equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0,

where y = y(x) and n = 0, 1, 2, . . .

PE 1.46 Calculate the Wronskian of the two linearly independent solutions of the
homogeneous ordinary differential equation in PE 1.40.

PE 1.47 We call generalized Riccati equation the ordinary differential equation

dy

dx
= A0(x) + A1(x)y + A2(x)y2,

with y = y(x). Classify this equation according to its type, order, and linearity.

PE 1.48 Introduce the change of dependent variable

y(x) = − ω′(x)

ω(x)A2(x)

into the generalized Riccati differential equation and get for ω(x) the equation

A2ω
′′ − (A′

2 + A1A2)ω
′ + A2

2A0ω = 0,

which is a linear second-order ordinary differential equation.
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PE 1.49 Using the results shown in PE 1.47 and PE 1.48, put the differential
equation

xy′′ + y′ + xy = 0,

y = y(x), in the form of a Riccati equation.

PE 1.50 Transform the Riccati equation

y′ = 1 − x2 + y2,

with y = y(x), into a linear second-order ordinary differential equation.

References

1. G. Birkhoff, G. Rota. Ordinary Differential Equations (Blaisdell, New York, 1969)
2. W.E. Boyce, R.C. Diprima, Elementary Differential Equations and Boundary Value Problems

(John Wiley, New York, 2007)
3. M. Braun, Differential Equations and their Applications (Springer-Verlag, New York, 1983)
4. E. Capelas de Oliveira, M. Tygel, Métodos Matemáticos para Engenharia. Mathematical

Methods for Engineering, 2nd edn. (Sociedade Brasileira de Matemática, Rio de Janeiro, 2012)



Chapter 2
Power Series and the Frobenius Method

The mathematics is not there till we put it there.

1882 – Arthur Stanley Eddington – 1944

We present in this chapter some concepts and results on power series, which are
used in the study of the Frobenius [1849 – Ferdinand Georg Frobenius –
1917] method for solving homogeneous linear second-order ordinary differential
equations with nonconstant coefficients. The Frobenius method plays an important
role in the solution of this kind of equation, as it will always provide at least one
solution, and as we already know, another linearly independent solution can in
principle be obtained from the first one by reduction of order [1–3].

2.1 Preliminaries and General Concepts

The power series expansion of a solution of a homogeneous linear second-order
ordinary differential equation in the neighborhood of a point x = x0 is an example
of a perturbative series expansion, that is, a power series of a small parameter, in
this case the distance to point x = x0, the center of the series.

2.1.1 Power Series

A series of the form

a0 + a1(x − x0) + a2(x − x0)
2 + · · · =

∞∑
n=0

an(x − x0)
n,

where x0, a0, a1,. . . , an are constants (coefficients), is called a power series.
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A power series usually converges for | x−x0 |< R and diverges for | x−x0 |> R

for some real constant R, which is called the radius of convergence of the series. For
| x − x0 |= R the series may converge or not. The interval | x − x0 |< R is called
the interval of convergence of the series. If R = 0, the series converges only for
x = x0, its center, and if R = ∞, the series converges for all values of x.

The Frobenius method is then a method for finding the solutions of a homoge-
neous linear second-order ordinary differential equation based on the assumption
that they can be written as power series.

Example 2.1 Let x ∈ R. Consider the power series

1

1 + x2 =
∞∑

n=0

(−1)nx2n .

Obtain its radius of convergence.
We have here the quotient of two polynomials, p1(x) = 1 and p2(x) = 1 + x2.

Since the polynomial in the denominator, p2(x), is nonnull for every real x, the
quotient is well defined and infinitely differentiable in R. The power series around
x0 = 0, however, does not converge at all points of R. Using the ratio test, we can
show that the convergence radius is unitary. This result can also be obtained directly,
using a result that says that the convergence radius of the series representing the
division of two polynomials is given by the distance from the center of the series to
the nearest root in the complex plane of the polynomial in the denominator. In this
case, both the roots of p2(x) = 0, x = ±i, are at a distance to the origin equal to
one; thus, the convergence radius is unitary. �

2.1.2 Ordinary and Singular Points

We consider a homogeneous linear second-order ordinary differential equation
written as

d2

dx2
y(x) + p(x)

d

dx
y(x) + q(x)y(x) = 0 ,

where p(x) and q(x) are rational functions, i.e. the quotient of two polynomials.

Definition 2.1.1 (Ordinary and Singular Points)

If the coefficients p(x) and q(x) are rational functions and the limits

lim
x→x0

p(x) and lim
x→x0

q(x)

exist, then x = x0 is called an ordinary point of the ordinary differential equation. In
the case in which one of the limits does not exist, x = x0 is called a singular point.
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Theorem 2.1 If x0 is an ordinary point of the ordinary differential equation

d2

dx2
y(x) + p(x)

d

dx
y(x) + q(x)y(x) = 0,

then there exist two linearly independent solutions, which can be obtained by means
of a Taylor [1685 – Brook Taylor – 1731] series, as we will see below. These series
converge on the interval |x − x0| < R for some R > 0.

Example 2.2 Consider the homogeneous, linear second-order ordinary differential
equation with nonconstant coefficients, called confluent hypergeometric equation,

x
dy2

dx2 + (c − x)
dy

dx
− ay = 0, (2.1)

with y = y(x) and a, c ∈ R constant parameters. Show that the point x0 = 0 may
be an ordinary or a singular point, depending on the values of a and c.

Let x �= 0. Identifying the coefficients, we have

p(x) = c − x

x
and q(x) = −a

x
.

We separate in two cases. First, we assume a and c different from zero. Taking the
limits

lim
x→0

c − x

x
and lim

x→0

(
−a

x

)

we conclude that neither limit exists; thus, in this case, x0 = 0 is a singular point.
On the other hand, for a = 0 = c, the differential equation is a reducible differential
equation with constant coefficients and x0 = 0 is an ordinary point. �

In order to address the general case, we begin with a brief discussion concerning
the concept of series convergence and the definition of analytic function, which will
be formally presented in the next chapter.

We also present the concepts of regular and irregular singular points and finally
the Frobenius method. We present only the convergence at a point and the absolut
convergence in order to discuss the interval on which power series converge or
diverge.

Definition 2.1.2 (Convergence at a Point)

A power series
∞∑

k=0

ak(x − x0)
k is convergent at a point x if the limit

lim
N→∞

N∑
k=0

ak(x − x0)
k

exists. For x = x0, its center, the power series converges and its limit is a0.
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Definition 2.1.3 (Absolute Convergence)

The power series
∞∑

k=0

ak(x − x0)
k is absolutely convergent at a point x if the series

formed by the absolute values of their terms,
∞∑

k=0

|ak(x − x0)
k|, converges.

It is important to note that if a power series is absolutely convergent, then it
converges. On the other hand, the reciprocal is not necessarily true.

Definition 2.1.4 (Interval of Convergence)

Let R > 0 be the convergence radius of a power series. This means that the power
series is absolutely convergent if |x − x0| < R, and it is divergent if |x − x0| > R.
If the power series converges only for x = x0, the convergence radius is zero, and if
it converges for all x, the convergence radius is infinite.

Definition 2.1.5 (Analytic Function)

If a function f (x) admits a representation in power series with center at x = x0 and a
convergence radius R > 0, then the coefficients are unique. The series representing
f (x) is a Taylor series (a Maclaurin [1698 – Colin Maclaurin – 1746] series if
x0 = 0),

f (x) =
∞∑

k=0

f (k)(x0)

k! (x − x0)
k,

for |x −x0| < R. The series is determined by the values of the function and of all its
derivatives at a single point, the center of the series. In this case, we say that f (x) is
an analytic function at x0.

Definition 2.1.6 (Regular Singular Point)

Consider a homogeneous, linear second-order ordinary differential equation of the
form

A(x)
d2

dx2
y(x) + B(x)

d

dx
y(x) + C(x)y(x) = 0,

with A(x), B(x) and C(x) polynomial functions. A point x = x0 is called a regular
singular point of this equation if the limits

lim
x→x0

(x − x0)
B(x)

A(x)
and lim

x→x0
(x − x0)

2C(x)

A(x)

are finite; otherwise, it is called an irregular singular point.

Example 2.3 Classify the point x0 = 0 relatively to the confluent hypergeometric
differential equation given by Eq. (2.1).
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Identifying the coefficients, we see thatA(x) = x,B(x) = c−x andC(x) = −a.
As the limits for x → 0 of the quotients x[B(x)/A(x)] and x2[C(x)/A(x)] are
finite, we conclude that x0 = 0 is a regular singular point. �

2.2 Expansion in Power Series

Suppose that a function f (x) and its derivatives f ′(x), . . . , f (n)(x) exist and are
continuous functions on the closed interval [a, b] and that f (n+1)(x) exists on the
open interval ]a, b[. Then, f (x) can be written as

f (x) = f (x0)+f ′(x0)(x−x0)+ 1

2!f
′′(x0)(x−x0)

2+· · ·+ f (n)(x0)

n! (x−x0)
n+Rn,

where Rn is the remainder of the series and is given in one of the following two
forms:

Rn = f (n+1)(ξ)

(n + 1)! (x − x0)
n+1 (Lagrange);

Rn = f (n+1)(ξ)

n! (x − ξ)n(x − x0) (Cauchy);

where ξ is a real number between x0 and x. Usually, the value of ξ is different in
the two forms presented earlier for the remainder.

If for every x and ξ in [a, b] we have lim
n→∞ Rn = 0, then on this interval the

following equality holds:

f (x) = f (x0)+f ′(x0)(x−x0)+ 1

2!f
′′(x0)(x−x0)

2+· · ·+ f (n)(x0)

n! (x−x0)
n+· · ·
(2.2)

This is called the Taylor series for f (x) or the Taylor expansion of f (x). If x0 = 0
we have the so-called Maclaurin series, a series centered at the origin.

Example 2.4 Consider the function f (x) = (1 + x2)−1 as in Example 2.1. Obtain
the corresponding Maclaurin series.

In this case, x0 = 0. We then have for the coefficients f (0) = 1, f ′(0) = 0,
f ′′(0) = −2, f ′′′(0) = 0, and so on. Substituting into Eq. (2.2) we can write

f (x) = 1 + 1

2! (−2!)x2 + 1

4! (4!)x
4 + . . .

= 1 − x2 + x4 − . . .
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or in the form

f (x) =
∞∑

n=0

(−1)nx2n

which is the result shown in Example 2.1. Using the ratio test, we can show that the
convergence radius is unitary, i.e., the power series converges on −1 < x < 1. �

2.3 The Frobenius Method

The Frobenius method for solving homogeneous, linear second-order ordinary
differential equations consists of searching for a solution with the form of a series
of the form

y(x) =
∞∑

n=0

cnx
n+s , c0 �= 0,

where s is an arbitrary parameter. Here, without loss of generality, we used x0 = 0,
a series centered at the origin; otherwise, a simple translation x → x − x0 will put
the center at the origin.

Substituting this expression and its derivatives into the original differential
equation and factorizing the resulting expression in terms of powers of x, we obtain
a system of algebraic equations relating the various coefficients cn of the series, one
equation for each power of x. This leads us to a second degree algebraic equation
called the indicial or auxiliary equation, whose solution furnishes the value of the
parameter s. Depending on this value, the resulting power series can furnish two
linearly independent solutions of the given homogeneous differential equation.

In the case in which s = 0 we have a Maclaurin series, that is, analytic functions
nonnull at the origin, as we will see in Chap. 3. For s = m, with m a positive integer,
the solutions are still analytic functions, with a zero of order m at the origin. In the
case where s = −m, where m is a positive integer, the functions have a pole of
order m at the origin, as we will discuss in Chap. 3; finally, for noninteger s, we
have functions with certain kinds of branch points at the origin. For branch points
of logarithmic type (Chap. 3), we must begin with a Frobenius series of the form

y(x) = ln x

∞∑
n=0

cnx
n+s +

∞∑
m=0

amxm+r , with c0 �= 0 and a0 �= 0,

which is called a generalized Frobenius series.
In short, the Frobenius method always provides one linearly independent solu-

tion. As mentioned earlier, depending on the roots of the auxiliary equation, we may
also have the second linearly independent solution. As an example, we present here
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the case in which the roots of the auxiliary equation are equal, that is, the case in
which we have a double root. We then search for the second linearly independent
solution of the zero-order Bessel equation.

Example 2.5 Let x ∈ R. Consider the classical zero order Bessel equation

x2 d2

dx2 y(x) + x
d

dx
y(x) + x2y(x) = 0 .

A first linearly independent solution of this differential equation can be obtained
with the Frobenius method. It is denoted J0(x), the first kind Bessel function of
order zero, and is given by

J0(x) =
∞∑

n=0

(−1)n

(n!)2
(x

2

)2n
.

Using the generalized Frobenius method, obtain the general solution of the Bessel
equation, i.e., a solution with two arbitrary constants.

A second solution of the Bessel equation, linearly independent from the first one,
will be constructed in the form of the generalized Frobenius series,

y2(x) = C J0(x) ln x +
∞∑

n=1

bnx
n, x > 0, (2.3)

where the coefficients C and bn are to be determined. Note that the above expression
is, in fact, a generalization of the Frobenius series previously defined, since choosing
C = 0 reduces it to the previous one, because s = 0 is a double root.

Differentiating twice Eq. (2.3), substituting the result in the zero-order Bessel
equation and rearranging the terms, we can write

b1 + 4b2x +
∞∑

n=3

[n2bn + bn−2]xn−1 = −2C J ′
0(x) ,

where the prime indicates the first derivative of the zero-order Bessel function.
Evaluating the first derivative of the zero-order Bessel function and substituting the
result into the last equation, we obtain

b1 + 4b2x +
∞∑

n=3

[n2bn + bn−2]xn−1 = −C

∞∑
n=1

(−1)n
4n

22n(n!)2 x2n−1.

In order to simplify the calculation of coefficients bn, we multiply the above
expression by x and separate the sum of the first member into two sums, one
containing odd powers and the other containing even powers, so that we have
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{
b1x+

∞∑
n=1

[(2n + 1)2b2n+1+b2n−1]x2n+1

}
+

{
4b2x

2+
∞∑

n=2

[(2n)2b2n+b2n−2]x2n

}

= C x2 + C

∞∑
n=2

(−1)n+1 4n

22n(n!)2 x2n .

Using the last expression, we conclude that b1 = b3 = · · · = 0, that is, all odd
coefficients are null. On the other hand, for the even coefficients we have

4b2 = C

4n2b2n + b2n−2 = C(−1)n+1 4n

22n(n!)2 , for n ≥ 2,

whence there follow the recurrence relations for coefficients b2n:

b2 = C

22

b4 = − C

22 · 42
(
1 + 1

2

)
= − C

24(2!)2
(
1 + 1

2

)

b2n = (−1)n+1 C

22n(n!)2
(
1 + 1

2
+ . . . + 1

n

)
.

Substituting these results into Eq. (2.3) we obtain the second solution,

y2(x) = C J0(x) ln x + C

∞∑
n=1

(−1)n+1 1

(n!)2
(
1 + 1

2
+ . . . + 1

n

)(x

2

)2n ·

Taking C = 1 (normalization), this second solution is called second kind zero-order
Bessel function, which is denoted Y0(x) and is given by

Y0(x) = J0(x) ln x +
∞∑

n=1

(−1)n+1 1

(n!)2
(
1 + 1

2
+ . . . + 1

n

) (x

2

)2n
.

Thus, the general solution of zero-order Bessel equation is given by

y(x) = C1J0(x) + C2Y0(x),

with C1 and C2 arbitrary constants. �
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2.4 Solved Exercises

SE 2.1 Let x ∈ R and a, b and c three real parameters. The so-called hypergeomet-
ric differential equation is given by

x(1 − x)
d2

dx2
y(x) + [c − (a + b + 1)x] d

dx
y(x) − aby(x) = 0.

(a) Classify the hypergeometric differential equation. (b) Discuss the nature of
points x0 = 0 and x0 = 1.

Solution (a) The hypergeometric differential equation is a homogeneous, linear,
and second-order ordinary differential equations with nonconstant coefficients. (b)
In order to discuss the nature of the points, we identify the coefficients

A(x) = x(1 − x) , B(x) = c − (a + b + 1)x , and C(x) = −ab .

First of all, these two points are singular points because A(0) = 0 = A(1). Thus,
we must evaluate two limits in order to know if the points are regular singular or
irregular singular. For x0 = 0, evaluating the limits

lim
x→0

x
c − (a + b + 1)x

x(1 − x)
and lim

x→0
x2 −ab

x(1 − x)
,

we find that both are zero, that is, finite. Then, this singular point is regular. On the
other hand, for x0 = 1 we must evaluate the limits

lim
x→1

(x − 1)
c − (a + b + 1)x

x(1 − x)
and lim

x→1
(x − 1)2

−ab

x(1 − x)
.

Also in this case, the limits are finite, then we have again a regular singular point.
We conclude that the hypergeometric differential equation is a second-order

ordinary differential equation and has three singular points x0 = 0, x0 = 1 and
x0 = ∞. Two of them were discussed earlier and the point x0 = ∞ is left as a
proposed exercise.

SE 2.2 Let x ∈ R. Expand f (x) = sin x in a Maclaurin series. Obtain the interval
of convergence for this expansion.

Solution We have for the derivatives:

f ′(x) = cos x, f ′′(x) = − sin x, f ′′′(x) = − cos x, f IV (x) = sin x . . .

(2.4)
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Hence, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1, f IV (0) = 0 . . . , and according to
Eq. (2.2) we have

f (x) = x

1! − x3

3! + x5

5! − · · · =
∞∑

n=1

(−1)n+1 x2n−1

(2n − 1)! ,

or also

f (x) =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! .

In order to obtain the interval of convergence, we use the ratio test. According to
this test, we have three possibilities. Assume that

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = L.

Then, the series diverges if L > 1 and converges if L < 1. If L = 1 the test fails,
that is, it does not allow us to say anything about the convergence of the given series.

In the present case,

L = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣
(−1)n+1x2n+3

(2n + 3)!
(2n + 1)!

(−1)nx2n+1

∣∣∣∣

= x2 lim
n→∞

∣∣∣∣
(2n + 1)!

(2n + 3)(2n + 2)(2n + 1)!
∣∣∣∣ = 0. (2.5)

Hence, the series converges for every x, i.e., we have an infinite radius of
convergence.

SE 2.3 Let ν ∈ R and y = y(x). Discuss the Bessel equation of order ν, which we
will discuss in Chap. 4,

x2y′′ + xy′ + (x2 − ν2)y = 0,

using the Frobenius method.

Solution Consider the following series:

y(x) =
∞∑

n=0

cnx
n+s , c0 �= 0,

where s is a free parameter. Differentiating it with respect to x we get
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y′(x) =
∞∑

n=0

(n + s)cnx
n+s−1; (2.6)

y′′(x) =
∞∑

n=0

(n + s)(n + s − 1)cnx
n+s−2. (2.7)

Substituting these expressions into the Bessel equation, we obtain

∞∑
n=0

(n + s)(n + s − 1)cnx
n+s +

∞∑
n=0

(n + s)cnx
n+s +

+
∞∑

n=0

cnx
n+s+2 − ν2

∞∑
n=0

cnx
n+s = 0. (2.8)

Now, we may change the index in the third sum, that is, we can write

∞∑
n=0

cnx
n+s+2 =

∞∑
n=2

cn−2x
n+s ,

so that we may rewrite Eq. (2.8) as

s(s − 1)c0 + (s + 1)sc1x + sc0 + (s + 1)c1x − ν2c0 − ν2c1x +

+
∞∑

n=2

{
[(n + s)2 − ν2]cn + cn−2

}
xn+s = 0. (2.9)

By hypothesis, the initial constant c0 is nonnull; then, the coefficients of power
x0 = 1 furnish the indicial equation

s(s − 1) + s − ν2 = 0 . (2.10)

For powers in x we have

[s(s + 1) + (s + 1) − ν2]c1 = 0,

and for the relation between cn and cn−2,

[(n + s)2 − ν2]cn + cn−2 = 0, for n ≥ 2,

which is known as recurrence relation.
Solving the indicial equation Eq. (2.10), we find s = ±ν . Substituting these

values for s into the equation involving c1 we have
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s = ν ⇒ [(ν + 1)2 − ν2]c1 = 0 ⇒ (2ν + 1)c1 = 0; (2.11)

s = −ν ⇒ [(−ν + 1)2 − ν2]c1 = 0 ⇒ (−2ν + 1)c1 = 0. (2.12)

Thus, we conclude that:

s = ν = −1/2 ⇒ c1 is arbitrary; (2.13)

s = −ν = 1/2 ⇒ c1 is arbitrary; (2.14)

s �= ±1/2 ⇒ c1 = 0. (2.15)

SE 2.4 (Bessel Equation of Order 1/2) To exemplify the use of the Frobenius
method, let us consider the results of SE 2.3 for the case in which ν = −1/2 and
c1 is arbitrary. In this case, s = −1/2, and we have from this result the recurrence
relation

[(
n − 1

2

)2

− 1

4

]
cn + cn−2 = 0,

n(n − 1)cn + cn−2 = 0 ⇒ cn = − cn−2

n(n − 1)
, n ≥ 2.

Developing the first terms we find:

c2 = −c0/2;
c3 = −c1/3 · 2 = −c1/3!;
c4 = −c2/4 · 3 = c0/4!;
c5 = −c3/5 · 4 = c1/5!;
c6 = −c4/6 · 5 = −c0/6!;
c7 = −c5/7 · 6 = −c1/7!
...

Therefore, we have for our series

y(x) = x−1/2{c0 + c1x − c0

2! x
2 − c1

3! x
3 + c0

4! x
4 + c1

5! x
5 − c0

6! x
6 − c1

7! x
7 + · · · }

or

y(x) = x−1/2c0

{
1 − x2

2! +x4

4! − x6

6! + · · ·
}

+x−1/2c1

{
x − x3

3! +x5

5! − x7

7! + · · ·
}
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= x−1/2c0

∞∑
n=0

(−1)n
x2n

(2n)!+x−1/2c1

∞∑
n=0

(−1)n
x2n+1

(2n+1)! , (2.16)

where c0 and c1 are arbitrary constants.
Comparing this result with SE 2.2, we identify these two series as sin x and cos x;

hence

y(x) = x−1/2(c0 cos x + c1 sin x)

and as we have two arbitrary constants, this is the general solution for the Bessel
ordinary differential equation of order 1/2.

If we perform the calculations for the other root of the indicial equation (s =
1/2) we will find a linear combination of the two linearly independent solutions
x−1/2 cos x and x−1/2 sin x found above. This phenomenon, in which the least root
of the indicial equation generates by itself the general solution, occurs whenever the
two roots are not integers but their difference is an integer. Introducing an adequate
normalization for Bessel functions (see Chap. 4), we get

x−1/2 cos x =
√

π

2
J−1/2(x); (2.17)

x−1/2 sin x =
√

π

2
J 1/2(x). (2.18)

Thus, the general solution of the Bessel differential equation of order 1/2,

x2y′′ + xy′ + (x2 − 1/4)y = 0,

is

y(x) = A J 1/2(x) + B J−1/2(x),

where A and B are arbitrary constants. J1/2(·) is the first kind Bessel function of
order 1/2 and Y1/2(·) is the second kind Bessel function of order 1/2.

SE 2.5 (Whittaker Equation) The Schrödinger [1887 – Erwin Schrödinger –
1961] equation, which will be discussed in Chap. 11, can be used to describe the
motion of a quantum particle in a potential field. If we write the resulting equation
in spherical coordinates and apply the method of separation of variables—which is
explained in Chap. 8—we arrive at a radial equation of the form

d2

dr2
R(r) + 2

r

d

dr
R(r) +

[
−βV (r) + βE − �(� + 1)

r2

]
R(r) = 0,

where β and � are constants, � = 0, 1, 2, . . . , V (r) is the potential and E is the
energy associated with the particle.
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(a) Suppose that the potential is Keplerian, [1571 – Johannes Kepler – 1630]
also known as Coulombian [1736 – Charles Augustin Coulomb – 1806] i.e.,
V (r) = −α/r , where α is a positive constant. Perform the change of dependent
variable

R(r) = 1

r
F (r),

and introduce two new constants λ2 = βE and b = βα, to obtain the following
ordinary differential equation:

d2

dr2
F(r) +

[
λ2 + b

r
− �(� + 1)

r2

]
F(r) = 0.

(b) Introduce the change of independent variable x = −2iλr into the last equation
to obtain the following ordinary differential equation:

d2

dx2F(x) +
[
−1

4
+ ib/2λ

x
− �(� + 1)

x2

]
F(x) = 0.

This is called the Whittaker differential equation, as one can see in PE 1.28. (c) Use
the Frobenius method, with an expansion around the origin, to discuss the solution
of this equation.

Solution (a) Differentiating the unknown function (dependent variable)

R(r) = 1

r
F (r)

with respect to r and introducing the result into the differential equation we obtain

d2

dr2
F(r) +

[
−βV (r) + βE − �(� + 1)

r2

]
F(r) = 0.

Introducing the parameters λ2 and b defined above, we finally have

d2

dr2
F(r) +

[
λ2 + b

r
− �(� + 1)

r2

]
F(r) = 0,

which is the desired ordinary differential equation. (b) Now, for the new independent
variable x = −2iλr we have

d

dr
= dx

dr

d

dx
= −2iλ

d

dx
.
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Substituting this result into the previous differential equation, we then get

d2

dx2F(x) +
[
−1

4
+ ib/2λ

x
− �(� + 1)

x2

]
F(x) = 0,

which is the Whittaker differential equation. (c) To use the Frobenius method, we
write R(r) as

F(x) =
∞∑

k=0

akx
k+s ,

where a0 �= 0 and s is a free parameter.
Differentiating this expression with respect to x, substituting into the differential

equation and rearranging terms we have

∞∑
k=0

[(k+s)(k+s − 1) − �(�+1)] akx
k+s+ ib

2λ

∞∑
k=0

akx
k+s+1 − 1

4

∞∑
k=0

akx
k+s+2 = 0.

Changing the index in the last two sums we obtain

∞∑
k=0

[(k+s)(k+s − 1) − �(�+1)] akx
k+s+ ib

2λ

∞∑
k=1

ak−1x
k+s − 1

4

∞∑
k=2

ak−2x
k+s = 0,

whence it follows the indicial equation, k = 0,

s(s − 1) − �(� + 1) = 0,

with solutions s1 = � + 1 and s2 = −�. As � is a nonnegative integer we have that
s1 − s2 = 2� + 1 is always a positive integer. Then, the Frobenius series provides
one solution while the other linearly independent solution must be obtained from
the generalized Frobenius series, and it will not be a polynomial.

For k = 1, we have the following relation:

[s(s + 1) − �(� + 1)] a1 + ib

2λ
a0 = 0;

and finally, the recurrence relation, valid for k ≥ 2,

[(k + s)(k + s − 1) − �(� + 1)] ak + ib

2λ
ak−1 − 1

4
ak−2 = 0.

We now discuss the two cases, that is, s = −� and s = � + 1. Let us first consider
the case in which s = −�; from the relation between a1 and a0 we find that
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a1 = ib

4λ�
a0.

We thus see that we must have � �= 0. So, s = −� with � = 1, 2, . . . does not furnish
a Frobenius series. On the other hand, the case s = � + 1 furnishes

a1 = − iλ

4(� + 1)λ
a0,

that is, given a0 we obtain a1 and using the recurrence relation

ak = 1

k(k + 2� + 1)

(
− ib

λ
ak−1 + 1

2
ak−2

)

we obtain the remaining terms. Note that s1−s2 = 2�+1 and the Frobenius method
furnishes only one solution. To obtain another linearly independent solution, we
must use the generalized Frobenius series.

SE 2.6 The classical Langevin’s [1872 – Paul Langevin – 1946] theory of
paramagnetism leads to the following expression for magnetic polarization:

P(x) = C

(
cosh x

sinh x
− 1

x

)
,

where C is a positive constant. Expand P(x) in a power series for small x, i.e., high
temperatures and weak fields.

Solution Knowing that the expansions for sinh x and cosh x are given, respectively,
by

sinh x = x + x3

3! + x5

5! + · · ·

and

cosh x = 1 + x2

2! + x4

4! + · · ·

we can calculate the quotient x cosh x/ sinh x, obtaining

x cosh x

sinh x
= 1 + 1

3
x2 − 1

45
x4 − · · ·

Then, we may write for P(x):

P(x) = C

x

(
1 + 1

3
x2 − 1

45
x4 − · · · − 1

)
,
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or, finally,

P(x) = C

(
1

3
x − 1

45
x3 + · · ·

)
.

SE 2.7 The displacement x of a particle with rest mass m0, under the action of
a constant force m0g, where g is the gravitational acceleration, along the x axis,
including relativistic effects, is given by

x = c2

g

⎧⎨
⎩

[
1 +

(
gt

c

)2
]1/2

− 1

⎫⎬
⎭ ,

where c is the speed of light in vacuum. Find the displacement x as a power series
in t . Compare it with the classical result x = 1

2gt2.

Solution Using the result [4]

√
1 + x = 1 + 1

2
x − 1

2
· 1
4
x2 + 1

2
· 1
4

· 3
6
x3 − · · ·

valid for |x| < 1, which is obtained through the Maclaurin series, we can write

x(t) = c2

g

(
1 + 1

2
β − 1

8
β2 + 1

16
β3 − · · · − 1

)

where β =
(

gt

c

)2

. Then, simplifying, we obtain for the displacement the following

expansion:

x(t) = 1

2
gt2

{
1 − 1

4

(
gt

c

)2

+ 1

8

(
gt

c

)4

− · · ·
}

.

Thus, the classical result is recovered at the limit gt << c where only the first
term in the series contributes, i.e.

x(t) = 1

2
gt2.

SE 2.8 Find the general solution, in the neighborhood of x = 0, of the following
homogeneous linear ordinary differential equation:

x(1 − x)
d2

dx2 y(x) − 2x
d

dx
y(x) + 2y(x) = 0, (2.19)

with y = y(x).



52 2 Power Series and the Frobenius Method

Solution It is not difficult to see that y(x) = x is a solution (inspection) of this
differential equation. Once we realized that, we might use the method of reduction
of order to determine the second linearly independent solution and then its general
solution. However, we will use the Frobenius method—in this case, the generalized
Frobenius method, because the roots of the indicial equation are integer and their
difference is also an integer. Suppose a solution given by the following series:

y(x) =
∞∑

n=0

cnx
n+s , (2.20)

where c0 �= 0 and s is a free parameter.
Then, differentiating with respect to x and substituting the results into the

differential equation above we obtain

∞∑
n=0

(n + s)(n + s − 1)cnx
n+s−1 −

∞∑
n=0

(n + s)(n + s − 1)cnx
n+s−

−2
∞∑

n=0

(n + s)cnx
n+s + 2

∞∑
n=0

cnx
n+s = 0

or, rearranging terms,

∞∑
n=0

(n+s)(n+s −1)cnx
n+s−1+

∞∑
n=0

[2−(n+s)(n+s +1)]cnx
n+s = 0. (2.21)

Changing the index in the second sum, n → n − 1, we have

∞∑
n=0

(n + s)(n + s − 1)cnx
n+s−1 +

∞∑
n=1

[2 − (n + s − 1)(n + s)]cn−1x
n+s−1 = 0,

(2.22)

from which we may write the indicial equation

s(s − 1)c0 = 0 (2.23)

and also the following recurrence relation:

cn = (n + s − 1)(n + s) − 2

(n + s)(n + s − 1)
cn−1, n ≥ 1. (2.24)

The indicial equation has roots s = 0 and s = 1. Note that these roots differ
by an integer. In such cases, the usual method consists of searching for the second
solution through the generalized Frobenius method, i.e, a solution with the form
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y2(x) = y1(x) ln x +
∞∑

k=0

bkx
k .

For s = 0, we obtain

cn = (n + 1)(n − 2)

n(n − 1)
cn−1 , n ≥ 1, (2.25)

which is not defined for n = 1 and thus does not provide a solution of Frobenius
type.

On the other hand, for s = 1 we obtain

cn = (n − 1)(n + 2)

n(n + 1)
cn−1 , n ≥ 1. (2.26)

As c1 = 0, all coefficients except c0 are null, and it follows that

y1(x) = Ax

with A a constant, is a solution of the differential equation.
We may search for the other linearly solution using the generalized Frobenius

method, i.e., as y(x) = x is a solution, we consider the expression

y2(x) = x ln x +
∞∑

k=0

bkx
k, b0 �= 0.

Then, differentiating this expression and substituting the result into the homoge-
neous linear ordinary differential equation, we find that b0 = −1/2, b1 is arbitrary,
b2 = 3/2 and the recurrence relation is given by

bn+1 = (n − 1)(n + 2)

n(n + 1)
bn,

with n ≥ 2, whence it follows, choosing b1 = 1, the second linearly independent
solution

y2(x) = x ln x − 1

2
+ x + 3

2
x2 + x3 + 5

6
x4 + · · ·

The general solution is then given by the expression

y(x) = Ay1(x) + By2(x),

where A and B are constants to be determined by the respective conditions of a
specific problem and y1(x) and y2(x) are as aforementioned.
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SE 2.9 Let x ∈ R. Consider the homogeneous linear ordinary differential equation

x
d2

dx2
y(x) + (1 − x)x

d

dx
y(x) − y(x) = 0, (2.27)

known as a particular confluent hypergeometric function. (a) Introduce the change
x = 1/ξ to obtain another homogeneous linear ordinary differential equation for
y = y(ξ) and (b) using the equation obtained in (a) justify if it has a Frobenius
series arround ξ = 0.

Solution (a) First, using the chain rule, we have for the first and second derivative
operators

d

dx
= −ξ2

d

dξ
and

d2

dx2
= ξ4

d2

dξ2
+ 2ξ3

d

dξ
.

Substituting into Eq. (2.27) and simplifying, we get the homogeneous linear ordi-
nary differential equation in variable ξ ,

ξ3y′′ + ξ(1 + ξ)y′ − y = 0, (2.28)

with y = y(ξ). (b) We look for a solution of the last ordinary differential equation
in terms of a Frobenius series

y(ξ) =
∞∑

k=0

akξ
k+s ,

where a0 �= 0 and s is a free parameter. Evaluating the derivatives, substituting into
Eq. (2.28) and rearranging we get

∞∑
k=1

ak−1(k + s − 1)2ξk+s +
∞∑

k=0

ak(k + s − 1)ξk+s = 0.

Taking k = 0 in the second sum, we have the indicial equation and for k ≥ 1, the
corresponding recurrence relation

a0(s − 1) = 0 and ak = −kak−1,

respectively. The indicial equation furnishes s = 1. Thus, the solution in terms of a
Frobenius series can be written as

y(ξ) = a0

∞∑
k=0

(−1)kk!ξk+1 .

Since we made a change of variable x = 1/ξ and did the analysis at point ξ = 0
(the same as analyzing around point x = ∞), we say that the equation in variable
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x admits a regular solution at infinity, besides the regular at origin which, as can
be verified by substitution, is given by y(x) = exp(x). In short, this is a second-
order ordinary differential equation whose two linearly independent solutions are,
one regular at the origin and the other regular at the infinity.

2.5 Proposed Exercises

PE 2.1 Show that x0 = ∞ is another regular singular point for the hypergeometric
differential equation.

PE 2.2 Let x ∈ R and let a, b be two nonnull real constants. Obtain the singular
points and classify them for the Euler differential equation

x2 d2

dx2 y(x) + ax
d

dx
y(x) + by(x) = 0 .

PE 2.3 Let −1 ≤ x ≤ 1. Consider the zero-order Legendre differential equation

(1 − x2)
d2

dx2 y(x) − 2x
d

dx
y(x) = 0 .

Does this equation have singular points? If it does, what are they?

PE 2.4 (a) Determine the radius of convergence of the geometric series

∞∑
n=0

xn .

(b) Evaluate its sum.

PE 2.5

(a) Determine the convergence radius of the series

∞∑
n=0

(−1)n
x2n+1

(2n + 1)! and
∞∑

n=0

(−1)n
x2n

(2n)! .

(b) Identify them with elementary functions.

PE 2.6 Let x ∈ R. Find the singular points of the differential equation

x2(1 − x2)
d2

dx2
y(x) + 2x

d

dx
y(x) − 4y(x) = 0

and classify them.
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PE 2.7 What are the singular points of the ordinary differential equation

d2

dx2 y(x) + x
d

dx
y(x) − y(x) = 0 ,

if any?

PE 2.8 Let x ∈ R. Consider the linear, second-order ordinary differential equation

(x2 − x − 2)
d2

dx2 y(x) − (x + 1)
d

dx
y(x) + y(x) = 2022 .

(a) Classify its singular points. (b) Obtain a solution for the corresponding homo-
geneous differential equation and a particular solution of the nonhomogeneous
differential equation.

PE 2.9 Let x ∈ R. Consider the so-called Airy [1801 – George Biddel Airy –
1892] ordinary differential equation

d2

dx2
y(x) − xy(x) = 0 .

Show that a solution of the Airy equation is given by

y1(x) = C1

[
1 + (x − 1)2

2
+ (x − 1)3

6
+ (x − 1)4

24
+ · · ·

]
,

with C1 an arbitrary constant.

PE 2.10 Let x ∈ R and y = y(x). Obtain the solution of the initial value problem
⎧⎪⎪⎨
⎪⎪⎩

d2y

dx2
− y = 0

y(0) = 2
y′(0) = 1

using an expansion in Maclaurin series, justifying the procedure.

PE 2.11 Expand f (x) = cos x in a Maclaurin series. Obtain, for this expansion, its
interval of convergence.

PE 2.12 (a) Introduce the change of variable x = t
b
into the hypergeometric

differential equation given in SE 2.1 and take the limit b → 0 to obtain the confluent
hypergeometric equation

t
d2w

dt2
+ (c − t)

dw

dt
− a w = 0,

with w = w(t). (b) Show that t0 = 0 and t0 = ∞ are respectively regular and
irregular singular points of this equation.
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PE 2.13 Show that

1

(1 + x)2
= 1 − 2x + 3x2 − . . . =

∞∑
k=1

(−1)k−1kxk−1

for |x| < 1.

PE 2.14 Assuming that x2 < 1, show that

x

(1 − x)2
=

∞∑
k=1

kxk .

PE 2.15 Expand f (x) = ex in a Maclaurin series.

PE 2.16 Expand f (x) = sinh x in a Maclaurin series.

PE 2.17 Expand f (x) = cosh x in a Maclaurin series.

PE 2.18 Using the results of the three previous exercises, verify that

sinh x + cosh x = ex .

PE 2.19 Solve PE 1.25 using the method of power series.

PE 2.20 Solve PE 1.26 with the method of power series.

PE 2.21 Let y = y(x). Solve, using power series, the differential equation

(1 − x2)y′′ + xy′ − y = 0 .

PE 2.22 Solve, using the Frobenius method, the Bessel equation of order 1. Verify
that it is necessary to use the generalized series.

PE 2.23 Solve, using the Frobenius method, the Bessel equation of order 0. Verify
that in this case we have a series of the power type. Obtain the second linearly
independent solution.

PE 2.24 Using the Frobenius method, solve the Euler equation of PE 1.14.

PE 2.25 Let y = y(x). Solve, using the Frobenius method, the differential equation

xy′′ + y′ = 0 .

PE 2.26 Solve the Legendre equation of order zero with the Frobenius method.

PE 2.27 Let y = y(x). Using the Frobenius method, solve the differential equation

y′′ + (1 − x2)y = 0,

called Hermite [1822 – Charles Hermite – 1901] differential equation.
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PE 2.28 Development around the point at infinity. Use the Frobenius method to
solve the differential equation (PE 1.13)

x4y′′ + 2x3y′ − ω2y = 0,

where ω2 is a positive constant and y = y(x).

PE 2.29 Confluent hypergeometric equation. Let y = y(x). Use the Frobenius
method to obtain a solution of the differential equation

xy′′ + (1 − x)y′ − y = 0.

PE 2.30 Let y = y(x). Solve the Airy equation

y′′ − xy = 0,

using the Frobenius method.

PE 2.31 Show that the equation x4y′′−y = 0, y = y(x), does not possess solutions
of Frobenius type. Using the suggestion given in PE 2.28, the expansion around the
point at infinity, what can you conclude?

PE 2.32 Let y = y(x). Solve the ordinary differential equation

y′′ + xy′ + y = 0.

in the neighborhood of the point x = 0.

PE 2.33 Let y = y(x). Give a complete solution for the differential equation

y′′ + 5x3y = 0.

PE 2.34 Let y = y(x). Find the power series solution of the differential equation

4xy′′ + 2(1 − x)y′ − y = 0.

PE 2.35 Let y = y(x). Obtain a solution in power series for

x2y′′ + xy′ +
(

x2 − 1

9

)
y = 0.

PE 2.36 Let y = y(x). Solve the ordinary differential equation

x2y′′ + xy′ + (x3 − 2)y = 0

around the point x = 0.
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PE 2.37 Let y = y(x). Solve the ordinary differential equation

3(x2 + x)y′′ + (x + 2)y′ − y = 0

in the neighborhood of the point x = 0.

PE 2.38 Let ω = ω(x). Solve the ordinary differential equation

2xω′′ + ω′ − ω = 0,

in the neighborhood of the point x = 0.

PE 2.39 Show that

y ≡ y(x) = x2 + x1/2 e−x2/4 +
∞∑

k=1

(−1)k
x2k+2

7.11.15 . . . (4k + 3)

is a solution of

2x2y′′ + (x3 − 3x)y′ + 2y = 0.

PE 2.40 Let y = y(x). Solve the ordinary differential equation

8x2y′′ + 2xy′ + (1 − x)y = 0

around the point x = 0.

PE 2.41 Let y = y(x). Obtain a solution for the ordinary differential equation

x2y′′ + (x3 − x)y′ + (1 − x2)y = 0.

PE 2.42 Let y = y(x). Obtain solutions in the neighborhood of x = 1 for the
ordinary differential equation

(x − 1)y′′ − xy′ + y = 0.

PE 2.43 Let y = y(x). Solve the ordinary differential equation

xy′′ + y′ − y = 0.

PE 2.44 Let y = y(x). Obtain a solution of the ordinary differential equation

x2(1 + x)y′′ + x(1 + x)y′ − y = 0.

PE 2.45 Let y = y(x). Solve the ordinary differential equation

xy′′ + (x − 1)y′ − y = 0.
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PE 2.46 Let y = y(x). Solve the ordinary differential equation

9x2y′′ + 3x(x2 + 2)y′ + (x2 − 2)y = 0.

PE 2.47 Let y = y(x). Obtain a solution of the ordinary differential equation

x(1 + x)y′′ − y′ − 2y = 0.

PE 2.48 Show that

y1(x) =
∞∑

k=0

(−1)k
xk+1/2

22kk!(k + 1)!

and

y2(x) = y1(x) ln x − 4x−1/2 −
∞∑

k=0

(−1)k
Hk+1 + Hk

22kk!(k + 1)!x
k+1/2

are solutions of

4x2y′′ + 4xy′ + (x − 1)y = 0,

with y = y(x) and where

Hk =
k∑

j=1

1

j
.

PE 2.49 Solve the ordinary differential equation

2xy′′ + y′ − (x + x2)y = 0.

PE 2.50 Let y = y(x). Obtain a solution of the ordinary differential equation

xy′′ − y′ + (1 − x)y = 0.
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Chapter 3
Laurent Series and Residues

Life is good for only two things, discovering mathematics and
teaching mathematics.

1781 – Siméon Poisson – 1840

In this chapter, we present a revision of some basic facts about functions of a
complex variable. This revision includes the main properties of such functions in
what concerns their differentiation and integration and which will be useful, for
instance, when we study integral transforms, in which the obtention of the final
results will often require the calculation of integrals using the method of residues.
The proofs of all theorems and of the lemma presented in this chapter can be found
in [3, 4].

3.1 Functions of a Complex Variable

The set of complex numbers, usually denoted by C, may be understood as an
extension of the set of real numbers R, necessary for the solution of algebraic
equations of the type z2 = −1, for example. The solutions of this equation are
z = ±i, where the number i, called imaginary unit, is given by i = √−1. The set
of complex numbers is formed by all the elements of the form z = x + iy, where x

and y are real.
To each complex number z, there corresponds a complex conjugate (or simply

conjugate), given by z∗ = x − iy, also denoted by z̄. The product of two complex
numbers z1 = x1 + iy1 and z2 = x2 + iy2, with x1, y1, x2 and y2 real numbers, is
given by z1z2 = (x2

1 −y2
1)+ i(x1y2+x2y1), where ix = xi for every real number x.

We can represent complex numbers by points on the complex plane, also called
Argand-Gauss [1768 – Jean Robert Argand – 1822] plane, associating to z =
x + iy the point (x, y) of the plane. With the help of polar coordinates we then
construct a trigonometric representation of z,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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z = x + iy = |z|(cos θ + i sin θ),

where |z| = √
x2 + y2 = √

zz∗ is the absolute value or module of z, and θ , known
as argument, is defined by the relations cos θ = x/|z| and sin θ = y/|z|. Due to
the periodicity of the sine and cosine functions, the values θ and θ + 2nπ , with
n integer, define the same complex number z. However, calculus with complex
variables requires that θ be defined uniquely, and because of this we adopt the
convention that −π < θ ≤ π . With the help of the Euler relation,

eiθ = cos θ + i sin θ,

we finally obtain the polar representation of complex numbers:

z = r eiθ , where r = |z|.

The complex conjugate of z then takes on the form z∗ = r e−iθ and it becomes easy
to verify that |z|2 = zz∗ = r eiθ r e−iθ = r2, a real number. As with real variables,
a function of a complex variable may be understood as a rule, which associates to
each complex number z = x + iy another complex number w = f (z) = u(x, y) +
iv(x, y), where u(x, y) and v(x, y) are real functions of x and y. An important
group of complex functions is formed by the so-called multiple-valued functions
or multivalued functions, i.e., those functions that associate to a given value of the
variable two or more distinct numbers w = f (z). One should not confuse this
fact with the arbitrariness of the value of θ in the polar representation: r eiθ and
r ei(θ+2nπ) are different representations of the same number. Such arbitrariness is
eliminated by the restriction imposed on the possible values of θ . Such functions
are generally considered as being composed of branches, each of which is a single-
valued function of the complex number z, as we will see further.

Example 3.1 Let z ∈ C and n = 0, 1, 2, . . . Consider, for example, the function
f (z) = n

√
z. Using the polar representation z = r eiθ , we can easily see that f (z)

can be divided in n branches, according to the usual formula for roots:

Main branch: f1(z) = n
√

r eiθ/n;
Second branch: f2(z) = n

√
r ei(θ+2π)/n;

Third branch: f3(z) = n
√

r ei(θ+4π)/n;
...

...

n − th branch: fn(z) = n
√

r ei(θ+2(n−1)π)/n .

Rigorously speaking, f1(z), f2(z), . . ., fn(z) are n distinct functions, as they
associate to the same complex z different values fi(z), i = 1, . . . , n. Nevertheless,
they share the common property that, for any z, [fi(z)]n = z, and for this reason,
they are treated together as branches of a unique (n-valued) function f (z) = n

√
z.
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Fig. 3.1 Branch point and branches of the cubic root of z

Another important property common to each branch of f (z) = n
√

z is that all
such branches are discontinuous along the line uniting the origin z = 0 to negative
infinity, i.e., the real negative half-axis.

In order to see that, let us consider the main branch of function w = f (z) = 3
√

z.
A point on the z plane, z = r eiθ , −π ≤ θ ≤ π , will be mapped by the main branch
of f (z) into the point w = f1(z) = 3

√
r eiθ/3 = 3

√
r eiα , where −π/3 ≤ α ≤ π/3.

This means that the entire z plane will be mapped into just one-third of the w plane,
as can be seen in the right-hand side of Fig. 3.1. Accordingly, the second branch will
map the z plane onto the region w = f2(z) = 3

√
r ei(θ+2π)/3 = 3

√
r eiα with π/3 ≤

α ≤ π . For the third branch, we will have w = f3(z) = 3
√

r ei(θ+4π)/3 = 3
√

r eiα

with −π ≤ α ≤ π/3.
A consequence of this property is that the points ei(π−δ) and ei(−π+δ), which

are close to each other on the z plane—for a small value of δ—are taken to the
points ei(π−δ)/3 and ei(−π+δ)/3 by the first branch of f (z) = 3

√
z. As these points

are far from each other on the w plane, this means that f (z) is discontinuous along
the negative x axis of the z plane. The same happens with the other two branches.
Figure 3.1 shows the image of ei(−π+δ) for the first branch of f (z) and the three
images of ei(π−δ) for all three branches.

The point z = 0 is called the branch point of f (z), and the real negative half-axis
is the cut line (or branch line) of f (z). The cut line of a function is not unique, and
in fact, it does not even need to be a straight line: it is determined by the division of
the function in branches. Whatever the division chosen, however, there will always
be the same number of branches, and the branch point will always be the same as
this is a characteristic of the given function. �

The concept of continuity for functions of one complex variable is formally the
same as the one for functions of a real variable. We say that a complex function f (z)

is continuous at z = z0 if, and only if,

lim
z→z0

f (z) = f (z0).

However, it must be noticed that this limit may be taken along any direction or
path on the z plane. This difference between complex and real functions entails
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other differences in the properties of such functions concerning their derivatives
and integrals, as we will see in the sequence.

As for real variables, the derivative of a complex function f (z) at z = z0 is given
by the limit

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
,

where, once more, the limit must be the same along any path on the complex plane.
It is easy to verify that the derivatives of complex functions obey the usual

differentiation rules. If f1 = f1(z) and f2 = f2(z) are differentiable functions
of z, then:

d

dz
(f1 + f2) = df1

dz
+ df2

dz
; (3.1)

d

dz
(f1f2) = df1

dz
f2 + f1

df2
dz

; (3.2)

d

dz

(
f1

f2

)
= 1

f 2
2

(
df1
dz

f2 − f1
df2
dz

)
. (3.3)

Let f = f (w) andw = w(z) be two differentiable complex functions. The chain
rule takes on the well-known form

df

dz
= df

dw

dw

dz
.

The possession of a derivative is a property of a function at a point, just like
being continuous. In complex calculus, we work primarily with functions possessing
derivatives at least on a finite region of the complex plane. Such functions have
special properties, thus deserving a particular name and a more detailed study of
their characteristics.

A complex function f (z) is called analytic, regular (an older term) or holomor-
phic (a modern term) on a region R of the complex plane if, and only if, f (z)

possesses its first derivative f ′(z) on all points of R. It is possible to show that the
existence of the first derivative f ′(z) on a region R of the complex plane entails the
existence and continuity of the derivatives of all orders n, f (n)(z), on that region.
Besides, such functions have other properties which we state as theorems.

Theorem 3.1 (Cauchy–Riemann [1826 – Bernhard Riemann – 1866] Con-
ditions) Let f (z) be an analytic function on a given domain R on the complex
plane. If z ≡ x + iy and f (z) ≡ u(x, y) + iv(x, y), then u(x, y) and v(x, y) are
continuous functions of x and y and satisfy the Cauchy–Riemann conditions, also
called Cauchy–Riemann equations,
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∂u

∂x
= ∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

The reciproque of this theorem is also true and may be stated as follows:

Theorem 3.2 (Morera’s [1856 – Giacinto Morera – 1909] Theorem) Let x, y ∈
R and z ∈ C with z = x + iy. If f (z) = u(x, y) + iv(x, y) is such that u(x, y) and
v(x, y) are continuous and have continuous first partial derivatives on a domain R

of the complex plane, then f (z) is analytic on R.

The two theorems aforementioned imply that the derivative f ′(z) of an analytic
function f (z) = u(x, y) + iv(x, y) is given, in terms of u and v, by

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= ∂v

∂y
− i

∂u

∂y
.

Example 3.2 Let x, y ∈ R and z ∈ C with z = x + iy. Let u = u(x, y) =
x2 − y2 − 2x be the real part of a complex function f (z) = u(x, y) + iv(x, y).
Determine f (z) satisfying the condition f (0) = 0.

We first determine v = v(x, y) by means of the Cauchy-Riemann conditions,

∂u

∂x
= 2x − 2 = ∂v

∂y
.

Integration of this expression in variable y furnishes

v(x, y) = 2xy − 2y + φ(x),

with φ(x) a function depending on variable x only. Using the second Cauchy-
Riemann condition, we have

−∂v

∂x
= 2y + φ′(x) 	⇒ −2y − φ′(x) = ∂u

∂y
= −2y.

Solving the ordinary differential equation in variable x, we get

φ(x) = C,

where C is an arbitrary constant. Thus, we can write

f (z) = x2 − y2 − 2x + i(2xy − 2y + C) = z2 − 2z + iC .

Using the condition f (0) = 0, we find that C = 0 and we finally obtain

f (z) = z(z − 2)

which is the sought function. �
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It is possible to show that all n-th degree polynomials in one complex variable
z ∈ C, Pn(z) = a0 + a1z + · · · + anz

n, with a0, a1, . . . , an constants, are analytic
functions whose derivatives can be easily calculated by means of the formula

d

dz
(zn) = nzn−1, n integer. (3.4)

With this result and the differentiation rule Eq. (3.3) it becomes clear that all
algebraic rational functions, i.e., functions of the form P(z)/Q(z), where P(z) and
Q(z) are polynomials, are also analytic except, of course, at the points in which
Q(z) is null.

A function of fundamental importance in the theory of complex variables is the
exponential function. Let x, y ∈ R and z ∈ C with z = x + iy; we define

ez = ex eiy = ex(cos y + i sin y) .

It is an analytic function and has the following properties:

1. The product of two exponential functions is given by ez1+z2 = ez1 ez2 .
2. For any complex number z, ez �= 0.
3. The inverse of an exponential is given by 1

ez = e−z.
4. For every z, ez+2πi = ez.
5. For every z and for every real number μ, (ez)μ = eμz.

Using the definition of the exponential function, we can define the fundamental
trigonometric and hyperbolic functions:

cos z = eiz + e−iz

2
; sin z = eiz − e−iz

2i
;

cosh z = ez + e−z

2
; sinh z = ez − e−z

2
.

From these functions, we construct the remaining trigonometric and hyperbolic
functions, using the same definitions of the corresponding functions of a real
variable. All such functions are analytic on their domains, and their derivatives bear
the same relationships to each other as their real counterparts.

Example 3.3 Let z ∈ C. Evaluating the derivatives of trigonometric and hyperbolic
functions, we can find that

d

dz
sin z = cos z; d

dz
cos z = − sin z;

and
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d

dz
sinh z = cosh z; d

dz
cosh z = sinh z.

Note the similarity with the real functions. �
Finally, we must mention that these functions, because they are analytic, can be

expanded in Taylor series identical to their real counterparts. On the other hand,
logarithmic functions and inverse trigonometric and hyperbolic functions require
greater care, as they are multivalued functions [3].

3.2 Laurent Series, Zeros, and Singularities

As we already said, in the study of linear ordinary differential equations, a point can
be classified as regular or singular, and a singular point can be further classified
as a regular singular point or an irregular singular point. Here we extend this
classification to the complex plane in order to incorporate all possibilities.

Let C1 and C2 be two concentric circumferences with center at a point z = a of
the complex plane and radii R1 and R2, R1 < R2, respectively. Assume that f (z) is
a single-valued analytic function on C1 and C2, and also on the region R limited by
them, the annular region. Let z = a + h be an arbitrary point of R.

Then we may write f (a + h) in terms of a series that generalizes the Taylor
series, the so-called Laurent [1813 – Pierre Alphonse Laurent – 1854] series:

f (a + h) = a0 + a1h + a2h
2 + · · · + a−1

h
+ a−2

h2
+ · · ·

The coefficients in this series are given by

an = 1

2πi

∮

C

f (z)

(z − a)n+1 dz , n = 0, ±1, ±2, . . .

where C is an arbitrary circumference completely contained within region R, and
integration is performed in the counterclockwise sense.

The expression a0 + a1(z − a) + a2(z − a)2 + · · · is called the analytic part of
the Laurent series and the remaining part, composed of powers of (z − a)−1, is its
principal part. If the principal part is null the series is reduced to a Taylor series.

The point z = a is called a zero (or root) of function f (z), if f (a) = 0. If f (z)

is analytic at z = a, its Laurent series around this point reduces to a Taylor series,

f (z) =
∞∑

n=0

an(z − a)n,

with a0 = 0. If a1 �= 0, the point z = a is called a simple zero (or a zero of order
one). It may happen that in the expansion of f (z) several coefficients are null. Let
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am be the first nonnull coefficient in the Taylor series. In such a case we say that
z = a is a zero of order m. The order of a zero can be determined without using the
Taylor series, by calculating the limit

lim
z→a

f (z)

(z − a)n
, for n = 1, 2, 3, . . .

The least value of n for which this limit is nonnull is the order of the zero.

Example 3.4 Obtain the Laurent series for f (z) = (1 − z2)−1 which converges in
the annular region 1/4 < |z − 1| < 2 and determine the exact convergence region.

First, we note that the annular region is centered at z = 1; thus, we should expand
f (z) in powers of z − 1. As f (z) can be written in the form

f (z) = − 1

z − 1
· 1

z + 1

we obtain

f (z) = − 1

z − 1
· 1

2 + (z − 1)
= −1/2

z − 1

[
1 −

(
−z − 1

2

)]−1

.

Using the geometric series,

∞∑
i=1

qi = 1

1 − q
, for |q| < 1

which converges, in this case, for |z − 1| < 2, we get

f (z) = −1/2

z − 1

∞∑
n=0

(
−z − 1

2

)n

=
∞∑

n=0

(−1)n+1

2n+1 (z − 1)n−1

whose exact convergence region is 0 < |z − 1| < 2 �
The points on the complex plane on which a function f (z) ceases to be analytic

are called singularities of the function. We have seen an example of singularity
when we dealt with multivalued functions: the cut lines along each branch are
entirely composed of singular points. As we have already said, even though it is
always possible to choose different cut lines for one and the same multivalued
function, the branch point will be the same for all possible choices, being itself
a singularity. In the case in which f (z) is analytic on a neighbourhood of a point a,
but not at z = a, we say that f (z) has an isolated singularity at this point.

Isolated singularities may be classified in four great groups, depending on the
behavior of function f (z) when z → a in an arbitrary way:



3.2 Laurent Series, Zeros, and Singularities 69

1. Removable Singularity: If a function f (z) is not defined at z = a, but there
exists lim

z→a
f (z), then z = a is a removable singularity. In this case we define

f (a) = lim
z→a

f (z), so the function becomes analytic at a and on the neighborhood

of this point. The functions f (z) = sin z/z and g(z) = 1/(z − cotg z) have
removable singularities at z = 0.

2. Poles: If f (z) has in the principal part of its Laurent series a finite number of
terms given by

a−1

z − a
+ a−2

(z − a)2
+ · · · + a−n

(z − a)n
,

where a−n �= 0, then z = a is a pole of order n. If f (z) has a pole at z = a,
then lim

z→a
|f (z)| = ∞. Examples of this kind of function are f (z) = 1/ sin z and

g(z) = 1/z at z = 0.
3. Essential Singularity: Any isolated singularity of a function f (z), which is not

a pole nor a removable singularity will be an essential singularity. In such cases
f (z) does not have a limit nor does its module tend to infinity, but it oscillates
fastly when z → a. The Laurent series will then have an infinite number of terms
in its principal part. As an example, a singular point of this kind is z = 0 for the
function f (z) = e1/z.

4. Branch Point: A point z = z0 is a branch point (algebraic branch point)
if the multivalued function f (z) is discontinuous upon transversing a small
circumference arround this point. This is equivalent to saying that z0 is the point
of convergence of the cut lines of the branches of f (z), as we have seen before.
In the case studied, the branch point of function f (z) = n

√
z was the origin z = 0.

In the theory of functions of complex variables, it is useful to introduce the so-
called point at infinity, for which one uses the usual notation “∞”. We will not
explain here how this is done. What is important to us now is to notice that in
the same way as for any common point on the complex plane, we can define the
properties and the behavior of a complex function “at infinity,” which corresponds
here to the point at infinity, ∞. Thus, we say that a function f (z) is analytic at
infinity if the function

g(z) = f (1/z)

is analytic at z = 0. Besides, it is possible to introduce in the same way the concepts
of pole at infinity, branch point at infinity, etc., that is, by considering the behavior
of g(z) at the origin. An examination of the most common functions will show that
all functions that are analytic at infinity possess at least one singularity at some
(finite) point z on the plane. We might ask ourselves whether there are complex
functions which are analytic on the entire complex plane. The answer is given by
the following theorem:
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Theorem 3.3 (Liouville’s [1809 – Joseph Liouville – 1882] Theorem) The
only function f (z) that is analytic on the whole complex plane and at the point at
infiniy is the constant function, f (z) = constant.

Example 3.5 Let z ∈ C. Obtain the Laurent series for

f (z) = cos z − 1

z2

and classify the singularity.
Note that z = 0 is a regular point for cos z. Then, using the Maclaurin series for

cos z,

cos z =
∞∑

n=0

(−1)n
z2n

(2n)! = 1 +
∞∑

n=1

(−1)n
z2n

(2n)! ,

substituting it into f (z) and rearranging, we have

f (z) =
∞∑

n=1

(−1)n
z2n−2

(2n)! ,

which is the Laurent series for f (z). Now, let us write explicitly its first three terms:

f (z) = −1

2
+ z2

4! − z4

6! + · · ·

We see that this is a Maclaurin series. As the Laurent series is a Maclaurin series,
singularity z = 0 is a removable singularity. We can verify this explicitly by
evaluating the limit

lim
z→0

cos z − 1

z2
→

(
0

0

)
.

As this is an undetermined quotient, we can use the l’Hôpital rule to get

lim
z→0

− sin z

2z
= −1

2
lim
z→0

sin z

z
= −1

2
.

Note that, this is indeed the first term of the Laurent series, i.e., the limit of f (z)

when z → 0. �
After presenting the Laurent series, we now introduce the concept of residue,

a particular coefficient of this series expansion, one that plays an important role
in calculating several real integrals as we will see when we discuss the residue
theorem. Remark that, from now on, except where explicitly mentioned, we will
always consider counterclockwise orientation when we perform path integrals on
the complex plane.
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3.3 Residues

Let C be a circumference centered at z = a, R the region limited by C and f (z)

an analytic function on R ∪ C except at z = a. Then f (z) has associated with it a
Laurent series around z = a given by

f (z) =
∞∑

n=−∞
an(z − a)n = a0 + a1(z − a) + · · ·︸ ︷︷ ︸

analytic part

+ a−1

z − a
+ a−2

(z − a)2
+ · · ·

︸ ︷︷ ︸
principal part

where the coefficients are given by

an = 1

2πi

∮

�

f (z)

(z − a)n+1 dz , n = 0, ±1, ±2, . . .

with � a closed, counterclockwise oriented curve on the complex plane.
In the special case n = −1 we have

∮

�

f (z)dz = 2πia−1.

This expression involves only the a−1 coefficient and is called the residue of f (z)

at z = a. Thus, in order to calculate the residue of a function at a point, it is enough
to expand it in a Laurent series around that point and take the coefficient a−1 of the
power z−1. In the case in which z = a is a pole of order k we have

a−1 = lim
z→a

1

(k − 1)!
dk−1

dzk−1

[
(z − a)kf (z)

]
.

Example 3.6 Let z ∈ C. Obtain the residue for f (z) = 1/z

sin2 z
.

We must find the coefficient of (z−1). Using the same argument for the cos z, we
can expand the sin z in a Maclaurin series

sin z =
∞∑

n=0

(−1)n
z2n+1

(2n + 1)! = z − z3

3! + z5

5! − · · ·

This is a convergent series; its square is given by

sin2 z =
(

z − z3

3! + z5

5! − · · ·
) (

z − z3

3! + z5

5! − · · ·
)

or, considering only the first three terms, we have
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sin2 z = z2 − z4

3
+ 23

360
z6 − · · ·

Using long division we obtain the Laurent series

f (z) = 1

z3
+ 1/3

z︸ ︷︷ ︸
principal part

+ 17

360
z + · · ·

︸ ︷︷ ︸
analitic part

This expansion shows that f (z) has a pole of order three, the highest negative power
of z, and that its residue, the coefficient of z−1, is equal to 1/3. Note that this residue
can also be evaluated using the expression for residues,

a−1 = lim
z→0

1

2!
d2

dz2

(
z3

1

z sin2 z

)

because at z = 0 we have a pole of order three. �

3.4 Residues and the Evaluation of Real Integrals

We present here an important tool for evaluating real integrals with the help of path
integrals on the complex plane, the so-called residue theorem.

Theorem 3.4 (Residue Theorem) Let C be a simple and closed curve on the
complex plane, counterclockwise oriented. Let R be the region limited by C and
f (z) an analytic function on C ∪ R except on singularities a, b, c, . . . in R; let us
assume that on these points f (z) has residues given respectively by a−1, b−1, c−1
. . . Then

∮

C

f (z)dz = 2πi(a−1 + b−1 + · · · ).

The residue theorem is used to evaluate definite real integrals, usually by
extending the integrals along an infinite or semi-infinite domain. It is also important
in the calculation of Laplace and Fourier transforms, as we will see in Chap. 6.
The main difficulty for this application lies in the choice of an adequate function
f (z)—as it must somehow reproduce the function under the integral sign—and in
the choice of the contour C along which the integral is carried. These are a few
simple cases:

(a) Integrals of the kind
∫ ∞

−∞
F(x)dx,

where F(x) is a rational function.
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In this case we evaluate
∮

C

F(z)dz along a contour C formed by the straight

line segment on the real axis from −R to R and by the semicircunference �

above the real axis as shown in Fig. 3.2. Once the calculation is done, we take
the limit R → ∞ and we then show that the integral along � goes to zero, while
the integral along the real axis becomes the definite integral sought for.

(b) Integrals of the kind

∫ 2π

0
G(sin θ, cos θ)dθ, (3.5)

where G is a rational function.
Employing the polar representation of complex numbers we write z = eiθ ,
whence it follows that 2i sin θ = z − z−1 and 2 cos θ = z + z−1. It’s easy to see

that the integral in Eq. (3.5) is equivalent to an integral
∮

C

F(z)dz, where the

curve C is a circumference centered at the origin and unit radius.
(c) Integrals of the kind

∫ ∞

−∞
F(x) cosmx dx or

∫ ∞

−∞
F(x) sinmx dx,

where F(x) is rational.

For this kind of integral we take
∮

C

F(z) eimz dz where C is the contour presented

in (a) as shown in Fig. 3.2.

Example 3.7 Let x ∈ R. Evaluate the integral

	 =
∫ ∞

0

dx

(1 + x2)2
.

In order to evaluate this integral, we consider the integral on the complex plane
∮

C

dz

(1 + z2)2
,

with z = x + iy and where C is a contour as in Fig. 3.2. The singularities of this
function are poles at z1 = i and z2 = −i, both of order two. However, only z1
contributes because z2 is out of the region limited by C. Going through the contour

Fig. 3.2 Contour of
integration for the application
of the residue theorem to
calculate real integrals in
cases (a) and (c)
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in the counterclockwise sense, we can write

∮

C

dz

(1 + z2)2
=

∫ R

−R

dx

(1 + x2)2
+

∮

�

dz

(1 + z2)2
.

Taking the limit R → ∞, using Jordan’s lemma, shown in SE 3.4, and the residue
theorem, we get

∫ ∞

−∞
dx

(1 + x2)2
= 2πi Res(z = i).

As we have a pole of order two at z = i we obtain

2
∫ ∞

0

dx

(1 + x2)2
= 2πi lim

z→i

1

1!
d

dz

{
(z − i)2

1

(z − i)2(z + i)2

}
.

Evaluating the derivatives and calculating the limit we have, after simplification,

∫ ∞

0

dx

(1 + x2)2
= π

4

which is the desired result. Note that, in this particular case the substitution x =
tan ξ would lead to the same result. �

3.5 Solved Exercises

SE 3.1 Use the Cauchy–Riemann conditions to show that f (z) = |z|2 is not an
analytic function.
Solution: If z = x + iy, then f (z) = |z|2 = zz∗ = x2 + y2 ≡ u(x, y) + iv(x, y).
We therefore have u(x, y) = x2 + y2 and v(x, y) = 0. Thus

∂u

∂x
= 2x �= 0 = ∂v

∂y
;

∂u

∂y
= 2y �= 0 = −∂v

∂x
.

From Theorem 3.1 it follows that f (z) is not analytic on any region of the complex
plane.

SE 3.2 Expand the function f (z) = sin z/z in a Laurent series around the origin.
Solution: As we have seen in the previous section, the function sin z is analytic and
can be represented by means of a Taylor series identical to the real series for sin x,
which has already been presented in the previous chapter:
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sin z = z − z3

3! + z5

5! − · · ·

Thus,

f (z) = sin z

z
= 1 − z2

3! + z4

5! − · · ·

We can see that in this case, the expansion does not have a principal part and the
Laurent series obtained coincides with the Taylor series.

SE 3.3 What is the residue of f (z) = sin z/z at z = 0?
Solution: Using the result of the previous solved exercise, we realize that for this
function a−1 = 0. Therefore, Res[sin z/z] = 0 at z = 0.

Solving the next exercise requires the use of an important result known as
Jordan’s [1838 – Camille Marie–Ennemond Jordan – 1922] lemma.

Lemma 3.5 (Jordan’s Lemma) Consider the integral

IR =
∫

�R

eiRz f (z)dz ,

where �R = {z = R eiθ , 0 ≤ θ ≤ π} is a semicircumference of radius R with
center at the origin, passing through the upper half of the complex plane. Suppose
that f (z) is analytic on this half-plane and that the greatest value f (R) of |f (z)|
for any z ∈ �R tends to zero when R → ∞. Then, the integral aforementioned will
also become null at this limit, i.e., lim

R→∞ IR = 0.

SE 3.4 Calculate the integral

∫ ∞

−∞
x2 + 2

(x2 + 1)(x2 + 4)
dx .

Solution: Let us choose the integral

I =
∮

�

z2 + 2

(z2 + 1)(z2 + 4)
dz (3.6)

and the oriented contour shown in Fig. 3.3.
From Eq. (3.6) we see that the integrand is regular on the upper half plane, except

at the simple poles z = i and z = 2i.
Using the residue theorem and taking R > 2, we see that the contour chosen

comprehends both poles. Hence,

∮

�

z2 + 2

(z2 + 1)(z2 + 4)
dz = 2πi

(
1

6i
+ 1

6i

)
= 4π

3
.
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Fig. 3.3 Contour on the
complex plane for the integral
of SE 3.4

We can then write, going through the contour,

∮

�

z2 + 2

(z2 + 1)(z2 + 4)
dz =

∫ R

−R

x2 + 2

(x2 + 1)(x2 + 4)
dx +

+
∮

�R

z2 + 2

(z2 + 1)(z2 + 4)
dz = 4π

3
.

We must prove that the integral
∮

�R

is equal to zero when R → ∞. For this sake

we use the following identities

|z2 + 2| ≤ |z|2 + 2 = R2 + 2

|z2 + 1| ≥ |z|2 − 1 = R2 − 1

|z2 + 4| ≥ |z|2 − 4 = R2 − 4.

Thus, for |z| = R the integral in �R does not exceed

πR
R2 + 2

(R2 − 1)(R2 − 4)
= πR

R2

R4

1 + 2/R2

(1 − 1/R2)(1 − 4/R2)

which goes to zero when R → ∞. Therefore,

∫ ∞

−∞
x2 + 2

(x2 + 1)(x2 + 4)
dx = 4π

3
.

SE 3.5 Unit circumference Let a > b > 0. Evaluate the integral

∫ 2π

0

dθ

a + b cosθ
.

Solution: In problems like this, in which the denominator is never null and the limits
of integration differ by a complete turn of the trigonometric circumference, we
introduce the so-called polar form, i.e., z = exp(iθ). With this change, the integral
in z becomes a path integral along a circumference centered at the origin, denoted
by C, with unit radius and counterclockwise orientation. Then
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∫ 2π

0

dθ

a + b cosθ
=

∮

C

dz/iz

a + b

(
1 + z2

2z

) = 2

i

∮

C

dz

bz2 + 2az + b
.

The roots of the denominator (the function’s poles) are given by

z1 = −a

b
+ 1

b

√
a2 − b2 and z2 = −a

b
− 1

b

√
a2 − b2

and are both real, as a > b, but only z1 lies inside the unit circumference because
a > b. This means that z1 is the only singularity contributing for the integral.

Then, using the residue theorem we have

∮

C

dz

bz2 + 2az + b
= 2πi lim

z→z1

[
(z − z1)

1

b(z − z1)(z − z2)

]
= 2πi

b

1

z1 − z2
,

whence we can write

∫ 2π

0

dθ

a + b cosθ
= 2

i

πi√
a2 − b2

= 2π√
a2 − b2

.

SE 3.6 Branch Point Let 0 < α < 1. Evaluate the real integral

∫ ∞

0

xα

(1 + x)2
dx .

Solution: Consider a function of the form

f (z) = zα

(1 + z)2
,

with 0 < |z| < 1, which has a branch point at z = 0 and a pole of second order at
z = −1. Let us then consider a contour C such that z = 0 lies outside the region
enclosed by C while z = −1 lies inside it, as shown in Fig. 3.4. This contour is
oriented in the counterclockwise sense and is composed of two concentric arcs of
circumference C1 and C2 of radii ε and R, respectively, and of two line segments
L1 and L2. Using the residue theorem we can write

∮

C

zα

(1 + z)2
dz =

∫

C2

zα

(1 + z)2
dz +

∫ ε

R

(x e2iπ )α

(1 + x)2
dx +

∫ 0

2π

(ε eiθ )α

(1 + ε eiθ )2
iε eiθ dθ+

+
∫ R

ε

xα

(1 + x)2
dx = 2πi lim

z→−1

d

dz

[
(1 + z)2

zα

(1 + z)2

]
= −2πiα eiπα .

Take the limits ε → 0 and R → ∞. From the first limit, it follows that the
integral in θ goes to zero; and by Jordan’s lemma, the integral on C2 is also null.
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Fig. 3.4 Contour of
integration for SE 3.6

Thus

e2iπα

∫ 0

∞
xα

(1 + x)2
dx +

∫ ∞

0

xα

(1 + x)2
dx = 2πi eiπα ,

whence we conclude that
∫ ∞

0

xα

(1 + x)2
dx = − π

sinπα
.

SE 3.7 Obtain the Laurent series around the singularity z = 0 for the function

f (z) = 1

z
coshz−1 .

What kind of singularity is this?
Solution: Consider the change of independent variable 1/z = x, which allows us to
write

1

z
coshz−1 = x coshx.

Then, using the series expansion for the hyperbolic cosine we have

x coshx = x

(
1 + x2

2! + x4

4! + · · ·
)

whence, finally
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1

z
coshz−1 = 1

z

(
1 + 1

z22! + 1

z44! + · · ·
)

which is the desired expression. As we have infinite terms with negative powers of
z, we have an essential singularity.

SE 3.8 Let x, y ∈ R and z ∈ C with z = x + iy. Consider the complex function

f (z) = eikz − eimz

z2
,

with k,m ∈ N. This function has a simple pole at the origin and using the principal
value, it is possible to show that [1]

∫ ∞

0

cos kx − cosmx

x2 dx = −π

2
(|k| − |m|) . (3.7)

Evaluate the real integral

∫ ∞

0

sin2 x

x2 dx .

Solution: This integral can be considered a particular case of the result mentioned
in the statement of the exercise. To see this, we take k = 2 and m = 0 in Eq. (3.7),
obtaining

∫ ∞

0

cos 2x − 1

x2
dx = −π .

Using the well-known relation cos 2θ = 1 − 2 sin2 θ and rearranging, we have

∫ ∞

0

sin2 x

x2
dx = π

2
,

which is the desired result.
Interistingly, this result is the same result obtained in PE 3.27., for a different

integral, namely

∫ ∞

0

sin x

x
dx = π

2
.

3.6 Proposed Exercises

PE 3.1 Let z ∈ C. Solve the quadratic equation
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z2 + 8(i − 1)z + 63 − 16i = 0.

PE 3.2 Let z ∈ C with z �= 0 and suppose that

� = 1 + z + z2

1 − z + z2

is a real number. Then, show that |z| = 1.

PE 3.3 (Putnam, 1989) Show that: If 11z10 + 10iz9 + 10iz − 11 = 0, then |z| = 1.

PE 3.4 Let z ∈ C. Evaluate the integral

1

i

∫

�

dz

z

where � : z(t) = exp(it) and 0 ≤ t ≤ π/2.

PE 3.5 Let z ∈ C. Evaluate the integral

1

2πi

∮

�

tan z

z2 − 1
dz ,

where � is a counterclockwise oriented circumference centered at the origin, with
radius 3/2.

PE 3.6 Let z ∈ C and

f (z) = 6 sin z

z(z2 + 4)
√

z + 4
,

with f (0) = 1. Classify its singular points.

PE 3.7 Let z ∈ C. Evaluate the integral

i

∮

�

z

(z + 3)(z − 1)2
dz ,

where � is a counterclockwise oriented circumference such that z = 1 is inside the
region enclosed by � and z = −3 is outside it.

PE 3.8 Let x, y ∈ R, z ∈ C and let � be an ellipse with equation 9x2 + y2 = 9,
oriented in the counterclockwise sense. Evaluate the integral

i

∮

�

[
z exp(πz)

z4 − 16
+ z exp(π/z)

]
dz .

PE 3.9 Let x, y ∈ R and z ∈ C with z = x + iy. Evaluate the integral
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∫

�

Im(z2) dz

from the point z = 0 up to z = 2 + 4i, along the parable of equation y = x2.

PE 3.10 Let � be a unitary circumference oriented in the counterclockwise sense.
Use the Laurent series to evaluate the integral

∫

�

z e2/z dz .

PE 3.11 Show that the function f (z) = sin z is analytic. Do the same for f (z) =
cos z.

PE 3.12 Show that the function f (z) = tg z/z is meromorphic, i.e., that it can be
written as the quotient of two analytic functions.

PE 3.13 Consider an analytic function f (z) = u(x, y) + iv(x, y) and suppose that
the second order partial derivatives of u and v with respect to x and y exist and
are continuous. Show that the real and imaginary parts of f (z) satisfy the Laplace
equation,

∂2f

∂x2 + ∂2f

∂y2 = 0.

Functions with this property are called harmonic functions.

PE 3.14 Expand the functions below in Laurent series around z = 0:

(a) f (z) = exp(1/z)

(b) f (z) = z1/2

Classify z = 0 for these functions.

PE 3.15 Calculate the residues of the functions of PP 3.14.

PE 3.16 Obtain the Laurent series around the singularity z = 0 for the function

f (z) = 1

z3
(z − sin z) .

What kind of singularity is this?

PE 3.17 Do the same as in the previous exercise for the function

f (z) = z

(z + 1)(z + 2)

around the point z = −2.
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PE 3.18 Analogously to PE 3.16 for 1/(z cosh z−1) around z = 0.

PE 3.19 Find the residue of F(z) = (cotg z coth z)/z3 around z = 0.

PE 3.20 Let t ∈ R. Calculate

1

2πi

∮

C

ezt

z2(z2 + 2z + 2)
dz

along the circumferences whose equations are: (a) |z| = 1 and (b) |z| = 3.

PE 3.21 Calculate
∮

C

2 + 3 sinπz

z(z − 1)2
dz

where C is a square with vertices at 3 + 3i, 3 − 3i,−3 + 3i and −3 − 3i.

PE 3.22 Prove that

∫ ∞

0

ln(x2 + 1)

x2 + 1
dx = π ln 2.

PE 3.23 Calculate the integral

∫ ∞

0

dx

1 + x2

using residues.

PE 3.24 Let 0 < a < 1. Calculate the integral

∫ ∞

−∞
eax

1 + ex
dx .

PE 3.25 Using the residue theorem, show that:

(a)
∫ 2π

0

cos 3θ

5 − 4 cos θ
dθ = π

12
;

(b)
∫ π

0

dθ

1 + sin2 θ
= π

2
√
2

.

PE 3.26 Consider the function

f (z) = (y3 − 3x2y) + i(x3 − 3xy2).

(a) Are the Cauchy–Riemann conditions satisfied on all points of the real axis?

(b) Are the partial derivatives
∂u

∂x
,

∂u

∂y
,

∂v

∂x
, and

∂v

∂y
, where u = y3 − 3x2y and
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v = x3 − 3xy2, continuous on all points of the real axis? (c) Is the function f (z)

analytic on all points of the real axis?

PE 3.27 Using the residue theorem, show that

∫ ∞

0

sin x

x
dx = π

2
.

An interesting generalization of this result can be found in [2].

PE 3.28 Given the function

f (z) = 3z4 − 2z3 + 8z2 − 2z + 5

z − i
,

show that f (z) is not continuous at z = i, but that this is a removable discontinuity.

PE 3.29 If tg z = tg(x + iy) = u(x, y) + iv(x, y), prove that

u(x, y) = sin 2x

cos 2x + cosh 2y
,

v(x, y) = sinh 2y

cos 2x + cosh 2y

and

Re

{
1 + i tg(θ/2)

1 − i tg(θ/2)

}
= cos θ,

where θ is a real number.

PE 3.30 Consider the limit

I = lim
R→∞

∫ R

−R

f (x)dx,

with f (x) real. This limit is called the principal value, denoted by P, of the integral
of f (x) and is given by

P
∫ ∞

−∞
f (x)dx = lim

R→∞
ε→0

(∫ x0−ε

−R

f (x)dx +
∫ R

x0+ε

f (x)dx

)
,

if this integral exists.
Show that even though the integral

∫ 1

−1

dx

x
,
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does not exist, its principal value exists and is identically null, that is,

P
∫ 1

−1

dx

x
= 0.

PE 3.31 For a > 0, show that

P
∫ ∞

−∞
cos x

a2 − x2
dx = π

sin a

a
.

PE 3.32 Use polar coordinates on the plane, x = r cos θ and y = r sin θ , in order
to obtain the Cauchy–Riemann conditions in polar form.

PE 3.33 Show that f (z) = ey(cos x + i sin x) is not analytic at any point of the
complex plane.

PE 3.34 Assuming that ω1 = u + iv is an analytic function, show that the function
ω2 = −v + iu is also analytic.

PE 3.35 Show that an analytic function f (z), whose derivative df/dz is null, is
constant.

PE 3.36 Find the order of each pole of

f (z) = z + 2

z2(z − 1)(z2 + 16)3
.

PE 3.37 Determine and classify the singularities of the following functions:

(a)
4z3 + i

z3 − 1
;

(b) sec z;
(c) z cosec z.

PE 3.38 Calculate the residue of functions (a) π cotgπz and (b) π cosecπz.

PE 3.39 Show that, for |z| > 1,

1

z − 1
=

−1∑
k=−∞

zk.

PE 3.40 Show that, for |z| < 2,

2

2 − z
=

∞∑
k=0

( z

2

)k

.
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PE 3.41 Show that, for 0 < a < 1 and 0 < b < 1,

∫ ∞

0

xa−1 − xb−1

1 − x
dx = π(cotg aπ − cotg bπ).

PE 3.42 Show that

1

π

∫ ∞

0

ln(1 + x2y2)

x2 + 1
dx = ln(1 + y).

For this relation to be valid, what restriction must be imposed on the possible values
of y?

PE 3.43 Show that
∫ ∞

0

ln x

(x2 + 1)4
dx = −23π

96
.

PE 3.44 Show that

∫ ∞

0

sin x

x(x2 + 1)2
dx = π

2

(
1 − 3

2 e

)
.

PE 3.45 Use residues to calculate
∫ ∞

0

dt√
t
(1 + t)−3.

PE 3.46 Show that
∫ ∞

0
e−it tμ−1dt = �(μ)

iμ
,

where �(μ) is the gamma function given in PE 4.28. Use the contour of integration
shown in Fig. 3.5.

Fig. 3.5 Contour of
integration for PE 3.46
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PE 3.47 Using the result of the previous exercises, show that:

(a)
∫ ∞

0
cos x xμ−1dx = cos

πμ

2
�(μ);

(b)
∫ ∞

0
sin x xμ−1dx = sin

πμ

2
�(μ).

PE 3.48 Show that, for a > 1,

∫ 2π

0

dθ

a2 cos2 θ + sin2 θ
= 2π

a
.

PE 3.49 For p a positive integer such that p > 2, show that

∫ ∞

0

x

xp + 1
dx = π

p
cosec

(
2π

p

)
.

PE 3.50 Integrate the function f (z) = z/(1 − e−iz) on a rectangular contour with
vertices at ±π and ±π + iR to show that

1

2π

∫ π

0

x sin x

1 − cos x
dx = ln 2 .
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Chapter 4
Special Functions

In mathematics you don’t understand things. You just get used to
them.

1903 – Johann (John) von Neumann – 1957

Besides the elementary functions usually studied in basic calculus courses—
rational, trigonometric, logarithmic and exponential functions—there exists another
(huge) class of functions called special functions [2], the knowledge of which is
essential for solving many real problems arising in exact sciences. These families
of functions appear almost always as sets of solutions of some particular family of
ordinary differential equations. For this reason we begin this chapter investigating
the solutions of a general linear second-order ordinary differential equation with
three regular singular points, which will be transformed into a hypergeometric equa-
tion, whose solutions are the so-called hypergeometric functions. In the sequence,
by considering a certain limit process applied to the hypergeometric equation, we
will obtain the confluent hypergeometric equation, whose solutions are (of course)
called confluent hypergeometric functions. As a special case of the first group of
functions we will study the Legendre functions, and in the second group we will
study the Bessel functions.

4.1 Differential Equation with Three Singular Points

Let p(x) and q(x) be real functions. Consider the homogeneous linear second-order
ordinary differential equation

d2

dz2 u(z) + p(z)
d

dz
u(z) + q(z)u(z) = 0 . (4.1)

There exists a close relation between the properties of functions p(z) and q(z)

appearing in this equation and the properties of its solutions. In fact, one may prove
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that the general solution of the differential equation above will have singularities
at the points of the complex plane in which p(z) and q(z) have their poles. The
points in which p(z) and q(z) are analytic functions are called ordinary points
of the equation. Correspondingly, the points in which p(z) and/or q(z) present
singularities are called singular points of the differential equation. We have the
following definitions:

Definition 4.1.1 (Regular Singular Point) Every point of the complex plane in
which the general solution of the ordinary differential equation has a pole or a
branch point.

Definition 4.1.2 (Irregular Singular Point) Every point in which the general
solution presents an essential singularity.

We shall study here a linear second-order ordinary differential equation with
three regular singular points z1, z2 and z3. It may be shown that for this to be
possible, it is necessary and sufficient that p(z) has simple poles at the three points
z1, z2 and z3, and that q(z) has poles of order smaller than or equal to two at those
points. Besides, we will require that the point at infinity be an ordinary point of
the differential equation. To ensure that this condition is satisfied, we introduce the
change of independent variable z = 1/ω into Eq. (4.1), obtaining

d2

dω2 u(ω) + P(ω)
d

dω
u(ω) + Q(ω)u(ω) = 0,

where

P(ω) = 2

ω
− 1

ω2 p

(
1

ω

)
(4.2)

and

Q(ω) = 1

ω4 q

(
1

ω

)
.

Infinity will be an ordinary point if, and only if, P(ω) and Q(ω) are analytic at
ω = 0. The requirement that p(z) has simple poles and that q(z) has poles of order
smaller than or equal to two at z1, z2 and z3 is satisfied by supposing that

p(z) = A

z − z1
+ B

z − z2
+ C

z − z3
+ D (4.3)

and

q(z) = 1

(z − z1)(z − z2)(z − z3)

(
E

z − z1
+ F

z − z2
+ G

z − z3

)
,
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where A, B, C, D, E, F and G are constants. Replacing Eq. (4.3) into Eq. (4.2) we
find

P(ω) = 2

ω
− 1

ω

(
A

1 − ωz1
+ B

1 − ωz2
+ C

1 − ωz3
+ D

ω

)
,

which must be analytic at ω = 0. This condition is satisfied if D = 0 and A + B +
C = 2.

Once p(z) and q(z) are defined, we employ the Frobenius method in order to
find the solutions of the differential equation in the form of a Taylor series around
the singularities z1, z2 and z3, i.e., we will suppose three solutions of the form

ui(z) = (z − zi)
r

∞∑
n=0

an(z − zi)
n, (4.4)

for i = 1, 2, 3 and where r is a free parameter. However, before we replace this
formula into the differential equation, we will rewrite function p(z) and q(z) as

p(z) = Fi(z)

(z − zi)
and q(z) = Gi(z)

(z − zi)2 ,

for i = 1, 2, 3.
From this definition and the form of p(z) and q(z) it follows, for instance, that

F1(z) = A + B(z − z1)

(z − z2)
+ C(z − z1)

(z − z3)
= p(z)(z − z1)

and

G1(z) = 1

(z − z2)(z − z3)

[
E + F(z − z1)

(z − z2)
+ G(z − z1)

(z − z3)

]

= q(z)(z − z1)
2

are analytic functions around z1, the same being true of F2(z), G2(z), F3(z) and
G3(z) around z2 and z3, respectively. For this reason, we may also expand them in
Taylor series around z = zi , for i = 1, 2, 3:

Fi(z) =
∞∑

n=0

1

n!
[

dn

dzn
Fi(z)

]

z=zi

(z − zi)
n

= Fi(zi) + F ′
i (zi)(z − zi) + F ′′

i (zi)

2! (z − zi)
2 + · · ·
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Gi(z) =
∞∑

n=0

1

n!
[

dn

dzn
Gi(z)

]

z=zi

(z − zi)
n

= Gi(zi) + G′
i (zi)(z − zi) + G′′

i (zi)

2! (z − zi)
2 + · · ·

At this point it should be clear that the calculations for one of the singularities
will be valid for the other two. So, we will restrict our attention to the series around
z1, generalizing the results obtained for the other two cases.

Our aim here is to obtain the indicial equation for the series, so we will write only
the first few terms of the sums. Calculating u′

1(z) and u′′
1(z) in the form of Eq. (4.4)

and substituting the results into Eq. (4.1) we obtain:

∞∑
n=0

an(n + r)(n + r − 1)(z − z1)
n+r−2+

+
[
F1(z1) + F ′

1(z1)(z − z1) + F ′′
1 (z1)

2! (z − z1)
2 + · · ·

]

(z − z1)

∞∑
n=0

an(n+r)(z−z1)
n+r−1+

[
G1(z1) + G′

1(z1)(z − z1) + G′′
1(z1)

2! (z − z1)
2 + · · ·

]

(z − z1)2

∞∑
n=0

an(z − z1)
n+r = 0,

or in the following form:

a0[r(r − 1) + F1(z1)r + G1(z1)](z − z1)
r−2+

{a1[(1+r)r+F1(z1)(1+r)+G1(z1)]+a0[F ′
1(z1)r+G′

1(z1)]}(z−z1)
r−1+· · · = 0.

The indicial equation is obtained by setting equal to 0 the factor multiplying the
term with the smallest exponent. Given that a0 �= 0 by hypothesis, we have

r(r − 1) + F1(z1)r + G1(z1) = 0,

and for the other two singularities we will similarly obtain

r(r − 1) + F2(z2)r + G2(z2) = 0;

r(r − 1) + F3(z3)r + G3(z3) = 0.

We can rewrite these equations as

r2 + [Fi(zi) − 1]r + Gi(zi) = 0,
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for i = 1, 2, 3. Then, if α and α′ are the roots of the first indicial equation around
z1, this equation implies that

⎧⎨
⎩

α + α′ = −[F1(z1) − 1] = 1 − A;
αα′ = G1(z1) = E

(z1 − z2)(z1 − z3)
.

In the same way, if β and β ′ are roots of the indicial equation around z2 and if γ

and γ ′ are the roots associated with the third singularity, we will have respectively:

⎧⎨
⎩

β + β ′ = 1 − B;
ββ ′ = F

(z2 − z1)(z2 − z3)
;

⎧⎨
⎩

γ + γ ′ = 1 − C;
γ γ ′ = G

(z3 − z1)(z3 − z2)
.

With these results we may rewrite the original differential equation as

d2u

dz2 +
(

1 − α − α′

z − z1
+1 − β − β ′

z − z2
+1 − γ − γ ′

z − z3

)
du

dz
+

+
[
(z1 − z2)(z1 − z3)αα′

z − z1
+ (z2 − z1)(z2 − z3)ββ ′

z − z2
+ (z3 − z1)(z3 − z2)γ γ ′

z − z3

]
×

× u

(z − z1)(z − z2)(z − z3)
= 0, (4.5)

with the restriction α+α′ +β +β ′ +γ +γ ′ = 1, which arises from the requirement
that the point z = ∞ be an ordinary point of the differential equation being solved.

This ordinary differential equation is the so-called Riemann equation. Any
solution u(z) of this differential equation can be represented by the Riemann–
Papperitz [1857 – Johannes Erwin Papperitz – 1938] symbol, which is given
by

u(z) = P

⎧⎨
⎩

z1 z2 z3

α β γ z

α′ β ′ γ ′

⎫⎬
⎭ ,

where the first three columns show the singular points of the differential equation,
together with the roots of the corresponding indicial equations, while the last column
shows the independent variable. The equality aforementioned is equivalent to saying
that u(z) satisfies the ordinary differential equation Eq. (4.5).
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Example 4.1 The associated Legendre differential equation, as we will see in this
chapter, has three singular points at z = −1, z = 1 and z = ∞. Write the
corresponding Riemann–Papperitz symbol.

Let ν and μ be two constants. The associated Legendre differential equation is

(1 − z2)
d2

dz2 u(z) − 2z
d

dz
u(z) +

[
ν(ν + 1) − μ2

1 − z2

]
u(z) = 0,

which can be written in the form

(1 − z)2(1 + z)2 d2

dz2
u(z) − 2z(1 − z)(1 + z)

d

dz
u(z)

+[ν(ν + 1)(1 − z)(1 + z) − μ2]u(z) = 0.

Here we consider only the singularity at z = −1, as the treatment of the
singularity at z = 1 is analogous to it; in order to deal with the point z = ∞
we have to make a change of variable z → 1/(z + 1) and then discuss the resulting
equation at z = −1. Thus, consider the Frobenius series around z = −1,

u(z) =
∞∑

n=0

an(z + 1)k+s

with a0 �= 0 and s a free parameter. Evaluating the derivatives, substituting into the
associated Legendre differential equation and rearranging, we can write

∞∑
n=0

an [(n + s)(n + s − 1) + 2(n + s) − ν(ν + 1)] (z + 1)n+s+2 +
∞∑

n=0

an [−4(n + s)(n + s − 1) − 6(n + s) + 2ν(ν + 1)] (z + 1)n+s+1 +
∞∑

n=0

an

[
4(n + s)(n + s − 1) + (n + s) − μ2

]
(z + 1)n+s = 0.

In order to obtain the recurrence relation, we introduce a change of index n → n−2
in the first sum and n → n − 1 in the second sum. On the other hand, since we are
interested only in the Riemann–Papperitz symbol, we need only the roots of the
auxiliary equation. To this end, we consider only the case n = 0 in the third sum,

[4s(s − 1) + 4s − μ2]a0(z + 1)s = 0,

whose roots are s1 = μ/2 and s2 = −μ/2. With the same procedure, we obtain the
same roots for the auxiliary equation relatively to the point z = 1, i.e., s1 = μ/2
and s2 = −μ/2. Also, at z = ∞ we obtain s1 = −ν and s2 = ν + 1. With these
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results we can finally write the Riemann–Papperitz symbol

u(z) = P

⎧⎨
⎩

−1 ∞ 1
μ/2 −ν μ/2 z

−μ/2 ν + 1 μ/2

⎫⎬
⎭ ,

which is the desired result �

4.2 Hypergeometric Equation

The solution of the Riemann equation contains nine different parameters, the three
singular points and the six roots of the indicial equations related by the restriction
α + α′ + β + β ′ + γ + γ ′ = 1. We can reduce these parameters to only three
independent parameters by means of a change of dependent variable of the form

u(z) = (z − z1)
−r (z − z2)

−s(z − z3)
−t v(z),

with r + s + t = 0, and a change of independent variable,

z′ = Āz + B̄

C̄z + D̄
, (4.6)

where Ā, B̄, C̄ and D̄ are constants which are to be determined.
The first transformation modifies the roots of the indicial equation at the three

singularities, in such a way that

v(z) = (z − z1)
r (z − z2)

s(z − z3)
tu(z)

= (z − z1)
r (z − z2)

s(z − z3)
tP

⎧⎨
⎩

z1 z2 z3

α β γ z

α′ β ′ γ ′

⎫⎬
⎭

= P

⎧
⎨
⎩

z1 z2 z3

α + r β + s γ + t z

α′ + r β ′ + s γ ′ + t

⎫
⎬
⎭ .

Note that the singular points of the equation are still the same. With the change
of independent variable Eq. (4.6) it is possible to shift the three singularities z1, z2
and z3 to the standard points z′

1 = 0, z′
2 = ∞ and z′

3 = 1. Choosing r = −α,
s = α + γ and t = −γ , we finally obtain
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u(z) = P

⎧⎨
⎩

z1 z2 z3

α β γ z

α′ β ′ γ ′

⎫⎬
⎭

=
(

z − z1

z − z2

)α (
z − z3

z − z2

)γ

P

⎧⎨
⎩

0 ∞ 1
0 α + β + γ 0 z′

α′ − α α + β ′ + γ γ ′ − γ

⎫⎬
⎭

=
(

z − z1

z − z2

)α (
z − z3

z − z2

)γ

v(z′) .

Introducing parameters a, b and c defined by

α + β + γ = a, α + β ′ + γ = b, 1 + α − α′ = c,

and recalling that α + α′ + β + β ′ + γ + γ ′ = 1 we get

P

⎧
⎨
⎩

z1 z2 z3

α β γ z

α′ β ′ γ ′

⎫
⎬
⎭ =

=
(

z − z1

z − z2

)α (
z − z3

z − z2

)γ

P

⎧
⎨
⎩

0 ∞ 1
0 a 0 z′

1 − c b c − a − b

⎫
⎬
⎭ .

The differential equation corresponding to the Riemann–Papperitz symbol
appearing at the end of this equality, for v(z′), is

d2v

dz′2 +
{

c

z′ − 0
+ lim

z′
2→∞

(
1 − a − b

z′ − z′
2

)
+ 1 − c + a + b

z′ − 1

}
dv

dz′ +

+ lim
z′

2→∞

{
(0 − z′

2)(0 − 1)0

(z′ − 0)2(z′ − z′
2)(z

′ − 1)
+ (z′

2 − 0)(z′
2 − 1)ab

(z′ − 0)(z′ − z′
2)

2(z′ − 1)
+

+ (1 − 0)(1 − z′
2)0

(z′ − 0)(z′ − z′
2)(z

′ − 1)2

}
v = 0,

that is

z′(1 − z′) d2v

dz′2 + [c − (a + b + 1)z′] dv

dz′ − abv = 0.

This result shows that any linear second-order ordinary differential equation with
three regular singular points may be put in the form of a hypergeometric equation,
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z(1 − z)
d2u

dz2
+ [c − (a + b + 1)z]du

dz
− abu = 0, (4.7)

whose solution u(z) is denoted by

u(z) = 2F1(a, b; c; z).

We will now search for a solution with the form of a power series (Frobenius
series) around the origin, where it is analytic since the corresponding indicial
equation has roots 0 and 1 − c. Suppose that

2F1(a, b; c; z) =
∞∑

n=0

cnz
n.

Introducing this expression into Eq. (4.7) and imposing the normalization condi-
tion c0 = 1 we obtain

2F1(a, b; c; z) = �(c)

�(a)�(b)

∞∑
n=0

�(a + n)�(b + n)

�(c + n)�(n + 1)
zn =

∞∑
n=0

(a)n(b)n

(c)n

zn

n! ,

(4.8)
where �(·) is the gamma function (whose relation with the beta function can be
seen in PE 4.28) and (·)k is the so-called Pochhammer [1841 – Leo August
Pochhammer – 1920] symbol, defined in PE 4.31. Notice that if we put a = 1
and b = c we find

2F1(1, b; b; z) =
∞∑

n=0

zn,

which, for |z| < 1, is the geometric series. For this reason the series for
2F1(a, b; c; z) is called hypergeometric. It is worth observing that if we interchange
the places of z1, z2 and z3 in the Riemann equation, Eq. (4.5), or if we exchange
α with α′, or β with β ′, the Riemann equation remains unaltered, but we are led
to a different hypergeometric equation. The first permutation may take place in
3! = 6 different ways, and the second one gives rise to 2 × 2 = 4 combinations
of αs and βs, providing a total of 24 different equations (and solutions), known as
Kummer [1810 – Ernst Eduard Kummer – 1893] solutions. Given that a linear
second-order ordinary differential equation can have only two linearly independent
solutions, there exists among these 24 solutions a series of relations, known as
Kummer relations, , which make it possible to obtain one solution from other known
solutions. For a complete table, see [4].

Finally, we should mention that if the root 1−c is not an integer, a second linearly
independent solution of the hypergeometric equation is given by

u2(z) = z1−c
2F1(b − c + 1, a − c + 1; 2 − c; z).
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Example 4.2 Consider a simple pendulum of mass m and length �. Using Newton’s
second law, we obtain the following nonlinear ordinary differential equation

d2

dt2 ϕ(t) + g

�
sin ϕ(t) = 0

where g is a constant, the gravitational acceleration, and ϕ(t) is the angle, varying
with time t , formed by the vertical axis and the pendulum rod. Note that this
ordinary differential equation is nonlinear because the dependent variable, ϕ(t), is
the argument of the sine function. Obtain the period of oscillation.

To solve this nonlinear ordinary differential equation we first write it as

d

dt

{
1

2

[
d

dt
ϕ(t)

]2

− g

�
cos ϕ(t)

}
= 0,

which implies that the quantity between braces is constant. Thus, to obtain the
constant we must impose an initial condition, ϕ(0) = ϕ0. Manipulating the last
equation and using the initial condition, we obtain

d

dt
ϕ(t) =

√
2g

�
[cos ϕ(t) − cos ϕ0]

which is a separable nonlinear first-order ordinary differential equation. Using the
trigonometric identity (double arc) and integrating, we can write

2

√
g

�

∫
dt =

∫
dϕ√

k2 − sin2(ϕ/2)

,

where we introduced a constant k = sin(ϕ0/2) and simplified the expression by
writing ϕ(t) = ϕ. To evaluate the integral in the second member, we introduce an
adequate change of variable sin θ = 1

k
sin(ϕ/2); remembering that ϕ ≤ ϕ0, we get

√
g

�

∫
dt =

∫
dθ√

1 − k2 sin2 θ

which can be identified with an elliptic integral of the first kind. We solve only the
integral on the right. The time taken for the angle to change from zero to ϕ0 is a
quarter of the period T . Thus, θ goes from zero to π/2 and we can write for the
integral

�(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

,

which is the so-called complete elliptic integral of the first kind [1].
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To evaluate �(k), we first introduce an expansion for the integrand,

1√
1 − k2 sin2 θ

=
∞∑

n=0

( 1
2 )n

n! k2n sin2n θ.

We then exchange the order of integral and sum and use the known relation [5, 6]

∫ π/2

0
sinn x dx =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π

2

( 1
2 )n/2

( n
2 )! , n = 0, 2, 4, . . .

( n−1
2 )!

( 3
2 )(n−1)/2)

, n = 1, 3, 5, . . .

We thus obtain �(k) expressed in terms of a series

�(k) = π

2

∞∑
n=0

( 1
2 )n(

1
2 )n

(1)n n! k2n.

Identifying this result with Eq. (4.8), we obtain

T = 2π

√
�

g
2F1

[
1

2
,

1

2
; 1; sin2

(ϕ0

2

)]

which is the period of oscillation; it depends on the amplitude and does not depend
on the mass. We remark that for the small-angle approximation, ϕ0 << 1, we have
sin 0 = 0 and 2F1(a, b; c; 0) = 1; then

T = 2π

√
�

g
,

which is the period for small amplitudes. �

4.3 Confluent Hypergeometric Equation

Introducing the change of independent variable

z = x

b

into the hypergeometric equation Eq. (4.7) and taking its limit as b → ∞, we obtain
an ordinary differential equation with the form



98 4 Special Functions

x
d2u

dx2
+ (c − x)

du

dx
− au = 0,

for u = u(x), where a and c are new parameters, which should not be confused
with the original parameters of the hypergeometric equation Eq. (4.7). This equation
is called a confluent hypergeometric equation or Kummer equation. The name
stands from the fact that departing from the three singularities of the original
hypergeometric equation Eq. (4.7) we arrive at an ordinary differential equation
with only two singular points, because two of the original singularities have merged
into a unique singularity at infinity. After this confluence we are left with a regular
singularity at z = 0 and an irregular singularity at infinity.

We might use the Frobenius method to obtain the solutions of this new equation
(PE 2.29), but we prefer to proceed in the same way as we did to arrive at this
differential equation, that is, we will start from the solutions of the hypergeometric
equation Eq. (4.8), perform the same change of variable, and then take the same
limit. For c �= 0, −1, −2,. . . two linearly independent solutions of the Kummer
equation, also called confluent hypergeometric functions, are:

u1 = lim
b→∞ 2F1

(
a, b; c; z

b

)
≡ 1F1(a; c; z)

= �(c)

�(a)

∞∑
n=0

�(a + n)

�(c + n)

zn

n! =
∞∑

n=0

(a)n

(b)n

zn

n! ,

as

lim
b→∞

�(b + n)

�(b)
b−n = 1,

and

u2 = z1−c
1F1(a − c + 1; 2 − c; z).

Example 4.3 Let z ∈ C and μ ∈ C, with Re(μ) > 0. The incomplete gamma
function is defined by the following integral:

γ (μ, z) =
∫ z

0
e−t tμ−1 dt .

Express the gamma function in terms of a confluent hypergeometric function.
Using the series expansion formula for the exponential function, exchanging the

order of the integral with the sum and integrating, we obtain

∫ z

0
e−t tμ−1dt =

∞∑
k=0

(−1)k

k!
∫ z

0
tk+μ−1 dt = zμ

∞∑
k=0

(−1)k

k + μ

zk

k! ≡ γ (μ, z),
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which can be written as

γ (μ, z) = zμ
∞∑

k=0

�(k + μ)

�(k + μ + 1)
(−z)k .

Identifying this expression with the confluent hypergeometric function we get

γ (μ, z) = zμ

μ
1F1(μ;μ + 1;−z),

which is the desired result �
In the next two sections, we introduce two particular cases of hypergeometric and

confluent hypergeometric functions, the so-called Legendre functions and Bessel
functions, respectively.

4.4 Legendre Functions

As we aforementioned, Legendre functions are a particular case of hypergeometric
functions. The differential equation for the Legendre functions is

(1 − z2)
d2u

dz2 − 2z
du

dz
+

[
ν(ν + 1) − μ2

1 − z2

]
u = 0, u = u(z), (4.9)

where μ and ν are usually unrestricted complex numbers. The most frequent
representations, given in terms of the hypergeometric function, are:

�(1 − μ)Bμ
ν (z) = (z + 1)μ/2

(z − 1)−μ/2 2F1

(
−ν, ν + 1; 1 − μ; 1 − z

2

)

and

�

(
3

2
+ ν

)
Dμ

ν (z) = eiπμ

2−ν−1 π1/2�(ν + μ + 1)
(z2 − 1)μ/2

z−ν−μ−1 ×

×2F1

(
1 + ν

2
+ μ

2
,

1

2
+ ν

2
+ μ

2
; 3

2
+ ν; 1

z2

)
.

The first function is called a Legendre function of the first kind, and the other
is the Legendre function of the second kind; the parameters μ and ν are arbitrary
complex numbers.

For μ and ν integers and for z real, with −1 < x < 1, these functions are called
associated Legendre functions and are denoted by Qm

n (x) and P m
n (x), respectively.
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In the case in which μ = m = 1, 2, 3 . . . is an integer, the following relations
are valid:

Bm
ν (z) = (z2 − 1)m/2 dm

dzm
Bν(z);

Dm
ν (z) = (z2 − 1)m/2 dm

dzm
Dν(z);

P m
ν (x) = (−1)m(1 − x2)m/2 dm

dxm
Pν(x);

Qm
ν (x) = (−1)m(1 − x2)m/2 dm

dxm
Qν(x);

where Bν(z), Dν(z), Pμ(x) and Qν(x) are the solutions of Eq. (4.9) when μ = 0.
From these expressions we see that we just need to know the solution for μ = 0 in
order to obtain the other solutions by differentiation.

Let us then assume μ = 0 and ν = n = an integer in Eq. (4.9):

(1 − z2)
d2ω

dz2
− 2z

dω

dz
+ n(n + 1)ω = 0 , ω = ω(z).

Its general solution, for z = x ∈ R, is given by

ω(x) = APn(x) + BQn(x),

where Pn(x) are the classical well-known Legendre polynomials, Qn(x) are
Legendre functions of the second kind and A and B are two arbitrary constants.

The first three Legendre polynomials are:

P0(x) = 1, P1(x) = x, P2(x) = 1

2
(3x2 − 1),

and in the general case (obtained, for instance, through the Frobenius method)

Pn(x) =
[n/2]∑
m=0

(−1)m
(2n − 2m)!

2nm!(n − m)!(n − 2m)!x
n−2m

= 2F1

(
−n, n + 1; 1; 1 − x

2

)
,

where [n/2] represents the greatest integer smaller than or equal to n/2 and
2F1(a, b; c; z) is the hypergeometric function.

For the Legendre functions of the second kind, we have
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Q0(x) = 1

2
ln

(
x + 1

x − 1

)
, Q1(x) = x

2
ln

(
x + 1

x − 1

)
− 1,

whence it is clear that Qn(x) is not defined at the extremes of the interval. In the
general case Qn(x) is related to Pn(x) by

Qn(x) = 1

2

∫ 1

−1
(x − t)−1Pn(t)dt .

It is important to notice that once P0(x) and P1(x) are known, all the remaining
polynomials get determined by means of a pure recurrence relation, as in the first
relation in PE 4.23. This is also true for Qn(x).

Finally, the orthogonality relation for Legendre polynomials is

∫ 1

−1
Pn(x)Pm(x)dx =

⎧⎨
⎩

0 n �= m
2

2n + 1
n = m

where the so-called weight function is equal to 1.

Example 4.4 Let x, t ∈ R. We define the generating function for Legendre
polynomials as the two-variable function whose power series expansion has these
polynomials as coefficients of the series:

G(x, t) ≡ (1 − 2xt + t2)−1/2 =
∞∑

k=0

Pk(x) tk,

where Pk(x) are the Legendre polynomials. Using the generating function for the
Legendre polynomials, show the recurrence relation involving a derivative,

Pk(x) = P ′
k+1(x) − 2xP ′

k(x) + P ′
k−1(x),

where the prime ′ denotes the derivative with respect to x and k ≥ 1.
Differentiating the expression for the generating function with respect to x, we

can write

∂

∂x
G(x, t) = t (1 − 2xt + t2)−3/2 =

∞∑
k=0

P ′
k(x) tk .

Using the first equality and the generating function, we can write the equation

∂

∂x
G(x, t) = t

1 − 2xt + t2
G(x, t),

which is a first order differential equation.
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Using the series expansions in powers of t , we can obtain the corresponding
power series expansion for the left member, involving the polynomials. Then, by
identifying the coefficients with the same degree we get the desired result. �

4.5 Bessel Functions

As we have also mentioned, Bessel functions are particular cases of confluent
hypergeometric functions and are given by

1F1(ν + 1/2, 2ν + 1; 2iz) = �(1 + ν) eiz
( z

2

)−ν

Jν(z),

where Jν(z) is the Bessel function of order ν, which has the following representation
as a Frobenius series:

Jν(z) =
∞∑

m=0

(−1)m(z/2)ν+2m

m!�(ν + m + 1)
.

The second linearly independent solution of the Bessel differential equation of
order ν is given by

Yν(z) = [sin(πν)]−1[Jν(z) cos(πν) − J−ν(z)] ,

called Bessel function of order ν of the second kind.
Bessel functions are solutions of the linear ordinary differential equation

z2 d2ω

dz2 + z
dω

dz
+ (z2 − ν2)ω = 0, ω = ω(z),

where ν is the parameter denoting its order. Such functions belong to a wider class
of functions called cylindrical functions, denoted by Cν(z), which are defined from
the following recurrence relations:

Cν−1(z) + Cν+1(z) = 2ν

z
Cν(z),

Cν−1(z) − Cν+1(z) = 2
d

dz
Cν(z) .

The first one is called pure recurrence relation because it does not involve the
derivative.

An analogous treatment can be given to the Bessel function with an imaginary
argument, called modified Bessel function and denoted by
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Iν(z) = exp

(−iπ

2
ν

)
Jν

(
z ei π

2

)
,

while for the second linearly independent solution we have

Kν(z) = π

2
[sin(πν)]−1[I−ν(z) − Iν(z)] .

We close this chapter presenting the so-called generating function for the Bessel
functions, analogous to the Legendre polynomials. Let z ∈ C and t ∈ R; the
generating function for the Bessel function is given by

exp

[
z

2

(
t − α2

t

)]
=

∞∑
n=−∞

(
t

α

)n

Jn(αz),

where α is a parameter.

Example 4.5 Let n ∈ N. Using the recurrence relation for the Bessel function

Jn−1(x) = n

x
Jn(x) + J ′

n(x),

where the prime ′ denotes de derivative with respect to x, show the result

∫ 1

0
xn+1Jn(μx) dx = Jn+1(μ)

μ
,

where μ is a nonzero constant and n = 0, 1, 2, . . .

Multiplying the recurrence relation by xn we have

xnJn−1(x) = nxn−1Jn(x) + xnJ ′
n(x) = d

dx

[
xnJn(x)

]
.

Introducing the change of variable x → μx in this expression and integrating we
have

μ

∫
xnJn−1(μx) dx = xnJn(μx).

Taking the integration on the interval [0, 1] and writing n → n + 1 we have

∫ 1

0
xn+1Jn(μx) dx = Jn+1(μ)

μ

which is the desired result. �
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4.6 Solved Exercises

SE 4.1 A particle P with variable mass m is at rest at a distance � from the origin
O, when it begins to be atracted toward the origin by a force proportional to the
product mz, where z is the distance from P to the origin. The mass m of the particle
decreases with time t according to the formula

m = (a + b t)−1,

where a and b are constants. Obtain the horary equation for this particle.
Solution: Using Newton’s second law we may write the following linear ordinary
differential equation:

F = −k2mz = dp

dt
= d

dt

(
m

dz

dt

)
,

where k2 is a proportionality constant.
Introducing the expression for the mass we obtain

d2

du2 z(u) − 1

u

d

du
z(u) + λ2z(u) = 0,

where we have introduced the parameter λ = k/b, together with a new independent
variable a + b t = u.

We now introduce a change of dependent variable with the form

z(u) = uF(u),

whence we obtain the ordinary differential equation

F ′′ + 1

u
F ′ +

(
λ2 − 1

u2

)
F = 0,

which is easily identified as a Bessel equation of order one, whose solution is given
by

F = AJ1(λu) + B Y1(λu),

where A and B are constants. Hence, the solution of the initial linear ordinary
differential equation is given by

z(t) = (a + b t) {AJ1 [λ(a + b t)] + B Y1 [λ(a + b t)]} ,

where the constants are determined by the conditions of the problem, namely z(0) =
�, that is, the particle is initially at a distance � from the origin, and ż(0) = 0, i.e.,
the particle is initially at rest, null initial velocity.
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Imposing these conditions on the solution, we obtain the following linear system
for A and B:

{
AJ ′

1(λa) + B Y ′
1(λa) = −�/λa2

AJ1(λa) + B Y1(λa) = �/a.

Employing the relation

C1(x) + x
d

dx
C1(x) = xC0(x),

which is valid for Bessel functions J1(x) and Y1(x), we obtain the solution of the
system, given by

A = λLπ

2
Y0(λa) and B = −λLπ

2
J0(λa) .

From this we finally obtain the solution of the problem, namely

z(t) = λLπ

2
(a + bt) {Y0(λa)J1[λ(a + bt)] − J0(λa)Y1[λ(a + bt)]} .

SE 4.2 Laplace’s projective equation in spherical coordinates (r, θ, φ), after using
the method of separation of variables, which we will present in Chap. 9, gives rise
to the following three ordinary differential equations:

d2

dφ2 �(φ) + m2�(φ) = 0;

sin2θ
d2

dθ2 �(θ) + sinθ cosθ
d

dθ
�(θ) +

[
�(� + 1) − m2

sin2θ

]
�(θ) = 0;

and

d2

dr2 R(r) + 2

r

d

dr
R(r) +

[
n(n + 2)

(1 + r2)2 − �(� + 1)

r2(1 + r2)

]
R(r) = 0;

where � = 0, 1, 2, · · · , m = −�,−� + 1, · · · , l − 1, l, n = 0, 1, 2, · · · and n ≥ �.
The equation involving the φ variable has already been discussed in the first

chapter. Now, (a) solve the equation in variable θ , (b) solve the equation in the r

variable, considering only one polynomial solution, and (c) discuss the polynomial
case when � = 0.
Solution:

(a) Consider the equation in θ ; introducing the change of independent variable

cos θ = x,
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we obtain the equation

(1 − x2)
d2

dx2 �(x) − 2x
d

dx
�(x) +

[
�(� + 1) − m2

1 − x2

]
�(x) = 0

which is the Legendre associated differential equation, whose general solution,
written in terms of θ , is given by

�(θ) = AP m
� (cosθ) + B Qm

� (cosθ),

where A and B are constants and P m
� (x) and Qm

� (x) are the associated Legendre
functions of the first and second kinds, respectively.

(b) Here we introduce, into the differential equation involving the r variable, the
following change of dependent variable:

R(r) =
(

r2

1 + r2

)�/2

F(r).

With this change we obtain the differential equation

d2

dr2 F(r) + 2
� + 1 + r2

r(1 + r2)

d

dr
F (r) +

[
n(n + 2) − �(� + 2)

(1 + r2)2

]
F(r) = 0.

Now, a change of independent variable 1 + r2 = 1
x2 leads to the differential

equation

(1 − x2)
d2

dx2 F(x) − (2� + 3)x
d

dx
F(x) + [n(n + 2) − �(� + 2)] F(x) = 0,

which is a Gegenbauer [1849 – Leopold Bernhard Gegenbauer – 1903]
equation. As we are only interested in its polynomial solution, we obtain

F(x) = AC�+1
n−�(x),

where A is a constant and Cν
μ(x) are the Gegenbauer polynomials. The solution

of the differential equation in the r variable is then given by

R(r) = A

(
r2

1 + r2

)�/2

C�+1
n−�

(
1√

1 + r2

)
.

(c) For the polynomial case, when � = 0 we get

R(r) = AC1
n

(
1√

1 + r2

)
= AUn

(
1√

1 + r2

)
,
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where Un(x) are the Chebyshev [1821 – Pafnuty Lvovich Chebyshev –
1894] polynomials of the second kind.

SE 4.3 Let a > 0 and |z| < 1. Use the integral representation of the hypergeometric
function given in PE 4.41,

2F1(a, b; c; z) = �(c)

�(c − b)�(b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − z t)−a dt

with Re(c) > Re(b) > 0, to prove the following relation:

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c; z

z − 1

)
.

Solution: Introducing the change of variable

t = 1 − ξ

into the integral representation we obtain

2F1(a, b; c; z) = �(c)

�(c − b)�(b)

∫ 1

0
ξc−b−1(1 − ξ)b−1(1 − z + zξ)−a dξ

= �(c)(1 − z)−a

�(c − b)�(b)

∫ 1

0
ξc−b−1(1 − ξ)b−1

(
1 − z

z − 1
ξ

)−a

dξ .

Comparing this expression with the integral representation aforementioned we may
write

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c; z

z − 1

)
.

SE 4.4 Let −1 < x < 1 and m, n ∈ N with m �= n. Show that

∫ 1

−1
Pn(x)Pm(x) dx = 0,

where Pn(·) is the Legendre polynomial. This relation is known as orthogonality
relation.
Solution: As we know, the Legendre polynomial Pn(x) satisfies a linear ordinary

differential equation, known as the Legendre differential equation, which can be
written in the form

d

dx

[
(1 − x2)

d

dx
Pn(x)

]
+ n(n + 1)Pn(x) = 0 .
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We are interested in obtaining an integral involving the product of two Legendre
polynomials. Then, we write an analog to the above ordinary differential equation
for Pm(x), multiply the first equation by Pm(x) and the second one by Pn(x).
Subtracting the expressions from each other and rearranging, we can write the result
in the following appropriate way

(n + m + 1)(n − m)Pn(x)Pm(x)

d

dx

{
(1 − x2)

[
Pn(x)

d

dx
Pm(x) − Pm(x)

d

dx
Pn(x)

]}
.

Integrating this equation with respect to x on −1 ≤ x ≤ 1 we obtain

(n + m + 1)(n − m)

∫ 1

−1
Pn(x)Pm(x) dx

=
{
(1 − x2)

[
Pn(x)

d

dx
Pm(x) − Pm(x)

d

dx
Pn(x)

]}1

−1
,

which can be rewritten in the form

(n + m + 1)(n − m)

∫ 1

−1
Pn(x)Pm(x) dx = 0

because (1 − x2) = 0 at x = ±1. Then, since m and n are nonnegative integers, we
have m + n + 1 �= 0. Also, by hypothesis, n �= m, and we conclude that

∫ 1

−1
Pn(x)Pm(x) dx = 0, n �= m .

This expression says that the set of Legendre polynomials is orthogonal with respect
to the unity weight function on the interval −1 < x < 1.

SE 4.5 The generating function of Bessel functions may be used, for example, to
prove the so-called Schläfli [1814 – Ludwig Schläfli – 1895] integral representa-
tion,

Jn(z) = 1

2πi

∮

C

dt

tn+1 exp

[
z

2

(
t − 1

t

)]
,

where contour C circles the origin in counterclockwise sense. From the integral
representation aforementioned, prove the so-called Bessel integral:

Jn(z) = 1

π

∫ π

0
cos(nθ − z sinθ)dθ .
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Solution: Introducing the change of variable t = exp(iθ), the parametrization of a
circumference with unit radius centered at the origin, we can write

Jn(z) = 1

2πi

∫ 2π

0

i eiθ dθ

(eiθ )n+1 exp
[ z

2

(
eiθ − e−iθ

)]
.

Now, using Euler’s relation [3] and simplifying terms we obtain

Jn(z) = 1

2π

∫ 2π

0
e−inθ eizsinθ dθ .

This expression can be rewritten as

Jn(z) = 1

2π

∫ 2π

0
[cos(z sinθ − nθ) + i sin(z sinθ − nθ)]dθ .

Let us introduce another change of variable, θ = x + π . Then we may write

Jn(z) = (−1)n

2π

∫ π

−π

[cos(z sinx + nx) − i sin(z sinx + nx)]dx .

As the sine function is an odd function, its integral over a symmetric interval is null,
and we then get

Jn(z) = (−1)n

2π

∫ π

0
cos(z sinx + nx)dx .

Finally, a new change of variable given by x = −θ + π brings us to the integral

Jn(z) =
∫ π

0
cos(z sinθ − nθ)dθ ,

which is the desired result.

SE 4.6 Calculate, using the hypergeometric function, the integral

∫ μ

0

dx√
1 − x8

,

where μ > 0.
Solution: Introducing the change of variable x8 = u we can rewrite the integral as

∫ μ

0

dx√
1 − x8

= 1

8

∫ μ8

0
du u−7/8(1 − u)−1/2 .

Now, calling u = μ8t we obtain



110 4 Special Functions

∫ μ

0

dx√
1 − x8

= 1

8
μ1/8

∫ 1

0
dt t−7/8(1 − μ8t)−1/2 ,

which can be identified as a hypergeometric function, i.e.,

∫ μ

0

dx√
1 − x8

= μ

8

�(9/8 − 1/8)�(1/8)

�(9/8)
2F1

(
1

8
,

9

8
; 1

2
;μ8

)

or finally, after simplifications,

∫ μ

0

dx√
1 − x8

= μ 2F1

(
1

8
,

9

8
; 1

2
;μ8

)
,

which is the desired result.

SE 4.7 Find a solution for the linear ordinary differential equation

x2(x2 − 1)
d2

dx2 y(x) + x(x2 − 1)
d

dx
y(x) + 1

16
y(x) = 0

and express it in terms of a hypergeometric function.
Solution: Introducing the change of variable x2 = t , we may write

t2(t − 1)
d2

dt2 y(t) + t (t − 1)
d

dt
y(t) + 1

64
y(t) = 0 .

Now, making the change of dependent variable

y(t) = t1/8H(x),

we arrive at the ordinary differential equation

t (1 − t)
d2

dt2
H(x) + 5

4
(1 − t)

d

dt
H(t) − 1

64
H(t) = 0 ,

which is a hypergeometric equation, with a solution given by

H(t) = 2F1

(
1

8
,

1

8
; 5

4
; t

)
,

from which we obtain, reintroducing the original variables,

y(x) = Ax1/8
2F1

(
1

8
,

1

8
; 5

4
; x2

)
,

where A is an arbitrary real constant.
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SE 4.8 Show that

P

⎧⎨
⎩

0 ∞ 1
α β γ z

α′ β ′ γ ′

⎫⎬
⎭ = P

⎧⎪⎪⎨
⎪⎪⎩

1 0 ∞
α β γ

1

1 − z
α′ β ′ γ ′

⎫⎪⎪⎬
⎪⎪⎭

.

Solution: The ordinary differential equation for the first scheme is given by

d2y

dz2 +
(

1 − α − α′

z
+ 1 − γ − γ ′

z − 1

)
dy

dz
+

(
−αα′

z
+ ββ ′ + γ γ ′

z − 1

)
y

z(z − 1)
= 0.

Then, inverting the expression t = (1 − z)−1 we obtain z = (t − 1)t−1, whence we
find for the parameters

z → 0 t = 1 �⇒ 1 with exponents α and α′
z → 1 t = ∞ �⇒ ∞ with exponents γ and γ ′
z → ∞ t = 0 �⇒ 0 with exponents β and β ′ ,

which is the desired result.

4.7 Proposed Exercises

PE 4.1 Show that
∫ ∞

0
e−x dx√

x
= √

π .

PE 4.2 Show that
∫ ∞

−∞
e−x2

dx = √
π .

PE 4.3 Use the definition of the beta function to calculate

B

(
1

2
,

1

2

)
.

PE 4.4 Let a, b ∈ R+. Evaluate the integral

∫ 0

−1
2F1(−a, b; b;−x),

where 2F1(−a, b; b;−x) is a hypergeometric function.
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PE 4.5 Let a, b, c ∈ R be arbitrary parameters with c �= 0,−1,−2, . . . What must
be the relations between parameters a, b and c so that 2F1(a, b; c; 1) is defined?

PE 4.6 Let |x| < 1. Evaluate 2F1(1, 1; 2;−x).

PE 4.7 Using the duplication formula for the gamma function, evaluate �(3/2).

PE 4.8 Let z ∈ C. The so-called Mittag–Leffler [1846 – Magnus Gustaf (Gösta)
Mittag-Leffler – 1927] function, which can be considered a generalization of the
exponential function, is given by

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
,

where α is a complex parameter with Re(α) > 0. Let z = x ∈ R. Evaluate (a) E1(x)

and (b) E2(x
2) .

PE 4.9 Let x ∈ R, α > 0 and β > 0. The Mittag-Leffler function with two
parameters is defined by the series

Eα,β(x) =
∞∑

k=0

xk

�(αk + β)
.

Show that E1,2(x) = 1F1(1; 2; x); this is a relation between the Mittag–Leffler
function with two parameters and the confluent hypergeometric function.

PE 4.10 Consider the case of a hypergeometric differential equation, Eq. (4.7), for
which none of the numbers c, a − b, c − a − b is an integer. Knowing that one of
its solutions is given by Eq. (4.8), show that

ω1(z) = 2F1(a, b; a + b − c + 1; 1 − z)

and

ω2(z) = (1 − z)c−a−b
2F1(c − b, c − a; c − a − b + 1; 1 − z)

are also two linearly independent solutions of the same differential equation.

PE 4.11 Do as in the preceding exercise and suppose that a = −n (integer) in order
to show that

ω(z) = zλ(1 − z)μPn(z),

where λ and μ are parameters and Pn(z) is a polynomial of degree n in z, and that
in this case the series is finite.
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PE 4.12 Show that (quadratic transformation)

2F1(a, b; a + b + 1/2; sin2 θ) = 2F1(2a, 2b; a + b + 1/2; sin2 θ/2).

PE 4.13 Show that

(a) ln(1 ± z) = ±z 2F1(1, 1; 2;∓z),

(b) (1 + z)a = 2F1(−a, b; b;−z).

PE 4.14 Show that, formally,

(a)
d

dz
1F1(a, c; z) = a

c
1F1(a + 1, c + 1; z),

(b)
d

dz
U(a; c; z) = −aU(a + 1; c + 1; z),

where

U(a; c; z) = π

sin πc

[
1F1(a; c; z)

�(c)�(1 + a − c)
− z1−c 1F1(a + 1 − c; 2 − c; z)

�(a)�(2 − c)

]

is also a solution of the confluent hypergeometric equation.

PE 4.15 Show that

(a) 1F1

(
ν + 1

2
; 2ν + 1

2
; 2z

)
= �(1 + ν) ez

( z

2

)−ν

Iν(z),

(b) U

(
ν + 1

2
; 2ν + 1

2
; 2z

)
= π−1/2 ez(2z)−νKν(z).

PE 4.16 Given that the Whittaker function is defined as

Mx;μ(z) = e−z/2 zμ+1/2
1F1(

1

2
+ μ − x; 1 + 2μ; z),

find the ordinary differential equation satisfied by Mx;μ(z).

PE 4.17 As in the previous problem, find the linear ordinary differential equations
satisfied by the following functions:

(a) Laguerre [1834 – Edmond Nicolas Laguerre – 1886]

Lα
n(z) = (α + 1)n

n! 1F1(−n;α + 1; z);
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(b) Hermite

Hn(z) = 2nU

(−n

2
; 1

2
; z2

)
;

(c) Weber [1842 – Heinrich Weber – 1913]

Dν(z) = 2ν/2 e−z2/4 U

(−ν

2
; 1

2
; z2

2

)
.

PE 4.18 Let P
μ
ν (x) be an associated Legendre function of the first kind, ν and μ

real paremeters. Show that

(a) P
μ
−ν−1(x) = P μ

ν (x);

(b) P −m
ν (x) = �(1 + ν − m)

�(1 + ν + m)
(−1)mP m

ν (x), m = 1, 2, 3, . . . ;

(c) W [P μ
ν (x);Qμ

ν (x)] = �(1 + ν + m)

�(1 + ν − m)
(1 − x2)−1;

where W is the Wronskian and Q
μ
ν (·) is the associated Legendre function of second

kind.

PE 4.19 Gegenbauer functions are the solutions of the Gegenbauer equation

(z2 − 1)
d2ω

dz2 + (2ν + 1)z
dω

dz
− α(α + 2ν)ω = 0,

and can be written in terms of the hypergeometric function as

Cν
α(z) = �(α + 2ν)[�(α + 1)�(2ν)]−1

2F1

(
α + 2ν,−α; ν + 1

2
; 1 − z

2

)
.

Express Cν
α(z) in terms of the Legendre function of the first kind Bν

μ(z).

PE 4.20 Let α, β ∈ R and n ∈ N. Jacobi [1805 – Carl Gustav Jacob Jacobi –
1851] polynomials P

(α,β)
n (x) are related to the hypergeometric function by

P (α,β)
n (x) = �(n + α + 1)

n!�(α + 1)
2F1

(
−n, α + β + n + 1;α + 1; 1 − x

2

)
.

Find the ordinary differential equation for P
(α,β)
n (x). What are the resulting

equations when α = β = 0 and when α = β = λ − 1/2, with λ > 1/2?
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PE 4.21 Let n ∈ N. Show the Rodrigues [1795 – Benjamin-Olinde Rodrigues
– 1851] formula,

Pn(x) = 1

2nn!
dn

dxn
[(x2 − 1)n],

where Pn(x) are Legendre polynomials.

PE 4.22 Show that the generating function for the Legendre polynomials is

(1 − 2xz + z2)−1/2 =
∞∑

n=0

Pn(x)zn,

where −1 < x < 1 and |z| < 1 and Pn(x) are Legendre polynomials.

PE 4.23 Let n = 1, 2, 3, . . . Prove the recurrence relations

(a) (n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x);
(b) (n + 1)Pn(x) = P ′

n+1(x) − xP ′
n(x);

where the prime denotes differentiation with respect to x.

PE 4.24 Let n ∈ N. Show that

(a) Tn(x) = 2F1

(
−n, n; 1

2
; 1 − x

2

)
;

(b) Tn(x) = Un(x) − xUn−1(x);

where Un(x) = (n + 1) 2F1

(
−n, n + 2; 3

2
; 1 − x

2

)
and Tn(x) and Un(x) are

Chebyshev (Tchebichef) polynomials of the first kind and second kind, respectively.

PE 4.25 Let ν ∈ R. Denote by Iν(x) the modified Bessel function of order ν.

(a) Show that

Iν−1(z) − Iν+1(z) = 2
ν

z
Iν(z)

and

Iν−1(z) + Iν+1(z) = 2
d

dz
Iν(z).

(b) Obtain the second-order ordinary differential equation for Iν(z).

PE 4.26 Let Jν(·), Iν(·) and Kν(·) be Bessel functions. Show the following
Wronskians:
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(a) W [Jν(z), J−ν(z)] = − 2

πz
sin πν, ν �= integer;

(b) W [Iν(z),Kν(z)] = −1

z
.

PE 4.27 Show the following special relations:

(a) J1/2(z) = Y−1/2(z) =
(πz

2

)−1/2
sin z;

(b) Y1/2(z) = −J−1/2(z) = −
(πz

2

)−1/2
cos z;

(c) K1/2(z) = K−1/2(z) =
(

π

2z

)1/2

e−z;

(d) eiz cos α =
∞∑

n=−∞
in einα Jn(z);

with α ∈ R.

PE 4.28 The so-called beta function is defined by

B(m, n) =
∫ 1

0
(1 − x)m−1xn−1dx = �(m)�(n)

�(m + n)
,

where

�(m) =
∫ ∞

0
e−t tm−1dt

is the gamma function, with m and n real numbers different from 0, −1, −2 . . .,
which generalizes the concept of factorial.

Show that, if 0 < m < 1,

�(m)�(1 − m) = π

sin πm
.

PE 4.29 Show that, for 0 < m < 1,

�(m)�(1 − m) =
∫ ∞

0

um−1

1 + u
du .

PE 4.30 Show that

�(z) =
∫ 1

0

(
ln

1

x

)z−1

dx .
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PE 4.31 The Pochhammer symbol (a)k is defined as

(a)k = a(a + 1) . . . (a + k − 1),

for k integer, with (a)0 = 1. Express (a)k in terms of factorials.

PE 4.32 Let z > t . Using the beta function, show that, for 0 < α < 1,

∫ z

t

dx

(z − x)1−α(x − t)α
= π

sin πα
.

PE 4.33 Let p, q ∈ R
∗. Show that

B(p + 1, q + 1) = 2
∫ π/2

0
cos2p+1 θ sin2q+1 θ dθ .

PE 4.34 Let Re(s) > 0. Show that

√
π �(2s) = 22s−1�(s)�(s + 1/2).

This is the so-called duplication formula for the gamma function.

PE 4.35 Show that

∫ π/2

0

√
cos θ dθ = (2π)3/2

16
[(

1
4

)
!
]2 ,

where
(

1
4

)
! = �(5/4).

PE 4.36 We define the double factorial for a positive integer k as

(2k)!! = 2k(2k − 2) . . . 6.4.2 ,

(2k + 1)!! = (2k + 1)(2k − 1) . . . 5.3.1 .

Show that (2n)!! = 2nn!.
PE 4.37 Show that (2n + 1)!! = (2n + 1)!/(2nn!).
PE 4.38 Show that

∫ 1

−1
(1 − x2)1/2x2ndx =

⎧
⎨
⎩

π/2 if n = 0;
π

(2n − 1)!!
(2n + 2)!! if n = 1, 2, . . .
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PE 4.39 Show that

1

π

∫ 1

−1
(1 − x2)−1/2x2ndx =

⎧⎨
⎩

1 if n = 0;
(2n − 1)!!

(2n)!! if n = 1, 2, . . .

PE 4.40 The so-called associated Legendre polynomials can be given by

P m
m (x) = (2m − 1)!!(1 − x2)m/2,

where m = 0, 1, 2, . . . and, by definition, (−1)!! = 1. Show that

∫ 1

−1
[P m

m (x)]2dx = 2

2m + 1
(2m)!, m = 0, 1 . . .

PE 4.41 Let a ∈ R. Use the beta function to show that

2F1(a, b; c; x) = 1

B(b, c − b)

∫ 1

0
(1 − t)c−b−1tb−1(1 − tx)−adt,

for |x| < 1 and c > b > 0.

PE 4.42 Let a, b, c ∈ R. Show that

(a) 2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c; z

z − 1

)
;

(b) 2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z).

PE 4.43 Using the integral representation shown in PE 4.41, calculate
2F1(a, b; c; 1).

PE 4.44 Let a, b ∈ R with 1 + b − a a nonnegative integer. Show that

2F1(a, b; b − a − 1;−1) = �(1 + b − a)�(1 + b
2 )

�(1 + b)�(1 + b
2 − a)

.

PE 4.45 Show that

∫ 1

0

xm−1(1 − x)n−1

(x + r)m+n
dx = B(m, n)

rn(1 + r)m
,

where m, n ∈ N and r is a real positive constant.

PE 4.46 Using the results of PE 4.41, find the integral representation of the
confluent hypergeometric function,
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1F1(a; c; x) = �(c)

�(a)�(c − a)

∫ 1

0
(1 − t)c−a−1ta−1 etx dt,

for Re(c) > Re(a) > 0.

PE 4.47 Show that

(a) 1F1(a; c; z) = ez
1F1(c − a; c;−z);

(b) U(a; c; z) = z1−cU(a + 1 − c; 2 − c, z);

using the integral representation

U(a; c; x) = 1

�(a)

∫ ∞

0
e−xt ta−1(1 + t)c−a−1dt,

where Re(a) > 0, Re(x) > 0 and c �= 1, 2, 3, . . ..

PE 4.48 Let a, c ∈ R. For |s| > 1, show that

∫ ∞

0
e−st

1F1(a; c; t)dt = 1

s
2F1

(
a, 1; c; 1

s

)
,

which is interpreted as the Laplace transform of a confluent hypergeometric
function.

PE 4.49 (a) Using the series representation of the Bessel function of order μ and
PE 4.33, show that

Jμ(z) = 2√
π�(μ + 1/2)

( z

2

)μ
∫ π/2

0
sin2μ θ cos(z cos θ)dθ,

for Re(μ) > −1/2. (b) Find an integral representation for J0(z).

PE 4.50 Consider the classical Legendre differential equation,

(1 − x2)
d2

dx2 y(x) − 2x
d

dx
y(x) + n(n + 1)y(x) = 0 ,

with n = 0, 1, 2 . . ., which has singularities at x = ±1 and x = ∞ and a solution
that can be defined by the following scheme:

y(x) = P

⎧
⎨
⎩

−1 ∞ 1
0 n + 1 0 x

0 −n 0

⎫
⎬
⎭ .

Show that the scheme
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y(x) = P

⎧⎨
⎩

0 ∞ 1
0 n + 1 0 1

2 (1 − x)

0 −n 0

⎫⎬
⎭

is equivalent to the previous one.
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Chapter 5
Fourier, Fourier-Bessel, and
Fourier–Legendre Series

Don’t worry about your difficulties in mathematics; I can assure
you that mine are still greater.

1879 – Albert Einstein – 1955

There exist discontinuous functions that cannot be represented by power series
(cf. Chap. 3). However, powers are not the unique type of known functions: there
exist also, e.g., the trigonometric functions and hyperbolic functions, studied in
basic mathematics, and the special functions, some of which were discussed in the
preceding chapter. These functions can also be used to express other functions, as in
the case of powers. Among the series thus generated we have the so-called Fourier
[1768 – Jean Baptiste Joseph Fourier – 1830] series, Fourier–Bessel series,
and Fourier–Legendre series, which are the subject of this chapter.

5.1 Fourier Series

Let x ∈ R. Consider a periodic function f (x) defined on a closed interval [a, b].
The Fourier series expansion for f (x) is given by

f (x+) + f (x−)

2
= a0

2
+

∞∑
k=1

ak cos

{
kπ(2x − b − a)

(b − a)

}
+

+
∞∑

k=1

bk sin

{
kπ(2x − b − a)

(b − a)

}
,

where the coefficients ak and bk are respectively given by

ak = 2

b − a

∫ b

a

f (x) cos

{
kπ(2x − b − a)

(b − a)

}
dx, k = 0, 1, 2 . . .
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and

bk = 2

b − a

∫ b

a

f (x) sin

{
kπ(2x − b − a)

(b − a)

}
dx, k = 1, 2, 3 . . .

Due to their importance, for instance, when we solve a linear ordinary differential
equation, we present two theorems involving the term-by-term differentiation and
integration of a Fourier series. For the sake of simplicity, we consider the symmetric
interval [−π, π ] instead of [a, b].
Theorem 5.1 (Differentiation) Let f (x) be a continuous function on the interval
[−π, π ], with f (−π) = f (π) and assume that f ′(x) is smooth by parts on
this interval. Then, the Fourier series for f ′(x) can be obtained by term-by-term
differentiation of the Fourier series for f (x) and the corresponding differentiated
series converges pointwise to f ′(x).

Example 5.1 In this example, we discuss the differentiation of the Fourier series,
as in Theorem 5.1. Let f (x) be a continuous function on [−�, �] such that f (�) =
f (−�) and suppose that f ′(x) is continuous by parts and has lateral derivatives on
this interval; then the Fourier series for f (x) is differentiable. Show that

f ′(x) =
∞∑

k=1

kπ

�

[
−ak sin

(
kπx

�

)
+ bk cos

(
kπx

�

)]
.

Consider the Fourier series for f and f ′,

f (x) = a0

2
+

∞∑
k=1

[
ak cos

(
kπx

�

)
+ bk sin

(
kπx

�

)]

and

f ′(x) = A0

2
+

∞∑
k=1

[
Ak cos

(
kπx

�

)
+ Bk sin

(
kπx

�

)]
,

where the coefficients for the Fourier series associated with f (x) are known. On the
other hand, the coefficients for the Fourier series associated with f ′(x) will be given
by the following expressions:

A0 = 1

�

∫ �

−�

f ′(x)dx;

Ak = 1

�

∫ �

−�

f ′(x) cos

(
kπx

�

)
dx;

Bk = 1

�

∫ �

−�

f ′(x) sin

(
kπx

�

)
dx .
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Thus, we can determine the relation between coefficients A0, Ak and Bk and
the coefficients a0, ak and bk . Integrating by parts Ak , with k = 0, 1, 2, . . ., and

choosing u = cos

(
kπx

�

)
, we have

Ak = 1

�

{
f (x) cos

(
kπx

�

) ∣∣∣∣
�

−�

+kπ

�

∫ �

−�

f (x) sin

(
kπx

�

)
dx

}

= 1

�

{
f (�) cos(kπ) − f (−�) cos(−kπ) + kπ

�

∫ �

−�

f (x) sin

(
kπx

�

)
dx

}
.

By hypothesis f (�) = f (−�), so that f (−�) cos(−kπ) = f (�) cos(kπ); then

Ak = kπ

�

{
1

�

∫ �

−�

f (x) sin

(
kπx

�

)
dx

}
= kπ

�
bk .

In particular, for k = 0, we obtain A0 = 0. Similarly, integrating by parts Bk for

k = 1, 2, . . . and choosing u = sin

(
kπx

�

)
, we get

Bk = 1

�

{
f (x) sin

(
kπx

�

) ∣∣∣∣
�

−�

−kπ

�

∫ �

−�

f (x) cos

(
kπx

�

)
dx

}

= 1

�

{
f (�) sin(kπ) − f (−�) sin(−kπ) − kπ

�

∫ �

−�

f (x) cos

(
kπx

�

)
dx

}

= 1

�

⎧
⎨
⎩2f (�) sin(kπ)︸ ︷︷ ︸

=0

−kπ

�

∫ �

−�

f (x) cos

(
kπx

�

)
dx

⎫
⎬
⎭

= −kπ

�

{
1

�

∫ �

−�

f (x) cos

(
kπx

�

)
dx

}
= −kπ

�
ak .

With these results we can write

f ′(x) =
∞∑

k=1

kπ

�

[
−ak sin

(
kπx

�

)
+ bk cos

(
kπx

�

)]
,

which is the desired result, i.e., the same result we would have obtained by
differentiating f (x) term by term. Besides, at the points of discontinuity of f ′(x)

we have

f ′(x+) + f ′(x−)

2
=

∞∑
k=1

kπ

�

[
−ak sin

(
kπx

�

)
+ bk cos

(
kπx

�

)]
,

which is the desired result. �
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Theorem 5.2 (Integration) Let f (x) be a function continuous by parts on the
symmetric interval [−π, π ] and periodic with period 2π . Then, the Fourier series
of f (x), convergent or not, can be integrated term by term between any limits.

Example 5.2 Assuming that the Fourier series expansions of functions f (x) = x

and f (x) = x2 are known, obtain by integration the Fourier series expansion of
function f (x) = x3, both on the interval (−�, �).

The Fourier series for f (x) = x2 is given by

x2 = �2

3
+ 4�2

π2

∞∑
k=1

(−1)k

k2 cos

(
kπ

�
x

)
,

for −� < x < �. Integrating this expression from −� to x we get, after
simplification,

x3

3
= �3

3
x + 4�3

π3

∞∑
k=1

(−1)k

k3
sin

(
kπ

�
x

)
,

for −� < x < �. As we know the Fourier series for f (x) = x, we can write

x3 = 2�3

π

∞∑
k=1

(−1)k+1

k
sin

(
kπ

�
x

)
+ 12�3

π3

∞∑
k=1

(−1)k

k3 sin

(
kπ

�
x

)
,

which can be rewritten in the form

x3 = 2�3

π

∞∑
k=1

[
(−1)k

k

(
6

π2k2 − 1

)]
sin

(
kπ

�
x

)

for −� < x < �, which is the desired result. �

5.1.1 Parseval Identiy

An interesting relation involving the Fourier coefficients is known as Parseval [1755
– Marc-Antoine Parseval des Chênes – 1836] identity. We introduce it by the
following theorem.

Theorem 5.3 If the Fourier series for f (x) converges uniformly to the function
f (x) on the interval (−�, �), then

1

�

∫ �

−�

[f (x)]2 dx = a2
0

2
+

∞∑
k=1

(a2
k + b2

k),

since the integral exists.
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Proof Let f (x) be a function expressed by its Fourier series,

f (x) = a0

2
+

∞∑
k=1

[
ak cos

(
kπ

�
x

)
+ bk sin

(
kπ

�
x

)]
.

Multiplying f (x) by f (x) and integrating term-by-term from −� up to +� (the
series is uniformly convergent), we can write

∫ �

−�

[f (x)]2 dx = a0

2

∫ �

−�

f (x) dx

+
∞∑

k=1

{
ak

∫ �

−�

f (x) cos

(
kπ

�
x

)
dx+bk

∫ �

−�

f (x) sin

(
kπ

�
x

)
dx

}
.

Then, using the results obtained for the Fourier coefficients,

∫ �

−�

f (x) cos

(
kπ

�
x

)
dx = �ak, with k = 0, 1, 2, . . .

and

∫ �

−�

f (x) sin

(
kπ

�
x

)
dx = �bk, with k = 1, 2, 3, . . .

we obtain

∫ �

−�

[f (x)]2 dx = a2
0

2
� + �

∞∑
k=1

(a2
k + b2

k),

which is the desired result. �

5.2 Fourier–Bessel Series

Let r ∈ R
∗. We call Fourier–Bessel series of order m a series of the form

f (r) =
∞∑

n=1

anJm(kmnr),

where Jm(x) is the Bessel function of order m and the coefficients an are given by
the relation

an = 2

a2[Jm+1(kmna)]2

∫ a

0
rf (r)Jm(kmnr) dr.
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This type of series is useful in problems involving Dirichlet [1805 – Peter Gustav
Lejeune Dirichlet – 1859] conditions, that is, in which the boundary conditions
provide the values of the function at two distint points. Other boundary conditions
are treated in the same way.

5.3 Fourier–Legendre Series

Just as in the cases of Fourier series and Fourier–Bessel series, we introduce the
so-called Fourier–Legendre series. We call Fourier–Legendre series all series of the
type

f (x) =
∞∑
l=0

alPl (x),

where l = 0, 1, 2, . . ., Pl (x) are the Legendre polynomials and the coefficients al

are given by

al = 2l + 1

2

∫ 1

−1
f (x)Pl (x) dx,

In Chap. 7 we will discuss the so-called Sturm–Liouville [1803 – Jacques
Charles François Sturm – 1855] problem, and we will see that the series
discussed earlier are particular cases of a larger class of functions.

5.4 Solved Exercises

SE 5.1 Let −π ≤ x ≤ π . Show that the coefficients ak in the Fourier series

f (x) = a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx)

are given by the relation

ak = 1

π

∫ π

−π

f (x) cos kx dx,

for all k.
Solution: We suppose that a certain function f (x) is represented by the series
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f (x) = a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx),

and that this series is uniformly convergent on the interval −π ≤ x ≤ π . Multiply
the series by cos mx, with m a positive integer:

f (x) cos mx = a0

2
cos mx +

∞∑
k=1

(ak cos kx + bk sin kx) cos mx.

This series is still uniformly convergent, and thus, we can integrate it term by
term:

∫ π

−π

f (x) cos mx dx = a0

2

∫ π

−π

cos mx dx +
∞∑

k=1

ak

∫ π

−π

cos kx cos mx dx +

+
∞∑

k=1

bk

∫ π

−π

sin kx cos mx dx.

Using the orthogonality properties of the sine and cosine functions, we have

ak = 1

π

∫ π

−π

f (x) cos kx dx.

Thus, this relation allows us to calculate any coefficient ak when the function f (x) is
known. The calculation of coefficients bk is done in the same way, i.e., we multiply
the original expression by sin mx and use again the orthogonality relations.

SE 5.2 Let u(x, y), 0 ≤ x, y ≤ 1, a continuous function of the point M with
coordinates (x, y), denote the temperature of a square plate. It is constant in time
and satisfies the two-dimensional Laplace equation written in cartesian coordinates,
which we will see in Chap. 9. Suppose that u(x, y) satisfies the conditions

u(0, y) = u(1, y) = u(x, 0) = 0

and assume also that each point with abscissa x and ordinate 1 has a temperature
F(x) given by

u(x, 1) ≡ F(x) =
∞∑

k=1

100

2k
sin(πkx) , 0 ≤ x ≤ 1 .

(a) Let 0 ≤ x ≤ 1. Show that, for all x, |F(x)| ≤ 100. (b) Calculate the numerical
value of the temperature at the center of the plate. (c) Evaluate F(x) and show that
0 ≤ F(x) < 67.
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Solution:

(a) Taking the modulus of both sides we can write

|F(x)| =
∣∣∣∣∣

∞∑
k=1

100

2k
sin(πkx)

∣∣∣∣∣ ≤
∞∑

k=1

100

2k
|sin(πkx)| ≤

∞∑
k=1

100

2k
,

which is a geometric series with the first term equal to 50 and ratio equal to 1/2;
its sum is equal to 100, so,

|F(x)| ≤ 100.

(b) In order to solve this item, we must use the method of separation of variables,
which we shall see in Chap. 9. If we do this, we find for the temperature
distribution

u(x, y) =
∞∑

k=1

100

2k

sinh(πky)

sinh(πk)
sin(πkx).

In our case, for the temperature at the center of the plate, we must calculate
u( 1

2 , 1
2 ), i.e.,

u

(
1

2
,

1

2

)
= 25

∞∑
k=0

1

22k

(−1)k

coshπ(2k + 1)/2
.

Substituting the values of the first three nonnull terms, we get

u

(
1

2
,

1

2

)
� 9.8.

(c) In order to calculate F(x), we use the Euler formula [1] to write the sine
function as a sum of two exponentials, so that we can write

F(x) = 100
∞∑

k=1

sin(πkx)

2k
= 50

i

∞∑
k=1

1

2k

(
eiπkx − e−iπkx

)
.

Manipulating the series, we have

F(x) = 25

i
eit

∞∑
k=0

(
eit

2

)k

− 25

i
e−it

∞∑
k=0

(
e−it

2

)k

,

where t = πx. Both series are geometric series and their sums are known. Thus, we
can write, after some simplification,
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F(x) = 200sinπx

5 − 4cosπx
.

Finally, in order to obtain the maximum value, we differentiate the above expression
with respect to x and equate it to zero, obtaining

d

dx
F(x) = 5cosπx − 4

(5 − 4cosπx)2 = 0 .

This implies that cosπx = 4/5 and hence that sinπx = 3/5, whence we conclude
that

Fmax(x) = 200
3/5

5 − 4(4/5)
= 600

9
< 67 .

Note that for a maximum we must have a negative second derivative; this can be
confirmed by direct calculation. Finally, since for 0 < x < 1 we have F(x) ≥ 0, we
can write

0 ≤ F(x) < 67 ,

which is the desired expression.

SE 5.3 Consider the function f (x) = x on the interval −π < x < π expressed by
the Fourier series

x = 2

(
sinx − sin2x

2
+ sin 3x

3
− . . .

)
.

Integrating it term by term, we obtain the series (PE 5.22)

x2 = 4

[
π2

12
+

∞∑
k=1

(−1)k
coskx

k2

]
.

Integrate this last series term by term to calculate the sum

S = 1 − 1

33 + 1

53 − 1

73 + . . .

Solution: Integrating both sides of the expression for the expansion of x2 given
earlier, from a, a constant, to x, we can write

∫ x

a

t2 dt =
∫ x

a

π2

3
dt +

∫ x

a

{ ∞∑
k=1

4(−1)k
coskt

k2

}
dt
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or, after some simplification,

x3

3
− π2x

3
= � +

∞∑
k=1

4(−1)k
sinkx

k3

where � is a constant. In order to determine this constant, we integrate again both
sides with respect to x on the interval (−π, π), and we easily conclude that � = 0.
We then have for the integrated series

x

12
(x2 − π2) =

∞∑
k=1

(−1)k
sinkx

k3 .

Finally, to determine the sum, we substitute x = π/2 into this expression, whence
it follows that

π3

96
− π3

24
=

∞∑
k=1

(−1)k
sin πk/2

k3

and changing the index k → 2k − 1, we obtain the desired result, that is

S =
∞∑

k=1

(−1)k

(2k − 1)3 = 1 − 1

33 + 1

53 − 1

73 + . . . = π3

32
.

SE 5.4 Let f (x) = x3 − π2x be a function defined on the closed interval [−π, π ],
periodic with period 2π . (a) Obtain the Fourier series for f (x) and (b) use the
Parseval identity to evaluate the sum

∞∑
k=1

1

k6
.

Solution: (a) Since f (x) is an odd function, ak = 0 for all k = 0, 1, . . . We must
then evaluate only the integral

bk = 2

π

∫ π

0
(x3 − π2x) sin kx dx.

Using integration by parts and simplifying yields

bk = 12

k3 (−1)k ,

k = 1, 2, . . . Then, the corresponding Fourier series is given by



5.4 Solved Exercises 131

f (x) =
∞∑

k=1

12

k3
(−1)k sin kx .

(b) Using the Parseval identity we can write

144
∞∑

k=1

1

k6
= 2

π

∫ π

0
(x3 − π2x)2 dx,

where we have used the fact that the integrand is an even function. The remaining
integral is an immediate integral from which it follows, after integration and
simplification,

∞∑
k=1

1

k6 = π6

945
,

which is the desired result.

SE 5.5 (Orthogonality of Bessel functions) Let u(x) = Jν(λx) and v(x) =
Jν(μx) be two first kind Bessel functions of order ν > −1 and λ and μ two real
parameters. (a) Show the orthogonality of these Bessel functions with respect to the
weight function w(x) = x,

∫ 1

0
xJν(λx)Jν(μx) dx = μJν(λ)J ′

ν(μ) − λJν(μ)J ′
ν(λ)

λ2 − μ2
,

for λ �= μ and where the prime denotes derivative. (b) Show that in the case μ = λ

the relation is

∫ 1

0
x[Jν(λx)]2 dx = 1

2

{
[J ′

ν(λ)]2 +
(

1 − ν2

λ2

)
[Jν(λ)]2

}
.

(c) Discuss the particular case in which λ and μ are roots of the Bessel function,
i.e.,

Jν(λ) = 0 = Jν(μ) .

Solution: (a) The functions u = u(x) and v = v(x) satisfy the following Bessel
equations of order ν:

x2u′′ + xu′ + (λ2x2 − ν2)u = 0

and

x2v′′ + xv′ + (μ2x2 − ν2)v = 0 ,
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respectively. Multiplying the first equation by v, the second one by u, subtracting
each other, and rearranging, we can write

d

dx

[
x(uv′ − vu′)

] = (λ2 − μ2)x u v .

Integrating this last expression from 0 to 1 we have

x(uv′ − vu′)|x=1
x=0 = (λ2 − μ2)

∫ 1

0
x u v dx .

With the condition ν > −1, the first member of the precedent equation, evaluated
at x = 0, goes to zero [3] and we get

∫ 1

0
xJν(λx)Jν(μx) dx = μJν(λ)J ′

ν(μ) − λJν(μ)J ′
ν(λ)

λ2 − μ2
,

which is the desired result. �
(b) In order to evaluate the integral in which λ = μ, we must consider the limit
λ → μ in the last equation, which yields an indeterminacy in the right-hand side of
the equation. In order to raise it we use the l’Hôpital [1661 – Guillaume François
Antoine–Marquis de l’Hôpital – 1704] rule, obtaining

∫ 1

0
x[Jν(λx)]2 dx = 1

2

{
[J ′

ν(λ)]2 +
(

1 − ν2

λ2

)
[Jν(λ)]2

}
,

which is the desired result.
(c) In the case Jν(λ) = 0 = Jν(μ), the two expressions obtained in the previous
items are combined so that we can write

∫ 1

0
x[Jν(λx)]2 dx =

⎧⎪⎪⎨
⎪⎪⎩

1

2
[J ′

ν(λ)]2, for λ = μ;

0, for λ �= μ .

This relation is important when the boundary conditions are Dirichlet conditions. A
similar expression can be obtained for Neumann conditions, when λ and μ are roots
of the equation J ′

ν(λ) = 0 = J ′
ν(μ):

∫ 1

0
x[Jν(λx)]2 dx =

⎧⎪⎪⎨
⎪⎪⎩

1

2

(
1 − ν2

λ2

)
[Jν(λ)]2, for λ = μ;

0, for λ �= μ .
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Finally, when λ and μ are roots of the equation λJ ′
ν(λ) + h Jν(λ) = 0 = μJ ′

ν(μ) +
hJν(μ), we obtain the following expression:

∫ 1

0
x[Jν(λx)]2 dx =

⎧⎪⎪⎨
⎪⎪⎩

1

2

(
1 + h2 − ν2

λ2

)
[Jν(λ)]2, for λ = μ;

0, for λ �= μ .

These three expressions are of great importance when, in solving a particular
problem, expansions emerge in terms of a Fourier–Bessel series.

5.5 Proposed Exercises

PE 5.1 Evaluate the integral

∫ π

−π

sin x cos x dx.

PE 5.2 Let n, k ∈ N. Evaluate the integral

∫ π

−π

sin kx sin nx dx .

PE 5.3 Let n, k ∈ N. Evaluate the integral

∫ π

−π

sin kx cos nx dx.

PE 5.4 Evaluate the sum

∞∑
k=1

sin(2kx)

k
, 0 < x < π.

PE 5.5 Let f (x) be the following 2π -periodic function:

f (x) =
{

0, if − π < x < 0,

x, if 0 < x < π.

Obtain the expansion of f (x) in a Fourier series on −π < x < π .

PE 5.6 Show that
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∞∑
k=1

1

(2k − 1)2
= π2

8
.

PE 5.7 Show that if f (x) is an odd and 2�-periodic function, then the Fourier series
of f (x) is a sine series given by

f (x) =
∞∑

k=1

bk sin

(
kπx

�

)
,

with

bk = 2

�

∫ �

0
f (x) sin

(
kπx

�

)
dx, k = 1, 2, . . .

PE 5.8 The so-called signal function is given by

f (x) = sgn x =
⎧
⎨
⎩

−1, if − π < x < 0,

0, if x = 0,

1, if 0 < x < π,

with f (x ± 2kπ) = f (x). Obtain its Fourier series.

PE 5.9 Let f (x) be a continuous function on [−�, �] such that f (�) = f (−�), and
let f ′(x) be continuous by parts and with lateral derivatives on this interval. Show
that the Fourier series of f (x) is a differentiable series.

PE 5.10 Let f be a 2�-periodic function. Using the usual Fourier series, obtain the
corresponding complex Fourier series.

PE 5.11 Show that f (x) = cos x is (a) an even function and (b) periodic with
period 2π .

PE 5.12 Express the function f (x) = cosh x as a Fourier series to show that

cosh x = sinh π

π
+ 2 sinh π

π

∞∑
n=1

(−1)n cos nx

1 + n2
, −π < x < π.

PE 5.13 Expand the function

f (x) = π − x

2

in a Fourier series on the interval −π < x < π .

PE 5.14 Using the result obtained in PE 5.13, show that
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∞∑
n=1

1

n2
= π2

6
.

PE 5.15 Use the relations

sin x = eix − e−ix

2i
and cos x = eix + e−ix

2

to show that the Fourier series for a function f (x) can be written in the following
form:

f (x) =
∞∑

k=−∞
ck eikx, −π < x < π,

where k assumes only integer values. This is the so-called complex Fourier series.

PE 5.16 Find the complex Fourier series for f (x) = x on the interval −π < x <

π .

PE 5.17 Obtain the Fourier series for a periodic function given by

f (x) =
{−π if − π < x < 0,

x if 0 < x < π.

PE 5.18 Expand the function f (x) = x2

4
on the interval −π < x < π to show that

1 + 1

4
+ 1

9
+ 1

16
+ . . . = π2

6
.

PE 5.19 Using the result obtained in PE 5.18, show that

1 − 1

4
+ 1

9
− 1

16
+ . . . = π2

12
.

PE 5.20 Using the two previous results, show that

1 + 1

9
+ 1

25
+ 1

49
+ . . . = π2

8
.

PE 5.21 Obtain the Fourier series for the function f (x) = cos αx, with α �=
0, ±1, ±2, ±3 . . ., on the interval −π ≤ x ≤ π , and show that

π cotg απ = 1

α
+ 2α

α2 − 1
+ 2α

α2 − 4
+ 2α

α2 − 9
+ . . .
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PE 5.22 Beginning with the series

x = 2

(
sin x − sin 2x

2
+ sin 3x

3
− · · ·

)
,

on the interval −π < x < π , show through term-by-term integration that

x2 = π2

3
+ 4

∞∑
k=1

(−1)k
cos kx

k2 .

PE 5.23 Using the result obtained in PE 5.22, calculate the following sums:

(a)
∞∑

k=1

1

k2 (−1)k+1 = π2

12
;

(b)
∞∑

k=1

1

k2 = π2

6
.

PE 5.24 Let f (x) be an odd function on the interval −π < x < π . Obtain the
corresponding Parseval identity. Discuss the particular case f (x) = x.

PE 5.25 Expand f (x) = (π −x)/2 in a Fourier series, on the interval 0 < x < 2π .

PE 5.26 Using the result obtained in PE 5.25, calculate

S = 3

2π

S1

S2
,

where S1 = 1 + 1
4 + 1

9 + . . . and S2 = 1 − 1
3 + 1

5 − . . .

PE 5.27 Expand the function f (x) = | sin x|, on the interval −π < x < π , in a
Fourier series.

PE 5.28 Using the result obtained in PE 5.27, show that, for 0 < x < π , we have

cos x = − 8

π

∞∑
k=1

k sin 2kx

1 − 4k2 .

PE 5.29 Expand the function eu in powers of u. Then, obtain Fourier expansions
for the periodic functions in the θ variable,

e
λ
2 eiθ

and e− λ
2 e−iθ

,

on 0 ≤ θ ≤ 2π , with λ a positive real parameter.
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PE 5.30 Let n ∈ N. Show that

1

π

∫ π

−π

sin(n + 1/2)s

2 sin(s/2)
ds = 1

π

∫ π

−π

[
1

2
+

n∑
k=1

cos ks

]
ds.

PE 5.31 Let n ∈ N. Show that
∫ π

−π

sin(n + 1/2)s

2 sin(s/2)
ds = π.

PE 5.32 On the interval −π ≤ x ≤ π , expand the function

f (x) =
⎧⎨
⎩

0 −π ≤ x ≤ 0
x 0 ≤ x ≤ π/2

π − x π/2 ≤ x ≤ π

in a Fourier series.

PE 5.33 Using the result obtained in PE 5.32, calculate the sum

S0 = 1 − 1

9
− 1

25
+ 1

49
+ 1

81
− · · ·

PE 5.34 Knowing that ωT = 2π , expand in a Fourier series the function

u(x) =
{

0 for − T/2 < x < 0,

E0 sin ωx for 0 < x < T/2.

PE 5.35 A triangular wave can be represented by

f (x) =
{−x for − π < x < 0 ,

x for 0 < x < π ,

with f (x + 2π) = f (x); this is a periodic function with period 2π . Express f (x)

in a Fourier series.

PE 5.36 Using the result obtained in PE 5.35, calculate the sum

S = 1 + 1

9
+ 1

25
+ · · ·

PE 5.37 (RLC Electrical Circuit) Find, using an adequate Fourier series, the
stationary current I (t) in an RLC electrical circuit (PE 1.26) for which R =
100 ohms, L = 10 henries, C = 10−2 farads and
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E(t) =
{

100(πt + t2) if − π < t < 0 ,

100(πt − t2) if 0 < t < π ,

with E(t + 2π) = E(t).

PE 5.38 Given that, for 0 ≤ x ≤ π ,

∞∑
k=0

cos[(2k + 1)x]
(2k + 1)2

= π2 − 2πx

8
,

calculate the sum

∞∑
k=0

sin[(2k + 1)x]
(2k + 1)3 .

PE 5.39 Consider the function F(x) on the interval −π < x < π , satisfying the
relation F(x + 2π) = F(x) and given by

F(x) = x

12
(π2 − x2).

Solve the ordinary differential equation

d2

dx2 y(x) + ω2y(x) = F(x),

where ω2 is a constant and |ω| �= 1, 2, 3, . . .

PE 5.40 Show that the coefficients ak in the Fourier–Bessel expansion of the
function f (x) = 1, for 0 < x < 1, are given by

ak = −2

λkJ′
0(λk)

,

where λk are the roots of J0(x) = 0 and the prime denotes the derivative.

PE 5.41 Using the result obtained in the preceding exercise, show that

J0(λ1x)

λ1J1(λ1)
+ J0(λ2x)

λ2J1(λ2)
+ . . . = 1

2
.

PE 5.42 Express the function f (x) = x3 on the interval 0 < x < 2 in a Fourier–
Bessel series involving the Bessel function J3(x).

PE 5.43 Do as in PE 5.42, considering the interval 0 < x < R for the function
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f (x) =
{

C if 0 < x < a,

0 if a < x < R,

where C is a constant.

PE 5.44 Let λ ∈ R. For Jm(λ) the Bessel function of order m, use the result
obtained in PE 5.29 to show that

eiλ sin θ =
∞∑

m=−∞
Jm(λ) eimθ .

PE 5.45 Using the expression obtained in the preceding exercise, calculate the
integral

∫ 2π

0
ei(λ sin θ−nθ) dθ .

PE 5.46 Show that

1 − x2

4
=

∞∑
k=1

J2(λk)

J2
1(λk)

J0(λkx)

λ2
k

on the interval 0 < x < 1, where λk is the k-th positive root of the equationJ0(λ) =
0.

PE 5.47 Show that the Legendre polynomials P0(x) = 1, P1(x) = x, P2(x) =
3x2 − 1

2
are orthogonal on the interval [−1, 1].

PE 5.48 Show that

x2 = 1

3
P0(x) + 2

3
P2(x),

where P0(x) and P2(x) are the Legendre polynomials of PE 5.47.

PE 5.49 Obtain the Fourier–Legendre series for the function

f (x) =
{

0 if − 1 < x < 0,

1 if 0 < x < 1.

To this end, use the integral

∫ 1

0
Pl (x) dx =

⎧⎨
⎩

1 if l = 0;
0 if l is even;
� if l is odd;
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where � ≡ 
(3/2)



(

l+3
2

)



(
2−l

2

) .

PE 5.50 Do as in the preceding exercise for the function

f (x) =
{

0 if − 1 < x < 0,

x if 0 < x < 1.

Use the following integral:

∫ 1

0
xμPν(x) dx =

√
π2−μ−1
(1 + μ)



(
1 + μ−ν

2

)



(
μ+ν+3

2

)

for Re(μ) > −1.
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Chapter 6
Laplace and Fourier Transforms

But dull minds are never either intuitive or mathematical.

1623 – Blaise Pascal – 1662

The use of the so-called integral transforms to obtain solutions of differential
equations consists of transforming a given differential equation into a simpler
equation, solving this new equation and, finally, calculating the corresponding
inverse transform to obtain the solution of the initial differential equation. This
method of transforms is used to obtain particular solutions of differential equations,
ordinary and partial. We discuss here only two such transforms, the Laplace
transform and the Fourier transform [1–3].

6.1 Laplace Transform

The Laplace transform of a function f (t), t ≥ 0, which we will denote by F(s) or
by L [f (t)], is defined by the following improper integral:

F(s) ≡ L [f (t)] =
∫ ∞

0
e−st f (t) dt,

where s, the so-called transformed variable, must obey Re(s) > 0, in order for this
improper integral to converge.

As already mentioned, the integral transform methodology requires the use of the
inverse transform to retrieve the solution of the original problem. Before discussing
the inverse transform, we present some properties of the Laplace transform, stated
as theorems.

Theorem 6.1 (Linearity) If L [f (t)] and L [g(t)] are the Laplace transforms of
functions f (t) and g(t), respectively, then
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L [c1f (t) + c2g(t)] = c1L [f (t)] + c2L [g(t)],

for any constants c1 and c2.

Theorem 6.2 (Displacement) Let a ∈ R. If the Laplace transform of the function
f (t) is F(s), then

L [eat f (t)] = F(s − a),

with Re(s) > a.

Theorem 6.3 (Scale) If the Laplace transform of function f (t) is F(s), then

L [f (ct)] = 1

c
F

( s

c

)
,

for c > 0.

The next theorem involves the concept of a function of exponential order. We
say that a function f (t) is of exponential order γ as t → ∞, or simply that f (t)

is of exponential order, if there exist real constants M > 0 and γ > 0 such that
|f (t)| < M exp(γ t) as t → ∞. This property is denoted by

f (t) = O(eγ t ).

We can now formulate the next theorem, about the Laplace transform of the first
order derivative f ′(t) of a function f (t), which is important in discussing linear
ordinary and partial differential equations.

Theorem 6.4 (Differentiation) Let f (t) be a continuous function and let its first-
order derivative f ′(t) be continuous by parts on the interval 0 ≤ t ≤ T for T > 0.
Suppose that f (t) is of exponential order as t → ∞. Then the Laplace transform
of f ′(t) exists and is given by

L [f ′(t)] = sL [f (t)] − f (0).

If f ′(t) is also of exponential order, this theorem implies that the Laplace
transform of the second order derivative, f ′′(t), is given by

L [f ′′(t)] = s2L [f (t)] − sf (0) − f ′(0). (6.1)

Theorem 6.5 (Integration) If F(s) is the Laplace transform of function f (t), then

L

[∫ t

0
f (τ) dτ

]
= 1

s
F (s),

provided that
∫ t

0
f (τ) dτ is of exponential order.
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Finally, before we discuss the calculation of the inverse Laplace transform, we
define the so-called convolution product of two functions, denoted by �. The function

f (t) � g(t) ≡
∫ t

0
f (t − τ)g(τ ) dτ

is known as the convolution of functions f (t) and g(t).

Theorem 6.6 (Convolution) Let F(s) and G(s) be the Laplace transforms of
functions f (t) and g(t), respectively. Then,

L [f (t) � g(t)] = F(s)G(s),

that is, the Laplace transform of the convolution f (t) � g(t) is equal to the product
of the corresponding Laplace transforms, F(s)G(s).

We can now introduce the inverse Laplace transform, given by the following
integral on the complex plane:

L −1[F(s)] ≡ f (t) =
⎧⎨
⎩

1

2πi

∫ γ+i∞

γ−i∞
est F (s) ds if t > 0,

0 if t < 0,
(6.2)

where the integration is to be carried along the straight line s = γ > 0 on the
complex plane, with s = x + iy. The complex number γ must be chosen in such
a way that the straight line s = γ be on the right-hand side of all singularities—
poles, branching points, and/or essential singularities—of the integrand, being
otherwise arbitrary. This contour is known as Bromwich [1875 – Thomas John
Ianson Bromwich – 1929] contour, and is shown in Fig. 6.1, with the respective
orientation.

Fig. 6.1 Bromwich contour,
used to evaluate integral
Eq. (6.2)
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Suppose that all singularities of F(s) are poles and are found on the left-hand
side of the straight line s = γ , where γ is a constant. Using the residue theorem,
discussed in Chap. 3, we then have

f (t) =
∑

Residues of est F (s) at the poles of F(s).

6.2 Fourier Transform

Just as in the case of the Laplace transform, we introduce the Fourier transform by
means of a theorem.

Theorem 6.7 Let f (t) be a continuous function, smooth by parts and absolutely
integrable. If we define

F(α) ≡ F [f (t)] = 1√
2π

∫ ∞

−∞
f (t) eiαt dt,

we then have, for all t ,

f (t) = F−1[F(α)] = 1√
2π

∫ ∞

−∞
F(α) e−iαt dα .

The function F(α) is known as the Fourier transform of f (t) and f (t) is known
as the inverse Fourier transform of F(α), where α is the so-called transformed
variable.

Theorem 6.8 (Linearity) If F [f (t)] and F [g(t)] are the Fourier transforms of
f (t) and g(t), respectively, then

F [c1f (t) + c2g(t)] = c1F [f (t)] + c2F [g(t)] ,

for all constants c1 and c2.

Theorem 6.9 (Displacement) If the Fourier transform of a function f (t) is
F [f (t)], then

F [f (t − c)] = eiαc F [f (t)] ,

for c > 0.
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Theorem 6.10 (Scale) If the Fourier transform of a function f (t) is F [f (t)], then

F [f (ct)] = 1

|c|F (α/c),

for c 
= 0.

Theorem 6.11 (Differentiation) Let f (t) be a continuous and smooth by parts
function on the interval (−∞,∞), with f (t) going to zero as |t | → ∞. If the
function f (t) and its first derivative f ′(t) are absolutely integrable, then

F [f ′(t)] = −iαF [f (t)].

If the first (n − 1) derivatives of f (t) are continuous and its n-th derivative is
continuous by parts, the aforementioned result can be extended, that is,

F [f (n)(t)] = (−iα)nF [f (t)].

Theorem 6.12 (Convolution) If the functions F(α) and G(α) are the Fourier
transforms of f (t) and g(t), respectively, then the Fourier transform of their
convolution f (t) � g(t) is equal to the product of the corresponding Fourier
transforms,

F [f (t) � g(t)] = F(α)G(α) .

Analogously to the case of Fourier series in sine and cosine, presented in Chap. 5,
there exist also Fourier transforms in sine and cosine, respectively for odd and even
functions. These Fourier transforms are extensively used when a region is semi-
infinite. Before we define such Fourier transforms, we present the so-called Fourier
integral theorem:

Theorem 6.13 If a function f (t) is smooth by parts on every finite interval of the
real straight line and absolutely integrable on (−∞,∞), then

1

2
[f (t+) + f (t−)] = 1

π

∫ ∞

α=0

{∫ ∞

t ′=−∞
f (t ′) cos[α(t − t ′)] dt ′

}
dα ,

with α the transformed variable.

Odd Extension: (Fourier sine transform)
Consider a function f (t) defined on 0 ≤ t < ∞. Let f (t) be extended as an odd

function on (−∞,∞) satisfying the conditions of the Fourier integral theorem. If
at the points of continuity of function f we have

Fs(α) =
√

2

π

∫ ∞

0
f (t) sin(αt) dt,
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then

f (t) =
√

2

π

∫ ∞

0
Fs(α) sin(αt) dα .

Even Extension: (Fourier cosine transform)
Consider a function f (t) defined on the interval 0 ≤ t < ∞. Let f (t) be

extended as an even function on the interval (−∞,∞) satisfying the conditions
of the integral Fourier theorem. If at the points of continuity of the function f , we
have

Fc(α) =
√

2

π

∫ ∞

0
f (t) cos(αt) dt ,

then

f (t) =
√

2

π

∫ ∞

0
Fc(α) cos(αt) dα .

Theorem 6.14 (Differentiation) If the function f (t) and its first derivative are null
as t → ∞, and if Fc(α) is the Fourier cosine transform of f (t) and Fs(α) is its
Fourier sine transform, then:

Fc[f ′′(t)] = −α2Fc(α) −
√

2

π
f ′(0)

and

Fs[f ′′(t)] =
√

2

π
αf (0) − α2Fs(α).

Finally, we also have finite Fourier transforms in sine and cosine, which are quite
useful in the calculation of solutions of partial differential equations when we have
finite intervals, as we will see in some applications in Chap. 9.

Definition 6.2.1 (Finite Fourier Sine Transform)

The finite Fourier sine transform of function f (t), for 0 < t < l, is defined as

Fs(n) =
∫ l

0
f (t) sin

nπt

l
dt,

with n = 1, 2, . . . The function f (t) is known as the inverse finite Fourier sine
transform of Fs(n) and is given by

f (t) = 2

l

∞∑
n=1

Fs(n) sin
nπt

l
.
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Definition 6.2.2 (Finite Fourier Cosine Transform)

The finite Fourier cosine transform of f (t) (PE 6.35), for 0 < t < l, is given by

Fc(n) =
∫ l

0
f (t) cos

nπt

l
dt , n = 0, 1, 2 . . .

The inverse finite Fourier cosine transform of Fc(n) is then

f (t) = 1

l
Fc(0) + 2

l

∞∑
n=1

Fc(n) cos
nπt

l
.

6.3 Solved Exercises

SE 6.1 Let a ∈ R. Evaluate the Laplace transform of function f (t) = cos at .
Solution: We must evaluate the improper real integral

L [cos at] =
∫ ∞

0
e−st cos at dt .

To evaluate this integral, we use the Euler relation to write the cosine function in
terms of exponential functions. Another way to evaluate this integral is by means of
integration by parts. Thus,

L [cos t] = 1

2

∫ ∞

0
e−st [eiat + e−iat ] dt ,

which can be rewritten in the form

L [cos t] = 1

2

∫ ∞

0
e−t (s−ia) dt + 1

2

∫ ∞

0
e−t (s+ia) dt ,

whose integration provides

L [cos t] = 1

2

1

(s − ia)
+ 1

2

1

(s + ia)
.

Simplifying, we get the Laplace transform of f (t) = cos at ,

L [cos t] = s

s2 + a2
.

Taking the inverse Laplace transform in this last expression we can write

L −1
[

s

s2 + a2

]
= cos at .
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SE 6.2 Using the Laplace transform, obtain a particular solution for the linear,
second order, nonhomogeneous ordinary differential equation

d2

dt2
x(t) + ω2x(t) = t2 (6.3)

satisfying the initial conditions x(0) = 0 and x′(0) = 0, where ω2 is a positive
constant.
Solution: Let X(s) be the Laplace transform of x(t), given by

X(s) =
∫ ∞

0
e−st x(t) dt .

Then, applying the Laplace transform to both members of Eq. (6.3) we have

∫ ∞

0
e−st x′′(t) dt +

∫ ∞

0
ω2 e−st x(t) dt =

∫ ∞

0
e−st t2 dt . (6.4)

For the first integral we have (cf. Eq. (6.1))

∫ ∞

0
e−st x′′(t) dt = s2X(s) − sx(0) − x′(0),

and using the initial conditions we can write

∫ ∞

0
e−st x′′(t) dt = s2X(s) .

The integral on the second member of Eq. (6.4) can be calculated, for example,
using integration by parts; then, the resulting algebraic equation in variable X(s) is

s2X(s) + ω2X(s) = 2

s3
.

Solving this algebraic equation for X(s), we get

X(s) = 2

s3(s2 + ω2)
.

The expression on the right side can be written as a sum of partial fractions,

2

s3(s2 + ω2)
= −2/ω4

s
+ 2/ω2

s3
+ (2/ω4)s

s2 + ω2
.

We must now evaluate the corresponding inverse Laplace transform, that is,
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x(t) = L −1
[

2

s3(s2 + ω2)

]

= − 2

ω4
L −1

[
1

s

]
+ 2

ω2
L −1

[
1

s3

]
+ 2

ω4
L −1

[
s

s2 + ω2

]
.

Carrying the calculations and using the residue theorem, we finally get

x(t) = − 2

ω4
+ t2

ω2
+ 2

ω4
cosωt,

which is the solution sought.

SE 6.3 (Branch Point) Let u0 and k be two positive constants. Evaluate

u(x, t) = 1

2πi

∫ γ+i∞

γ−i∞
est f (s) ds

for f (s) = u0

s
exp

(
−

√
s

k
x

)
.

Solution: Write
x√
k

= α. Then

u(x, t) = 1

2πi

∫ γ+i∞

γ−i∞
u0

s
est−α

√
s ds , (6.5)

where s = 0 is a branch point. Consider now the contour on the complex plane
shown in Fig. 6.2, known as modified Bromwich contour. The integral in Eq. (6.5) is
given by

u0

2πi

∮

γ

1

s
est−α

√
s ds = u0

2πi

{∫

ab

+
∫

bde

+
∫

eh

+

+
∫

HJK

+
∫

KL

+
∫

LNA

}
est−α

√
s ds

s
= 0.

The second equality is a consequence of the residue theorem (Chap. 3) and of the
fact that the singularity (the branch point) is outside the contour � formed by the line
segments AB (s = γ ), EH and LK; the arcs of circumference of radius R centered
at the origin BDE and LNA; and the circumference of radius ε, also centered at
the origin, HJK .

As R → ∞ the integrals along arcs BDE and LNA go to zero, so that

1

2πi

{∫

AB

+
∫

EH

+
∫

KL

+
∫

HJK

}
est−α

√
s ds

s
= 0.
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Fig. 6.2 Modified Bromwich
contour, used in the
calculation of the integral
Eq. (6.5)

Since we want to know the value of the integral along AB, we take the limits
R → ∞ and ε → 0, obtaining

1

2πi

∫

AB

= − 1

2πi

∫ γ+i∞

γ−i∞
ds

s
est−α

√
s =

= lim
R→∞
ε→0

1

2πi

{∫

EH

+
∫

HJK

+
∫

KL

}
ds

s
est−α

√
s . (6.6)

Calculating separately each integral, we find:

(a) Along segment EH :

∫

EH

ds

s
est−α

√
s =

∫ −ε

−R

ds

s
est−α

√
s =

∫ ε

R

dx

x
e−xt−αi

√
x,

where we have introduced s = x eiπ .
(b) Along segment KL:

∫

KL

ds

s
est−α

√
s =

∫ −R

−ε

ds

s
est−α

√
s =

∫ R

ε

dx

x
e−xt+αi

√
x,

where s = x e−iπ .
(c) Along circumference HJK , where s = ε eiθ :

∫

HJK

ds

s
est−α

√
s = i

∫ −π

π

eε eiθ t−α
√

ε eiθ/2
dθ.
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Going back to Eq. (6.6) and taking adequate limits, the aforementioned results
imply that:

− 1

2πi

∫ γ+i∞

γ−i∞
ds

s
est−α

√
s = −1 + 1

π

∫ ∞

0

dx

x
e−xt sinα

√
x .

Hence, the corresponding inverse Laplace transform of f (s) is

u(x, t) = u0

(
1 − 1

π

∫ ∞

0

dx

x
e−xt sinα

√
x

)
.

Introducing a new variable defined by x = y2, we obtain the integral

I =
∫ ∞

0

dx

x
e−xt sinα

√
x = 2

∫ ∞

0

dy

y
e−ty2 sinαy ,

which finally leads us to the interesting result

u(x, t) = u0 erfc

(
x

2
√

kt

)
,

where erfc is know as complementary error function, which is given by the integral

erfc(y) = 1 −
√

2

π

∫ y

0
e−u2 du .

SE 6.4 Find the Fourier transform of

f (t) =
{
1 for |t | ≤ k,

0 for |t | > k,

with k > 0, and show that

∫ ∞

−∞
sin kα cosαt

α
dα =

⎧⎨
⎩

π for |t | < k,
π
2 for |t | = k,

0 for |t | > k.

Solution: The Fourier transform of function f (t) is

F(α) =
∫ ∞

−∞
f (t) e−iαt dt = 2

sinαk

k
, for α 
= 0 .

For α = 0, we have F(0) = 2k. Using the Fourier integral theorem, we get
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F(α) =
∫ ∞

−∞
F(t) e−iαt dt and f (t) = 1

2π

∫ ∞

−∞
F(α) eiαt dα .

The aforementioned results allow us to write the following expression:

1

2π

∫ ∞

−∞
2 sin kα

α
eiαt dα =

⎧⎨
⎩
1 for |t | < k,
1
2 for |t | = k,

0 for |t | > k.

This integral can be written as

1

π

∫ ∞

−∞
sin kα

α
cosαt dα + i

π

∫ ∞

−∞
sin kα

α
sinαt dα .

Notice that the second integral aforementioned is null because the integrand is an
odd function and the integration interval is symmetric. We thus have

∫ ∞

−∞
sin kα

α
cosαt dα =

⎧⎨
⎩

π for |t | < k,
π
2 for |t | = k,

0 for |t | > k,

which is the desired result.

SE 6.5 Obtain the Fourier transform of the Dirac [1902 – Paul Adrien Maurice
Dirac – 1984] delta function, denoted by δ(t).
Solution: Consider an impulse function p(t) defined by the relation

p(t) =
{

h if a − ε < t < a + ε

0 if |t | ≥ a + ε

where h is a large positive number, a > 0 and ε is a small positive constant. This
type of function appears, for example, in problems in which we have a force with
large magnitude acting during a short time interval. The Fourier transform of this
function is

F [p(t)] = 1√
2π

∫ ∞

−∞
p(t) eiαt dt

= 1√
2π

∫ a+ε

a−ε

h eiαt dt = 2hε√
2π

eiαa sinαε

αε
.

Now, if we choose h = 1/2ε, we have

I (ε) =
∫ ∞

−∞
p(t) dt =

∫ a+ε

a−ε

1

2ε
dt = 1,
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which is a constant independent of ε. Taking the limit in which ε goes to zero, this
particular function pε(t), with 2hε = 1, satisfies the relations

lim
ε→0

pε(t) = 0 for t 
= a

and

lim
ε→0

I (ε) = 1.

We thus arrived at a function given by (the correct term for such a function is
distribution)

δ(t − a) = 0 for t 
= a,

and
∫ ∞

−∞
δ(t − a) dt = 1,

which is the so-called Dirac delta function. We evaluate the Fourier transform of
the Dirac delta function as the limit of the Fourier transform of the impulse function
pε(t), that is, we take

F [δ(t − a)] = lim
ε→0

F [pε(t)]

= lim
ε→0

eiαa

√
2π

sinαε

αε
.

Since lim
ε→0

sinαε

αε
= 1, we finally obtain

F [δ(t − a)] = eiαa

√
2π

,

which, in the case a = 0, provides the desired result

F [δ(t)] = 1√
2π

.

SE 6.6 Use the integral representation of the Bessel function of order zero,

J0(x) = 1

2π

∫ 2π

0
cos(x cos θ) dθ,
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to calculate the Laplace transform of J0(x), that is, show that

∫ ∞

0
e−sx J0(x) dx = 1√

1 + s2

for Re(s ± i) > 0.
Solution: Substituting the integral representation given above into the integral for
the Laplace transform, we can write

L [J0(t)] =
∫ ∞

0

1

2π

∫ 2π

0
cos(t cos θ) dθ e−st dt

or, changing the order of integration,

L [J0(t)] =
∫ 2π

0

1

2π
dθ

∫ ∞

0
cosβt e−st dt,

where we defined β = cos θ . Integrating in variable t we obtain

L [J0(t)] = s

2π

∫ 2π

0

dθ

s2 + cos2 θ
.

In order to evaluate this integral, before using the residue theorem, we remember
a formula involving the double arc,

cos2 θ = 1 + cos 2θ

2
,

which allows us to write the relation

L [J0(t)] = s

π

∫ π

−π

dθ

2s2 + 1 + cos θ
.

This integral can be solved by means of a parametrization of the form

z = eiθ ,

which yields cos θ = (z + z−1)/2, i.e., a circumference C centered at the origin
with unitary radius. With this parametrization we obtain the following integral on
the complex plane:

L [J0(t)] = 2s

πi

∮

C

dz

z2 + 2αz + 1
,

where α = 1+2s2. The denominator has two real and distinct roots, but only one of
them is in the inner region of the contour, the circumference centered at the origin
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and radius 1. Then, using the residue theorem, we can write

L [J0(t)] = 2s

πi
2πi lim

z→z1
(z − z1)

1

(z − z1)(z − z2)
= 4s

z1 − z2
,

where z1 and z2 are the poles of the integrand. Substituting their respective values
we finally obtain

L [J0(t)] = 1√
s2 + 1

.

SE 6.7 The Fourier transform can be generalized for more than one dimension. For
example, in three-dimensional space, we have the following transform (the point
denotes the scalar product and the integral is carried over the entire space):

F [f (x)] ≡ φ(k) =
∫

d3x f (x) e−ik·x,

whose corresponding inverse transform is given by

F−1[φ(k)] ≡ f (x) =
∫

d3k

(2π)3
φ(k) eik·x .

As an example, find the Fourier transform of the wave function associated with state
2p of an electron in the hydrogen atom,

�(x) = 1√
32πa50

z e−r/2a0 ,

where a0 is the radius of the Bohr [1885 – Niels Henrik David Bohr – 1962] first
orbit and z is a cartesian coordinate.
Solution: Introducing spherical coordinates (r, θ, φ), we can write

J =
∫ 2π

0

∫ π

0

∫ ∞

0
dφ dθ dr r2 sin θ

1√
32πa50

r cos θ e−r/2a0 e−ikr cos θ ,

where we take k · x = kr cos θ , i.e., we choose k in the direction of the z axis.
Integrating in variable φ and introducing the change of variable cos θ = x we obtain

J = 2π√
32πa50

∫ ∞

0
dr e−αr r3

∫ 1

−1
x e−βx dx,

where we have introduced the parameters α = 1/2a0 and β = ikr . Finally,
integrating in variables x and r we get
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J = 2π/k√
32πa50

16

i

αk2

(α2 + k2)2
= 32k

i

√
32πa50

(1 + 4a20k
2)3

.

SE 6.8 Consider a semi-infinite spring fixed at its extreme point x = 0 and which is
initially at rest. Let f0 be an external concentrated force acting at the point x = vt .
We want to know the displacement u(x, t) of the spring at the point with coordinate
x at time t , for all x, t ≥ 0. Using the Laplace transform methodology to solve this
problem, we arrive at the following transformed function:

U(x, s) =

⎧⎪⎪⎨
⎪⎪⎩

f0
v2

s2

e−sx/v − e−sx/c

c2 − v2
v 
= c,

−f0x
e−sx/c

2cs
v = c,

where c is a constant and s is the parameter of the Laplace transform. Calculate
the corresponding inverse transform, i.e., calculate the following integral on the
complex plane:

u(x, t) = 1

2πi

∫

C

est U(x, s) ds,

where contour C leaves all singularities to the left of the straight line s = γ with γ

real, in order to show that

u(x, t) = f0

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

v2

c2 − v2

[(
t − x

v

)
θ

(
t − x

v

)
−

(
t − x

c

)
θ

(
t − x

c

)]
v 
= c,

− x

2c
θ

(
t − x

c

)
v = c.

Solution: We must calculate, for v 
= c, the integral

u(x, t) = 1

2πi

∫

C

est f0
v2

s2

e−sx/v − e−sx/c

c2 − v2
ds

or

u(x, t) = f0

2πi

v2

c2 − v2

∫

C

es(t−x/v) − es(t−x/c)

s2
ds,

which presents a pole of double order at s = 0. Thus, using the residue theorem we
get
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u(x, t) = f0

2πi

c2

c2 − v2
2πi lim

s→0

d

ds

[
es(t−x/v) − es(t−x/c)

]

= f0
c2

c2 − v2

{(
t − x

v

)
θ

(
t − x

v

)
−

(
t − x

c

)
θ

(
t − x

c

)}
,

where θ is the so-called Heaviside [1850 – Oliver Heaviside – 1925] function,
defined by,

θ(x − a) =
{
1 , x ≥ a,

0 , x < a.

On the other hand, we must also calculate the integral for the case v = c,

u(x, t) = 1

2πi

∫

C

est (−f0)
x

2cs
e−sx/c ds,

or

u(x, t) = − f0

2πi

x

2c

∫

C

es(t−x/c) ds

s
,

which presents a simple pole at s = 0. From the residue theorem, we can write

u(x, t) = − f0

2πi

x

2c
2πi lim

s→0
es(t−x/c)

= −f0

2c
xθ(t − x/c).

Finally, combining these two results, we arrive at the desired solution, which is
given by

u(x, t) = f0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2

c2 − v2

[(
t − x

v

)
θ

(
t − x

v

)
−

(
t − x

c

)
θ

(
t − x

c

)]
for v 
= c,

−x

2c
θ(t − x/c) for v = c.

SE 6.9 Use the convolution theorem to evaluate the Laplace transform

L −1
[

s

(s2 + a2)2

]
,

where a is a real constant.
Solution: In order to use the convolution theorem to evaluate this inverse Laplace
transform, we begin writing the integrand in the form of a product:
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s

(s2 + a2)2
= s

s2 + a2

1

s2 + a2
.

Then, using directly inversion formulas, we get

L −1
[

s

s2 + a2

]
= cos at and L −1

[
1

s2 + a2

]
= sin at

a
.

We now use the convolution theorem, that is,

L −1(f ∗ g) =
∫ t

0
f (t − ξ)g(ξ) dξ.

In this case, we find the following expression:

L −1
[

s

(s2 + a2)2

]
=

∫ t

0
cos aξ sin[a(t − ξ)]dξ

a
=

= sin at

a

∫ t

0
cos2 aξ dξ − cos at

a

∫ t

0
sin aξ cos aξ dξ,

which, after evaluating the integrals, yields

L −1
[

s

(s2 + a2)2

]
= t

2a
sin at.

SE 6.10 Consider the ordinary differential equation

d2

dt2
x(t) − k2x(t) = f (t),

where k2 = constant and 0 ≤ t < ∞, and x(t) satisfies the conditions

d

dt
x(t)|t=0 = b and x(∞) < ∞,

with b a real constant. Use the Fourier cosine transform to show that

x(t) = −b

k
e−kt − 1

2k

∫ ∞

0
f (ξ)

(
e−k|t−ξ | + e−k|t+ξ |) dξ.

Solution: The Fourier cosine transform for f (t) is given by

FC(α) =
√

2

π

∫ ∞

0
f (t) cosαt dt,
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while for the second derivatives we have

F [f ′′(x)] = −α2FC(α) −
√

2

π
f ′(0),

or, in this case,

FC(α) = −f0 + b
√
2/π

α2 + k2
,

where we have defined

f0 =
√

π

2

∫ ∞

0
f (t) cosαt dt.

The inverse Fourier cosine transform is given by

x(t) =
√

2

π

∫ ∞

0
FC(α) cosαt dα

and substituting the expression for the Fourier cosine transform FC(α) into the last
expression we have

x(t) = −2b

π

∫ ∞

0

cosαt

α2 + k2
dα − 2

π

∫ ∞

0
f (ξ) dξ

∫ ∞

0

cosαξ cosαt

α2 + k2
dα .

Using the residue theorem to solve the first integral, we get

x(t) = −b

k
e−kt − 2

π

∫ ∞

0
f (ξ) dξ

∫ ∞

0

cosαξ cosαt

α2 + k2
dα .

To solve the second integral, in variable α, we use the following trigonometric
relation:

cosαξ cosαt = 1

2
[cos(αξ + αt) + cos(αξ − αt)] .

Using again the residue theorem, we finally obtain

x(t) = −b

k
e−kt − 1

2k

∫ ∞

0
f (ξ)

(
e−k|ξ+t | + e−k|ξ−t |) dξ,

which is the desired result.
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6.4 Proposed Exercises

PE 6.1 Let μ ∈ R+. Evaluate the Laplace transform L [tμ].
PE 6.2 Show that

L −1
[

1

(s2 + 1)2

]
= sin t − t cos t .

PE 6.3 Let a > 0 be a real constant. Let x(t) and f (t) be two functions that admit
the Laplace transform. Solve the initial value problem

⎧⎨
⎩

d

dt
x(t) + ax(t) = f (t) , t > 0

x(0) = x0 ,

where x0 is a positive constant.

PE 6.4 Let x(t) be a function that admits the Laplace transform. Solve the initial
value problem

⎧⎪⎪⎨
⎪⎪⎩

d2

dt2
x(t) + x(t) = t , t > 0,

x(0) = 1,
x′(0) = 0 .

PE 6.5 Let g(x) = x. Use the Laplace transform to solve the integral equation

y(x) = 1 +
∫ x

0
g(x − ξ)y(ξ) dξ .

PE 6.6 Let σ > 0. Evaluate the Fourier transform F [e−σx2 ].
PE 6.7 Let f (x) be a function defined on the interval 0 ≤ x < ∞ and which
admits the Fourier transform. Denoting by FS(k) and FC(k) the Fourier sine and
cosine transforms, respectively, given by

FS(k) =
√

2

π

∫ ∞

0
f (x) sin kx dx and FC(k) =

√
2

π

∫ ∞

0
f (x) cos kx dx,

show the following results:

FS[f ′(x)] = −kFC(k) and F [f ′′(x)] =
√

2

π
kf ′(0) − k2FS(k),

where the primes denote derivatives.
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PE 6.8 Let F(k) andG(k) be the Fourier transforms of f (x) and g(x), respectively.
The Parseval identity is given by

∫ ∞

−∞
f (x)g(x) dx =

∫ ∞

−∞
F(k)G(k) dk,

where G(k) denotes de conjugate of G(k). Use the relation

F

[
1

1 + x2

]
=

√
π

2
exp(−|k|)

to evaluate the integral

� =
∫ ∞

0

dx

(x2 + 1)2
.

PE 6.9 Let f (x) be a continuous function on the finite interval 0 < x < a. We
define the Fourier finite cosine transform and the corresponding inverse by

FC[f (x)] := FC(n) =
∫ a

0
f (x) cos

(nπx

a

)
dx

and

F−1
C [FC(n)] := f (x) = FC(0)

a
+ 2

a

∞∑
n=1

FC(n) cos
(nπx

a

)
,

respectively. Show that, for a = π ,

FC[f ′(x)] = nFS(n) + (−1)nf (π) − f (0)

and

FC[f ′′(x)] = −n2FC(n) + (−1)nf ′(π) − f ′(0),

where FS(n) is the Fourier finite sine transform presented in PE 6.10.

PE 6.10 Let f (x) be a continuous function on the finite interval 0 < x < a. We
define the Fourier finite sine transform and the corresponding inverse by

FS[f (x)] := FS(n) =
∫ a

0
f (x) sin

(nπx

a

)
dx

and
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F−1
S [FS(n)] := f (x) = 2

a

∞∑
n=1

FS(n) sin
(nπx

a

)
,

respectively. Show that, for a = π ,

FS[f ′(x)] = −nFC(n)

and

FC[f ′′(x)] = −n2FS(n) + n[(−1)n+1f (π) − f (0)],

where FC(n) is the Fourier finite cosine transform as in PE 6.9.

PE 6.11 Prove the first five theorems of this chapter, concerning the properties of
the Laplace transform.

PE 6.12 Prove the following expression for the second derivative of the Laplace
transform:

L [f ′′(t)] = s2L [f (t)] − sf (0) − f ′(0).

PE 6.13 Calculate the Laplace transform for

x(t) = −2

ω4 + t2

ω2 + 2

ω4 cosωt

and compare the result with SE 6.2.

PE 6.14 Perform the calculations used to evaluate X(s) in SE 6.2.

PE 6.15 Calculate the Laplace transform for f (t) = t cos at , with a > 0.

PE 6.16 Perform the calculation of the inverse Laplace transforms in SE 6.2.

PE 6.17 Show that

L −1
{

s2

(s2 + a2)2

}
= 1

2

(
t cos at + 1

a
sin at

)
,

where a > 0 is a constant.

PE 6.18 Using the Laplace transform, solve the ordinary differential equation

xy′′ + (1 − x)y′ − y = 0.

Compare the result obtained with PE 2.29.
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PE 6.19 Suppose that a function f (t) is periodic with period T . Consider also that
the function is continuous by parts on the interval [0, T ]. Show that the Laplace
transform of f (t) is given by

L [f (t)] = F1(s)

1 − e−T s
,

where

F1(s) =
∫ T

0
e−sξ f (ξ) dξ

is the Laplace transform of function f (t) on the first period.

PE 6.20 Using the result obtained in the preceding exercise, calculate the Laplace
transform for the function

f (t) =
{

1 if 0 < t < 2,
−1 if 2 < t < 4,

with f (t + 4) = f (t).

PE 6.21 Calculate the Laplace transform F(s) associated with the function

I (x) =
∫ ∞

0

cos xt

1 + t2
dt,

with x ≥ 0.

PE 6.22 Using the result obtained in the preceding exercise, calculate explicitly
I (x) and the value of the integral

∫ ∞

0

cos t

1 + t2
dt .

PE 6.23 Calculate the Laplace transform of the function

f (t) = sin t

t
,

with t > 0.

PE 6.24 Use the Laplace transform to calculate the integral

I (x) =
∫ ∞

0

1 − cos xt

t2
dt .

PE 6.25 Calculate the Laplace transform of the Bessel function of order zero.
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PE 6.26 Using the result obtained in the preceding exercise, obtain an integral
representation for J0(x).

PE 6.27 Find one function satisfying the integro-differential equation

2
∫ x

0
f (t)f ′(x − t) dt = x sin x,

where the prime denotes the derivative with respect to x.

PE 6.28 Solve the integro-differential equation

y(x) = φ(x) +
∫ x

0
g(x − ξ)y(ξ) dξ

for φ(x) = 1 and g(x) = x.

PE 6.29 Consider the first order linear partial differential equation

∂

∂x
ω(x, t) + x

∂

∂t
ω(x, t) = 0,

with the conditions ω(x, 0) = 0 and ω(0, t) = t . Solve this differential equation by
means of the Laplace transform.

PE 6.30 Prove the Theorems 6.8 to 6.11 about the Fourier transform.

PE 6.31 Find the Fourier transform of f (t) = exp(−|t |).
PE 6.32 Obtain the Fourier sine and cosine transforms for the function f (t) = e−t .

PE 6.33 Show that

Fs[f ′′(t)] =
√

2

π
αf (0) − α2Fs(α),

where Fs(α) is the Fourier sine transform of f (t).

PE 6.34 Obtain expressions for the Fourier sine and cosine transforms associated
with the first derivative f ′(t) of a function f (t).

PE 6.35 Show that if the Fourier finite cosine transform of a function f (t) for
−l < t < l, with period equal to 2l, is given by

Fc(n) =
∫ l

0
f (t) cos

nπt

l
dt , n = 0, 1, 2, . . .

then
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f (t) = 1

l
Fc(0) + 2

l

∞∑
n=1

Fc(n) cos
nπt

l
,

where f (t) is the corresponding inverse Fourier transform Fc(n).

PE 6.36 Find the Fourier finite sine and cosine transforms for f (t) = t2 on the
interval 0 ≤ t < l.

PE 6.37 Find the Fourier transform of the function

f (t) =
{
1 − t2 for |t | < 1,

0 for |t | > 1.

PE 6.38 In a way analogous to what happens with the Fourier series, we have the
so-called Parseval identity associated with Fourier transforms. Let F(α) and G(α)

be the Fourier transforms of functions f (t) and g(t), respectively. Show that

∫ ∞

−∞
F(α)G(α) dα =

∫ ∞

−∞
f (−y)g(y) dy.

PE 6.39 Consider the function

f (t) =
{
1, 0 ≤ t < 1,
0, t ≥ 1.

Find the Fourier sine and cosine transforms of f (t) in order to show that

∫ ∞

0

(
1 − cos t

t

)2

dt =
∫ ∞

0

sin4 t

t2
dt = π

2
.

PE 6.40 Using the relation

∫ ∞

−∞
eisx

(1 + s2)3/2
ds = 2xK1(x),

where K1(x) is a modified Bessel function, show that

∫ ∞

0
x2[K1(x)]2 dx = 3π2

32
.

PE 6.41 A free particle is described in Quantum Mechanics by a plane wave

ψk(x, t) = exp

[
i

(
kx − h̄

2m
k2t

)]
,
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where h̄ and m are positive constants. Combining waves of the same adjacent
momentum with a weight factor of amplitude given by ϕ(k), we can construct a
wave packet:

�(x, t) =
∫ ∞

−∞
ϕ(k) exp

[
i

(
kx − h̄

2m
k2t

)]
dk .

Knowing that �(x, 0) = exp(−x2/2a2), where a is a constant, obtain an expression
for function ϕ(k).

PE 6.42 Using the result of the preceding exercise, obtain the explicit form of the
function �(x, t).

PE 6.43 The function that describes the response of a physical system governed
by an ordinary differential equation and subject to certain boundary conditions is
known as Green’s function, and is denoted by G(x|ξ). Using the Fourier transform
method, we obtain for the Green’s function associated with a wave equation the
expression

G(x|ξ) = 1

2π

∫ ∞

−∞
eikξ e−ikx

k20 − k2
dk,

where k20 > 0, and ξ is a parameter. Obtain explicitly G(x|ξ) considering that x > ξ

and using a contour that avoids the pole k = −k0, that is, for which the contribution
to the integral is due to the pole k = k0 only.

PE 6.44 Considering the result obtained in the precedent exercise, what must be
changed if we consider the case x < ξ?

PE 6.45 Consider the ordinary differential equation

d2

dt2
f (t) + k

d

dt
f (t) + ω2

0f (t) = ϕ(t),

where k and ω2
0 are positive constants and t > 0. Suppose that k2 < 4ω2

0. Taking the
Fourier transform on both sides of this equation and denoting the Fourier transforms
of f (t) and ϕ(t), respectively, by F(ω) and �(ω), solve the equation for F(ω).

PE 6.46 Using the result obtained in the preceding exercise, obtain explicitly G(t)

when

f (t) =
∫ ∞

−∞
ϕ(τ)G(t − τ) dτ.

PE 6.47 Consider the ordinary differential equation
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d2

dx2
G(x|ξ) − k2G(x|ξ) = δ(x − ξ),

for −∞ < x < ∞, where ξ is a parameter and k2 > 0.
Use the Fourier transform to express the function G(x|ξ) in integral form.

PE 6.48 Calculate explicitly the integral appearing in PE 6.47.

PE 6.49 Let x, y ∈ R. We define the Fourier transform of a function with two
independent variables f (x, y) as

g(x, y) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ, η) ei(ξx+ηy) dξ dη .

Use plane polar coordinates to show that if f (ξ, η) is a function that depends only
on variable ρ, that is, if function f (ξ, η) = u(ρ), then g(x, y) is also a function that
depends only on variable r , g(x, y) = v(r). Take ρ2 = ξ2 + η2 and r2 = x2 + y2.

PE 6.50 Use the result obtained in PE 6.49 to calculate v(r), knowing that u(ρ) =
1

ρ
.
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Chapter 7
Sturm–Liouville Systems

Mathematics is the art of giving the same name to different
things.

1854 – Jules Henri Poincaré – 1912

All differential equations discussed so far are particular cases of an extensive class
of linear, second-order ordinary differential equations whose coefficients depend
on the independent variable. In this chapter, we will discuss the so-called Sturm–
Liouville systems, each of which is composed of exactly one linear, second-order
ordinary differential equation, together with prescribed boundary conditions given
at the extremes of an interval of the real line, inside which we must look for the
solution of that ordinary differential equation. These systems, also called Sturm–
Liouville problems, are of vital importance to the discussion of Green’s functions.

7.1 Sturm–Liouville Systems

Let a1(x), a2(x) and a3(x) be real functions with a1(x) �= 0 for all x ∈ R. Consider
the following homogeneous, linear, second-order ordinary differential equation:

a1(x)
d2u

dx2 + a2(x)
du

dx
+ [a3(x) + λ]u = 0, (7.1)

where λ is a parameter that does not depend on x and u = u(x).
Introducing the functions p(x), q(x) and s(x) defined by

p(x) = exp

(∫ x a2(x
′)

a1(x′)
dx′

)
, q(x) = a3(x)

a1(x)
p(x) and s(x) = p(x)

a1(x)

into the preceding equation we get
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d

dx

[
p(x)

du

dx

]
+ [q(x) + λs(x)]u = 0,

which is known as Sturm–Liouville equation. This ordinary differential equation can
be written using the so-called self adjoint operator

L ≡ d

dx

[
p(x)

d

dx

]
+ q(x). (7.2)

The original differential equation, written in terms of this operator, is then given by

L[u] + λs(x)u = 0,

where we have assumed that p(x), q(x) and s(x) are real-valued functions and
also that functions q(x) and s(x) are continuous and function p(x) is continuously
differentiable on a finite closed interval [a, b].

The Sturm–Liouville equation is called regular on the closed interval [a, b] if the
functions p(x) and s(x) are strictly positive on this interval. On the other hand, in
the case in which the interval is semi-infinite or infinite, or when one (or two) of the
functions p(x) and s(x) are null at one or both extremes of the finite interval, we
say that the Sturm–Liouville equation is singular.

Example 7.1 Let y = y(x) on (0,∞). Consider the zero order Bessel equation

x2y′′ + xy′ + x2y = 0 .

Write this linear ordinary differential equation in the form of a Sturm–Liouville
equation and classify it.

Comparing this Bessel equation with the general form Eq. (7.1), we have:
a1(x) = x2, a2(x) = x and a3(x) = x2. Then, evaluating p(x), q(x) and s(x)

we have,

p(x) = exp

(∫ x ξ

ξ2
dξ

)
= exp

(∫ x dξ

ξ

)
= exp(ln x) = x ,

q(x) = x2

x2p(x) = x and s(x) = x

x2 = 1

x

respectively. We can thus write the differential equation in the form

d

dx

[
x
d

dx
y(x)

]
+ xy(x) = 0,

which is a singular Sturm–Liouville equation. �
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Let α1, α2, β1 and β2 be real numbers and u = u(x) the solution of the Sturm–
Liouville equation. Thus, the Sturm–Liouville equation, together with the so-called
separate extremes conditions

α1u(a) + α2u
′(a) = 0,

β1u(b) + β2u
′(b) = 0,

constitute the so-called Sturm–Liouville system or Sturm–Liouville problem.
In analogy to systems of algebraic equations, the values of the parameter λ

for which the Sturm–Liouville system has a nontrivial solution are called the
eigenvalues associated with the system and the corresponding solutions are their
eigenfunctions. The set of all eigenvalues associated with a regular Sturm–Liouville
system is called the spectrum of the system.

Example 7.2 Let x ∈ R and consider the inverval [0, π ]. Obtain the eigenvalues
and the eigenfunctions associated with the Sturm–Liouville system

{
y′′(x) + λ2y(x) = 0,
y(0) = 0 = y(π) .

(7.3)

The general solution of the Sturm–Liouville equation is

y(x) = A sin λx + B cos λx,

where A and B are arbitrary constants. Imposing the first condition, y(0) = 0, we
get B = 0. For the second condition we have

y(π) = A sin λπ = 0.

Thus, for A = 0 we have only the trivial solution while for A �= 0 we get a
trigonometric equation,

sin λπ = sin kπ,

with k = 1, 2, . . . We conclude that the eigenvalues are λk = k with k = 1, 2, . . .
and the eigenfunctions are yk(x) = sin kx with k = 1, 2, . . . �

After these specific examples, we mention some properties of the eigenvalues
and eigenfunctions of Sturm–Liouville systems. For the proofs, see reference [1].

Theorem 7.1 Assume that the coefficients p(x), q(x) and s(x) are continuous
functions on the interval [a, b]. Let uj (x) and uk(x) be continuously differentiable
eigenfunctions corresponding to distinct eigenvalues λj and λk . Then, uj (x) and
uk(x) are orthogonal with respect to the so-called weight function s(x) on the
interval [a, b].
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Theorem 7.2 All eigenvalues associated with a regular Sturm–Liouville system
with s(x) > 0 on the interval [a, b] are real.

Theorem 7.3 All regular Sturm–Liouville systems possess an infinite sequence of
real eigenvalues λ1 < λ2 < λ3 < . . . with lim

n→∞ λn = ∞. The corresponding

eigenfunctions un(x) are univocally determined up to a constant and have exactly n

zeros on the open interval (a, b). Moreover, these functions form an orthogonal and
complete system with respect to the weight function s(x).

Theorem 7.4 Any function f (x), smooth by parts on the interval [a, b], that
satisfies the separate extremes conditions of the regular Sturm–Liouville system can
be expressed in terms of an absolutely and uniformly convergent series

f (x) =
∞∑

n=1

cnun(x),

where the coefficients cn are given by

cn =

∫ b

a

s(x)f (x)un(x) dx

∫ b

a

s(x)u2n(x) dx

,

with n = 1, 2, 3 . . .

Example 7.3 Let f (x) be a smooth function on the interval [0, π ] satisfying
the conditions Eq. (7.3). We can write f (x) in terms of the eigenfunction of
Example 7.2, i.e.,

f (x) =
∞∑

k=1

ck sin kx

where the coefficients are given by

ck =

∫ π

0
λ2f (x) sin kx dx

∫ π

0
λ2 sin2 kx dx

.

Evaluating the integral and simplifying we have

ck = 2

π

∫ π

0
f (x) sin kx dx ,

which is the desired result. �
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7.2 Green’s Function

In this section, we present a brief discussion of the so-called generalized functions,
known as distributions, and introduce the concept of a Green’s function associated
with a linear differential operator [3, 4].

7.2.1 Green’s Function × Generalized Function

Let 0 ≤ x ≤ �. Suppose that we want to solve a nonhomogeneous ordinary
differential equation, which can be put in the form

Lu(x) = f (x), (7.4)

where L is a linear operator and f (x) is called the source term, a known function.
Suppose that f (x) can be approximated by a collection of functions f (ξ1), f (ξ2),
. . ., f (ξn) corresponding to the sources at x = ξ1, x = ξ2, . . ., x = ξn, respectively,
and all of them in 0 ≤ x ≤ �. We define G (x|ξk) as the solution of Eq. (7.4) when
there exists a unity point source at ξk . Also, the solution of Eq. (7.4) for f (ξk) is
G (x|ξk)f (ξk). If we have n point sources, the solution takes the form

u(x) =
n∑

k=1

G (x|ξk)f (ξk) .

On the other hand, considering a great number of point sources, i.e., taking the limit
n → ∞ and ξk+1 − ξk → 0 for all k, we can replace the sum by an integral, so that

u(x) =
∫ �

0
G (x|ξ)f (ξ) dξ,

where G (x|ξ) is the Green’s function associated to the problem.
The classical problem is: how does one determine the Green’s function? This

problem is formulated with the help of the so-called generalized function, a
distribution. Before we introduce formally the Green’s function, we present a
particular example.

Example 7.4 (Laplacian in Spherical Coordinates × Coulombian Potential)
Let r, θ, φ be spherical coordinates. The Laplace operator (Laplacian), denoted by

, written in spherical coordinates, if we consider a function that depends only on
the radial coordinate, is given by


 = 1

r2

d

dr

(
r2

d

dr

)
.
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Consider a Coulombian potential �(r) = 1/r satisfying 
�(r) = 0 for all points
with r �= 0. At r = 0, 
�(r) does not exist but we can show, by means of the Gauss
theorem (divergence theorem), that

∫

V




(
1

r

)
dV = −4π,

where V is the volume of a region limited by a spherical surface S containing the

origin r = 0 [1]. We can thus conclude that 

(
1
r

)
is a function that satisfies the

following properties:

(a) it is not defined at r = 0;
(b) it is null if r �= 0;
(c) its integral on each sphere containingthe origin r = 0 is equal to − 4π.

A function having these three properties cannot be considered an ordinary
function, so it is called a distribution or a generalized function. Thus, we can write

∫

V




(
1

r

)
dV =

{−4π, if V contains r = 0;
0, if V not contains r = 0.

This can be expressed as




(
1

r

)
= −4πδ(r),

where δ(r) is the so-called Dirac delta function, which is a generalized function [1].
�

Green’s functions must satisfy a set of boundary conditions usually imposed at
|x| → ∞ or at some finite boundary points. For instance, the causal boundary
condition in one dimension is Gret(x|ξ) = 0 for x < ξ , which specifies the
retarded Green’s function. We can also introduce Gadv(x|ξ), called advanced
Green’s function, depending on the boundary conditions associated with a particular
problem.

It is important to note that the nonhomogeneous ordinary differential equation

LG (x|ξ) = δ(x − ξ)

defines a Green’s function only up to a solution of the corresponding homogeneous
ordinary differential equation; the boundary conditions are necessary to fix the
Green’s function uniquely. Thus, the general solution of Eq. (7.4) can be written
as
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u(x) = uh(x) +
∫ x

G (x|ξ)f (ξ) dξ,

where uh(x) is a general solution of the homogeneous equation, Luh(x) = 0.
As an interpretation, we can say that the Green’s function G (x|ξ) represents the

effect on x due to the action of a delta function on ξ .
Before we discuss the effective calculation of the Green’s function, we will give

an example, using Fourier transform, of a problem that may arise if we do not treat
a function as a generalized function.

Example 7.5 Consider formally the problem

LG (x|ξ) = δ(x − ξ),

where the linear operator is given by L = d2

dx2
+λ2, with λ2 a real positive parameter.

Taking the Fourier transform on both sides, we find the algebraic equation

(λ2 − k2)g(k) = 1,

where k is the parameter associated with the Fourier transform and where we use
the notation

F [G (x|ξ)] = g(k).

We also used the result for the Fourier transform of a delta function,

F [δ(x)] = 1 .

To solve the ordinary differential equation, we must evaluate the corresponding
inverse Fourier transform, i.e., the integral

G (x|ξ) = 1

2π

∫ ∞

−∞
eik(x−ξ) dk

λ2 − k2
.

This is a meaningless divergent integral. The solution consists of treating g(k) as a
distribution, i.e., to evaluate the integral in the space of distributions, in which the
integral involves the so-called principal value. This theory is beyond the scope of
this text [1, 2]. �

We now return to the problem of finding the Green’s function associated with a
linear differential operator; more specifically, the one assocciated with the Sturm–
Liouville system.
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7.2.2 Green’s Function: One Dimensional Case

As we have mentioned before, a Sturm–Liouville system can be regular or singular.
The case of regular systems will be discussed in the solved exercises. The
fundamental characteristic of a singular system is that in this case the conditions do
not appear in an explicit way. It is usual to describe the conditions by imposing that
the function u(x) be limited at a (singular) extreme point. We will see in Chap. 9 an
example of this case, when we discuss the transversal vibrations of a thin membrane.
We will now study the solution of the boundary value problems associated with
ordinary differential equations by the so-called Green’s function methodology, as
mentioned in PE 1.29.

We consider a linear nonhomogeneous ordinary differential equation written in
the self-adjoint form, i.e., as a Sturm–Liouville differential equation,

L[u(x)] = −f (x),

on the interval [a, b], where

L = d

dx

[
p(x)

d

dx

]
+ q(x), (7.5)

with the homogeneous boundary conditions (separate conditions)

a1u(a) + a2u
′(a) = 0,

b1u(b) + b1u
′(b) = 0,

where constants a1 and a2, as well as b1 and b2, are not all null. We will suppose
that f (x) and q(x) are two continuous functions and that p(x) is a continuously
differentiable function, and also that none of them assume a zero value on the
interval [a, b].

We introduce the Green’s function, denoted by G (x|ξ), for the linear differential
expression Eq. (7.5) L[u(x)] with the boundary conditions aforementioned, as a
function that satisfies the following three conditions:

(a) G (x|ξ) is continuous along the diagonal of the square a ≤ x, ξ ≤ b, i.e., at
x = ξ .

(b) At the point x = ξ the first derivative of G (x|ξ) has a jump discontinuity given
by

d

dx
G (x|ξ)

∣∣∣∣
x=ξ+

x=ξ−
= − 1

p(ξ)
.

(c) For fixed ξ , G (x|ξ) satisfies the boundary conditions. Besides, G (x|ξ) is a
solution of the corresponding homogeneous differential equation
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L[u(x)] = 0,

in each of the intervals a ≤ x ≤ ξ and ξ ≤ x ≤ b.

Theorem 7.5 Let x ∈ R and let [a, b] be a closed interval. If the function f (x) is
continuous on this interval, then the function

u(x) =
∫ b

a

G (x|ξ)f (ξ) dξ

is a solution of the following boundary value problem

L[u(x)] = −f (x)

a1u(a) + a2u
′(a) = 0

b1u(b) + b2u
′(b) = 0,

where constants a1, a2, b1 and b2 are not all null.

From the preceding theorem, it is clear that solving a nonhomogeneous ordinary
differential equation is equivalent to finding its corresponding Green’s function. We
will now consider the construction of the Green’s function associated with such an
equation.

First, we suppose that the homogeneous equation satisfying the separate extremes
conditions has only the trivial solution. We then construct the solution u1(x) of the
homogeneous differential equation

L[u(x)] = 0 (7.6)

satisfying the condition a1u(a) + a2u
′(a) = 0. The general solution is c1u1(x),

where c1 is an arbitrary constant.
By an analogous reasoning, we can say that c2u2(x), with c2 an arbitrary

constant, is the general solution of Eq. (7.6) satisfying the condition b1u(b) +
b2u

′(b) = 0. Thus, u1(x) and u2(x) exist on the interval (a, b) and are linearly
independent.

Indeed, if these functions were linearly dependent, then u1(x) = cu2(x) for some
constant c, showing that u1(x) satisfies both conditions at x = a and x = b, which
contradicts the hypothesis about the trivial solution.

Consequently, the Green’s function can be sought in the following form

G (x|ξ) =
{

c1(ξ)u1(x) for x < ξ

c2(ξ)u2(x) for x > ξ.

Then, from the continuity of the Green’s function at x = ξ we have

c2(ξ)u2(ξ) = c1(ξ)u1(ξ) .
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On the other hand, from the discontinuity of the first derivatives of the Green’s
function at x = ξ we get

d

dx
G (x|ξ)

∣∣∣∣
x=ξ+

x=ξ−
= c2(ξ)u′

2(ξ) − c1(ξ)u′
1(ξ) = − 1

p(ξ)
.

Solving these last two equations for c1(ξ) and c2(ξ) we obtain

c1(ξ) = −u2(ξ)

p(ξ)W(u1, u2; ξ)
,

c2(ξ) = −u1(ξ)

p(ξ)W(u1, u2; ξ)
,

where W(u1, u2; ξ) is the Wronskian, introduced in Chap. 1.
Since u1(x) and u2(x) are linearly independent functions, their Wronskian is

different from zero. Since p(ξ)W(u1, u2; ξ) is constant, as can be seen in PE 7.12,
we obtain for the Green’s function

G (x|ξ) = − 1

C

{
u1(x)u2(ξ) for x ≤ ξ,

u2(x)u1(ξ) for x ≥ ξ,

where C is an arbitrary constant.

Example 7.6 Let f (x) be a continuous function on the closed interval [0, π ].
Obtain the Green’s function associated with the following Sturm–Liouville system:

⎧⎪⎪⎨
⎪⎪⎩

d2

dx2 y(x) = −f (x),

y(0) = 0 = y(π) .

The general solution of the corresponding homogeneous ordinary differential
equation is y(x) = Ax + B, where A and B are two arbitrary constants. It is easy
to show that the unique solution satisfying the boundary conditions is the trivial
solution.

Thus, we consider two linearly independent solution y1(x) = Ax, which satisfies
the condition y1(0) = 0, and y2 = B(π − x), satisfying the condition y2(π) = 0.
We can then write for the Green’s function

G (x|ξ) = 1

W(y1, y2; ξ)

{
Ax · B(π − ξ) for 0 ≤ x ≤ ξ,

B(π − x) · Aξ for ξ ≤ x ≤ π,

where W(y1, y2; ξ) is the Wronskian. Evaluating the Wronskian we find
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W(y1, y2; ξ) =
∣∣∣∣
Ax B(π − x)

A −B

∣∣∣∣ = −ABx − AB(π − x) = −ABπ,

and after simplification, we finally get

G (x|ξ) = − 1

π

{
x · (π − ξ) for 0 ≤ x ≤ ξ,

ξ · (π − x) for ξ ≤ x ≤ π,

which is the desired Green’s function. �
Example 7.7 Using the result of Example 7.6, solve the nonhomogeneous linear
ordinary differential equation

d2

dx2 y(x) = −x .

Since we know the Green’s function, we just need to evaluate the integral

y(x) =
∫ π

0
G (x|ξ)f (ξ) dξ ,

where G (x|ξ) is the Green’s function and f (x) = x. Substituting the Green’s
function and f (x) and rearranging we have

y(x) = 1

π

∫ x

0
ξ(π − x)ξ dξ + 1

π

∫ π

x

x(π − ξ)ξ dξ ,

whose solution yields

y(x) = −x

6
(x2 − π2),

which is the solution of the boundary value problem. �
Note that this boundary value problem is very simple and can be solved by direct

integration because the solution of the ordinary differential equation is immediate.
Before discussing the case in which we do not have only the trivial solution, we

state two theorems related to Green’s function.

Theorem 7.6 If the homogeneous boundary value problem has only the trivial
solution, then the Green’s function exists and is unique.

Theorem 7.7 The Green’s function associated with a boundary value problem is
symmetric, i.e., G(x|x′) = G(x′|x).



180 7 Sturm–Liouville Systems

7.3 Generalized Green’s Function

If the homogeneous problem associated with a certain Sturm–Liouville problem
has a nontrivial solution, then any solution of the differential equation L[u(x)] =
−f (x) that satisfies one of the boundary conditions will also satisfy the other
condition and the corresponding Green’s function does not exist.

The theorem stated further provides a way to find a different type of Green’s
function, called generalized Green’s function, for nonhomogeneous problems asso-
ciated with homogeneous problems, which have nontrivial solutions.

Theorem 7.8 Let x ∈ R and [a, b] a closed interval. We will suppose that f (x)

and q(x) are two continuous functions and that p(x) is a continuously differentiable
function, and also that none of them assumes a zero value on the interval [a, b]. The
nonhomogeneous boundary value problem

d

dx

[
p(x)

d

dx
u(x)

]
+ q(x)u(x) = −f (x),

a1u(a) + a2u
′(a) = 0,

b1u(b) + b2u
′(b) = 0,

(7.7)

where the constants a1, a2, b1 and b2 are not all null, has as one of its solutions the
function

u(x) =
∫ b

a

G (x|ξ)f (ξ) dξ + Au1(x)

if, and only if,

∫ b

a

f (ξ)u1(ξ) dξ = 0,

where A is an arbitrary constant and u1(x) is the nontrivial solution associated
with the corresponding homogeneous problem. The Green’s function G (x|ξ), called
generalized Green’s function, is a solution of the differential equation

L[G (x|ξ)] = Cu1(x)u1(ξ),

except at the point x = ξ ; C is a constant, and G (x|ξ) satisfies the homogeneous
boundary conditions Eq. (7.7). G (x|ξ) is continuous at x = ξ and its derivative
G ′(x|ξ) is continuous everywhere except at the point x = ξ , where it presents a
jump of magnitude −1/p(ξ). Moreover, G (x|ξ) satisfies the condition

∫ b

a

G (x|ξ)u1(x) dx = 0 .
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We will talk again about Green’s function in Chap. 10, where we will associate
the Green’s function with eigenvalue problems and partial differential equations
discussed in Chap. 9.

7.4 Solved Exercises

SE 7.1 Let x �= kπ/2 for k = 1, 2, 3, . . ., y1(x) = ex and y2(x) = sin x ex . Are
these two functions linearly independent?
Solution: To answer the question, we must evaluate the Wronskian

W(y1, y2; x) =
∣∣∣∣
ex sin x ex

ex cos x ex + sin x ex

∣∣∣∣ = cos x e2x .

As the Wronskian is different from zero, these two functions are linearly indepen-
dent.

SE 7.2 Let m, n ∈ N with m �= n, y1(x) = sinmx and y2(x) = sin nx. Evaluate
the Wronskian.
Solution: We must evaluate the determinant

W(y1, y2; x) =
∣∣∣∣

sinmx sin nx

m cosmx n cos nx

∣∣∣∣ = n sinmx cos nx − m sin nx cosmx .

For m �= 0 and/or n �= 0, the Wronskian is always different from zero, and these
two functions are linearly independent. On the other hand, if m = 0 and/or n = 0
the two functions are linearly dependent.

SE 7.3 Put the ordinary differential equation

d2

dx2
y(x) + 2x

d

dx
y(x) + (1 + λ)y(x) = 0, (7.8)

with λ a parameter independent of variable x, in the form of a Sturm–Liouville
system.
Solution: Identifying this differential equation with (7.1), we have

a1(x) = 1, a2(x) = 2x and a3(x) = 1.

Next, we must calculate the function p(x), i.e.,

p(x) = exp

(∫ x 2x′

1
dx′

)
= exp(x2). (7.9)

Then, multiplying the ordinary differential equation by p(x), we can write
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ex2 d2

dx2
y(x) + 2x ex2 d

dx
y(x) + ex2 y(x) + λ ex2 y(x) = 0 , (7.10)

which can be written as

d

dx

[
ex2 d

dx
y(x)

]
+ ex2 y(x) + λ ex2 y(x) = 0, (7.11)

an ordinary differential equation in the Sturm-Liouville form, with parameters given
by p(x) = q(x) = s(x) = exp(x2).

SE 7.4 Determine the eigenvalues and eigenfunctions associated with the Sturm–
Liouville equation

d2

dx2 u(x) + λ2u(x) = 0,

with 0 ≤ x ≤ 1 and the boundary conditions

u(0) = 0 and u(1) = 0,

where λ is a positive parameter.
Solution: The general solution of the ordinary differential equation is given by

u(x) = A sin λx + B cos λx,

where A and B are arbitrary constants.
Using the first boundary condition, we get

u(0) = B = 0,

which allows us to write the solution u(x) = A sin λx.

u(1) = A sin λ = 0,

from where we conclude that if A = 0, the only solution is the trivial solution. Thus,
for A �= 0, we must solve the following trigonometric equation

sin λ = 0,

whose solution is λk = kπ , with k = 1, 2, . . .
Finally, the eigenvalues are given by

λk = kπ

and the corresponding eigenfunctions are
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uk(x) = sin kπx,

with k = 1, 2, . . .

SE 7.5 Consider the ordinary differential equation, known as Euler equation,
discussed in Chap. 1,

x2u′′ + xu′ + λ2u = 0, (7.12)

on the interval 1 ≤ x ≤ e, with the following boundary conditions at the extremes
of the interval:

u(1) = 0 and u(e) = 0.

(a) Write the ordinary differential equation in the Sturm–Liouville form. (b) Solve
the eigenvalue problem.
Solution: (a) Identifying Eq. (7.12) with Eq. (7.1) we have p(x) = x, q(x) = 0 and
s(x) = 1/x. Thus, the Sturm–Liouville form for Eq. (7.12) is

d

dx

[
x
d

dx
u(x)

]
+ λ2

x
u(x) = 0 .

(b) As the differential equation is an Euler equation, we have the corresponding
auxiliary equation (an algebraic equation)

m2 + λ2 = 0,

whose general solution is given by

u(x) = c1x
iλ + c2x

−iλ,

where c1 and c2 are arbitrary constants. Using the trigonometric identity

xia = eia ln x = cos(a ln x) + i sin(a ln x) ,

we can write this expression in terms of trigonometric functions and we get

u(x) = A cos(λ ln x) + B sin(λ ln x),

where A and B are arbitrary constants.
The boundary condition at the extreme x = 1 furnishes

u(1) = A = 0

and the condition at x = e implies that
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B sin λ = 0.

If B = 0, we have only the trivial solution. Thus, in order to find nontrivial
solutions (B �= 0), we must have

sin λ = 0.

Therefore, the eigenvalues are,

λn = nπ, n = 1, 2, 3 . . .

and the corresponding eigenfunctions are

un(x) = sin(nπ ln x), n = 1, 2, 3 . . .

SE 7.6 (a) Find the Green’s function associated with the following problem:

⎧
⎪⎪⎨
⎪⎪⎩

d2u

dx2 = −6x,

u(0) = 0,
u(1) = 0.

(b) Obtain the solution u(x) using the answer of the preceding item.
Solution: (a) For a fixed value of ξ , the Green’s function satisfies the homogeneous
ordinary differential equation

d2

dx2
G (x|ξ) = 0,

on 0 < x < ξ and ξ < x < 1, and also the boundary conditions

G (0|ξ) = 0 and G (1|ξ) = 0.

The discontinuity of the first derivative of G (x|x′) allows us to write

d

dx
G (x|ξ)

∣∣∣∣
x=ξ+

x=ξ−
= − 1

p(ξ)
.

The general solution of the homogeneous differential equation is

u(x) = Ax + B,

where A and B are arbitrary constants. Thus, the Green’s function is given by
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G (x|ξ) =
{

x(1 − ξ) for 0 ≤ x ≤ ξ

(1 − x)ξ for ξ ≤ x ≤ 1.

(b) To find the solution, it is enough to evaluate the corresponding integrals, that is,
by means of Theorem 7.5:

u(x) =
∫ x

0
G (x|ξ)f (ξ) dξ +

∫ 1

x

G (x|ξ)f (ξ) dξ

=
∫ x

0
(1 − x)ξ 6ξ dξ +

∫ 1

x

(1 − ξ)x 6ξ dξ

= x(1 − x2).

It is easy to verify, by direct substitution, that this function is the solution of the
problem.

SE 7.7 Obtain the eigenvalues associated with the following Sturm–Liouville
system:

⎧⎪⎪⎨
⎪⎪⎩

d2

dt2
x(t) + 2

t

d

dt
x(t) + λ2x(t) = 0,

x(1) = 0,
x(π) = 0.

Solution: We consider a solution of the type

x(t) = 1

t
v(t) ,

from which we get the ordinary differential equation

d2

dt2
v(t) + λ2v(t) = 0

and new boundary conditions v(1) = 0 and v(π) = 0. We must then analyze the
three possible cases for the value of parameter λ.

First, for λ2 = 0 we get

d2

dt2
v(t) = 0 ,

whose general solution is v(t) = At + B. Using the boundary conditions, we then
conclude that A = B = 0, i.e., we have only the trivial solution.

Now, for λ2 < 0, putting λ2 = −μ2 with μ2 > 0 we obtain
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d2

dt2
v(t) − μ2v(t) = 0 ,

whose general solution is

v(t) = A sinhμt + B coshμt .

Again, using the boundary conditions we conclude that A = B = 0, the trivial
solution only.

Finally, for the case in which we have λ2 > 0 the general solution is given by

v(t) = A sin λt + B cos λt.

Applying the boundary conditions we can write:

v(1) = A sinλ + B cosλ = 0 
⇒ tgλ = −B/A,

v(π) = A sinπλ + B cosπλ = 0 
⇒ tgπλ = −B/A.

From these results we obtain the following transcendental equation

tgπλ = tgλ,

whose roots are the eigenvalues associated with the Sturm–Liouville system.

SE 7.8 Use the method of Green’s function to reduce the ordinary differential
equation

(1 + x2)
d2

dx2
y(x) + 2x

d

dx
y(x) = λy(x),

satisfying the boundary conditions y(0) = y′(1) = 0, to an integral equation.
Solution: Write the differential equation given above in the form

d

dx

[
(1 + x2)

d

dx
y(x)

]
= λy(x).

In order to calculate the Green’s function, we must find two linearly independent
solutions of the corresponding homogeneous differential equation. We have

d

dx
y(x) = 0 
⇒ y1(x) = C = constant

and

(1 + x2)
d

dx
y(x) = A 
⇒ y2(x) = A arctgx.
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We see that y1(x) satisfies the condition y′(1) = 0 while y2(x) satisfies the other
condition, y(0) = 0.

The Wronskian of these solutions is given by

W =
∣∣∣∣∣∣
A arctgx C

A

1 + x2 0

∣∣∣∣∣∣
= − AC

1 + x2
,

from which we can write

p(x)W = (1 + x2)

(
− AC

1 + x2

)
= −AC = constant.

Thus, we obtain for the Green’s function

G (x|ξ) =
{
arctg x for 0 < x < ξ,

arctg ξ for ξ < x < 1.
.

Therefore,

y(x) = λ

∫ 1

0
G (x|ξ) y(ξ) dξ,

which is the desired integral equation.

7.5 Proposed Exercises

PE 7.1 Let x ∈ R and a, b, c ∈ R. Put the hypergeometric equation

x(1 − x)y′′ + [c − (a + b + 1)x]y′ − aby = 0,

where y = y(x) and the prime denotes differentiation with respect to x, into the
Sturm-Liouville form.

PE 7.2 Let x ∈ R and a, c ∈ R. Put the confluent hypergeometric equation

xy′′ + (c − x)y′ − ay = 0,

where y = y(x) and the prime denotes differentiation with respect to x, into the
Sturm-Liouville form.

PE 7.3 Let x ∈ R and μ ∈ C such that ±μ �= 0, 1, 2, . . . Let Jμ(x) and J−μ(x)

be two Bessel functions of the first kind of order μ and −μ, respectively. Evaluate
their Wronskian and show that
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W
[
Jμ(x), J−μ(x)

] = − 2

πx
sin(μπ) .

PE 7.4 Let x ∈ R. Obtain the eigenvalues and eigenfunctions for the regular
Sturm–Liouville system

{
y′′ + λy = 0,
y(0) = 0 = y′(1),

where y = y(x) and λ is a parameter.

PE 7.5 Let x ∈ R. Obtain the eigenvalues and eigenfunctions for the regular
Sturm–Liouville system

{
y′′ + λy = 0,
y′(0) = 0 = y′(1),

where y = y(x) and λ is a parameter.

PE 7.6 Use the result of PE 7.5 to obtain the corresponding normalized eigenfun-
tions.

PE 7.7 Let x ∈ R
∗ and λ a positive parameter. Put the second-order, homogeneous,

linear ordinary differential equation

x2y′′(x) − xy′(x) + (λ + 1)y(x) = 0

into the Sturm-Liouville form.

PE 7.8 For the equation in PE 7.7, impose the boundary conditions y(1) = 0 =
y(e) and solve the resulting Sturm-Liouville system, i.e., obtain the corresponding
eigenvalues and eigenfunctions.

PE 7.9 Let x ∈ R, with 0 ≤ x ≤ 1, and f (x) a continuous function. Obtain the
Green’s function for the following regular Sturm–Liouville system:

{
y′′ = −f (x) ,

y(0) = 0 = y′(1) .

PE 7.10 Use the methodology of Green’s function to solve PE 7.9, considering
f (x) = 1.

PE 7.11 Prove Theorems 7.1, 7.2 and 7.4.

PE 7.12 Consider the general Sturm–Liouville problem presented in Eq. (7.1).
Show that p(x)W(u1, u2; x) = constant, where W is the Wronskian and u1 and u2
are two linearly independent solutions of the corresponding homogeneous ordinary
differential equation.



7.5 Proposed Exercises 189

PE 7.13 Prove Theorems 7.5, 7.6 and 7.7.

PE 7.14 Find the eigenvalues and eigenfunctions associated with the following
regular Sturm–Liouville problem:

u′′ + λ2u = 0 ,

u(0) = u(π) = 0 .

PE 7.15 Find the eigenvalues and the eigenfunctions associated with the Sturm–
Liouville system

u′′ + λ2u = 0,

with boundary conditions

u(1) = 0 and u(0) + u′(0) = 0.

PE 7.16 Find the eigenvalues and eigenfunctions associated with the Sturm–
Liouville system composed of the ordinary differential equation

u′′ + λ2u = 0

and the boundary conditions

u(−1) = u(1) and u′(−1) = u′(1).

This system is known as periodic Sturm–Liouville system.

PE 7.17 Find the eigenvalues and the eigenfunctions associated with the Sturm–
Liouville system

u′′ + u′ + (1 + λ2)u = 0,

u(0) = u(1) = 0.

PE 7.18 Obtain the eigenvalues and eigenfunctions for the following system:

u′′ − 3u′ + 3(1 + λ)u = 0,

with u(0) = u(π) = 0.

PE 7.19 Let u = u(x). Do as in the preceding exercise for the system
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d

dx

[
(2 + x)2

du

dx

]
= −λu,

with u(−1) = u(1) = 0.

PE 7.20 Find the eigenvalues and eigenfunctions associated with the singular
Sturm–Liouville problem on the interval 0 ≤ x ≤ 1, composed of the ordinary
differential equation

x2u′′ + xu′ + λ2u = 0

and the boundary conditions

u(1) = 0 and lim
x→0+ |u(x)| < ∞.

PE 7.21 Find the eigenvalues and eigenfunctions associated with the singular
Sturm–Liouville system on the interval 0 ≤ x < ∞

u′′ + λ2u = 0,

u(0) = 0 and lim
x→∞ |u(x)| < ∞.

PE 7.22 Express the function f (x) = cos x on the interval 0 ≤ x ≤ π in terms
of the eigenfunctions of the Sturm–Liouville problem composed of the ordinary
differential equation

u′′ + λ2u = 0

and the homogeneous boundary conditions

u(0) = 0 = u(π).

PE 7.23 If possible, expand the function f (x) = cos x on the interval 0 ≤ x ≤
π/2 in terms of the eigenfunctions associated with the following Sturm–Liouville
problem:

u′′ + λ2u = 0,

with u(0) = 0 = u(π/2).

PE 7.24 Construct the Green’s function for the following problem:

u′′ = 0,

u(0) = u(1) = 0.
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PE 7.25 Construct the Green’s function for the ordinary differential equation

u′′ = −f (x),

satisfying the boundary conditions u(0) = u′(1) = 0.

PE 7.26 Calculate the Green’s function associated with the Sturm-Liouville prob-
lem

(
d2

dx2
− λ

)
y(x) = 0,

with y(0) = y(1) and y′(0) = y′(1).

PE 7.27 Find the Green’s function associated with the ordinary differential equa-
tion

(1 + x2)y′′ − 2xy′ = 0,

imposing convenient boundary conditions.

PE 7.28 Construct the Green’s function for the system

xu′′ + u′ = 0,

u(1) = 0 and lim
x→0

|u(x)| < ∞.

PE 7.29 Find the Green’s function associated with the Sturm–Liouville problem

xu′′ + u′ = −f (x),

u(1) = 0 and lim
x→0+ |u(x)| < ∞,

on the interval 0 < x < 1.

PE 7.30 Consider the ordinary differential equation

L[y(x)] + λr(x)y(x) = 0,

where

L ≡ d

dx

[
p(x)

d

dx

]
+ q(x),

together with the boundary conditions
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hy(a) + h′y′(a) = 0 and ky(b) + k′y′(b) = 0,

where h, k, h′ and k′ are constants, not all simultaneously null. Show that, in this
case, the ordinary differential equation with the boundary conditions is equivalent
to an integral equation of the type

y(ξ) + λ

∫ b

a

G (x|ξ)r(x)y(x)dx = 0,

which is called homogeneous Fredholm [1866 – Erik Ivar Fredholm – 1927]
equation, where G (x|ξ) is the corresponding Green’s function.

PE 7.31 Show that the ordinary differential equation

xy′′ + λy = 0,

whose solution satisfies the conditions y(0) = y(1) = 0, is analogous to an integral
equation,

y(x) = −λ

∫ 1

0
G (x|ξ)

1

ξ
y(ξ)dξ.

PE 7.32 Calculate explicitly the function G (x|ξ) mentioned in the preceding
exercise.

PE 7.33 Change the ordinary differential equation

y′′ + {g(x) − η2}y = 0,

where η is a positive known constant and g(x) is a known function, into a Fredholm
integral equation with the conditions y(0) = 0 and [y′/y] = −η at x = x0.

PE 7.34 Obtain explicitly the Green’s function G (x|ξ) associated with the preced-
ing exercise.

PE 7.35 Using the result of the preceding exercise, take

g(x) = V0
e−x

x
,

with V0 constant, to obtain the following integral equation:

y(x) = V0

η

∫ x0

0
G (x|ξ)

e−ξ

ξ
y(ξ) dξ .

PE 7.36 Write explicitly the Green’s function G (x|ξ) associated with the preceding
exercise.
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PE 7.37 Change the ordinary differential equation

y′′ +
{
V0

e−x

x
− η2

}
y = 0 ,

with y(0) = 0 = y(∞), into a Fredholm integral equation, writing explicitly the
corresponding Green’s function.

PE 7.38 Show that the Fredholm integral equation corresponding to the ordinary
differential equation

y′′ + λx2y = 0,

with y(0) = y(1) = 0, is given by

y(x) = λ

[∫ x

0
ξ3(1 − x)y(ξ) dξ +

∫ 1

x

xξ2(1 − ξ)y(ξ) dξ

]
.

PE 7.39 Let y = y(x). Transform the ordinary differential equation

y′′ + y′

x
− λy = 0,

with y′(0) = 0 = y(1), into an integral equation.

PE 7.40 Let y = y(x). Do as in the preceding exercise for

y′′ + y′

2x
+ λ

√
xy = 0,

with y(0) = 0 = y(1).

PE 7.41 Let y = y(x). The solution of the ordinary differential equation

y′′ + ω2y = g(x),

where 0 ≤ x ≤ 2π and ω is a positive constant, subject to the boundary conditions
y(0) = y(2π) and y′(0) = y′(2π), can be written in the following form:

y(x) =
∫ 2π

0
G (x, ξ, ω)g(ξ) dξ .

Find the corresponding Green’s function G (x, ξ, ω) in a closed form.

PE 7.42 Reduce the following ordinary differential equation and the boundary
conditions to an equivalent integral equation on the interval 0 ≤ x ≤ 1:
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u′′ + λ2u = 0,

u(0) = u(1) = 0.

PE 7.43 Let u = u(x). Do as in the preceding problem for

d

dx
(xu′) +

(
−1

x
+ λ2x

)
u = 0,

u(0) = u(1) = 0,

with λ a positive constant.

PE 7.44 Let u = u(x) and f (x) an integrable function. Solve the following regular
Sturm–Liouville problem on the interval 0 < x < 1:

u′′ + u = f (x),

with u(0) = u(1) = 0.

PE 7.45 Solve the ordinary differential equation

(
d2

dx2
+ ω2

0

)
u(x) = 1,

with u(0) = u(π) = 0 and ω0 a positive constant, using the Green’s function
methodology.

PE 7.46 Let u = u(x). Solve the following nonhomogeneous boundary value
problem on the interval 0 < x < 1:

u′′ + u = 1,

u(0) = u(1) = 0.

PE 7.47 Let u = u(x). Solve this nonhomogeneous boundary value problem on
the interval 0 < x < 1:

u′′ = −x,

u(0) = 0 and u(1) + 2u′(1) = 0.

PE 7.48 Let u = u(x) and f (x) an integrable function. Find the Green’s function
associated with the following problem:
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u′′ = −f (x),

u(0) = 0 and u(1) = u′(1),

where 0 < x < 1.

PE 7.49 Let y = y(x). Show that the Green’s function corresponding to the
Legendre differential equation

d

dx

[
(1 − x2)

dy

dx

]
− λy = 0,

where y(−1) and y(1) are both finite and λ is a positive constant, is given by

G (x|ξ) =

⎧⎪⎪⎨
⎪⎪⎩
ln 2 − 1

2
ln(1 − x)(1 + ξ) − 1

2
, −1 ≤ x ≤ ξ,

ln 2 − 1

2
ln(1 + x)(1 − ξ) − 1

2
, ξ ≤ x ≤ 1.

PE 7.50 Let u = u(x) and f (x) an integrable function. Using the Green’s function
obtained in the preceding exercise, solve the system

(1 − x2)u′′ − 2xu′ = −f (x),

lim
x→±1

|u(x)| < ∞,

on the interval −1 < x < 1.
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Chapter 8
Partial Differential Equations

Mathematics consists of proving the most obvious thing in the
least obvious way.

1887 – George Polyá – 1985

We have so far discussed only linear ordinary differential equations of first and
second orders. In practice, there are several problems in which the equation to be
solved involves more than one independent variable, for example, the differential
equation describing the motion of a vibrating spring [1–3].

In this chapter, we discuss first- and second-order linear partial differential
equations, with one dependent variable and two independent variables. The case in
which we have more than two independent variables is treated in the next chapter,
in which we present the method of separation of variables.

8.1 First-Order Partial Differential Equation

The most general form of a first-order partial differential equation with only two
independent variables, x and y, whose dependent variable we denote by u =
u(x, y), is

F

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0 .

A solution of this partial differential equation on a domain � of R2 is a function
u = f (x, y) defined on � and satisfying the conditions: (a) For every (x, y) ∈ �,

there is a point of R5
(

x, y, u,
∂u

∂x
≡ α,

∂u

∂y
≡ β

)
in the domain of function F , and

(b) when substituting u = f (x, y) in the partial differential equation, the resulting
equation is an identity in x and y for every (x, y) ∈ �.
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The partial differential equation is classified according to the form of F . As
already mentioned, we are interested in linear differential equations, so the most
general form is

P(x, y)
∂u

∂x
+ Q(x, y)

∂u

∂y
+ R(x, y)u = S(x, y),

with u = u(x, y), that is, F is linear on u(x, y) and on the first derivatives, ∂u
∂x

and
∂u
∂y
, and all the coefficients depend only on the independent variables.
Unlike the case with ordinary differential equations, here we can have equations

classified as quasilinear and semilinear, in addition to nonlinear ones.

8.2 Method of Characteristics

The so-called method of characteristics can be applied to both linear and
nonlinear equations. It consists in adequately changing the original coordinates
(x, y) into the characteristic coordinates (or only characteristics) (ξ, η), so that
the partial differential equation is transformed into an ordinary differential equation
(Chap. 1). After solving the differential equation in terms of coordinates (ξ, η), we
turn to coordinates (x, y) to get the solution of the partial differential equation.

8.2.1 Quasi-linear First-Order Equations

We will illustrate this technique for the case of quasi-linear first-order partial
differential equations, that is, for differential equations of the type

P(x, y)
∂u

∂x
+ Q(x, y)

∂u

∂y
= R(x, y, u) .

Consider families of curves satisfying the equation

dx

P (x, y)
= dy

Q(x, y)
= dρ .

The curves are then defined by

dy

dx
= Q(x, y)

P (x, y)
.

Consider an infinitesimal element of arc length ds of the curve; then we can write
(Pythagorean theorem)
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(ds)2 = (dx)2 + (dy)2 .

Combining the last two equations, we have

(ds)2 = P 2

Q2 (dy)2 + (dy)2 = (dx)2 + Q2

P 2 (dx)2,

with P = P(x, y) and Q = Q(x, y). Thus

dx

P
= dy

Q
= ds√

P 2 + Q2
= dρ . (8.1)

Multiplying the partial differential equation by ds, using the previous equation
and rearranging, we have

dx
∂u

∂x
+ dy

∂u

∂y
= R√

P 2 + Q2
ds.

The left-hand side of this equation is the total differential of u(x, y), so that using
Eq. (8.1) we get

du = R√
P 2 + Q2

ds

or du = R dρ. Going back to Eq. (8.1), we have

dx

P
= dy

Q
= du

R
= dρ

which, by integration along the curve, provides u = u(x, y). These curves are
known as characteristic curves.

Example 8.1 Find the solution of the problem composed of the first-order partial
differential equation

x
∂u

∂x
+ y

∂u

∂y
,

with u = u(x, y) and the condition u(1, x) = 1.
Comparing this equation with the partial differential equation in its most general

form, we see that P(x, y) = x, Q(x, y) = y and R(x, y) = 1, then

dx

x
= dy

y
= du

1
.
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It thus follows that the characteristics satisfy the first-order ordinary differential
equation

dy

dx
= y

x
,

whose solution provides the family of curves

y = Cx .

In this case, the curves are straight lines passing through the origin and forming an
angle θ with the x axis such that tan θ = C.

For all such characteristic curves, we have

du

1
= dy

y
,

whose integration yields u = ln y +D, where D is another arbitrary constant which
is normally different for each characteristic.

Since for each value of constant C there is a value for D, we have D = f (C),
where f relates C to D and must be determined. Getting back to the solution, we
can write

u(x, y) = ln y + f (C)

= ln y + f (y/x),

which is the general solution of the partial differential equation.
Note the difference between a first-order ordinary differential equation, in which

an arbitrary constant emerges and a partial differential equation, in which an
arbitrary function emerges. In order to determine this function, we must use the
condition u(1, x) = 1; then u(1, x) = ln x + f (x) = 1, hence f (x) = 1 − ln x.
Since we want f (y/x), we finally get

f (y/x) = 1 − ln y + ln x,

which provides for the solution of the boundary value problem

u(x, y) = 1 + ln x.

�
This method is also useful for solving a second-order partial differential equation

if it is possible to factorize the second-order partial differential equation in two first-
order partial differential equations.
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8.3 Second-Order Partial Differential Equation

In this section, we discuss linear second order partial differential equations with one
dependent variable and two independent variables. The case in which there are more
than two independent variables will be discussed in the next chapter, in which we
present the method of separation of variables [3–5].

8.3.1 Classification

We call second-order linear partial differential equation all equations of the form

A
∂2u

∂x2 + B
∂2u

∂x∂y
+ C

∂2u

∂y2 + D
∂u

∂x
+ E

∂u

∂y
+ Fu = G, (8.2)

where the coefficients A, . . . ,G are functions of the independent variables x and
y and u = u(x, y) is the dependent variable. We assume from the beginning that
u(x, y) and the coefficients appearing in Eq. (8.2) are continuously differentiable
and that the coefficients A, B, and C are not simultaneously null.

The classification of a linear partial differential equation is based on the
possibility of reducing it to the so-called canonical form, at any point of its domain,
by means of a transformation of coordinates. This classification is analogous to
the classification of quadratic equations. A linear partial differential equation in the
form of Eq. (8.2) is called a hyperbolic, parabolic, or elliptic differential equation
at a point P(x0, y0) of its domain if the discriminant


 ≡ B2(x0, y0) − 4A(x0, y0)C(x0, y0)

is respectively positive, zero, or negative at that point. If this fact is true for all points
of the domain, we say that the equation is hyperbolic, parabolic, or elliptic on the
domain considered. When the discriminant depends on x and y, we say that the
linear partial differential equation is of mixed type, that is, the discriminant assumes
different signs at distinct points of the plane.

In the particular case of two independent variables, it is always possible to find
a transformation of coordinates that leaves the differential equation invariant, i.e.,
that preserves the form of the differential equation, provided the Jacobian associated
with the transformation is different from zero.

Let us then consider, for two independent variables, a general coordinate
transformation given by

ξ = ξ(x, y),

η = η(x, y),
(8.3)
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where we must suppose that ξ and η are twice continuously differentiable and the
Jacobian

J ≡ det

⎡
⎢⎣

∂ξ

∂x

∂ξ

∂y
∂η

∂x

∂η

∂y

⎤
⎥⎦

is different from zero on the domain considered, so that x and y can be obtained
univocally from the equations for ξ and η. Then, introducing the transformations
in Eq. (8.3) into the original linear partial differential equation, we obtain the new
differential equation

Ā
∂2u

∂ξ2
+ B̄

∂2u

∂ξ∂η
+ C̄

∂2u

∂η2
+ D̄

∂u

∂ξ
+ Ē

∂u

∂η
+ F̄ u = Ḡ, (8.4)

where the new coefficients are related to the old ones by

Ā = A

(
∂ξ

∂x

)2

+ B
∂ξ

∂x

∂ξ

∂y
+ C

(
∂ξ

∂y

)2

; (8.5)

B̄ = 2A
∂ξ

∂x

∂η

∂x
+ B

(
∂ξ

∂x

∂η

∂y
+ ∂ξ

∂y

∂η

∂x

)
+ 2C

∂ξ

∂y

∂η

∂y
; (8.6)

C̄ = A

(
∂η

∂x

)2

+ B
∂η

∂x

∂η

∂y
+ C

(
∂η

∂y

)2

; (8.7)

D̄ = A
∂2ξ

∂x2 + B
∂2ξ

∂x∂y
+ C

∂2ξ

∂y2 + D
∂ξ

∂x
+ E

∂ξ

∂y
; (8.8)

Ē = A
∂2η

∂x2 + B
∂2η

∂x∂y
+ C

∂2η

∂y2 + D
∂η

∂x
+ E

∂η

∂y
; (8.9)

F̄ = F and Ḡ = G. (8.10)

Notice that the new differential equation, Eq. (8.4), has the same form as the original
one, i.e., it is a second-order, linear partial differential equation, Eq. (8.2). The
classification of this linear, second order partial differential equation depends only
on the coefficients A, B, and C at the point (x, y); for this reason we rewrite
Eq. (8.2) and Eq. (8.4), respectively, as

A(x, y)
∂2u

∂x2 + B(x, y)
∂2u

∂x∂y
+ C(x, y)

∂2u

∂y2 = H
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and

Ā(ξ, η)
∂2u

∂ξ2
+ B̄(ξ, η)

∂2u

∂ξ∂η
+ C̄(ξ, η)

∂2u

∂η2
= H̄ ,

where H and H̄ are functions of x, y, u, ∂u/∂x, ∂u/∂y and ξ , η, u, ∂u/∂ξ , ∂u/∂η,
respectively.

8.3.2 The Canonical Form

Suppose that the functions A, B, and C are not simultaneously null. We can choose
the new variables ξ and η so that the coefficients Ā and C̄ are null. For this we must
have

Ā = A

(
∂ξ

∂x

)2

+ B
∂ξ

∂x

∂ξ

∂y
+ C

(
∂ξ

∂y

)2

≡ 0;

and

C̄ = A

(
∂η

∂x

)2

+ B
∂η

∂x

∂η

∂y
+ C

(
∂η

∂y

)2

≡ 0 .

We note that these two differential equations have the same form. For this reason,
we discuss only the differential equation

A

(
∂τ

∂x

)2

+ B
∂τ

∂x

∂τ

∂y
+ C

(
∂τ

∂y

)2

= 0,

where the variable τ represents ξ or η. The last differential equation can be rewritten
in the following form:

A

(
∂τ/∂x

∂τ/∂y

)2

+ B

(
∂τ/∂x

∂τ/∂y

)
+ C = 0.

Along a curve τ = constant on the (x, y) plane we have

dτ = ∂τ

∂x
dx + ∂τ

∂y
dy = 0,

whence we obtain

∂τ/∂x

∂τ/∂y
= −dy

dx
.
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This result allows us to write an algebraic equation in variable
dy

dx
,

A

(
dy

dx

)2

− B

(
dy

dx

)
+ C = 0 .

The roots of this second degree algebraic equation are

dy

dx
= 1

2A
(B + √


) (8.11)

and

dy

dx
= 1

2A
(B − √


), (8.12)

where 
 = B2 − 4AC.
We have thus obtained two first order differential equations, Eqs. (8.11) and

(8.12), called characteristic equations, whose respective integrals are called char-
acteristic curves. Since these equations are of first order, each of them admits an
integration constant.

We must note that if coefficients A, B, and C are constant, the characteristic
equations lead us to two families of straight lines, and the equation is of the same
type at all points of its domain, since 
 will also be constant.

Example 8.2 Obtain two first-order differential equations associated with the linear
second-order partial differential equation

∂2u

∂x2 + 3
∂2u

∂x∂y
+ 2

∂2u

∂y2 + 3
∂u

∂x
+ 2

∂u

∂y
+ u = 0 .

Comparing this equation with Eq. (8.2) and identifying their coefficients, we find
A = 1, B = 3, and C = 2. Then, substituting into Eq. (8.11) and Eq. (8.12), we get

dy

dx
= 2 and

dy

dx
= 1

respectively. �
In what follows, we discuss the three types of second-order linear partial

differential equations: hyperbolic, parabolic, and elliptic. The mixed-type partial
differential equation will be discussed in the solved exercises.
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8.3.3 Equation of Hyperbolic Type

If 
 > 0, we have two distinct families of characteristic curves and the original
partial differential equation reduces to the form

∂2u

∂ξ∂η
= H1

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
,

where H1 = H̄ /B̄, with B̄ �= 0. This is the so-called first canonical form of the
hyperbolic equation. Introducing a second pair of independent variables,

α = ξ + η ,

β = ξ − η ,
(8.13)

we obtain the second canonical form

∂2u

∂α2 − ∂2u

∂β2 = H2

(
α, β, u,

∂u

∂α
,
∂u

∂β

)
.

A classical example of this type of partial differential equation is the differential
equation associated with wave propagation, the so-called wave equation, which will
be discussed in the next chapter.

Example 8.3 Consider A, B, and C nonsimultaneously null real constants, satisfy-
ing B2 > 4AC. The second-order partial differential equation

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂2u

∂y2
= H

(
u, x, y,

∂u

∂x
,
∂u

∂y

)

can be put in the first canonical form

∂2u

∂ξ∂η
= H1

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
,

where H1 = H̄ /B̄, with B̄ �= 0. Using the transformation Eq. (8.13), it can be put
in the second canonical form

∂2u

∂α2 − ∂2u

∂β2 = H2

(
α, β, u,

∂u

∂α
,
∂u

∂β

)
,

with α = ξ + η and β = ξ − η. �
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8.3.4 Equation of Parabolic Type

If the discriminant 
 = 0, the characteristic equations (8.11) and (8.12) are
identical. In this case, there exists only one family of characteristic curves, and we
obtain only one integral curve ξ = constant (or η = constant). Thus, the canonical
form of a differential equation of parabolic type is given by

∂2u

∂η2
= H3

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
for C̄ �= 0

or

∂2u

∂ξ2
= H̄3

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
for Ā �= 0,

depending on whether we choose ξ = constant or η = constant, respectively.
The phenomena governed by the heat equation are the most representative of

parabolic differential equations and will be discussed in the next chapter.

Example 8.4 Consider A, B, and C nonsimultaneously null real constants, satisfy-
ing B2 = 4AC. The second-order partial differential equation

A
∂2u

∂x2 + B
∂2u

∂x∂y
+ C

∂2u

∂y2 = H

(
u, x, y,

∂u

∂x
,
∂u

∂y

)

can be put in the canonical forms

∂2u

∂η2
= H3

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
,

or

∂2u

∂ξ2
= H 3

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
,

respectively for C �= 0 and B �= 0. �

8.3.5 Equation of Elliptic Type

In this case 
 < 0 and the characteristic curves are not real. However, if the
coefficients A, B, and C are analytic functions, we can consider the equation

A

(
dy

dx

)2

− B

(
dy

dx

)
+ C = 0
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for complex variables x and y. Since ξ and η are complex conjugate, we can
introduce the real variables

α = 1

2
(ξ + η) and β = 1

2i
(ξ − η),

obtaining, after all transformations, the differential equation

∂2u

∂α2
+ ∂2u

∂β2
= H0

(
α, β, u,

∂u

∂α
,
∂u

∂β

)
,

called canonical form of the elliptic equation.
The Laplace differential equation (or just Laplace equation) constitutes an

example of elliptic differential equation and will also be discussed in the next
chapter.

Example 8.5 Consider A, B, and C nonsimultaneously null real constants, satisfy-
ing B2 < 4AC. The second-order partial differential equation

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂2u

∂y2
= H

(
u, x, y,

∂u

∂x
,
∂u

∂y

)

can be put in the following canonical form:

∂2u

∂α2
+ ∂2u

∂β2
= H4

(
α, β, u,

∂u

∂α
,
∂u

∂β

)
.

with 2α = ξ + η and 2iβ = ξ − η. �

8.4 Solved Exercises

SE 8.1 The well-known two-dimensional Laplace equation, written in Cartesian
coordinates, is given by

∂2

∂x2 u(x, y) + ∂2

∂y2 u(x, y) ≡ ∇2u(x, y) ≡ 
u(x, y) = 0. (8.14)

Introduce plane polar coordinates, defined by the relations

x = r cos θ and y = r sin θ , (8.15)

with r > 0 and 0 ≤ θ ≤ 2π , to write the Laplace equation in coordinates r and θ .
Classify the resulting partial differential equation.
Solution: The Jacobian associated with the transformation is given by the expression
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J =
∣∣∣∣
∂x/∂r ∂x/∂θ

∂y/∂r ∂y/∂θ

∣∣∣∣ =
∣∣∣∣
cosθ −rsinθ
sinθ rcosθ

∣∣∣∣ = r , (8.16)

which is always different from zero. Inverting the transformation, we can write

r = (x2 + y2)1/2 and θ = arctan
y

x
. (8.17)

Calculating the first derivatives, we obtain

∂

∂x
= ∂r

∂x

∂

∂r
+ ∂θ

∂x

∂

∂θ
= cosθ

∂

∂r
− 1

r
sinθ

∂

∂θ
(8.18)

and

∂

∂y
= ∂r

∂y

∂

∂r
+ ∂θ

∂y

∂

∂θ
= sinθ

∂

∂r
+ 1

r
cosθ

∂

∂θ
. (8.19)

Next, calculating the second derivatives we get

∂2

∂x2 = cos2θ
∂2

∂r2
+ 1

r
sin2θ

∂

∂r
− 2

r
sinθcosθ

∂2

∂r∂θ
+

+ 1

r2
sin2θ

∂2

∂θ2
+ 2

r2
sinθcosθ

∂

∂θ

and

∂2

∂y2
= sin2θ

∂2

∂r2
+ 1

r
cos2θ

∂

∂r
+ 2

r
sinθcosθ

∂2

∂r∂θ
+

+ 1

r2
cos2θ

∂2

∂θ2
− 2

r2
sinθcosθ

∂

∂θ
.

Adding the last two expressions, we get

∂2

∂r2
u(r, θ) + 1

r

∂

∂r
u(r, θ) + 1

r2

∂2

∂θ2
u(r, θ) = 0 (8.20)

which is the Laplace equation written in terms of plane polar coordinates (PE 9.19).
It is already in the canonical form.

To classify the last equation according to its type, we calculate its discriminant,
that is,


 = 02 − 1 · 4

r2
= − 4

r2
< 0, (8.21)

which is always negative. We thus conclude that the equation is of elliptic type. �
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SE 8.2 Let B,C ∈ R
∗ with B2 = C. Solve the partial differential equation

∂2u

∂x2 + 2B
∂2u

∂x∂y
+ C

∂2u

∂y2 + B
∂u

∂x
+ B2 ∂u

∂y
= 0 ,

with u = u(x, y).
We first show that this partial differential equation is of parabolic type:


 = 4B2 − 4C = 4(B2 − C) = 0 .

The characteristic coordinates ξ, η can be written in terms of coordinates x, y as

{
ξ = y ,

η = y − Bx .

Using the chain rule we obtain for the first derivatives

∂

∂x
= −B

∂

∂η
and

∂

∂y
= ∂

∂ξ
+ ∂

∂η
.

For the second derivatives, the relations are

∂2

∂x2
= B2 ∂2

∂η2
,

∂2

∂y2
= ∂2

∂ξ2
+ 2

∂2

∂ξ∂η
+ ∂2

∂η2
,

∂2

∂x∂y
= −B

∂2

∂ξ∂η
− B

∂2

∂η2
.

Substituting these expressions into the partial differential equation and simplifying,
we get

∂2

∂ξ2
u + ∂

∂ξ
u = 0 ,

where u = u(ξ, η). This partial differential equation is in the canonical form. To
obtain its solution, we first introduce a change of dependent variable, ∂u

∂ξ
= v =

v(ξ, η), so that

d

dξ
v + v = 0

which is a first-order partial differential equation whose solution is given by

v(ξ, η) = f (η) e−ξ ,

where f (η) is an arbitrary function depending on η only. Turning back to dependent
variable u(ξ, η), we perform another integration to obtain
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u(ξ, η) = −f (η) e−ξ + g(η) ,

where g(η) is another arbitrary function depending on η only. Using coordinates
x, y, we finally have

u(x, y) = −f (y − Bx) e−y + g(y − Bx) ,

which is the desired result. �
SE 8.3 Consider the partial differential equation

∂2u

∂x2
+ 4x2 ∂2u

∂y2
= 0 , (8.22)

with x �= 0. (a) Classify this partial differential equation. (b) Obtain the correspond-
ing characteristic equation. (c) Determine the canonical form.
Solution: (a) Identifying the terms of this equation with those used in Eq. (8.2), we
have A = 1, B = 0, and C = 4x2; hence


 = B2 − 4AC = −4.1.4x2 = −16x2 < 0.

So, the equation is of elliptic type.
(b) To obtain the characteristic equation, we use (cf. Eq. (8.11) and Eq. (8.12))

dy

dx
= B ± √




2A
,

whence we get

dy

dx
= 2ix and

dy

dx
= −2ix .

(c) Integrating these ordinary differential equations, we find

y − ix2 = c1 and y + ix2 = c2,

where c1 and c2 are constants. Introducing (i.e., defining) the new variables ξ and η

given by the relations

y − ix2 = ξ

y + ix2 = η

we obtain for the variables α and β:
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α = 1

2
(ξ + η) = y,

β = 1

2i
(ξ − η) = −x2.

We then calculate explicitly the operators associated with the partial derivatives
with respect to these new variables. For the first derivatives, we get

∂

∂x
= ∂α

∂x

∂

∂α
+ ∂β

∂x

∂

∂β
= −2x

∂

∂β
= −2

√−β
∂

∂β
,

∂

∂y
= ∂α

∂y

∂

∂α
+ ∂β

∂y

∂

∂β
= ∂

∂α
,

and for the second derivatives, we find

∂2

∂x2 = 4
√−β

∂

∂β

(√−β
∂

∂β

)
= −4β

∂2

∂β2 − 2
∂

∂β
,

∂2

∂y2 = ∂2

∂α2 .

Substituting these expressions into Eq. (8.22), we obtain

−4β
∂2u

∂β2
− 2

∂u

∂β
− 4β

∂2u

∂α2
= 0.

Thus,

∂2u

∂α2 + ∂2u

∂β2 = − 1

2β

∂u

∂β
,

which is the desired canonical form. Notice that β �= 0, as x �= 0. �
SE 8.4 Consider the following partial differential equation:

3
∂2

∂x2
u(x, y) + 5

∂2

∂x∂y
u(x, y) + 2

∂2

∂y2
u(x, y) + ∂

∂x
u(x, y) + ∂

∂y
u(x, y) = −1

3
.

We ask the following: (a) Classify the differential equation according to its type; (b)
reduce the differential equation to the corresponding canonical form, and (c) obtain
the general solution.
Solution: (a) To classify this differential equation, we calculate the corresponding
discriminant, i.e.,
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 = 52 − 4.3.2 = 25 − 24 = 1 > 0

and we conclude that the equation is of hyperbolic type.
(b) To reduce it to canonical form, we must first obtain the characteristic

equations:

dy

dx
= 5 ± √

1

2.3
.

Integrating it, we obtain the respective characteristic curves, given by

y = x + c1 and y = 2

3
x + c2 .

Introducing the characteristic coordinates defined by these relations, we get

ξ = y − x and η = y − 2

3
x.

Finally, calculating the derivatives, substituting them into the differential equation
and rearranging, we get

∂2

∂ξ∂η
u(ξ, η) − ∂

∂η
u(ξ, η) = 1

which is the first canonical form of an equation of hyperbolic type.
(c) To find the general solution, we introduce the change of dependent variable

∂

∂η
u(ξ, η) = v(ξ, η)

and we obtain, omitting the independent variables, the following first-order partial
differential equation:

∂v

∂ξ
− v = 1.

Another change of dependent variable of the form v = w + α, where α is a
parameter to be adequately chosen, leads us to the first order differential equation

∂w

∂ξ
− w − α = 1 ,

where we have put α = −1. Then, integrating the corresponding homogeneous
differential equation
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∂w

∂ξ
− w = 0

we get

w = f (η) eξ ,

where f (η) is a function that depends only on variable η. Going back to variable v,
we get

v = f (η) eξ −1 .

Finally, we can write for the dependent variable u,

∂u

∂η
= f (η) eξ −1

and integrating again, we obtain

u(ξ, η) = eξ

∫ η

f (η′)dη′ − η + G(ξ)

or

u(ξ, η) = eξ F (η) − η + G(ξ) .

In terms of the original variables, we can write

u(x, y) = ey−x F (y − 2

3
x) − y + 2

3
x + G(y − x) ,

where F and G are two arbitrary, twice continuously differentiable functions. �
We conclude this chapter observing that it is not always easy (or useful) to obtain
the general solution of a partial differential equation. Nevertheless, if the canonical
form is simple, we can almost always obtain such a general solution (cf. PE 8.45
to PE 8.50).

8.5 Proposed Exercises

PE 8.1 Let x, y ∈ R
∗ and u = u(x, y). Classify the partial differential equation

(1 + xy)
∂u

∂x
+ ∂u

∂y
+ u2 = 2022 .
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PE 8.2 Let x, y ∈ R
∗ and u = u(x, y). Solve the boundary value problem

⎧⎨
⎩

x
∂u

∂x
− y

∂u

∂y
= 0,

u(1, 1) = 0.
.

PE 8.3 Let x, y ∈ R
∗ and u = u(x, y). For the partial differential equation

x
∂u

∂x
− y

∂u

∂y
= 1 ,

obtain the characteristic curves.

PE 8.4 For the partial differential equation of the previous exercise, obtain its
general solution.

PE 8.5 Let x, y ∈ R
∗ and u = u(x, y). Solve the boundary value problem

⎧⎨
⎩

x
∂u

∂x
− y

∂u

∂y
= 1,

u(1, y) = 1.

PE 8.6 Let x, y ∈ R
∗ and u = u(x, y). Solve the partial differential equation

x2 ∂u

∂x
+ y2 ∂u

∂y
= 1 .

PE 8.7 Let x, y ∈ R
∗ and u = u(x, y). Solve the boundary value problem

⎧⎨
⎩

x2 ∂u

∂x
+ y2 ∂u

∂y
= 1,

u(x, 2x) = 1.

PE 8.8 Let x, y ∈ R
∗ and u = u(x, y). Classify the partial differential equation

∂u

∂x
+ ∂u

∂y
= u2 .

PE 8.9 Let x, y ∈ R
∗ and u = u(x, y). Obtain the general solution of the partial

differential equation

∂u

∂x
+ ∂u

∂y
= u2 .

PE 8.10 Let x, y ∈ R and u = u(x, y). Classify the second-order partial
differential equation
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x2 ∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2 ∂2u

∂y2
= xy .

PE 8.11 Obtain explicitly the expressions for the coefficients Ā, B̄, . . . , Ḡ appear-
ing in Eqs. (8.4) to (8.10).

PE 8.12 Prove the relation B̄2 − 4ĀC̄ = J2(B2 − 4AC), where J is the Jacobian
determinant associated with the coordinate transformation, given by Eq. (8.13).

PE 8.13 Show that in the expression H1 = H̄ /B̄, for an equation of hyperbolic
type, we always have B̄ �= 0.

PE 8.14 Obtain explicitly, from the first canonical form of an equation of hyper-
bolic type, the corresponding second canonical form.

PE 8.15 Obtain explicitly the canonical form for an equation of parabolic type.

PE 8.16 Obtain the canonical form associated with the equation of elliptic type.

PE 8.17 Show that when the coefficients of a partial differential equation are
constant, the transformation of coordinates that puts this partial equation into the
corresponding canonical form generates two families of straight lines.

PE 8.18 Let u = u(x, y). Classify, according to its type, the so-called Tricomi
[1897 – Francesco Giacomo Tricomi – 1978] equation, also called equation of
mixed type:

∂2u

∂x2
+ x

∂2u

∂y2
= 0.

PE 8.19 Considering x > 0, classify according to the type the equation

x
∂2u

∂x2
+ ∂2u

∂y2
= x2,

with u = u(x, y).

PE 8.20 Classify according to the type the differential equation

sin2 x
∂2u

∂x2 + sin 2x
∂2u

∂x∂y
+ cos2 x

∂2u

∂y2 = 0 ,

where u = u(x, y).

PE 8.21 Show that the partial differential equation

∂2u

∂x2 + 4
∂2u

∂x∂y
+ 3

∂2u

∂y2 + 3
∂u

∂x
− ∂u

∂y
+ 2u = 0 ,

where u = u(x, y), is of hyperbolic type.
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PE 8.22 Let u = u(x, y). Show that the differential equation

∂2u

∂x2 + 2
∂2u

∂x∂y
+ ∂2u

∂y2 + 5
∂u

∂x
+ 3

∂u

∂y
+ u = 0

is of parabolic type.

PE 8.23 Determine the regions of the xy plane where this Tricomi equation

∂2u

∂x2 + y
∂2u

∂y2 = 0 ,

is of elliptic type, parabolic type, or hyperbolic type, with u = u(x, y).

PE 8.24 Determine the regions on the xy plane where the equation

(xy − 1)
∂2u

∂x2 + (x + 2y)
∂2u

∂x∂y
+ ∂2u

∂y2 + xy2u = 0 ,

for u = u(x, y) is hyperbolic, parabolic, or elliptic.

PE 8.25 For u(x, y), classify the partial differential equation

y
∂2u

∂x2
+ 2x

∂2u

∂x∂y
+ y

∂2u

∂y2
= 0 ,

sketching a graph representation of each region.

PE 8.26 Find the characteristic equations, the characteristic curves, and the char-
acteristic coordinates associated with the partial differential equation

∂2u

∂x2 + ∂2u

∂y2 − 8
∂u

∂x
+ ∂u

∂y
= 2 ,

where u = u(x, y).

PE 8.27 Do as in the preceding exercise for the differential equation

∂2u

∂x2 + y2 ∂2u

∂y2 = y ,

with u = u(x, y) and y > 0.

PE 8.28 Reduce the partial differential equation presented in PE 8.21 to its second
canonical form.

PE 8.29 Reduce the partial differential equation given in PE 8.22 to the corre-
sponding canonical form.
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PE 8.30 Show that the differential equation for u = u(x, y)

∂2u

∂x2 − 6
∂2u

∂x∂y
+ 12

∂2u

∂y2 + 4
∂u

∂x
− u = 0 ,

is of elliptic type and reduce it to the corresponding canonical form.

PE 8.31 Verify that u(x, y) = ln
√

x2 + y2 satisfies the so-called two-dimensional
Laplace partial differential equation:

∂2u

∂x2 + ∂2u

∂y2 = 0 .

PE 8.32 Verify that the so-called Gaussian function

u(x, t) = 1√
4πt

exp

(−x2

4t

)

satisfies the heat equation (also called diffusion equation)

∂u

∂t
= ∂2u

∂x2

for t �= 0 and u = u(x, t).

PE 8.33 Let u = u(x, t). Show that the sinusoidal wave given by the expression
u = sin(x + t) satisfies the wave equation

∂2u

∂t2
− ∂2u

∂x2 = 0 .

PE 8.34 Consider the elliptic equation with constant coefficients for u = u(x, y),

∂2u

∂x2 + ∂2u

∂y2 = c1
∂u

∂x
+ c2

∂u

∂y
+ c3u + f .

Introducing the change of dependent variable

v = u e−(ax+by) , (8.23)

find a and b such that v = v(x, y) obeys the partial differential equation

∂2v

∂x2 + ∂2v

∂y2 = hv + g ,

where h and g are functions of the coefficients of the original differential equation.
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PE 8.35 Proceed as in PE 8.34 for the hyperbolic equation

∂2u

∂x∂y
= a1

∂u

∂x
+ a2

∂u

∂y
+ a3u + f ,

that is, transform this equation into an equation satisfied by the function v(x, y):

∂2v

∂x∂y
= h1v + g1,

where h1 and g1 are related to the coefficients of the original equation, i.e., they are
functions of those coefficients.

PE 8.36 Using a transformation as the one shown in PE 8.34, reduce the partial
differential equation

∂2u

∂x2 − ∂2u

∂y2 + 3
∂u

∂x
− 2

∂u

∂y
+ u = 0 ,

with u = u(x, y), to another partial differential equation with the form

∂2v

∂ξ∂η
= cv,

where c is a constant and v = v(ξ, η).

PE 8.37 Do as in the preceding exercise for the differential equation

∂2u

∂x2 − ∂2u

∂y2 = a
∂u

∂y
+ b

∂u

∂x
+ cu,

for u = u(x, y), in the case in which the relation 4c + b2 = 0 is valid.

PE 8.38 Introduce the function u(ξ, η) = exp(αξ + βη)v(ξ, η) into the equation

∂2u

∂ξ2
+ ∂2u

∂η2
+ ∂u

∂ξ
+ ∂u

∂η
− 2u = 0

and choose the parameters α and β in such a way as to eliminate the terms involving
the first derivative appearing in the resulting equation.

PE 8.39 Show that the terms involving
∂u

∂η
and u in equation

∂2u

∂η2
− 2

∂u

∂ξ
+ ∂u

∂η
+ u = 0
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can be eliminated by using a particular function of the type used in the preceding
exercise.

PE 8.40 Proceeding as in PE 8.38, show that the terms involving the first deriva-
tives in the result of PE 8.30 can be eliminated.

PE 8.41 Reduce the linear partial differential equation

∂2u

∂x2
− ∂2u

∂y2
+ 1

y

∂u

∂y
= 0

to the corresponding second canonical form.

PE 8.42 Show that the linear partial differential equation satisfied by u(x, y)

∂2u

∂x2
+ ∂2u

∂y2
+ 1

2

∂u

∂y
= 0 ,

can be written in the form

∂2u

∂ξ∂η
+ 1

4

(
∂u

∂ξ
+ ∂u

∂η

)
= 0 ,

with u = u(ξ, η).

PE 8.43 Show that u(x, y) = f (x + 2
√−y) + g(x − 2

√−y) , where f and g

are arbitrary, continuously differentiable functions, defined in the region where the
equation is of hyperbolic type, is solution of the equation

∂2u

∂x2 + 1

y

∂2u

∂y2 + 1

2

∂u

∂y
= 0.

PE 8.44 Let u = u(x, t). Verify that the solution of the partial differential equation

∂u

∂t
= c2

∂2u

∂x2 ,

satisfying the condition u(x, 0) = cos x is given by

u(x, t) = cos x exp(−c2t) ,

where c2 is a positive constant.

PE 8.45 Consider the partial differential equation

∂2u

∂x2 − 1

c2

∂2u

∂t2
= 0 ,
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where u = u(x, t) and c2 is a positive constant. Obtain the general solution of this
partial differential equation.

PE 8.46 Find the general solution of the partial differential equation

x2 ∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2 ∂2u

∂y2
= 0 ,

with u = u(x, y).

PE 8.47 Do as in the preceding exercise for the partial differential equation

∂2u

∂x2 + 10

3

∂2u

∂x∂y
+ ∂2u

∂y2 = 0,

where u = u(x, y).

PE 8.48 Obtain the general solution for the partial differential equation

r
∂2u

∂t2
− r

∂2u

∂r2
− 2

∂u

∂r
= 0,

with u = u(r, t).

PE 8.49 Let u = u(x, y). Show that if the partial differential equation

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
= 0

is of parabolic type, the change of variables

{
ξ = x,

η = rx + y,

where r = −B/A reduces the partial differential equation to the corresponding
canonical form, which is given by

∂2u

∂ξ2
= 0 ,

with u = u(ξ, η). Solve this partial differential equation.

PE 8.50 Show that if the partial differential equation presented in the preceding
exercise is of hyperbolic type, the change of variables

{
ξ = r1x + y,

η = r2x + y,
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where r1 and r2 are roots of the algebraic equation Ar2 +2Br +C = 0, reduces the
equation to the corresponding canonical form, which is given by

∂2u

∂ξ∂η
= 0 ,

with u = u(ξ, η). Solve this partial differential equation.
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Chapter 9
The Method of Separation of Variables

As for everything else, so for a mathematical theory: beauty can
be perceived but not explained.

1821 – Arthur Cayley – 1895

In the previous chapter, we discussed the general form of a linear, second-order
partial differential equation, its characteristic equation, characteristic curves, and
the so-called canonical forms. In this chapter, we are interested in a formal method
to solve such linear partial differential equations. Besides the solution itself, we
must also pay attention to the so-called initial conditions and boundary conditions.

Then, once the general solution is known and the initial conditions and boundary
conditions are satisfied, we have the complete solution of a given problem. In usual
problems, the initial and/or boundary conditions are given, and we must obtain the
formal solution that satisfies the corresponding conditions. These solutions, here,
are obtained by means of the so-called method of separation of variables, a powerful
tool to discuss linear differential equations, also known as the Fourier method.

9.1 Basic Concepts

In the preceding chapter, we discussed the formal aspects of a homogeneous,
linear second-order partial differential equation. We begin this chapter presenting
the definitions of some basic concepts associated with these homogeneous, linear
second-order partial differential equations and the method of separation of variables.

An equation involving one or more partial derivatives of an unknown function
u(x, y, . . .) of two or more independent variables is called a partial differential
equation. By definition, the order of the differential equation is equal to the order of
the highest derivative appearing in it.

As for linear ordinary differential equations, we say that a partial differential
equation is linear if it is of the first degree on the dependent variable u(x, y, . . .)
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and also on its derivatives. Note that we cannot have, for example, terms like u∂u
∂x
,

for this characterizes nonlinearity.
If each term of a partial differential equation contains only the dependent variable

or one of its derivatives, multiplied by any function of the independent variables, it
is called homogeneous; otherwise, it is called nonhomogeneous. This means that in a
homogeneous, linear partial differential equation, there do not appear terms formed
only by functions of the independent variables.

A solution of a linear partial differential equation on some region R of the
space of independent variables is a function that possesses all the partial derivatives
appearing in the equation in some domain containing R and which satisfies the
equation throughout the domain R. In general, the full set of solutions of a partial
differential equation is very large. We will see later that the unique solution of the
partial differential equation corresponding to a given problem will be obtained by
using the additional information appearing in a particular physical situation.

As in the study of linear ordinary differential equations, we present the following
fundamental theorem called superposition principle.

Theorem 9.1 (Superposition Principle) If u1 and u2 are any solutions of a
homogeneous, linear partial differential equation on a region R, we have that

u = c1u1 + c2u2,

where c1 and c2 are arbitrary constants, is also a solution of the equation on that
region.

Example 9.1 Let x, y ∈ R and u = u(x, y). Consider the following homogeneous,
linear second-order partial differential equation:

x2 ∂2u

∂x2 − y2 ∂2u

∂y2 = 0 .

Knowing that u1(x, y) = sin(xy) and u2(x, y) = cos(xy) are solutions of this
linear partial differential equation, show that

u(x, y) = Axy + B sin(xy) + C cos(xy) ,

with A,B,C ∈ R, is also a solution.
Evaluating the first derivatives, we have

ux = Ay +By cos(xy)−Cy sin(xy) and uy = Ax +Bx cos(xy)−Cx sin(xy) .

For the second derivatives, we get

uxx = −By2 sin(xy) − Cy2 cos(xy) and uyy = −Bx2 sin(xy) − Cx2 cos(xy) .

Substituting these expressions into the partial differential equation and simplifying,
we obtain the desired result. �
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9.2 The Method of Separation of Variables

The so-called method of separation of variables in product form consists in
substituting a homogeneous, linear partial differential equation by a set of linear
ordinary differential equations. We restrict our study to the case in which the linear
partial differential equation has only two independent variables, which will serve
as a model to discuss other problem that may contain more than two independent
variables [1, 3–6]. Then, to solve a specific problem (equation + conditions), we
proceed as follows:

(a) In applying the method of separation of variables, also called product method,
we reduce the partial differential equation to two ordinary differential equations.

(b) We determine the solutions of these linear ordinary differential equations that
satisfy the corresponding boundary conditions.

(c) These solutions will be combined in such a way that the result satisfies the linear
partial differential equation and also the given conditions.

The sequence of three steps presented above constitutes to the so-called Fourier
method for obtaining the solution of a homogeneous and linear partial differential
equation.

In order to apply the method of separation of variables, we must first reduce the
partial differential equation to the corresponding canonical form. Thus, consider the
second-order, homogeneous, and linear partial differential equation

A
∂2u

∂ξ2
+ B

∂2u

∂ξ∂η
+ C

∂2u

∂η2
+ D

∂u

∂ξ
+ E

∂u

∂η
+ Fu = 0,

in which the coefficients A,B, . . . , F are functions of the independent variables ξ

and η only, as is the dependent variable u = u(ξ, η).
As we have already seen, it is always possible to find a coordinate transformation

of the type x = x(ξ, η) and y = y(ξ, η), with a Jacobian different from zero, that
reduces this partial differential equation to the corresponding canonical form, i.e.,
the form with no term involving a mixed derivative,

a(x, y)
∂2u

∂x2 + c(x, y)
∂2u

∂y2 + d(x, y)
∂u

∂x
+ e(x, y)

∂u

∂y
+ f (x, y)u = 0, (9.1)

with u = u(x, y). So, a = −c for a hyperbolic equation; a = 0 (or c = 0) for
parabolic equations and a = c in the case of an equation of elliptic type.

We then suppose that the solution u(x, y) of Eq. (9.1) can be written in the form
of a product

u(x, y) = R(x)T (y),

where the function R(x) depends only on variable x and T (y) depends only on
variable y. Introducing u(x, y) written in that form into the canonical form of the
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linear partial differential equation, we obtain an expression involving the functions
R and T

aT
d2R

dx2
+ cR

d2T

dy2
+ dT

dR

dx
+ eR

dT

dy
+ f RT = 0, (9.2)

where we omitted the functional dependence on x and y in the expressions for the
coefficients and the functions R and T .

We now suppose that it is possible to find a function p(x, y) such that, when we
divide Eq. (9.2) by p(x, y), we obtain an expression of the form

T a1(x)
d2R

dx2 + Rb1(y)
d2T

dy2 + T a2(x)
dR

dx
+ Rb2(y)

dT

dy
+ [a3(x) + b3(y)]RT = 0.

Dividing this expression by the product RT and rearranging, we then get

a1

R

d2R

dx2
+ a2

R

dR

dx
+ a3 = −

(
b1

T

d2T

dy2
+ b2

T

dT

dy
+ b3

)
. (9.3)

It is important to note that in this equality the left-hand side contains only
functions of variable x, while the right-hand side involves only variable y. Dif-
ferentiating both members of Eq. (9.3) with respect to x, we obtain

d

dx

(
a1

R

d2R

dx2
+ a2

R

dR

dx
+ a3

)
= 0 .

It is important to note that the procedure and the final result are the same if we first
differentiate with respect to variable y.

Integrating this differential equation, we find that

a1

R

d2R

dx2
+ a2

R

dR

dx
+ a3 = λ,

where the constant λ is known as separation constant.
With this result, we can then write

a1
d2R

dx2
+ a2

dR

dx
+ (a3 − λ)R = 0 (9.4)

and

b1
d2T

dy2
+ b2

dT

dy
+ (b3 + λ)T = 0, (9.5)
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which constitutes a system of two linear ordinary differential equations. It should
be clear that if we had begun with a partial differential equation with n independent
variables, we would have obtained (n − 1) separation constants and n ordinary
differential equations.

Thus, u(x, y) is a solution of the linear partial differential equation (9.1) if R(x)

and T (y) are, respectively, solutions of the linear ordinary differential equations
(9.4) and (9.5). This procedure constitutes the first step to solve a homogeneous,
second-order, linear partial differential equation by means of the Fourier method.

Example 9.2 Let x, y ∈ R and u = u(x, y). Use the method of separation of
variables in the homogeneous, linear, second-order partial differential equation

(1 − x2)
∂2u

∂x2 + (1 − y2)
∂2u

∂y2 = 0

to obtain two linear ordinary differential equations linked through a separation
constant.

Suppose that u(x, y) = R(x)T (y) ≡ RT . Introducing this function into the
partial differential equation, we get

(1 − x2)T R′′ + (1 − y2)RT ′′ = 0 ,

with the prime denoting ordinary derivatives. Dividing this expression by the
product RT and rearranging, we can write

(1 − x2)
R′′

R
= −(1 − y2)

T ′′

T
.

As the first member depends on variable x and the second member depends on
variable y, we must have both members equal to a constant, that is,

(1 − x2)R′′ − λR = 0 and (1 − y2)T ′′ + λT = 0

where λ is the separation constant. �
The linear ordinary differential equations above carry in their respective general

solutions two arbitrary integration constants. In order to find them, we must proceed
to the second step, that is, we have to apply the boundary conditions.

9.3 Boundary Conditions

As we have seen above, we must determine the solutions of the two linear ordinary
differential equations obtained by means of the method of separation of variables
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and then impose that they satisfy the boundary conditions of the original problem.
Here, we discuss only three types of boundary conditions, namely:

(a) Dirichlet conditions, when we specify the value of the function for a certain
x = x0, that is, when it is given

u(x, y)|x=x0
= α,

where α is known.
(b) Neumann conditions, when we know the value of the first derivative of the

function for a certain value x = x0, i.e.,

∂

∂x
u(x, y)

∣∣∣∣
x=x0

= β,

with β given.
(c) Cauchy conditions, in which we have the value, for h �= 0, of

∂

∂x
u(x, y) + hu(x, y)

∣∣∣∣
x=x0

= γ,

where γ is known.

Another type of conditions are the so-called Robin [1855 – Victor Gustave
Robin – 1897] conditions, when one has one of the above three types of conditions
for a part of the contour and another type for the other part of the contour.

Note that the correct choice of the coordinate system is very important to
simplify the problem, i.e., to have separate conditions on the boundaries. Besides,
the boundary conditions given at x = x0 must contain derivatives of the dependent
variable u(x, y) with respect to x only, and its coefficients must depend only on x.

Example 9.3 The general solution of the linear partial differential equation

∂2u

∂x2 − ∂2u

∂t2
= 0 ,

with u = u(x, t) is given by

u(x, t) = f (x + t) + g(x − t)

where f (·) and g(·) are two arbitrary, twice differentiable functions. If we impose an
initial condition u(x, 0) = F(x), with F(x) a known function (Dirichlet condition),
we can write F(x) = f (x) + g(x). On the other hand, if we impose another initial
condition, ∂

∂t
u(x, t)|t=0 = G(x), with G(x) given (Neumann condition), we get

G(x) = f ′(x) − g′(x), where the prime denotes ordinary derivatives.
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Finally, the third step of the Fourier method consists in imposing that the
solutions found must satisfy the corresponding linear ordinary differential equations
and also the initial conditions associated with the specific problem. As an example
of the application of the Fourier method, we discuss in the sequence the classical
problem of a vibrating string fixed at its extremities (as a guitar string). �

9.4 Solved Exercises

SE 9.1 We will consider a classical problem involving the method of separation of
variables, the one-dimensional wave equation. This problem consists in the study
of the vibrational modes of a homogeneous string of length l, stretched with a
constant tension along the axis x from 0 to l, and kept fixed at its two extremities.
The homogeneous linear partial differential equation that describes the system is

∂2

∂t2
u(x, t) − c2

∂2

∂x2
u(x, t) = 0 ,

for 0 < x < l and t > 0, where c is the velocity of wave propagation on
the string, considered constant, and u(x, t), the dependent variable, represents the
displacement of a point on the string from its equilibrium position u = 0. Note that,
if the string has a constant linear mass density μ and is subject to a tension τ , the
velocity c is given by c2 = τ/μ.

As the extremities are fixed, the boundary conditions (Dirichlet conditions) are
given by

u(0, t) = 0 and u(l, t) = 0 .

Finally, the initial conditions are

u(x, 0) = f (x), 0 ≤ x ≤ l ,

and

∂

∂t
u(x, t)

∣∣∣∣
t=0

= g(x) , 0 ≤ x ≤ l;

where f (x) and g(x) correspond, respectively, to the initial displacement and the
initial velocity (at t = 0) of the point of the string with coordinate x.
Solution: In order to solve this problem by means of the Fourier method, we proceed
with the three steps described above.

First, we note that the homogeneous linear partial differential equations is already
written in the canonical form. We can then search for a solution in the form of a
function written as a product of two functions,
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u(x, t) = R(x)T (t),

where R(x) depends only on x and T (t) depends only on t . Substituting u(x, t),
given above, into the homogeneous linear partial differential equation, we obtain
two homogeneous linear ordinary differential equations, one of them in variable x,

d2

dx2R(x) − λR(x) = 0,

and the other in variable t ,

d2

dt2
T (t) − λc2T (t) = 0,

where λ is the separation constant.
Second, we must impose the boundary conditions. As these conditions require

that u(0, t) = u(l, t) = 0, we must solve the homogeneous, linear ordinary
differential equation

d2

dx2
R(x) − λR(x) = 0

with the conditions

R(0) = R(l) = 0 ,

which is just a Sturm-Liouville problem as in Chap. 7. Thus, we must look for values
of λ that give rise to nontrivial solutions. The result is an infinite set of functions

Rn(x) = An sin
(nπ

l
x
)

, n = 1, 2, 3 . . . ,

where An are constants independent of x.

On the other hand, for each λ = λn =
(nπ

l

)2
with n = 1, 2, 3 . . ., the general

solution of the homogeneous, linear ordinary differential equation for T (t) is given
by

Tn(t) = Bn cos
(nπc

l
t
)

+ Cn sin
(nπc

l
t
)

,

where Bn and Cn are arbitrary constants independent of t .
Thus, the function

un(x, t) = Rn(x)Tn(t)

=
{
an cos

(nπc

l
t
)

+ bn sin
(nπc

l
t
)}

sin
(nπ

l
x
)

,
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where an = AnBn and bn = AnCn are arbitrary constants, satisfies the one-
dimensional wave equation and the condition of fixed extremes. Since the equation
is linear and homogeneous, it follows from the superposition principle that the
infinite series

u(x, t) =
∞∑

n=1

un(x, t)

=
∞∑

n=1

{
an cos

(nπc

l
t
)

+ bn sin
(nπc

l
t
)}

sin
(nπ

l
x
)

is also a solution of the given problem.
Finally, in order to determine the constants appearing in the last expression, we

will use the initial conditions. Imposing the first condition, u(x, 0) = f (x), we get

u(x, 0) =
∞∑

n=1

an sin
(nπ

l
x
)

= f (x) . (9.6)

From the second condition,
∂

∂t
u(x, t)

∣∣∣∣
t=0

= g(x), we obtain

∂

∂t
u(x, t)

∣∣∣∣
t=0

=
∞∑

n=1

b′
n sin

(nπ

l
x
)

= g(x), (9.7)

where we have defined b′
n = bnnπc/l.

Note that the above expressions have the same form and are particular cases of
the expansion of a function in a Fourier series, discussed in Chap. 5.

As an example we calculate explicitly the coefficients an and b′
n using the

orthogonality property associated with the sine and cosine functions. In fact, we are
assuming the working hypothesis that the functions f (x) and g(x) can be expressed
in a Fourier series, which permits us to calculate the coefficients directly. Multiply

both sides of Eq. (9.6) by sin
(mπ

l
x
)
and integrate in variable x on the interval

[0, l]:
∫ l

0

∞∑
n=1

an sin
(nπ

l
x
)
sin

(mπ

l
x
)
dx =

∫ l

0
f (x) sin

(mπ

l
x
)
dx .

Supposing that the series is absolutely convergent, we interchange, in the last
expression, the integration and the sum, obtaining

∞∑
n=1

an

∫ l

0
sin

(nπ

l
x
)
sin

(mπ

l
x
)
dx =

∫ l

0
f (x) sin

(mπ

l
x
)
dx . (9.8)
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The integral in the first member of Eq. (9.8) is equal to a Kronecker [1823 –
Leopold Kronecker – 1891] delta, that is, it is different from zero only when m =
n. Evaluating the integral in the first member, we obtain

an = 2

l

∫ l

0
f (x) sin

(nπ

l
x
)
dx . (9.9)

Applying the same procedure to Eq. (9.7), we find that the coefficients bn are
given by

bn = 2

nπc

∫ l

0
g(x) sin

(nπ

l
x
)
dx . (9.10)

Finally, the solution of the problem of the vibrating string subject to the boundary
and initial conditions presented is given by the expression

u(x, t) =
∞∑

n=1

{
an cos

(nπc

l
t
)

+ bn sin
(nπc

l
t
)}

sin
(nπ

l
x
)

,

where the coefficients are given by Eqs. (9.9) and (9.10) with n = 1, 2, 3, . . . It is
possible to prove that this solution exists and is unique.

SE 9.2 Using the Fourier transform, find the distribution of temperatures on a semi-
infinite rod, given that at the extremity x = 0 the rate of heat flow is equal to g(t).
The initial temperature is zero at all points of the rod.
Solution:

The mathematical problem is given by the homogeneous linear second-order
partial differential equation

∂

∂t
u(x, t) = ∂2

∂x2 u(x, t) , x > 0 and t > 0 ,

with initial and boundary conditions u(x, 0) = 0 and ∂
∂x

u(x, t)|x=0 = g(t),
respectively.

First, to use the Fourier transform, we assume that u(x, t) and ∂u(x,t)
∂x

go to zero
as x goes to infinite. Then, let U(α, t) be the cosine Fourier transform of u(x, t),
that is,

U(α, t) =
√

2

π

∫ ∞

0
u(x, t) cosαx dx .

Transforming the homogeneous linear partial differential equation above and
using the boundary conditions, we obtain a nonhomogeneous linear ordinary
differential equation
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∂

∂t
U(α, t) + α2U(α, t) = −

√
2

π
g(t) ,

whose solution is given by

U(α, t) = e−α2t

{
−

∫ t

0

√
2

π
g(τ) eα2τ dτ + C

}
,

where C is a constant.
Using the initial condition, u(x, 0) = 0, we find that C = 0 and thus

U(α, t) = −
√

2

π

∫ t

0
g(τ) , e−α2(t−τ) dτ

whose inverse Fourier transform is given by

u(x, t) = − 2

π

∫ ∞

0

{∫ t

0
g(τ) e−α2(t−τ) dτ

}
cosαx dα .

Finally, integrating in variable α, using the result

∫ ∞

0
e−Ax2dx =

√
π

2
√

A

with A > 0 and rearranging we can write

u(x, t) = − 1√
π

∫ t

0

g(τ)

(t − τ)1/2
e−x2/4(t−τ) dτ .

SE 9.3 Let u = u(x, y). Solve the Laplace equation on a rectangular region:

∂2u

∂x2
+ ∂2u

∂y2
= 0, 0 < x < a , 0 < y < b ,

with a > 0 and b > 0, satisfying the boundary conditions

u(x, 0) = 1, u(x, b) = 0, ux(0, y) = 0 and ux(a, y) = 0 .

Solution: Introducing the separation of variables u(x, y) = R(x)T (y) into the
Laplace equation and rearranging, we can write

R′′

R
= −T ′′

T
= λ ,
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where λ is a separation constant. As the boundary conditions in variable x are
homogeneous, we obtain the following Sturm-Liouville problem:

{
R′′ − λR = 0, 0 < x < a ,

R′(0) = R′(a) = 0 .

Its solution is given by the set of eigenvalues λn = −(nπ/a)2 and the corresponding
eigenfunctions

Rn(x) = An cos
(nπ

a
x
)

, (9.11)

with n = 0, 1, 2, . . . Using the eigenvalues, the ordinary differential equation in
variable y can be written as

T ′′ −
(nπ

a

)2
T = 0 .

Its solution, for n = 0, is T (y) = αy + β, with α and β arbitrary constants. For
n = 1, 2, . . ., the solution is given by

Tn(y) = Bn cosh
(nπ

a
y
)

+ Cn sinh
(nπ

a
y
)

,

where Bn and Cn are arbitrary constants. This expression can be rewritten in a more

adequate form by introducing −φn = a

nπ
arctan

(
Bn

Cn

)
, that is,

Tn(y) = Dn sinh
[nπ

a
(y − φn)

]
,

where Dn = Bn/ cosh(nπφn/a) is another arbitrary constant.
From the homogeneous condition u(x, b) = R(x)T (y) = 0, we have that

T (b) = 0. We then get, for n = 0,

T0(y) = α(y − b) . (9.12)

For n = 1, 2, . . . the condition yields

Tn(b) = 0 = Dn sinh
[nπ

a
(y − φn)

]
	⇒ φn = b .

The solution can then be written as

Tn(y) = Dn sinh
[nπ

a
(y − b)

]
, (9.13)
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for n = 1, 2, . . . Thus, using Eqs. (9.11), (9.12), and (9.13), we obtain

u(x, y) = a0(y − b) +
∞∑

n=1

sinh
[nπ

a
(y − b)

]
cos

(nπ

a
x
)

,

where we have introduced the notation an for the constants.
Finally, using the nonhomogeneous boundary condition u(x, 0) = 1, we have

1 = −ba0 +
∞∑

n=1

an sinh
[nπ

a
(−b)

]
cos

(nπ

a
x
)

.

This is easily recognized as a Fourier series whose coefficients are given by

−2ba0 = 2

a

∫ a

0
1 · dx 	⇒ a0 = −1

b

and

−an sinh
(nπ

a
b
)

= 2

a

∫ a

0
1 · cos

(nπ

a
x
)
dx 	⇒ an = 0 .

This allows us to write

u(x, y) = 1

b
(b − y) ,

which is the desired result.

SE 9.4 A uniform bar of length � is fixed at an extreme (x = 0). Suppose that a
force

f (t) =
{

f0 t > 0
0 t < 0

where f0 is constant, is suddenly applied at the extreme x = �. If the bar is initially
at rest, use the Laplace transform to find its longitudinal displacement u(x, t) for
t > 0.

The movement of the bar is governed by the homogeneous, linear partial
differential equation

∂2

∂t2
u(x, t) = a2

∂2

∂x2
u(x, t) ,

where 0 < x < � and a2 is a positive constant; moreover, u(x, t) satisfies the
conditions
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u(x, 0) = u(0, t) = 0 , ∂
∂t

u(x, t)|t=0 = 0 , and ∂
∂x

u(x, t)|x=� = 1
E

f0 ,

where E is a positive constant.
Solution: Let U(x, s) be the Laplace transform of u(x, t) in the time variable, that
is,

U(x, s) =
∫ ∞

0
u(x, t) e−st dt .

We transform the homogeneous linear partial differential equation into the homoge-
neous linear ordinary differential equation

d2

dx2U(x, s) − s2

a2
U(x, s) = 0,

satisfying the transformed conditions (boundary conditions)

U(0, s) = 0 and
∂

∂x
U(�, s) = 1

sE
f0.

The general solution of this linear ordinary differential equation is given by

U(x, s) = A exs/a +B e−xs/a ,

with A and B constants. Applying the boundary conditions, we obtain a system of
two algebraic equations for A and B,

A + B = 0

and

A
( s

a
e�s/a

)
+ B

(
− s

a
e−�s/a

)
= 1

sE
f0.

Solving the system and simplifying, we can write for the solution

U(x, s) = af0

Es2

exs/a − e−xs/a

e�s/a + e−�s/a
.

Multiplying the numerator and the denominator by the factor

e−�s/a − e−3�s/a

and rearranging we get
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(
1 − e−4�s/a

)
U(x, s)

= af0

Es2

{
e−(�−x)s/a − e−(�+x)s/a − e−(3�−x)s/a + e−(3�+x)s/a

}
.

Since the denominator has a term of the type

(
1 − e−4�s/a

)
,

the inverse transform is a periodic function with period T = 4�/a; we can then
write

u(x, t) = af0

E

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 0 < t < (� − x)/a,

t − (� − x)/a (� − x)/a < t < (� + x)/a,

2x/a (� + x)/a < t < (3� − x)/a,

−t + (3� + x)/a (3� − x) < t < (3� + x)/a,

0 (3� + x) < t < 4�/a,

which is the desired result.

SE 9.5 Using separation of variables, obtain the temperature on an infinite circular
cylinder of radius r0, with the condition that its initial temperature is given by

u(r, 0) = u0

(
1 − r2

r20

)
,

where u0 is a positive constant and the temperature on the surface r = r0 is kept
equal to zero.
Solution: We must solve the heat equation written in cylindrical coordinates
(r, φ, z). Due to its symmetry, the solution is independent of coordinates φ and
z, so that our partial differential equation reduces to

∂

∂t
u(r, t) = a2

(
∂2

∂r2
u(r, t) + 1

r

∂

∂r
u(r, t)

)
,

where a2 is a positive constant.
We will apply the method of separation of variables. To this end, we introduce a

function with the form of a product,

u(r, t) = R(r)T (t) ,

obtaining the following linear ordinary differential equation in variable r:
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d2

dr2
R(r) + 1

r

d

dr
R(r) + λ2R(r) = 0 ,

where λ2 is a separation constant. The general solution of this differential equation
is given by

Rn(r) = AJ0(λr) + B Y0(λr) ,

with A and B constants. J0(x) and Y0(x) are the zero order Bessel functions of the
first and second kind, respectively; J0(x) is regular at x = 0 while Y0(x) is regular
at x = ∞, so that we must leave aside Y0(x).

In order to obtain nontrivial solutions, we must have

J0(λr0) = 0 .

This is a transcendental equation. It will be true whenever λr0 = μn, where μn is
any positive root of the zero order Bessel function J0(x); we can then write

R(r) = AJ0

(
μn

r

r0

)
.

As for the ordinary differential equation in variable t , we have

d

dt
T (t) + a2λ2T (t) = 0,

whose solution is given by

T (t) = B e−a2λ2t ,

where B is a constant. Combining the solutions of both linear ordinary differential
equations, we can write, using the superposition principle, the following result:

u(r, t) =
∞∑

n=0

An e
−a2λ2t J0

(
μn

r

r0

)
,

where An still has to be determined.
Applying the initial condition, we get

u(r, 0) =
∞∑

n=0

AnJ0

(
μn

r

r0

)
= u0

(
1 − r2

r20

)
.

This is a Fourier-Bessel series, whose coefficients An are given by the integral
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An = 2/r20

[J1(μn)]2
∫ r0

0
r J0

(
μn

r

r0

)
u0

(
1 − r2

r20

)
dr .

This integral can be found in tables of integrals [2]; it permits us to write

An = 4u0
μ2

n

J2(μn)

[J1(μn)]2 .

We have thus obtained the solution of our problem, that is,

u(r, t) = 4u0

∞∑
n=0

1

μ2
n

J2(μn)

[J1(μn)]2 e
−a2μ2

nt/r20 J0

(
μn

r

r0

)
.

9.5 Proposed Exercises

PE 9.1 Let u(x, y) = x2 − y2 + 1. Show that this function satisfies the two-
dimensional Laplace equation written in Cartesian coordinates.

PE 9.2 Is the function u(x, y) = x2 − y2 + 2xy a solution of the two-dimensional
Laplace equation in Cartesian coordinates?

PE 9.3 Let f (x ± t) be two differentiable functions. Show that u(x, t) = f (x +
t) + f (x − t) is a solution of the one-dimensional wave equation.

PE 9.4 Show that u(x, t) = 1√
t
exp(−x2/4t), with t > 0, is a solution of the one-

dimensional homogeneous heat equation.

PE 9.5 Let x, y ∈ R
∗. Consider the partial differential equation

y
∂u

∂x
− x

∂u

∂y
= 0 ,

with u = u(x, y). Is the function

u(x, y) = exp

[
−λ

2
(x2 + y2)

]
,

with λ a positive constant, a solution of this partial differential equation?

PE 9.6 Let u = u(r, θ) be the solution of the Laplace equation written in polar
coordinates:

∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0 .
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Consider u(r, θ) = rλT (θ), with λ is a nonnegative parameter. Obtain an ordinary
differential equation for T (θ) and solve it.

PE 9.7 Let u(r, θ, φ) be a solution of the Laplace equation in spherical coordinates
(r, θ, φ), with r > 0, 0 < θ < π and 0 < φ < 2π . Suppose that u depends only on
the radial variable, that is, u = u(r). Find u.

PE 9.8 Let u = u(x, y). Classify the partial differential equation

∂2u

∂x2 + 2
∂2u

∂x∂y
− 3

∂2u

∂y2 = 2022 .

PE 9.9 Let a ∈ R
∗ and u = u(x, y). Classify the partial differential equation

a
∂2u

∂x2 + 2a2
∂2u

∂x∂y
± a3

∂2u

∂y2 + u = 0 .

PE 9.10 Let u(r) = A+B ln r , with A and B arbitrary constants, be the solution of
the radial Laplace equation in polar coordinates, (r, θ). Use separation of variables
to get the solution of the angular ordinary differential equation.

PE 9.11 Classify the following partial differential equations as linear or nonlinear.

(a)
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2
= 0, u = u(x, y, z);

(b) ih̄
∂

∂t
�(x, t) = − h̄2

2m

∂2

∂x2�(x, t),

where h̄ and m are constants;

(c)

(
∂u

∂t

)2

+ ∂2u

∂x2 = f (x, t), u = u(x, t);

(d) u
∂u

∂t
= ∂3u

∂x3 , u = u(x, t).

PE 9.12 Classify with respect to homogeneity the following partial differential
equations:

(a)
∂u

∂t
+ ∂2u

∂x2 + u = 0, u = u(x, t);

(b)
∂2u

∂x2
+ ∂2u

∂y2
= −ρ(x, y), u = u(x, y);

(c)
1

c2

∂2u

∂t2
− ∂2u

∂x2 − ∂2u

∂y2 = f (x, t), u = u(t, x, y), c = constant.
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PE 9.13 Classify according to their order the equations given in PE 9.11 and
PE 9.12.

PE 9.14 The two-dimensional Laplace equation in Cartesian coordinates is given
by

∇2u(x, y) = ∂2

∂x2 u(x, y) + ∂2

∂y2 u(x, y) = 0.

Verify that the functions below are solutions of the Laplace equation:

(a) u(x, y) = x2 − y2;
(b) u(x, y) = ex cos y;
(c) u(x, y) = arctan

y

x
.

PE 9.15 Classify according to linearity, order, and homogeneity and solve the
linear partial differential equations

(a)
∂u

∂x
+ x

∂u

∂y
= 0,

(b)
∂u

∂x
+ ∂u

∂y
= 0,

where u = u(x, y).

PE 9.16 Show that:

(a) The Laplace equation
∂2u

∂x2 + ∂2u

∂y2 = 0, with u = u(x, y), is elliptic.

(b) The heat equation
∂u

∂t
= ∂2u

∂x2
, with u = u(x, t), is parabolic.

(c) The wave equation
∂2u

∂t2
= ∂2u

∂x2
, with u = u(x, t), is hyperbolic.

(d) The Tricomi equation
∂2u

∂x2 + y
∂2u

∂y2 = 0, with u = u(x, y), is elliptic on the

upper half-plane and hyperbolic on the lower half-plane.

PE 9.17 For u = u(x, y), find the general solutions of the following partial
differential equations:
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(a)
∂u

∂y
= 0 (b)

∂u

∂x
= 0

(c)
∂2u

∂x∂y
= ∂u

∂x
(d)

∂2u

∂x∂y
= 0

(e)
∂2u

∂x2 = 0 (f)
∂2u

∂y2 = 0

PE 9.18 Using the transformations v = x + y and z = 3x + y, solve the equation

∂2u

∂x2 − 4
∂2u

∂x∂y
+ 3

∂2u

∂y2 = 0,

where u = u(x, y)

PE 9.19 Separate the Laplace equation in polar coordinates

∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0,

where u = u(r, θ).

PE 9.20 Spherical coordinates r , θ , and φ are related to Cartesian coordinates x, y,
and z by

x = r sin θ cosφ ;
y = r sin θ sinφ ;
z = r cos θ ,

with r ≥ 0, 0 < θ ≤ π and 0 < φ ≤ 2π . Write and separate the Laplace equation
written in spherical coordinates.

PE 9.21 Using the same coordinates as in the preceding problem, write and
separate the d’Alembert [1717 – Jean-le-Rond D’Alembert – 1783] equation

∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
= ∂2u

∂t2
− ∇2u ≡ �u = 0,

where u = u(t, x, y, z). In this equation, there appears the Laplace operator, or
Laplacian,

� ≡ ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
,
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and the so-called d’Alembert operator or Dalembertian

� = ∂2

∂t2
− ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2
.

PE 9.22 Proceed as in PE 9.20 for the cylindrical coordinates

x = r sin θ, y = r cos θ, z = z,

with r ≥ 0, 0 < θ ≤ 2π , and −∞ < z < +∞.

PE 9.23 Proceed as in PE 9.21 for the cylindrical coordinates given in the
preceding exercise.

PE 9.24 Let u(x1, x2, x3, x4) = u. Write and separate the four-dimensional
Laplace equation,

∇2u(x1, x2, x3, x4) = ∂2u

∂x2
1

+ ∂2u

∂x2
2

+ ∂2u

∂x2
3

+ ∂2u

∂x2
4

= 0,

using the polar coordinates r , θ , φ, and ψ defined by the relations

x1 = r sin θ sinφ cosψ ,

x2 = r sin θ sinφ sinψ ,

x3 = r sin θ cosφ ,

x4 = r cos θ ,

with r ≥ 0, 0 < θ ≤ π , 0 < φ ≤ 2π , and 0 < ψ ≤ 2π .

PE 9.25 Discuss in detail the Sturm-Liouville problems presented in SE 9.1.

PE 9.26 Solve the vibrating string problem SE 9.1 with the initial conditions

u(x, 0) = 2 and
∂u

∂t

∣∣∣∣
t=0

= 0.

PE 9.27 (Heat Conduction on a Rod) Using the method of separation of
variables, solve the partial differential equation

∂u

∂t
= K

∂2u

∂x2 ,

with 0 < x < l and t > 0, where u = u(x, t) and K is a constant and u(x, t)

satisfies the boundary conditions u(0, t) = 0 and u(l, t) = u0 = constant and the
initial condition u(x, 0) = f (x), 0 ≤ x ≤ l.
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PE 9.28 Proceed as in PE 9.27 to solve a nonhomogeneous equation whose
nonhomogeneous term is time independent, that is,

∂2

∂t2
u(x, t) = c2

∂2

∂x2 u(x, t) + F(x) ,

where c2 is a positive constant and F(x) is independent of t . Suppose that the initial
conditions are given by

u(x, 0) = φ(x), 0 ≤ x ≤ l;
∂

∂t
u(x, t)

∣∣∣∣
t=0

= ψ(x), 0 ≤ x ≤ l;

with the boundary conditions u(0, t) = u(l, t) = 0.

PE 9.29 Proceed as in the preceding exercise, with boundary conditions given by
u(0, t) = α and u(l, t) = β, t > 0, where α and β are constants.

PE 9.30 Let u(x, t) = u. Solve the following partial differential equation:

∂2u

∂t2
− c2

∂2u

∂x2
= 0, 0 < x < l and t > 0 ,

with initial conditions

u(x, 0) = ∂

∂t
u(x, t)

∣∣∣∣
t=0

= 0 ,

and boundary conditions

u(0, t) = t, u(l, t) = 1 .

To this end, introduce a change of dependent variable that reduces the nonhomoge-
neous boundary conditions to homogeneous conditions.

PE 9.31 Let u(x, t) = u. Consider the problem

∂u

∂t
− k

∂2u

∂x2 = 0, 0 < x < l and t > 0,

with u(x, 0) = 1, u(0, t) = 0, and u(l, t) = e−t . Determine the conditions
associated with the parameters k and l in such a way that there exists a solution
of the heat equation with the form u(x, t) = v(x) exp(−t) that satisfies the above
conditions.

PE 9.32 Let u(r, θ) = u. Show that the solution of the partial differential equation
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∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0 ,

for 0 < θ < π and 0 < r < a, with the conditions u(a, θ) = u0 = constant and
u(r, 0) = u(r, π) = 0, is

u(r, θ) = 2u0
π

∞∑
k=1

1 − (−1)k

k

( r

a

)k

sin kθ.

PE 9.33 Let u(x, t) = u. Obtain a solution of the heat equation

∂u

∂t
− k

∂2u

∂x2
= 0 , 0 < x < l and t > 0 ,

with the boundary conditions u(0, t) = 0, u(l, t) = t , and t > 0, in the form
of a polynomial in variables x and t , with k a constant. The initial condition is
u(x, 0) = 0.

PE 9.34 Using the result obtained in the preceding exercise, show that the solution
can be used to solve the same equation with the same boundary conditions but with
initial condition given by u(x, 0) = f (x) for 0 < x < l.

In the following three exercises, consider the partial differential equation

∂u

∂t
− k

∂2u

∂x2
= 0, 0 < x < l and t > 0,

with u(x, t) = u and the initial and boundary conditions

u(x, 0) = 0

and

u(0, t) = 0, u(l, t) = 1,

respectively, where k is a positive constant.

PE 9.35 Solve the homogeneous equation obtained when we eliminate the nonho-
mogeneous term appearing in the boundary conditions.

PE 9.36 Use the finite Fourier sine transform to solve the complete problem.

PE 9.37 Compare the result obtained in PE 9.36 with PE 9.35.

PE 9.38 Let u(x, y) = u. Use the finite Fourier sine transform to solve the Dirichlet
problem for the Laplace equation on a rectangle 0 < x < a, 0 < y < b,
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∂2u

∂x2
+ ∂2u

∂y2
= 0,

with the conditions u(x, 0) = f (x), u(x, b) = g(x), u(0, y) = p(y), u(a, y) =
q(y), where f (x), g(x), p(y), and q(y) are known functions.

PE 9.39 Let u(x, y) = u. Apply the finite Fourier cosine transform to solve the
so-called Neumann problem for the Poisson equation on a rectangle 0 < x < a,
0 < y < b:

∂2u

∂x2
+ ∂2u

∂y2
= −F(x, y),

∂

∂x
u(x, y)

∣∣∣∣
x=0

= h(y) ,
∂

∂x
u(x, y)

∣∣∣∣
x=a

= i(y) ,

∂

∂y
u(x, y)

∣∣∣∣
y=0

= f (x) ,
∂

∂y
u(x, y)

∣∣∣∣
y=b

= g(x) .

PE 9.40 Let u(x, y) = u. Use the Laplace transform to solve the partial differential
equation

∂2u

∂t2
− c2

∂2u

∂x2 = 0 , 0 < x < ∞ , t > 0 ,

satisfying the initial conditions

u(x, 0) = 0 = ∂

∂t
u(x, t)

∣∣∣∣
t=0

and the boundary condition u(0, t) = f (t).

In the following two exercises, consider the Cauchy problem for u =
u(x, t):

x
∂2u

∂x2 − ∂2u

∂t2
+ ∂u

∂x
= 0 , x > 0 , (9.14)

u(x, 0) = ϕ0(x) ,

∂

∂t
u(x, t)

∣∣∣∣
t=0

= ϕ1(x) .

PE 9.41 Let ω(ξ, η) = ω. Convert Eq. (9.14) to the corresponding canonical form
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∂2ω

∂ξ∂η
− 1

4

ω

(ξ − η)2
= 0 ,

using the transformations ξ = t/2 + √
x, η = t/2 − √

x and ω = u
√

ξ − η.

PE 9.42 Verify that

ω ≡ G(λ) = 2F1

(
1

2
,
1

2
; 1; λ

)
,

where 2F1(a, b; c; x) is a hypergeometric function and

λ = (ξ − ξ0)(η − η0)

(ξ0 − η0)(ξ − η)

is a solution of PE 9.41.

PE 9.43 Use the Fourier method to solve the problem of the elastic circular
vibrating membrane, given by the partial differential equation

∂2u

∂t2
= c2

[
∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2

]
,

for the elongation u = u(r, θ, t), 0 < r < R. To simplify, consider solutions with
radial symmetry, that is, independent of θ , with the boundary condition u(R, t) = 0

for all t ≥ 0, and the initial conditions u(r, 0) = f (r) and
∂u

∂t

∣∣∣∣
t=0

= g(r). Note

that the boundary condition at r = R must be imposed in such a way that we do not
have infinities in our solution, i.e., u(r, t) < ∞ for all r on this interval.

PE 9.44 Find u = u(x, t) satisfying the partial differential equation

∂2u

∂t2
− ∂2u

∂x2 = x − t ,

with u(x, 0) = x, (∂u/∂t)t=0 = x2/2, u(0, t) = t and u(1, t) = t2/2.

PE 9.45 Find the stationary state temperature on a straight circular cylinder of
radius 2 and height 4, that is, solve the partial differential equation, with u = u(r, z),

∂2u

∂r2
+ 1

r

∂u

∂r
+ ∂2u

∂z2
= 0 , 0 < r < 2 , 0 < z < 4 ,

satisfying the conditions u(2, z) = 0, u(r, 0) = u0, and u(r, 4) = 0.

PE 9.46 Show that the stationary state temperature on a sphere, that is, a solution
of the partial differential equation
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∂2u

∂r2
+ 2

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
+ cotg θ

r2

∂u

∂θ
= 0,

with u = u(r, θ), for 0 < r < a and 0 < θ < π , with u(a, θ) = f (θ), is given by

u(r, θ) =
∞∑

k=0

[
2k + 1

2

∫ π

0
f (θ ′)Pk(cos θ ′) sin θ ′ dθ ′

] ( r

a

)k

Pk(cos θ) ,

where Pk(x) are the Legendre polynomials of order k.

PE 9.47 Let u = u(x, t). Find one stationary state solution ψ(x) for the equation

k
∂2u

∂x2
= ∂u

∂t
, 0 < x < π and t > 0 ,

satisfying the boundary and initial conditions

u(0, t) = u0 , − ∂

∂x
u(x, t)

∣∣∣∣
x=π

= u(π, t) − u1 , t > 0 ,

u(x, 0) = 0 , 0 < x < π ,

where u0 and u1 are constants.

PE 9.48 (Poisson Formula) Solve the Laplace equation on the upper half-plane
y > 0 using the Fourier transform, i.e., find a function u(x, y) such that

∂2u

∂x2 + ∂2u

∂y2 = 0 , −∞ < x < ∞ ,

with u(x, 0) = f (x), |u(x, y)| ≤ M for −∞ < x < ∞, and where f (x) is a
smooth by parts function such that

∫ ∞

−∞
|f (x)| dx < ∞ .

PE 9.49 Let u(ρ, φ, t) = u. Find the solution of the heat equation on an infinite
cylinder of radius R, that is, solve the partial differential equation

∂u

∂t
= k�u + �,

for t > 0, 0 ≤ ρ < R, −π ≤ φ ≤ π , with u(R, φ, t) = Ta and u(R, φ, 0) = Tb,
where �, k, Ta and Tb are positive constants. Note that ρ and φ are cylindrical
coordinates and that u is independent of z.
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PE 9.50 Solve the Laplace equation in spherical coordinates for the following case:
Determine the potential between two concentric spheres with radii a and b, kept at
constant and distinct potentials, u(a) = A and u(b) = B, where A and B are
constants.
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Chapter 10
Fractional Calculus

Nothing takes place in the world whose meaning is not that of
some maximum or minimum.

1707 – Leonhard Euler – 1783

Fractional calculus, a popular name for the calculus of arbitrary order, is a branch
of mathematical analysis which basically studies several different ways of defining
a derivative. With these different definitions, it is possible, for instance, to build and
solve fractional differential equations. We present here just an introduction to the
subject. Specifically, we discuss two types of fractional derivatives, the Riemann-
Liouville and the Caputo [1927 – Michele Caputo – ] fractional derivatives. We
also introduce the one-parameter Mittag-Leffler [1846 – Magnus Gösta Mittag-
Leffler – 1927] function, the queen of special functions of fractional calculus,
together with two generalizations, also called Mittag-Leffler functions, with two
and three parameters. We use integral transforms to solve simple fractional ordinary
differential equations and simple fractional integral equations.

It is important to say that one reason for choosing this theme for the last chapter
before the applications was that it provides a way to use some results learned in
previous chapter, namely, ordinary derivatives, which appeared in Chaps. 1 and 2;
analytic functions and the residue theorem, discussed in Chap. 3; gamma function,
beta function, and the confluent hypergeometric function, presented in Chap. 4; and
the Laplace transform studied in Chap. 6. Another, not less important reason, is just
that this theme is beginning to appear in many undergraduate courses, due to its
being a topic on the rise, a hot topic [1–12].

10.1 Fractional Derivatives

Unlike the case with classical calculus, which involves derivatives and integrals of
integer orders only and in which we normally start from the definition of derivative
and then introduce the concept of integral, it may be more intuitive to begin the study
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of fractional calculus with the concept of integral and then, later, to address the idea
of fractional derivative. This is indeed more natural since an integral is associated
with an area, a more primitive notion than the concept of rate of change associated
with the derivative.

10.1.1 Fractional Integral

In order to introduce the concept of a fractional order integral, we start by showing
that an integral of order n, with n ∈ N, of a function f (x) with x ∈ R, can be
seen as the Laplace convolution product of function f (x) and the Gel’fand-Shilov
[1913 – Israel Moiseevich Gel’fand – 2009]-[1917 – Georgi Evgen’evich
Shilov – 1975] function φn(x) of order n. This integer order integral is also called
multiple integral or iterated integral. With the help of the generalization of the
factorial concept provided by the gamma function, we then introduce the concept of
noninteger order integral or fractional order integral.

Definition 10.1.1 (Integer Order Integral) Let t > 0 and let f (t) be a real and
integrable function. The integral operator of integer order, denoted by J, acting on
function f (t), is given by

Jf (t) =
∫ t

0
f (t1) dt1 .

From Definition 10.1.1 and iterating, we obtain

J2f (t) = J[Jf (t)] =
∫ t

0

∫ t1

0
f (t2) dt2 dt1,

J3f (t) = J[J2f (t)] =
∫ t

0

∫ t1

0

∫ t2

0
f (t3) dt3 dt2 dt1.

Thus, the integral of order n ∈ N is given by

Jnf (t) =
∫ t

0

∫ t1

0

∫ t2

0
· · ·

∫ tn−2

0

∫ tn−1

0
f (tn) dtn dtn−1 · · · dt3 dt2 dt1. (10.1)

We can express the integral of order n, with n ∈ N, through a theorem involving
the Gel’fand-Shilov function and the Laplace convolution product.

Definition 10.1.2 (Gel’fand-Shilov Function) Let n ∈ N. We define the Gel’fand-
Shilov function, denoted by φn(t), as
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φn(t) :=

⎧⎪⎪⎨
⎪⎪⎩

tn−1

(n − 1)! for t ≥ 0,

0 for t < 0.

Theorem 10.1 (Integral of order n) Let n ∈ N, t ∈ R+ and f (t) an integrable
real function. The integral of order n is given by

Jnf (t) = φn(t) � f (t)

:=
∫ t

0
φn(t − τ)f (τ) dτ

=
∫ t

0

(t − τ)n−1

(n − 1)! f (τ) dτ ,

where � denotes Laplace’s convolution product.

Proof We prove the theorem by induction on parameter n. Using the definition of
the Gel’fand-Shilov function with n = 1, we have

Jf (t) =
∫ t

0

(t − τ)1−1

(1 − 1)! f (τ) dτ = φ1(t) � f (t) .

We then show that, if Jnf (t) = φn(t) � f (t), then Jn+1f (t) = φn+1(t) � f (t). By
the induction hypothesis, we can write

Jn+1f (t) = J[Jnf (t)] = J[φn(t) � f (t)]
=

∫ t

0
φn(u) � f (u)du

=
∫ t

0

∫ u

0

(u − τ)n−1

(n − 1)! f (τ) dτdu.

By Goursat’s [1858 – Édouard Goursat – 1936] theorem, it is possible to change
the order of integration. It follows that

Jn+1f (t) =
∫ t

0

[∫ t

τ

(u − τ)n−1

(n − 1)! du

]
f (τ) dτ.

Evaluating the integral inside the square brackets, we finally have

Jn+1f (t) =
∫ t

0

(t − τ)n

n! f (τ) dτ = φn+1(t) � f (t),

which is the desired result. �
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Using Theorem 10.1 and the concept of gamma function, a generalization of the
factorial, as already discussed, we can generalize the order of the integral for an
arbitrary number ν ∈ R.

Definition 10.1.3 (Integral of Order ν)
Let f (t) be an integrable function. We define the integral of order ν ∈ R of

function f (t), denoted Jνf (t), by means of the expression

Jνf (t) = φν(t) � f (t) =
∫ t

0

(t − τ)ν−1

�(ν)
f (τ) dτ. (10.2)

When the parameter defining the order of the integral, ν, is such that ν = n + 1,
with n ∈ N, we recover the result for integer order.

10.1.2 Riemann-Liouville Fractional Integral

Fractional integrals can be construed on the left and right of a point. Nevertheless,
we present here only the formulation to the left, as this is just an introduction to the
subject. The respective formulation on the right, with simple modifications, follows
the same steps as the formulation on the left. With these caveats in mind, we start
by defining the Riemann-Liouville fractional integral on the left. From now on,
we shall omit the nomenclature “on the left.” We present here the definition of the
Riemann-Liouville fractional integral. There are other formulations, in particular
the Hadamard [1865 – Jacques Salomon Hadamard – 1963] fractional integral,
whose kernel contains a logarithm [2, 7].

Definition 10.1.4 (Riemann-Liouville Fractional Integral) Let t ∈ R with
Re(ν) > 0. The Riemann-Liouville fractional integral of order ν, acting on f ∈
Lp[a, b], 1 ≤ p < +∞, −∞ < a < b < +∞, for t ∈ [a, b], is defined by

(Jνf )(t) ≡ Jνf (t) := 1

�(ν)

∫ t

a

f (τ )

(t − τ)1−ν
dτ , t > a . (10.3)

In the particular case ν = 0, we have (J0f )(t) = f (t).

Riemann-Liouville fractional integrals are characterized by the particular class of
functions on which this operator acts, as well as by the respective integration interval
to be considered. For example, in the case in which a = 0 in Eq. (10.3), we obtain
the definition of fractional integral proposed by Riemann, but without the so-called
complementary function [7]. It should be noted that the expression in Eq. (10.3) will
be used to introduce the concept of fractional derivative in the Riemann-Liouville
sense (an integer order derivative of a fractional order integral) and in the Caputo
sense (a fractional order integral of an integer order derivative). This difference
in the orders of integration and differentiation plays an important role, especially
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when we use the integral transform methodology to solve a problem involving a
differential equation with the imposition of initial and/or boundary conditions of
integer orders.

10.2 Fractional Derivatives

We now present the definitions of the Riemann-Liouville and the Caputo fractional
derivatives. The Riemann-Liouville and the Caputo formulations are stated with
the help of the Riemann-Liouville integral, making clear the nonlocal character of
fractional derivatives, differently from integer order derivatives, which have local
character.

10.2.1 Riemann-Liouville Fractional Derivative

Before defining the Riemann-Liouville and the Caputo fractional derivatives, we
mention that the space of functions used here is the space of absolutely continuous
functions on the interval [a, b], denoted by AC[a, b], where [a, b] is any finite
interval with −∞ < a < b < +∞. Also, we use for the integer order derivative

operator the notation
dn

dtn
:= Dn.

Definition 10.2.1 (Riemann-Liouville Fractional Derivative) Let t ∈ R,
Re(ν) > 0, n = [Re(ν)] + 1 where [Re(ν)] is the integer part of Re(ν), n ∈ N and
ν /∈ N. The Riemann-Liouville fractional derivative of order ν, acting on a function
f ∈ AC[a, b], with −∞ < a < b < +∞, for t ∈ [a, b], is given by

(Dνf )(t) ≡ Dνf (t) := Dn
(
Jn−νf

)
(t)

= 1

�(n − ν)
Dn

∫ t

a

f (τ )

(t − τ)ν−n+1 dτ . (10.4)

For ν = n, we defineDνf (t) = Dnf (t).

Equation (10.4) tells us that a derivative of arbitrary order, in the Riemann-
Liouville formulation, is equivalent to the derivative of integer order of an integral
of arbitrary order. Note that what has been said about integrals on the left and on the
right is also valid for derivatives, i.e., we do have both types of derivatives but we
deal here only with the formulation on the left.
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10.2.2 Caputo Fractional Derivative

Definition 10.2.2 (Caputo Fractional Derivative) Let t ∈ R with Re(ν) > 0,
n = [Re(ν)] + 1, where [Re(ν)] is the integer part of Re(ν), n ∈ N and ν /∈ N. Let
f (t) ∈ AC[a, b]. The Caputo fractional derivative of order ν, acting on a function
f , with −∞ < a < b < +∞ for t ∈ [a, b], is given by

(CDνf )(t) ≡ CDνf (t) := (
Jn−νDnf

)
(t)

= 1

�(n − ν)

∫ t

a

Dnf (τ)

(t − τ)ν−n+1 dτ . (10.5)

For ν = n, we defineDνf (t) = Dnf (t).

As with the formulation of the Riemann-Liouville fractional derivative,
Eq. (10.5) allows us to say that a derivative of arbitrary order, according to Caputo’s
formulation, is equivalent to an arbitrary order integral of an integer order derivative.

10.2.3 Riemann-Liouville × Caputo

The relation between the Riemann-Liouville derivative, Eq. (10.4), and the Caputo
derivative, Eq. (10.5), is given by

(CDνf )(t) = (Dνf )(t) −
∞∑

k=0

f (k)(0+)
tk−ν

�(k − ν + 1)
. (10.6)

Before we discuss the calculation of the Laplace transform of specific fractional
derivatives, we present an expression that can help us move from one formulation
to another. For this sake we define the following integrodifferential expression:

Definition 10.2.3 (Fractional Derivative) Let m ≤ p < m + 1, m ∈ N, and let
f (x) be a real function m + 1-times continuously differentiable, with p being the
order of the derivative. We define the following integrodifferential expression:

aD
p
x f (x) =

(
d

dx

)m+1 ∫ x

a

(x − ξ)m−pf (ξ) dξ

with x > a.

Just to mention that, from this expression, we can obtain both the Riemann-
Liouville formulation and the Caputo formulation of the fractional derivative using
integration by parts and integer order derivatives.
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Due to their importance in the solution of fractional differential equations, we
evaluate in the exercises the integral Laplace transforms of the Riemann-Liouville
fractional integral and of the Caputo fractional derivative. We also obtain the
Laplace transform (and the corresponding inverse Laplace transform) of the Mittag-
Leffler function with three parameters. The Laplace transform of the Mittag-Leffler
function with two parameters and the Laplace transform of the classical (one
parameter) Mittag-Leffler function are left as proposed exercises.

10.3 Mittag-Leffler Functions

The most important special function of fractional calculus is the Mittag-Leffler
function, a generalization of the exponential function. The function, denoted Eα(·),
involves a parameter α ∈ C and is given by the series

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, (10.7)

for z, α ∈ C and Re(α) > 0.
This function was introduced in 1903 by Mittag-Leffler and is also called

classical Mittag-Leffler function because, since its appearance, several other similar
functions have been proposed, with more than one parameter or more than one
independent variable or both. Here, we work only with z = x ∈ R and the Mittag-
Leffler functions with two and three parameters.

Example 10.1 Discuss the Mittag-Leffler function in the case α = 1.
Taking α = 1 in Eq. (10.7) we obtain

E1(z) =
∞∑

k=0

zk

�(k + 1)
=

∞∑
k=0

zk

k! ,

where, in the second equality, we have used �(k + 1) = k! because k is zero or is a
positive integer. We then see that the last sum is exactly the exponential function,

E1(z) = exp(z) ,

which is the desired result. This is the reason why we can say that the classical
Mittag-Leffler function is a generalization of the exponential function. �

The Mittag-Leffler function with two parameters was introduced by Agarwal
[1925 – Ratan Prakash Agarwal – 2008] in 1953 and is defined by the series
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Eα,β(z) =
∞∑

k=0

zα

�(αk + β)
, (10.8)

with z ∈ C and α, β ∈ C with Re(α) > 0.
For β = 1 we have Eα,1(·) = Eα(·), so that one can interpret the Mittag-Leffler

function with two parameters as a generalization of the classical Mittag-Leffler
function. Also, taking α = β = 1 we recover the exponential function.

Example 10.2 Let z ∈ C. Express the Mittag-Leffler function with two parameters,

E2,2(z
2),

in terms of a hyperbolic function.
Considering α = β = 2 in Eq. (10.8), we get

E2,2(z
2) =

∞∑
k=0

z2k

�(2k + 2)
.

Since the arguments of the gamma functions in this series are integer, we can write
them in terms of factorials. Then, multiplying and dividing the series by z we arrive
at

E2,2(z
2) = 1

z

∞∑
k=0

z2k+1

(2k + 1)! .

The remaining sum is exactly the hyperbolic sine, so

E2,2(z
2) = sinh z

z
,

which is the desired result. �
Another type of Mittag-Leffler function was introduced in 1970 by Prabhakar,

the so-called Mittag-Leffler function with three parameters, defined by the series

E
γ
α,β(z) =

∞∑
k=0

(γ )k

�(αk + β)

zk

k! , (10.9)

with z ∈ C and α, β, γ ∈ C with Re(α) > 0. In this expression, (γ )k is the
Pochhammer symbol, defined in Chap. 4 as the quotient of two gamma functions,

(γ )k = �(γ + k)

�(γ )
.
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Example 10.3 Let k ∈ N. Show that the k-th derivative of the Mittag-Leffler
function with two parameters can be written as a product of k! by a Mittag-Leffler
function with three parameters.

To show this result we consider, without loss of generality, α > 0 and β > 0 in
Eα,β(x). We then evaluate its k-th derivative, denoting it by IM ,

IM =
(

d

dx

)k

Eα,β(x).

Using Eq. (10.8) and interchanging the derivative with the sum, assuming this
change to be valid, we obtain

∞∑
n=0

1

�(αn + β)

(
d

dx

)k

xn .

As k and n are positive integers, we have

IM =
(

d

dx

)k

xn = n!
(n − k)!x

n−k,

for n ≥ k, since if n < k the derivative is null. This means that the resulting sum
starts at n = k and we can write

IM =
∞∑

n=k

(1)n
�(αn + β)

xn−k

(n − k)! .

Introducing the change n → n + k and manipulating the sum, we have

IM =
∞∑

k=0

(1)n+k

�(αn + αk + β)

xn

n! .

Finally, using the property of the Pochhammer symbol

(ρ)k+m = (ρ)k(ρ + k)m,

with ρ = 1 and m = n in the expression above and simplifying, we get

IM = k!
∞∑

k=0

(k + 1)n
�(αn + αk + β)

xn

n! .

The remaining sum can be easily expressed as a Mittag-Leffler function with three
parameters, thus
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IM = k!Ek+1
α,αk+β(x) ,

that is,

(
d

dx

)k

Eα,β(x) = k!Ek+1
α,αk+β(x) , (10.10)

which is the desired result. �
This last result guarantees that working with the k-th derivative of the Mittag-

Leffler function with two parameters is the same as working with the Mittag-Leffler
function with three parameters.

As already mentioned, there are several types of Mittag-Leffler functions, though
we restricted our presentation to functions with one, two, and three parameters.
Besides, we discuss a few simple fractional differential equations in the section of
solved exercises. For other types of the Mittag-Leffler functions, we mention [4].

10.4 Solved Exercises

SE 10.1 Evaluate the integral of order 1
2 of the function f (t) = t , i.e., J

1
2 t .

Solution: Substituting ν = 1/2 and f (t) = t into Eq. (10.3), we get

J
1
2 t = 1

�(1/2)

∫ t

a

τ

(t − τ)
1
2

dτ , t > a .

Introducing the change of variable ξ = t − τ , we obtain

J
1
2 t = 1√

π

∫ t−a

0

t − ξ√
ξ

dξ ,

where we used the result �(1/2) = √
π . With another change, ξ = (t − a)u, the

integral takes the form

J
1
2 t =

√
t − a√

π

∫ 1

0

t − (t − a)u√
u

du .

Separating in two integrals and integrating, we obtain

J
1
2 t = 2t

√
t − a√

π
− 2

3
√

π

√
(t − a)3 .

If we take a = 0 and disconsider terms before zero (the so-called memory
effect) and what Riemann calls complementary function, we can write, after
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Fig. 10.1 Sketch of curves y(x) = x2

2 and y(x) = 4x
√

x

3
√

π

simplifications,

J
1
2 t = 4

3
√

π

√
t3.

Figure 10.1 sketches the graphs of y(x) = x2

2 (a parabola) and of y(x) = 4x
√

x

3
√

π
.

SE 10.2 Using the Riemann-Liouville formulation with a = 0, evaluate the
derivative of order 1/2 of function f (t) = t .
Solution: First, note that n = 1 because the integer part of ν = 1/2 is equal to zero.
So, substituting ν = 1/2 and f (t) = t into Eq. (10.4), we have

D
1
2 t = 1

�(1/2)
D

∫ t

0

τ√
t − τ

dτ .

Introducing the change of variable ξ = t − τ , we get

D
1
2 t = − 1

�(1/2)
D

∫ t

0

(
ξ

1
2 − tξ− 1

2

)
dξ,

whose integration yields

D
1
2 t = − 1

�(1/2)
D

(
−4

3
t
3
2

)
.
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Evaluating the derivative and simplifying, we can write

D
1
2 t = 2

√
x

π
, (10.11)

which is the desired result.

SE 10.3 For a = 0, calculate the derivative of order 1/2 of function f (t) = t using
Caputo’s formulation.
Solution: First, note that since ν = 1/2, we have n = 1. Then, considering a = 0
and substituting ν = 1/2 and f (t) = t into Eq. (10.5) we can write

CD
1
2 t = 1

�(1/2)

∫ t

0

D(τ )√
t − τ

dτ .

Evaluating the derivative of order 1, introducing the change of variable ξ = t − τ

and simplifying, we get

CD
1
2 t = 1√

π

∫ t

0
ξ− 1

2 dξ ,

whose integration yields

CD
1
2 t = 2

√
x

π
,

exactly as in the Riemann-Liouville formulation, Eq. (10.11).

SE 10.4 Consider n ∈ N and suppose that the order μ of a Riemann-Liouville
derivative is such that n − 1 ≤ μ < n. Let f (x) be a (n + 1)-times continuously
differentiable function and let p be the parameter of the Laplace transform, that
is, L [f (x)] = F(p). If the Riemann-Liouville fractional derivative is denoted by
RL
0D

μ
x , show that

L
[

RL
0D

μ
x f (x);p

]
= pμF(p) −

n−1∑
k=0

pk
[

RL
0D

μ−k−1
x f (x)

]
x=0

. (10.12)

Solution: The Riemann-Liouville fractional derivative is given by the expression

RL
0D

μ
x f (x) = Dn

(
Jn−μf (x)

)
,

where Jν(·) is the Riemann-Liouville integral operator. Taking the Laplace trans-
form on both sides of the previous expression, we get

L
[

RL
0D

μ
x f (x);p

]
= L

[
Dng(x);p

]
, (10.13)
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with g(x) = Jn−μf (x). As the Laplace transform of the integer order derivative,
n, is given by

L
[
Dng(x)

] = pnL [g(x)] −
n−1∑
k=0

pkg(n−k−1)(0) ,

we can evaluate the Laplace transform of the Riemann-Liouville fractional integral

L [g(x)] = L
[
Jn−μf (x)

]

= L

[
1

�(n − μ)

∫ x

0
(x − ξ)n−μ−1f (ξ) dξ

]

= L

[
xn−μ−1

�(n − μ)

]
F(p) ,

(10.14)

where the convolution product was used.
Using the result of the PE 10.23 in Eq. (10.14), we obtain

L [g(x)] = F(p)

pn−μ
.

On the other hand, we must evaluate the derivative of integer order (n − k − 1) of
function g(x), and evaluate it at x = 0. Then, we can write for the derivative

dn−k−1

dxn−k−1
g(x) = dn−k−1

dxn−k−1
Jn−μf (x)

= Dn−k−1
D

−(n−μ)f (x)

= RL
0D

μ−k−1
x f (x).

Returning to Eq. (10.14) and simplifying, we finally obtain

L
[

RL
0D

μ
x f (x);p

]
= pμF(p) −

n−1∑
k=0

pk
[

RL
0D

μ−k−1
x f (x)

]
x=0

,

which is the desired result.

SE 10.5 Obtain the expression for the Laplace transform of the Caputo fractional
derivative.
Solution: The process is similar to the case of the Riemann-Liouville fractional
derivative. We start with the Caputo fractional derivative written as

C
0D

μ
x f (x) = Jn−μ

(
Dnf (x)

)
,
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where Jν(·) is the Riemann-Liouville fractional integral operator. Taking the
Laplace transform on both sides of this expression, we have

L
[

C
0D

μ
x f (x);p

]
= L

[
Jn−μg(x);p

]
,

with g(x) = Dnf (x). With the help of Eq. (10.14), we get

L
[
Jn−μg(x)

] = L

[
1

�(n − μ)

∫ x

0
(x − ξ)n−μ−1f (ξ) dξ

]

= L

[
xn−μ−1

�(n − μ)

]
F(p) = F(p)

pn−μ
,

where we used the convolution product and the notation F(p) = L [f (x)].
Returning to the expression for the Laplace transform and using the expression
for the Laplace transform of an integer order derivative, we can write, after
simplification,

L
[

C
0D

μ
x f (x);p

]
= pμF(p) −

n−1∑
k=0

pμ−k−1f (k)(0) (10.15)

with the notation f (k)(0) = Dkf (x)|x=0, which is the desired result.

SE 10.6 Let λ ∈ C, Re(α) > 0, β > 0 and μ > 0. Prove the relation

1

�(μ)

∫ z

0
(z − ξ)μ−1

Eα,β(λξα)ξβ−1dξ = zμ+β−1Eα,μ+β(λzα),

where Eα,β(·) is the Mittag-Leffler with two parameters.
Solution: Denote the first member by �, that is,

� = 1

�(μ)

∫ z

0
(z − ξ)μ−1

Eα,β(λξα)ξβ−1dξ .

Introducing the series expansion for the Mittag-Leffler function with two parameters
and changing the order of the integral and the sum, we can write

� = 1

�(μ)

∞∑
k=0

λk

�(αk + β)

∫ z

0
(z − ξ)μ−1ξαk+β−1 dξ .

Let ξ = zt be a new variable. Substituting into the integral and simplifying, we get

� = 1

�(μ)

∞∑
k=0

λkzαk+β+μ−1

�(αk + β)

∫ 1

0
(1 − t)μ−1tαk+β−1 dt .
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The remaining integral is one of the representations of the beta function. Expressing
this beta function in terms of the gamma function yields

� = zμ+β−1

�(μ)

∞∑
k=0

(λzα)k

�(αk + β)

�(μ)�(αk + β)

�(αk + μ + β)
.

With further simplification, we find that

� = zμ+β−1
∞∑

k=0

(λzα)k

�(αk + β + μ)
.

Comparing the series on the right-hand side of this equation with the definition of
the Mittag-Leffler function with two parameters, we see that

� = zμ+β−1
Eα,β+μ(λzα) ,

which is the desired result.

SE 10.7 Let Re(α) > 0 and β > 0. Prove the recurrence relation

Eα,β(z) − zEα,α+β(z) = 1

�(β)
,

where Eα,β(·) is the Mittag-Leffler with two parameters.
Solution: Denote the first member of this equality by �. Introducing the series
expansion for the Mittag-Leffler function with two parameters, we obtain

� =
∞∑

k=0

zk

�(αk + β)
− z

∞∑
k=0

zk

�(αk + α + β)

=
∞∑

k=0

zk

�(αk + β)
−

∞∑
k=0

zk+1

�(αk + α + β)
.

Change the summation index k → k − 1 in the second sum. We then have

� =
∞∑

k=0

zk

�(αk + β)
−

∞∑
k=1

zk

�(αk + β)
.

The term k = 0 in the first sum is equal to 1/�(β) and the remaining terms cancel
the second sum. We have thus proved that

� = 1

�(β)
,

which is the desired result.
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SE 10.8 (Prabhakar Function) Let x ∈ R and α, β, γ ∈ C with Re(α) > 0.
Evaluate the Laplace transform of

Eγ
α,β(x) =: xβ−1

E
γ
α,β(xα) ,

a function known as Prabhakar function, with E
γ
α,β(·) the Mittag-Leffler function

with three parameters.
Solution: Let s ∈ C with Re(s) > 0 be the parameter of the Laplace transform. We
must evaluate the following integral:

L
[
Eγ

α,β(x)
]

=
∫ ∞

0
e−sxxβ−1

E
γ
α,β(xα) dx.

Introducing the series expansion of the Mittag-Leffler with three parameters and
changing the order of the integral and the sum, we can write

L
[
Eγ

α,β(x)
]

=
∞∑

k=0

(γ )k

k!�(αk + β)

∫ ∞

0
e−sxxβ−1xαk dx.

Let J be the integral

J =
∫ ∞

0
e−sxxαk+β−1 dx .

Introducing in this last integral the change of variable sx = t and rearranging, we
obtain

J = 1

sαk+β

∫ ∞

0
e−t tαk+β−1 dt .

Using the definition of the gamma function, we see that

J = �(αk + β)

sαk+β
.

Substituting this last result into the expression for the Laplace transform and
simplifying, we get

L
[
Eγ

α,β(x)
]

=
∞∑

k=0

(γ )k

k!sαk+β
.

Expressing the Pochhammer symbol in terms of binomial coefficients and substitut-
ing into the above expression, we can rewrite the Laplace transform as

L
[
Eγ

α,β(x)
]

= 1

sβ

∞∑
k=0

(
γ + k

k

) (
s−α

)k
.
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Assuming that |s−α| < 1, we have a geometric series with infinite terms. Evaluating
its sum and substituting into the last equality, we find that

L
[
Eγ

α,β(x)
]

= 1

sβ

(
1 − s−α

)−γ
.

This expression can be put in the form

L
[
Eγ

α,β(x)
]

= sαγ−β

(sα − 1)γ
,

which is the desired result.

SE 10.9 We now present a recent result, involving twoMittag-Leffler functions [3],
which uses an expansion in a Maclaurin series, discussed in Chap. 2, and the relation
obtained in Eq. (10.10). Let a, b ∈ R, x ∈ R, and α, β ∈ C with Re(α) > 0. We
will show that

∞∑
k=0

(bxα)kEα,αk+β(axα) = Eα,β((a + b)xα) , (10.16)

where Eα,β(·) is the Mittag-Leffler function with two parameters.
Solution: We first consider the Maclaurin series expansion of Eα,β(x), that is,

Eα,β(x) = 1

�(β)
+ x E

2
α,α+β(0) + x2

E
3
α,2α+β(0) + · · ·

which can be rewritten as

Eα,β(x) = 1

�(β)
+ x

�(α + β)
+ x2

�(2α + β)
+ · · ·

Thus, the right-hand side of Eq. (10.16) can be written as

Eα,β((a + b)xα) = 1

�(β)
+ (a + b)xα

�(α + β)
+ (a + b)2x2α

�(2α + β)
+ · · ·

Remark that in the above expression, each bracket (a +b)k has k +1 terms in the
k-th row of a Pascal [1623 – Blaise Pascal – 1662] triangle. By adding together
the terms in bk in the Maclaurin series expansion, we find that the sum of the first

diagonal is
∞∑

j=0

aj ; the second diagonal yields b

∞∑
j=0

(
j + 1

1

)
aj ; the third diagonal

gives b2
∞∑

j=0

(
j + 2

2

)
aj , . . . The Maclaurin series can thus be rearranged in terms
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of powers of b. We then get

Eα,β((a + b)xα) =
∞∑

k=0

bk
∞∑

j=0

aj
(
j+k
k

)
xα(j+k)

�(αj + αk + β)

=
∞∑

k=0

(bxα)k

k!
∞∑

j=0

(axα)j�(j + k + 1)

�(αj + αk + β)

=
∞∑

k=0

(bxα)k Ek+1
α,αk+β(axα) ,

which is the desired result. It is important to note that the result is also valid if a and
b are two commuting matrices [3].

SE 10.10 (Relaxation and Oscillation) Classical relaxation and oscillation prob-
lems are characterized by first-order and second-order ordinary differential equa-
tions, respectively. Here, we approach both problems by means of a single fractional
ordinary differential equation using Caputo’s formulation for the derivative, namely,

Dαx(t) + x(t) = q(t) , (10.17)

where α is the order of the derivative, n − 1 < α ≤ n with n ∈ N
∗, D ≡ d

dt is the
differential operator, and q(t) is the nonhomogeneous term.

We have, for specific values of α,

n = 1 −→ 0 < α ≤ 1 −→ relaxation,
n = 2 −→ 1 < α ≤ 2 −→ oscillation.

Note that the integer (classical) case for relaxation is recovered when α = 1; for
oscillation, when α = 2. Solve the fractional differential equation, Eq. (10.17).
Solution: To discuss Eq. (10.17), a fractional differential equation, we use the
Laplace transform methodology. Taking the Laplace transform on both sides and
remembering the expression for the Laplace transform of the Caputo fractional
derivative, we have

sαL [x(t)] −
n−1∑
k=0

sα−k−1Dkx(t)

∣∣∣∣∣
t=0

+ L [x(t)] = L [q(t)] ,

where s is the parameter of the Laplace transform.
Introducing the notations

Q(s) = L [q(t)] and Dkx(t)

∣∣∣
t=0

= x(k)(0)
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and rearranging, we can write the following expression:

L [x(t)] =
n−1∑
k=0

sα−k−1

sα + 1
x(k)(0) + Q(s)

sα + 1
,

where x(k)(0) denotes the k-th integer order derivative of function x(t), evaluated at
t = 0.

In order to find the solution of Eq. (10.17), we take the inverse Laplace transform
(a linear operator), obtaining

x(t) =
n−1∑
k=0

L −1
[
sα−k−1

sα + 1

]
x(k)(0) + L −1

[
Q(s)

sα + 1

]
.

Using the result of PE 10.32, it follows that

x(t) =
n−1∑
k=0

tkEα,k+1(−tα) x(k)(0) + L −1
[

Q(s)

sα + 1

]
.

In order to evaluate the remaining inverse Laplace transform, we use the convolution
theorem to identify

Q(s)

sα + 1
= Q(s) · (sα + 1)−1 ≡ Q(s)F (s) ,

where F(s) is known. Thus,

f (t) = L −1
[

1

sα + 1

]
= t s−1

Eα,α(−tα).

Returning with these results, we obtain the solution of the fractional ordinary
differential equation,

x(t) =
n−1∑
k=0

tkEα,k+1(−tα) x(k)(0) − q(t) � E′
α(−tα)

where � denotes the convolution product.
Before we move on to another fractional differential equation, we emphasize that

an analogous treatment can be given to the differential equations associated with
the problems of radioactive decay and population growth/decay. The corresponding
fractional ordinary differential equations are, respectively,

Dαm(t) = −km(t), and DαP (t) = kP (t) ,



270 10 Fractional Calculus

where k is a positive constant. The corresponding solutions are

m(t) = m0 Eα(−ktα) and P(t) = P0 Eα(ktα) ,

where m0 and P0 positive constants and Eα(·) is the classical Mittag-Leffler
function.

SE 10.11 (Heat Transfer) We discuss a fractional version of Newton’s law of
cooling, given by the fractional ordinary differential equation

DαT (t) = −k[T (t) − T ]

with initial condition T (0) = T0, where 0 < α ≤ 1, k ∈ R
∗+ and where Dα is

the Caputo fractional derivative of order α. If T is the environment temperature, we
must have

lim
t→∞ T (t) = T .

Solution: We take the Laplace transform on both sides of the differential equation.
Using the expression for the Laplace transform of the Caputo fractional derivative,
we obtain an algebraic equation whose solution is given by the expression

F(s) = T0
sα−1

sα + k
+ kT

s−1

sα + k
,

where F(s) = L [T (t)] and s is the parameter of the Laplace transform. Calculating
the corresponding inverse Laplace transform, we obtain

T (t) = T0L
−1

[
sα−1

sα + k

]
+ kT L −1

[
s−1

sα + k

]
.

Using the result of PE 10.36, we obtain the solution for the cooling problem,

T (t) = T0Eα(−ktα) + kT tαEα,α+1(−ktα) ,

where Eα(·) and Eα,β(·) are Mittag-Leffler functions with one and two parameters,
respectively.

10.5 Proposed Exercises

PE 10.1 Justify the permutation of the order of integrations in Theorem 10.1.

PE 10.2 Let n ∈ N and μ ∈ R+. Use Eq. (10.3) with a = 0 and the definition of
the beta function to evaluate the integral of order μ of f (x) = xn.
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PE 10.3 Let ν = 1
2 and f (x) = √

x. Use Eq. (10.3) with a = 0 to evaluate the
fractional integral of order 1/2 of f (x) = √

x.

PE 10.4 Let ν, μ ∈ C. Using Eq. (10.4) with a = 0 and the definition of the beta
function, evaluate the derivative of order μ of f (x) = xν . Impose, if necessary,
restrictions on parameters μ and ν.

PE 10.5 Use the result of PE 10.4, considering μ = 1/2 and ν = 1, to recover the
result obtained in SE 10.2.

PE 10.6 Let μ ∈ R+. Justify the impossibility of calculating the derivative of order
μ of function f (x) = 1

x
in the Riemann-Liouville sense with a = 0. Discuss the

integer order derivative of that same function.

PE 10.7 Using the Riemann-Liouville formulation, in the case in which the lower
extreme is a = 0, calculate the derivative of order 1/2 of f (x) = ex , expressing it
in terms of an error function.

PE 10.8 Let ν, μ ∈ C. Use Eq. (10.5) with a = 0 and the definition of beta function
to evaluate the derivative of order μ of f (x) = xν . Impose, if necessary, restrictions
on the parameters μ and ν.

PE 10.9 Let μ ∈ R+. Justify the impossibility of evaluating the derivative of order
μ of function f (x) = 1

x
in Caputo’s sense with a = 0. Discuss the derivative of

integer order for the same function.

PE 10.10 Using the Caputo formulation in the case in which the lower extreme is
a = 0, evaluate the fractional derivative of order 1/2 of f (x) = ex .

PE 10.11 Evaluate the derivative of order 1/2 in Caputo’s sense, with a = 0, for

the function f (x) = x
1
2 .

PE 10.12 Consider n = 1 in Eqs. (10.4) and (10.5), both with a = 0 and 0 < ν <

1. Use integration by parts to prove the relation

(CDνf )(x) = (Dνf )(x) − f (0+)
x−ν

�(1 − ν)
.

This result is a particular case of Eq. (10.6).

PE 10.13 Let x > 0 and f (x) a function that admits the fractional derivatives
of Riemann-Liouville and Caputo. Determine the conditions under which the two
derivatives are equivalent.

PE 10.14 Let f be a function defined for every x > 0. Show that the Laplace
transform of the Riemann-Liouville fractional integral of order μ of f is given by

L [Jμf (x)] = L [f (x)]
sμ

.
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PE 10.15 Let ν > 0, α > 0 and γ > 0. Evaluate the Riemann-Liouville fractional
integral of order ν, with a = 0, of the Mittag-Leffler function with three parameters
E

γ

α,1(−xα) and recover the particular case in which γ = 1, that is, the classical
Mittag-Leffler function.

PE 10.16 Let ν > 0, λ ∈ R and x ≥ 0. Show that y(x) = Eν(λxν), where Eα(·)
is the Mittag-Leffler function with one parameter, is a solution of the fractional
differential equation

CDνy(x) = λy(x) ,

where the derivative is taken in the Caputo sense.

PE 10.17 Let m ∈ R. Evaluate the Caputo fractional derivative of order ν, with
n − 1 < ν ≤ n, n ∈ N, for the function

f (x) = (x + 1)m .

PE 10.18 Let ν > 0 and t > a. Denoting by aDν
t and aJν

t the Riemann-Liouville
fractional derivative and the Riemann-Liouville fractional integral, respectively,
both of order ν and initialized at x = a, show that

aDν
t

[
aJν

t f (x)
] = f (x) .

This relation can be read as follows: The Riemann-Liouville fractional derivative is
the inverse, to the left, of the Riemann-Liouville fractional integral.

PE 10.19 Let C be a positive constant. Show that the derivative of f (t) = C is
zero when we use the Caputo fractional derivative and is different from zero when
we use the Riemann-Liouville derivative.

PE 10.20 Let 0 ≤ α < 1. Consider the following integral equation, in which the
unknown function y(x) appears inside the integral symbol:

y(x) = x1−α

�(2 − α)
− 1

�(1 − α)

∫ x

0
(x − ξ)−αy(ξ) dξ .

Verify that it admits a solution

y(x) = 1 − E1−α(−x1−α) ,

where Eν(·) is the classical Mittag-Leffler function.

PE 10.21 Let 0 < α < 1 and f (x) a continuous function. Solve the integral
equation
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∫ x

0
(x − τ)−αf (τ) dτ = 1 .

PE 10.22 Let μ > −1 and ν > 0. Use the definition of the Caputo fractional
derivative with a = 0 to get

CDν
xx

μ = �(μ + 1)

�(μ − ν + 1)
xμ−ν .

PE 10.23 Let n ∈ N and μ ∈ R. Show that

L

[
xn−μ−1

�(n − μ)

]
= 1

sn−μ

where s is the parameter of the Laplace transform, imposing conditions on the
parameters.

PE 10.24 Use Eq. (10.12) to find the Laplace transforms in the particular cases in
which 0 ≤ μ < 1 and 1 ≤ μ < 2.

PE 10.25 Use Eq. (10.15) to find the Laplace transforms in the particular cases in
which 0 ≤ μ < 1 and 1 ≤ μ < 2.

PE 10.26 Let Re(α) > 0, β > 0 and |z| < 1. Show that

∫ ∞

0
e−t

Eα,β(ztα)tβ−1 dt = 1

1 − z
.

Note that the second member is independent of both parameters. Justify.

PE 10.27 For n ∈ N, show that

dn

dzn

[
zβ−1

Eα,β(zα)
]

= zβ−n−1
Eα,β−n(z

α).

PE 10.28 Use the result of PE 10.27 to discuss the particular case in which n = 1.

PE 10.29 Let α > 0, β > 0, k ∈ N and γ > 0. Show that

(
d

dx

)k

E
γ
α,β(x) = (γ )kE

γ+k

α,β+αk(x) ,

where E
γ
α,β(·) is the Mittag-Leffler function with three parameters and (ρ)k the

Pochhammer symbol.

PE 10.30 With the same procedure presented in SE 10.9, show that
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∞∑
k=0

�(γ + k)

�(γ )k! (btα)k E
γ+k

α,αk+β(axα) = E
γ
α,β((a + b)xα) .

PE 10.31 Let x > 0 and α, β ∈ C with Re(α) > 0. Evaluate the integral

∫ x

0
(x − ξ)β−1

Eα(ξα) dξ ,

where Eα(·) is the classical Mittag-Leffler function.

PE 10.32 Let α, β ∈ R with α > 0; let Eα,β(·) be a Mittag-Leffler function with
two parameters. Show that

L
[
tkEα,k+1(−tα)

]
= sα−k−1

sα + 1
.

Applying the inverse transform to both sides, we find that

L −1
[
sα−k−1

sα + 1

]
= tkEα,k+1(−tα) .

PE 10.33 Let α ∈ R
∗+. Prove the relation

d

dx
Eα(xα) = xα−1

Eα,α(xα) .

PE 10.34 Consider the results presented in SE 10.10. Find the particular solutions
for the relaxation problem with n = 1 and for the oscillation problem with n = 2.

PE 10.35 Use the Laplace transform methodology to solve the equations for m(t),
radioactive decay, and, for P(t), population growth/decay, obtaining the results
presented in the text.

PE 10.36 Let α, β ∈ R with α > 0. Show that

L −1
[

sα−β

sα + λ

]
= tβ−1

Eα,β(−λtα) ,

where λ is a positive constant and Eα,β(·) is a Mittag-Leffler function with two
parameters.

PE 10.37 Let α ∈ R with α > 0. Show that

Eα(x) = x Eα,α+1(x) + 1 .

PE 10.38 Discuss the limiting case α = 1 in Newton’s law of cooling.
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PE 10.39 Let z ∈ C, α a complex parameter such that Re(α) > 0, and k =
0, 1, 2, . . . Show that

(
d

dz

)k

Ek(z
k) = Ek(z

k) .

PE 10.40 Let z ∈ C and α a complex parameter with Re(α) > 0. Prove the so-
called duplication formula

Eα(z) + Eα(−z) = 2E2α(z2) .

PE 10.41 Let z ∈ C and let α and β be two complex parameters with Re(α) > 0.
Prove the recurrence relation for the first derivative of the Mittag-Leffler function
with two parameters:

d

dz
Eα,β(z) =

(
z
d

dz
+ 1

)
Eα,α+β(z) .

PE 10.42 Let z ∈ C. Express the quotient

� = ez − z − 1

z2

as a Mittag-Leffler function with two parameters.

PE 10.43 Let z ∈ C and α a complex parameter with Re(α) > 0. Denote the
confluent hypergeometric function by 1F1(1;α; z). Prove the following relation
between the Mittag-Leffler function with two parameters and the confluent hyper-
geometric function:

�(α)E1,α(z) = 1F1(1;α; z) .

Note that both the confluent hypergeometric function and the Mittag-Leffler func-
tion have a parameter which is a constant.

PE 10.44 Let β, γ ∈ C, and z ∈ C. Generalize the relation obtained in PE 10.43
to obtain

1F1(γ, β; z) = �(β)E
γ

1,β(z) ,

where �(·) is the gamma function.

PE 10.45 Let λ ∈ C, Re(α) > 0, β > 0, and μ > 0. Prove the relation between
two Mittag-Leffler functions with two parameters given by the following integral:

1

�(μ)

∫ z

0
(z − ξ)μ−1

Eα,β(λξα)ξβ−1dξ = zμ+β−1
Eα,μ+β(λzα) .
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PE 10.46 Let Re(α) > 0 and β > 0. Show that the difference

Eα,β(z) − zEα,α+β(z) ,

where Eα,β(z) and Eα,α+β(z) are Mittag-Leffler functions with two parameters, is
independent of parameter α.

PE 10.47 Let α, β, γ ∈ C with Re(α) > 0 and z ∈ C. For k = 1, 2, . . ., and
Re(β) > k, show that

(
d

dz

)k [
zβ−1

E
γ
α,β(zα)

]
= zβ−k−1

E
γ

α,β−k(z
α) ,

where Eγ
α,β(·) is a Mittag-Leffler function with three parameters.

PE 10.48 Let n, k ∈ N andEn,k(·) theMittag-Leffler function with two parameters.
Show that

n∑
k=1

zk−1
En,k(z

n) = ez ,

independent of n.

PE 10.49 (Christoffel-Darboux Formula) Let α ∈ C with Re(α) > 0; x, y ∈ R

with x �= y; β > 0, γ > 0 and Eα,β(·) the Mittag-Leffler function with two
parameters. Show the so-called Christoffel-Darboux formula for Mittag-Leffler
functions:

∫ z

0
ξγ−1

Eα,γ (xξα)(z − ξ)β−1
Eα,β [y(z − ξ)α] dξ

= xEα,β+γ (x zα) − yEα,β+γ (yzα)

x − y
zβ+γ−1.

PE 10.50 Using the result obtained in PE 10.49 and the l’Hôpital rule, discuss the
particular case y → x.
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Chapter 11
Applications

Mathematics is a language.

1839 – Josiah Willard Gibbs – 1903

In this chapter, we present and solve several exercises involving techniques studied
in the preceding chapters. We took the care of presenting the exercises in the same
sequence as the techniques were presented in the chapters, so that the applications
associated with a particular chapter do not involve formalisms and/or techniques
presented in subsequent chapters [1–10]. Differently from what we did in Chaps. 1–
10, we present the proposed exercises at the end of each section instead of collecting
them at the end of the chapter.

The titles of the ten following sections correspond to the titles of the ten chapters
already presented; in each section, we discuss three applications in the first three
subsections, leaving some exercises to be solved by the reader.

11.1 Ordinary Differential Equations

We believe that the most canonical applications of homogeneous and nonhomo-
geneous, linear ordinary differential equations are the mechanical mass-spring
problem and its electrical analog, the RLC circuit. As we have already presented
these problems in Chap. 1, we discuss here three other applications.

11.1.1 Newton’s Heat Transfer Law

SE 11.1 The differential equation describing heat transfer, due to Newton, appears
in several other contexts such as solute diffusion, where it is known as Fick’s [1829
– Adolf Eugen Fick – 1901] law. Here we will consider a body with no internal
heat sources, at an initial temperature T0, placed in a certain environment whose
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temperature is T < T0. A concrete example would be a cup of hot coffee whose
temperature decreases until it reaches room temperature.

We know that, due to the exchange of heat between the body and the envi-
ronment, the body temperature, T (t), changes over time until it becomes equal
to the ambient temperature T , supposed constant. This is expressed by the limit
lim

t→∞ T (t) = T .

Newton’s heat transfer law states that as T (t) approaches T , the velocity with
which T (t) tends to T gradually decreases. Supposing that this velocity d

dt
T (t)

is proportional to T (t) − T , the difference between the temperatures, the body
temperature can then be described by the ordinary differential equation

d

dt
T (t) = −k[T (t) − T ] ,

where k > 0 is a proportionality constant. Find T (t).
Solution: This is an ordinary, homogeneous, first-order and separable linear differ-
ential equation, which can be rewritten as

dT (t)

T (t) − T
= −k dt .

Integrating both members, we obtain

ln[T (t) − T ] = −kt + ln C ,

where C > 0 is a constant. Solving for T (t), we have

T (t) = C exp(−kt) + T .

To obtain C we use the condition T (0) = T0. We thus obtain

T (t) = (T0 − T ) e−kt + T ,

which is the desired result. Note that, as expected, lim
t→∞ T (t) = T .

11.1.2 Vertical Launch of a Body

SE 11.2 (a) Write the equation of motion for a mass m that is thrown vertically
upward, knowing that the resistance of the air is proportional to its speed. (b) Solve
the linear ordinary differential equation obtained in (a), assuming that the mass was
launched with initial velocity V0. (c) Obtain the maximum height attained by the
mass.
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Fig. 11.1 Diagram of the
forces acting on the body
launched vertically upward,
near the Earth’s surface,
subject to gravity and to the
resistance of the air

Ground

( ) Positive
Orientation

Solution: (a) We consider the launch point, the ground, as the origin of our
coordinate system. The trajectory is oriented upward and we take the coordinate x(t)

as the distance between the mass and the origin, at time t , as in Fig. 11.1. Upon the
mass m, there act two forces: the gravitational force, of constant magnitude −mg,
where g is the gravity acceleration, and the resistance of the air, with magnitude
−αv, where v is the velocity of the mass in the direction of motion x and α is a
proportionality constant. As the body is launched upwardly, both forces are directed
toward the ground, as we can see in Fig. 11.1.

According to Newton’s second law, we have mass × acceleration = resultant.
That is,

m
d2

dt2 x(t) = −mg − αv

= −mg − α
d

dt
x(t) . (11.1)

Dividing both members of Eq. (11.1) by m, we obtain

d2

dt2 x(t) + k
d

dt
x(t) = −g , (11.2)

where we have introduced k = α/m; this is the desired equation.
(b) As shown in Chap. 1, this is a nonhomogeneous second order linear ordinary
differential equation with constant coefficients. To solve this differential equation,
we can use the method of variation of parameters, but as the coefficients are
constant, it is more convenient to apply the method of undetermined coefficients.

First, we solve the corresponding homogeneous ordinary differential equation,
i.e.,

d2

dt2 x(t) + k
d

dt
x(t) = 0 .

Then, putting
dx

dt
≡ v(t) we have

d

dt
v(t) + kv(t) = 0 ,
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which is a separable ordinary differential equation, with solution

v(t) = c1 exp(−kt),

where c1 is an arbitrary constant. Another integration yields

x(t) = −c1

k
exp(−kt) + c2 ,

where c2 is another arbitrary constant. This is the general solution of the homoge-
neous linear, ordinary differential equation, since it contains two arbitrary constants.

Now, to obtain a particular solution of the corresponding nonhomogeneous linear
ordinary differential equation, we use the method of undetermined coefficients. The
nonhomogeneous term is a constant function, that is, a polynomial of degree zero.
We then look for a particular solution with the form

xp(t) = d1t + d2 , (11.3)

where d1 and d2 must be determined. Substituting Eq. (11.3) into the linear ordinary
differential equation, Eq. (11.2), we get

kd1 = −g ⇒ d1 = −g

k
,

and this yields a particular solution given by

xp(t) = −g

k
t + d2,

where d2 is a constant. Finally, the general solution of the nonhomogeneous
differential equation is given by the sum of the general solution of the homogeneous
differential equation and a particular solution of the corresponding nonhomoge-
neous differential equation

x(t) = −c1

k
exp(−kt) − g

k
t + d3 ,

where d3 = c2 + d2 is a constant.
Using the known conditions, we can determine the values of constants c1 and d3.

We know that x(0) = 0, because we considered the launch point the origin of the
coordinate system; in the same way, choosing the origin of times on the instant when
the body is launched, the initial velocity is v(0) = v0. Introducing these conditions
into the general solution, we get

x(0) = −c1

k
+ d3 = 0 ;
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and

v(0) = c1 − g

k
= v0 .

Solving this linear system for c1 and d3 and substituting the result into the general
solution, we finally obtain

x(t) = − 1

k2 (g + kv0)[1 − exp(−kt)] − g

k
t , (11.4)

which is the desired solution.
(c) To determine the maximum height, we must first obtain the ascension time,
i.e., the time the body takes to attain a velocity equal to zero, when there occurs
the inversion in the sense of motion. Differentiating the solution in Eq. (11.4) with
respect to t , we obtain an expression for the velocity:

v(t) = 1

k
(g + kv0) exp(−kt) − g

k
.

We must obtain the value of t for which

1

k
(g + kv0) exp(−kt) − g

k
= 0 ,

which is given by

t = 1

k
ln

(
g + kv0

g

)
.

Substituting this value of t into the equation for x(t), Eq. (11.4), we get the value
of the maximum height, i.e.,

xmax = 1

k2 (g + kv0)

(
1 − g

g + kv0

)
− g

k

1

k
ln

(
g + kv0

g

)

= 1

k

[
v0 − g

k
ln

(
g + kv0

g

)]
,

which is the desired result.

11.1.3 Falling Body with Air Resistance

SE 11.3 (a) Determine the equation of motion of a body of mass m that falls
with initial velocity equal to zero, in the atmosphere, considering the air resistance
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Fig. 11.2 Forces acting on a
body in free fall, subject to air
resistance, with the same
system of coordinates used in
the resolution of SE 11.2

Ground

( ) Positive
Orientation

proportional to the square of its velocity. (b) Show that, when the air resistance is
equal to zero, the law of motion is independent of the mass of the body.
Solution: (a) Consider that a body is abandoned from a height h, with initial velocity
v0 = 0. Take x(t) to be the space traversed by the body since the moment it
was abandoned until time t . Choose a downward orientation for the trajectory (cf.
Fig. 11.2), so that the weight force mg has a positive sign and the resistance force,
oriented upwardly, has negative sign, with k the constant of proportionality between
the resistance force and the square of velocity.

Using Newton’s second law, we obtain the following ordinary differential
equation:

mg − kv2(t) = m
d2

dt2 x(t) . (11.5)

Substituting v(t) = d

dt
x(t) into Eq. (11.5), without making explicit the depen-

dence on variable t , we obtain

m
d2x

dt2
= mg − k

(
dx

dt

)2

,

which is a nonlinear ordinary differential equation. To solve this nonlinear second-
order ordinary differential equation, we first transform it into a linear ordinary
differential equation.

Indeed, recalling that dx/dt = v(t), we can rewrite the nonlinear ordinary
differential equation in the form

m
dv

dt
= mg − kv2,

or

dv

dt
= g − k

m
v2 = g

(
1 − k

mg
v2
)

.

This is a separable first-order ordinary differential equation. To integrate it we write
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dv

1 − k
mg

v2
= g dt .

The left-hand side of the above ordinary differential equation can be expanded
by means of partial fractions, yielding

dv

1 −
√

k
mg

v
+ dv

1 +
√

k
mg

v
= 2g dt . (11.6)

Integrating both sides of Eq. (11.6), we get

√
mg

k
ln

(
1 +

√
k

mg
v

)
−
√

mg

k
ln

(
1 −

√
k

mg
v

)
= 2gt + C ,

where C is an arbitrary constant of integration. Solving it for variable v, we have

√
k

mg
v =

exp
[√

k
mg

(2gt + C)
]

− 1

exp
[√

k
mg

(2gt + C)
]

+ 1

=
exp

[√
k

mg

(
gt + C

2

)] − exp
[
−
√

k
mg

(
gt + C

2

)]

exp
[√

k
mg

(
gt + C

2

)] + exp
[
−
√

k
mg

(
gt + C

2

)] .

Recalling the hyperbolic relation

sinh u

cosh u
= tanh u = eu − e−u

eu + e−u
,

we finally get

v(t) =
√

mg

k
tanh

[√
k

mg

(
gt + C

2

)]
. (11.7)

To obtain x(t) we integrate the last expression

x(t) =
√

mg

k

∫ sinh
[√

k
mg

(
gt + C

2

)]

cosh
[√

k
mg

(
gt + C

2

)] dt

= √
mgk ln

{
cosh

[√
k

mg

(
gt + C

2

)]}(√
k

mg
g

)−1

+ D ,
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which can be written as

x(t) = m

k
ln

{
cosh

[√
k

mg

(
gt + C

2

)]}
+ D ,

where D is another arbitrary integration constant. Imposing the condition that
x(0) = 0 at the origin of times, we have

D + m

k
ln

{
cosh

(
D

2

√
k

mg

)}
= 0 .

As the body was abandoned, v0 = 0, and Eq. (11.7) then implies that C = 0. This
result implies that D = 0 and we can then write

x(t) = m

k
ln

[
cosh

(√
kg

m
t

)]
. (11.8)

(b) To show this item, we must substitute k = 0 into the solution given by
Eq.(̇11.8); the result will be an indetermination. So, in order to obtain the value
of the limit x(t) of x(t) when k goes to zero, we use the l’Hôpital rule, which yields

x(t) = m lim
k→0

1

k
ln

[
cosh

(√
kg

m
t

)]

= m lim
k→0

sinh
√

kg
m

t

cosh
√

kg
m

t

√
g

m
t
1

2

1√
k

= t

2
√

gm lim
k→0

sinh
√

kg
m

t

cosh
√

kg
m

t

√
g
m

t
√

g
m

t

= g

2
t2 lim

k→0

sinh
√

kg
m

t
√

kg
m

t

1

cosh
√

kg
m

t

= g

2
t2 ,

i.e., we have a free fall, a result independent of the mass.
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11.1.4 Proposed Exercises

PE 11.1 Suppose that a body with mass m falls freely on the Earth, which has mass
M . According to Newton’s law of gravitation, the force acting on the body is given
by

F = G
mM

r2 ,

where G is a constant of proportionality and r is the distance from the center of the
body to the center of the Earth. Note that when r = R, the radius of the Earth, F , is
equal to the weight of the body. (a) Write a nonlinear ordinary differential equation
for the motion of the body with the form

m
d2

dt2 r(t) = −gm
R2

r2(t)
,

where g is the acceleration of gravity on the surface of the Earth. (b) Show that the
time taken by the body to fall on the surface of the Earth is given by

t =
√

r0

2gR2

[√
r0R − R2 + r0

2
arcsin

(
2R − r0

r0

)
+ πr0

4

]
,

where r0 is the initial distance from the body to the center of the Earth.

PE 11.2 As we have already mentioned, the mechanical system composed of a
mass attached to a spring is analogous to an RLC electrical circuit, in the sense that
they obey the same linear, second-order ordinary differential equation, as shown in
Table 11.1. Using the notation shown in that table, (a) show that, as R, L, and C are
positive constants, all solutions of the homogeneous ordinary differential equation
go to zero when t → ∞. (b) Obtain a particular solution for the case E(t) =
E0 sin ωt , where E0 and ω are positive constants. (c) Since m, c, and k are positive
constants, can we say about the spring-mass system the same we said in item (a)? (d)
An electrical system (or the corresponding mechanical system) is said superdamped,
critically damped, or subdamped, if R2 − 4L/C > 0, R2 − 4L/C = 0 or R2 −
4L/C < 0, respectively. Find the corresponding solutions for each of these three
cases for the homogeneous ordinary differential equation—that with E(t) = 0—
and for the problem considered in item (b).

PE 11.3 In several problems in which central forces play a fundamental rule, as in
the Kepler problem, the study of limited and periodic motions is done in terms of
the linear second-order ordinary differential equation

U ′(r)
3u′(r) + rU ′′(r)

= C ,
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Table 11.1 Relation between the spring-mass system and the RLC electrical circuit

Mechanical spring-mass system RLC Electric circuit

ms̈ + cṡ + ks = F(t) LQ̈ + RQ̇ + (1/C)Q = E(t)

s → displacement Q → charge

m → mass L → inductance

c → dumping constant R → resistance

k → elastic constant 1/C → elastance

ṡ → velocity Q̇ → current

F(t) → imposed force E(t) → imposed voltage

where c > 0 is a constant and U(r) is the potential, which depends only on the
radial coordinate that characterizes the central force. Introducing another constant
A = 3 − 1/C, we obtain the linear second-order ordinary differential equation:

rU ′′(r) + Au′(r) = 0 .

(a) Given a real constant a, look for solutions of this homogeneous second-order
linear ordinary differential equation with the form

u1(r) = a rα

where α is another real constant. (b) Discuss the two particular cases α = −1
(Kepler potential) and α = 2 (harmonic oscillator). (c) Look for solutions with the
form U2(r) = b ln r , where b is a real constant. (d) Obtain the general solution, that
is, a solution containing two arbitrary constants.

11.2 Power Series and the Frobenius Method

The Taylor series and the Frobenius method are useful to solve homogeneous
linear ordinary differential equations. Here we discuss, as concrete applications,
the resolution of a first-order ordinary differential equation using the Taylor
(MacLaurin) series and of a linear second-order ordinary differential equation by
means of the Frobenius method. Also, an exercise involving the method of variation
of parameters is discussed in detail.

11.2.1 Linear First-Order Ordinary Differential Equation

SE 11.4 Consider the linear first-order ordinary differential equation
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d

dx
y(x) = x2y(x) .

(a) Find a solution in power series. (b) Determine the radius of convergence of this
series. (c) Write the result in terms of an elementary function.
Solution: (a) Consider a power series in variable x with the following form:

y(x) =
∞∑

k=0

akx
k , (11.9)

where ak are coefficients to be determined and where we assume that a0 �= 0.
Differentiating formally this series with respect to x, we have

d

dx
y(x) =

∞∑
k=1

kakx
k−1 . (11.10)

Substituting Eqs. (11.9) and (11.10) into the ordinary differential equation, we get

∞∑
k=1

kakx
k−1 = x2

∞∑
k=0

akx
k =

∞∑
k=0

akx
k+2 .

Let us introduce a change of indices in the third sum, k → k − 3. Then, the last
equation can be rewritten as

∞∑
k=1

kakx
k−1 =

∞∑
k=3

ak−3x
k−1,

or, equating the coefficients of equal powers,

a1 + 2a2x +
∞∑

k=3

kakx
k−1 =

∞∑
k=3

ak−3x
k−1.

From this equality we conclude that a1 = a2 = 0 and we obtain the recurrence
formula

kak = ak−3 for k ≥ 3 .

Since a0 �= 0 we have a3 = a0/3 and a4 = a5 = 0. Evaluating explicitly other
terms, we find a6 = a3/6 = a0/3! 3 and a7 = a8 = 0. Thus,

y(x) = a0

(
1 + x3

3
+ x6

2!32 + x9

3!33 + · · ·
)

= a0

∞∑
k=0

x3k

k!3k
.
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(b) To find the radius of convergence we use the ratio criterion. By this criterion,
the radius of convergence of the series obtained above is

R = lim
k→∞

∣∣∣∣
ak

ak+1

∣∣∣∣ = lim
k→∞

x3k

k!3k
· (k + 1)!3k+1

x3k+3 = lim
k→∞

(k + 1)3

x3 = ∞ .

Therefore, the series converges for all values of x.
(c) Finally, we identify this series with the series for an exponential function,

given by

y(x) = a0

∞∑
k=0

1

k!
(

x3

3

)k

= a0 exp

(
x3

3

)
,

where a0 is an arbitrary constant.

11.2.2 Schrödinger Equation for the Harmonic Oscillator

SE 11.5 Discuss the Schrödinger ordinary differential equation for the quantum
harmonic oscillator,

− h̄2

2m

d2

dx2
ψ(x) + kx2

2
ψ(x) = Eψ(x),

where h̄, m and k are positive constants, E is the energy, and ψ(x) is the so-called
wave function of a particle, using the Frobenius method.
Solution: Let ψ(x) = ψ . Before we apply the Frobenius series, we simplify this
linear ordinary differential equation, writing it as

d2

dx2 ψ +
(

2mE

h̄2 − mk

h̄2 x2
)

ψ = 0 . (11.11)

To simplify future calculations, we also introduce the parameters

β = 2E

h̄ω
and α2 = mk

h̄2
= m2ω2

h̄2
,

so that

αβ = 2Em

h̄2 ,

and Eq. (11.11) is reduced to
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d2

dx2
ψ + (αβ − α2x2)ψ = 0 .

Introducing the change of independent variable ξ = √
αx, we finally obtain a

dimensionless ordinary differential equation equivalent to the original one:

d2

dξ2 ψ + (β − ξ2)ψ = 0 .

Usually, this type of ordinary differential equation is solved directly by means of
the Frobenius method. Here, before we apply this method, we use the physical fact
that the wave function ψ must tend to zero when ξ → ±∞. To take advantage of
this fact, we introduce the function

ψ(ξ) = e−ξ2/2 H(ξ)

in the ordinary differential equation above, and we obtain the following ordinary
differential equation for the dependent variable H(ξ):

d2

dξ2 H(ξ) − 2ξ
d

dξ
H(ξ) + (β − 1)H(ξ) = 0 . (11.12)

This ordinary differential equation is known as Hermite equation.
Now, applying the Frobenius method, we assume for H(ξ) a solution with the

form

H(ξ) =
∞∑

m=0

cmξm = c0 + c1ξ + c2ξ
2 + c3ξ

3 + · · ·

Introducing this series into the ordinary differential equation Eq. (11.12), differ-
entiating term by term and factoring terms with the same power, we find

∞∑
m=0

[(m + 1)(m + 2)cm+2 + (β − 1 − 2m)cm] ξm = 0 .

Therefore, in order for H(ξ) to be a solution of the given differential equation, we
must have

cm+2 = 2m + 1 − β

(m + 1)(m + 2)
cm,

which permits us to calculate the coefficients with m ≥ 2 in terms of the coefficients
c0 and c1, which are arbitrary and must be determined from the initial conditions.
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We note that our result is comprised of two power series, an odd series, involving
the coefficient a0, and an even series, involving the coefficient a1. In order to obtain
solutions which are regular at the origin, we look for polynomial solutions. For this
we must have

β − 1

2
= n,

where n = 0, 1, 2, . . . From this relation and from the definition of the parameter β,
we get

En = (n + 1/2)h̄ω,

which are the possible values of the energy of the quantum harmonic oscillator
(discrete values), different from the continuous spectrum predicted by classical
mechanics.

Imposing this last condition, we obtain for the recurrence relation

cm−2 = − m(m − 1)

2(n − m + 2)
cm,

for m ≤ n. Choosing now cn = 2n and proceeding iteratively, we obtain

cn−2 = −2n−2 n(n − 1)

1! ;

cn−4 = 2n−4 n(n − 1)(n − 2)(n − 3)

2! ;

or, substituting into the expression for the series,

Hn(ξ) = (2ξ)n − n(n − 1)

1! (2ξ)n−2 + n(n − 1)(n − 2)(n − 3)

2! (2ξ)n−4 + · · ·

to which we must add c1ξ if n is odd and c0 if n is even. We thus have a family of
solutions, one for each value of n:

H0(ξ) = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2, . . .

These are the classical Hermite polynomials, which are normalized to unity by
means of the formula

∫ ∞

−∞
e−x2 [Hn(x)]2 dx = 2nn!√π .
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11.2.3 Variation of Parameters

SE 11.6 Let −π/2 < x < π/2. Obtain a particular solution for the nonhomoge-
neous second-order linear ordinary differential equation

d2

dx2 y(x) + y(x) = sec x

using the method of variation of parameters.
Solution: We know that the general solution of the corresponding homogeneous
second-order linear ordinary differential equation is given by

y(x) = A sin x + B cos x ,

where A and B are two arbitrary constants. We look for a particular solution
yP (x) of the nonhomogeneous second-order linear ordinary differential equation
by imposing that

yP (x) = A(x) sin x + B(x) cos x

where A(x) and B(x) are to be determined. To this end, we start evaluating the first
derivative, that is,

y′
P (x) = A′(x) sin x + A(x) cos x + B ′(x) cos x − B(x) sin x .

As we are free to impose another condition (the ordinary differential equation is a
second-order equation), we consider (for simplicity)

A′(x) sin x + B ′(x) cos x = 0 .

This allows us to work with the first derivative involving only A(x) and B(x). So,
evaluating the second derivative, introducing it into the nonhomogeneous second-
order linear ordinary differential equation and simplifying, we get

A′(x) cos x − B ′(x) sin x = sec x .

Using the two last equations, we obtain a linear system involving A′(x) and B ′(x),
that is,

{
A′(x) sin x + B ′(x) cos x = 0
A′(x) cos x − B ′(x) sin x = sec x

whose solution can be written as
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A′(x) = 1 and B ′(x) = − tan x .

We now integrate these first-order ordinary differential equations, obtaining

A(x) = x + α1 and B(x) = ln(cos x) + α2 ,

where α1 and α2 are arbitrary constants.
Using these two values for A(x) and B(x), we finally obtain the particular

solution of the nonhomogeneous second-order linear ordinary differential equation:

yP (x) = x sin x + cos x ln(cos x) .

Note that, as this is a particular solution of the nonhomogeneous equation, it does
not contain any arbitrary constants, which appear only in general solutions of
homogeneous equations.

11.2.4 Proposed Exercises

PE 11.4 (a) Using power series, solve the ordinary differential equation

(x − 1)
d

dx
y(x) + 2y(x) = 0 .

(b) Find the radius of convergence of the resulting power series and express it in
terms of elementary functions.

PE 11.5 Using the Frobenius method, discuss the Schrödinger differential equation
treated above without making physical considerations, i.e., substitute the series
directly into the ordinary differential equation

d2

dξ2 ψ(ξ) + (β − ξ2)ψ(ξ) = 0 ,

where β = 2E/h̄ω. Compare the results.

PE 11.6 Obtain a particular solution for the nonhomogeneous second-order linear
ordinary differential equation with constant coefficients:

d2

dx2 y(x) + 6
d

dx
y(x) + 13y(x) = 60 cos x + 26 .
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11.3 Laurent Series and Residues

In this section we present an application of the residue theorem (contour integrals)
to calculate the sum of a series, together with two applications to the calculation of
real integrals.

11.3.1 Summing Series by Means of Contour Integrals

SE 11.7 (a) Evaluate the following sum:

∞∑
k=1

2x

x2 + k2π2 .

(b) Using the result obtained in the preceding item, express (sin x)/x as an infinite
product.

Solution: Before we solve the proposed exercise, we prove a theorem concerning
the properties of the two functions π cotg πz and π cosec πz. Both functions have
simple poles at the zeros of the function sin πz, i.e., for z = k = 0, ±1, ±2, . . .,
with residues given, respectively, by

π cos kπ

[d(sin πz)/dz]z=k

= 1 for π cotg πz

and

π

[d(sin πz)/dz]z=k

= (−1)k for π cosec πz .

From these properties we can prove the following theorem.

Theorem 11.1 Suppose that f (z) is a meromorphic function and � is a contour
that encircles the zeros m, m + 1, . . . k of sin πz. Denote by

∑
Res f the sum of the

residues of the integrand, in expressions (a) or (b) below, at the poles of f (z) in �.
Then:

(a)
k∑

r=m

f (r) = 1

2πi

∫

�

π cotg πzf (z) dz −
∑

Res f ;

(b)

k∑
r=m

(−1)kf (r) = 1

2πi

∫

�

π cosec πzf (z) dz −
∑

Res f .

Proof: Using the definition of residue, we can write
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(a)
∫

�

π cotg πzf (z) dz = 2πi
∑[

Residues at the poles of the integrand
]

= 2πi

[∑
Res f +

k∑
r=m

f (r)

]
,

since the residue of the integrand at the poles z = r of π cot πz is f (r).
In the same way we obtain

(b)
∫

�

π cosec πzf (z) dz = 2πi

[∑
Res f +

k∑
r=m

(−1)rf (r)

]
.

We now turn to the solution of the proposed exercise. Consider the function

f (z) = 2x

x2 + π2z2
,

for which we can write

N∑
k=−N

2x

x2 + k2π2
= 1

2πi

∫

γ

(π cotg πz)f (z) dz −

−
∑

Residues of the integrand at the poles of f (z) ,

where � is a contour that goes to infinity, in all directions, as N → ∞, and which
does not pass on any of the singularities of the integrand. Thus, the integral goes to
zero when N → ∞. Then, as the residue of the integrand in each pole z = ±ix/π

is the same and the series is absolutely convergent, we have

lim
N→∞

N∑
k=−N

=
∞∑

k=−∞
,

so that we can write

∞∑
k=−∞

2x

x2 + k2π2 = −2π cotg

(
πix

π

)
2x

2π2ix/π
,

or, equivalently,

∞∑
k=−∞

2x

x2 + k2π2
= 2 coth x.
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Finally, we have for the sum

∞∑
k=1

2x

x2 + k2π2 = coth x − 1

x
.

Second, we integrate the above result in variable x, obtaining

∞∑
k=1

ln(x2 + k2π2) = ln

[
A sinh x

x

]
,

where A is an integration constant, determined by means of the limit x → 0, namely,

ln A =
∞∑

k=1

ln(k2π2) .

Thus, we get

sinh x

x
=

∞∏
k=1

(
1 + x2

k2π2

)
,

which is a convergent product for all real or complex x. Taking x ⇒ ix, we finally
have

sin x

x
=

∞∏
k=1

(
1 − x2

k2π2

)

which is the desired result.

11.3.2 Real Integral

SE 11.8 Use complex variables to evaluate the integral

∫ ∞

0

dx

1 + x2 .

Solution: In order to evaluate this real integral with the help of complex variables,
let us consider the following integral on the complex plane:

∮

C

dz

1 + z2 , (11.13)
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Fig. 11.3 Contour for the
integral in Eq. (11.13)

where z = x + iy and x, y ∈ R. The contour C, oriented in the positive sense
(counterclockwise), is formed by a semicircumference CR of radius R > 1 centered
at the origin, on the upper half-plane, and a line segment [−R,R], as in Fig. 11.3.

The singularities of the integrand are simple poles located at z = i and z = −i.
Since only the point z = i lies within C, we have, by the residue theorem

∫ R

−R

dx

1 + x2
+
∫

CR

dz

1 + z2
= 2πi Res(z = i) . (11.14)

The same result will be obtained if we consider a semicircumference on the lower
half-plane; in this case, the pole contributing to the residues will be the one at z =
−i.

Using Jordan’s lemma, we can show that the integral on CR goes to zero as
R → ∞. To this end, we consider a parameterization z = R eiθ , with 0 < θ < π ,
that allows us to write

|1 + z2| ≤ 1 + |z2| = 1 + R2 .

We can then write for the modulus of the integral:

∣∣∣∣
∫

CR

dz

1 + z2

∣∣∣∣ ≤
∫ π

0

R dθ

1 + R2 = πR

1 + R2 .

It is then clear that, in the limit R → ∞, the integral on CR goes to zero. Now,
taking the limit R → ∞ in Eq. (11.14) and considering the expression for the limit,
we can write

∫ ∞

−∞
dx

1 + x2 = 2πi lim
z→i

[
(z − i)

1

1 + z2

]
= 2πi lim

z→i

(
1

i + z

)
= π .

Since the integrand in the previous equation is an even function and the integration
range is symmetric, we can write

∫ ∞

−∞
dx

1 + x2 = 2
∫ ∞

0

dx

1 + x2 = π ,
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so that
∫ ∞

0

dx

1 + x2
= π

2
,

which is the desired result. Note that an identical result can be obtained using the
trigonometric substitution x = tan θ .

11.3.3 Meromorphic Function

SE 11.9 Integrate the function f (z) = z/(λ − e−iz) along a rectangular contour
with vertices at ±π , ±π + iR (see Fig. 11.4) to show that

λ

π

∫ π

0

x sin x

λ2 − 2λ cos x + 1
dx =

⎧⎨
⎩

ln(1 + λ) if 0 < λ < 1,

ln

(
1 + 1

λ

)
if λ > 1,

where λ is a positive real number.
Solution: The function f (z) has poles at

λ − e−iz = 0,

that is, at z = i ln λ. Then: (a) if λ > 1 we have a pole at z = i ln λ, inside the
contour and (b) if 0 < λ < 1 we have a pole at z = −i ln λ, outside the contour.

Integrating along the contour, we have

∮

�

z dz

λ − e−iz
=
∫ π

−π

x

λ − e−ix
dx +

∫ R

0

(π + iy)

λ − e−i(π+iy)
i dy +

+
∫ −π

π

(x + iR)

λ − e−i(x+iR)
dx +

∫ 0

R

(−π + iy)

λ − e−i(−π+iy)
i dy

=
∫ π

−π

x dx

λ − e−ix
+
∫ R

0

πi dy

λ + ey
+
∫ −π

π

x dx

λ − e−ix+R
+

Fig. 11.4 Contour of
integration used in SE 11.9
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+
∫ −π

π

iR dx

λ − e−ix+R
+
∫ R

0

πi dy

λ + ey
.

In the limit R → ∞ these integrals reduce to

∮

�

z dz

λ − e−iz
=
∫ π

−π

x dx

λ − e−ix
+ 2πi

∫ ∞

0

dy

λ + ey
,

which is equivalent to

∫ π

−π

x(λ − cos x)

λ2 − 2λ cos x + 1
dx = −i

∫ π

−π

x sin x

λ2 − 2λ cos x + 1
dx + 2πi

∫ ∞

0

dy

λ + ey
.

(11.15)
The integral on the left-hand side is null, since the integrand is odd and the interval is
symmetric. The same argument, applied to the second integral, permits us to rewrite
Eq. (11.15) in the form

0 = −2i

∫ π

0

x sin x

λ2 − 2λ cos x + 1
dx + 2πi

∫ ∞

0

dy

λ + ey
.

We then use the residue theorem. We will first consider the case λ > 1; then

∫ π

0

x sin x

λ2 − 2λ cos x + 1
dx = π

λ
ln(λ + 1) − π

λ
ln λ,

where the first term on the second member of the equality is obtained by evaluating
the integral, while the second term comes from the residue. Therefore,

λ

π

∫ π

0

x sin x

λ2 − 2λ cos x + 1
dx = ln

(
1 + 1

λ

)
.

In the case 0 < λ < 1, no term contributes to the residue; hence

λ

π

∫ π

0

x sin x

λ2 − 2λ cos x + 1
dx = ln(1 + λ) ,

which is desired result.

11.3.4 Proposed Exercises

PE 11.7 Show that, for a > b > 0,

∫ 2π

0

dθ

a2 cos2 θ + b2 sin2 θ
= 2π

ab
.
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PE 11.8 For p and q positive integers such that p > q + 1, show that

∫ ∞

0

xq

xp + 1
dx = π

p

1

sin
[
π
(

p+q
p

)] .

Recover as a particular case the result discussed in SE 11.8.

PE 11.9 If |x| ≤ π , show that

∞∑
k=0

(−1)k
cos kx

k2 + t2
= 1

2t2
+ π

2t

cosh tx

sinh πt
.

PE 11.10 For −π < θ < π and α noninteger and nonnull, show that

∞∑
k=−∞

(−1)k
cos(k + α)θ

k + α
= π

sin πα
.

11.4 Special Functions

As there are many real problems involving applications of special functions other
than the ones we have already studied, we present in this section two more families
of such functions, the Hermite polynomials and the confluent hypergeometric
function, emphasizing some of their properties but without concerning ourselves
with specific applications. A particular application involving a hypergeometric
function is also discussed.

11.4.1 Hermite Polynomials Hn(x)

SE 11.10 We call generating function of a certain family of functions, a function
which, when expanded in a power series, yields all the functions belonging to that
family in the form of the coefficients of this expansion. The generating function
F(x, t) associated with the Hermite polynomials Hn(x), n = 0, 1, 2, . . . is given
by

F(x, t) = ex2−(t−x)2 =
∞∑

k=0

Hk(x)
tk

k! ,

where t, x ∈ R and the series on the right-hand side of the equation is obtained
by expanding the function F(x, t) in a power series on variable t around the point
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t = 0. (a) Express Hn(x) as a contour integral and (b) show that Hn(x) satisfies the
second-order ordinary differential equation (Hermite equation)

d2

dx2 Hn(x) − 2x
d

dx
Hn(x) + 2nHn(x) = 0 .

(c) Prove the recurrence relation

d

dx
Hn(x) = 2nHn−1(x) .

Solution: (a) We know that

∮
dx

zn
=
{

2πi if n = 1,

0 if n �= 1,

where the integration is carried along a simple closed contour on the complex plane
containing the origin and where n ∈ Z.

Dividing the generating function F(x, t) by tn+1 and integrating along this
closed contour around the origin, we have

1

2πi

∮
F(x, t)

tn+1 dt = 1

2πi

∮
ex2−(t−x)2 dt

tn+1

=
∞∑

k=0

Hk(x)
1

k!
1

2πi

∮
tk

tn+1 dt

= Hn(x)

n! ,

so that we can write the desired result

Hn(x) = n!
2πi

∮
exp[x2 − (t − x)2]

tn+1 dt .

(b) We will show that the quantity

∂2F

∂x2 + 2t
∂F

∂t
− 2x

∂F

∂x

is identically null. Since

F(x, t) = e−t2+2tx ,

we have for the derivatives:
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∂F

∂x
= 2tF (x, t);

∂F

∂t
= (−2t + 2x)F (x, t);

∂2F

∂x2 = 4t2F(x, t).

Thus, substituting and simplifying,

∂2F

∂x2 + 2t
∂F

∂t
− 2x

∂F

∂x
= (4t2 − 4t2 + 4tx − 4tx)F (x, t) = 0 .

Using the expansion for F(x, t) in terms of the polynomials Hn(x), this identity
takes the form

∞∑
n=0

tn

n!
[

d2

dx2 Hn(x) − 2x
d

dx
Hn(x) + 2nHn(x)

]
= 0 .

This is true for all values of t . Therefore, we can write

d2

dx2 Hn(x) − 2x
d

dx
Hn(x) + 2nHn(x) = 0 .

(c) Differentiating the integral representation for Hn(x) given in item (a), we have

d

dx
Hn(x) = 2n(n − 1)!

2πi

∮
exp[x2 − (t − x)2]

tn
dt

= 2nHn−1(x) .

11.4.2 Confluent Hypergeometric Function

SE 11.11 The hypergeometric function 2F1(a, b; c; x) admits the following inte-
gral representation [2]:

2F1(a, b; c; x) = �(c)

�(a)�(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tx)−a dt, (11.16)

valid for |x| < 1, Re a > 0, Re b > 0 and Re (c − b) > 0.
Knowing that the confluent hypergeometric function 1F1(a; c; x) is obtained

from the hypergeometric function through the limit
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lim
b→∞ 2F1

(
a, b; c; x

b

)
= 1F1(a; c; x) ,

obtain an integral representation for 1F1(a; c; x).
Solution: Introducing into the integral representation, Eq. (11.16), the change of
variable x → x/b and taking the limit b → ∞, we obtain, for Re(c) > Re(a) > 0,

1F1(a; c; x) = �(c)

�(a)�(c − a)

∫ 1

0
(1 − t)c−a−1ta−1 etx dt,

where we have used the fact 2F1(a, b; c; x) = 2F1(b, a; c; x), together with the
result

lim
x→∞

(
1 + a

x

)x = ea .

11.4.3 Two-Dimensional Flow

SE 11.12 The steady flow of a compressible fluid, without viscous efforts, satisfies
the so-called hodograph equations

∂

∂ξ
φ(ξ, θ) = P(ξ)

∂

∂θ
ψ(ξ, θ) ,

∂

∂θ
φ(ξ, θ) = Q(ξ)

∂

∂ξ
ψ(ξ, θ) ,

where φ(ξ, θ) is a velocity potential, ψ(ξ, θ) is a flow function, θ is the angle
formed by the velocity vector with a fixed direction, and ξ = q2/q2

max, where q

is the flow velocity and qmax is the highest velocity that can be attained.
We consider only the case in which we have a homentropic fluid (homentropic

fluid is one in which the entropy is constant in time and uniform in space [7]), for
which

2ξ(1 − ξ)γ/(γ−1)P (ξ) = γ + 1

γ − 1
ξ − 1 and (1 − ξ)1/(γ−1)Q(ξ) = 2ξ ,

where ξ is the quotient between the specific heats and 1 < γ < 2. Show that a
solution of the partial differential equations satisfied by the flow function can be
written in the form

ψ(ξ, θ) = ξν/2 exp(−iνθ) 2F1(aν, bν; 1 + ν; ξ) ,

where aν and bν are solutions of the system aν + bν = ν − 1
γ−1 , aνbν = − ν(ν+1)

2(γ−1)

and 2F1(a, b; c; z) is a hypergeometric function.
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Solution: First, we obtain a second-order, linear partial differential equation (as we
have seen in Chap. 8) satisfied by the flow function, ψ(ξ, θ), that is,

d

dξ
Q(ξ)

∂

∂ξ
ψ(ξ, θ) + Q(ξ)

∂2

∂ξ2 ψ(ξ, θ) = P(ξ)
∂2

∂θ2 ψ(ξ, θ),

which is a separable partial differential equation.
Introducing ψ(ξ, θ) = T (θ)R(ξ) and using the method of separation of

variables, we obtain two homogeneous, second-order, linear ordinary differential
equations

d2

dθ2
T (θ) + ν2T (θ) = 0

and

Q(ξ)
d2

dξ2 R(ξ) + d

dξ
Q(ξ)

d

dξ
R(ξ) + ν2P(ξ)R(ξ) = 0 ,

where ν2 is the separation constant. A formal solution of the first ordinary
differential equation can be written as

T (θ) = A exp(−iνθ) + B exp(iνθ),

where A and B are two arbitrary constants.
We now turn to the second linear ordinary differential equation. We first

introduce the functions P(ξ) and Q(ξ) previously defined, in order to obtain the
following homogeneous, second-order, linear ordinary differential equation:

ξ(1 − ξ)
d2

dξ2 R(ξ) +
(

1 − ξ + ξ

γ − 1

)
d

dξ
R(ξ) + ν2

4ξ

(
γ + 1

γ − 1
ξ − 1

)
R(ξ) = 0 .

We then introduce a change of dependent variable R(ξ) = ξν/2F(ξ) to obtain

ξ(1−ξ)
d2

dξ2 F(ξ)+
[

1 + ν −
(

1 + ν − 1

γ − 1

)
ξ

]
d

dξ
F (ξ)+ ν(ν + 1)

2(γ − 1)
F (ξ) = 0 ,

which is a hypergeometric equation whose solution, regular at the origin, is given
by

F(ξ) = C 2F1(aν, bν; ν + 1; ξ),

where C is an arbitrary constant and aν + bν = ν − 1
γ−1 , aνbν = − ν(ν+1)

2(γ−1)
.

Putting AC = 1 and B = 0 we obtain the desired result, that is,
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ψ(ξ, θ) = ξν/2 exp(−iνθ) 2F1(aν, bν; 1 + ν; ξ) .

For certain values of ν, this result can be written in terms of Jacobi polynomials.
To obtain the exact solution we must solve the system for aν and bν written as
functions of ν and γ .

11.4.4 Proposed Exercises

PE 11.11 Let x ∈ R and � = 0, 1, 2, . . . Knowing that

x
d

dx
P�(x) = d

dx
P�+1(x) − (� + 1)P�(x)

and

d

dx
P�+1(x)

d

dx
P�−1(x) = (2� + 1)P�(x) ,

find the generating function for the Legendre polynomials, P�(x), in the form

G(x, t) = 1

(1 − 2xt + t2)1/2
=

∞∑
�=0

t�P�(x) .

PE 11.12 Use the Laplace transform to solve the following problem: A semi-
infinite spring is fixed at its extreme x = 0. The spring is initially at rest. The
initial displacement is zero, and the displacement is finite for x → ∞. An external
force acts on the spring at the (moving) point x = vt and has constant modulus f0.

PE 11.13 (Incomplete gamma function) Let Re(μ) > 0 and x ∈ R. The incomplete
gamma function, denoted by γ (μ, x), is defined by the integral

γ (μ, x) =
∫ x

0
e−t tμ−1 dt .

Represent the integral that defines the incomplete gamma function in terms of a
confluent hypergeometric function.

11.5 Fourier-Bessel and Fourier-Legendre Series

In this section, we discuss only the ways we can express a given function as a
Fourier-Bessel series or a Fourier-Legendre series, because the applications of these
series will appear in a natural way when we solve partial differential equations



11.5 Fourier-Bessel and Fourier-Legendre Series 307

associated with problems with cylindrical and spherical symmetry, respectively. We
also discuss the so-called radial Laplace equation.

11.5.1 Fourier-Bessel Series

SE 11.13 Consider the Bessel differential equation of order n written in the form

(xy′)′ +
(

α2x − n2

x

)
y = 0 , (11.17)

where α2 is a parameter and n is an integer. (a) Multiply each member of this
expression by 2xy′ and integrate it term-by-term, using integration by parts, to
obtain

2α2
∫ a

0
x[Jn(αx)]2 dx = α2a2[J′

n(αa)]2 + (α2a2 − n2)[Jn(αa)]2 .

(b) Using the result of the preceding item, obtain the specific expressions for the
case n = 0 when: (i) γk = αa is a root of the equation J0(x) = 0; (ii) γk =
αa is a root of the equation J′

0(x) = 0; (iii) γk = αa is a root of the equation
hJ0(x) + xJ′

0(x) = 0, where h is a positive constant.
Solution: (a) We know that a solution of the Bessel equation of order n is y =
Jn(αx). Multiplying Eq. (11.17) by 2xy′, we obtain

2xy′(xy′)′ + 2xy′
(

α2x − n2

x

)
y = 0 ,

which can be written as

[(xy′)2]′ + (α2x2 − n2)[y2]′ = 0 .

Then, integrating from zero to a, we have

∫ a

0
[(xy′)2]′ dx +

∫ a

0
(α2x2 − n2)[y2]′ dx = 0 ,

or

[(xy′)2 + (α2x2 − n2)y2]a0 − 2α2
∫ a

0
xy2 dx = 0 .

But y = Jn(x) is a solution of the equation and we therefore have
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2α2
∫ a

0
x[Jn(x)]2 dx = α2a2[J′

n(αa)]2 + (α2a2 − n2)[Jn(αa)]2 .

(b) Taking n = 0 in the last equation we find that

∫ a

0
x[J0(αx)]2dx = a2

2
{[J0(αa)2] + [J1(αa)]2} , (11.18)

where we have used the relation J1(αa) = −J′
0(αa).

(i) Knowing that γk is a root of the equation J0(x) = 0 we obtain, using
Eq. (11.18),

∫ a

0
x
[
J0

(γkx

a

)]2
dx = a2

2
[J1(γk)]2 .

(ii) Now, for γk a root of the equation J1(x) = 0 we get

∫ a

0
x
[
J0

(γkx

a

)]2
dx = a2

2
[J0(γk)]2 .

(iii) Finally, if γk is a root of the equation hJ0(x) + xJ′
0(x) = 0 we have the

identity

∫ a

0
x
[
J0

(γkx

a

)]2
dx = a2

2

γ 2
k + h2

γ 2
k

[J0(γk)]2 ,

which is the desired result.

11.5.2 Fourier-Legendre Series

SE 11.14 Let f (x) be a limited function on the closed interval I : −1 ≤ x ≤ 1
and continuous on I except for a finite number of discontinuities. Suppose also
that for every subinterval of I on which f (x) is continuous, the curve y = f (x)

is rectifiable, that is, there exists a series of Legendre polynomials Pn(x), n =
0, 1, 2, . . ., with constant coefficients An,

∞∑
n=0

AnPn(x) ,

such that (a) the series converges on the entire interval I ; (b) it converges for f (x)

on all points of continuity of f (x) on I , and (c) it is such that the series, after
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multiplication by an arbitrary Pn(x), is term-by-term integrable on I . Show that the
coefficients are given by

An = 2n + 1

2

∫ 1

−1
f (x)Pn(x) dx ,

with n = 0, 1, 2, . . .

Solution: This type of development is important, for example, when we discuss the
radial Laplace equation. From hypotheses (a)–(c) we have

∫ 1

−1
f (x)Pn(x) dx =

∫ 1

−1
A0P0(x)Pn(x) dx

+
∫ 1

−1
A1P1(x)Pn(x) dx + · · · +

∫ 1

−1
AnPn(x)Pn(x) dx + · · ·

Thus, due to the orthogonality property of Legendre polynomials, we get

∫ 1

−1
f (x)Pn(x) dx = An

∫ 1

−1
[Pn(x)]2 dx = An

2

2n + 1
,

which can be written as

An = 2n + 1

2

∫ 1

−1
f (x)Pn(x) dx

with n = 0, 1, 2, . . ., which is the desired result.

11.5.3 Laplace Equation in Spherical Coordinates

SE 11.15 (a) Obtain the electric potential, denoted by u, of a spherical conductor
of radius a in a uniform electric field E0 in the ẑ direction, that is, solve the Laplace
equation in spherical coordinates, (r, θ, φ), for u independent of coordinate φ,
imposing boundary conditions u(a, θ) = 0 and u(r, θ) → −E0r cos θ for r → ∞,
where E0 is a positive constant. (b) Determine the components of the electric field
Er and Eθ , that is, in the directions êr and êθ , where êr and êθ are the unitary vectors
written in spherical coordinates. (c) Determine the charge density at the surface of
the conductor and show that the total charge on the sphere is zero.
Solution: (a) Since the uniform electric field is in the ẑ direction, the potential is
independent of the coordinate φ and the Laplace equation to be solved is written as

∂2u

∂r2 + 2

r

∂u

∂r
+ 1

r2

(
∂2u

∂θ2 + cot θ
∂u

∂θ

)
= 0 ,
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with 0 ≤ r < a (interior problem) and 0 ≤ θ < π , where u = u(r, θ) is the
potential.

Using the method of separation of variables, we obtain two homogeneous, linear,
second-order ordinary differential equations

sin2 θ
d2

dθ2 T (θ) + sin θ cos θ
d

dθ
T (θ) + λ sin2 θT (θ) = 0

and

r2 d2

dr2
R(r) + 2r

d

dr
R(r) − λR(r) = 0 ,

where λ is the separation constant. If we choose λ = n(n+1), with n = 0, 1, 2, . . .,
we have for the general solution of the differential equation in variable θ

T (θ) = AnPn(cos θ) + BnQn(cos θ) ,

where An and Bn are arbitrary constants; Pn(cos θ) and Qn(cos θ) are the Legendre
polynomials and the second kind Legendre functions, respectively. We first impose
that the solution is not a singular function at θ = 0 and θ = π . This condition
implies that B = 0, so that we have

Tn(θ) = AnPn(cos θ),

which is the solution of the homogeneous linear second-order ordinary differential
equation in variable θ satisfying the boundary conditions.

On the other hand, the ordinary differential equation in variable r (radial
equation) is an Euler equation, whose general solution is given by

Rn(r) = Cnr
n + Dn

rn+1 ,

where Cn and Dn are arbitrary constants.
Combining the solutions Tn(θ) and Tn(r) and using superposition, we obtain for

the potential the general solution

u(r, θ) =
∞∑

n=0

(
anr

n + bn

rn+1

)
Pn(cos θ),

where an = CnAn and bn = DnAn are arbitrary constants to be determined from
the boundary conditions. We first consider the boundary condition when r → ∞,
which gives

a0 = 0, a1 = −E0, and an = 0 for n ≥ 2 .
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We thus have for the potential

u(r, θ) = −E0r cos θ +
∞∑

n=0

bn

rn+1 Pn(cos θ) .

On the other hand, applying the boundary condition at r = a (on the surface of the
sphere) and using the previous result, we get

0 = −E0a cos θ +
∞∑

n=0

bn

an+1
Pn(cos θ) ,

which can be rearranged as a Fourier-Legendre series,

∞∑
n=0

bn

an+1 Pn(cos θ) = E0a cos θ .

To determine the coefficients, we use the orthogonality of the Legendre polynomi-
als. The result is

bn = 2n + 1

2
E0a

n+2
∫ π

−π

cos θPn(cos θ) d(cos θ)

= E0a
3δn,1 ,

where δn,1 is the Kronecker delta function. Thus, by the definition of the Kronecker
delta function, only the term with n = 1 contributes to the solution, so that the
potential is given by

u(r, θ) = −E0r cos θ + E0
a3

r2 cos θ .

(b) With this expression for the electric potential, we can find the electric field at
all points. To do that, we just have to evaluate the partial derivatives of u(a, θ) with
respect to r and with respect to θ ,

Er ≡ −∂u

∂r
= E0

(
1 + 2

a3

r3

)
cos θ

and

Eθ ≡ −1

r

∂u

∂θ
= −E0

(
1 − a3

r3

)
sin θ ,
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both for r ≥ a.
(c) To find the charge density at the surface, denoted by σ , we recall that

σ(θ) = ε0Er |r=a ,

where ε0 is the so-called permittivity of free space. Thus, we have in this specific
case

σ(θ) = 3ε0E0 cos θ .

Finally, the total charge on the sphere is given by the expression

Q = 2πa2
∫ π

0
σ(θ) sin θ dθ ,

which yields, after integration, Q = 0. We observe that, under static conditions, the
electric field inside a conductor is zero, E = 0. So, in consequence of Gauss law,
the total charge is zero [6].

11.5.4 Proposed Exercises

PE 11.14 Suppose that the elements of the set {γm}∞m=1 are the positive roots of the
equation J′

0(x) = 0. Define

f (x) = c0 +
∞∑

m=1

cmJ0

(γmx

a

)
. (11.19)

(a) Multiply each term of this equation by x and integrate it term-by-term from
x = 0 to x = a to show that

c0 = 2

a2

∫ a

0
xf (x) dx .

(b) Multiply each term of Eq. (11.19) by xJ0(γmx/a) and integrate it term-by-term
to show that

cm = 2

a2[J0(γm)]2

∫ a

0
xf (x)J0

(γmx

a

)
dx .

PE 11.15 Use the Rodrigues formula (PE 4.21) for the Legendre polynomials,
integrating it n times by parts to show that

∫ 1

−1
P2

n(x) dx = 2

2n + 1
, n = 0, 1, 2 . . .
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PE 11.16 Consider the function

f (z) =
{

1 a < z < b , −1 ≤ a < b ≤ 1 ,

0 otherwise.

(a) Find the expansion of f (z) in a Fourier-Legendre series. (b) Expand the function

f (z) = 1 in a series with the form
∞∑

n=0

A2n+1P2n+1(z) on the interval 0 < z < 1.

11.6 Laplace and Fourier Transforms

In this section we use the method of Laplace transform to find the solution of an
integral equation of Volterra [1860 – Vito Volterra – 1940] type. As an application
of the Fourier transform, we calculate the transform of a Gaussian. Finally, a
nonhomogeneous wave equation is solved by means of the Laplace transform.

11.6.1 Volterra Integral Equation

SE 11.16 Let t > 0 and y(t) a real function. Use the Laplace transform to solve
the integral equation (with the unknown function under the integral)

y(t) = 1 − sinh t +
∫ t

0
(1 + τ) y(t − τ) dτ .

Solution: Let s > 0. Writing

∫ ∞

0
e−st y(t) dt ≡ F(s)

for the Laplace transform of y(t), we can use the convolution product

L [(f ∗ g)(t)] = L [f (t)]L [g(t)]

to evaluate F(s), obtaining

F(s) = s

s2 − 1
.

We then calculate the corresponding inverse Laplace transform, i.e.,
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L −1[F(s)] = y(t) = 1

2πi

∫ γ+i∞

γ−i∞
est s

s2 − 1
ds .

This integral can be calculated using the Bromwich contour and the residue theorem,
with the method of partial fractions. We then find

y(t) = cosh t ,

which is the desired solution.

11.6.2 Fourier Transform of a Gaussian

SE 11.17 For a and b positive real numbers, evaluate the Fourier transform of the
Gaussian function

g(x) = a exp(−bx2) .

Solution: Introducing the function g(x) given above into the expression for the
Fourier transform, we get

F [g(x)] = 1√
2π

∫ ∞

−∞
e−ikx a e−bx2

dx

= a√
2π

∫ ∞

−∞
e−b(x2+ ikx

b
) dx . (11.20)

In order to calculate rigorously this integral, we would have to use complex
variables. However, it is possible to solve the problem employing only real variables
[4]. Using the relation

x2 + ik

b
x =

(
x + ik

2b

)2

+ k2

4b2
,

we rewrite Eq. (11.20) as

F [g(x)] = a√
2π

e−k2/4b

∫ ∞

−∞
e−by2

dy ,

where y = x + ik/2b. The integral in the second member is equal to

√
π

b
, and the

final result is
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F [g(x)] = a√
2b

e−k2/4b ,

which is also a Gaussian, but with a width different from the width of the original
Gaussian.

11.6.3 Nonhomogeneous Wave Equation

SE 11.18 Let u = u(x, t) with 0 < x < 1 and t > 0. Use the Laplace transform to
obtain the solution of the nonhomogeneous wave equation

1

c2

∂2u

∂t2 − ∂2u

∂x2 = A sin(πx) ,

satisfying the homogeneous boundary conditions

u(0, t) = 0 = u(1, t), t > 0,

and the initial conditions

u(x, 0) = 0 = ∂

∂t
u(x, t)

∣∣∣∣
t=0

, 0 < x < 1 ,

where A > 0 (interpreted as an amplitude) and c > 0 (interpreted as a velocity of
propagation) are two constants.
Solution: Taking the Laplace transform in variable t , denoted by

F(x, s) =
∫ ∞

0
e−stu(x, t) dt ,

with s > 0, we obtain a nonhomogeneous linear second-order ordinary differential
equation

d2

dx2 F(x, s) − s2

c2 F(x, s) = −A

s
sin(πx) .

From the homogeneous boundary conditions, we find that

F(0, s) = 0 = F(1, s) .

To solve the nonhomogeneous ordinary differential equation, we must use the
general solution of the corresponding homogeneous ordinary differential equation,
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namely,

FH (x, s) = C1 sinh
(x

c
s
)

+ C2 cosh
(x

c
s
)

,

where C1 and C2 are two arbitrary constants. As the second member of the
nonhomogeneous ordinary differential equation is a sine function, we may use
the method of undetermined coefficients to obtain a particular solution of the
nonhomogeneous ordinary differential equation. The result is

FP (x, s) = A

s

sin(πx)

s2 + π2c2 .

Using these last two expressions, we can write the general solution of the
transformed nonhomogeneous wave equation, i.e., of the ordinary differential
equation

F(x, s) = C1 sinh
(x

c
s
)

+ C2 cosh
(x

c
s
)

+ A

s

sin(πx)

s2 + π2c2 ,

where C1 and C2 are two arbitrary constants which are to be determined by imposing
the transformed homogeneous boundary conditions, yielding C1 = 0 = C2.
Then, the solution of the initial problem (ordinary differential equation + boundary
conditions) can be written in the form (partial fractions)

F(x, s) = A

π2c2

(
1

s
− s

s2 + π2c2

)
sin(πx) .

Finally, we apply the inverse Laplace transform to this function, to obtain the solu-
tion of the original nonhomogeneous wave equation satisfying the homogeneous
boundary conditions and initial conditions given. We thus find

u(x, t) = L −1[F(x, s)] = A

π2c2 [1 − cos(πct)] sin(πx) ,

which is the desired result.

11.6.4 Proposed Exercises

PE 11.17 Let α ∈ R. Show that, for α > 0,

∫ ∞

−∞
e−αx2

dx =
√

π

α
.
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PE 11.18 Use the convolution theorem to show that
∫ ∞

−∞
f (x)g(−x) dx =

∫ ∞

−∞
f̃ (k)g̃(k) dk,

where f̃ (k) is the Fourier transform of f (x) and g̃(k) is the Fourier transform of
g(x).

PE 11.19 Let t > 0 and y(t) a real function. Solve the following integral equation:

y(t) = t + t2

2
−
∫ t

0
y(τ) (t − τ) dτ .

PE 11.20 Let a > 0 and k > 0. Evaluate the Laplace transform of the periodic
function

f (t) =
{

k for 0 ≤ t ≤ a ,

−k for a ≤ t ≤ 2a ,

with f (t) = f (t + 2a), where a is a positive constant.

PE 11.21 Let t > 0. Use the Laplace transform to evaluate the integral

�(t) =
∫ ∞

0

x sin(xt)

x2 + 1
dx .

PE 11.22 Let f (x) be a real function. Consider the following integral equation:

∫ ∞

−∞
f (x)

(t − x)2 + 1
dx = 1

t2 + 4
.

Solve this integral equation using the Fourier transform and the convolution product.

11.7 Sturm-Liouville Systems

This section provides a basis for the next two sections because, whenever we
separate a homogeneous linear second-order partial differential equation, we always
get a problem of Sturm-Liouville type. We present here a singular Sturm-Liouville
problem involving the Legendre polynomials. We also calculate, step-by-step, a
Green’s function in the so-called generalized sense, in order to make clear the
difference between the classical Green’s function and the generalized Green’s
function.
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11.7.1 Bessel Equation

SE 11.19 Let x > 0 and μ, ν ∈ R. Put the Bessel equation

x2 d2

dx2
u(x) + x2 d

dx
u(x) + (μ2x2 − ν2)u(x) = 0 ,

with u = u(x), in the Sturm-Liouville form. Classify this Sturm-Liouville equation.

Solution: Identifying the coefficients of the equation above with the ones in
Eq. (7.1), we have

a1(x) = x2, a2(x) = x, a3(x) = μ2x2, and λ = ν2 .

Then, evaluating the functions p(x), q(x), and s(x) given by Eq. (7.1), we can write

p(x) = exp

(∫ x ξ

ξ2 dξ

)
= exp(ln x) = x ,

q(x) = μ2x2

x2 · x = μ2x and s(x) = x

x2 = 1

x
.

Thus, the Bessel equation can be written as

d

dx

[
x

d

dx
u(x)

]
+
(

μ2x + ν2

x

)
u(x) = 0 .

Defining the self-adjoint differential operator

L ≡ d

dx

(
x

d

dx

)
+ μ2x ,

we obtain

L[u(x)] + ν2

x
u(x) = 0 ,

which is the Sturm-Liouville form of the Bessel equation. As p(x) = x, we have a
singular Sturm-Liouville equation.
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11.7.2 Legendre Polynomials

SE 11.20 Obtain a formal solution of the nonhomogeneous Sturm-Liouville prob-
lem

− d

dx

[
(1 − x2)

d

dx
y(x)

]
= μy(x) + f (x) ,

with y(0) = 0 and y(x) and y′(x) limited as x → 1; f (x) is a continuous known
function on the interval 0 ≤ x ≤ 1 and μ is not an eigenvalue of the associated
homogeneous problem.
Solution: As we known, this is a singular Sturm-Liouville problem. We first solve
the corresponding homogeneous problem, which is exactly the Legendre equation

(1 − x2)
d2

dx2 y(x) − 2x
d

dx
y(x) + μy(x) = 0

written in self-adjoint form.
The general solution of this homogeneous ordinary differential equation is a

linear combination of the Legendre polynomials, for μ = l(l + 1), l = 0, 1, 2, . . .

and of the Legendre functions of the second kind. However, imposing the conditions
that the function y(x) and its derivative are limited as x → 1, we are left with only
the polynomial part. Moreover, using the other condition (of separate extremes), we
conclude that only polynomials of odd order contribute because the polynomials of
even order are not null at x = 0.

Hence, we conclude from these conditions that the eigenfunctions, denoted by
φ�, associated with this problem are the odd Legendre polynomials

φ�(x) = P2�−1(x) ,

corresponding to the eigenvalues λ� = 2�(2� − 1), for � = 1, 2, 3 . . . Therefore,
a solution of this equation in terms of the eigenfunctions and corresponding
eigenvalues is given by

y(x) =
∞∑

�=1

A�

λ� − μ
P2�−1(x) ,

where A� are coefficients to be determined. This is a Fourier-Legendre series and
thus the coefficients are given by

A� =

∫ 1

0
f (x)P2�−1(x) dx

∫ 1

0
P 2

2�−1(x) dx

,

where the denominator is a normalization factor for Legendre polynomials.



320 11 Applications

11.7.3 Generalized Green’s Function

SE 11.21 Let x > 0 and f (x) a real function. Find the Green’s function associated
with the nonhomogeneous problem given by the ordinary differential equation

d2

dx2 y(x) + y(x) = −f (x)

and the conditions (separate extremes)

y(0) = 0, and y
(π

4

)
= y′ (π

4

)
.

Solution: We begin with the general solution of the associated homogeneous
problem, which is given by

y(x) = A sin x + B cos x ,

where A and B are two arbitrary constants.
From the first condition we conclude that B = 0. We are then left with

y(x) = A sin x ,

a solution that satisfies both the first and the second condition. As we know,
if a solution of the homogeneous ordinary differential equation satisfies both
conditions on the separate extremes, we need to use the so-called Green’s function
in the generalized sense, a function which satisfies the nonhomogeneous ordinary
differential equation

(
d2

dx2 + 1

)
G(x|ξ) = C sin x sin ξ ,

except at x = ξ ; here, C is a constant. G(x|ξ) is a continuous function at x = ξ , and
its derivative, G′(x|ξ), is continuous on the entire interval, except at x = ξ , where it
has a jump of magnitude −1. Moreover, this function (a function depending on two
points) must also satisfy the homogeneous boundary conditions.

We must solve the corresponding nonhomogeneous differential equation

(
d2

dx2
+ 1

)
u = α sin x,

where α = C sin ξ and u = G(x|ξ). We will use the method of variation of
parameters. The solution of the corresponding homogeneous ordinary differential
equation is

u = c1 sin x + c2 cos x,
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where c1 and c2 are two arbitrary constants. For a particular solution we must have

{
c′

1 sin x + c′
2 cos x = 0,

c′
1 cos x − c′

2 sin x = α sin x,

a linear system whose solution allows us to write

c′
1 = α sin x cos x and c′

2 = −α sin2 x ,

which yields, after integration,

c1 = −α

4
cos 2x, c2 = −α

2

(
x − sin 2x

2

)
.

Therefore, a particular solution of the nonhomogeneous differential equation is
given by

up = −α

4
sin x cos 2x − α

2
x cos x + α

4
sin 2x cos x

= −α

2
x cos x + α

4
sin x

= C

4
sin ξ sin x − C

2
x sin ξ cos x .

Then, we can write for the generalized Green’s function

G(x|ξ) =

⎧
⎪⎪⎨
⎪⎪⎩

A1 sin x + B1 cos x + C

4
sin ξ sin x − C

2
x sin ξ cos x, 0 < x < ξ ,

A2 sin x + B2 cos x + C

4
sin ξ sin x − C

2
x sin ξ cos x, ξ < x < π

4 ,

where A1, B1, A2, and B2 must be determined.
Knowing that the function G(x|ξ) satisfies the boundary conditions

G(0|ξ) = 0 and G
(π

4
|ξ
)

= d

dx
G(x|ξ)|x= π

4
,

we have for the constants B1 and B2,

B1 = 0 and B2 = C

4
sin ξ

(π

2
− 1

)
,

respectively.
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Thus, the Green’s function G(x|ξ) takes the form

G(x|ξ) =
⎧
⎨
⎩

A1 sin x + C
4 sin ξ sin x − C

2 x sin ξ cos x, 0 < x < ξ,

A2 sin x+ π−2
8 C sin ξ cos x+C

4 sin ξ sin x−C
2 x sin ξ cos x, ξ <x< π

4 .

Using the condition of continuity of the function G(x|x′) at x = x′, we have the
following relation involving the constants A1 and A2:

A1 = A2 + π − 2

8
C cos ξ .

Thus, we can write for the generalized Green’s function

G(x|ξ) =
⎧⎨
⎩

A2 sin x+ π−2
8 C cos ξ sin x+C

4 sin ξ sin x−C
2 x sin ξ cos x, 0 < x < ξ,

A2 sin x+ π−2
8 C sin ξ cos x+C

4 sin ξ sin x−C
2 x sin ξ cos x, ξ < x < π

4 .

Analogously, from the discontinuity of the function G′(x|ξ) at x = ξ , it follows
that

d

dx
G(x|ξ)

∣∣∣∣
x=ξ+

− d

dx
G(x|ξ)

∣∣∣∣
x=ξ−

= −1

and, after simplification, we get for constant C,

C = 8

π − 2
.

Therefore, the generalized Green’s function takes the form

G(x|ξ) =
⎧⎨
⎩

A2 sin x + cos ξ sin x + 2
π−2 sin ξ sin x − 4x

π−2 sin ξ cos x, 0 < x < ξ ,

A2 sin x + sin ξ cos x + 2
π−2 sin ξ sin x − 4x

π−2 sin ξ cos x, ξ < x < π
4 .

Constant A2 is determined by means of an additional condition,

∫ b

a

G(x|ξ)y(x) dx =
∫ π/4

0
G(x|ξ) sin x dx = 0 .

So, substituting G(x|ξ), evaluating the resultant integrals and simplifying, we obtain

A2 = 4

π − 2

(
sin ξ

π − 2
− ξ cos ξ

)
.
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Finally, the generalized Green’s function is

G(x|ξ) =

⎧⎪⎨
⎪⎩

(
� + cos ξ + 2

π−2 sin ξ
)

sin x − 4x
π−2 sin ξ cos x, 0 < x < ξ ,

(
� + 2

π−2 sin ξ
)

sin x −
(

4x
π−2 sin ξ − sin ξ

)
cos x, ξ < x < π

4 ,

where we have introduced the notation � ≡ 4
π−2

(
sin ξ
π−2 − ξ cos ξ

)
. Note that this is

a symmetric function, that is, G(x|ξ) = G(ξ |x).

11.7.4 Proposed Exercises

PE 11.23 Find the eigenvalues and the eigenfunctions of the singular Sturm-
Liouville (system) problem

d

dx

[
x

d

dx
y(x)

]
+ λ

x
y(x) = 0 ,

with y(1) = 0, y(eπ ) = 0 and λ > 0.

PE 11.24 Use the Green’s function technique to solve the system:

d2

dx2 u(x) = f (x) ,

u(0) = 0 and u(1) = d

dx
u(x)

∣∣∣∣
x=1

.

PE 11.25 Let μ ∈ R. Solve the following Sturm-Liouville system, formed by the
homogeneous linear second-order ordinary differential equation:

d2

dx2
u(x) + μ2u(x) = 0

and the boundary conditions u′(0) = 0 = u′(1).

PE 11.26 Consider the family of functions uk(x), k = 0, 1, 2, . . ., found in the
preceding exercise. Introducing the concept of normalization by means of the
integral

∫ 1

0
um(x)un(x) dx = δm,n ,

with m, n = 0, 1, 2, . . ., determine the corresponding normalized eigenfunctions.
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PE 11.27 Consider the Sturm-Liouville system formed by the homogeneous linear
second-order ordinary differential equation

d2

dx2 u(x) = 12x2

and the boundary conditions u(0) = 0 = u(1). (a) Obtain the corresponding Green’s
function. (b) Using the preceding item, solve the Sturm-Liouville system.

11.8 Partial Differential Equations

In this section we discuss the classification of a partial differential equation with
only two variables, the so-called projective d’Alembert equation; we also obtain the
general solution of another partial differential equation.

11.8.1 Projective d’Alembert Equation

SE 11.22 The projective d’Alembert equation, in the two-dimensional case, is
given by

(1 − x2)
∂2

∂x2
ψN(x, t) + 2xt

∂2

∂x∂t
ψN(x, t) − (1 − t2)

∂2

∂t2
ψN(x, t)−

−2(N − 1)

[
x

∂

∂x
ψN(x, t) + t

∂

∂t
ψN(x, t)

]
+ N(N − 1)ψN(x, t) = 0,

where N is a parameter independent of t and x. This is a homogeneous linear
second-order partial differential equation with two independent variables and
nonconstant coefficients. Here, too, we have the differential equation written in
dimensionless form, i.e., we consider the transformation t → ct/R and x → x/R,
where c and R are constants associated with the speed of light and the radius of
the so-called de Sitter [1872 – Willen de Sitter – 1934] Universe, respectively.
Classify the projective d’Alembert equation according to its type.
Solution: As we have already seen, the classification of a linear second-order partial
differential equation depends on the coefficients of the second derivatives. Using the
notation introduced in Chap. 8, we have

A(x, t) = 1 + x2, B(x, t) = 2xt, C(x, t) = −(1 − t2) .

So, the discriminant is given by

� = B2 − 4AC = 4x2t2 + 4(1 + x2)(1 − t2) = 4(1 + x2 − t2) .
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Then, for 1+x2 − t2 > 0 this equation is of hyperbolic type; for 1+x2 − t2 = 0
the equation is of parabolic type, and for 1 + x2 − t2 < 0 the equation is of elliptic
type. Therefore, we have a partial differential equation of mixed type, because
the discriminant depends on the independent variables, contrary to the case of the
classical d’Alembert partial differential equation, which is always of hyperbolic
type. Note that, as we have considered the transformation t → ct/R and x → x/R,
if we take the limit R → ∞, we recover exactly the classical d’Alembert partial
differential equation.

11.8.2 General Solution of a Partial Differential Equation

SE 11.23 Given the partial differential equation

2
∂2

∂x2 u(x, y) − ∂2

∂x∂y
u(x, y) − ∂2

∂y2 u(x, y) = 0 ,

(a) reduce it to the canonical form and (b) obtain its general solution.
Solution: (a) We first obtain the characteristic transformation that permits us to
reduce the equation to the canonical form. This transformation, using the notation
of Chap. 8, is obtained from the two first-order ordinary differential equations

dy

dx
= B ± √

�

2A
= −1 ± √

1 + 8

4
= −1 ± 3

4
,

or, explicitly,

dy

dx
= −1, and

dy

dx
= 1

2
.

Integrating these ordinary differential equations, we have

y + x = ξ, y − x

2
= η,

where ξ and η are the new independent variables. We must calculate the partial
derivatives. The first-order derivatives are

∂

∂x
= ∂ξ

∂x

∂

∂ξ
+ ∂η

∂x

∂

∂η
= ∂

∂ξ
− 1

2

∂

∂η
; (11.21)

∂

∂y
= ∂ξ

∂y

∂

∂ξ
+ ∂η

∂y

∂

∂η
= ∂

∂ξ
+ ∂

∂η
. (11.22)
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For the second-order derivatives, we get

∂2

∂x2 = ∂2

∂ξ2 + 1

4

∂2

∂η2 − ∂2

∂ξ∂η
; (11.23)

∂2

∂y2
= ∂2

∂ξ2
+ ∂2

∂η2
+ 2

∂2

∂ξ∂η
; (11.24)

∂2

∂x∂y
= ∂2

∂ξ2 − 1

2

∂2

∂η2 + 1

2

∂2

∂ξ∂η
. (11.25)

Substituting Eqs. (11.21)–(11.25) into the original equation, we have

{
2

∂2

∂ξ2 + 1

2

∂2

∂η2 − 2
∂2

∂ξ∂η
− ∂2

∂ξ2 + 1

2

∂2

∂η2 −

−1

2

∂2

∂ξ∂η
− ∂2

∂ξ2 − ∂2

∂η2 − 2
∂2

∂ξ∂η

}
u(ξ, η) = 0,

which becomes, after simplification,

∂2

∂ξ∂η
u(ξ, η) = 0

which is the desired canonical form.
(b) Integrating in variable η, we obtain

∂

∂ξ
u(ξ, η) = F(ξ),

where F(ξ) is an arbitrary function of ξ ; integrating again, now in variable ξ , we
find

u(ξ, η) =
∫ ξ

F (ξ ′)dξ ′ + g(η) ,

which can be written as

u(ξ, η) = f (ξ) + g(η) ,

where f (ξ) and g(η) are arbitrary functions, twice continuously differentiable, i.e.,
with continuous derivatives up to second order.
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Going back to the primitive variables, we finally get for the general solution:

u(x, y) = f (x + y) + g
(
−x

2
+ y

)
,

which is desired result.

11.8.3 Partial Differential Equation with Variable Coefficients

SE 11.24 Let x, y ∈ R
∗+. Consider the partial differential equation

xy3 ∂2

∂x2 u(x, y) + yx3 ∂2

∂y2 u(x, y) − y3 ∂

∂x
u(x, y) − x3 ∂

∂y
u(x, y) = 0 .

(a) Classify this partial differential equation and (b) reduce it to the canonical form.
Solution: (a) The discriminant is given by � = −4x4y4. It is always negative, then
this is a partial differential equation of elliptic type.

(b) To obtain the canonical form, we must first evaluate the characteristic
equations, that is, the two first-order ordinary differential equations

dy

dx
= 0 ± 2ix2y2

2xy3 = ±i
x

y
,

whose integration furnishes

y2 = ix2 + C1 and y2 = −ix2 + C2 ,

where C1 and C2 are two arbitrary constants. Introducing the characteristic coordi-
nates ξ and η, we have

y2 − ix2 = ξ and y2 + ix2 = η.

As we have two complex conjugate characteristic coordinates, we can use them
to define two other real coordinates, α and β, given by

η + ξ

2
= y2 = α and

η − ξ

2i
= x2 = β .

Evaluating the first derivatives we get

∂

∂x
= 2

√
β

∂

∂β
and

∂

∂y
= 2

√
α

∂

∂α
.
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For the second derivatives, we have

∂2

∂x2 = 2
∂

∂β
+ 4β

∂2

∂β2 and
∂2

∂y2 = 2
∂

∂α
+ 4α

∂2

∂α2 .

Introducing the expressions for the first and second derivatives into the partial
differential equation and simplifying, we get

∂2

∂α2 u(α, β) + ∂2

∂β2 u(α, β) = 0 ,

which is the canonical form, the desired result.

11.8.4 Proposed Exercises

PE 11.28 Write the two-dimensional Laplace equation,

�u(x, y) = ∂2

∂x2 u(x, y) + ∂2

∂y2 u(x, y) = 0 ,

in polar coordinates (r, θ ) and classify it according to its type.

PE 11.29 Write the three-dimensional Laplace equation,

�u(x, y, z) = ∂2

∂x2 u(x, y, z) + ∂2

∂y2 u(x, y, z) + ∂2

∂z2 u(x, y, z) = 0 ,

in spherical coordinates (r, θ, φ) and classify it according to its type.

PE 11.30 Find the general solution of the partial differential equation

∂2

∂x2 u(x, y) + 2
∂2

∂x∂y
u(x, y) + ∂2

∂y2 u(x, y) = 0 .

11.9 Separation of Variables

In this section we discuss the Laplace equation in spherical coordinates, in whose
solution emerge the Legendre polynomials; we solve a problem involving the so-
called Poisson equation and present the Stark [1874 – Johannes Stark – 1957]
effect in parabolic coordinates.
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11.9.1 Laplace Equation in Spherical Coordinates

SE 11.25 Separate the Laplace equation written in spherical coordinates, i.e., the
partial differential equation

∂2ψ

∂r2 + 2

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂θ2 + cotg θ

r2

∂ψ

∂θ
+ 1

r2 sin2 θ

∂2ψ

∂φ2 = 0 ,

where r , θ , and φ are the usual spherical coordinates, and ψ = ψ(r, θ, φ).
Solution: We suppose that ψ(r, θ, φ) = R(r)T (θ)S(φ). Introducing these functions
into the partial differential equation, we get

T SR′′ + 2T S

r
R′ + RS

r2 T ′′ + RS cot θ

r2 T ′ + RT

r2 sin2 θ
S′′ = 0 ,

where we have omitted the explicit dependence associated with each function and
the prime denotes differentiation with respect to the corresponding independent
variable.

Multiplying this equation by r2 sin2 θ/RT S we have

r2 sin2 θ

RT S

[
T SR′′ + 2T S

r
R′ + RS

r2 T ′′ + RS cotg θ

r2 T ′
]

= −S′′

S
.

As the first member does not depend on φ, while the second one depends only
on φ, we must have

S′′ + λS = 0 (11.26)

and

T R′′ + 2T

r
R′ + R cotg θ

r2
T ′ − λRT

r2 sin2 θ
= 0 , (11.27)

where λ is a separation constant which depends on the boundary conditions imposed
on variable φ.

Multiplying Eq. (11.27) by r2/T R, we get

r2

T R

[
T R′′ + 2T

r
R′
]

= −T ′′

T
− cotg θ

T
T ′ + λ

sin2 θ
,

and, as the first member does not depend on θ and the second one depends only on
θ , we have

r2R′′ + 2rR′ − μR = 0 (11.28)
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and

T ′′ + cotg θT ′ − λ

sin2 θ
T + μT = 0 , (11.29)

where μ is another separation constant.
As a particular case, we consider a situation in which λ = m2, with m = 0, ±1,

±2 . . . and μ = l(l + 1) with l = 0, 1, 2 . . . Equations (11.26), (11.28), and (11.29)
are then given by

S′′ + m2S = 0,

T ′′ + cotg θT ′ +
[
l(l + 1) − m2

sin2 θ

]
T = 0 ,

r2R′′ + 2rR′ − l(l + 1)R = 0 .

The corresponding general solutions are

S(φ) = A cos mφ + B sin mφ ,

T (θ) = CP m
l (cos θ) + DQm

l (cos θ) ,

R(r) = Erl + Fr−l−1 ,

where A, B, C, D, E, and F are constants of integration while P m
l (cos θ)

and Qm
l (cos θ) are the associated Legendre functions of first and second kind,

respectively.

11.9.2 Poisson Equation in Elasticity

SE 11.26 It is well-known in the theory of elasticity that the stress function
ψ(x, y) = ψ on a bar satisfies the Poisson differential equation, a nonhomogeneous
differential equation,

∂2ψ

∂x2 + ∂2ψ

∂y2 = −2 ,

on a region R of the xy plane, with ψ = 0 on the boundary of R. For the sake of
simplicity, we consider a rectangular transversal section with dimensions a and b.
(a) Introduce the change of independent variable

ψ(x, y) = u(x, y) + ax − x2
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into the Poisson differential equation and show that u(x, y) satisfies the following
boundary value problem:

∂2u

∂x2
+ ∂2u

∂y2
= 0 on R ,

u(0, y) = u(a, y) = 0 ,

u

(
x,

b

2

)
= u

(
x,

−b

2

)
= x2 − ax .

(b) Use the method of separation of variables to show that the stress function is
given by

ψ(x, y) = ax − x2 − 8a2

π3

∑
k = odd

cosh(kπy/a) sin(kπx/a)

k3 cosh(kπb 2a)
.

Solution: (a) We consider ψ(x, y) = u(x, y) + ax − x2. Differentiating and
substituting the result into the Poisson differential equation, we verify that u(x, y)

satisfies the Laplace equation. From the boundary conditions, we have

ψ(0, y) = u(0, y) = 0 ⇒ u(0, y) = 0;

ψ(a, y) = u(a, y) = 0 ⇒ u(a, y) = 0;

ψ

(
x,

b

2

)
= u

(
x,

b

2

)
+ ax − x2 = 0 ⇒ u

(
x,

b

2

)
= x2 − ax;

ψ

(
x,

−b

2

)
= u

(
x,

−b

2

)
+ ax − x2 = 0 ⇒ u

(
x,

−b

2

)
= x2 − ax.

As a matter of fact, when we deal with a real problem, we write ψ(x, y) =
u(x, y) + ω(x) and assume that function u(x, y) satisfies the corresponding
homogeneous differential equation. Using the fact that ψ(x, y) must satisfy the
nonhomogeneous equation and the boundary conditions, we arrive at an ordinary
differential equation for ω(x) which, in the present case, would lead us to the
solution ω(x) = ax − x2.

(b) Setting u(x, y) = R(x)T (y) and introducing this function into the Laplace
equation we have

R′′

R
= −T ′′

T
= λ ,

where λ is a constant.
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Using the homogeneous conditions u(0, y) = u(a, y) = 0, we obtain the
following Sturm-Liouville problem:

R′′ − λR = 0 ;
R(0) = R(a) = 0 .

This problem admits nontrivial solutions only for λ = −k
2
, where k is a positive

real number. It is easy to see that the corresponding eigenfunctions are

Rk(x) = A sin

(
kπ

a
x

)
,

where k = 1, 2, 3 . . . Then, the equation in variable y is given by

T ′′ − k
2
T = 0 ,

whose solution is

T (y) = B cosh ky + C sinh ky,

where B and C are constants and k = kπ/a, with k = 1, 2, 3 . . .

Using the superposition principle, we find that a solution of the Laplace
equation is

u(x, y) =
∞∑

k=1

[
ak cosh

(
kπ

a
y

)
+ bk sinh

(
kπ

a
y

)]
sin

kπ

a
x,

where ak = AB and bk = AC are constants.
Now, using the nonhomogeneous conditions, we have

u(x, b/2) =
∞∑

k=1

[
ak cosh

(
kπ

2

b

a

)
+ bk sinh

(
kπ

2

b

a

)]
sin

kπ

a
x = x2 − ax ;

u(x,−b/2) =
∞∑

k=1

[
ak cosh

(
kπ

2

b

a

)
− bk sinh

(
kπ

2

b

a

)]
sin

kπ

a
x = x2 − ax .

We then conclude that bk = 0; there remains only the condition

∞∑
k=1

ak cosh

(
kπ

2

b

a

)
sin

kπ

a
x = x2 − ax,

which is a sine Fourier series. Therefore, the coefficients ak are given by

ak cosh

(
kπ

2

b

a

)
= 2

a

∫ a

0
(x2 − ax) sin

(
kπ

a
x

)
dx ,
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that is,

ak = − 8a2

k3π3

[
cosh

(
kπb

2a

)]−1

,

where k is an odd number.
Finally, adding the stationary solution, we get

ψ(x, y) = ax − x2 − 8a2

π3

∑

k=odd

cosh(kπy/a) sin(kπx/a)

k3 cosh(kπb/2a)
,

which is the desired solution.

11.9.3 Parabolic Coordinates and the Stark Effect

SE 11.27 Let us first introduce the parabolic coordinates, denoted by μ, ν,ψ . This
is a rotational coordinate system generated by the transformation 2z = ω2, where
z = x+ iy and ω = μ+ iν, with x and y real variables and μ and ν real functions of
real variables. The relation between Cartesian coordinates and parabolic coordinates
is given by Romão Martins and Capelas de Oliveira [9]

x = μν cos ψ, y = μν sin ψ, z = 1

2
(μ2 − ν2) .

The Laplacian operator in parabolic coordinates is then given by

� = 1

μ2 + ν2

(
∂2

∂μ2 + 1

μ

∂

∂μ
+ ∂2

∂ν2 + 1

ν

∂

∂ν

)
+ 1

μ2ν2

∂2

∂ψ2 .

Using this Laplacian operator, we will discuss the separability of the time-
independent Schrödinger equation in the study of the so-called Stark effect, that
is, the displacement of atomic energy levels that takes place when an atom is placed
in the presence of an external electric field. We first present the general form for the
potential:

V = v1(μ)

μ2 + ν2 + v2(ν)

μ2 + ν2 + v(ψ)

μ2ν2 .

With this potential, the separability of Schrödinger equation in parabolic coordinates
is guaranteed, so we can discuss the Stark effect. The presence of an external electric
field E0 in the direction of the positive z axis adds a term −eE0z to the potential
energy in the Schrödinger equation. So, in parabolic coordinates, the Schrödinger
equation becomes
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�φ + 2m

h̄2

(
e2

r
+ eE0z + E

)
φ = 0 ,

where the potential can be written as

−V = e2

r
+ eE0z = 1

μ2 + ν2

(
2e2 + eE0μ

4

2
+ eE0ν

4

2

)
.

Following the method of separation of variables, we introduce φ(μ, ν, ψ) =
M(μ)N(ν)�(ψ) = MN� and the separation constants p2 and q2. For variable ψ ,
we can write the following ordinary differential equation:

d2

dψ2 �(ψ) + p2�(ψ) = 0 ,

where p2 is an arbitrary constant. The equation for variable μ is

d2

dμ2
M(μ)+ 1

μ

d

dμ
M(μ)+

(
2mE

h̄2
μ2 + 4me2

h̄2
+ meE0

h̄2
μ4 + p2

μ2
− q2

)
M(μ) = 0 ,

with q2 another arbitrary constant. Finally, for variable ν we have

d2

dν2 N(ν) + 1

ν

d

dν
N(ν) +

(
2mE

h̄2 ν2 − meE0

h̄2 ν4 − p2

ν2 + q2
)

N(ν) = 0 .

The first equation, in variable ψ , is a simple equation with constant coefficients.
The second and third equations can be solved by the method of power series. For
E0 �= 0 we would also need to use perturbation theory, whereas in the case where
E0 = 0 these two ordinary differential equations have solutions in terms of Laguerre
polynomials [9].

11.9.4 Proposed Exercises

PE 11.31 If a circular membrane of radius r0 with fixed boundary is subject to a
periodic force F0 sin ωt by unity of mass, uniformly distributed over the membrane,
then the displacement function u(r, t) satisfies the partial differential equation

∂2u

∂t2 = a2
(

∂2u

∂r2 + 1

r

∂u

∂r

)
+ F0 sin ωt ,

where F0 and a2 are constants. Substitute u(r, t) = R(r) sin ωt in order to obtain a
solution which is a periodic function of t .
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PE 11.32 (a) Find the solution u(r, θ) (independent of φ) of the three-dimensional
Laplace equation inside the sphere r ≤ a, satisfying the following conditions:

u(a, θ) = 1 if 0 < θ <
π

2
;

u(a, θ) = 0 if
π

2
< θ < π .

(b) Show that u(r,
π

2
) = 1

2
for 0 ≤ r ≤ a.

Remember that
∫ 1

0
Pl (z)dz = Pl−1(0)

l + 1
, where l = 1, 2, . . . and Pl (z) is the

Legendre polynomial of order l.

PE 11.33 Using SE 11.27, solve the ordinary differential equation in variable ν,
with E0 = 0. To this end, first introduce the dependent variable N(ν) = xp/2S(x),
with x = ν2. Then, considering E < 0, introduce the parameter βh̄ = √−2mE

and another dependent variable S(x) = e−βx/2T (x). Solve the resulting ordinary
differential equation.

11.10 Fractional Calculus

In this section, we discuss three exercises involving techniques of fractional cal-
culus, namely, the Riemann-Liouville fractional integral and the Caputo fractional
derivative and a particular Mittag-Leffler function.

11.10.1 Riemann-Liouville Fractional Integral

SE 11.28 (Left-/Right-Sided Riemann-Liouville Fractional Integrals) Discuss
the possibilities associated with left-/right-sided Riemann-Liouville fractional inte-
grals. Do the same for the corresponding Riemann-Liouville and Caputo fractional
derivatives.
Solution: In Chap. 10, the Riemann-Liouville fractional integral (and also the
corresponding fractional derivative) was introduced only by means of the left-sided
Riemann-Liouville fractional integral. Nothing was said in terms of the correspond-
ing right-sided Riemann-Liouville fractional integral. Here, we discuss briefly what
we can do with left/right Riemann-Liouville fractional integral/derivative (and also
for the Caputo fractional derivative). We present only the case of the Riemann-
Liouville fractional integral, discussing two ways to interpret it, one of them due to
Samko et al. [10] and the other due to Hilfer [5].
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Fig. 11.5 ξ is on the
left/right relatively to x

Before we introduce both definitions, we sketch a simple scheme involving an
interval. Let a, b ∈ R with b > a and x ∈ R such that a < x < b. Considering
ξ ∈ R, a < ξ < b, we have the two possibilities, shown in Fig. 11.5, for the relation
between x and ξ .

Figure 11.5 shows that we can have ξ < x (ξ is on the left of x) or ξ > x (ξ is
on the right of x), so that we can write

a < ξ < x and x < ξ < b ,

respectively. On the other hand, using the extremes of the interval as reference, we
can also say that

ξ is on the right of a and ξ is on the left of b,

respectively. Given these two possibilities, we conclude that we can compare ξ

with x and we can compare ξ with one of the extremes, the starting point of
the integration. With these schemes in mind, we can introduce the following two
definitions.

Definition 11.10.1 (Left/Right Riemann-Liouville Fractional Integrals) Let
f (x) be a locally integrable function on the interval (a, b) with b > a. The integrals

(
Iα
a+ f

)
(x) =: 1

�(α)

∫ x

a

(x − ξ)α−1f (ξ) dξ , x > a

and

(
Iα
b− f

)
(x) =: 1

�(α)

∫ b

x

(ξ − x)α−1f (ξ) dξ , x < b ,

where α > 0 are called fractional integrals of order α. They are sometimes called
left-sided and right-sided fractional integrals, respectively. However, both integrals
can be called Riemann-Liouville fractional integrals [10].

Definition 11.10.2 (Left-Sided and Right-Sided Fractional Integrals) Let f (x)

be a locally integrable function on the interval (a, b) with b > a and α > 0. For
−∞ ≤ a < x < b ≤ ∞ we have



11.10 Fractional Calculus 337

aI
α
x f (x) =: 1

�(α)

∫ x

a

(x − ξ)α−1f (ξ) dξ, (right-sided)

and similarly for −∞ < x < b ≤ ∞

xI
α
b f (x) =: 1

�(α)

∫ b

x

(ξ − x)α−1f (ξ) dξ, (left-sided)

where both integrals are defined for suitable f [5].

11.10.2 Memory Effect

SE 11.29 Discuss the so-called memory effect.
Solution: Let x ∈ R and μ ∈ R. The solution of a certain initial value problem,
a differential equation with initial conditions, can be obtained through the Laplace
transform and the convolution theorem and can be written as

y(x) = 1

�(μ)

∫ x

0
(x − ξ)μ−1f (ξ) dξ. (11.30)

Let us consider in Eq. (11.30) two distinct values x1 and x2 such that x1 < x2. We
separate the integral in two intervals

y(x2) = 1

�(μ)

∫ x2

0
(x2 − ξ)μ−1f (ξ) dξ

and

y(x1) = 1

�(μ)

∫ x1

0
(x1 − ξ)μ−1f (ξ) dξ .

Take the difference y(x2) − y(x1); we get

y(x2) − y(x1) = 1

�(μ)

∫ x2

0
(x2 − ξ)μ−1f (ξ) dξ − 1

�(μ)

∫ x1

0
(x1 − ξ)μ−1f (ξ) dξ ,

which, by rearranging, can be rewritten in the form

y(x2) − y(x1) = 1

�(μ)

∫ x1

0
[(x2 − ξ)μ−1 − (x1 − ξ)μ−1]f (ξ) dξ +

1

�(μ)

∫ x2

x1

(x2 − ξ)μ−1f (ξ) dξ , (11.31)

since x1 < x2. Note that these two integrals must be evaluated on two different
intervals.
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We see from Eq. (11.31) that the first integral involves values between 0 and x1,
while the second integral contains values between x1 and x2. For all values of μ �= 1,
the two integrals contribute, whereas in the case μ = 1 this does not happen, i.e.,
only the second parcel contributes.

Since the second interval does not contain values of ξ < x1, we say that systems
modeled by integer order equations (μ = 1) do not exhibit the so-called memory
effect. On the other hand, in the cases in which 0 < μ < 1, the first parcel also
contributes, that is, y(x) depends on the two parcels, so that we say that systems
modeled by noninteger order equations present the memory effect, that is, they have
a memory effect expressed by the integral on the interval from zero to x1, before (in
the past of) x1.

11.10.3 Fractional Differential Equation

SE 11.30 (Fractional Differential Equation of Arbitrary Order) Let y(x) be a
continuous function satisfying the initial conditions y(0) = A and y′(0) = B, where
A and B are two positive constants and μ is a parameter such that 1 < μ ≤ 2. Solve
the fractional differential equation of order μ,

dμ

dxμ
y(x) + k2 y(x) = 0 ,

where k2 > 0 is a constant and the derivative is considered in the Caputo sense.
Solution: Note that, in the case μ = 2, this equation is an ordinary differential
equation describing a free harmonic oscillator. Its general solution can be written in
terms of trigonometric functions, and, given the initial conditions, we can obtain a
particular solution satisfying the complete initial value problem.

Given the importance of this physical system, it is natural to introduce a
noninteger order, μ, to obtain a fractional differential equation. It is important to
observe that we exclude one of the two extremes of the range for μ, considering
only μ = 2. With this choice, we can recover the solution of the classical harmonic
oscillator. We might also keep only the extreme μ = 1, excluding the right extreme,
but the particular case would not be recovered.

We use the Laplace transform to solve this fractional differential equation. Taking
the Laplace transform on both sides of the fractional differential equation, we have

L

[
dμ

dxμ
y(x)

]
+ k2L [y(x)] = 0 .

Using the property of the Laplace transform of the derivative, we get an algebraic
equation for F(s),

sμF (s) − y(0) sμ−1 − y′(0) sμ−2
︸ ︷︷ ︸

∗
+k2F(s) = 0
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where F(s) is the Laplace transform of y(x) with parameter s. As we have just said,
in the case μ = 2, the expression highlighted with a star ∗ is the expression for the
Laplace transform of the second-order derivative.

We now apply the initial conditions: y(0) = A, the initial displacement and
y′(0) = B, the initial speed. Solving the resulting algebraic equation, we have

F(s) = A
sμ−1

sμ + k
+ B

sμ−2

sμ + k
.

We must use the complex plane to calculate the inverse Laplace transform of F(s).
If we do this, we arrive at the general solution of the original fractional differential
equation,

y(x) = AEμ(kxμ) + B Eμ,2(−kxμ) , (11.32)

where Eμ(·) is the classical Mittag-Leffler function and Eμ,2(·) is the Mittag-Leffler
function with two parameters. Constants A and B are determined by the initial
conditions.

It is important to note that in the case μ = 2, we recover the result of the free
harmonic oscillator, so that we can say that the solution obtained in Eq. (11.32)
is the solution of the fractional differential equation describing the motion of a
fractional harmonic oscillator. Besides, the introduction of a term involving the first-
order derivative yields a differential equation associated with a damped harmonic
oscillator, and we can obtain a relation between damping coefficient and the order
of the fractional differential equation [3, 4]. On the other hand, if we had considered
the interval 0 < μ ≤ 1, we would have a problem associated with the so-
called fractional decay, because when the parameter μ = 1, the resulting equation
describes a decay process.

11.10.4 Proposed Exercises

PE 11.34 (a) Let f = (x − a)μ be a continuous function with a > 0 and μ ∈ R.
Evaluate its derivative of order α ∈ R in the Riemann-Liouville sense and compare
it with the derivative in the Caputo sense. (b) Taking μ = 0, evaluate both derivatives
and compare them, to show that the derivative in the Riemann-Liouville sense of a
constant is not zero.

PE 11.35 (Semigroup Property) Let α > 0 and β > 0. Show the additive law for
fractional integrals,

aI
α
x aI

β
x f = aI

α+β
x f .
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PE 11.36 The tautochrone problem, also known as isochrone curve problem, seems
to be the first application of fractional calculus. It consists in determining a curve
on which the time taken by an object to slide frictionless, in uniform gravity, to the
lowest point of the curve is independent from the starting point. The problem was
first solved geometrically by Huygens [1629 – Christiaan Huygens – 1695]. The
analytical solution was presented by Abel [1802 – Niels Henrick Abel – 1829].

Using the principle of conservation of energy, we can obtain an integral equation,
similar to the Riemann-Liouville fractional integral. This equation will be solved
by means of the fractional integral, although it could be solved with the classical
Laplace transform methodology.

Let m be the mass of the object, v(t) its velocity at time t , y0 the height at which
it is abandoned, and y(t) its height at time t . It is known that the kinetic and potential
energies are given, respectively, by

1

2
m v2 and m g y .

Since the particle is constrained to move on the curve, its velocity is v = ds/dt ,
where s is the distance measured along the curve. From the principle of conservation
of energy, we can write

dt = ± ds√
2g(y0 − y)

.

As the function s(y) describes the remaining distance along the curve in terms of
the remaining height y and since distance and height decrease as time passes, we
consider only the negative sign. Writing the expression obtained in a more adequate
form, we have

dt = − 1√
2g

(y − y0)
−1/2

(
ds

dy

)
dy . (11.33)

Integrating both sides of Eq. (11.33) from y0 to zero, we get

τ = t (y0) =
∫ 0

y0

dt = − 1√
2g

∫ 0

y0

(y − y0)
−1/2

(
ds

dy

)
dy ,

which can be put in the form

τ = 1√
2g

∫ y0

0
(y − y0)

−1/2
(

ds

dy

)
dy , (11.34)

where τ is the descent time. This is an integrodifferential equation since the variable
to be determined, s(y), appears in the integrand through its derivative.
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The solution proposed by Abel employs the definition of the Riemann-Liouville
fractional integral. Indeed, applying the Riemann-Liouville fractional derivative of
order 1/2 to both sides of the integral equation, we have

d1/2

dy1/2
τ =

√
π√
2g

d1/2

dy1/2

[
1

�(1/2)

∫ y0

0
(y − y0)

−1/2
(

ds

dy

)
dy

]
.

Note that the Riemann-Liouville fractional derivative operator is the left inverse
operator of the fractional integral. Using the convolution theorem, it is possible
to evaluate the derivative of order 1/2 and to show that the solution of the Abel
equation is given by

s(y) = 2τ
√

2g

π
y1/2 .

Solve this exercise using the Laplace transform to obtain the same result.

11.11 Miscellaneous Problems

In this section we discuss four problems, three of them involving partial differential
equations. The first problem is solved using Fourier transform techniques, while
the second one employs Laplace transforms. The third problem brings up a partial
differential equation solved with the method of separation of variables. The section
ends with an ordinary fractional differential equation.

11.11.1 Wave Equation

SE 11.31 Let c2 > 0 be a constant with dimensions of velocity. Using the Fourier
transform methodology, solve the one-dimensional wave equation

∂2u

∂t2 = c2 ∂2u

∂x2 , −∞ < x < ∞ , t > 0 ,

subject to conditions (i) the initial deflection is known, u(x, 0) = f (x); (ii) the

initial velocity is zero,
∂

∂t
u(x, t)|t=0 = 0; and (iii) u → 0 and

∂u

∂x
→ 0 as |x| →

∞, for all t . Assume that f (x) admits a Fourier transform.
Solution: First, we take the Fourier transform with respect to variable x, writing
F[u(x, t)] = F(ω, t). Using the properties of the Fourier transform, we have

F
(

∂2u

∂t2

)
= ∂2F

∂t2 = c2F
(

∂2u

∂x2

)
= −c2ω2F,
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that is,

∂2F

∂t2 + c2ω2F = 0,

whose general solution is given by

F(ω, t) = A(ω) cos cωt + B(ω) sin cωt ,

where A(ω) and B(ω) are independent of variable t . For t = 0, since F[u(x, 0)] =
F(ω, 0), we obtain, using the initial conditions:

F(ω, 0) = A(ω) = F [f (x)];
∂

∂t
F (ω, t)

∣∣∣∣
t=0

= cωB(ω) = 0 .

Therefore, the solution can be written as

F(ω, t) = F [f (x)] cos cωt.

Expressing the cosine in terms of the exponential function and using the
displacement formula, Theorem 6.9,

F [f (x − a)] = e−iωa F [f (x)],
we have

F[f (x)] cos cωt = 1

2
F [f (x)][eiωct + e−iωct ] .

Evaluating the corresponding inverse Fourier transform, we finally get

u(x, t) = 1

2
[f (x − ct) + f (x + ct)],

where f (x−ct) and f (x+ct) are two arbitrary, twice differentiable functions. This
is the well-known d’Alembert solution for the one-dimensional wave equation.

11.11.2 First-Order Partial Differential Equation

SE 11.32 Let u = u(x, t). Use the Laplace transform methodology to solve the
linear first-order partial differential equation

∂u

∂t
+ x

∂u

∂x
= 0 ,

satisfying the conditions u(0, t) = t and u(x, 0) = 0.
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Solution: Taking the Laplace transform with respect to variable t , we have

L
[

∂u

∂x

]
+ x [sL[u] − u(x, 0)] = 0 .

Assuming that we can interchange the integral with a derivative and applying the
initial condition u(x, 0) = 0, we get

L

[
∂u

∂x

]
=
∫ ∞

0
e−st ∂u

∂x
dt = ∂

∂x

∫ ∞

0
e−st u(x, t) dt = ∂

∂x
F (x, s) ,

where F(x, s) is the Laplace transform of u(x, t).
Then, the differential equation for F is

∂F

∂x
+ xsF = 0 ,

whose solution is given by

F(x, s) = c(s) e−sx2/2 ,

where c(s) is a function independent of x. Using the other condition and recalling
that L [t] = 1/s2, we obtain c(s) = 1/s2, thus,

F(x, s) = 1

s2
e−sx2/2 .

Evaluating the corresponding inverse Laplace transform, we finally obtain

u(x, t) =

⎧⎪⎨
⎪⎩

0 for t ≤ x2/2,

t − x2

2
for t ≥ x2/2,

which is the desired result.

11.11.3 Helmholtz Equation in Cylindrical-Parabolic
Coordinates

SE 11.33 The cylindrical-parabolic coordinate system is used, for example, in
the analysis of the relativistic electron scattering process by a scattering center
with symmetry associated with cylindrical-parabolic coordinates. Solve the so-
called Helmholtz [1821 – Hermann Ludwig Ferdinand von Helmholtz – 1894]
equation.
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Solution: Denote by μ, ν, and z the cylindrical-parabolic coordinates 0 ≤ μ < ∞,
−∞ < ν < ∞, and −∞ < z < ∞; their relations with Cartesian coordinates are
given by

x = 1

2
(μ2 − ν2), y = μν, z = z .

Using these relations, evaluating the first and second derivatives, and simplifying,
we get for the Laplacian operator

� = 1

μ2 + ν2

(
∂2

∂μ2 + ∂2

∂ν2

)
∂2

∂z2 .

Let k2 be an arbitrary constant. We want to find the separation of variables of the
so-called Helmholtz partial differential equation in three independent variables, that
is

�φ(μ, ν, z) + k2φ(μ, ν, z) = 0 ,

with the Laplacian operator written in cylindrical-parabolic coordinates. Looking
for separable solutions, we first introduce φ(μ, ν, z) = M(μ)N(ν)Z(z) ≡ MNZ.
We can then write, for the function in coordinate z,

d2Z

dz2
+ (k2 + α1)Z = 0 ,

where α1 is an arbitrary separation constant. For variable μ we have

d2M

dμ2 − (α2 + α1 μ2)M = 0 ,

with α2 another arbitrary separation constant. Finally, we find for variable ν

d2N

dν2 + (α2 − α1 ν2)N = 0 .

In the particular case α1 = q2/4 and α2 = q2(p + 1/2), the ordinary differential
equation in variable μ can be written as

d2M

dμ2
−
[
q2(p + 1/2) + q2μ2

4

]
M = 0 ,

which is known as cylindrical-parabolic equation and whose solution is given by the
so-called cylindrical-parabolic functions [9].

Note that the solution of the ordinary differential equation in variable z is
immediate, a combination of sines and cosines, depending on k2 and α1. Besides, in
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the case α2 = 0 and α1 = −q2, the solutions of the ordinary differential equations
in variables μ and ν can be expressed in terms of Bessel functions.

11.11.4 Fractional Order Viscoelastic Object

SE 11.34 Let us consider the constitutive equation with a periodic voltage

σ(t) = E1−αηα dα

dtα
ε(t) ,

where 0 < α < 1 and coefficients E and η are constants.
Using the derivative in the Caputo sense and assuming a sinusoidal voltage ε =

ε0 sin(ωt) with ε0 and ω positive constants, we can write for the voltage [3]

σ(t) = E1−αηα

{
ε0ω

�(1 − α)

∫ t

0
(t − ξ)−α cos(ωξ) dξ

}
.

In order to perform the integration, we will use the Laplace transform methodol-
ogy with parameter s. Applying the Laplace transform, we find

σ(s) = E1−αηα ε0ω

�(1 − α)
L

[
ε0ω

�(1 − α)

∫ t

0
(t − ξ)−α cos(ωξ) dξ

]
,

with σ(s) =
∫ ∞

0
e−st σ (t) dt .

Identifying this integral with the Laplace convolution product, we have

σ(s) = E1−αηα ε0ω

�(1 − α)
F (s)G(s),

where F(s) = L [t−α] and G(s) = L [cos ωt]. We know that

F(s) = �(1 − α) sα and G(s) = 1

s2 + ω2 .

It then follows for the Laplace transform of the voltage:

σ(s) = E1−αηαε0ω
sα

s2 + ω2 .

To recover the solution of the initial fractional differential equation, we must
consider the inverse Laplace transform, that is,

σ(t) = εωE1−αηαL −1

[
s2−(2−α)

s2 + ω2

]
,



346 11 Applications

which provides

σ(t) = εωE1−αηα
E2,2−α(−ω2t2) ,

where Eα,β(·) is a Mittag-Leffler function with two parameters.

11.11.5 Proposed Exercises

PE 11.37 Let u = u(x, t). Use the Laplace transform methodology to solve the
second-order linear partial differential equation

∂2u

∂t2
= c2 ∂2u

∂x2
, x > 0, t > 0 ,

where c2 > 0 is a constant, with the boundary conditions

u(0, t) = f (t) , lim
x→∞ u(x, t) = 0 ,

and the initial conditions

u(x, 0) = 0,
∂

∂t
u(x, t)

∣∣∣∣
t=0

= 0

and where the function f (t) is given by

f (t) =
{

sin t if 0 ≤ t < ∞,

0 if t ≤ 0 .

PE 11.38

(a) Find the temperature u(x, t) on a homogeneous beam laterally isolated with
constant transversal section, from x = −∞ to x = ∞, for t > 0, supposing
that the initial temperature is given by

u(x, 0) = f (x) , −∞ < x < ∞ ,

and that, for all t ≥ 0 the solution and its derivative at x satisfy

u(x, t) → 0 and
∂

∂x
u(x, t) → 0 as |x| → ∞ .

(b) As a particular case, find u(x, t) for

f (x) = u0 = constant if |x| < 1 and f (x) = 0 if |x| > 1 .
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PE 11.39 Use the Laplace transform to solve the partial differential equation

∂2

∂t2 u(x, t) = c2 ∂2

∂x2 u(x, t) + f0 ,

with c a constant, 0 < x < ∞, t > 0, f0 another constant and with u(x, t) satisfying
the conditions

u(x, 0) = 0,
∂

∂t
u(x, t)|t=0 = 0, u(0, t) = 0

and

∂

∂x
u(x, t) → 0 as x → ∞.

PE 11.40 Consider the so-called Dirichlet problem on the upper half-plane y > 0,
i.e., the partial differential equation

∂2

∂x2 u(x, y) + ∂2

∂y2 u(x, y) = 0 ,

together with the conditions u(x, 0) = f (x); u(x, y) limited as y → ∞; and u(x, y)

and ∂u(x, y)/∂x going to zero as |x| → ∞. Using the Fourier transform, show that

u(x, t) = y

π

∫ ∞

−∞
f (ξ)

(ξ − x)2 + y2 dξ .

PE 11.41 Let u(ρ, z) be the stationary temperature on a semi-infinite cylinder ρ ≤
1, z ≥ 0, whose basis z = 0 is isolated. If u(1, z) = 1 for 0 < z < 1 and u(1, z) = 0
for z > 1, obtain, using the cosine Fourier transform, the expression

u(ρ, z) = 2

π

∫ ∞

0

I0(αρ)

I0(α)
cos αz sin α

dα

α
,

where I0(x) is the zero order modified Bessel function of the first kind.

PE 11.42 (Cylindrical-Elliptic Coordinates) The cylindrical-elliptic coordinate
system is used, for example, to deal with the mathematical problem of the potential
field of infinite length cylindrical-elliptic fibers [1]. Consider the cylindrical-elliptic
coordinates η, ψ and z, with 0 ≤ η < ∞, 0 ≤ ψ < 2π and −∞ < z < ∞, which
are related to the Cartesian coordinates x, y and z by

x = a cosh η cos φ, y = a sinh η sin φ, z = z ,
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where a is a positive constant. (a) Show that the Laplacian operator is given by

� = 1

a2(cosh2 η − cos2 ψ)

(
∂2

∂η2 + ∂2

∂ψ2

)
+ ∂2

∂z2 .

(b) Using separation of variables, with the notation u(η,ψ, z) = H(η)�(ψ)Z(z),
separate the Helmholtz equation �u(η,ψ, z) + k2u(η,ψ, z) = 0, where k2 > 0 is
a constant, to obtain three ordinary differential equations. (c) Classify the ordinary
differential equations obtained.

PE 11.43 Let u = u(x, t). Let β and v be two positive constants, representing
the conductivity and velocity of a diffused material, respectively. Consider the heat
equation with transport term

∂u

∂t
= β

∂2u

∂x2 + v
∂u

∂x
,

with t > 0 and −∞ < x < ∞, whose solution satisfies the initial condition
u(x, 0) = f (x). Solve this problem, composed of a linear second-order partial dif-
ferential equation and an initial condition, using the Fourier transform methodology.

PE 11.44 (Fractional Maxwell Model of Elasticity) Let σ(t) be the stress, ε(t)

the strain, E the Young’s modulus and η the shear modulus, with τ = η/E. Suppose
that the strain is described by a Heaviside (step) function whose fractional derivative
is

dα

dtα
ε(t) = dα

dtα
1 = tα

�(1 − α)
.

Solve the fractional differential equation [8]

σ(t) + τα−β dα−β

dtα−β
σ (t) = Eτα dα

dtα
ε(t) ,

with α, β ∈ R such that 0 < α ≤ β < 1. To do this, use the Laplace transform
methodology to show that

σ(t) = E

(
t

τ

)−β

Eα−β,1−β

[(
− t

τ

)α−β
]

,

where Eα,β(·) is the Mittag-Leffler function with two parameters.

PE 11.45 Let α > 0, β > 0 and x, y ∈ C. Show the relation

∞∑
r=0

(x + y)rEr+1
2α,αr+β(−xy) =

∞∑
k=0

(−xy)kEk+1
α,2αk+β(x + y),

where E
γ
α,β(·) is the Mittag-Leffler function with three parameters.
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PE 11.46 (Volterra Integral Equation) Solve the so-called Volterra fractional
integral equation. To this end, assume that the kernel of the second-order Volterra
integral equation

�(x) = f (x) + λ

∫ x

0
k(x|t)�(t) dt (11.35)

has the form k(x−t) and is a continuous function on both variables, for t ≤ x. Write
F(s) and K(s) for the Laplace transforms of functions f (x) and k(x|t), respectively,
and then show that

�(x) = 1

2πi

∫ γ0+i∞

γ0−i∞
F(s)

1 − λK(s)
exs ds .

PE 11.47 Let x and y be real constants, independent of t , and α, β, γ , μ complex
parameters with Re (α) > 0 and Re (γ ) > 0. Consider a Volterra integral equation
(11.35) whose kernel is a Mittag-Leffler function with three parameters,

z(t) = tβ−1
Eα,β(xtα) + y

∫ t

0
(t − τ)μ−1

E
γ
α,μ[x(t − τ)α]z(τ ) dτ, (11.36)

in which Eα,β(·) and E
γ
α,β(·) are the Mittag-Leffler function with two and three

parameters, respectively. Show that

z(t) =
∞∑

k=0

(ytμ)ktβ−1
E

γ k+1
α,μk+β(xtα), (11.37)

is a solution of Eq. (11.36).
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Answers and Hints

Chapter 1

1.1 y(x) = 1 + C e2 cos x .

1.3 y2
(
ln y − 1

2

)
= ex2(x2 − 1) + c.

1.4 y(x) = (2ex3 + C)
1
2 .

1.5 y2(6 − 5y2) = x2.

1.6 Hint: Write the ordinary differential equation as dx
dy = x−

√
x2−y2

y
.

Introduce the change ξ2 = x2 − y2 to obtain y(x) =
√

C−x2

x
.

1.7 cot(x − y) + x = c, with (x − y) �= ±kπ, k = 0, 1, 2, . . .

1.8 y2x + ∫ y
f (ξ) dξ = C.

1.9 y2 + 1 = xy .

1.10 ln[(y − 2)2 + (x − 2)2] + C = √
2 arctan

(√
2
2

y−2
x−2

)
.

1.11

(a) y = c1 cosωx + c2 sinωx;
(b) y = (c1 + c2x) e−x ;
(c) y = c1 e−x +c2 e−4x ;
(d) y = e−x(c1 cos x + c2 sin x).

1.12 λ > 0: y = c1 cosωx + c2 sinωx, λ = ω2; λ = 0: y = c1 + c2x; λ < 0:
y = c1 sinhβx + c2 coshβx , λ = −β2.

1.13 Hint: Change the independent variable to z = 1/x. The solution of the original
equation is y(x) = c1 cos(a/x) + c2 sin(a/x).
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1.14 y = x(c1 + c2x
3).

1.15 Hint: Call y′(x) = u(x) in order to obtain y(x) = 4x + x4.

1.17 y = x3(c1 + c2 ln x).

1.18 Hint: Find a first-order differential equation for the Wronskian.

1.19 y2 = x−1/2 sin x, W = 1/x.

1.20 y2 = −1 + x
2 ln

(
1+x
1−x

)
, W = 1/(1 − x2).

1.21 y = c1 + c2 ln x + x3

9
.

1.22 y = x2

4
− x

2
+ 7

8
.

1.23 y = −π

2
+

(π

2
− x

)
cos x + c1 sin x + ln | tg x + sec x| − sin x ln | sec x|.

1.24

(a) ω �= ω0: y = sinω0x

ω2
0 − ω2

;

(b) ω = ω0: y = sinω0x

4ω2
0

− x
cosω0x

2ω0
.

1.25 Putting λ20 = ω2 − b2/4 and b = λ/m, we get:

(a) λ20 > 0: x = e−bt/2(c1 cos λ0t + c2 sin λ0t);
(b) λ20 = 0: x = e−bt/2(c1 + c2t);
(c) λ20 < 0: x = e−bt/2(c1 cosh λ0t + c2 sinh λ0t).

1.26 Hint: Use Kirchhoff’s [1824 – Gustav Robert Kirchhoff – 1887] voltage
law and get for the charge Q(t) an equation equivalent to the one shown in
PE 1.25. Call the initial charge in the capacitor Q(0) = Q0 and the initial
current (dQ/dt)t=0 = I0. The voltage across the inductance L is given by
LdI/dt = Ld2Q/dt2; it is equal to RI across the resistance and to Q/C across
the capacitance. Draw an analogy between the values of L, R, and C and the data
of PE 1.25.

1.27 y = − cos x ln | tg x + sec x|.
1.31 Show that y2(x) = 1 − Cx, where C a constant, is a second linearly
independent solution.

1.32 Hint: Use the transformation y = xv(x).

1.33 Do as in the previous exercise with y = v(x) · sin x.

1.34 Idem to PE 1.32.



Answers and Hints 353

1.35 Hint: Try to eliminate the term with the first derivative by searching for a
solution with the form y(x) = xα eβx v(x), with α and β to be determined.

1.36 y = c1 + c2x − ln x.

1.37 y = c1x + c2/x.

1.39 y = c1x + c2 ex +1.

1.40 y = x(−x + 2 arctg x) + x2 − 1

2
ln(1 + x2) + c1x + c2(x

2 − 1).

1.41 Q(x) = 1 + a2

2
+ 1/4 − n2

x2 , f (x) = √
x e−ax/2.

1.43 Just substitute the corresponding values into the solution of the previous
exercise.

1.44 I (x) = 1

4x2 {−x2 − (4a − 2c)x + 2c − c2}.

1.45 Hint: Obtain the self-adjoint form
d

dx
[(1 − x2)y′] + n(n + 1)y = 0.

1.46 W = c1c2(x
2 + 1).

1.47 It is a nonlinear, first-order, ordinary differential equation.

1.48 Just calculate the derivatives and substitute them into the differential equation.

1.49 y′ = 1

x
− 2

x
y + xy2.

1.50 ω′′ − (x2 − 1)ω = 0.

Chapter 2

2.1 Introduce the substitution x = 1
ξ
and discuss the nature of singularity at the

point ξ = 0.

2.2 The singular points are x0 = 0 and x0 = ∞; both are regular singular points.

2.3 Yes, two singular points, x0 = −1 and x0 = 1. Both are regular singular points.

2.4 (a) R = 1 and (b) 1
1−x

·
2.5 (a) R = ∞; (b) sin x and cos x, respectively.

2.6 Singular points x0 = −1, x0 = 0, x0 = 1, and x0 = ∞, all singular regular
points.

2.7 There are no singular regular points.
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2.8 (a) x0 = −1, x0 = 2 and x0 = ∞ are regular singular points. (b) y1(x) = x + 1
and yp(x) = 2022.

2.9 Write the equation in the form

d2

dx2 y(x) − (x − 1)y(x) − y(x) = 0

and look for the solution as

y1(x) =
∞∑

n=0

an(x − 1)n .

2.10 The solution is given by y(x) = 2 cosh x+sinh x. We have only regular points.

2.11 f (x) =
∞∑

k=0

(−1)k
x2k

(2k)! ; it converges for all values of x (x in radians).

2.12 (a) Use the chain rule to rewrite the equation and evaluate it at the limit b → 0.
(b) For t0 = ∞ introduce t = 1

ξ
and conclude the analysis taking the limit ξ → 0.

2.15 f (x) =
∞∑

k=0

xk

k! .

2.16 f (x) =
∞∑

k=0

x2k+1

(2k + 1)! .

2.17 f (x) =
∞∑

k=0

x2k

(2k)! .

2.19 Taking x(t) =
∞∑

k=0

akt
k and writing f (t) =

∞∑
n=0

bnt
n, we obtain the recurrence

relation

m(n + 1)(n + 2)an + λ(n + 1)an+1 + kan = bn .

2.20 Taking x(t) =
∞∑

k=0

akt
k andE(t) =

∞∑
n=0

bnt
n, we obtain the recurrence relation

L(n + 1)(n + 2)an + R(n + 1)an+1 + (1/C)an = bn.
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2.21 For s = 1 we have aodd = 0; ak = k2 − 4k + 4

k(k + 1)
ak−2, k = 2, 4 . . ., and this

implies y1(x) = Ax.

2.22 Recurrence relation: an = − an−2

n(n + 2)
; for the second solution, use the

generalized series.

2.24 y(x) = Ax + bx4, where A and B are constants.

2.25 y(x) = A + B ln x.

2.26 y(x) = A + B
∑

k=odd

xk

k
.

2.27 Recurrence relation: k(k+1)ak +ak−2−ak−4 = 0, k ≥ 4; a2 = −a0

3! , a1 = 0.

2.28 Hint: Make the change of variable x = 1/z and expand around the point z = 0;

at the end, substitute z = 1/x. y(x) = A

∞∑
k=0

(ωx)−2k

(2k)! + B

∞∑
k=0

(ωx)−2k−1

(2k + 1)! , where
A and B are constants.

2.29 y(x) =
∞∑

k=0

xk

k! = ex .

2.30 Recurrence relation: ak = ak−3

k(k − 1)
for k ≥ 3 with a1 arbitrary and a2 = 0.

2.32 a1 is arbitrary; ak = −1

k
ak−2, k ≥ 2.

2.33 ak = − 5

k(k − 1)
ak−5, k ≥ 5; a2 = a3 = a4 = 0 and a1 is arbitrary.

2.34 ak = ak−1

2k
; ak = ak−1

2k + 1
, with k ≥ 1.

2.35 J1/3(x) where Jμ(·) is a Bessel function.
2.36 ak = − ak−3

k(k − 2
√
2)
, k ≥ 3, with a1 = 0 and a2 = 0.

2.37 −ak = 3(k − 1)(k − 2) + (k − 1) − 1

3k(k − 1) + 2k
ak−1, k ≥ 1.

2.38 ak = ak−1

k(2k − 1)
; ak = ak−1

k(2k + 1)
, k ≥ 1.

2.40 ak = ak−1

8(k + s)(k + s − 1) + 2(k + s) + 1
, k ≥ 1, with s1 = −1/2 and s2 =

−1/4.

2.41 y(x) = x.
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2.42 ak = ak−1

k + 2
, k ≥ 1.

2.43 ak = ak−1

k2
, k ≥ 1; the other solution is found with the generalized series.

2.44 ak = − k

k + 2
ak−1, k ≥ 1.

2.45 ak = − ak−1

k + 2
, k ≥ 1.

2.46 ak = − (k − 2)

3k(k − 1)
ak−2, null for even k;

ak = − (k − 1)

3k(k + 1)
ak−2, null for odd k.

2.47 y1(x) = x2.

2.49 ak = ak−2 + ak−3

k(2k − 1)
, k ≥ 3.

ak = ak−2 + ak−3

k(2k + 1)
, k ≥ 3.

2.50 ak = ak−2 − ak−1

k(k + 2)
, k ≥ 2.

Chapter 3

3.1 z1 = 3 + 4i and z2 = 5 − 12i.

3.2 Hint: First, write � as 1+2z/(1−z+z2) and then show that z+1/z = z+1/z.

3.3 Rewrite the equation as z9 = (11 − 10iz)/(11z + 10i). Prove by contradiction
that |z9| > 1 and |z9| < 1 are not possible, and conclude the result.

3.4 π/2.

3.5 tan 1.

3.6 z = 0 is a removable singularity; z = ±2i are poles of order one and z = −4 is
a branch point.

3.7 3π/8.

3.8 π(4π2 − 1)/4.

3.9 8(5 + 16i)/5.

3.10 2.

3.14 (a) Essential singularity. (b) Branch point.
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3.15 (a) Residue = 1. (b) Residue = 0.

3.16 f (z) = 1

3! − z2

5! + z4

7! − · · · Removable singularity.

3.17 f (z) = 1

z + 2
+ 1 + (z + 2) + · · · The point z = −2 is a simple pole and the

series converges for 0 < |z + 2| < 1.

3.18 f (z) = 1

z
+ 1

2!z3 + 1

4!z5 + · · · , Residue = 1.

3.19 Residue = −7/45.

3.20 (a)
t − 1

2
. (b)

t − 1

2
+ e−t

2
cos t .

3.21 −6iπ2.

3.22 Hint: Use the function f (z) = ln(z + i)

z2 + 1
and take as contour the semicircum-

ference around the point z = i.

3.23 π/2.

3.24 π/ sinπa.

3.25 (a) π/2; (b) π/2
√
2.

3.27 Consider the function f (z) = eiz

z
.

3.28 It is enough to show that F(i) = 0, where F is the numerator.

3.32

∂u

∂r
= 1

r

∂v

∂θ
; 1

r

∂u

∂θ
= −∂v

∂r
.

3.33 Show that
∂u

∂x
�= ∂v

∂y
.

3.36 z = 0, pole of order 2; z = 1, pole of order 1; z = ±4i, poles of order 3.

3.37 (a) Pole of order 1 at z = 1 and at z = −1±√
3i

2 . (b) Simple poles at z =
π/2 + kπ , k = 0, 1, 2 . . . (c) Removable singularity.

3.38 Both residues are equal to 1.

3.39 Hint: Use the geometric series.

3.41 Hint: Contour the branch points and the simple pole.

3.42 Hint: Start with the function f (z) = ln(1 − i yz)

1 + z2
and use as contour a

semicircumference containing z = i in its interior.
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3.43 Hint: Start with the function f (z) = ln z

(1 + z2)4
.

3.44 Hint: Start with the function f (z) = eiz

z(z2 + 1)2
.

3.45 3π/8.

3.46 Hint: Consider the function f (z) = e−z2 z2μ−1.

3.47 Use the result of the previous exercise.

3.48 Hint: Consider eiθ = z.

3.49 Hint: Consider xp = t .

Chapter 4

4.1 Use the definition of gamma function.

4.2 Evaluate the integral

� =
∫ ∞

−∞
e−x2 dx ·

∫ ∞

−∞
e−y2 dy

by means of polar coordinates.

4.3 π .

4.4 Use the relation 2F1(−a, b; b;−x) = (1 + x)−a to show that the integral is
equal to (a + 1)−1.

4.5 Use the integral representation for the hypergeometric function and the
definition of beta function to show that c > a + b.

4.6 1
x
ln |1 + x|.

4.7
√

π/2.

4.8 (a) exp(x) and (b) cosh(x).

4.9 Use the integral representation of the confluent hypergeometric function to show
that

1F1(1; 2; x) = 1

x

(
ex − 1

)

and then use the definition of the Mittag-Leffler function with two parameters to
conclude.

4.11 Analyze the recurrence relation.
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4.12 Use the integral representation and PE 4.41.

4.13 (a) Use the relation �(x)�(−x) = −π

x
sinπx, expanding it in a MacLaurin

series. (b) MacLaurin series.

4.14 (a) Directly from the series. (b) Use the integral representation given.

4.15 (a) Directly from the series. (b) Use the integral representation.

4.16 F ′′+
{
−1

4
+ x

z
+ 1/4 − μ2

z2

}
F = 0, with μ = (c−1)/2 and x = (c−2a)/2.

4.17 (a) In the confluent hypergeometric equation, a = −n and c = 1 + α. (b) In
the confluent hypergeometric equation, with a = −n/2 and c = 1/2. ( c) In the
previous equation, z2 = 2x2.

4.18 (a) ν → −ν − 1 in the ordinary differential equation. (b) Directly from the
series. (c) Use the ordinary differential equation.

4.20 Let z → (1 − x)/2 in the differential equation

(1 − x2)u′′ + [β − α − (α + β + 2)x]u′ + n(n + α + β + 1)u = 0 .

(a) (1 − x2)u′′ − 2xu′ + n(n + 1)u = 0 (Legendre).
(b) (1 − x2)u′′ − (2λ + 1)xu′ + n(n + 2λ)u = 0 (Gegenbauer).

4.21 Expand (x2 − 1)l using the binomial formula and differentiate it l times.

4.22 Consider the function g(x, t) =
∞∑

n=0

ant
nFn(x). Obtain an ordinary differential

equation for g(x, t) and integrate it.

4.23 (a) Directly from the series. (b) Use the ordinary differential equation.

4.24 Use the result of PE 4.20 in both itens.

4.25 (a) Manipulate the corresponding series. (b) z2u′′ + zu′ − (z2 + ν2)u = 0.

4.26 Use the result of PE 1.18 in both itens.

4.27 Directly from the series in all itens.

4.28 Show that it is equal to the equation of PE 4.29.

4.29 Use the result of PE 3.49 with p = 1.

4.30 Use a change of variable of the type e−t = u.

4.31 (a)k = (a + k + 1)!
(a + 1)! .

4.32 Call z − x = u and use PE 4.30.

4.33 Introduce the change of variable x = sin2 θ .
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4.34 Use the relation [�(z)]2 = �(2z)B(z, z). Introduce the change 2t = 1 − √
x

in the definition of beta function to obtain [�(z)]2 = 21−2z�(2z)B( 12 , z).

4.35 Call cos θ = u and use PE 4.33.

4.36 Multiply and divide by n!.
4.37 Multiply and divide by (2n)!! and use PE 4.36.

4.38 Call x2 = t and use the beta function.

4.39 Proceed as in PE 4.38.

4.40 Use the results of the previous exercise.

4.41 Use the identity
∞∑

k=0

�(a + k)

k! (xt)k = �(a)(1 − xt)−a and the beta function.

4.42 (a) Use the integral representation given in PE 4.41. (b) Use the result of the
previous item and symmetry considerations.

4.43
�(c)�(c − a − b)

�(c − b)�(c − a)
.

4.44 Use the integral representation given in PE 4.41with x = −1 and a+c = b+1.

4.45 Call y = x
r + 1

r + x
and use the beta function.

4.46 In the integral representation of PE 4.41, let x → x/b and take the limit
b → ∞.

4.47 (a) Use the result of PE 4.46. (b) Use the integral representation given in the
text.

4.48 Use the series for 1F1(a; c; x).

4.49 (a) Use the beta function, the series for Jn(x) and the duplication formula

given in PE 4.34. (b) J0(z) = 2

π

∫ π/2

0
cos(z cos θ)dθ .

Chapter 5

5.1 Zero.

5.2 The Kronecker symbol δkn.

5.3 Use the orthogonality of trigonometric functions.

5.4
π − 2x

2
.
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5.5 f (x) = π

4
+

∞∑
k=1

[
(−1)k − 1

k2π
cos(kx) + (−1)k+1

k
sin(kx)

]
·

5.6 Use the result of PE 5.5.

5.7 Use the parity of the function.

5.8 f (x) = 4

π

∞∑
k=1

sin[(2k − 1)x]
2k − 1

.

5.9 f ′(x) =
∞∑

k=1

kπ

�

[
−ak sin

(
kπx

�

)
+ bk cos

(
kπx

�

)]
.

5.10 f (x) =
∞∑

k=−∞
ckexp

(
i
kπx

�

)
with ck = 1

2�

∫ �

−�

f (x) exp

(
−i

kπx

�

)
dx.

5.13 f (x) = π

2
+

∞∑
k=1

(−1)k

k
sin kx.

5.14 Integrate the series given from a to x; integrate it once more, from −π to π ,
to find the constant.

5.16 f (x) = i

∞∑
k=−∞

(−1)k
eikx

k
.

5.17 f (x) = −π

4
+

∞∑
k=1

[
1

πk2
(cos kπ − 1) cos kx + 1

k
(1 − 2 cos kπ) sin kx

]
.

5.18 After the expansion, take x = π .

5.19 Take x = 0.

5.20 Add the series of exercises PE 5.18 and PE 5.19.

5.21 After the expansion, take x = π .

5.22 Proceed in a way analogous to what was suggested for PE 5.14.

5.23 Take x = 0 in item (a) and x = π in item (b).

5.24 Use the orthogonality of the trigonometric functions (sine and cosine).

5.25 f (x) =
∞∑

k=1

sin kx

k
.

5.26 For S2, take x = π/2 and for S1, proceed as in PE 5.14.

5.27 f (x) = 2

π
+ 4

π

∞∑
k=1

cos 2kx

1 − 4k2
.



362 Answers and Hints

5.28 Differentiate the series of PE 5.27.

5.29 Use the identity ex =
∞∑

n=0

xn

n! .

5.30 Substitute a0, ak , and bk into the n-th partial sum, and make a convenient
change of variable sin(A + B) − sin(A − B) = 2 sinA cosB.

5.31 Use the identity given in the previous exercise.

5.32 f (x) = π

8
+ 1

π

∞∑
k=1

1

k2

{(
2 cos

kπ

2
− 1 − cos kπ

)
cos kx + 2 sin

kπ

2
sin kx

}
.

5.33 Take x = π/4 to show that S0 = π2
√
2

16 .

5.34 u(x) = E0

π
+ E0

2
sinωx + 2E0

π

∞∑
k=2, 4,...

cos kπx

1 − k2
.

5.35 f (x) = π

2
− 4

π

∞∑
k=0

cos(2k + 1)x

(2k + 1)2
.

5.36 Take x = 0 in the result of the previous exercise.

5.37 ExpandE(t) in a Fourier series and suppose that the solution of the differential
equation can also be expanded in another Fourier series. We get for the coefficients:

A0 = 0; Ak = 40

πk2

10 − k2

k4 + 80k2 + 100
(1 − cos kt); Bk = 400

πk

1 − cos kπ

k4 + 80k2 + 100
.

5.38 Use term-by-term integration to show that the sum is equal to (π2x −πx2)/8.

5.39 y(x) =
∞∑

k=1

(−1)k/k3

k2 − ω2 sin kx.

5.40 Use the relation J1(x) = −J′
0(x).

5.41 Expand the function f (x) = 1 in a Fourier-Bessel series.

5.42 Hint: Use the integral

∫ 1

0
xμ+1Jμ(ax)dx = 1

a
Jμ+1(a) ,

with Re(μ) > −1, to show that x3 =
∞∑

n=1

8

k3n

J3(kmnx)

J4(2k3n)
.

5.43 f (x) = 2Ca

R2

∞∑
n=1

1

k0n

J1(ak0n)

J2
1(Rk0n)

J0(k0nx).
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5.44 Consider an adequate change in the indices and use the definition of the Bessel
function.

5.45 Multiply by e−inθ the two members of the expression appearing in the previous
exercise and integrate it.

5.46 Hint: Use the integral

∫ 1

0
xν+1(1 − x2)μJν(bx)dx = 2μ�(μ + 1)b−μ−1Jμ+ν+1(b),

with b > 0, Re (ν) > −1 and Re (μ) > −1.

5.47 Evaluate the integrals to verify that they are equal to zero.

5.48 Use the result of the previous exercise.

Chapter 6

6.1
�(μ + 1)

sn+1
.

6.2 Use the convolution product.

6.3 x(t) = x0 e−at +
∫ t

0
f (τ) e−a(t−τ)dτ .

6.4 x(t) = t + cos t − sin t .

6.5 y(x) = cosh x.

6.6 F(k) = 1√
2π

e−k2/4σ .

6.7 Use integration by parts.

6.8 � = π/4.

6.9 Use integration by parts.

6.10 Use integration by parts.

6.11 Use adequate changes of variables and integration by parts.

6.12 Use integration by parts.

6.13 L[x(t)] = 2

s3(s2 + ω2)
.

6.15 L[f (t)] = (s2 − a2)

(s2 + a2)2
.
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6.16 Use the theorem of residues.

6.17 Apply the convolution theorem.

6.18 y(t) = C et , where C is a constant.

6.19 Recall that
∞∑

k=0

e−x = 1

1 − x
.

6.20 L[f (t)] = 1

s
tgh s.

6.21 F(s) = π/2

1 + s
.

6.22 I (x) = π

2
e−x , I (1) =

∫ ∞

0

cos t

1 + t2
dt = π

2 e
.

6.23 L[f (t)] = arctg s.

6.24 I (x) = π

2
x.

6.25 L[J0(t)] = 1√
s2 + 1

. To get this result, use L[tn] = n!/sn+1.

6.26 Take the inverse transform in the previous exercise.

6.27 f (x) = sin x.

6.28 y(x) = cosh x.

6.29

ω(x, t) =
{

0 for t < x2/2 ,

t − x2/2 for t ≥ x2/2 .

6.30 Use adequate changes of variables and integration by parts.

6.31 F(α) =
√

2

π

1

1 + α2 .

6.32 Fs(α) = αFc(α) =
√

2

π

α

1 + α2 .

6.33 Use integration by parts.

6.34 Fs[f ′(t)] = −αFc[f (t)]; Fc[f ′(t)] = −√
2/πf (0) + αFs[f (t)].

6.36 f (t) = l2

3
+ 4l2

π2

∞∑
k=1

(−1)k

k2
cos

kπt

l
.

6.37 F(α) =
√

8

π

(
sinα − α cosα

α3

)
.
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6.39 Use the result of the previous exercise.

6.40 Use the result of PE 6.38.

6.41 With the help of the integral
∫ ∞

0
e−px2 dx = 1

2

√
π

p
we get ϕ(k) =

a√
2π

exp(−a2k2/2).

6.42 �(x, t) =
exp

{
−

[
x2

2

(
a2 + ih̄t

m

)−1
]}

(
1 + ih̄t

ma2

)1/2 .

6.43 G(x|ξ) = 1

2k0
sin[k0(x − ξ)], x > ξ .

6.44 G(x|ξ) = 1

2k0
sin[k0(ξ − x)], x < ξ .

6.45 F(ω) = − �(ω)

ω2 + iωk − ω2
0

.

6.46 G(t) = 1

2π
ekt/2

∫ ∞

−∞
eitx dx

β2 − x2
, where β2 = ω2

0 −k2/4 > 0. The solution

of this integral is analogous to PE 6.43.

6.47 G(x|ξ) = − 1

2π

∫ ∞

−∞
e−iαx eiαξ

k2 + α2 dα.

6.48 G(x|ξ) = − 1

2k
exp(−k|x − ξ |).

6.49 Use the result
1

2π

∫ 2π

0
eix cos θ dθ = J0(x).

6.50 Use the integral
∫ ∞

0
J0(x)dx = 1.

Chapter 7

7.1 The Sturm-Liouville form is

d

dx

[
xc(1 − x)a+b−c+1 d

dx
y(x)

]
− abxc−1(1 − x)a+b−cy(x) = 0 .

7.2 The Sturm-Liouville form is
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d

dx

[
xce−x d

dx
y(x)

]
− axc−1e−xy(x) = 0 .

7.3 The Bessel functions of the first kind of order ±μ are given by the series
expansions

J±μ(x) =
∞∑

k=0

(−1)k

k!
(x/2)2k±μ

�(k + 1 ± μ)
.

Use the leader term of these expansions and the relation �(x)�(1 − x) =
π/ sin(πx).

7.4 Eigenvalues λn = [(2n + 1)π
2 ]2 with n = 0, 1, 2, . . . The eigenfunctions are

yn(x) = sin[ 12 (2n + 1)πx].
7.5 Eigenvalues λn = (nπ)2 with n = 0, 1, 2, . . .; eigenfunctions yn(x) =
cos(nπx).

7.6 The normalized eigenfunctions are yn(x) = √
2 cos(nπx), n = 0, 1, 2, . . .

7.7 The Sturm-Liouville form is

(x−1y′)′ + (λ + 1)x−3y = 0, y = y(x) .

7.8 Eigenvalues λn = (nπ)2 with n = 1, 2, . . . and eigenfunctions yn(x) =
x sin(nπ ln |x|).
7.9 The Green’s function is

G (x|ξ) =
{

ξ 0 ≤ ξ ≤ x,

x x ≤ ξ ≤ 1.

7.10 The solution is y(x) = x
2 (2 − x).

7.14 Eigenvalues λn = n with n = 1, 2, . . .; eigenfunctions un(x) = sin nπx.

7.15 The eigenvalues are the solutions of the equation tg λn = λn and the
corresponding eigenfunctions are un(x) = sin λn(1 − x).

7.16 Eigenvalues λn = nπ with n = 1, 2, . . . and eigenfunctions un(x) =
A sin nπx + B cos nπx.

7.17 Eigenvalues λn = −3
4 + n2π2 for n = 1, 2, . . . and eigenfunctions un(x) =

e−x/2 sin nπx.

7.18 Eigenvalues λn = 1

12
(4n2 − 3) for n = 1, 2, . . . and eigenfunctions un(x) =

e3x/2 sin nx.
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7.19 Eigenvalues λn = 1

4
+

( nπ

ln 3

)2
for n = 1, 2, . . . and eigenfunctions

un(x) = (2 + x)−1/2 sin

[
nπ

ln(2 + x)

ln 3

]
.

7.20 The eigenvalues are all positive real numbers λ > 0, and the corresponding
eigenfunctions are given by uλ(x) = sin(λ ln x).

7.21 The eigenvalues are all positive real numbers λ > 0, and the corresponding
eigenfunctions are given by uλ(x) = sin λx.

7.22 f (x) = 8

π

∞∑
n=1

n

4n2 − 1
sin 2nx.

7.23 f (x) = 4

π

∞∑
n=1

n

4n2 − 1
sin 2nx.

7.24 G (x|ξ) =
{

x(1 − ξ) 0 < x < ξ,

ξ(1 − x) ξ < x < 1.

7.25 G (x|ξ) =
{

x 0 < x < ξ,

ξ ξ < x < 1.

7.26 G (x|ξ) = 1

ω sinω

{
sinωx sinω(1 − ξ) 0 < x < ξ,

sinωξ sinω(1 − x) ξ < x < 1.

7.27 Imposing y(0) = y′(1) = 0, we have

G (x|ξ) =
{

x + x3/3 0 < x < ξ,

ξ + ξ3/3 ξ < x < 1.

7.28

G (x|ξ) =
{
ln ξ 0 < x < ξ,

ln x ξ < x < 1.

7.29

G (x|ξ) =
{
ln ξ 0 < x < ξ,

ln x ξ < x < 1.

7.30 Use the definition of Green’s function.

7.32 G (x|ξ) =
{

x(1 − ξ) 0 < x < ξ,

ξ(1 − x) ξ < x < 1.

7.33 y(x) = −
∫ x0

0
G (x|ξ)g(ξ)y(ξ)dξ .
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7.34 G (x|ξ) = 1

η

{
sinh ηx(sinh ηξ − cosh ηξ) 0 < x < ξ,

sinh ηξ(sinh ηx − cosh ηx) ξ < x < x0.

7.36 G (x|ξ) =
{
sinh ηx(sinh ηξ − cosh ηξ) 0 < x < ξ,

sinh ηξ(sinh ηx − cosh ηx) ξ < x < x0.

7.37 y(x) = V0

η

∫ ∞

0
G (x|ξ)

e−ξ

ξ
y(ξ)dξ , where

G (x|ξ) =
{
e−ηξ sinh ηx 0 < x < ξ,

e−ηx sinh ηξ ξ < x < ∞.

7.39 y(x) = λ

∫ 1

0
G (x|ξ)y(ξ) dξ , where

G (x|ξ) =
{
ln ξ 0 < x < ξ,

ln x ξ < x < 1.

7.40 y(x) = −λ

∫ 1

0
G (x|ξ)ξy(ξ) dξ , where

G (x|ξ) = 2

{√
x(1 − √

ξ) 0 < x < ξ,√
ξ(1 − √

x) ξ < x < 1.

7.41

G (x|ξ) = 1

n

{
sin nx cos nξ 0 < x < ξ ;
sin nξ cos nx ξ < x < 2π; n = 1, 2, . . .

7.42 u(x) = −λ2
∫ 1

0
G (x|ξ)u(ξ) dξ , where

G (x|ξ) =
{

x(1 − ξ) 0 < x < ξ,

ξ(1 − x) ξ < x < 1.

7.43 u(x) = λ2
∫ 1

0
G (x|ξ)ξu(ξ) dξ , where

G (x|ξ) = −1

2

{
x(ξ − 1/ξ) 0 < x < ξ,

ξ(x − 1/x) ξ < x < 1.

7.44 u(x) =
∫ 1

0
f (ξ)G (x|ξ) dξ , where
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G (x|ξ) =
{

x(1 − ξ) 0 < x < ξ,

ξ(1 − x) ξ < x < 1.

7.45 u(x) = 1

ω2
0 sinω0π

{sinω0π(1 − cosω0x) + sinω0x(cosω0π − 1)}.

7.46 u(x) = (cotg 1 − cosec 1) sin x − cos x + 1

7.47 u(x) = −x

6

(
x2 − 7

3

)
.

7.48

G (x|ξ) =
{

x3ξ/2 + xξ3/2 − 9
5xξ + x 0 < x < ξ,

x3ξ/2 + xξ3/2 − 9
5xξ + ξ ξ < x < 1.

7.50 u(x) =
∫ 1

−1
f (ξ)G (x|ξ) dξ , where G (x|ξ) is given in PE 7.49.

Chapter 8

8.1 Nonlinear first-order partial differential equation.

8.2 u(x, y) = ln(xy).

8.3 yx = C, where C is a constant.

8.4 u(x, y) = − ln y + f (xy), where f (xy) is an arbitrary function.

8.5 u(x, y) = 1 + ln x.

8.6 u(x, y) = −1

y
+ f

(
xy

y − x

)
, where f

(
xy

y − x

)
is an arbitrary function.

8.7 u(x, y) = −1

y
+ 1 + y − x

xy
.

8.8 Quasilinear first-order partial differential equation.

8.9 u(x, y) = − 1

y + f (y − x)
, where f (y − x) is an arbitrary function.

8.10 Nonhomogeneous partial differential equation of the parabolic type.

8.14 Make the change of variables given in PE 8.23 and calculate the adequate
derivatives.

8.15 Proceed as in the previous exercise.

8.16 Proceed as in the previous exercise.
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8.17 Just write the equations for the characteristics and solve them.

8.18 Equation of mixed type: elliptic for x > 0, hyperbolic for x < 0 and parabolic
if x = 0.

8.19 Elliptic.

8.20 Parabolic.

8.23 Elliptic for y > 0, parabolic for y = 0 and hyperbolic for y < 0.

8.24 Hyperbolic on the entire plane.

8.25 Parabolic on x2−y2 = 0, hyperbolic on x2−y2 > 0 and elliptic on x2−y2 <

0.

8.26 Characteristic equations:
dy

dx
= ±i; curves: y − ix = c1 and y + ix = c2;

coordinates: α = 1

2
(ξ + η) = y and β = 1

2i
(ξ − η) = −x.

8.27 Characteristic equations:
dy

dx
= ±iy; curves: ix+ ln y = c1 e −ix+ ln y = c2;

coordinates: α = ln y and β = x.

8.28
∂2u

∂x2 − ∂2u

∂y2 + 7

2

∂u

∂x
− 3

2

∂u

∂y
− 2u = 0.

8.29
∂2u

∂η2
− 2

∂u

∂ξ
+ 3

∂u

∂η
+ u = 0.

8.30
∂2u

∂α2 + ∂2u

∂β2 + 4
∂u

∂α
− 4√

3

∂u

∂β
− u

3
= 0.

8.31 Just substitute the function and its derivatives into the equation.

8.32 Do as in the previous exercise.

8.33 Do as in PE 8.31.

8.34 Identify g = f exp(−ax − by), h = c3 + a2 + b2, a = c1/2 and b = c2/2.

8.35 g1 = f exp(−ax − by), h1 = a3 + a1a2.

8.38
∂2v

∂x2 + ∂2v

∂y2 = 9

2
v.

8.39
∂2v

∂η2
= 2

∂v

∂ξ
.

8.40
∂2v

∂α2
+ ∂2v

∂β2
= 17

3
v.

8.41
∂2u

∂ξ∂η
+ 1/2

ξ − η

(
∂u

∂ξ
− ∂u

∂η

)
= 0.
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8.42 Use the result of the previous exercise.

8.45 u(x, t) = f (x + ct) + g(x − ct).

8.46 u(x, y) = yf (y/x) + g(y/x).

8.47 u(x, y) = f (y − 3x) + g(y − x/3).

8.48 Consider v(r, t) = ru(r, t).

8.49 u(ξ, η) = ξf (η) + g(η).

8.50 u(ξ, η) = f (ξ) + g(η).

Chapter 9

9.1 Evaluate the derivatives and substitute into the two-dimensional Laplace
equation.

9.2 Yes.

9.3 Evaluate the derivatives and substitute into the one-dimensional wave equation.

9.4 Evaluate the derivatives and substitute into the one-dimensional heat equation.

9.5 Yes.

9.6 T ′′(θ) + λ2T (θ) = 0, whose solution is T (θ) = A cos λθ + B sin λθ , with A

and B arbitrary constants.

9.7 u(r) = A + B
r
, with A and B arbitrary constants.

9.8 Nonhomogeneous partial differential equation of the hyperbolic type.

9.9 With positive sign, always parabolic; with negative sign, always hyperbolic.

9.10 T (θ) = αθ + β, with α and β arbitrary constants.

9.11 (a) Linear; (b) linear; (c) nonlinear; (d) linear.

9.12 (a) Homogeneous; (b) nonhomogeneous; (c) nonhomogeneous.

9.13 (1a) Second; (1b) second; (1c) second; (1d) third; (2a) second; (2b) second;
(2c) second.

9.14 The three functions are solutions.

9.15 Both equations are linear, homogeneous, and of first order. The general
solutions are: (a) u(x, y) = C exp[λ(x2/2 − y)]; (b) u(x, y) = C exp[λ(x − y)].
9.17 (a) u(x, y) = F(x); (b) u(x, y) = F(y); (c) u(x, y) = ey F1(x) + F2(y).
(d) u(x, y) = f1(x) + f2(y); (e) u(x, y) = xf1(y) + f2(y); (f) u(x, y) = yf (x) +
g(x).
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9.18 u(x, y) = f (x + y) + g(3x + y).

9.19

T ′′ + λ2T = 0;

R′′ + 1

r
R′ − λ2

r2
R = 0.

9.20

∂2u

∂r2
+ 2

r

∂u

∂r
+ 1

r2

(
∂2u

∂θ2
+ cotg θ

∂u

∂θ
+ 1

sin2 θ

∂2u

∂φ2

)
= 0;

S′′ + m2S = 0;

T ′′ + cotg θT ′ − m2

sin2 θ
T + l(l + 1)T = 0;

R′′ + 2

r
R′ − l(l + 1)R = 0.

9.21

T ′′ + k2T = 0;

∇2R + k2R = 0.

9.22

T ′′ + k2T = 0;

∂2R

∂r2
+ 1

r

∂R

∂r
+ 1

r2

∂2R

∂θ2
− k2R = 0.

9.23

T ′′ + k2T = 0;

∇2R + k2R = 0.

9.24

1

r3

∂

∂r

(
r3

∂u

∂r

)
+ 1

r2

1

sin2 θ

∂

∂θ

(
sin2 θ

∂u

∂θ

)
+



Answers and Hints 373

1/r2

sin2 θ sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
+ 1/r2

sin2 θ sin2 φ

∂2u

∂ψ2
= 0;

S′′ + m2S = 0;

d

dφ

(
sinφ

dT

dφ

)
+

(
λ − m2

sin2 φ

)
T = 0;

1

sin2 θ

d

dθ

(
sin2 θ

dT

dθ

)
+

(
� − λ

sin2 θ

)
T = 0;

1

r3

d

dr

(
r3

dR

dr

)
− �

r2
R = 0.

9.26 u(x, t) = 4

π

∞∑
n=1

1 − cos nπ

n
cos

nπc

l
t sin

nπ

l
x.

9.27 Hint: Suppose that u(x, t) = v(x, t)+w(x) where w(x) is the stationary state
solution and v(x, t) satisfies the homogeneous equation and boundary conditions
which are also homogeneous. Then,

u(x, t) = u0

l
x −

∞∑
n=1

An exp

(
−K

n2π2

l2
t

)
sin

nπ

l
x,

where

An = 2

l

∫ l

0

[
f (x) − u0

l
x
]
sin

nπ

l
x dx.

9.28 Put u(x, t) = v(x, t) + w(x) where v(x, t) satisfies homogeneous conditions
and w(x) is determined in such a way as to satisfy the boundary conditions.

9.29 Proceed in a way analogous to the previous exercise.

9.30

u(x, t) = t + x

l
(1 − t) +

∞∑
n=1

[
2l/c

(nπ)2
sin

nπc

l
t + 2

nπ
(−1)n cos

nπc

l
t

]
sin

nπ

l
x.

9.31 u(x, t) = 4

π

∞∑
n=1

sin
[(

π
2 + 2nx)

)
x
l

]

1 + 4n
e−t .
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9.33

u(x, t) = x3

6kl
− lx

6k
+ xt

l
− 2l

k

∞∑
n=1

(−1)n

(nπ)2
exp

(
−k

n2π2

l2
t

)
sin

nπ

l
x.

9.34 It is enough to impose the initial condition u(x, 0) = f (x).

9.35

u(x, t) = x

l
+ 2

π

∞∑
n=1

(−1)n

n
exp

(
−k

n2π2

l2
t

)
sin

nπ

l
x.

9.36

u(x, t) = 2l

π

∞∑
n=1

(−1)n

n

{
−1 + exp

[
−k

(nπ

l

)2
t

]}
sin

nπ

l
x.

9.37 It is enough to show that x = 2

π
l2

∞∑
n=1

(−1)n

n
sin

nπ

l
x.

9.38 u(x, y) = − 4

ab

∞∑
m=1

∞∑
n=1

h(m, n)(
mπ
b

)2 + (
nπ
a

)2 , where the function h(m, n) is a

Fourier transform.

9.39 The answer is analogous to the answer of the previous exercise, plus a constant.

9.40 u(x, t) = 1

2πi

∫ γ+i∞

γ−i∞
F(0, s) exp

[
s
(
t − x

c

)]
ds.

9.43 u(r, t) =
∞∑

n=1

J0(λr)(An sin λct + Bn cos λct), where

λncAn = 2/R2

J2
1(λnR)

∫ R

0
rg(r)J0(λnr)dr

and

Bn = 2/R2

J2
1(λnR)

∫ R

0
rf (r)J0(λnr)dr.
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9.44

u(x, t) = xt2

2
+ tx2

2
− xt

2
− 1

π2

∞∑
n=1

(−1)n

n2
sin nπt sin nπx .

9.45 u(r, z) = u0

∞∑
n=1

1

λn

sinh[λn(4 − z)]
sinh 4λn

J0(λnr)

J1(2λn)
.

9.47 u(x, t) ≡ ψ(x) = u0 + u1 − u0

1 + π
x.

9.48 u(x, y) = 1

π

∫ ∞

−∞
y

y2 + (x − ξ)2
f (ξ) dξ .

9.49

u(ρ, φ, t) = u(ρ) +
∞∑

n=1

AnJ0

( ρ

R
λn

)
exp

(
− λ2n

R2 kt

)
,

where

An = 2

J1(λn)

(
Tb − Ta

λn

− 2�R2

kλ3n

)

and

u(ρ)Ta + �

4k
(R2 − ρ2).

9.50 u(r) = Bb

r

r − a

b − a
+ Aa

r

b − r

b − a
.

Chapter 10

10.1 See reference [2] of chap. 5.

10.2 Jμ(xn) = n!
�(μ + n + 1)

xμ+n.

10.3 J
1
2 (

√
x) =

√
πx

2
.

10.4 Dμ(xν) = �(ν + 1)

�(ν − μ + 1)
xν−μ.
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10.5 D
1
2 (x) = 2

√
x√
π

.

10.6 Using the definition of fractional derivative, we obtain in the numerator �(0),
which is not defined. Otherwise, all integer derivatives are defined for x �= 0.

10.7 Use the definition of error function to obtain

D
1
2 (ex) = 1√

πx
+ ex erf(

√
x).

10.8 CDμ(xν) = �(ν + 1)

�(ν − μ + 1)
xν−μ+1.

10.9 Same as in PE 10.6.

10.10 CD
1
2 (ex) = ex erf(

√
x).

10.11 CD
1
2 (

√
x) =

√
π

2
.

10.12 Using integration by parts and the relation

− ν

�(1 − ν)
= 1

�(−ν)
,

the result follows.

10.13 Using PE 10.12, we conclude that for f (0+) = 0, both derivatives are
equivalent.

10.14 Use the definition of Laplace transform.

10.15 Using the Riemann-Liouville fractional integral, the definition of beta func-
tion and the relation between beta and gamma functions, we obtain

Jμ
Eα(−xα) = xμ

Eα,μ+1(−xα) = Eα,μ+1(−xα) ,

where we have introduced, in the second equality, the Prabhakar function.

10.16 Evaluate the Caputo fractional derivative of the Mittag-Leffler function with
two parameters and show that it is equal to the second member.

10.17 CDν(x + 1)m = �(m + 1)

�(m + 1 − ν)
xm−ν .

10.18 Introducing Eq.(10.3) into Eq.(10.5) and changing the order of integrations,
the result follows.

10.19 CDν(C) = 0 andDν(C) = C

�(1 − ν)
(x − a)−ν .
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10.20 Substitute the series expansion of the Mittag-Leffler function, change the
order of integration with the sum and use the following relation:

Eα,β(z) = 1

�(β)
+ zEα,α+β(z).

10.21 Use the Laplace transform methodology to obtain

f (x) = sin(πα)

π
xα−1.

10.22 Evaluate the derivative; integrate using the definition of beta function and the
relation between beta and gamma functions.

10.23 Use the definitions of the Laplace transform and the gamma function.

10.24 For 0 ≤ μ < 1, we have

L
[
RL
0 D

μ
x f (x);p

]
= pμF(p) −

[
RL
0 D

μ−1
x f (x)

]
x=0

and, in the case 1 ≤ μ < 2, we have

L
[
RL
0 D

μ
x f (x);p

]
= pμF(p) − p

[
RL
0 D

μ−2
x f (x)

]
x=0

−
[
RL
0 D

μ−1
x f (x)

]
x=0

.

10.25 For 0 ≤ μ < 1, we have

L
[
C
0 D

μ
x f (x);p

]
= pμF(p) − pμ−1f (0)

and, in the case 1 ≤ μ < 2, we have

L
[
C
0 D

μ
x f (x);p

]
= pμF(p) − pμ−1f (0) − pμ−2f ′(0).

10.26 Using the series expansion for the Mittag-Leffler with two parameters, the
definition of gamma function and the geometric series, the result follows. This is a
special property of the Prabhakar function with two parameters.

10.27 Using the series expansion for the Mittag-Leffler function with two parame-
ters and changing the order of the integration with the derivative, the result follows.

10.28 Taking n = 1 in the result obtained in PE 10.27, we have the following
expression:

d

dz

[
zβ−1

Eα,β(zα)
]

= zβ−2
Eα,β−1(z

α).

10.29 Proceed as in PE 10.28 and use the definition of the Pochhammer symbol.
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10.30 Proceed as in SE 10.9. Note that this case is a generalization whose particular
case, discussed in the text, is recovered by taking γ = 1.

10.31 Introducing the series expansion for the classical Mittag-Leffler function,
changing the order of integration with the sum and using the definition of beta
function, we obtain for the integral

�(β)xβ
Eα,β+1(x

α).

10.32 Using the definition of the Laplace transform and the definition of gamma
function, the first result follows. For the corresponding inverse, we take the inverse
Laplace transform on both sides of the result obtained previously.

10.33 Use the series expansion for the classical Mittag-Leffler function, and change
the order of the derivative with the sum.

10.34 For n = 1, we obtain

x(t) = Eα(−tα) x(0) − q(t) � E′
α(−tα),

and in the case n = 2, we have

x(t) = Eα(−tα) x(0) + t Eα,2(−tα) x′(0) − q(t) � E′
α(−tα).

10.35 The result is in the text.

10.36 Similar to PE 10.32.

10.37 Multiply by x the Mittag-Leffler function Eα,α+1(x) and show that
x Eα,α+1(x) is equal to −1 + Eα(x).

10.38 Putting α = 1 in Newton’s law of cooling, discussed in SE 10.11, and using
the result obtained in PE 10.37, we obtain

T (t) = T + (T0 − T ) e−kt .

10.39 Use the series expansion for the classical Mittag-Leffler function, and change
the order of the derivative with the sum.

10.40 Separate the classical Mittag-Leffler function in two other series expansions,
an odd and an even series, and rearrange.

10.41 Evaluate the first derivative of the series expansion of the Mittag-Leffler
function with two parameters and rearrange the index to obtain the expression in the
second member.

10.42 Consider the Mittag-Leffler function with two parameters E1,3(x), and
manipulate the index to write it as a sum.
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10.43 Consider the series expansion of the confluent hypergeometric function,
rearrange the index, and use the definition of gamma function.

10.44 Proceed as in PE 10.43.

10.45 Introduce the series expansion for the Mittag-Leffler function with two
parameters, change the order of the integration with the sum, and use de definition
of beta function.

10.46 Use the series expansion for the Mittag-Leffler function with two parameters,

evaluate the difference, and rearrange to obtain
1

�(β)
.

10.47 Consider the series expansion for the Mittag-Leffler function with three
parameters, and proceed as in PE 10.27.

10.48 Take the Laplace transform on both sides to obtain an identity associated with
the geometric series.

10.49 Use the series expansion for the Mittag-Leffler function with two parameters
and the definitions of gamma and beta functions.

10.50 Proceed as in the text and use the relation

d

dx
Eα,β(x) = x

d

dx
Eα,α+β(x) + Eα,β(x)

to obtain the relation

∫ 1

0
tγ−1

Eα,γ (xtα)(1 − t)β−1
Eα,β(x(1 − t)α) dt = E

′
α,β+γ−α(x).

Chapter 11

11.2 (b) Use the method of undetermined coefficients. (d) Use the result obtained
in item (a) to get

Q(t) = exp

(
− R

2L
t

){
A exp

(
μt

2L

)
+ B exp

(
− μt

2L

)}

Q(t) = (A + Bt) exp

(
− R

2L
t

)

Q(t) = exp

(
− R

2L
t

){
Ã cos

(
μt

2L

)
+ B̃ sin

(
μt

2L

)}

where μ2 = R2 − 4L/C.
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11.3 (a) U1(r) = a rα with α = (1 − 2C)/C. (b) U1(r) = a
r
, limited motion for

a < 0 and U1(r) = a r2, limited motion for a > 0. In both cases, the other linearly
independent solution is a constant. (c) In this case the constant C must be equal to
1/2. (d) For α �= 0 we have U(r) = D + a rα where D is a real constant; for α = 0
we have U(r) = E + b ln r where E is a real constant.

11.4 (a) y(x) =
∞∑

k=0

(k + 1)xk . (b) Converges for |x| < 1. y(x) = (1 − x)−2.

11.5 The roots of the indicial equation are s = 0 and s = 1, which provide
respectively the following recurrence relations: (a) ∀a1, 2a2+βa0 = 0; k(k−1)ak+
βak−2 −ak−4 = 0. (b) For a1 = 0, 6a2 +βa0 = 0; k(k +1)ak +βak−2 −ak−4 = 0.

11.6 yP (x) = 2 + 2 sin x + cos x.

11.11 Obtain a linear, first-order partial differential equation for G(x, t) and
integrate it.

11.12

u(x, t) = f0v
2

c2 − v2

{(
t − x

v

)
θ

(
t − x

v

)
−

(
t − x

c

)
θ

(
t − x

c

)}

for v �= c and

u(x, t) = −f0

2c
xθ

(
t − x

c

)

for v = c, where

θ(a − b) =
{
0 for a < b,

1 for a ≥ b,

is the Heaviside function (or step function).

11.13 γ (μ, x) = 1
μ

xμ
1F1(μ;μ + 1;−x).

11.15 Use the Rodrigues formula and the relation
d2n

dx2n
(x2 − 1)n = (2n)!

11.16 (a) 2A� = 2� + 1

�(� + 1)
[(1 − a2)P′

�(a) − (1 − b2)P′
�(b)], � ≥ 1, with A0 =

1
2 (b − a) because P0(z) = 1. (b) 1 =

∞∑
n=0

4n + 3

(2n + 1)(2n + 2)
P′

2n+1(0)P2n+1(z) =
3

2
P1(z) − 7

8
P3(z) + 11

16
P5(z) + . . .

11.19 Use the Laplace transform.
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11.20 L[f (t)] = k

s
tgh

(as

2

)
.

11.21 �(t) = π
2 e−t ·

11.22 f (x) = 2
π

1
1+x2

.

11.23 Eigenvalues λn = n2 for n = 1 , 2 , 3 . . .; eigenfunctions yn(x) = sin(n ln x).

11.24 u(x) =
∫ 1

0
G(x|x′)f (x′)dx′, where

G(x|x′) =
⎧⎨
⎩

x3

2 x′ + x′3
2 x − 9

5xx′ + x, 0 ≤ x < x′;
x3

2 x′ + x′3
2 x − 9

5xx′ + x′, x′ < x ≤ 1.

11.25 u0(x) = a0 and uk(x) = ak cos kπx with k = 1, 2, 3, . . .

11.26 u0(x) = 1 and uk(x) = √
2 cos kπx with k = 1, 2, 3, . . .

11.27 (a) The Green’s function is given by

G(x|ξ) =
{

x(1 − ξ) 0 < x < ξ,

ξ(1 − x) ξ < x < 1.

(b) u(x) = x(x3 − 1).

11.28
∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0, with u = u(r, θ). This is an equation of elliptic

type.

11.29
∂2u

∂r2
+ 2

r

∂u

∂r
+ 1

r2

∂2

∂θ2
+ cotg θ

r2

∂u

∂θ
+ 1

r2 sin2 θ

∂2u

∂φ2
= 0 with u = u(r, θ, φ).

This is an equation of elliptic type.

11.30 u(x, y) = xf (y + x) + g(y − x), where f and g are twice continuously
differentiable.

11.31 u(r) = F0

ω2 + AI0

(ω

a
r
)
, where A is constant and I0(μ) is a modified Bessel

function of order zero.

11.32

(a) u(r, θ) = 1

2
+

∞∑
l=1

( r

a

)l l + 1/2

l + 1
Pl−1(0)Pl (cos θ).

(b) Use Pl−1(0)Pl (0) = 0.

11.33 N(ν) = Aνp exp(−βν2/2)Lp
n (βν2) where A is an arbitrary constant and

L
p
n(·) are the generalized Laguerre polynomials.
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11.37

u(x, t) =
{
sin(t − x/c) if t ≥ x

c
;

0 if t ≤ x
c
.

11.38 Hint: Solve the heat equation, shown in Chap. 8, using the Fourier trans-
form.

(a) u(x, t) = 1

2
√

xt

∫ ∞

−∞
f (ξ) exp

[
−1

4
(x − ξ)2

]
dξ

(b) u(x, t) = u0

2

{
erf

(
x + 1

2

√
t

)
− erf

(
x − 1

2

√
t

)}
, where

erf(x) = 2√
π

∫ x

0
e−u2 du is the error function.

11.39

u(x, t) = f0

2

{
t2 − (

t − x
c

)2
t ≥ x/c;

t2 t ≤ x/c.

11.42 (b)
d2

dψ2�(ψ) + (α + βa2 cos2 ψ)�(ψ) = 0;
d2

dη2
H(η) − (α +

βa2 cosh2 η)H(η) = 0;
d2

dz2
Z(z) + (k2 + β)Z(z) = 0, where α and β are

two separation constants. (c) All equations are second-order ordinary differential
equations; two are nonlinear and one is linear.

11.43 u(x, t) = 1√
2π

∫ ∞

−∞
e−ikxe−k2βt e−ivktF (k) dk where F(k) =

1√
2π

∫ ∞

−∞
f (ξ) eikξ dξ .
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A
Abel equation, 339
Airy equation, 56, 58
Analytic function, 38
Argand-Gauss plane, 61

B
Bernoulli equation, 17
Bessel

equation, 26, 31, 102, 307, 318
general solution, 47
order 1/2, 46
order ν, 44
second solution, 102

function, 47, 87, 154, 163
confluent hypergeometric, 102
generating function, 103
integral representation, 119
modified, 102, 115, 381

Boundary conditions, 13, 199, 223, 227, 243,
331

homogeneous, 244
nonhomogeneous, 244

Bromwich contour, 143, 314
modified, 149

C
Canonical form, 201, 203, 229, 246, 325

elliptic, 206
first, 205
hyperbolic, 205, 219
parabolic, 206
second, 205

Caputo
derivative, 256, 271, 338
fractional derivative, 256, 272, 345

Cartesian coordinates, 241
Cauchy

conditions, 228
problem, 246
remainder, 39

Cauchy–Riemann
conditions, 64
equations, 64, 82

Characteristic, 200
curves, 199, 204
equations, 204

Chebyshev polynomial, 115
Christoffel-Darboux formula, 276
Circular membrane, 176, 247
Complex

conjugate, 61
number, 61

polar representation, 62, 73
trigonometric representation, 61

plane, 61
Confluent hypergeometric function, 275
Constant

integration, 285, 297
separation, 226, 329

Contour integral, 295
Convergence

interval, 36, 43, 56
radius, 36, 44

Convergent series
absolutely, 172
uniformly, 172
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Convolution
product, 143
theorem, 143, 157, 162, 364

Coordinates
transformation of, 201

Coulombian potential, 173
Cramer’s rule, 20
Cylindrical coordinates, 243, 248
Cylindrical-elliptic coordinates, 348
Cylindrical-parabolic coordinates, 343

D
d’Alembert

equation, 242
projective, 324

operator, 243
Dalembertian, 243
Dependent variable, 12
de Sitter universe, 324
Differential equation

mixed type, 201
self-adjoint form, 176

Diffusion equation, 217
Dirac delta function, 152
Direct integration, 4
Dirichlet

conditions, 126, 228
problem, 245

Discriminant, 201
Double factorial, 117
Duplication formula, 275

E
Eigenfunctions, 171, 183, 189, 319, 366
Eigenvalues, 171, 183, 189, 319, 366

problem, 183
Electrostatic potential, 249
Elliptic equation, 201, 206

constant coefficients, 217
Equation

algebraic, 14
auxiliary, 14, 40
characteristic, 14
confluent hypergeometric, 28, 32, 58, 87,

97
solution, 113

differential
constant coefficients, 13, 25
Euler type, 13, 14, 25
first order, 288
homogeneous, 12
linear, 12

ordinary, 12, 30, 279
ordinary points, 88
partial, 224, 324
second order, 12
self-adjoint form, 176
singular points, 88
three regular singular points, 88
three singular points, 87

exact, 8
Fredholm, 192
homogeneous, 20
hypergeometric, 32, 87, 93, 94

Riemann–Papperitz symbol, 94
solution, 95

indicial, 40, 45, 90
integrodifferential, 164
mixed type, 325, 370
nonhomogeneous, 12, 20
radial, 23
Volterra, 313

Error function, 382
complementary, 151

Euler
equation, 183
formula, 62

Even
extension, 146
function, 134
series, 292

Exact equation, 8

F
Falling body, 283
Fick’s law, 279
Fourier

expansion, 136
integral theorem, 145
method, 223, 225, 229
series, 121, 362

complex, 135
differentiation, 122
integration, 124
sine, 332

transform, 144, 159, 167, 313, 341
convolution, 145
cosine, 146, 164
cosine finite, 147
differentiation, 146
displacement, 144
Gaussian, 314
inverse, 146
linearity, 144
scale, 145
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sine, 145, 164
sine finite, 146

Fourier–Bessel
coefficients, 125
series, 121, 125, 138, 139, 306, 307, 362

Fourier–Legendre
coefficients, 126, 139
series, 121, 126, 139, 306, 308

Fractional
calculus, 257
derivatives, 255, 272
differential equation, 272, 338, 348
equation, 345

Fredholm equation, 192
Frobenius

generalized series, 40, 57, 356
method, 36, 40, 89, 98, 288, 290

Function
absolutely integrable, 144
analytic, 40, 64, 88, 89

at infinity, 69
beta, 116, 360
complex, 62

chain rule, 64
continuous, 63
derivative, 64
hyperbolic, 66
imaginary part, 81
inverse hyperbolic, 67
inverse logarithmic, 67
inverse trigonometric, 67
limit, 64
real part, 81
trigonometric, 66
variable, 61

confluent hypergeometric, 54, 87, 301, 303
integral representation, 118

cylindrical, 102
error, 382

complementary, 151
exponential, 66

order, 142
gamma, 116

duplication formula, 117
harmonic, 81
Heaviside, 380
holomorphic, 64
hypergeometric, 87

Legendre polynomial, 100
linearly independent, 12
meromorphic, 81, 295
Mittag-Leffler, 257
multivalued, 62, 69
periodic, 121

regular, 64
single-valued, 62
smooth by parts, 144
special, 87
step, 380
zero of, 67

G
Gamma function, 275

incomplete, 306
Gegenbauer

equation, 114, 359
function, 114

Gel’fand-Shilov function, 252
General solution, 3, 200
Generating function, 301
Green function, 28, 29, 166, 173, 187, 191,

367
continuity, 177
generalized, 180, 317, 320, 323

H
Harmonic oscillator, 27

damped, 27
Heat

conduction, 206, 243
equation, 217, 241, 244, 245

Heaviside function, 157, 348
Helmholtz equation, 343
Hermite

equation, 291
function, 114
normalized, 292
polynomial, 57, 301

generating function, 301
recurrence relation, 302

Hodograph equation, 304
Homogeneous conditions, 176
Hyperbolic equation, 201, 205
Hypergeometric equation, 43

I
Imaginary unit, 61
Impulsive force, 152
Incomplete gamma function, 98
Independent

solution, 40
variable, 12

Initial
conditions, 13, 20, 223, 243
value problem, 3, 14, 15, 337
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Integral
equation, 186, 273

Fredholm, 192
Volterra, 313

integer order, 252
derivative, 253

noninteger order, 252, 254
derivative, 254

representation, 303
transform, 61, 141

Integrating factor, 5, 8, 15
Integration contour, 85
Integrodifferential equation, 164, 340
Invariant, 31

J
Jacobian, 201
Jacobi polynomial, 114
Jordan lemma, 75, 298

K
Kernel, 349
Kirchhoff’s law, 352
Kronecker delta function, 232, 311
Kummer

equation, 98
relations, 95
solutions, 95

L
Lagrange remainder, 39
Laguerre function, 114
Laplace

convolution, 253
equation, 81, 207, 241, 245

four-dimensional, 243
polar coordinates, 242
spherical coordinates, 242, 309, 329
three-dimensional, 328
two-dimensional, 217, 241, 328

operator, 243
transform, 72, 141, 162, 246, 313, 337, 341,

380
convolution, 313
differentiation, 142
displacement, 142
integration, 142
inverse, 143, 343
linearity, 141
scale, 142

Laplacian, 243

Laurent
series, 67, 81

principal part, 67, 69
and residues, 71

Legendre
equation, 27, 32, 57, 195, 359
function, 87, 99, 114

associated, 99
first kind, 99, 330
second kind, 99, 100, 330

polynomial, 100, 248, 317, 328
associated, 118
generating function, 115, 306
odd, 319
orthogonality, 107, 139

l’Hôpital rule, 132, 276, 286
Line

branch, 63
cut, 63

Liouville theorem, 70

M
Maclaurin series, 39, 40, 56, 359
Main branch, 62
Mass-spring, 279
Maxwell model, 348
Memory effect, 337
Method

of characteristics, 198
Lagrange’s, 13
residues, 61
separation of variables, 197, 223, 225
undetermined coefficients, 19, 281
variation of parameters, 13, 18, 27, 281

Mittag-Leffler function, 112, 257, 338, 348
three parameters, 348, 349
two parameters, 275

Morera theorem, 65

N
Neumann

conditions, 132, 228
problem, 246

Newton
gravitation law, 287
second law, 279, 281

Normal form, 31
Normalization, 47

O
Odd

extension, 145
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series, 292
Ordinary

differential equation, 1
linear, 4
linearity, 2
order, 2
solution, 3

point, 36
Orthogonal functions, 171
Orthogonality, 107, 231

property of, 127

P
Parabolic

coordinates, 333
equation, 201, 206

Parseval identity, 124, 161
Fourier transform, 165

Partial
differential equation

First order, 197
fractions, 11, 148, 285, 314

Particular solution, 3
Periodic function, 121
Plane wave, 165
Pochhammer symbol, 95, 117, 348
Point

branch, 63, 69, 88, 149, 356
at infinity, 69
logarithmic type, 40

at infinity, 58, 69
irregular singular, 88
regular singular, 88
singular, 68, 91

Poisson
equation, 246, 328, 330
formula, 248

Polar coordinates, 84, 242
four-dimensional, 243

Pole, 40, 69, 88
at infinity, 69

Principal value, 83
Product method, 225

Q
Quadratic transformation, 113
Quasi-linear first order equation, 198

R
Ratio test, 44, 290
Real integrals, 72

Recurrence relation, 46, 275, 354
pure, 101, 102
three terms, 57

Reduction of order, 12, 26
Regular singular point, 38
Residues, 71, 82
Residue theorem, 82, 144, 155, 156, 295, 299,

314, 364
Riccati equation, 32
Riemann equation, 91

parameters, 93
singularities, 93

Riemann-Liouville
derivative, 256, 271, 272, 341
fractional derivative, 255
fractional integral, 254, 335

Riemann-Papperitz symbol, 91, 94
RLC electrical circuit, 27, 28, 137, 279, 287

critically damped, 287
subdamped, 287
superdamped, 287

Robin conditions, 228
Rodrigues formula, 115, 312, 380
Roots

auxiliary equation, 14
noninteger, 47

S
Schrödinger

equation, 294, 333
harmonic oscilator, 290

Self-adjoint
form, 32
operator, 170

Semigroup property, 339
Separable equation, 7
Separate

conditions, 176
extremes conditions, 171

Separation of variables, 201
Series

geometric, 357
hypergeometric, 95
by means of contour integral, 295
power, 35, 289
remainder, 39
uniformly convergent, 127

Signal function, 134
Simple

pendulum, 96
pole, 297

Singularity, 68, 81, 84, 88, 297
essential, 69, 88, 356
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Singularity (cont.)
isolated, 68
removable, 69, 83

Singular point, 36
Sinusoidal wave, 217
Solution

general, 12, 20, 26, 29
linearly independent, 26, 47
nonhomogeneous, 20
particular, 12, 13, 29

Spectrum, 171
continuous, 292
discrete, 292

Spherical coordinates, 173, 242
Stark effect, 333
Stationary state, 373

temperature, 247
Sturm–Liouville

equation, 170
regular, 170
singular, 170

problem, 126, 169, 171, 230, 243, 323
nonhomogeneous, 319
singular, 319

system, 169, 171, 317
eigenfunction series, 172
periodic, 189
regular, 189

Superposition principle, 224, 332

T
Tautochrone, 339
Taylor

expansion, 39
series, 39, 40, 89, 288

complex, 67
Tchebichef polynomial, 115
Time independent problem, 244
Tricomi equation, 215, 241
Trivial solution, 177, 184
Two-dimensional flow, 304

U
Uniform motion, 5

V
Variable

change of, 220
dependent, 32
independent, 91
transform, 141

Variation of parameters, 293
Vertical launch, 280
Vibrating string, 229
Viscoelastic

equation, 345
object, 345

Volterra
equation, 313, 349
integral equation, 349

W
Wave

equation, 205, 217, 241, 313, 315, 341
d’Alembert solution, 342
one-dimensional, 229

function, 290
packet, 166

Weber function, 114
Weight function, 171
Whittaker

equation, 28, 47
function, 113

Wronskian, 26, 29, 32, 114, 178

Z
Zero

order m, 68
simple, 68
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